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Abstract
Recently, expectile-based measures of skewness akin to well-known quantile-based
skewness measures have been introduced, and it has been shown that these mea-
sures possess quite promising properties (Eberl and Klar in Comput Stat Data Anal
146:106939, 2020; Scand J Stat, 2021, https://doi.org/10.1111/sjos.12518). However,
it remained unanswered whether they preserve the convex transformation order of van
Zwet, which is sometimes seen as a basic requirement for a measure of skewness. It is
one of the aims of the present work to answer this question in the affirmative. These
measures of skewness are scaled using interexpectile distances. We introduce orders
of variability based on these quantities and show that the so-called weak expectile
dispersive order is equivalent to the dilation order. Further, we analyze the statistical
properties of empirical interexpectile ranges in some detail.

Keywords Expectile · Skewness · Stop-loss transform · Dispersion order · Dilation
order · Dispersive order · Scale measure · Asymptotic relative efficiency

Mathematics Subject Classification 60E15 · 62E10

1 Introduction

Over the last years, there was a steady increase in literature dealing with expectiles.
These are measures of non-central location that have properties similar to quantiles.
Therefore, expectiles can also be used as building blocks for measures of scale, skew-

B Bernhard Klar
bernhard.klar@kit.edu

Andreas Eberl
andreas.eberl@kit.edu

1 Institute of Stochastics, Karlsruhe Institute of Technology, Englerstr. 2, 76131 Karlsruhe, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-022-01331-x&domain=pdf
http://orcid.org/0000-0002-1419-5473
https://doi.org/10.1111/sjos.12518


A. Eberl, B. Klar

ness, etc. However, no such measure should be used without identification of the
ordering it preserves.

Let us explain this in more detail. Since the seminal work of van Zwet (1964), Oja
(1981), MacGillivray (1986), an axiomatic approach to measure statistical quantities
is commonly accepted. It involves two main steps (Hürlimann 2002):

• Define stochastic (partial) orders on sets of random variables or distribution func-
tions that allow for comparisons of the given statistical quantity.

• Identify measures of the statistical quantity by considering functionals of distri-
butions that preserve the partial order, and use only such measures in practical
work.

Given a dispersion or variability ordering ≤D , the general axiomatic approach
requires that a scale measure δ satisfies

D1. For c, d ∈ R, δ(cX + d) = |c|δ(X).
D2. If X ≤D Y , then δ(X) ≤ δ(Y ).

Similarly, given a skewness order ≤S , a skewness measure γ should satisfy

S1. For c > 0 and d ∈ R, γ (cX + d) = γ (X).
S2. The measure satisfies γ (−X) = −γ (X).
S3. If X ≤S Y , then γ (X) ≤ γ (Y ).

The generally accepted strongest dispersion and skewness orders are the dispersive
order (Bickel and Lehmann 1979) and the convex transformation order (van Zwet
1964), respectively.

Research which treats expectile-based measures and related stochastic orderings
includes Bellini (2012), Bellini et al. (2014, 2018a), Klar and Müller (2019), Eberl
and Klar (2020, 2021), Arab et al. (2022). In particular, Eberl and Klar (2020, 2021)
introduced expectile-basedmeasures of skewnesswhich possess quite promising prop-
erties and have close connections to other skewness functionals. However, it remained
unanswered whether these measures preserve the convex transformation order. It is
one of the aims of the present work to answer this question in the affirmative.

As part of these measures of skewness, interexpectile distances (also called interex-
pectile ranges) appear quite naturally; they have also been used in a finance context by
Bellini et al. (2018b, 2020, 2021). We introduce orders of variability based on slightly
more general quantities and show that the so-called weak expectile dispersive order is
equivalent to the dilation order. Hence, interexpectile ranges preserve the dispersive
ordering.

Up to now, statistical properties of empirical interexpectile ranges do not seem
to have been investigated. We show that they are a good compromise between the
standard deviation on the one hand and robust measures as the interquartile range on
the other.

This paper is organized as follows. In Sect. 2, we recall the definitions of expectiles
and some of their properties. Section 3 discusses expectile skewness. It is shown
that expectile-based skewness measures are consistent with the convex transformation
order. In Sect. 4, we introduce strong and weak expectile dispersive orders and show
that the latter is equivalent to the dilation order. It follows that the interexpectile range
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preserves the dispersive order. These concepts are illustrated in Sect. 5, using the
Lomax or Pareto type II distribution. Empirical interexpectile ranges are analyzed and
compared with other scale measures in Sect. 6, using standardized asymptotic relative
efficiencies.

2 Preliminaries

Throughout the paper, we assume that all mentioned random variables X are non-
degenerate, have a finite mean (denoted as X ∈ L1), and are defined on a common
probability space (�,A, P). Further, we assume that the supports of the underlying
distributions are intervals and that these distributions have no atoms. Hence, the dis-
tribution function (cdf) FX of X has a strictly increasing and continuous inverse on
(0, 1).

Expectiles eX (α) of a random variable X ∈ L2 have been defined by Newey and
Powell (1986) as the minimizers of an asymmetric quadratic loss:

eX (α) = argmin
t∈R

{E�α(X − t)} , (1)

where

�α(x) =
{

αx2, if x ≥ 0,

(1 − α)x2, if x < 0,

and α ∈ (0, 1). For X ∈ L1 (but X /∈ L2), equation (1) has to be modified (Newey
and Powell 1986) to

eX (α) = argmin
t∈R

{E [�α(X − t) − �α(X)]} . (2)

Theminimizer in (1) or (2) is always unique and is identified by thefirst order condition

αE (X − eX (α))+ = (1 − α)E (X − eX (α))− , (3)

where x+ = max{x, 0}, x− = max{−x, 0}. This is equivalent to characterizing expec-
tiles via an identification function, which, for any α ∈ (0, 1) is defined by

Iα(x, y) = α(y − x)1{y≥x} − (1 − α)(x − y)1{y<x}

for x, y ∈ R. The α-expectile of a random variable X ∈ L1 is then the unique solution
of

E Iα(t, X) = 0, t ∈ R.
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Similarly, the empirical α-expectile ên(α) of a sample X1, . . . , Xn is defined as solu-
tion of

Iα(t, F̂n) = 1

n

n∑
i=1

Iα(t, Xi ) = 0, t ∈ R.

Like quantiles, expectiles are measures of non-central location and have similar prop-
erties [see, e.g., Newey and Powell (1986) and Bellini et al. (2014)]. Clearly, expectiles
depend only on the distribution of the random variable X and can be seen as statistical
functionals defined on the set of distribution functions with finite mean on R.

Throughout the paper, we make use of the following stochastic orders:

Definition 1 (i) FX precedes FY in the usual stochastic order (denoted by FX ≤st

FY ) if Eφ(X) ≤ Eφ(Y ) for all increasing functions φ, for which both expecta-
tions exist.

(ii) FX precedes FY in the convexorder (denoted by FX ≤cx FY ) if Eφ(X) ≤ Eφ(Y )

for all convex functions φ, for which both expectations exist.
(iii) FX precedes FY in the convex transformation order (denoted by FX ≤c FY ) if

F−1
Y ◦ FX is convex.

(iv) FX precedes FY in the expectile (location) order (denoted by FX ≤e FY ) if

eX (α) ≤ eY (α) for all α ∈ (0, 1).

The first three orders are well-known (Shaked and Shantikumar 2007; Müller and
Stoyan 2002); the expectile (location) order was introduced in Bellini et al. (2018a).
Since the usual stochastic order≤st is equivalent to the pointwise ordering of the quan-
tiles, the definition of the expectile ordering is quite natural, just replacing quantiles
by expectiles.

As noted by Jones (1994), expectiles are the quantiles of a suitably transformed
distribution. Indeed, the first order condition (3) can be written in the equivalent form

α = E (X − t)−
E |X − t | = πX (t) − μ + t

2πX (t) − μ + t
=: F̆X (t), (4)

whereμ = E X and πX (t) = E(X − t)+ denotes the stop-loss transform of X . Hence,
F̆X (t) = e−1

X (t), and the expectile order could also be defined by F̆X (t) ≥ F̆Y (t)
for all t . The expectile order is weaker than the usual stochastic order, i.e. X ≤st Y
implies X ≤e Y (Bellini 2012).

3 Expectile skewness

In the following, we summarize some results which are important with respect to
expectile-based quantification of skewness. Bellini et al. (2018a), Theorem 12 and
Corollary 13, show the following equivalence.
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Proposition 2 Let X , Y ∈ L1 with E X = EY = μ, m = ess inf(X), M =
ess sup(X). Then the following conditions are equivalent:

(a) X ≤e Y .
(b) πX (x) ≥ πY (x), for each x ∈ (m, μ) and πX (x) ≤ πY (x), for each x ∈ (μ, M).
(c) (X − μ)− ≥cx (Y − μ)− and (X − μ)+ ≤cx (Y − μ)+.

Eberl and Klar (2021) introduced a family of scalar measures of skewness

s̃2(α) = eX (1 − α) + eX (α) − 2μ

eX (1 − α) − eX (α)
, α ∈ (0, 1/2),

and called a distribution right-skewed (left-skewed) in the expectile sense if s̃2(α) ≥
(≤) 0 for all α ∈ (0, 1/2) and equality does not hold for each α ∈ (0, 1/2). If equality
holds for each α, the distribution is symmetric. They also defined a normalized version
s2(α) = s̃2(α)/(1 − 2α), and proved that −1 < s2(α) < 1, and both inequalities are
sharp for any α ∈ (0, 1/2).

Moreover, Eberl and Klar (2021) introduced a function

SX (t) = πX (μ + t) − πX (μ − t)

t
+ 1 = 1

t

∫ μ+t

μ−t
FX (z)dz − 1, t > 0,

which has been shown to be strongly related to s2: it holds that s2(α) ≥ 0 for α ∈
(0, 1/2) if and only if SX (t) ≥ 0 for each t > 0 (Eberl and Klar 2021). Based on SX ,
the following two skewness orders have been defined, which are both weaker than van
Zwet’s skewness order ≤c (Eberl and Klar 2021).

Definition 3 (a) Let S̃X (t) = SX (tdX ), where dX = E |X − E X | denotes the mean
absolute deviation from the mean (MAD). Then, we write FX ≤s f FY if S̃X (t) ≤
S̃Y (t)∀ t > 0.

(b) FY ismore skewwith respect tomean andMADthan FX (FX <d
μ FY ), if FX (dX x+

E X) and FY (dY x + EY ) cross each other exactly once on each side of x = 0,
with FX (E X) ≤ FY (EY ).

Arab et al. (2022) introduced a skewness order as follows.

Definition 4 Let X , Y ∈ L1, and define X̃ = (X − E X)/E |X − E X |, Ỹ = (Y −
EY )/E |Y − EY |, with cdf’s FX̃ and FỸ . X is smaller than Y in the s-order, denoted
by FX ≤s FY , if ∫ x

−∞
FX̃ (t)dt ≥

∫ x

−∞
FỸ (t)dt, ∀x ≤ 0,

and ∫ ∞

x
F̄X̃ (t)dt ≤

∫ ∞

x
F̄Ỹ (t)dt, ∀x ≥ 0,

where F̄ = 1 − F denotes the survival function.
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Using well-known conditions for the convex order [see, e.g., (3.A.7) and (3.A.8)
in Shaked and Shantikumar (2007)], X ≤s Y holds if X̃− ≥cx Ỹ− and X̃+ ≤cx Ỹ+. A
comparison with Proposition 2c) yields that

X ≤s Y ⇔ X̃ ≤e Ỹ (5)

With regard to the standardized variables, (5) establishes that larger expectiles corre-
spond to a more skewed distribution. The equivalence in (5) was derived in Arab et al.
(2022), Theorem 14, using a different argument.

Definition 4 entails
∫ x
−x (FX̃ (t) − FỸ (t))dt ≤ 0 for all x > 0. However, this is

equivalent to S̃X (x) ≤ S̃Y (x) for all x > 0. Hence, ≤s f , the skewness order defined
by S̃X , is weaker than the ≤s-order. On the other hand, the proof of Theorem 13(2.)
in Arab et al. (2022) shows that ≤s is weaker than the order ≤d

μ. Taking into account
Theorem 3 in Eberl and Klar (2021), we obtain the following chain of implications:

X ≤c Y ⇒ X ≤d
μ Y ⇒ X ≤s Y ⇒ X ≤s f Y . (6)

The following theorem is the main result in this section, showing that the expectile-
based skewness measure s2 (and, hence, s̃2) preserves van Zwet’s skewness order.

Theorem 5 Let X , Y ∈ L1. Then, s2 is consistent with ≤c, i.e. X ≤c Y implies
s2,X (α) ≤ s2,Y (α) for each α ∈ (0, 1/2).

Proof By (6) and (5), X ≤c Y implies X̃ ≤e Ỹ , i.e. eX̃ (α) ≤ eỸ (α) for all α ∈ (0, 1).
A straightforward computation shows that s2,X̃ (α) ≤ s2,Ỹ (α) is equivalent to

eỸ (1 − α)eX̃ (α) ≤ eX̃ (1 − α)eỸ (α), ∀α ∈ (0, 1/2),

which, in turn, is equivalent to

eỸ (1 − α) |eX̃ (α)| ≥ eX̃ (1 − α) |eỸ (α)|, ∀α ∈ (0, 1/2). (7)

Since, by assumption, eỸ (1−α) ≥ eX̃ (1−α) and |eX̃ (α)| ≥ |eỸ (α)| for α ∈ (0, 1/2),
inequality (7) holds. Since s2 is invariant under location-scale transforms, s2,X (α) ≤
s2,Y (α) holds as well for all α ∈ (0, 1/2). 
�
Remark 6 If we write X ≤s2 Y if s2,X (α) ≤ s2,Y (α) for all α ∈ (0, 1/2), the proof of
Theorem 5 shows that ≤s2 is a weaker order of skewness than ≤s . The question if ≤s2
implies ≤s f or vice versa is open. Another expectile based order, stronger than ≤s2 ,
could be defined analogously to the quantile-based skewness order ≤c, i.e. by

eX (w) − 2eX (v) + eX (u)

eX (w) − eX (u)
≤ eY (w) − 2eY (v) + eY (u)

eY (w) − eY (u)
(8)

for all 0 < u < v < w < 1; this order is equivalent to the convexity of F̆−1
Y ◦ F̆X ,

where F̆X is defined in (4) [cp. Eberl and Klar (2021) for the quantile case]. However,
the above results are not strong enough to show that this order is weaker than ≤c.
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For the suitability of s2 as a skewness measure, including its empirical counterpart,
we refer to Eberl and Klar (2020, 2021). To gain an impression, consider a Bernoulli
distribution with success probability p. Clearly, for p = 1/2, any skewness measure
should be zero. For decreasing p, the distribution becomes more and more skewed to
the right (note that the center decreases to 0), and a skewness measure should converge
to its maximal possible value. Similarly, it should converge to its minimal possible
value for p → 1. For the expectile skewness, we obtain s2(α) = 1− 2p, independent
ofα. Themoment skewness is (1−2p)/(p(1− p)); quantile-based skewnessmeasures
are not uniquely defined for discrete distributions.

4 Expectile dispersive order and relatedmeasures

Additionally to the stochastic orders in Sect. 2, we need the following dispersion or
variability orders.

Definition 7 (i) FX precedes FY in the dispersive order (written FX ≤disp FY ) if

F−1
X (v) − F−1

X (u) ≤ F−1
Y (v) − F−1

Y (u) ∀ 0 < u < v < 1. (9)

(ii) FX precedes FY in the weak dispersive order (written FX ≤w−disp FY ) if (9) is
fulfilled for all 0 < u ≤ 1/2 ≤ v < 1.

(iii) FX precedes FY in the expectile dispersive order (written FX ≤e−disp FY ) if

eX (v) − eX (u) ≤ eY (v) − eY (u) ∀ 0 < u < v < 1. (10)

(iv) FX precedes FY in the weak expectile dispersive order (written FX ≤we−disp FY )
if (10) is fulfilled for all 0 < u ≤ 1/2 ≤ v < 1.

(v) FX precedes FY in the dilation order (written FX ≤dil FY ) if

X − E X ≤cx Y − EY . (11)

Remark 8 The first ordering in Definition 7 is well-known [see, e.g., Bickel and
Lehmann (1979), Oja (1981), Shaked (1982), Shaked and Shantikumar (2007)]. The
defining condition of the weak dispersive order, which is obviously weaker than the
dispersive order, can be equivalently written as

F−1
Y (u) − F−1

X (u) ≤ (≥) F−1
Y (1/2) − F−1

X (1/2) for u ≤ (≥)1/2. (12)

This ordering was used in Bickel and Lehmann (1976) for symmetric distribution; for
arbitrary distributions, it was introduced in MacGillivray (1986), Definition 2.6, and
denoted by≤m

1 . In introducing strong and weak expectile dispersive orders, we mimic
these definitions. The following results show that the weak ordering defined in such a
way has appealing theoretical properties; further, it corresponds to the expectile-based
scale measures treated in Sect. 6. The expectile equivalent of the (strong) dispersive
order from Def. 7(i) is shortly discussed in Example 12 and Remark 13.
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We remark that Bellini et al. (2021) have introduced the following expectile based
variability order which is even weaker than the weak expectile dispersive order:

X ≤	−ex Y , if eX (1 − α) − eX (α) ≤ eY (1 − α) − eY (α) ∀ α ∈ (0, 1/2).

This order can be seen as a dispersion counterpart to the skewness order ≤s2 in
Remark 6. The dilation order in Definition 7(v) is less well-known compared to the
dispersive order, see Belzunce et al. (1997) or Fagiuoli et al. (1999). However, many
of its properties follow from properties of the convex order.

Our main result in this section shows that the weak expectile dispersive order and
the dilation order coincide. The proof uses the idea in the proof of Theorem 14 in Arab
et al. (2022).

Theorem 9 Let X , Y ∈ L1 with strictly increasing cdf’s FX and FY which are con-
tinuous on their supports. Then, FX ≤we−disp FY if, and only if, FX ≤dil FY .

Proof Define X̃ = X − E X , Ỹ = Y − EY . Then, X ≤dil Y is equivalent to X̃ ≤cx Ỹ ,
and therefore to πX̃ (t) ≤ πỸ (t)∀t . By continuity of πX̃ and πỸ , this is equivalent to
πX̃ (t)/|t | ≤ πỸ (t)/|t | ∀t 
= 0, and hence to

πX̃ (t)

t
≥ πỸ (t)

t
∀t < 0 and

πX̃ (t)

t
≤ πỸ (t)

t
∀t > 0. (13)

Note that, using the properties of the stop-loss transform (Müller and Stoyan 2002,
Theorem 1.5.10), πX̃ (t)/t ≤ −1 for t < 0, and πX̃ (t)/t ≥ 0 for t > 0. Now, applying
to both sides of the inequalities the transformation h(x) = (x+1)/(2x+1), x 
= −1/2,
which is decreasing for x < −1/2 as well as for x > −1/2, shows that (13) is
equivalent to

F̆X̃ (t) ≤ F̆Ỹ (t) ∀t < 0 and F̆X̃ (t) ≥ F̆Ỹ (t) ∀t > 0, (14)

where F̆X is the expectile cdf defined in (4). In turn, (14) is equivalent to

eX̃ (p) ≥ eỸ (p) ∀p < 1/2 and eX̃ (p) ≤ eỸ (p) ∀p > 1/2.

This means that eX (p)− E X ≥ eY (p)− EY ∀p < 0 and eX (p)− E X ≤ eY (p)−
EY ∀p > 0, which is equivalent to X ≤we−disp Y [cp. the representation of the weak
dispersive order in (12)]. 
�
Remark 10 Bellini (2012), Theorem 3(b) already proved that X ≤cx Y implies
eX (α) ≥ eY (α) for each α ≤ 1/2 and eX (α) ≤ eY (α) for each α ≥ 1/2. From
this, the implication FX ≤dil FY ⇒ FX ≤we−disp FY follows, see also Bellini et al.
(2018b). However, Theorem 9 also yields the reverse direction. Moreover, its proof
is rather elementary, whereas Bellini (2012) employed techniques from monotone
comparative statics.
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Since, for random variables with finite mean, the dispersive order implies the dila-
tion order [Shaked and Shantikumar (2007), Theorem 3.B.16], the next result is a
direct consequence of Theorem 9.

Corollary 11 Let FX and FY be strictly increasing and continuous on their supports
with finite expectations. Then, X ≤disp Y implies X ≤we−disp Y .

In general, the (strong) expectile dispersive order in Definition 7(iii) is rather diffi-
cult to handle. However, the following example shows that this order does not imply
the dispersive order [see also Remark 13c)].

It is an open question if the reverse direction holds, i.e. if the dispersive order
implies the expectile dispersive order.

Example 12 Let pX , pY ∈ (0, 1), pX 
= pY and 0 < aX < aY . Furthermore, let
X̃ ∼ Bin(1, pX ), Ỹ ∼ Bin(1, pY ) and X = aX · X̃ and Y = aY · Ỹ . It follows directly
that X and Y are not comparable with respect to ≤disp since range(FX ) ⊆ range(FY )

is a necessary condition for X ≤disp Y (Müller and Stoyan 2002, Theorem 1.7.3).
Further, a simple calculation yields πX (t) = pX (aX − t) for t ∈ [0, aX ]. It follows
that

F̆X (t) = t(1 − pX )

pX aX + t(1 − 2pX )
and eX (α) = α pX aX

(1 − α) + pX (2α − 1)

for t ∈ [0, aX ] and α ∈ (0, 1) with analogous results for Y . Overall,

(eY ◦ F̆X )(t) = pY (1 − pX )aY t

pX (1 − pY )aX + t(pY − pX )

for t ∈ [0, aX ]. Since X ≤disp Y is equivalent to (F−1
Y ◦ FX )′ ≥ 1 [see, e.g., Oja 1981,

p. 157], X ≤e−disp Y is equivalent to (eY ◦ F̆X )′ ≥ 1. Because of lim pX →pY (eY ◦
F̆X )(t) = aY

aX
t for all t ∈ [0, aX ], X ≤e−disp Y holds if the difference between pX

and pY is sufficiently small.
Since the involved distributions are discrete, this example does not fit in the general

setting of this work. However, the statement of this example remains valid if the
distributions of both X and Y are sufficiently closely approximated by continuous
distributions (e.g. by linear interpolation). Overall, it is proved that X ≤e−disp Y �

X ≤disp Y in general.

5 Dispersion orders for the Lomax distribution

To illustrate the various concepts, we consider the Lomax or Pareto type II distribution
having density, distribution and quantile function

f (t) = f (t;α, λ) = α

λ

(
1 + t

λ

)−(α+1)

, t ≥ 0,

F(t) = F(t;α, λ) = 1 − (1 + t/λ)−α , t ≥ 0,
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q(p) = q(p;α, λ) = λ
(
(1 − p)−1/α − 1

)
, 0 < p < 1,

where α and λ are positive parameters. Accordingly, the stop-loss transform is given
by

π(t) = λ

α − 1

(
1 + t

λ

)1−α

, t ≥ 0,

and the expectile cdf F̆ can explicitly computed by (4). Further, if X ∼ F(·;α, λ),

E X = λ

α − 1
(α > 1), V ar(X) = λ2α

(α − 1)2(α − 2)
(α > 2).

In the following, assume X ∼ F(t;α1, λ1) and Y ∼ F(t;α2, λ2).

5.1 Dispersive order

If X and Y have densities fX and fY , then X ≤disp Y if, and only if,

fY

(
F−1

Y (p)
)

≤ fX

(
F−1

X (p)
)

∀p ∈ (0, 1)

[Shaked and Shantikumar 2007, (3.B.119)]. Applied to the Lomax distribution,
X ≤disp Y iff

α2

λ2
(1 − p)1/α2 ≤ α1

λ1
(1 − p)1/α1 , 0 < p < 1. (15)

For p converging to 0, (15) is fulfilled if

λ1

α1
≤ λ2

α2
. (16)

Looking at p → 1 shows that

α1 ≥ α2 (17)

is a second necessary condition for X ≤disp Y . However, (16) and (17) are also
sufficient: Taking the reciprocal of (15) shows that the inequality is equivalent to

1

α1
q(p;α1, λ1) + λ1

α1
≤ 1

α2
q(p;α2, λ2) + λ2

α2
. (18)

Now, (16) and (17) are necessary and sufficient for X ≤st Y Bellini et al. (2018a).
Hence, q(p;α1, λ1) ≤ q(p;α2, λ2) for all p, and (18) holds under (16) and (17).
Overall, we have

123



Stochastic orders and measures of skewness...

X ≤st Y as well as X ≤disp Y if and only if(16) and (17) hold.

5.2 Weak expectile dispersive order

Here, we have to assume α1, α2 > 1 for the expected values to exist. Define H(p) =
1

1−p

∫ 1
p F−1(u)du. Fagiuoli et al. (1999) showed that X ≤dil Y if, and only if,

HX (p) − HX (0) ≤ HY (p) − HY (0), 0 < p < 1. (19)

For the Lomax distribution, H(p) = (αq(p) + λ)/(α − 1) and H(0) = λ/(α − 1).
Hence, (19) holds iff

α1 q(p;α1, λ1)

α1 − 1
≤ α2 q(p;α2, λ2)

α2 − 1
, 0 < p < 1. (20)

A discussion of the behavior of q(p) for p → 1 shows that (17) is necessary for (20).
Further, a second order Taylor expansion around p = 0 yields q(p) = λp/α+ O(p2).
Therefore, (20) can only be satisfied if

λ1

α1 − 1
≤ λ2

α2 − 1
. (21)

Thus, (17) and (21) are necessary for X ≤dil Y . We now show that they are also
sufficient. Since cqX (p) = qcX (p), and λ is a scale parameter, (20) is equivalent to

q

(
p;α1,

α1λ1

α1 − 1

)
≤ q

(
p;α2,

α2λ2

α2 − 1

)
, 0 < p < 1.

This, in turn, is equivalent to

F̄(p;α1, λ̃1) ≤ F̄(p;α2, λ̃2), 0 < p < 1, (22)

where λ̃i = αiλi/(αi −1), i = 1, 2. The above results about the usual stochastic order
yield that (22) is satisfied iff α1 ≥ α2 and λ̃1/α1 ≤ λ̃2/α2, which coincide with (17)
and (21).

Bellini et al. (2018a) have shown that these two conditions are also necessary
and sufficient for the so-called increasing convex order (≤icx ). Hence, we have the
following result:

X ≤we−disp Y as well as X ≤icx Y if and only if(17) and (21) hold.

Remark 13 (a) Assume α1 ≥ α2 > 2 and that (21) holds. Then, α1/(α1 − 2) ≤
α2/(α2 − 2), and V ar(X) ≤ V ar(Y ) follows. Generally, the variance preserves
the weak expectile dispersive order and therefore also the dilation order (see also
the following section).
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Fig. 1 Left panel: Interexpectile ranges of X (in black) and Y (in red) under Lomax distributions. Left
panel: plot of eY (F̆X (x)) − x . (Color figure online)

(b) If α1 ≥ α2 and λ1/(α1 − 1) = λ2/(α2 − 1), i.e. E X = EY , then X ≤icx Y
corresponds to X ≤cx Y . According to the last section, X ≤we−disp Y holds
as well in this case. On the other hand, if X and Y are random variables from
different Lomax distributions, but with equal means, they can never be ordered
in expectile order Bellini et al. (2018a). Since the dispersive order implies the
stochastic order for distributions with the same finite left endpoint of their supports
(Shaked and Shantikumar 2007, Theorem 3.B.13), the expectile dispersive order
then also implies the expectile (location) order (by applying the cited result to the
expectile cdf’s F̆X and F̆Y ). Hence, X and Y can also not be ordered with respect
to the expectile dispersive ordering. This example shows that ≤we−disp is strictly
weaker than ≤e−disp.

(c) Let α1 = 3, λ1 = √
3, α2 = 2, λ2 = 1. Since α1 > α2 and E X = √

3/2 <

EY = 1, one has X ≤we−disp Y . On the other hand, (16) is not satisfied. Hence,
X ≤disp Y does not hold. In this example, X also precedes Y in the expectile
location order (Bellini et al. 2018a, Theorem 23). The left panel of Fig. 1 shows the
interexpectile ranges of X and Y ; clearly, eX (1− p)−eX (p) ≤ eY (1− p)−eY (p)

for 0 < p < 1. The right panel shows a plot of eY (F̆X (x))− x , which is increasing
in x . This indicates that also X ≤e−disp Y holds [Shaked and Shantikumar 2007,
(3.B.10)]. Hence, similarly to Example 12, this shows that X ≤e−disp Y does not
imply X ≤disp Y in general.

6 Interexpectile ranges and their empirical counterparts

It is clear that any functional of the form E[ϕ(X − E X)], where ϕ is a convex function,
preserves the dilation order. Then, by Theorem 9, this also holds for the weak expectile
dispersive order. Examples are the standard deviation σ(F) = {E(X − E X)2}1/2 and
the mean absolute deviation around the mean E |X − E X |. In this section, however,
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we want to have a closer look on the interexpectile range (IER) Eα = eX (1 − α) −
eX (α), α ∈ (0, 1/2). These scale measures obviously preserve the≤we−disp ordering,
and, hence, also the dilation order; they have already appeared as a scaling factor in
the definition of s2. Moreover, (implicit) interexpectile differences have been used to
extract information about the risk-neutral distribution of a financial index by Bellini
et al. (2018b, 2020).

Using the properties of expectiles (see, e.g., Bellini et al. 2014), Eα obviously
satisfies property D1. in the introduction. Hence, it is a measure of variability with
respect to the dispersive order, the most fundamental variability ordering, but also with
respect to the dilation order. The latter is an order with respect to the mean, whereas
the first order is location-free. Further properties of the theoretical IER can be found
in Bellini et al. (2018b), Proposition 3.1.

The results in Sect. 3 show that the MAD arises quite naturally when dealing with
expectile-based skewness orders. Our next result bounds Eα in terms of the MAD.

Theorem 14 For α ∈ (0, 1/2),

1 − 2α

1 − α
E |X − μ| < Eα <

1 − 2α

α
E |X − μ|.

In particular, 2
3 E |X − μ| < E1/4 < 2E |X − μ|.

Proof For any τ ∈ (0, 1) \ {1/2}, the first order condition (3) can be rewritten as

E(X − eX (τ ))+ = 1 − τ

1 − 2τ
(μ − eX (τ )), (23)

E(X − eX (τ ))− = τ

1 − 2τ
(μ − eX (τ )). (24)

Since E(X − t)+ is strictly decreasing and E(X − t)− is strictly increasing, and since
eX (α) < μ < eX (1 − α), we further obtain

E(X − eX (1 − α))+ < E(X − μ)+ < E(X − eX (α))+, (25)

E(X − eX (α))− < E(X − μ)− < E(X − eX (1 − α))−. (26)

Adding the terms in (25) and (26), and using Eqs. (23) and (24) then yields

α

1 − 2α
(eX (1 − α) − eX (α)) < E |X − μ| <

1 − α

1 − 2α
(eX (1 − α) − eX (α)) ,

or

1 − 2α

1 − α
E |X − μ| < eX (1 − α) − eX (α) <

1 − 2α

α
E |X − μ|. 
�

For any α ∈ (0, 1/2), we define the population counterparts of Eα by Êα,n =
ên(1 − α) − ên(α). For empirical expectiles, a multivariate central limit theorem as
well as strong consistency holds (see, e.g., Holzmann and Klar 2016); from these
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results, a central limit theorem and strong consistency of Êα,n can be derived. Using
the notations η(τ1, τ2) = E[Iτ1(eX (τ1), X)Iτ2(eX (τ2), X)] for τ1, τ2 ∈ (0, 1) and
aα = α + (1 − 2α)F(eX (α)), the following holds true.

Theorem 15 Let FX be a cdf with E |X | < ∞, and α ∈ (0, 1/2).

(a) If E X2 < ∞ and FX does not have a point mass at eX (α) or eX (1 − α), then

√
n

(Êα,n − Eα

) D−→ N (0, σ 2
E (α)),

where

σ 2
E (α) = η(α, α)

a2
α

− 2η(α, 1 − α)

aα · a1−α

+ η(1 − α, 1 − α)

a2
1−α

.

(b) Êα,n is a strongly consistent estimator of Eα , i.e.

Êα,n
a.s.−→ Eα.

A natural competitor to Eα is the interquantile range (IQR) Qα = qX (1 − α) −
qX (α), α ∈ (0, 1/2), where qX (α) denotes the α-quantile of the distribution of X . By
definition, the interquantile range preserves the dispersive order. However, it is not
consistent with the dilation order, which may be seen as a disadvantage in specific
applications (Bellini et al. 2020).

A general comparison result between the IQR and IER is not possible:Qα may be
smaller than Eα for some α, and larger for other ones. However, such a comparison is
possible for symmetric log-concave distributions such as the normal, logistic, uniform
or Laplace distribution. This follows directly from Corollary 7 and the preceding
results in Arab et al. (2022):

Proposition 16 Let FX be a symmetric cdf with finite mean and log-concave density.
Then,

Eα < Qα for each α ∈ (0, 1/2).

In the following, we compare the efficiency of the empirical IER as an estimator of
the variability for specific distributions with other measures of dispersion, in particular
with the IQR.Writing Q̂α,n = q̂n(1−α)− q̂n(α), where q̂n(α) is the sample quantile,
one has

√
n(Q̂α,n − Qα)

D−→ N
(
0, σ 2

Q(α)
)

,

where

σ 2
Q(α) = α(1 − α)

f 2(qX (1 − α))
− 2α2

f (qX (α)) f (qX (1 − α))
+ α(1 − α)

f 2(qX (α))
,
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Fig. 2 Standardized asymptotic variances τ2Q(α) (in black) and τ2E (α) (in red) under normality. (Color
figure online)

and f denotes the density of FX .
If X ∼ N (μ, σ 2), we obtain σ 2

Q(α) = 2α(1 − 2α)/ f 2(qX (α)), and Q(α) =
2σ�−1(1 − α). Therefore,

√
n

(
Q̂α,n

2�−1(1 − α)
− σ

)
D−→ N

(
0, τ 2Q(α)σ 2

)
,

where

τ 2Q(α) = α(1 − 2α)

2
(
�−1(1 − α)

)2
ϕ2

(
�−1(1 − α)

) .

On the other hand, the sample standard deviation σ̂n = (1/(n−1)
∑n

i=1(Xi − X̄n)2)1/2

has asymptotic variance (μ4 − σ 4)/(4σ 2), where μ4 = E(X − μ)4, which simplifies
to σ 2/2 under normality. Hence, the standardized asymptotic relative efficiency (ARE)
is given by

s ARE(Q̂α,n, σ̂n) = 1/2

τ 2Q(α)
.

We term τ 2Q(α) the standardized asymptotic variance (standardized ASV). Proceed-

ing in the same way with the IER leads to the corresponding quantity τ 2E (α) =
σ 2
E (α)/(2eX (1 − α))2. Figure 2 shows the standardized ASV’s τ 2Q(α) and τ 2E (α) as

functions of α.
For the interquartile range, i.e. the choice α = 1/4, one obtains the well known

result s ARE(Q̂1/4,n, σ̂n) = 0.368; the standardized ARE takes the maximal value
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0.652 for α = 0.0692 (Fisher 1920; David 1998). Whereas the latter estimator is
more efficient, an advantage of using more central quantiles such as quartiles is their
greater stability.

Proceeding to the IER, Fig. 2 shows that the standardized ASV’s are generally
smaller and quite stable over a large range of α-values. For α = 1/4, we obtain
s ARE(Ê1/4,n, σ̂n) = 0.934; the standardized ARE takes the maximal value 0.967
for α = 0.118. Hence, the IER is a quite efficient scale estimator under normality
compared to the standard deviation.

To analyze the behaviour of the IER under distributions with longer tails than
the normal, we consider in the following Student’s t-distribution with ν degrees of
freedom, denoted by tν , and having density function cν(1+ x2/ν)−(ν+1)/2, x ∈ R, for
ν > 0, where cν = �((ν + 1)/2)/(

√
νπ�(ν/2)).

Additionally to the dispersion measures used so far, we consider the MAD d =
E |X − E X |, estimated by d̂n = 1/n

∑n
i=1|Xi − X̄n|, and Gini’s mean difference

g = E |X − Y |, where Y is a independent copy of X . The usual estimator of g is the
sample mean difference ĝn = 2

n(n−1)

∑
i< j |Xi − X j |. The asymptotic variance of d̂n

is given by

ASV (d̂n) = V ar (|X − μ|+(2F(μ) − 1)X)

(Van der Vaart 1998, Example 19.25), which simplifies to ASV (d̂n) = σ 2 − d2 for
symmetric distributions. In this case, the ASV is the same as for the sample MAD
around the median 1/n

∑n
i=1|Xi − qX (1/2)| (Gerstenberger and Vogel 2015). An

explicit expression for the ASV of ĝn under the t-distribution can be found in Ger-
stenberger and Vogel (2015), Table 3.

Similarly as above, given a scale measure δ and its estimator δ̂, we call the ratio
ASV (δ̂)/δ2 standardized asymptotic variance. Table 1 shows the standardized ASV
of the different estimators for the t-distribution with various degrees of freedom.

Concerning the comparison between the interquantile and interexpectile range, we
observe a similar behavior as for the normal distribution. Whereas the standardized
ASV’s vary strongly with α for the IQR, they are quite stable for the IER. To allow
for a better comparison of the relative efficiencies, Table 2 shows the minimum of
the standardized ASV’s in each line of Table 1, divided by the standardized ASV’s.
Hence, for each distribution, the table shows the sAREwith respect to themost efficient
estimator.Whereas Q̂0.15 and d̂ are most efficient for ν = 3 and ν = 4, 5, respectively,
the IER gets in the lead for degrees of freedom between 6 and 10. For higher degrees
of freedom, Gini’s mean difference and the standard deviation are most efficient.

As a final example, we use the normal inverse Gaussian (NIG) distribution
(Barndorff-Nielsen 1997), which allows for skewed and heavy-tailed distributions;
further, all moments exist and have simple explicit expressions. Table 3 shows the
standardized ASV’s of the different estimators for the NIG distribution with shape
parameters α and β. For β = 0, the distribution is symmetric. The two remaining
parameters are chosen such that E X = 0 and V ar(X) = 1; hence, the third and
fourth moment in columns 3–4 corresponds to the moment skewness and kurtosis.
Note that, for β = 0 and α → ∞, the distribution converges to the standard normal.
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Table 1 Standardized ASV of different scale estimators for the tν -distribution

σ̂ Ê0.15 Ê0.25 Ê0.35 d̂ ĝ Q̂0.15 Q̂0.25 Q̂0.35

t3 – 2.020 1.651 1.517 1.467 1.907 1.330 1.613 2.726

t4 – 1.198 1.057 1.012 1.000 1.165 1.200 1.540 2.685

t5 2.000 0.949 0.871 0.851 0.851 0.932 1.129 1.500 2.661

t6 1.250 0.832 0.782 0.774 0.778 0.820 1.085 1.475 2.646

t7 1.000 0.765 0.730 0.728 0.735 0.754 1.055 1.457 2.636

t8 0.875 0.721 0.696 0.698 0.707 0.712 1.034 1.444 2.628

t9 0.800 0.690 0.672 0.677 0.687 0.682 1.017 1.434 2.622

t10 0.750 0.667 0.655 0.661 0.672 0.659 1.004 1.426 2.617

t12 0.688 0.636 0.630 0.639 0.651 0.629 0.986 1.415 2.611

t15 0.636 0.608 0.608 0.619 0.632 0.601 0.967 1.403 2.604

t20 0.594 0.583 0.587 0.601 0.615 0.575 0.949 1.392 2.597

t30 0.558 0.559 0.569 0.584 0.599 0.552 0.932 1.382 2.590

t40 0.542 0.549 0.560 0.576 0.592 0.541 0.924 1.376 2.587

t50 0.533 0.543 0.555 0.572 0.587 0.535 0.919 1.373 2.585

t100 0.516 0.531 0.545 0.563 0.579 0.523 0.909 1.367 2.581

Table 2 sARE of different scale estimators with respect to themost efficient estimator for the tν -distribution

σ̂ Ê0.15 Ê0.25 Ê0.35 d̂ ĝ Q̂0.15 Q̂0.25 Q̂0.35

t3 – 0.659 0.806 0.877 0.907 0.698 1.000 0.825 0.488

t4 – 0.835 0.946 0.988 1.000 0.859 0.834 0.649 0.372

t5 0.425 0.896 0.976 0.999 1.000 0.913 0.753 0.567 0.320

t6 0.619 0.930 0.989 1.000 0.995 0.944 0.713 0.525 0.292

t7 0.728 0.952 0.997 1.000 0.991 0.965 0.690 0.500 0.276

t8 0.796 0.966 1.000 0.998 0.985 0.978 0.674 0.482 0.265

t9 0.840 0.974 1.000 0.993 0.978 0.986 0.660 0.469 0.256

t10 0.873 0.981 1.000 0.990 0.974 0.993 0.652 0.459 0.250

t12 0.915 0.988 0.998 0.984 0.966 1.000 0.638 0.444 0.241

t15 0.944 0.988 0.989 0.970 0.950 1.000 0.621 0.428 0.231

t20 0.969 0.987 0.980 0.957 0.936 1.000 0.606 0.413 0.222

t30 0.990 0.987 0.971 0.945 0.922 1.000 0.592 0.400 0.213

t40 0.999 0.986 0.967 0.939 0.915 1.000 0.586 0.393 0.209

t50 1.000 0.982 0.960 0.931 0.907 0.996 0.580 0.388 0.206

t100 1.000 0.972 0.946 0.916 0.891 0.986 0.567 0.377 0.200

The maximum value 1 is printed in bold
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Table 3 Standardized ASV of different scale estimators for the NIG-distribution

α β m3 m4 σ̂ Ê0.25 d̂ ĝ Q̂0.25

10.0 0.0 0.00 3.03 0.507 0.540 0.575 0.517 1.364

10.0 8.0 0.67 3.82 0.706 0.654 0.679 0.620 1.009

10.0 9.0 1.42 6.52 1.381 1.017 1.016 0.938 0.713

2.0 0.0 0.00 3.75 0.688 0.642 0.662 0.640 1.433

2.0 1.0 1.00 5.67 1.167 0.882 0.881 0.848 0.990

2.0 1.5 2.57 15.73 3.684 1.979 1.891 1.735 0.655

1.0 0.0 0.00 6.00 1.250 0.910 0.884 0.947 1.602

1.0 0.5 2.00 13.67 3.167 1.654 1.564 1.531 1.020

1.0 0.8 6.67 85.41 21.102 7.112 6.607 5.379 0.877

From Table 3 we see that Ê0.25, d̂ and ĝ have comparable standardized ASV’s.
They are all quite efficient compared to σ̂ for distributions near to the normal. They
are considerably more efficient than σ̂ for skewed and long-tailed distributions as the
NIG distribution with α = 1, β = 0.5, and compare well with the IQR in this case.
All in all, these measures seem to be a reasonable compromise between the standard
deviation on the one hand, and the interquartile range on the other.
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