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ABSTRACT

To describe the dynamics of fluid flow in Lateral Flow Assays (LFAs) and to understand the effect of geometry on the propagation speed of
the fluid front, a single-phase model is developed. The model can predict wicking time for different geometries. Axisymmetric geometries
with changes in their cross sections are studied to understand the wicking behavior. To validate the modeling results, imaging experiments
that capture the fluid front are conducted on all geometries. In all cases, convincing agreement between modeling results and experimental
data has been observed. Using data-driven information and knowledge about structure–property correlations, it is possible to control wicking
processes to establish a desired velocity at a specific position in LFAs. The proposed approach serves as a basis for the creation of a design
tool for application-oriented membranes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093316

I. INTRODUCTION

Rapid Diagnostic Tests (RDTs) are required in medical emergen-
cies or in healthcare facilities with limited resources. One simple and
convenient type of RDTs based on antigen detection is the Lateral
Flow Assay (LFA).1 This widespread technology is used to diagnose a
range of conditions like pregnancy or infectious diseases, such as
COVID-19. LFAs distinguish various types of analytes within a few
minutes via color signals on a piece of paper. This paper made from
nitrocellulose is a highly porous open-pored membrane. Membranes
act in LFAs as the transport medium for the sample fluids (e.g., urine,
serum, saliva) where the biochemical reactions occur.

The LFA usually consists of four main components:2 a sample
pad; a conjugate pad; a nitrocellulose membrane on which the test line
(TL) and control line (CL) are printed; and an absorbent pad. For eas-
ier manufacturing and handling as well as for higher mechanical
strength, all these four components are usually assembled on a backing
card. The test result is indicated by the accumulation of the stained
immunoconjugates at the test and control lines, which is influenced
not only by the binding affinity of the reactants but also by the flow
rate of the sample.3 The latter is due to negative capillary pressure,
which depends on the interfacial tension between wetting and

non-wetting phases as well as the mean curvature in each individual
pore.4,5

In addition, the wetting behavior is controlled by membrane
characteristic values. Algorithms have been developed to characterize
membranes on the pore-scale, i.e., microscale in order to determine
membrane surface area, porosity, and permeability. These included a
spatial generation algorithm for open-pored membranes6 and meth-
ods for reconstructing image data resulting from imaging techniques.7

Other approaches are required to study the wetting behavior on a
larger scale. A comprehensive review of mesoscopic and macroscopic
models on wetting in paper-like materials is given in Ref. 8. The focus
of this paper is to investigate the flow paths on the macro-scale
through membranes with lengths of up to 40mm. Generally, the pene-
tration of a liquid into a porous medium by capillary suction is
referred to as wicking.9,10 Two conventional approaches to study wick-
ing in rigid open-pored porous media are shortly explained below, and
some modifications from the literature to these methods are reported.

The first approach to study wicking in rigid porous media is based
on the Hagen–Poiseuille equation by treating the pore space as a bundle
of parallel, cylindrical capillary tubes aligned with the flow direction.11

Bell and Cameron,12 Lucas,13 and Washburn14 studied separately the
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movement of liquids through a vertical cylindrical tube due to the wet-
ting of the liquids on the wall. It was concluded that the wicking length
is proportional to the square root of the wicking time, which is known
as Bell–Cameron–Lucas–Washburn (BCLW) imbibition law.

However, porous media cannot always be regarded as a bundle of
circular tubes because in many cases, they are non-circular, tortuous,
and even possess complex structures. Therefore, the Hagen–Poiseuille
equation and consequently BCLW law are not appropriate to study
wicking in most porous materials. This has encouraged many scien-
tists to research the validity of BCLW imbibition law. Berthier et al.15

studied a confined non-circular but uniform cross section and offered
a modified prefactor in the usage of BCLW law. The effect of tortuosity
in addition to the variably shaped capillary tubes was studied by Cai
et al.16 Periodically constricted tubes, such as sinusoidal tubes, were
investigated in Refs. 17–19. Reyssat et al.20 demonstrated, experimen-
tally and theoretically, the deviations from BCLW law for geometries
with axial variations. They observed that for these kinds of profiles,
BCLW law is valid only at short times, whereas at longer times, the
wicking length is proportional to the fourth root of the wicking time.
Their research was followed by many others.21–23

BCLW law describes the capillary-driven liquid flow in porous
media only in non-expanding geometries. For expanding porous
materials, a potential flow theory in 2D and 3D was proposed in
Ref. 24. Well-established BCLW law represents the balance between
surface tension and viscosity and neglects fluid inertia and gravity.
However, all these four effects are regarded in the model of Liou
et al.25 for the capillary rise in axisymmetric tubes. BCLW law disre-
gards the flow effects at the meniscus, which was studied by
Mehrabian et al.26 They performed numerical simulations using the
finite element method to capture the interface.

The second approach to study wicking in rigid porous media is
based on Darcy’s law, which correlates the superficial flow velocity to
the pressure gradient for a viscous Newtonian fluid at low speed.27,28

As a side note, the superficial velocity (Darcy velocity) is an artificial
velocity calculated in such a way that the porous matrix is disregarded,
and the fluid is the only material that flows through the entire cross-
sectional area. The interstitial velocity, i.e., the real flow velocity
through void spaces between the skeleton, is obtained by dividing the
Darcy velocity by the porosity of the media.

Masoodi et al.29 implemented different formulations for the suc-
tion pressure in Darcy’s law to model liquid absorption in polymer
wicks. This led them to two distinct models. The first one is the capil-
lary model in which the suction pressure is equal to the capillary pres-
sure and the second one is the energy balance model in which free
surface energy is in balance with the viscous dissipation energy.
Considering the effect of gravity, they created two further variants of
their models. They showed that the most satisfying results derive from
the energy balance model with gravity.

In this paper, an appropriate modeling approach based on
Darcy’s law is presented to study wicking in nitrocellulose membranes.
The aim of this work is to ascertain the influence of membrane shape
on the capillary flow using a single-phase approach as well as experi-
mental work. Similar to the study of Shou and Fan,30 a model for con-
trolling capillary flow in the membranes with varying cross sections is
presented here. They studied imbibition in homogeneous porous
structures on the macro-scale and could find the optimal geometry for
the fastest (slowest) imbibition based on a computational approach.

However, the mathematical equation presented in this work describes
the wicking process in membranes with any desired shape. The
remainder of this paper is organized as follows. In Sec. II, the case
studies are introduced and the mathematical framework of the single-
phase approach together with the experimental procedure is described.
The results of this study are presented in Sec. III. Finally, Sec. IV sum-
marizes the main conclusions of the work.

II. MATERIALS AND METHODS
A. Porous membranes

In a lateral flow assay, the analyte moves through the membrane
by the capillary flow (convection), diffuses toward the capture zones
(diffusion), and builds a complex with antibodies (reaction). Each of
these three phenomena has a characteristic timescale as follows:3

1. Convection: The residence time is defined as tR ¼ wTL=uTL,
where wTL is the width of the test line (TL) and uTL is the wick-
ing velocity through the TL. The wicking velocity decreases along
the membrane but because the TL width is much smaller than
the TL position (wTL � XTL), uTL can be assumed constant [see
Fig. 1(a)].

FIG. 1. (a) Schematic representation of a lateral flow assay and its test line as the
capture zone; (b) residence time as a function of the wicking velocity and character-
istic kinetic time as a function of analyte concentration for a binding affinity of
107=(M s).
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2. Diffusion: The term diffusive time refers to tD ¼ d2P=D, where dP
is the mean pore size of the membrane and D is the molecular
diffusion coefficient.

3. Reaction: The characteristic kinetic time is tK ¼ 1=ðkB � C0Þ,
where kB represents the binding constant and C0 is the analyte
concentration.

Calculating the timescales of these three phenomena and com-
paring them specify a time interval in which all of them can occur. To
do so, the parameters for LFAs from Table I are used.

The results show that the diffusive time is shorter than the resi-
dence and kinetic times (2 s � tR � 10 s; 0:007 s � tD � 0:7 s;
2 s � tK � 2� 105 s). In other words, the molecular diffusion hap-
pens much faster than convection and reaction. Therefore, to define a
design range, it is necessary to pay attention to convection and reac-
tion. Figure 1(b) shows both the dependence of the residence time on
the wicking velocity through TL and the dependence of the character-
istic kinetic time on the analyte concentration for the binding constant
kB ¼ 107=(M s). Other binding affinities are not in the plot range, so
they are not illustrated here. The intersection of the residence and
kinetic times can be taken as the design range.

The focus of this work should lie on the residence time. By vary-
ing the geometry of the membrane, the wicking velocity through the
test line changes, and this leads to a new residence time. Thus, it is
important to know how the shape of a membrane influences the wick-
ing velocity. The membrane profiles studied in this work are illustrated
in Fig. 2 and labeled as straight, barbell, hexagon, sand timer, and T-
shaped channels. The membrane itself is a UniSartV

R

CN 140 backed,
which is a nitrocellulose membrane reinforced by a polyester film for
lateral flow immunoassays and commercially available (Sartorius
Stedim Biotech GmbH, Germany) with an average thickness of
240lm, and it takes between 95 and 155 s for purified water as the

sample liquid to travel a distance of 40 mm of this membrane as speci-
fied by the manufacturer.

B. Mathematical modeling

Mathematical modeling of liquid transport in porous media cre-
ates a theoretical groundwork for optimizing (controlling) the wicking
process. For instance, it is possible to reach a desired flow velocity in a
specific location like at the TL/CL or to obtain the fastest imbibition.34

Therefore, modeling the capillary-driven flow through a membrane
with different shapes is carried out by extending the models of Refs. 35
and 36. Elizade et al.35 investigated the capillary imbibition in paper-
based membranes on the macro-scale. They offered a mathematical
solution to determine the wicking time for an arbitrary cross-sectional
profile. Their method also allowed them to solve the inverse problem,
i.e., to find the shape required for a prescribed fluid velocity. In the
presence of different segments, Shou et al.36 explored the effect of
width and length of local segments on the capillary motion. In this
paper, we combine their methodologies and generalize their equations
to obtain the wicking time t for our membranes. The direction of the
flow is shown as x or z in Fig. 2. The wicking times for the first, second,
and third segments of the different geometry profiles are denoted by
t1, t2, and t3, respectively, and can be written as follows (for more
detailed information, the reader is referred to Appendix A):

t1 ¼ f
ðl
0
a1ðzÞ

ðz
0

dx
a1ðxÞ

� �
dz; (1a)

t2 ¼ f
ð l
h1

a2ðzÞ
ðh1
0

dx
a1ðxÞ

þ
ðz
h1

dx
a2ðxÞ

" #
dz; (1b)

t3 ¼ f
ðl
h1þh2

a3ðzÞ
ðh1
0

dx
a1ðxÞ

þ
ðh1þh2
h1

dx
a2ðxÞ

þ
ðz
h1þh2

dx
a3ðxÞ

" #
dz;

(1c)

where l denotes the position of the fluid front, and hi and ai are the
length and width of each individual segment (i¼ 1, 2, 3), respectively.
In the case of geometries with only two segments, e.g., the hexagon
profile, Eq. (1c) is omitted. The coefficient f considers the influence of
the dynamic viscosity l, the permeability K, and the capillary pressure
Dpc as well as the reinforcement. The effect of gravity is neglected here
as the Bond number is much less than one (Bo� 1, see Appendix B).

We set Hn ¼
Pn

i¼0 hi as the sum of the length of n layers, where
H0 ¼ h0 ¼ 0, then the wicking time for the nth layer can be written as

TABLE I. Parameters for calculating different timescales in LFAs.

Parameter Value

Width of the test line: wTL 1mm (Ref. 3)
Diffusion coefficient: D 20–2000 lm2/s (Ref. 31)
Wicking velocity: uTL 0.1–0.5mm/s (Ref. 32)
Binding constant: kB 104–107/(M s) (Ref. 32)
Mean pore diameter: dP 3.74lm (Ref. 7)
Initial concentration: C0 0.5–50 nM (Ref. 33)

FIG. 2. Sketch of membrane profiles: (a) straight, (b) barbell, (c) hexagon, (d) sand timer, and (e) T-shaped membrane.
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tn ¼ f
ðl
Hn�1

anðzÞ
Xn�1
i¼1

ðHi

Hi�1

dx
aiðxÞ

 !
þ
ðz
Hn�1

dx
anðxÞ

" #
dz: (2)

Using this method, it is possible to predict the wicking time for a
membrane including multiple segments with arbitrary cross sections.
One benefit of this methodology is the simplicity over other methods
that require applying a mesh and numerically solving differential
equations. The only challenge is to find the coefficient f, which is
determined in this work from the experimental wicking curve of a
straight channel. For the straight membrane, BCLW imbibition
law (t ¼ 1

2 fl2) is fitted to experimental data using Gnuplot 5.0
patchlevel 537 to gain the coefficient f. This coefficient is used for the
other types of profiles sketched in Fig. 2.

C. Wicking experiment

Wicking experiments are commonly conducted directly after the
production process for quality control of membranes or their classifi-
cation. The time spent on wetting the entire length of a piece of mem-
brane is called the total wicking time Tw while the curve progression
of wicking length over time reveals the characteristic wicking behavior.
A standardized experimental approach is presented to gain wicking
curves for the membranes with the profiles exhibited in Figs.
2(a)–2(d). The desired profiles in this study have larger widths than
the critical width of the membrane CN 140 [600lm (Ref. 38)]. It
means that the widths of the profiles do not influence the wicking pro-
cess, and there are no boundary effects. Under this circumstance, the
membrane samples were first cut into the desired profiles; then, the

two shorter edges of the membranes (top and bottom) were clamped
firmly onto a rectangular plastic frame. Thus, the paper-based mem-
branes were kept in a flat and stable position without bending. Then,
the frame was inserted into the basin of a custom-made device, in par-
ticular designed to measure the wicking time. At the bottom of the
basin, a thin film of the test liquid (here: water) existed.

As soon as the frame touched the bottom of the device, water
commenced to wick the membrane and a camera took one photo per
second of the front side of the membrane. The membrane was illumi-
nated by an LED from the back side. Custom-written algorithms were
used to extract the propagating liquid front (l) over time by detecting
the difference in contrast between the dry and wetted membrane. By
the membrane with a width of 5mm, too much light came from the
light source, passed the membrane and, hence, caused overexposed
photos. Therefore, 15mm was set as the minimum threshold for the
membrane width. On the other hand, the maximum width of 25mm
and the maximum length of 40mm were selected due to size restric-
tions of the custom-made device. To ensure repeatability, the test for
each profile was performed six times.

Figure 3(a) shows schematically a membrane during wicking by
a magenta liquid while in Fig. 3(b), the actual membrane is shown and
divided into four regions. In region A, the membrane is in contact
with a liquid reservoir, so that enough liquid is available to wet the
entire membrane. In region B, the membrane is fully saturated with
the liquid and its length is taken as the wicking length (between the
magenta lines). The border of regions B and C is supposed to be the
liquid front in this work. A kind of “mushy” region with partially wet-
ted and partially dry surface areas is observed in region C, while in
region D, the membrane is completely dry. The border between
regions C and D (orange line) was called the precursor of impregna-
tion by Bico and Qu�er�e.39

Since a porous medium has often been treated as a bundle of par-
allel identical tubes (as by BCLW imbibition law), the fluid front is
modeled as a sharp interface; however, it is diffuse in reality. Bico and
Qu�er�e39 modeled the pore space as two interconnected cylindrical
capillary tubes with different radii. In their model, the fluid moves
faster through the tube with the smaller radius, while more fluid mass
exists in the tube with the larger radius. By validating the model with
experimental data, they declared that the fluid front is diffusive [region
C in Fig. 3(b)].

In addition to the experiments with the straight, barbell, hexagon,
and sand timer profiles using the aforementioned measuring device
[Figs. 4(a)–4(d)], two videos of experiments with the T-shaped

FIG. 3. (a) Schematic of the wicking experiment and (b) a real image of the detec-
tion of the liquid front during the experiment.

FIG. 4. Wicking experiments using different membrane profiles, where (a)–(d) membranes are fully saturated between the magenta lines and are totally dry above the orange
lines; (eI) and (eII) phenol red was added into the liquid (water) for better visualization of the wicking process in samples 1–6.
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membranes were provided by Sartorius Stedim Biotech GmbH,
Germany [Figs. 4(eI) and (eII)]. For better observation and analysis of
the wicking process, phenol red as the coloring agent was beforehand
added into the liquid and a camera recorded the video. From the
video, one frame per second was captured as an image. The image
sequence was imported to Fiji-ImageJ 1.53c40 and processed
using the tool ColorThreshold. The most superior colored pixel
was tracked to distinguish the liquid front.

III. RESULTS AND DISCUSSION
A. Straight, barbell, hexagon, and sand
timer membranes

The results of the single-phase approach are compared to
experimental data for distinct geometries in Fig. 5, where the

time-dependent position of the liquid front l during wetting is shown.
As stated before, the coefficient f in Eq. (1) is obtained by fitting
BCLW law with the experimental data of the straight membrane [Fig.
5(a)] and used for modeling the wicking process of the other three
profiles. In comparison with the straight test strip as a reference,
changes in the cross-sectional area influence the movement of the liq-
uid front. The single-phase approach can capture this influence and
predict the wicking time for the channels composed of different seg-
ments with constant widths (barbell) as well as with varying widths
(hexagon and sand timer).

The barbell membrane is composed of three straight segments.
For each segment, there exists a wicking function. Because the second
segment has a smaller width, the wicking velocity increases and after-
ward by entering the third segment, the fluid flows more slowly. In
comparison with the flow through the membrane with the barbell

FIG. 5. The position of the meniscus over time by the single-phase approach and experiment for the (a) straight, (b) barbell, (c) hexagon, and (d) sand timer profiles; and (e)
the results of single-phase method are shown for all the profiles. The inset figures show the dimensions of each profile in mm. For better visualization, the results of the model
are illustrated by solid lines in (b)–(d).
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profile, the single-phase model shows a smoother movement of the
fluid in the hexagon and sand timer profiles. As can be seen in Fig.
5(e), the flow in the first segment of the hexagon profile (diverging seg-
ment) moves more slowly than that of in the first segment of the sand
timer profile (converging segment). This can also be observed in the
second segment of the sand timer profile.

In general, the model shows a good agreement with experimental
observations. In conclusion, the capillary flow velocity increases by
narrowing and decreases by widening.

In order to conduct a design study and to broaden knowledge
about the influence of converging and diverging segments of the hexa-
gon and sand timer profiles on the wicking behavior, nondimensional-
ization is applied by selecting the total wicking time of the straight test
strip as the scale. For this purpose, t1 from Eq. (1a) and t2 from Eq.
(1b) are divided by TStraight ¼ 1

2 fH
2. The dimensionless time is plotted

over the ratio of the wicking length to the total membrane length in
Fig. 6(a). The gray line represents the wicking time of the straight
membrane. The red and blue curves belong to the hexagon and sand
timer profiles, respectively. In the legend, the schematic of the profiles
and the ratio between the lengths of the first segment and the entire
membrane h1=H are shown. The diagram illustrates the same termi-
nation point if the diverging (or converging) parts of the hexagon and
sand timer profiles have the same length; in other words, only the
length of each segment affects the final wicking time, not the arrange-
ment of the diverging and converging parts. In addition to the dimen-
sionless time, its derivative is also depicted in Fig. 6(b) to highlight the
changes in the wicking time. It can be seen that the slope of each curve
changes at the cross-sectional change. The larger the slope of this dia-
gram is, the lower the wicking velocity is. Thus, by using this diagram,
the influence of shapes on the capillary flow velocity can be estimated.
It becomes once again clear that the wetting speed decreases through
diverging parts and increases through converging parts.

Furthermore, the diagram directly demonstrates how to reach
the required flow velocity in the test and control line regions by modi-
fying the length of each segment. The diagram is independent of the
material of the membrane, interfaces, and liquid properties, since all
channel shapes are compared to the unstructured test strip as a
reference.

One of the design criteria of LFAs is the wicking velocity at the
test line (TL). At l=H � 0:7, the wicking velocities through the hexa-
gon and sand timer profiles with h1=H ¼ 0:5 are almost the same as
that of the straight membrane. Thus, if the TL is inserted in the mem-
brane at 0.7 of the total length, despite the same wicking velocity, the
wicking time is much less for the sand timer profile.

By inserting the TL at l=H ¼ 0:8 for all h1=H, the fluid passes
through the cross-sectional change in the hexagon and sand timer pro-
files. It is observed that for all these profiles with the total length of
40mm, the smallest width of 15mm, and the largest width of 25mm,
the wicking velocity lies within the range of LFA velocities32 and con-
sequently with the TL width of 1mm, the residence time is in the
design range [see Fig. 1(b)].

Erickson et al.41 performed numerical simulations using the finite
element method to see the wetting behavior of converging–diverging
and diverging–converging capillaries. In contrast to the present work,
a straight section separated the converging and diverging parts in their
simulations and they did not study porous media; however, their
results confirmed the findings here. In both works, the driving force of
the flow is the capillary force and the resistance force to flow is the vis-
cous force.

B. T-shaped membranes

The experiment with the T-shaped membranes I [Fig. 4(eI)] was
conducted to investigate the influence of the sudden change in width
but on the same length. Moreover, the cross-sectional changes in
length were studied using T-shaped membranes II [Fig. 4(eII)].
Figures 7 and 8 show the individual liquid rises through the T-shaped
membranes over time. The points represent experimental data, while
solid curves in the same color depict the corresponding data from the
single-phase model represented in Sec. II B. From all the membranes,
only the samples 3 and 6 in Fig. 7 [Fig. 4(eI)] possess the straight pro-
file. Thus, by fitting with experimental data from these two samples,
i.e., using their arithmetic average, the coefficient f [in Eq. (A6)] was
determined.

The model shows a good agreement with experimental data in
Fig. 7. Although the straight samples 3 and 6 have different widths

FIG. 6. (a) The dimensionless wicking time and (b) its derivative for the hexagon and sand timer profiles by comparison with the straight membrane (shown by the gray
line).
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(2 and 4mm, respectively), they show almost the same wicking behav-
ior, as they are identical in the mean pore radius. For the membrane
CN 140, Hecht et al.38 found that the critical width of the channel is
600lm above which the wicking velocity does not depend on the
width. Hong and Kim also studied the wicking process in straight
membranes with cut and wax boundaries and found that the wicking
velocity is not influenced by the channel width in the case of cut
boundaries.42 Since the membranes in this work have cut boundaries
(not wax) and the widths of samples 3 and 6 are both larger than the
critical value, they have the same wicking velocity. For the other sam-
ples, it can be seen that expansion leads to velocity reduction in the
subsequent segment along which the wicking velocity is almost
constant.43

As explained in Ref. 36, it is hard for a thinner segment to pro-
vide enough liquid for the wider membrane. In other words, the

source can hardly cover the increasing demand for fluid and, therefore,
the fluid requires more time to propagate in the wider cross section.
On the other hand, it can be seen that the flow resistance decreases
with the falling width ratio and the fluid finds its final position faster
when no expansion occurs.

Figure 8 shows how the changes in cross section in different
lengths influence the wicking time. The length ratios are the same for
samples 1 and 4; 2 and 5; and 3 and 6, respectively, while the width
ratios are 4 for samples 1–3 and 2 for samples 4–6.

As can be seen in Fig. 8(a), the sooner the liquid enters the sec-
ond segment, the larger the slope of the wicking length, i.e., the higher
the liquid velocity in this segment is. Specifically, the wicking velocity
of sample 1 in its second segment (green line) is larger than that of
sample 2 (red line) and consequently the fluid front of sample 1 over-
takes that of sample 2. Thus, the entire wicking proceeds more slowly

FIG. 7. The wicking length over time in the T-shaped membranes I for (a) samples 1–3 and (b) samples 4–6.

FIG. 8. The wicking length over time in the T-shaped membranes II for (a) samples 1–3 and (b) samples 4–6.
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in sample 2 in comparison with sample 1. A faster imbibition rate for
a membrane with a shorter narrow segment (sample 1 as compared to
sample 2) was also observed by Tirapu-Azpiroz et al.43 Contrarily, Fu
et al.44 described that the liquid front has the largest transport time for
the shortest first segment (sample 1). They used a shorter time interval
in which the front of sample 1 could not yet reach its final position
and could not overtake the liquid front of sample 2.

By lengthening the first segment, the liquid source becomes more
limited for the second segment and the flow resistance increases in the
second segment and, hence, the fluid spreads more slowly in this seg-
ment. Thus, the flow velocity is the lowest in the second segment of
sample 3. Nevertheless, the total wicking time of sample 3 is the short-
est. The expansion of sample 3 happens later than samples 1 and 2,
and the fluid can flow faster in a longer straight channel (30.8mm).

The same interpretation applies to Fig. 8(b) where the liquid
front of sample 4 overtakes that of sample 5 but not that of sample 6.
The only difference with samples 1–3 is that the first segment is wider.
This allows a larger flow rate through the first segment, and the prob-
lem of the limiting source for the second segment is, thus, reduced.
Therefore, the changes in the slope of the liquid propagation between
the first and second segments of samples 4–6 are not so large as those
of samples 1–3, respectively.

It is worth mentioning that the coefficient f is deduced from the
wicking process of the straight membranes in the experiment with the
T-shaped membrane I. Thus, the larger deviation between the experi-
mental and modeling results for the T-shaped membrane II (in partic-
ular for sample 4) can be explained by errors associated with the
transfer of the constant f from the separate video with a different
zoom and exposure value. An additional reason for this deviation of
sample 4 was the difficulty by determining the liquid front as the front
with approximately 100% saturation.

In a nutshell, the expansion in the different membrane profiles
reduces the wicking velocity and all the slopes of the liquid propaga-
tion in the second segments are less than that of the straight
membrane.

IV. CONCLUSION

On the macro-scale, a single-phase model for liquid transport in
lateral flow assays is developed, and experimental studies are con-
ducted to validate this model. The aim of this work is to understand
how geometrical changes in the membrane profile influence on the
wicking process, and hence, the parameters related to the membrane,
such as permeability, or related to the liquid, such as viscosity, are not
of interest. Their influences are considered by fitting BCLW law with
the experimental data of the straight membrane. Be of interest, differ-
ent geometries are chosen as the membrane profiles, from straight,
barbell, hexagon, and sand timer to T-shaped membranes. This per-
mits understanding of the wicking behavior in paper-based mem-
branes including cross-sectional changes.

By the same beginning and end wicking widths, if the half of the
membrane profile or more is diverging, such as in a hexagon or sand
timer, the wicking time is longer than that of the straight membrane.
Conversely, if the membrane has a converging segment by more than
half of its length, the wicking time decreases. The lengths of diverging
and converging segments directly influence the wicking time, not their
orders (being the first or second segment).

Similar to the diverging segment, an expansion in the T-shaped
membranes slows down the wicking process compared to that of the
straight membrane. Moreover, in Ref. 36, it is shown that the expan-
sion in the middle of the membrane length causes the slowest wicking.
In comparison with this length for an expansion, it is illustrated here
that the expansion below this length causes a higher velocity in the sec-
ond segment, which allows a faster wicking. Furthermore, by increas-
ing the width ratio of an expansion, the wicking velocity decreases.

BCLW imbibition law cannot calculate the wicking time in
multi-layer membranes. However, Eq. (2) can determine the wicking
behavior of any type of membrane profile. By conducting one single
wicking experiment using a straight membrane to discover the wicking
coefficient (f) and by applying this equation, one can predict the wick-
ing behavior in membranes with non-straight geometries. This pre-
vents time-consuming experiments and saves money. By knowing the
effect of the membrane profile on the wicking process, one can control
it. Hence, it is possible to reach a desired velocity at the test line con-
sidering the residence time; this is essential to improve the test sensi-
tivity and optimize the design of a profile to reduce the time required
to deliver the same result. The findings can be used to develop a
simulation-based and data-driven membrane design tool that provides
the optimum parameters in terms of membrane structure, the wicking
time, and signal line position for different test applications.
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APPENDIX A: WICKING TIME

The mathematical derivation of Eqs. (1a)–(1c) is presented
here. When the fluid front is in the first segment (z � h1) with the
volumetric flow rate of Q and the cross-sectional area of A1ðxÞ, the
Darcy equation can be written as36

Q ¼ u1ðxÞA1ðxÞ ¼ �
K
l
dp
dx

A1ðxÞ: (A1)
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By integrating Eq. (A1), we obtainðp1
p0

dp ¼ �lQ
K

ðz
0

dx
A1ðxÞ

; (A2)

where the negative of the rhs represents the liquid pressure drop in
the first segment Dp01 ¼ p0 � p1, which is equal to the capillary
pressure Dpc and, therefore, we can write

Dpc ¼
lQ
K

ðz
0

dx
A1ðxÞ

: (A3)

Considering Q ¼ u1ðzÞA1ðzÞ and u1ðzÞ ¼ dz=dt, we can derive the
wicking time for the first segment as t1

Dpc ¼
l
K
dz
dt

A1ðzÞ
ðz
0

dx
A1ðxÞ

; (A4)

t1 ¼
l

KDpc

ðl
0
A1ðzÞ

ðz
0

dx
A1ðxÞ

� �
dz: (A5)

If A1ðxÞ ¼ a1 � b ¼ constant, where a1 and b are the width and
thickness of the membrane, respectively, then the wicking time
for a straight channel is the same as the result of BCLW imbibi-
tion law

t1 ¼ f
ðl
0
a1 � b

ðz
0

dx
a1 � b

� �
dz ¼ 1

2
fl2; (A6)

where f ¼ l=ðKDpcÞ. In our study, f is constant and obtained by
fitting the results to experimental data of the straight channel.

When the liquid front is in the second segment (h1 < z � h2),
the pressure drop is the sum of pressure drops of the entire first seg-
ment and the part of second segment wetted by the liquid, which is
equal to the capillary pressure

Dpc ¼
lQ
K

ðh1
0

dx
A1ðxÞ

þ lQ
K

ðz
h1

dx
A2ðxÞ

: (A7)

Considering Q ¼ u2ðzÞA2ðzÞ and u2ðzÞ ¼ dz=dt, we can rewrite
Eq. (A7) in order to derive the wicking time for the second segment
t2 as follows:

Dpc ¼
l
K
dz
dt

A2ðzÞ
ðh1
0

dx
A1ðxÞ

þ
ðz
h1

dx
A2ðxÞ

" #
; (A8)

t2 ¼
l

KDpc

ðl
h1

A2ðzÞ
ðh1
0

dx
A1ðxÞ

þ
ðz
h1

dx
A2ðxÞ

" #
dz; (A9)

and analog for the third segment

t3 ¼
l

KDpc

ðl
h1þh2

A3ðzÞ
ðh1
0

dx
A1ðxÞ

þ
ðh1þh2
h1

dx
A2ðxÞ

þ
ðz
h1þh2

dx
A3ðxÞ

" #
dz:

(A10)

In our study, the thickness remains constant for all segments.
Thus, the aforementioned equations for the wicking time are writ-
ten in Eqs. (1a)–(1c) as functions of the width of segments, namely,
a1ðxÞ; a2ðxÞ, and a3ðxÞ. It is again worth mentioning that f is
obtained from experimental data.

APPENDIX B: BOND NUMBER

The Bond number is a dimensionless number that represents
the ratio of gravitational to capillary forces and is defined as48

Bo ¼ qL � g �H
2 � rLG=R

; (B1)

where indices L and G stand for the liquid and gas, respectively, qL
is the liquid density, g is the gravitational acceleration, H is the total
wicking length, rLG is the coefficient of surface tension between the
liquid and gas phases, and R is the capillary radius.

In this study, the liquid phase is water and the gas phase is air.
Thus, qL ¼ 998 g/m3 and rLG ¼ 0.073N/m at 20 �C, g¼ 9.8 m/s2,49

H¼ 0.04m and the mean pore radius (the half of mean pore diame-
ter from Table I7) is taken as the capillary radius R¼ 1.87 lm. By
using these parameters in Eq. (B1), the Bond number is equal to
0.004 77, to put it another way, Bo� 1. Thus, the gravitational
force is much less than the capillary force and can be neglected in
this work. Although the membranes are located vertically, the influ-
ence of gravity can be ignored. In many practical conditions, where
LFAs locate horizontally, this effect is also negligible. For more
information about avoiding (considering) the effect of gravity, the
reader is referred to Ref. 50.
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