KIT | KIT-Bibliothek | Impressum | Datenschutz

Training Novices: The Role of Human-AI Collaboration and Knowledge Transfer

Spitzer, Philipp ORCID iD icon 1,2,3; Kühl, Niklas ORCID iD icon 1,2,3; Goutier, Marc
1 Fakultät für Wirtschaftswissenschaften (WIWI), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Service Research Institute (KSRI), Karlsruher Institut für Technologie (KIT)
3 Institut für Wirtschaftsinformatik und Marketing (IISM), Karlsruher Institut für Technologie (KIT)

Abstract:

Across a multitude of work environments, expert knowledge is imperative for humans to conduct tasks with high performance and ensure business success. These humans possess task-specific expert knowledge (TSEK) and hence, represent subject matter experts (SMEs). However, not only demographic changes but also personnel downsizing strategies lead and will continue to lead to departures of SMEs within organizations, which constitutes the challenge of how to retain that expert knowledge and train novices to keep the competitive advantage elicited by that expert knowledge. SMEs training novices is time- and cost-intensive, which intensifies the need for alternatives. Human-AI collaboration (HAIC) poses a way out of this dilemma, facilitating alternatives to preserve expert knowledge and teach it to novices for tasks conducted by SMEs beforehand. In this workshop paper, we (1) propose a framework on how HAIC can be utilized to train novices on particular tasks, (2) illustrate the role of explicit and tacit knowledge in this training process via HAIC, and (3) outline a preliminary experiment design to assess the ability of AI systems in HAIC to act as a trainer to transfer TSEK to novices who do not possess prior TSEK.


Download
Originalveröffentlichung
DOI: 10.48550/arXiv.2207.00497
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 23.07.2022
Sprache Englisch
Identifikator KITopen-ID: 1000148190
Erschienen in Workshop on Human-Machine Collaboration and Teaming (HM-CaT 2022), 23rd July, Baltimore
Veranstaltung Workshop on Human-Machine Collaboration and Teaming (ICML 2022), Baltimore, MD, USA, 23.07.2022
Bemerkung zur Veröffentlichung This is a workshop paper: Workshop on Human-Machine Collaboration and Teaming (HM-CaT 2022). The 39th International Conference on Machine Learning. Link to the workshop: https://icml.cc/Conferences/2022/Schedule?showEvent=13478
Schlagwörter Machine Learning, Knowledge Retention, XAI, Human-AI Collaboration, Artificial Intelligence
Nachgewiesen in Dimensions
arXiv
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page