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Abstract

The study of protein-ligand interactions is crucial and challenging for biomolec-
ular systems. In particular, traditional laboratory experiments often have
difficulties explaining the mechanisms of the reactions, while classical theoret-
ical computational methods have shortages in dealing with the system scale
and time scale of biomolecular systems. In this work, enhanced sampling
methods based on molecular dynamics (MD) simulations and artificial neural
network (ANN) algorithms based on semi-empirical quantum mechanics
(QM) approaches were applied to explore different biomolecular systems.

In the first part, host-guest chemistry of [4+4] as well as [2+3] imine cages
was studied. In the study of [4+4] cages, the uptake process of ammonium
ions with different sizes in cages with alternative volumes was simulated
by well-tempered metadynamics (MetaD). Three plausible mechanisms are
proposed to explain the guest uptake processes. In the [2+3] cages study, the
nitrogen molecule transfer in three different cage crystals was calculated with
funnel metadynamics (FM). The free energy surfaces obtained suggested the
existence of two potential pathways to express the mechanism of nitrogen
transfer between cages.

A novel glucose binding protein-based fluorescence probe was investigated
in the second part. A detailed molecular understanding of changes in the
glucose binding site due to mutations and their effect on glucose binding was
achieved via MD simulations. The energetics of unbinding in these proteins
were revealed and were consistent with the experimental results.

Last, a set of machines were trained by artificial neural networks (ANNs) to
correct the misrepresentation of excited states by LC-DFTB when energy
level crossing occurs. Most of the trained machines can accurately modify
the excited state definition errors brought by LC-DFTB, whereas the machine
trained in water is less accurate and required further training.

Key Words: Protein-ligand interaction, Molecular dynamics simulation, Quan-
tum mechanics, Metadynamics, Machine learning.
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Zusammenfassung

Die Untersuchung von Protein-Ligand-Wechselwirkungen ist für biomole-
kulare Systeme von entscheidender Bedeutung und eine Herausforderung.
Insbesondere haben traditionelle Laborexperimente oft Schwierigkeiten, die
Mechanismen der Reaktionen zu erklären, während klassische theoretische
Berechnungsmethoden Defizite im Umgang mit der System- und Zeitska-
la biomolekularer Systeme aufweisen. In dieser Arbeit werden sogenannte
enhanced Sampling-Methoden auf der Grundlage von Molekulardynamiksi-
mulationen (MD) und Algorithmen für künstliche neuronale Netze (ANN),
die auf semi-empirischen quantenmechanischen (QM) Ansätzen beruhen, zur
Untersuchung verschiedener biomolekularer Systeme eingesetzt.

Im ersten Teil wurde die Wirt-Gast-Chemie von [4+4]- und [2+3]-Iminkäfigen
untersucht. Bei der Untersuchung von [4+4]-Käfigenwurde der Aufnahmepro-
zess von unterschiedlich großen Ammoniumionen in Käfigen mit alternativen
Volumina durch wohltemperierte Metadynamik (MetaD) simuliert. Es wurden
drei mögliche Mechanismen vorgeschlagen, um die Gastaufnahmeprozesse
zu erklären. Bei der Untersuchung von [2+3]-Käfigen wurde der Stickstoffmo-
lekültransfer in drei verschiedenen Käfigkristallen mit Funnel-Metadynamik
(FM) berechnet. Die erhaltenen freien Energieflächen deuten auf die Existenz
von zwei möglichen Wegen hin, auf denen der Stickstofftransfer erfolgen
kann.

Im zweiten Teil wurde eine neuartige Fluoreszenzsonde auf der Basis ei-
nes Glukose bindenden Proteins untersucht. Ein detailliertes molekulares
Verständnis der Veränderungen an der Glukosebindestelle aufgrund von Mu-
tationen und deren Auswirkungen auf die Glukosebindung wurde durch
MD-Simulationen erreicht. Die Energetik der Dissoziation von Protein und
Glukose wurde aufgedeckt und stimmte mit den experimentellen Ergebnissen
überein.

Schließlich wurde eine Reihe von künstlichen neuronalen Netzen (ANNs) trai-
niert, um die falsche Darstellung von angeregten Zuständen durch LC-DFTB
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Zusammenfassung

zu korrigieren, wenn Energieniveaus kreuzen. Die meisten der trainierten
Maschinen sind in der Lage, die durch LC-DFTB verursachten Fehler bei der
Beschreibung des angeregten Zustands zuverlässig zu korrigieren, während
die für Farbstoffgeometrien in Wasser trainierte Maschine weniger genaue
Ergebnisse liefert und weiteres Training erfordert.

Schlüsselwörter: Protein-Ligand-Wechselwirkung, Molekulardynamiksimula-
tion, Quantenmechanik, Metadynamik, Maschinelles Lernen
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Part I.

Introduction





1. Protein-Ligand Interactions

In nature, proteins perform their functions by interacting with other proteins
or molecules and are involved in almost all biological processes. Therefore,
an in-depth study of the structure, function, and interactions of proteins is
essential in explaining various life activities phenomena.

Although some proteins can perform physiological functions independently,
most protein molecules do not exist in isolation. They need to interact with
other biological molecules to perform specific physiological functions, e.g.
enzymes and substrates, hormones and receptors, antibodies and antigens and
so on. These molecules that interact with the protein, such as biomolecules,
metal ions, etc., are called ligands. Upon interaction with a ligand, the pro-
tein structure may change, ranging from the twisting of the amino acid side
chains to protein domain structural changes. Likewise, ligands may undergo
specific conformational changes when interacting with proteins. In addition,
protein-ligand interactions require specific non-covalent bonding interac-
tions, including hydrogen bonding, electrostatic forces, van der Waals (vdW)
interactions, hydrophobic interactions, etc. For protein-ligand complexes,
differences in the conformation and variations in interaction forces can lead
to entirely different binding effects.

Therefore, a detailed study of protein-ligand interactions at the atomic level
will help to reveal the effects of ligand binding on protein structure and
deepen the understanding of many biological regulatory mechanisms. In
addition, it also provides essential guidance for drug development and enzyme
engineering.

To study protein-ligand interactions, it is necessary to explore both the ki-
netic and thermodynamic properties of the binding. Over the past century,
three theoretical models have been developed to describe the protein-ligand
interactions. In 1897, Fischer proposed the “Lock-Key” theory as the first
theoretical model to describe the interaction between proteins and small
molecules [1]. The model treats protein receptors as locks and ligands, such

3



1. Protein-Ligand Interactions

Figure 1.1.: Schematic view of protein-ligand binding mechanisms. a). The “Lock-Key” mecha-
nism. b). The “Induced-fit” mechanism. c). The “Conformational Selection” mechanism.

as small molecules, as keys, both of which are rigid molecules that recognise
and bind to each other by matching their spatial shapes. In 1958, the “Induced
Fit model” was proposed by Koshland et al. [2]. This model states that when
a small molecule binds to a protein, both conformations will change due to
intermolecular interactions until an energetically stable binding pattern is
formed. In contrast to “Lock-Key”, this model compensates for the deficiencies
of the first model by taking the structural changes of the bound molecules into
account. The third model is the “Conformational Selection” model proposed
by Straub in 1964 [3], which assumes that proteins have many conformations
and only one or some of them can be bounded with ligands. To put it briefly,
suppose a protein has only two states, A and B. State A can bind directly
to a ligand molecule, but state B cannot, so if a protein in state B wants to
bind to a ligand, its conformation needs to convert to the state A before
binding. In recent years, with the development of biology, protein-ligand
interactions have been found to co-exist with both “conformational selection”
and “induced fit” mechanism reported by Csermely et al. [4].

The protein-ligand interaction can be described by the binding rate constant
𝑘on and the dissociation rate constant 𝑘off . The affinity of the ligand bound to
the protein is determined by the equilibrium dissociation constant, where,

𝑘D =
𝑘off
𝑘on

=
[P] · [L]
[PL] (1.1)

4



1. Protein-Ligand Interactions

Here, [P] is the concentration of unbound-state protein, [L] the concentration
of ligand molecules and [PL] the protein-ligand complexes concentration.

P + L
koff−−−⇀↽−−−
kon

PL (1.2)

As shown in Equation 1.2, the protein-ligand binding and dissociation reac-
tions are reversible, and hence are often subjected to standard equilibrium
thermodynamic analysis. The affinity between protein and ligand is evaluated
by the equilibrium dissociation constant, directly related to the standard Gibbs
free energy (often referred to as the binding free energy in receptor-ligand
interactions) as,

𝐺0
binding = 𝑅𝑇 ln𝑘D = 𝑅𝑇 ln 𝑘off

𝑘on
. (1.3)
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2. Fluorescence

Fluorescence is the emission of light by a substance that has been irradiated by
the excitation light or other electromagnetic radiation. The earliest record of
the fluorescence dates back to the 16th century when the Spanish botanist and
physician N. Monardes discovered a piece of wood called “Lignum Nephriti-
cura” whose aqueous solution is sky-blue. In 1852, when Sir G. Stokes studied
quinine and chlorophyll solutions, they reported that the wavelength of the
emitted light of these solutions was slightly longer than the wavelength of
the incident light . Later, it was found that this phenomenon was caused by
the material being able to re-emit light with different wavelengths after ab-
sorbing the excitation light and then such re-emitted light was first described
as fluorescence.

In 1867, Goppelsröder realised the first fluorescence analysis in the deter-
mination of aluminium in aluminium-morin complexes [5]. With the rapid
development of other related disciplines in recent years, the theory and ap-
plication of fluorescence analysis methods have been greatly promoted and
improved. Currently, the fluorescence analysis method has become a crucial
spectroscopic analysis method for many fields of industrial production, daily
life and scientific research due to its advantages of being sensitive, efficient,
suitable for real-time, simple and in-situ detection [6–8].

2.1. Fluorescence Generation

When the external energy is encountered, orbital electrons of the fluorescent
molecules absorb this energy and change (“hop”) into higher electronical
states (S𝑛). Photons are subsequently released by radiative decay, which
returns the excited state molecule to the ground state, and fluorescence
occurs. The specific process of fluorescence generation can be described by
the Jablonski diagram [9] as follows.

7



2. Fluorescence

Figure 2.1.: Jablonski Energy Diagram.

When the number of electrons with spin up is equal to those with spin
down, the molecule is in a singlet state (S); on the contrary, if the spin
direction of an electron changes such that the total spin becomes one, then
the molecule is in a triplet state (T). In ground state (S0), fluorescent molecules
have their electrons at the lowest energy level. When these molecules absorb
the energy of the external light, they will transfer to different vibrational
energy states, such as the first excited state (S1) and the second excited state
(S2). Subsequently, the electrons at different vibrational energy states fall
to the lowest vibrational energy level (S1) through various non-radiative
processes (Vibrational Relaxation and Internal Conversion). The electrons
in the first excited state (S1) will directly return to the ground state in the
form of radiation, and the light emitted is called fluorescence. In some cases,
in the first excited singlet state, an electron changes its spin direction and the
molecule is trapped in the first excited triplet state (T1) through intersystem
crossing and then return to the ground state in the form of radiation. The
light emitted is called phosphorescence.

As mentioned above, part of the energy absorbed by excited electrons will
be dissipated through vibrational relaxation and internal conversion, and

8



2.2. Fluorescent Probe

hence the energy emitted in the form of fluorescence is less than the energy
absorbed when excited. Therefore, the spectrum shows that the fluorescence
emission wavelength is longer than the absorption wavelength, and the
difference between them is known as the Stokes shift. As another consequence
of vibrational relaxation and internal conversion, the spectral shape of the
fluorescence is not affected by the wavelength of the excitation light source.
In general, fluorescent materials have only one emission peak. However,
during energy absorption, the ground state electrons can jump to different
excited states simultaneously. Therefore, a material can exhibit multiple
absorption peaks at the same time.

2.2. Fluorescent Probe

Over the past decade, the rapid development of fluorescent probes has been
witnessed. The low content of elements in the organism can be detected
through the optimised fluorescent probe, which can respond specifically to a
single element and eliminate the interference of other factors. At the same
time, compared to the other detection approaches with complex measure-
ment processes, its operation is significantly convenient. Most importantly,
information on different temporal and spatial distributions can be revealed
without damaging the biological sample, which is of great importance for
the study of the physiological functions of important biological species [10,
11].

In general, fluorescent probes are composed of two main functional parts.
The first part is the recognition group to identify specific groups and change
the fluorescence signal when combined with the analyte; the second part
is the chromophore as the signal group. The two parts of the probe can be
attached directly, or the recognition group can be part of a chromophore.
Besides, they can be connected by a linking group. For the signal group,
small organic molecule dyes are the most commonly used chromophore of
fluorescent probes, such as Fluorescein [12], BODIPY [13], Cyanine [14], and
so on. In addition, upconverting nanomaterials [15], polymeric fluorescent
materials [16] and fluorescent proteins [17] can also serve as the chromophore
in the fluorescent probe.

Fluorescent probes can be classified according to different principles. On
one hand, based on the type of fluorescence signal changes after interacting

9



2. Fluorescence

with the specific group, it can be divided into intensity-changing fluorescent
probes (On-Off type and Off-On type) and ratio-type fluorescent probes. On
the other hand, coordination fluorescent probes and reactive fluorescent
probes (Chemodosimeter) can also be classified depending on the type of
response between the recognition group and the specific group.

2.3. Intramolecular Charge Transfer (ICT)

Figure 2.2.: Twisted Intramolecular Charge Transfer (TICT) dynamics.

Intramolecular charge transfer (ICT) refers to the transfer phenomenon of
excited state electrons resulting in the separation of positive and negative
charges, which forms the molecular charge transfer state [18]. Fluorescent
probe molecules that use such a mechanism usually have electron-donor
and electron-acceptor groups as the recognition group attaching to the chro-
mophore. A strong “D-A” conjugate structure is generated through the elec-
tron transfer channels provided by the 𝜋 bond. As the electron transfer occurs,
the positive and negative charges within the molecule separate, and the dipole
moment increases. Thus, the locally excited state (Franck-Condon state, LE)
at the moment is no longer stable. As shown in Fig. 2.2, the energy of the
CT state tends to be lower than that of the LE state, and as a result, the light
emission peak of the ICT state is red-shifted, and the fluorescence intensity is
reduced. In addition, as the environment polarity increases, the positive and

10



2.3. Intramolecular Charge Transfer (ICT)

negative charges tend to separate, which further exacerbates the decrease
in energy of the ICT state and increases the red-shift of the fluorescence
emission spectrum [19, 20].

Twisted intramolecular charge transfer (TICT) is a type of ICT mechanism
in which some molecules with ICT properties twist or rotate themselves in
the excited state when the molecule is in the TICT state [18, 21]. Fluorescent
molecules with TICT properties are generally very sensitive to the polarity
of their environment, producing short wavelength light in the LE state when
the molecule is in a non-polar solvent environment and, as polarity increases,
fluorescence is emitted in the long wavelength TICT state. Moreover, it
can be observed that as the polarity increases, the intensity of the short
wavelength LE fluorescence decreases and the fluorescence intensity of the
long wavelength TICT state increases (Fig. 2.2). Therefore, based on this
property of TICT, it is possible to design synthetic scaled fluorescent probes.
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3. Quantum Chemistry

Modern chemistry is not only a laboratory discipline but also requires exten-
sive computer simulations. For instance, biochemical reactions often happen
within only a few microseconds. However, it is impossible to track what hap-
pens in such a short time in the laboratory. Hence, the reaction mechanism
cannot be fully explained.

In computational chemistry, if chemical molecules are considered to be com-
posed of atoms and chemical bonds, many properties of molecules can be
well described using the formulas of classical mechanics, such as stretching
of chemical bonds, the opening and closing of bond angles, the rotation of
dihedral angles and so on. Such a modelling approach is called molecular
mechanics (MM) modelling. However, properties such as the breaking and
generation of chemical bonds involve changes in the electronic structure.
The MM model is unsuitable to describe the related properties because it
treats atoms as individual particles. Therefore, it is necessary to consider the
electrons when modelling, and such a model is called a quantum mechanics
(QM) model. For the same system, the computational complexity of the QM
model is much higher than that of the MM model, and the difference is often
several orders of magnitude. As discussed above, the MM model regards
atoms as classical particles, while the QMmodel needs to consider QM effects.
Hence, the computation of energy and forces in quantum mechanics is far
more complicated than the MM model. However, the QM model can not
only simulate the breaking and generation of chemical bonds that cannot be
achieved by the MM model but also obtain more accurate calculation results
than the MM model.

As shown in Fig. 3.1, molecules can be calculated by different simulation
approaches in computational chemistry, and the “accuracy” and “speed” of
the simulation method are often a pair of contradictions. Specifically, finer
methods can achieve higher computational accuracy but often pay higher
computational costs and vice versa. There are not only QM models and
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3. Quantum Chemistry

Figure 3.1.: Schematic representation of computational simulation methods according to the
simulation time and the model size scale.

MM models in computational chemistry. When modelling, higher-precision
calculation results can be obtained if we consider finer structures (such as
quantum effects of atomic nuclei), but the calculation is even more expensive.
Conversely, it is also possible to model in a coarser way (such as the coarse-
grained method) to achieve a faster model but with lower accuracy.

Therefore, in practice, different simulation methods are often chosen accord-
ing to the different research purposes. For instance, when unravelling the
folding process of protein molecules, which contains thousands of atoms in
the system and only involves the conformational changes of the molecules, a
force field-based molecular mechanics approach or a coarse-grained method
is sufficient. If the study focuses on the chemical reaction of small organic
molecules, applying a QM method is necessary. However, in actual computa-
tional chemistry research, the system is always more complex and has more
molecular properties that need to be investigated. For example, an impor-
tant research direction of computational chemistry is the enzyme-catalysed
reaction of proteins, which involves chemical reactions and conformational
changes. Obviously, the MM model can only meet the requirements of con-
formational changes. If the QM method is applied to model the entire protein
system, the calculation speed will be extremely slow. Since only a very small
part of the protein is accounted for in the chemical reactions, we can perform
QM calculations on the reaction-related protein zone and calculate the rest
by using the MM model to achieve the chemical reaction while maintaining
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3.1. Schrödinger Equation and Hamiltonian

a high computational speed. This hybrid simulation method is called the
Quantum Mechanics/Molecular Mechanics (QM/MM) model.

To sum up, in computational chemistry, modelling with different scales can
achieve different effects. Usually, the finer scale, the higher the calculation
accuracy, but the lower the calculation speed, and vice versa. For complex
chemical systems, different parts of the system can be calculated with models
of different scales as needed to achieve the required computational accuracy
with the minimum computational cost. Various simulation approaches have
emerged with the rapid development of computational chemistry in recent
decades. This chapter will briefly introduce the simulation methods applied
in this work.

3.1. Schrödinger Equation and Hamiltonian

In general, quantum chemistry is to apply the basic principles of quantum
mechanics to solve the Schrödinger equation, and extract the potential energy
surface structure and wave function of molecules to calculate the properties.
The time-dependent form of the Schrödinger equation is{

− ℏ2

2𝑚 ( 𝜕
2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2 ) +𝑉 (r, 𝑡)
}
Ψ(r, 𝑡) = 𝑖ℏ 𝜕Ψ(r, 𝑡)

𝜕𝑡
. (3.1)

In Equation 3.1,𝑚 is the mass of the single particle, ℏ is the Planck’s constant
divided by 2𝜋 , 𝑖 is the imaginary unit, 𝑉 is the potential energy, Ψ(r, 𝑡) is the
wave function of a particle depended on the spatial coordinates r and time 𝑡 ,
which describe the particle’s motion. When the 𝑉 is independent of time, the
time-independent Schrödinger Equation can be written as{

− ℏ2

2𝑚∇2 +𝑉 (r, 𝑡)
}
Ψ(r) = 𝐸Ψ(r). (3.2)

Here, ∇2 is the abbreviation for 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2 and E is the energy of the
particle or the system. The left hand side of Equation 3.2 can be also written
as �̂�Ψ. The �̂� is called Hamiltonian operator, which contains the kinetic
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3. Quantum Chemistry

energy − ℏ2

2𝑚∇2 and the potential energy V for the particle. This makes the
time-independent Schrödinger Equation simplified as

�̂�Ψ(r) = 𝐸Ψ(r). (3.3)

For a molecule containing 𝑛 electrons and 𝑁 nuclei, the �̂� can be presented
as the sum of kinetic energy and potential energy operators as,

�̂� = 𝑇𝑒 +𝑇𝑁 +𝑉𝑒𝑒 +𝑉𝑒𝑁 +𝑉𝑁𝑁 , (3.4)

where,

𝑇𝑒 = −
𝑛∑︁
𝑖=1

ℏ2

2𝑚𝑒

∇2
𝑖

𝑇𝑁 = −
𝑁∑︁
𝐴=1

ℏ2

2𝑀𝑁

∇2
𝐴

𝑉𝑒𝑒 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗>𝑖

𝑒2

|ri − rj |

𝑉𝑒𝑁 = −
𝑛∑︁
𝑖=1

𝑁∑︁
𝐴=1

𝑒2𝑍𝐴
|rA − ri |

𝑉𝑁𝑁 =

𝑁∑︁
𝐴=1

𝑁∑︁
𝐵>𝐴

𝑒2𝑍𝐴𝑍𝐵

|rA − rB |
.

(3.5)

Here, 𝑇𝑒 is the kinetic energy of the electrons, and 𝑇𝑁 is the kinetic energy
of the nuclei. 𝑉𝑒𝑒 , 𝑉𝑒𝑁 , 𝑉𝑁𝑁 stand for the repulsive interaction between
electrons, the attractive interaction between electrons and the nuclei and
repulsive interaction between nuclei, respectively.𝑚𝑒 is the mass of electrons,
𝑀𝑁 the mass of nuclei, ri and rj represent the coordinates of electron 𝑖 and 𝑗 ,
rA and rB represent the coordinates of nuclei 𝐴 and 𝐵, and 𝑍𝐴 and 𝑍𝐵 are the
charges of nuclei 𝐴 and 𝐵.

Since the Schrödinger equation is a partial differential equation, it is difficult
to solve except for only a few cases, such as one-electron system as H2

+.
As the nucleus is much more massive than the electron and moves more
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3.2. Hartree-Fock

slowly than the electron, the nucleus can be regarded as immobile. In such
circumstances, the Hamiltonian operator can be written as

�̂� = −
𝑛∑︁
𝑖=1

ℏ2

2𝑚𝑒

∇2
𝑖 −

𝑛∑︁
𝑖=1

𝑁∑︁
𝐴=1

𝑒2𝑍𝐴
|rA − ri |

+
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗>𝑖

𝑒2

|ri − rj |
+

𝑁∑︁
𝐴=1

𝑁∑︁
𝐵>𝐴

𝑒2𝑍𝐴𝑍𝐵

|rA − rB |
.

(3.6)

The last term of Equation 3.6 is a constant, which indicates the repulsive
potential between nuclei. Hence, the wave function only depends on the
coordinates of electrons. In other words, the problem of the relative motion
between nuclei and electrons is transformed into a problem of the motion
of the electrons around immobile nuclei. This means that for any given
arrangement of nuclei, the electrons have a corresponding state of motion,
while the relative motion between the nuclei can be regarded as the average
effect of the electron motion. This is the Born–Oppenheimer approximation.
Under this approximation, the total wave function for the molecule can be
described as follows:

Ψ𝑡𝑜𝑡 (nuclei, electrons) = Ψ(electrons)Ψ(nuclei). (3.7)

With the introduction of the Born–Oppenheimer approximation, solving
the Schrödinger equation for a multi-electron molecular system is simpli-
fied. However, except for a few simplest molecule systems, the Schrödinger
equation is still very difficult to be precisely solved. Therefore, the varia-
tional principle is often applied to optimise the solution of the Schrödinger
equation.

⟨Ψ𝑡𝑟𝑖𝑎𝑙 |�̂� |Ψ𝑡𝑟𝑖𝑎𝑙 ⟩ = 𝐸𝑡𝑟𝑖𝑎𝑙 ≥ 𝐸0 = ⟨Ψ0 |�̂� |Ψ0⟩ (3.8)

In this principle, the true energy 𝐸0 is lower than the energy 𝐸𝑡𝑟𝑖𝑎𝑙 corre-
sponding to any guessed trail wave function Ψ𝑡𝑟𝑖𝑎𝑙 .

3.2. Hartree-Fock

Despite the introduction of the Born–Oppenheimer approximation, the elec-
tron’s wave function has an exact solution only available for molecular ions
containing one electron. In a many body system, the motion of the individual
electrons is interconnected. Since the interaction energy between the elec-
trons contained in the Hamiltonian cannot be found, further approximation
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methods must be applied. The simplest and most convenient approximation
is the one-electron approximation proposed by Hartree, also known as the
Hartree approximation [22]. That is, the effects of all the other electrons on
each electron are replaced by a potential field. Thus, each electron in the
system appears to be moving independently and has its own eigenvalue and
eigenfunction.

The wave function of the total system could be assumed as the product of
the state functions of the individual electrons. Hence, with a fixed nucleus
position, the motion of a single electron depends only on the coordinates of
itself so that the multi-electron wave function can be decomposed into the
product of the single-electron wave functions as,

Ψ(r1, r2, ...rn) = Φ(r1)Φ(r2)...Φ(rn). (3.9)

The one-electron approximation inevitably leads to the emergence of a central
concept of molecular orbital theory – the self-consistent field (SCF). The
motion of each electron is influenced not only by nucleus, but also by the
potential fields created by other electrons. Thus, in describing the nucleus-
electron potential field, one must not only consider the state of the electron
that is affected, but also its contribution to the potential field as the other
electrons move, i.e. the self-consistent. Such a potential field is called a
self-consistent field.

Since this representation of Equation 3.9 does not satisfy the antisymmetric
principle, Fock improved the Hartree equation by rewriting the many-body
wave function as a Slater determinant (Equation 3.10) of the single-electron
wave function satisfying the exchange antisymmetry [23].

Ψ𝐻𝐹 =
1

√
𝑁 !


Φ1 (1) Φ1 (2) · · · Φ1 (N)
Φ2 (1) Φ2 (2) · · · Φ2 (N)
...

...
. . .

...

Φ𝑁 (1) Φ𝑁 (2) · · · Φ𝑁 (N)


(3.10)

Here, 𝑁 is the total number of electrons, Φ1 (1) indicates a spin orbital con-
taining position r1 and spin 𝜎 for the electron labelled as “1”. Applying
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3.2. Hartree-Fock

the variational principle to the Slater determinant under the constraint of
orthogonal normalisation yields the HF equation as [24],[

−1
2∇

2
𝑖 −

𝑀∑︁
𝐴=1

𝑍𝐴

riA

]
Φ𝑖 (1) +

∑︁
𝑗≠𝑖

[∫
dr2Φ∗

𝑗 (2)Φ𝑗 (2)
1
r12

]
Φ𝑖 (1)

−
∑︁
𝑗≠𝑖

[∫
dr2Φ∗

𝑗 (2)Φ𝑖 (2)
1
r12

]
Φ𝑖 (1) =

∑︁
𝑗

𝜀𝑖 𝑗Φ𝑗 (1).
(3.11)

On the left side of the Equation 3.11, the first term is the single-electron
energy, which includes the kinetic energy and the attractive interaction to
the nuclei. The second term is the Coulomb interaction between electrons,
corresponding to the potential energy due to the average charge distribution
of𝑁 −1 electrons in the orbitalsΦ𝑗 . The third term is the exchange interaction
derived from Pauli’s principle. In a "frozen" system, these three terms can
be written by the core Hamiltonian operator �̂� core, the Coulomb operator 𝐽 𝑗 ,
and the exchange operator �̂� 𝑗 , respectively:

�̂� core (1) = −1
2∇

2
1 −

𝑀∑︁
𝐴=1

𝑍𝐴

r1A

𝐽 𝑗 (1) =
∫

dr2Φ∗
𝑗 (2)

1
r12

Φ𝑗 (2)

�̂� 𝑗 (1)Φ𝑖 (1) =
[∫

dr2Φ∗
𝑗 (2)

1
r12

Φ𝑖 (2)
]
Φ𝑗 (1).

(3.12)

Equation 3.11 can be written as,

�̂� core (1)Φ𝑖 (1) +
𝑁∑︁
𝑗≠𝑖

𝐽 𝑗 (1)Φ𝑖 (1) −
𝑁∑︁
𝑗≠𝑖

�̂� 𝑗 (1)Φ𝑖 (1) =
∑︁
𝑗

𝜀𝑖 𝑗Φ𝑗 (1). (3.13)

Introducing the Lagrangian multipliers, the Equation 3.13 can be further
simplified as,

𝑓 Φ𝑖 = 𝜀𝑖Φ𝑖 . (3.14)

Here, 𝑓 is called the Fock operator, which can be described as follows:

𝑓𝑖 (1) = �̂� core (1) +
𝑁∑︁
𝑗=1

{
𝐽 𝑗 (1) − �̂� 𝑗 (1)

}
. (3.15)
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For a closed-shell system, the Fock operator is written as,

𝑓𝑖 (1) = �̂� core (1) +
𝑁 /2∑︁
𝑗=1

{
2𝐽 𝑗 (1) − �̂� 𝑗 (1)

}
. (3.16)

In conclusion, the HF method, which transforms the high-dimensional practi-
cally unsolvable multi-electron problem into a solvable problem of a single
electronmoving in an effective potential field, is themost fundamental method
in quantum chemistry. However, this approach has some shortcomings.

Firstly, the electrons in the model do not interact with each other directly
and instantaneously, but indirectly interact through the mean field, which
neglects the dynamical correlation of the electrons. Secondly, when the
system needs to be simplified, the wave function needs to be represented by a
linear combination of multiple Slater determinants. However, the HF equation
only employs a single Slater determinant to represent the wave function
ignoring the static correlation of electrons. Therefore, the HF approximation
is reasonable for molecular or cluster systems where exchange interactions
are dominant. However, in periodic systems where the correlation effects
between electrons cannot be ignored, the HF approximation does not give
accurate results [24].

3.3. Density Functional Theory

ab initio electronic structure theories, such as the HF approach, are based on
complex multi-electron wave functions. Specifically, in the HF approximation,
for a system with 𝑁 electrons, the wave functions depend on 3𝑁 spatial
variables, making calculations increasingly difficult as the system gets larger
and the number of electrons increases. In contrast, the density functional
theory (DFT) considers the overall electron density distribution instead of
whole wave functions in the calculation. Since the electron density is a
function of only three spatial variables, the number of electronic density
variables remains constant when the number of electrons increases. In other
words, under the DFT theory, the degrees of freedom of the 𝑁 -electron
system are independent of the size of the system. This makes the DFT theory
much simpler to deal with, both conceptually and practically than solving
multi-electron wave functions.
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3.3. Density Functional Theory

3.3.1. Hohenberg-Kohn theorem

Hohenberg and Kohn proposed the Hohenberg-Kohn theorem in 1964, which
is the fundamental basis of the DFT theory [25]. The Hohenberg-Kohn
theorem contains two theorems. First, the external potential 𝑉ext in any
multi-electron system can be uniquely determined by the ground state charge
density 𝜌 of that system. Second, for any external potential 𝑉ext, the true
ground state charge density gives the globalminimumof the energy functional
and is equal to the ground state energy [24].

In the framework of the Hohenberg-Kohn theorem, the energy functional
has the following form:

𝐸 [𝜌] = 𝑇 [𝜌] + 𝐸ee [𝜌] +
∫

𝑉ext (r)𝜌 (r)dr

= 𝐹 [𝜌] +
∫

𝑉ext (r)𝜌 (r)dr
(3.17)

Here, the 𝐹 [𝜌] denotes the sum of the kinetic energy 𝑇 [𝜌] and the inter-
electronic energy 𝐸ee [𝜌] of the system, and is a general functional that is
independent of the external potential and depends only on the ground state
electron density 𝜌 .

The first theorem ensures that the ground state properties of the multi-
electron system are all functionals of the electron density, while the second
theorem provides a variational principle to calculate the total ground state
energy and electron density of the system. Although in principle, the ground
state properties of the system can be obtained from the ground state charge
density, the exact form of the generalised functional is still unknown. In
addition, the Hohenberg-Kohn theorem only deals with the ground state
of the system. When studying the properties of excited states, correspond-
ing extensions of the theory will be needed, such as the Time-dependent
density-functional theory (TD-DFT).

3.3.2. Kohn-Sham equation

The Hohenberg-Kohn theorem does not provide a specific expression for the
energy functional 𝐹 [𝜌]. Kohn and Sham proposed the Kohn-Sham equation
in 1965 [26]. They assumed that there are equivalent non-interacting electron
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systems with the same charge densities at the ground state in any interacting
multi-electron system. Although there is no rigorous theoretical proof of this
assumption, the widespread use of the DFT theory based on the Kohn-Sham
equation indirectly demonstrates its plausibility. Based on this assumption,
the functional 𝐸 [𝜌] in Equation 3.17 can be written as:

𝐸 [𝜌] = 𝑇s [𝜌] + 𝐸H [𝜌] + 𝐸xc [𝜌] +
∫

𝑉ext (r)𝜌 (r)dr. (3.18)

Here, 𝜌 can be characterised by the orbital of the non-interacting electron
system, 𝑇s [𝜌] is the kinetic energy, 𝐸H [𝜌] is the electron-electron Coulomb
energy, 𝐸xc [𝜌] is the exchange-correlation energy and 𝑉ext is the external
potential for the interacting system, which are defined as:

𝜌 (r) =
𝑁∑︁
𝑖=1

𝜓 ∗
𝑖 (r)𝜓𝑖 (r)

𝑇s [𝜌] =
𝑁∑︁
𝑖=1

∫
𝜓 ∗
𝑖 (r)

(
−∇2

2

)
𝜓𝑖 (r)dr

𝐸H [𝜌] =
1
2

∬
𝜌 (r1)𝜌 (r2)
|r1 − r2 |

dr1dr2

𝐸xc [𝜌] = (𝑇 [𝜌] −𝑇s [𝜌]) + (𝐸ee [𝜌] − 𝐸H [𝜌])

(3.19)

𝐸xc [𝜌] corrects for unknown many-body interaction errors introduced by
replacing the kinetic energy 𝑇 [𝜌] and interaction energy 𝐸ee [𝜌] of the inter-
acting electron system with the kinetic energy 𝑇s [𝜌] and Coulomb potential
𝐸H [𝜌] of the non-interacting electron system, which contains the full range
of many-body effects beyond the HF approximation.

Applying the appropriate variational condition yields the one-electron Kohn-
Sham equation as:{

−
∇2

1
2 −

(
𝑀∑︁
𝐴=1

𝑍𝐴

r1A

)
+

∫
𝜌 (r2)
r12

dr2 +𝑉xc (r1)
}
𝜓𝑖 (r1) = 𝜀𝑖𝜓𝑖 (r1) (3.20)

In Equation 3.20, the exchange-correlation functional is presented by

𝑉xc (r) =
𝛿𝐸xc [𝜌]
𝛿𝜌 (r) . (3.21)
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The Kohn-Sham equations need to be solved iteratively and self-consistently
due to the dependence between the Hamiltonian, the charge density and the
orbital. The orbital𝜓𝑖 and the eigenvalue 𝜀𝑖 have no real physical meaning,
and the calculation of the total energy of the interacting electron system
requires a combination of Equations 3.18 and 3.20 [24, 26–28].

𝐸 =
∑︁
𝑖

𝜀𝑖 − 𝐸H [𝜌] + 𝐸xc [𝜌] −
∫

𝑉xc (r)𝜌 (r)dr (3.22)

3.3.3. Exchange Correlation Functionals

Theoretically, the Kohn-Sham equation is strictly accurate for the multi-
electron system, but the exact form of the exchange-correlation energy func-
tional 𝐸xc is still unknown. This functional can be so complex that it is difficult
to find an exact expression, and only some parametric approximations can
be made to it. Although the relevant theory of Kohn-Sham DFT theory
was proposed in 1965, it did not gain popularity until the 1980s, when the
exchange-correlation functional could be fitted by quantum Monte Carlo ap-
proaches. A major development in DFT theory has therefore been the search
for suitable forms of exchange-correlation functionals, which are graphically
classified by Jacob’s ladder proposed by Perdew and Karla [29], as shown in
Figure 3.2. This subsection gives a brief introduction to the commonly used
exchange-correlation functionals.

3.3.3.1. Local-Density Approximation

The Local Density Approximation (LDA) was first proposed by Kohn and
Sham [26] under the assumption of a homogeneous electron gas and is the
simplest exchange-correlation functional approximation. This approximation
suggests that when the spatial variation in electron density is sufficiently
slow, the exchange correlation energy is only related to the local electron
density and can be expressed as,

𝐸LDA
xc [𝜌] =

∫
𝜖LDA

xc (𝜌 (r))𝜌 (r)dr (3.23)

Here 𝜖xc is the exchange-correlation potential for the homogeneous electron
gas without parsed expression, and the parameters are generally fitted by
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Figure 3.2.: Jacob’s ladder diagram for the DFT theory. The higher order functionals contain
additional new information on top of the lower order ones: the LDA takes into account the
electron density, the GGA takes into account more density gradients, the meta-GGA takes into
account second order derivatives of the density, the fourth level takes into account the exact
exchange energy of the occupied state orbitals, while the fifth level takes into account the effect
of the unoccupied states.

Monte Carlo simulations. LDA is widely used in material science due to its
simple form and reasonable results. In general, LDA is relatively accurate for
solid rather than molecules and generally gives good structural and elastic
properties estimates. However, since the LDA treats the electron density as
the same in the system, it tends to overestimate the correlation energy and un-
derestimate the exchange energy. In addition, it has the following drawbacks:
overestimation of binding energies, underestimation of reaction activation en-
ergies, excessive preference for high spin structures, misestimation of phase
stability, etc.

3.3.3.2. Generalised Gradient Approximation

In general, LDA does not perform well in systems where the electron density
changes rapidly, so the easier way to improve it is to take the electron density
gradient into account. This expansion is referred to as Generalised Gradient
Approximation (GGA), and the expression is:

𝐸GGA
xc [𝜌] =

∫
𝜖GGA

xc (𝜌 (r),∇𝜌 (r))𝜌 (r)dr. (3.24)
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There are no analytic expressions for the exchange and correlation energy
in GGA, and there are currently two main schools of thought on how to
construct them: one school, represented by Becke, advocates the introduction
of a large number of parameters to obtain a more accurate functional [30]; the
other school, represented by Perdew, believes that the form of the functional
should follow the basic physical laws and pay more attention to the scalar
relationship and asymptotic behaviour[31]. Currently, the commonly used
GGA functionals are PBE [32], BLYP [33] and so on.

Compared with the LDA, the GGA functional contains an extra portion of
long-range correlations, which not only allows for a better description of
non-uniform charge density systems, but also provides a good correction for
the binding energy of the system. Therefore, the GGA functional generally
achieves a more accurate energy and structure. However, the GGA results
are not always more accurate than LDA and are even worse in some cases.
For example, the GGA functionals usually give lower bond energies. Both
LDA and GGA contain only electron density or density gradients instead of
the Kohn-Sham orbitals explicitly, hence they are also known as pure density
functionals[24, 34].

3.3.3.3. Hybrid Functionals

The exact exchange energy of the system is obtained with HF approximation.
Therefore, in order to improve the deficiencies of the LDA as well as the GGA
functional, the HF exchange energy has been mixed with the LDA/GGA in a
certain ratio to obtain a new functional called the hybrid functional with the
expression as:

𝐸xc =

∫ 1

0
d𝜆𝑈 𝜆

xc (3.25)

In hybrid functionals, the HF exchange potential is incorporated into the
exchange potential, and its calculation results are significantly improved com-
pared to the calculation results of GGA. After the most important exchange-
correlation hybrid functional B3LYP was proposed in 1994 [35, 36], the DFT
method quickly became popular. The B3LYP became a general method for the
computational study of various problems in physical chemistry. It employs
three parameters for the mixing of exchange-correlation energies and can be
expressed as,

𝐸B3LYP
xc = 𝑎𝐸HF

x + (1 − 𝑎)𝐸LSDA
x + 𝑏𝐸B88

x + 𝑐𝐸LYP
c + (1 − 𝑐)𝐸VWN

c (3.26)
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where 𝑎 = 0.2, 𝑏 = 0.72 and 𝑐 = 0.81. 𝐸B88
x is the Becke 88 exchange functional

with the generalised gradient approximation [30], 𝐸LYP
c is the Lee-Yang-Parr

correlation functional with the gradient term [33] and 𝐸VWN
c is the local

spin density approximation (LSDA, an unrestricted extension to LDA) to the
correlation functional from Vosko, Wilk and Nusair [37].

B3LYP is a semi-empirical hybrid functional, and the coefficients 𝑎, 𝑏 and 𝑐
are obtained by fitting to a large number of data such as atomisation energies,
electron and proton affinities, and ionisation energies. This functional is
mainly used in chemistry and performs well in describing the ground state
geometry and electronic structure of single molecules. However, it also has
many shortcomings, such as a decrease in calculation accuracy as the molec-
ular system increases, a significant underestimation of full reaction energies,
bond dissociation energies and isomerisation energies, and an unsatisfactory
estimation accuracy for the thermochemical properties of small and medium-
sized systems. By adjusting the ratio of HF exchange energy, different forms
of hybrid functionals can be obtained, such as PBE0 [38], HSE06 [39] and so
on. In this work, all DFT calculations applied B3LYP as exchange-correlation
functionals.

3.4. Density Functional Tight Binding

Compared to most wave function-based QM methods, DFT methods can
produce accurate results in solving many chemical problems while at the
same time significantly reducing computational costs. Nevertheless, the com-
putational speed of the DFT method is still not satisfactory when calculating
larger systems. To address this problem, semi-empirical and approximations
have been applied to QM methods, and semi-empirical wave function-based
QM methods, such as CNDO [40], MINDO [41] and PM3 [42] have been
derived. At the same time, density-functional tight-binding (DFTB) based
on DFT theory was also proposed, which can improve the computational
speed by 2–3 orders of magnitude with only a slight loss of accuracy [43,
44]. The tight-binding model is from solid-state physics, which assumes that
electrons are tightly bound to their nuclei and hence highly localised in space.
The electron density 𝜌 [r] can be defined by the combination of a reference
density 𝜌0 and its fluctuations as,

𝜌 (r) = 𝜌0 (r) + 𝛿𝜌 (r). (3.27)
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3.4. Density Functional Tight Binding

Adding the approximated electron density in the DFT total energy (Equa-
tion 3.22) with the additional nuclei–nuclei repulsive energy 𝐸NN yields the
total energy for DFTB as,

𝐸 [𝜌0 (r) + 𝛿𝜌 (r)] =∑︁
𝑖

〈
𝜓𝑖

����− ℏ2

2𝑚∇2 +𝑉eN +
∫ (𝜌0

1 + 𝛿𝜌1) (𝜌0
2 + 𝛿𝜌2)

|r1 − r2 |
dr2 +𝑉xc [𝜌0 + 𝛿𝜌]

����𝜓𝑖〉
− 1

2

∬ (𝜌0
1 + 𝛿𝜌1) (𝜌0

2 + 𝛿𝜌2)
|r1 − r2 |

dr1dr2

−
∫

𝑉xc [𝜌0 + 𝛿𝜌]
(
𝜌0 + 𝛿𝜌

)
dr + 𝐸xc [𝜌0 + 𝛿𝜌] + 𝐸NN.

(3.28)
Expanded in a Taylor series for the exchange-correlation energy, leading to
the following expression for the total energy [45]:

𝐸DFTB = − 1
2

∬
𝜌0

1𝜌
0
2

|𝑟1 − 𝑟2 |
dr1dr2 −

∫
𝑉xc [𝜌0]𝜌0dr + 𝐸xc [𝜌0] + 𝐸NN

+
∑︁
𝑖

〈
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����− ℏ2
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2

|r1 − r2 |
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����𝜓𝑖〉
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2

∬ (
1

|r1 − r2 |
+ 𝜕2𝐸xc [𝜌]

𝜕𝜌𝜕𝜌2

����
𝜌0

1,𝜌
0
2

)
𝛿𝜌1𝛿𝜌2dr1dr2

+ 1
6

∭
𝜕3𝐸xc [𝜌]
𝜕𝜌1𝜕𝜌2𝜕𝜌3

����
𝜌1,𝜌2,𝜌3

𝛿𝜌1𝛿𝜌2𝛿𝜌3dr1dr2dr3 + . . .

= 𝐸0 [
𝜌0] + 𝐸1 [

𝜌0, 𝜕𝜌
]
+ 𝐸2 [

𝜌0, (𝜕𝜌)2] + 𝐸3 [
𝜌0, (𝜕𝜌)3] + . . .

(3.29)

When only the first order term of the Taylor expansion is considered, the
standard DFTB is obtained, also known as the non-self-consistent DFTB. If
the second order term is further included, the DFTB2 is obtained, also called
Self-consistent charge density functional tight-binding (SCC–DFTB). If the
third order term is further included, the DFTB3 is obtained.

The first line of Equation 3.29 (𝐸0 [𝜌0]) contributes to the short-range two-
body repulsive energy 𝐸rep, which contains electron interactions, exchange-
correlation contribution and the nuclei-nuclei repulsive energy. In DFTB, this
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3. Quantum Chemistry

term depends on the reference density 𝜌0 and is usually approximated as a
sum of pairwise potentials,

𝐸0 ≈ 𝐸rep =
1
2

∑︁
𝑎𝑏,𝑎≠𝑏

𝑉
rep
𝑎𝑏

[
𝜌0
𝑎, 𝜌

0
𝑏
, 𝑟𝑎𝑏

]
(3.30)

The second line of Equation 3.29 (𝐸1 [𝜌0, 𝛿𝜌]) only depends on the reference
density and is obtained by an atomic orbital Hamiltonian. The total energy
of the standard DFTB approach can be written as,

𝐸DFTB1 [𝜌 (r)] =
∑︁
𝑖

𝜖𝑖 + 𝐸rep (3.31)

Since the standard DFTB method ignores the density fluctuation 𝛿𝜌 (r), it
cannot precisely describe systems with charge transfer. Therefore, it is often
applied for solid state physics, such as unpolar crystals.

The third line of Equation 3.29 (𝐸2 [𝜌0, (𝛿𝜌)2]) takes the charge fluctuation
into account. The energy of this term can be described by the sum of charge
fluctuations as,

𝐸2 ≈ 𝐸𝛾 =
1
2
∑︁
𝑎𝑏

𝛿𝑞𝑎𝛿𝑞𝑏𝛾𝑎𝑏 (3.32)

Here, 𝛿𝑞𝑎 = 𝑞𝑎−𝑞0
𝑎 indicates the net charge of atom 𝑎, defined as the Mulliken

charge. 𝛾 contributes to the second order approximation, which describes the
interaction between charge functionals.

Two cases need to be discussed for𝛾 : first, when two atoms 𝑎 and𝑏 have a long
distance, i.e. 𝑟𝑎𝑏 → ∞, 𝛾𝑎𝑏 describes the long distance Coulomb interaction
of partial charges 𝛿𝑞𝑎 and 𝛿𝑞𝑏 as 1/𝑟𝑎𝑏 ; second, for 𝑎 = 𝑏, i.e. 𝑟𝑎𝑏 → 0, 𝛾𝑎𝑎
indicates the on-site self-repulsion, and can be described by the Hubbard
parameter𝑈𝑎 [45]. 𝑈𝑎 is the twice hardness of an atom and related to the size
of the atom. The total energy of the DFTB2 approach can be written as,

𝐸DFTB2 [𝜌 (r)] =
∑︁
𝑖

𝜖𝑖 + 𝐸rep + 1
2
∑︁
𝑎𝑏

𝛿𝑞𝑎𝛿𝑞𝑏𝛾𝑎𝑏 . (3.33)

Since charge fluctuations have been introduced, DFTB2 is able to handle
polar systems, such as biomolecules. However, such an approach still has a
drawback due to the fixed atom size as well as the Hubbard parameter. In
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3.4. Density Functional Tight Binding

fact, the effective size of an atom varies as charge accumulates. To improve
the reliability of the calculation, additional corrections for𝑈𝑎 are required.

The fourth line of Equation 3.29 (𝐸3 [𝜌0, (𝛿𝜌)3]) introduces the derivative of
𝛾𝑎𝑏 with respect to the charge. Such Hubbard derivatives can be pre-calculated
and increase the calculation’s accuracy without paying additional time. The
energy of this term can be written as,

𝐸3 =
1
3
∑︁
𝑎𝑏

(𝛿𝑞𝑎)2 𝛿𝑞𝑏Γ𝑎𝑏 (3.34)

where,
if 𝑎 ≠ 𝑏, Γ𝑎𝑏 =

(
𝜕𝛾𝑎𝑏

𝑞𝑎

)
𝑞0
𝑎

=

(
𝜕𝛾𝑎𝑏

𝑈𝑎

𝜕𝑈𝑎

𝑞𝑎

)
𝑞0
𝑎

if 𝑎 ≠ 𝑏, Γ𝑏𝑎 =

(
𝜕𝛾𝑎𝑏

𝑞𝑏

)
𝑞0
𝑏

=

(
𝜕𝛾𝑎𝑏

𝑈𝑏

𝜕𝑈𝑏

𝑞𝑏

)
𝑞0
𝑏

if 𝑎 = 𝑏, Γ𝑎𝑎 =

(
𝜕𝛾𝑎𝑎

𝑞𝑎

)
𝑞0
𝑎

=

(
𝜕𝛾𝑎𝑎

𝑈𝑎

𝜕𝑈𝑎

𝑞𝑎

)
𝑞0
𝑎

.

(3.35)

The total energy of the DFTB3 approach is expressed as,

𝐸DFTB3 [𝜌 (r)] =
∑︁
𝑖

𝜖𝑖 + 𝐸rep + 1
2
∑︁
𝑎𝑏

𝛿𝑞𝑎𝛿𝑞𝑏𝛾𝑎𝑏 +
1
3
∑︁
𝑎𝑏

(𝛿𝑞𝑎)2 𝛿𝑞𝑏Γ𝑎𝑏 . (3.36)

With the introduction of the Hubbard derivatives term, DFTB3 now has the
ability to describe highly polar systems.
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After decades of development, the computational speed of quantum mechan-
ics approaches has improved considerably, but it still cannot tackle many
problems in molecular simulations, such as large biomolecular systems. In
fact, for biomacromolecular systems, a reaction typically takes nanoseconds
or even microseconds in real time, whereas existing QM methods can only
afford to perform calculations within a few nanoseconds (only for semi-
empirical methods). In addition, biomacromolecular systems often contain
more than 100,000 atoms, which also makes the computation extremely time-
consuming.

To compensate for the shortcomings of quantum mechanics, molecular me-
chanics (MM) methods applying empirical potential functions to describe the
interactions between particles have been proposed. The molecular mechanics
approach calculates the motion of individual particles in a system by the
classical Newtonian mechanics equations. Although the molecular force field
(FF) approach is not as accurate as the quantum mechanical approach, its
application in biomacromolecular systems is beyond the reach of the QM
approach.

4.1. Molecular Force Field

Molecular force fields are created by physical or chemical experiments, quan-
tum chemical calculations, or both, and include both bonding and non-
bonding interactions. Bonding interactions consist of bond length stretching
potentials, bond angle bending potentials, dihedral angle twisting potentials
and cross-interaction terms. The electrostatic interaction energy and van der
Waals interaction energy make up the non-bonding interactions.

𝐸total = 𝐸S + 𝐸B + 𝐸Tor + 𝐸cross + 𝐸vdw + 𝐸ele (4.1)
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4.1.1. Potential Functional Forms

The bond length stretching potential is described as energy changes due to
the stretching motion of the chemical bonds within a molecule along the bond
axis. It is usually described using the harmonic oscillator function (Hooke’s
law) as,

𝐸S =
1
2
∑︁
𝑖 𝑗

𝑘𝑏𝑖 𝑗

(
𝑟𝑖 𝑗 − 𝑟 0

𝑖 𝑗

)2
(4.2)

where 𝑘𝑏𝑖 𝑗 indicates the bond stretching elasticity constant, 𝑟𝑖 𝑗 is the distance
between atoms 𝑖 and 𝑗 , and 𝑟 0

𝑖 𝑗 is the equilibrium distance. The harmonic
oscillator function is the common functional form of the CHARMM [46]
and AMBER [47] force fields. However, when the bond length deviates
far from the equilibrium distance, the Morse potential function model is
necessary. Although such Morse potential function model is more accurate, it
is inevitablymore time consuming, and hence not suitable formacromolecules.
Nevertheless, the MM2 force field is developed based on such model, and
its successors MM3 and MM4 force fields, can be used effectively to obtain
reasonable results for organic small molecules [48–50].

The bond angles formed by three consecutive atoms in a molecule vibrate
around the equilibrium bond angle and can be described by Hooke’s law as,

𝐸B =
1
2
∑︁
𝑖 𝑗𝑘

𝑘𝑎
𝑖 𝑗𝑘

(
𝜃𝑖 𝑗𝑘 − 𝜃 0

𝑖 𝑗𝑘

)2
(4.3)

where 𝑘𝑎
𝑖 𝑗𝑘

indicates the bond angle bending constant, 𝜃𝑖 𝑗𝑘 is the bond angle
formed by atoms 𝑖 , 𝑗 and 𝑘 , 𝜃 0

𝑖 𝑗𝑘
is the equilibrium angle. Here, when the bond

angle deviates from the equilibrium angle by less than 10◦, the harmonic
oscillator model is reasonable. When the bond angle deviates beyond such
value, higher-order correction terms need to be introduced. For example,
the MM2 force field additionally contains a quartic term to improve the
accuracy [48].

The dihedral angle is formed by four successively bonded atoms in a molecule.
Dihedral angles are easily torsional and the Fourier series is commonly used
to describe rotational potentials:

𝐸Tor =
1
2

𝑁∑︁
𝑛𝑖 𝑗𝑘𝑙

𝑉𝑛

[
1 + cos

(
𝑛𝜔𝑖 𝑗𝑘𝑙 − 𝜔0

𝑖 𝑗𝑘𝑙

)]
(4.4)
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4.1. Molecular Force Field

where 𝑉𝑛 indicates torsional barrier height, 𝑛 is the multiplicity, 𝜔𝑖 𝑗𝑘𝑙 is the
dihedral angle, and the𝜔0

𝑖 𝑗𝑘𝑙
is the phase factor which determines the position

of the dihedral angle when it passes through its the minimum value.

In addition, when one of the three – bond length, bond angle and dihedral
angle – is changed, accordingly, the other two are affected, i.e. the stretching
potential energy of bond lengths, the bending potential energy of bond angles
and the twisting potential energy of dihedral angles within a molecule are
interconnected, and hence a so-called cross-interaction term needs to be
considered. For instance, in the case of interaction between angle bending
and dihedral twisting, the bend-torsion cross-interaction term is written as,

𝐸BT
cross =

𝑘BT
2 (𝜃 − 𝜃0) (1 − cos 3𝜔). (4.5)

For consecutive atoms bonding atoms 𝑖 , 𝑗 ,𝑘 , the change in bond length between
𝑖 and 𝑗 also affects the bond length between 𝑗 and 𝑘 , leading to the stretch-
stretch cross-interaction term as,

𝐸SS
cross =

𝑘BT
2 (𝑟𝑖 𝑗 − 𝑟𝑖 𝑗,0) (𝑟 𝑗𝑘 − 𝑟 𝑗𝑘,0). (4.6)

In fact, however, the introduction of cross-interaction terms is only necessary
in a very small number of cases to reproduce precise structural properties.
When dealing with macromolecular systems, these terms are usually ignored
in order to save the computational costs.

The interactions discussed above are all bonding interactions, and we will
now discuss non-bonding interactions, van der Waals (vdW) interactions
and electrostatic interactions. Van der Waals interactions do not have a
direct bonding connection and depend on the distance between two atoms.
When the two atoms are close together, the vdW interaction between the
two atoms is expressed as repulsion. When the two atoms are far apart, the
vdW interaction is expressed as an attraction as a result of the instantaneous
dipole moment or dispersion forces. The vdW interaction is usually described
using the Lennard-Jones (LJ) potential function as,

𝐸vdw = 4𝜀
[(𝜎
𝑟

)12
−

(𝜎
𝑟

)6
]

(4.7)

where 𝜀 refers to the potential well depth, 𝜎 is the distance at which the
particle-particle potential energy is zero (i.e. the sum of the vdW radii of
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two atoms), and 𝑟 is the distance between two interacting particles. The
attractive interaction varies as 𝑟−6 and the repulsive interaction varies as 𝑟−12

in the LJ potential function. This 6-12 potential is commonly used in AMBER
and CHARMM force field [46, 47], which are designed to deal with large
systems.

Electrostatic interactions are mainly obtained by the dipole moment method
and the point charge approach. In the dipole momentmethod, the electrostatic
interactions are described by calculating dipole-dipole interactions as,

𝐸ele =
𝜇𝑖 𝑗 𝜇𝑘𝑙

𝐷𝑟 3
𝑖 𝑗/𝑘𝑙

(
cos 𝜒 − 3 cos𝛼𝑖 𝑗 cos𝛼𝑘𝑙

)
. (4.8)

Here, 𝜇𝑖 𝑗 and 𝜇𝑘𝑙 represent the dipole moment of the bond between atoms 𝑖
and 𝑗 , and the bond between atoms 𝑘 and 𝑙 , respectively. 𝐷 is the effective
dielectric constant, 𝑟𝑖 𝑗/𝑘𝑙 is the distance between the centre of dipole moment
𝜇𝑖 𝑗 and 𝜇𝑘𝑙 , 𝜒 and 𝛼 are angles of the corresponding dipole moment.

In biomacromolecular systems, to save the computational costs, the point
charge approach is usually applied to calculate the electrostatic interactions
as,

𝐸coulomb =
∑︁
𝑖, 𝑗

𝑞𝑖𝑞 𝑗

𝐷𝑟𝑖 𝑗
(4.9)

where 𝑞𝑖 and 𝑞 𝑗 are net charges of atoms 𝑖 and 𝑗 .

Both two non-bonding interactions weaken with increasing distance between
the particles, such that the effect on the system can be ignored when a certain
distance is exceeded. Therefore, in order to save the computational costs,
vdW and electrostatic interactions are often set with a cut-off distance. And
the interactions between two atoms are neglected when their distance is
beyond the threshold.

4.1.2. Common Force Fields

The first molecular force fields for predicting molecular structure, vibrational
spectra and enthalpies of isolated molecules originated in the 1960s [51].
These force fields were mainly used for small organic molecules, and some
of them have continued to be developed and employed. The best examples
are the MM2, MM3, and MM4 force fields developed by Allinger et al [48–
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50]. With the development of molecular dynamics simulations, the scope
of molecular force field research has shifted to dealing with more complex
systems, and force fields have been developed to be more widely applicable.
The common force fields in molecular dynamics simulations and in recent
years are shown in Table 4.1.

Table 4.1.: Classical force fields and their applicable systems

Force Field Applicable System Ref.

AMBER proteins, DNAs [47, 52, 53]
CHARMM small molecules, macromolecules [46, 54]

CVFF small molecules, macromolecules [55, 56]
GROMOS biomolecules [57, 58]
MMX small molecules [48–50]
OPLS liquid [59, 60]

AMBER Force Field: The AMBER (Assisted model building with energy
refinement) force field is proposed by Kollman et al., and is a widely used force
field at present. This force field was initially only applicable for the study of
protein and nucleic acid systems, but after many years of development, the
AMBER force field, with the introduction of the GAFF (General Amber force
field) force field, is now also applicable to certain small molecule and polymer
systems. The parameters of this force field are derived from the comparison
of calculated and experimental values. The functional form of the AMBER
force field is,

𝑉 =
∑︁

bonds
𝑘𝑏 (𝑏 − 𝑏0)2 +

∑︁
angles

𝑘𝜃 (𝜃 − 𝜃0)2 +
∑︁

dihedrals

1
2𝑉0 [1 + cos (𝑛𝜑 − 𝜙0)]

+
∑︁
𝑖< 𝑗

(
𝐴𝑖 𝑗

𝑟 12
𝑖 𝑗

−
𝐵𝑖 𝑗

𝑟 6
𝑖 𝑗

)
+

∑︁
𝑖< 𝑗

𝑞𝑖𝑞 𝑗

𝜀𝑖 𝑗𝑟𝑖 𝑗
+

∑︁
H−bonds

(
𝐶𝑖 𝑗

𝑟 12
𝑖 𝑗

−
𝐷𝑖 𝑗

𝑟 10
𝑖 𝑗

)
.

(4.10)

CHARMM Force Field: The CHARMM (chemistry at Harvard macromolec-
ular mechanism) force field is suitable for calculations and simulations of a
wide range of properties, and it is supported by results from QM calculations
of the interactions between model compounds and water.

CVFF Force Field: The CVFF (consistent valence force field) series force
field was originally developed by Dauber et al. for biomolecular systems [55].
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Later on, the CVFF force field was developed to be applicable also to large
protein systems.

GROMOS Force Field: The GROMOS (Groningen Molecular Simulation)
force field is mainly used for molecular dynamics simulations in the GRO-
MACS software package. As a united-atom force field, it is suitable for a wide
range of chemical substances, from n-alkanes to biopolymers.

MMX Force Field: Molecular mechanic force field is developed by Allinger
et al. [48–50]. This series of force fields started out as the MM2 force field,
and later developed into the MM3 and MM4 force fields. The MMX force
field algorithm is complex (shown in Equation 4.11), as it subdivides some
common atomswith different force field parameters. MMX can also be applied
to simulate biomacromolecules, but it is time consuming.

𝑉 =
∑︁

𝐸S +
∑︁

𝐸B +
∑︁

𝐸Tor +
∑︁

𝐸OOP +
∑︁

𝐸SB

+
∑︁

𝐸vdW +
∑︁

𝐸𝜇 +
∑︁

𝐸ele.
(4.11)

OPLS Force Field: The OPLS (Optimized Potentials for Liquid Simulations)
force field is used to simulate the peptides and organic molecules, and contains
two kinds of force fields: the OPLS-AA as an all-atom force field and the
OPLS-UA as a united-atom force field. The bond-stretching and angle-bending
parameters of the OPLS-AA, are mainly adjusted based on the AMBER force
field and the torsional parameter is from ab initio calculations.

4.2. Molecular Dynamics

The essence of molecular dynamics (MD) simulations is to apply computer
calculations to describe the movement and interaction of atoms and molecules
in macromolecular systems by Newton’s second law of motion. With the
rapid development of computer science, the MD calculations are increasingly
used in biological systems. Currently, the MD calculations are applied to
study protein stability, protein folding, protein-ligand interactions, molecular
recognition and so on.

For a system, the total energy is the sum of the molecular kinetic and potential
energies of the 𝑁 particles that make up the system. Here, the total potential
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energy can be obtained by the position function 𝑉 (r1, r2, . . . , r𝑛) of each
particle inside the system.

The force on any atom 𝑖 in the system is its potential energy gradient:

®𝐹𝑖 = −∇𝑖𝑉 = −
(
®𝑖 𝜕
𝜕𝑥𝑖

+ ®𝑗 𝜕
𝜕𝑦𝑖

+ ®𝑘 𝜕

𝜕𝑧𝑖

)
(4.12)

From force, the acceleration ®𝑎𝑖 of atom 𝑖 can be determined by means of
Newton’s equation of motion and written as,

®𝑎𝑖 =
®𝐹𝑖
𝑚𝑖

. (4.13)

After a certain time 𝑡 , the velocity ®𝑣𝑖 and position ®𝑟𝑖 of atom 𝑖 can be obtained
by integrating over time 𝑡 as,

𝑑2

𝑑𝑡2 ®𝑟𝑖 =
𝑑

𝑑𝑡
®𝑣𝑖 = ®𝑎𝑖

®𝑣𝑖 = ®𝑣0
𝑖 + ®𝑎𝑖𝑡

®𝑟𝑖 = ®𝑟 0
𝑖 + ®𝑣0

𝑖 +
1
2 ®𝑎𝑖𝑡

2.

(4.14)

The superscript 0 represents the initial value of each physical quantity. By
making 𝑡 = 𝛿𝑡 , the positions and velocities of the individual atoms during the
simulation time are obtained by integrating over small stages with fixed time
𝛿𝑡 .

Finite difference techniques are common ways to solve Newton’s equations of
motion in MD simulations. The Verlet algorithm is one of the most commonly
used algorithms and the Taylor expansion of the particle positions is as
follows [61]:

r(𝑡 + 𝛿𝑡) = r(𝑡) + 𝛿𝑡v(𝑡) + 1
2𝛿𝑡

2a(𝑡) + 1
6𝛿𝑡

3b(𝑡) + 1
24𝛿𝑡

4c(𝑡) + · · ·

v(𝑡 + 𝛿𝑡) = v(𝑡) + 𝛿𝑡a(𝑡) + 1
2𝛿𝑡

2b(𝑡) + 1
6𝛿𝑡

3c(𝑡)+

a(𝑡 + 𝛿𝑡) = a(𝑡) + 𝛿𝑡b(𝑡) + 1
2𝛿𝑡

2c(𝑡) + · · ·

b(𝑡 + 𝛿𝑡) = b(𝑡) + 𝛿𝑡c(𝑡) + · · ·

(4.15)
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where v indicates the velocity, a is the acceleration, b is the third derivative
and so on. The Verlet algorithm can predict the position of an atom at the next
moment (𝑡 + 𝛿𝑡) based on its position at the previous moment (𝑡 − 𝛿𝑡, 𝑡):

r(𝑡 + 𝛿𝑡) = r(𝑡) + 𝛿𝑡v(𝑡) + 1
2𝛿𝑡

2a(𝑡) + · · · (4.16)

r(𝑡 − 𝛿𝑡) = r(𝑡) − 𝛿𝑡v(𝑡) + 1
2𝛿𝑡

2a(𝑡) − · · · (4.17)

The new position can be predicted by adding Equation 4.16 to Equation 4.17
as,

r(𝑡 + 𝛿𝑡) = 2r(𝑡) − r(𝑡 − 𝛿𝑡) + 𝛿𝑡2a(𝑡). (4.18)
The current velocity can be determined by subtracting Equation 4.17 from
Equation 4.16 as,

v(𝑡) = r(𝑡 + 𝛿𝑡) − r(𝑡 − 𝛿𝑡)
2𝛿𝑡 . (4.19)

Alternatively, the velocities can also be calculated at the half-step as,

v
(
𝑡 + 1

2𝛿𝑡
)
=

[r(𝑡 + 𝛿𝑡) − r(𝑡)]
𝛿𝑡

. (4.20)

The Verlet algorithm only needs to calculate the forces once for each step
of the motion and contains only two sets of coordinates, r(𝑡) and r(𝑡 − 𝛿𝑡),
and their corresponding accelerations, which does not take up much memory
resources. However, the Verlet algorithm lacks precision and does not include
explicit velocities.

The leap-frog algorithm is another algorithm derived from the Verlet algo-
rithm, which can be expressed as [62],

v
(
𝑡 + 1

2𝛿𝑡
)
= v

(
𝑡 − 1

2𝛿𝑡
)
+ 𝛿𝑡a(𝑡)

r(𝑡 + 𝛿𝑡) = r(𝑡) + 𝛿𝑡v
(
𝑡 + 1

2𝛿𝑡
) (4.21)

The leap-frog algorithm calculates the velocity v(𝑡 + 𝛿𝑡
2 ) from the velocity

v(𝑡 − 𝛿𝑡
2 ) with an acceleration a(𝑡), as shown the first line in Equation 4.21.

Then, the position r(𝑡 + 𝛿𝑡) is calculated by the position r(𝑡) and the velocity
v(𝑡 − 𝛿𝑡

2 ) obtained from the last step. The velocity at 𝑡 reads as,

v(𝑡) = 1
2

[
v

(
𝑡 + 1

2𝛿𝑡
)
+ v

(
𝑡 − 1

2𝛿𝑡
)]

(4.22)
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Compared to the Verlet algorithm, the leap-frog algorithm includes explicit
velocities. Besides, since only 𝑡 − 𝛿𝑡

2 and r(𝑡) require to be recorded during
calculations, the storage requirement is relatively low. In this work, the
leap-frog algorithm is applied for most of the MD simulations.

It is crucial to select an appropriate time step is crucial for MD simulations.
A suitable time step can ensure accuracy and save computational resources
on both hands. In fact, there is no fixed value for the setting of time steps
and we need to choose the appropriate value depending on the system and
the simulation conditions. In general, time steps are usually set less than one
tenth of the fastest period of motion in the system. For instance, if atoms in
the simulation have a period of motion of 0.1 ps, a time step should be set in
the femtosecond range. In the case of a water molecule, for example, which
has a maximum vibration frequency of about 1.08 × 1014 Hz, the proper time
step can be estimated as [24],

𝛿𝑡 ≤ 1
10𝑇 =

1
10 · 1

𝑣
= 0.9 × 10−15 s = 0.9 fs (4.23)

Appropriate time steps for different types of systems are illustrated in Ta-
ble 4.2 [24]:

Table 4.2.: Suggested time steps for various systems.

System Type of motion Time step (fs)

Atoms Translation 10
Rigid molecules Translation and rotation 5
Flexible molecules,
rigid bonds

Translation, rotation,
torsion 2

Flexible molecules,
flexible bonds

Translation, rotation,
torsion, vibration 1 or 0.5

In real life, each molecule can be considered as an individual unit in an infinite
environment. However, with the current algorithms and techniques, only
a limited number of molecules can be studied by computational chemistry,
which would not be able to accurately reveal the properties of the whole
system. To solve this problem, periodic boundary conditions (PBC) are taken
into account in MD simulations.
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4. Molecular Mechanics

Figure 4.1.: 2D representation of periodic boundary conditions applied to a cubic simulation box.
The velocity vector of each atom is indicated by an arrow and the simulation box is coloured
grey. 𝑟cut is the cut-off radius, which needs to be less than half the length of the simulation box.

Periodic boundary conditions employ the periodic replication of a small
number of molecules to model the effect of the surrounding environment on
the system. As shown in Figure 4.1, there are 8 periodic image cells around the
simulation box in a two-dimensional system, and 26 in a three-dimensional
system. The coordinates for replicated atoms in each image cells are taken
from corresponding atoms in the simulation box. Therefore, when a particle
leaves the simulation box and enters into an image cell, its replicated atom
will come to the simulation box from the image cell on the other side with
the same velocity.

The long-range electrostatic interactions need to be carefully considered
when applying periodic boundary conditions. For a system containing 𝑁
atoms, the total electrostatic potential under the PBC conditions reads as,

𝑉 =
𝑓

2
∑︁
𝑛𝑥

∑︁
𝑛𝑦

∑︁
𝑛𝑧

𝑁∑︁
𝑖

𝑁∑︁
𝑗

𝑞𝑖𝑞 𝑗

𝑟𝑖 𝑗,𝑛
. (4.24)
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To save computational cost while maintaining a certain accuracy, several
approaches for the long-range electrostatic interactions have been proposed,
such as the particle-Mesh-Ewald (PME) method used in this work [63].

In general, periodic boundary conditions come in a variety of shapes, such
as cubes, hexagonal columns, truncated octahedra and so on. The cubic box
is the simplest simulation box among these periodic boundary conditions.
When choosing a periodic boundary condition, the appropriate shape needs
to be considered depending on the type of simulation system.

For biomacromolecules, the computational cost for long-range interactions
between particles will remarkably increase as the number of particles in-
creases. To solve this issue and to enhance the calculation speed, the cut-off
radius approach needs to be introduced. That is, when the distance between
two particles exceeds the cut-off radius, van der Waals interactions as well as
electrostatic interactions between them will be ignored. Note that, van der
Waals interactions and electrostatic interactions have different cut-off radii,
due to their different attenuation with distance. Van der Waals interactions
are proportional to the 𝑟−6, whereas electrostatic interactions are proportional
to the 𝑟−1. The decay of the electrostatic interaction with increasing distance
is therefore weaker than the van der Waals interaction, and its cut-off radius
is longer. The radius of cut-off for van der Waals interactions is typically
10-12 Å, while for electrostatic interactions, the radius of cut-off is typically
more than 16 Å.

The concept of ensemble is introduced to describe the thermodynamic charac-
teristics of MD simulation systems. In general, an ensemble is a collection of
particles in systems with the same conditions, such as the number of particles
𝑁 , the volume𝑉 , the total energy 𝐸, the temperature𝑇 , the pressure 𝑃 and so
on. To easily compared the simulation result and experimental result with a
certain temperature and pressure, in MD simulations, commonly used ensem-
bles include the canonical ensemble (NVT) as well as the isothermal–isobaric
ensemble (NPT).

The NVT ensemble has a fixed temperature, system volume as well as number
of particles. Here, the temperature is controlled by a thermostat to regulate
velocities. The common used thermostats include Berendsen thermostat [64],
Nosé–Hoover thermostat [65], V-rescale thermostat [66], etc. The NPT en-
semble allows the change of the system volume during the simulation, while
keeping the number of particles, pressure and temperature constant. The
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pressure is coupled by control barostats, such as the Parinello-Rahman baro-
stat [67].

4.3. Free Energy Calculations

Free energy, one of the most important quantities in thermodynamics, is
crucial in the study of receptor-ligand interactions. Thanks to the rapidly
developed computer science, molecular dynamics simulations allow us to
accurately predict the binding free energy, and hence to better understand
the function and structure of proteins. The free energy can be expressed by
the Helmholtz function, 𝐴, as well as the Gibbs function, 𝐺 . The former one
is suitable for the NVT system, while the latter one is appropriate for the
NPT system. Since most laboratory experiments are carried out at constant
temperature and pressure, it is more reasonable to compute the Gibbs free
energy in MD simulations.

As introduced in section 4.2, in a MD simulation, the states of the system at
each time step are calculated and can be recorded, resulting in a collection of
states of the system relevant to the moment of the simulation, which is called
as trajectory. Consider a simulation in which the molecule has “sufficiently”
often visited two states 𝐴 and 𝐵. The free energy difference between 𝐴 and
𝐵 can be obtained by counting the number of both states, 𝑄 (𝐴) and 𝑄 (𝐵),
as [24],

Δ𝐺 = 𝐺𝐵 −𝐺𝐴 = −𝑅𝑇 ln 𝑄 (𝐵)
𝑄 (𝐴) (4.25)

where 𝑅 is the gas constant, 𝑇 is the absolute temperature.

However, this “sufficient” is almost impossible to achieve in the standard MD
simulation. Despite the rapid advances in computer science, standard MD
methods are currently still limited by timescales. For instance, for biomacro-
molecules, only simulations within a few microseconds are affordable. Since
biomolecules usually involve large molecular weights, their interactions with
ligands may happen on the order of milliseconds or even seconds. To obtain
the full course of protein-ligand interactions on the atomic scale is computa-
tionally intensive.

To further extend the application of MD simulations and to solve the timescale
problems, a large number of enhanced sampling methods have been proposed.
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The common enhanced sampling methods fall into the following two main
categories: those based on ensemble variables, such as umbrella sampling [68]
and metadynamics [69], which sample and simulate with collective variables
(CVs); and those that do not depend on reaction coordinates, such as replica-
exchange molecular dynamics method [70]. In this work, metadynamics is
employed and will be briefly introduced in the next section.

4.3.1. Metadynamics

Figure 4.2.: Schematic view of of metadynamics with a single CV. The free energy landscape
(blue solid curve) is calculated by the sum of deposited Gaussian kernels (green dot curve).

In metadynamics (MetaD), an external history-dependent bias potential is
added along with the CVs (®𝑠 (𝑞)) to fill the free energy surface (FES) of the
system, thereby generally increasing the system Hamiltonian to achieve
enhanced sampling. As shown in Fig. 4.2, when the local minima of the FES
is filled by the bias potential, the system will cross the lowest free energy
saddle point nearby and escape from the free energy “valleys”. This allows
metadynamics not only to efficiently calculate free energies, but also to
explore new reaction paths and accelerate rare events. During the simulation,
the external bias potential is achieved by adding Gaussian shape kernels step
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by step, and the free energy can be obtained from the negative bias potential
𝑉 (®𝑠, 𝑡) as,

𝑉 (®𝑠, 𝑡) =
∑︁
𝑘𝜏<𝑡

𝑊 (𝑘𝜏) exp
(
−

𝑑∑︁
𝑖=1

(𝑠𝑖 − 𝑠𝑖 (𝑞(𝑘𝜏)))2

2𝜎2
𝑖

)
(4.26)

Here, ®𝑠 is the CV, 𝑡 is the simulation time, 𝑊 (𝑘𝜏) denotes the height of
Gaussian kernels with the time of last bias deposition (𝑘𝜏), 𝑠𝑖 indicates the 𝑖th
CV, and 𝜎𝑖 gives the width of Gaussian kernels. As convergence is reached
after a long simulation time, the free energy along the CV space can be written
as,

𝐹 (®𝑠) = −𝑉 (®𝑠, 𝑡 → ∞) +𝐶 (4.27)

Since the height of Gaussian kernel is constant, the standard metadynamics
faces the problem that a large Gaussian height, i.e. fast Gaussian deposition
rate, will yield a large average error, which is proportional to the square root
of the bias potential deposition rate, while a small Gaussian height will make
the simulation take more time to fill the FES (Fig. 4.3). To solve this problem,
the well-tempered metadynamics (wt-MetaD) was developed by Parrinello et
al [71].

Figure 4.3.: Comparison of Gaussian bias deposition rate ¤𝑉 between standard MetaD and wt-
MetaD with time. The wt-MetaD deposits bias fast at the beginning and slow till the convergence,
which can improve the accuracy while keeping the computation speed.
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The well-tempered metadynamics employs the Gaussian kernel with variable
height. The height of the Gaussian kernels decrease as the times of revisiting
the same configuration increase as,

𝑊 (𝑘𝜏) =𝑊0 exp
(
−𝑉 (®𝑠 (𝑞(𝑘𝜏)), 𝑘𝜏)

𝑘𝐵Δ𝑇

)
(4.28)

Here,𝑊0 is the initial Guassian height, Δ𝑇 is the energy related to the CV
space exploration. The free energy along the CV space reads as,

𝐹 (®𝑠) = −𝑇 + Δ𝑇

Δ𝑇
𝑉 (®𝑠, 𝑡 → ∞) +𝐶 (4.29)

where 𝑇 is the temperature of the system, 𝑇+Δ𝑇Δ𝑇 indicates the bias factor 𝛾 ,
which needs to be carefully chosen based on relevant free-energy barriers to
be crossed in the simulation. Note that, the Δ𝑇 = 0 corresponds to standard
MD simulation and Δ𝑇 → ∞ corresponds to standard metadynamics.

Unfortunately, wt-MetaD still fails to deal with the ligand binding process in
most cases of biomacromolecular systems. In fact, if there are no restrains
for the ligand coordinates, once it leaves the binding pocket, it will sample
all the possible solvated states. The solvated states contain a vast part of the
configuration space that cannot be sampled within a limited simulation time,
and hence the ligand will barely come back leading to a failure of sufficiently
sampling the important binding states.

To overcome these issues arising in the binding of protein ligands, the funnel
metadynamics (FM) approach was further proposed based on the metadynam-
ics [72, 73]. In the FM, as shown in Fig. 4.4, the ligand position is restrained
by a funnel shaped restraint potential. As the ligand is close to the binding
site, it will be fully sampled within the conical part restraint. When the
ligand is at a unbound state, it is constrained within the cylinderic part with
smaller space, resulting in enhanced sampling. There is no repulsive bias
when the ligand explores configurations inside the funnel restraint, whereas
a repulsive bias will be applied to the system if the ligand moves to the edge
of the restraint, which discourages the ligand from exploring the area outside.
With the introduced repulsive bias potential, the binding constant 𝐾b can be
expressed as,

𝐾b = 𝐶0𝜋𝑅2
cyl

∫
site

𝑑𝑧𝑒−𝛽 [𝑊 (𝑧)−𝑊 (ref) ] (4.30)
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Figure 4.4.: Schematic view of protein-ligand binding process and the funnel-shaped restraint in
funnel metadynamics.

where 𝐶0 = 1/1, 660 Å−3 is the standard concentration, 𝑅cyl is the radius
of the cylinder restraint, 𝛽 is the reverse of Boltzmann constant 𝑘B times
system temperature 𝑇 ,𝑊 (𝑧) is the potential along the 𝑧-axis and𝑊 (ref) is
the potential in the unbound state derived from the potential of mean force
(PMF).

4.3.2. Alchemical Calculation

In enhanced sampling approaches, the simulations are performed with a
fixed charge model. Therefore, in the case of protein-ligand binding process,
computing the free energy with a fixed charge model may lead to inaccurate
results if the polarity of the binding pocket differs significantly from that of
the solvent. To overcome this issue, alchemical free energy calculations need
to be applied. In alchemical calculations, several non-physical intermediate
states (𝜆𝑖 , 𝑖 = 1, 2, 3 . . .) are inserted between the known initial state A (𝜆 = 0)
and end state B (𝜆 = 1). The chemical properties of parts of the system in these
intermediate states are modified by the potential, leading to the change of
interactions between the selected part and its environment [74]. The system
Hamiltonian varies from 𝐻𝐴 to 𝐻𝐵 as the coupling parameter 𝜆 increases
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from 0 to 1, and each term of the force field for the intermediate state 𝜆𝑖 can
be written as [24],

𝑋 (𝜆𝑖 ) = 𝜆𝑖𝑋 (B) + (1 − 𝜆𝑖 )𝑋 (A) (4.31)

Here, 𝑋 represents 𝑘𝑏𝑖 𝑗 and 𝑟 0
𝑖 𝑗 in Equation 4.2, 𝑘𝑎

𝑖 𝑗𝑘
and 𝜃 0

𝑖 𝑗𝑙
in Equation 4.3,

𝑉𝑛 in Equation 4.4, 𝜖 and 𝜎 in Equation 4.7 and 𝑞𝑖 in Equation 4.9.

During the calculation, for each intermediate state 𝜆𝑖 , the system is firstly
equilibrated with corresponding FF parameters from Equation 4.31. After-
wards, the free energy difference Δ𝐺 from intermediate state 𝑖 to state 𝑖 + 1 is
counted by

Δ𝐺 (𝜆𝑖 → 𝜆𝑖+1) = −𝑘B𝑇 ln
〈
exp

(
−Δ𝐻𝑖

𝑘B𝑇

)〉
Δ𝐻𝑖 = 𝐻𝑖+1 − 𝐻𝑖

(4.32)

The total free energy between state A and state B is the sum of these free
energy changes and such protocol is known as free energy perturbation (FEP)
method.

4.4. Quantum Mechanics/Molecular Mechanics
Simulation

In the previous section, both quantum mechanics and molecular mechanics
have been briefly introduced and discussed. However, for biomacromolecular
system, bothmethods are unlikely to reveal the chemical reactions because the
QM approach can not afford for such large systems and the MM method does
not consider changes in the electronic structure. Therefore, a combination
method containing both QM and MM approaches has been proposed, which
is known as Quantum Mechanics/Molecular Mechanics (QM/MM) method.

The combined QM/MMmethod is a method for calculating chemical reactions
in the liquid phase. The reaction part of the system is calculated by quantum
mechanical methods and the rest by force field-based simulation. The total
energy of the system reads as,

𝐸TOT = 𝐸QM + 𝐸MM + 𝐸QM/MM (4.33)
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where 𝐸QM is the energy obtained by QM methods, 𝐸MM is the energy from
MM approach. 𝐸QM/MM is the interaction energy between the QM and MM
part of the system. In the case of no chemical bonds between QM and MM
parts, 𝐸QM/MM includes only non-bonding interactions between QM atoms
and MM atoms. The Hamiltonian 𝐻QM/MM can be expressed as,

𝐻QM/MM = −
∑︁
𝑖

∑︁
𝑀

𝑞𝑀

𝑟𝑖,𝑀
+

∑︁
𝛼

∑︁
𝑀

𝑍𝛼𝑞𝑀

𝑅𝑖,𝑀
+

∑︁
𝛼

∑︁
𝑀

(
𝐴𝛼,𝑀

𝑅12
𝛼,𝑀

− 𝐶𝛼,𝑀

𝑅6
𝛼,𝑀

)
(4.34)

Here, 𝑖 represents a QM electron and 𝛼 is a QM nucleus. 𝑀 refers to a MM
nucleus and 𝑞 indicates its net atomic charge. Hence, the interaction between
QM and MM region contains electrostatic interactions between QM electrons
and MM nuclei, electrostatic interactions between QM nuclei and MM nuclei
and vdW interactions between QM atoms and MM atoms. The last two terms
of Equation 4.34 do not involve the electron coordinates, and thus can be
directly calculated. In the first term, QM calculations need to be included by
adding one-electron integrals to the one-electron matrix as,∫

𝜙𝜇 (1)
1
𝑟1,𝑀

𝜙𝑣 (1)𝑑𝑣 (1) (4.35)

In proteins, chemical bonds existing between the QM and MM regions and
boundary bonds need to be carefully considered. Cutting the QM/MM bond
results in the formation of unpaired electrons in the QM region, and the most
common solution to the loss of electrons in the QM region due to truncation
is to introduce an single bonded H atom in the QM region. This bonded H
atom is called as cap atom and is only added to the QM calculation. Note that,
it is important to choose a proper boundaries in the simulation, as a too large
QM region will reduce the efficiency of the calculation, while a small QM
region will lead to artificial risks being introduced into the calculation.
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Machine learning, in a broad sense, is making machines have the capacity to
learn like humans, and then be more intelligent to complete tasks that are
impossible to do with direct programming. In practical production terms, ma-
chine learning is about training based on big data, building models, and then
using these models to predict new data. With the development of machine
learning algorithms and improvements in hardware, machine learning has
been integrated into quantum chemistry research in recent years [75–78].
Under certain conditions (e.g. good training data and machine learning algo-
rithms), since there is no need to solve the Schrödinger equation, machine
learning can predict the desired quantum chemical properties without loss
of accuracy and at a computational speed comparable to that of molecular
mechanics methods.

5.1. Supervised learning

Machine learning techniques can be divided into three types: supervised
learning, unsupervised learning and reinforcement learning. In supervised
learning, it can be classified into the classification process and regression
process. The former is performed by labelling and training existing data
samples, feature analysis to identify certain types of objects, and then clas-
sification. The main difference between classification and regression is the
type of output data, usually called labels. If the type of label is qualitative,
the process is called classification, which is also known as discrete variable
prediction. While if the type of label is quantitative, the process is called
regression, which is also known as continuous variable prediction.

Unsupervised learning refers to methods where the input is only sample
data without labels and the network model actively explores the information
contained in the data during the training process. Reinforcement learning is

51



5. Machine Learning

the process of feeding unlabelled data into a network and then continuously
adjusting the direction of learning by feeding back the results of training to
the network model, repeating the process until the network model converges.
In general, supervised learning is the main focus in machine learning, with
unsupervised learning as a supplement.

5.2. Overfitting and Underfitting

An important topic in machine learning is the generalisation ability of the
model. The stronger the generalisation ability of the model, the better the
model. If a trained model performs poorly in the training set, it will also
perform poorly in the test set, which may be due to underfitting; if the model
performs very well in the training set, but poorly in the test set, this is a result
of overfitting.

Overfitting and underfitting can be explained in terms of bias and variance,
with underfitting leading to high bias and overfitting leading to high variance,
hence the need for the model to make a trade-off between bias and variance.
Specifically, when a simple model is used to fit complex data, it can be difficult
to fit the model to the true distribution of the data, and underfitting occurs.
In this case, there is a large bias, which indicates the difference between the
expected output of the model and its true output. In some cases, the model is
over-training to get a more accurate model, or the noise in the training data is
fitted as the model is too complex, resulting in a model that works very well
on the training set but performs poorly in test set, in which case overfitting
happens. At this point, there is a large variance, which portrays the difference
between the output of the models obtained from different training sets and
the expected output of these models.

In fact, as the model training proceeds, the complexity of the model increases
and the training error of themodel on the training data set gradually decreases.
However, at a certain level of model complexity, the error of the model on
the validation set increases as the complexity of the model increases. To
prevent overfitting, several methods are used, such as Early Stopping [79],
Data augmentation [80], Dropout [81], and so on. In this work, the Early
Stopping is employed and will be briefly introduced in the following.
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Figure 5.1.: Schematic view of overfitting, underfitting and proper fitting.

The process of training the model is the process of learning and updating the
parameters of this model, and this parameter learning process often applies
some iterative methods, such as the Gradient descent learning algorithm.
Early stopping is a method of truncating the number of iterations to prevent
overfitting, i.e. stopping the model before it converges on the training data
set. The early stopping approach is to calculate the accuracy of the validation
data at the end of each Epoch (an Epoch is a round of traversal of all the
training data) and to stop training when the accuracy is no longer improving.
Since accuracy does not decrease continuously in practice, it is not possible
to judge that it is no longer improving based on one or two consecutive
decreases. The general approach is to record the best validation accuracy to
date during the training process, and to assume that accuracy is no longer
improving when the best accuracy is not achieved for 10 consecutive Epochs
(or more). At this point the iteration can be stopped (Early Stopping).

5.3. Neural Networks

Artificial neural networks (ANNs) are mathematical models that simulate the
neuronal structure of a living creature’s brain, using the structure of synaptic
connections in biological neural networks to perform calculations on the input
data [82]. In addition, ANNs can analyse and identify the acquired patterns
through feature extraction and function fitting, and are used to solve problems
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such as classification or regression. ANNs work by extracting features from
a large amount of data to analyse the patterns in the images and ultimately
make decisions about new data based on the patterns acquired. This process
of analysing and learning patterns is known as “training”, after which the
artificial neural network is capable of making autonomous judgements and
decisions.

For a single neuron (called as perceptron in ANN), a set of training samples
(𝑥 (𝑖) , 𝑦 (𝑖) ) provided, where 𝑥 represents the input, 𝑦 represents the corre-
sponding label value and 𝑖 represents the 𝑖-th sample. The neural network
algorithm can be represented as a non-linear complex function ℎ𝑊,𝑏 (𝑥) to fit
a functional relationship between 𝑥 and 𝑦, where𝑊 and 𝑏 are the parameters
of the functional model.

ℎ𝑊,𝑏 (𝑥) = 𝑓 (𝑊𝑇𝑥) = 𝑓 (
𝑛∑︁
𝑖=1

𝑊𝑖𝑥𝑖 + 𝑏) (5.1)

Here, 𝑓 is called as activation function, which traditionally includes the Tanh
or Sigmoid functions.

Figure 5.2.: Schematic view of ANN structure with two hidden layers.

For larger ANNs, as shown in Fig. 5.2, it contains one input layer, one output
layer and one or more hidden layers. For two adjacent hidden layers, the
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outputs of neurons from the layer closer to the input layer give the inputs
for the layer closer to the output layer, where the former hidden layer is also
referred to as lower layer and the latter as upper layer. The layers are arranged
in order of signal transmission, with neurons in layer 𝑖 only receiving signals
given by neurons in layer (𝑖 − 1), without feedback between neurons.

Artificial neural networks reduce the error loss by forward pass and back
propagation algorithms, and the process is repeated several times until the
network converges. Specifically, when the signal is propagated forward, the
input samples are passed in from the input layer, processed layer by layer
by the hidden layer, and then passed to the output layer. If the actual output
of the output layer does not match the desired output, it will move to the
back-propagation stage of the error. Here the output error is back propagated
in some form through the hidden layer to the input layer, and the error is
apportioned to all neurons in each layer, so that the error signal of each neuron
is obtained, and this error signal is taken to adjust the weights of each neuron.
This process is carried out circumferentially. The constant adjustment of the
weights is the learning and training process of the network.
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6. Unravelling the mechanism of
Host-Guest Chemistry

Supramolecular chemistry is the chemistry of molecular aggregates based
on non-covalent interactions between molecules. It focuses on the weak
interactions between molecules with non-covalent bonds such as hydrogen
bonds, ligand bonds, hydrophilic/hydrophobic interactions and the assembly,
structure and function ofmolecular aggregates resulting from their synergistic
interactions. The understanding of supramolecules dates back to the middle
of the 20th century, in particular to the synthesis of macrocyclic molecules
(crown ethers, cavity ligands, etc.) by Pedersen and his coworkers, whichwere
able to selectively bind specific ions and small organic molecules based on non-
covalent bonding interactions as well as the ring size [83]. This innovation
in host and guest chemistry was awarded the Nobel Prize in Chemistry in
1987 [84]. Later, Lehn et al. designed three-dimensional congeners of crown-
ethers, the macrobicyclic cryptands, which have larger association constants
corresponding to a higher selectivity to the alkaline metals [85]. Based on
these findings, in the past few decades, the rapid development of larger
host molecules or supramolecular capsules has been witnessed, which can
accommodate larger guests or molecular cations and hence reveal biochemical
recognition events [86].
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6.1. Truncated Tetrahedral [4+4] Imine Cages with
Ammonium Ions

In parts reprinted with permission from Lauer, Jochen C. and Pang,
Ziwei and Janßen, Paul and Rominger, Frank and Kirschbaum, Tobias

and Elstner, Marcus and Mastalerz, Michael.
Host-Guest Chemistry of Truncated Tetrahedral Imine Cages with

Ammonium Ions. ChemistryOpen, 9(2), pp.183-190.
DOI: https://doi.org/10.1002/open.201900357

6.1.1. Introduction

In this work, Lauer et al. experimentally investigated the host-guest binding
of ammonium ions, NEt4+ and NMe4+, by shape-persistent [4+4] imine cages
(Fig. 6.1) with a truncated tetrahedral geometry [87], and we subsequently
revealed the mechanism of ammonium uptake through standard molecular
dynamics simulations as well as metadynamics. The structure of the three
[4+4] imine cages share the same main frames but have different window
sizes due to various long substituents on the 1,3,5-triformylbenzene [87].

Figure 6.1.: Schematic view of a). 3-H, b). 3-Me and c). 3-Et imine cages and from standard MD
simulations. The positions 2, 4 and 6 on 1,3,5-triformylbenzene are substituted with methyl and
ethyl for 3-Me and 3-Et, respectively. The carbon atoms are coloured grey, nitrogen atoms ice
blue and hydrogen atoms white.

As shown in Fig. 6.2, since there is no substituent on the 1,3,5-triformylbenzene
of 3-H cage, the 3-H [4+4] imine cage has the largest window size of 49.7 Å2

and cavity volume size of 337 Å3. With methyl substituents, the window
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size of 3-Me cages significantly reduces to 28.4 Å2 and volume to 253 Å3.
The 3-Et cage has the smallest window size of 24.1 Å2 and volume of 218 Å3.
The volume of ammonium ion NEt4+ is 163 Å3 and NMe4+ is 95 Å3 [88]. To
investigate ammonium ions uptake process, the activation energy of guest
dissociation were firstly estimated based on nuclear magnetic resonance
(NMR) results. However, underestimated results were produced according to
the reaction time during experiments. For instance, for 3-H cages, it took a
day for the guests to leave the cage completely, indicating a energy barrier
over 80 kJ/mol based on the Arrhenius Equation, whereas the NMR results
gave only 34 kJ/mol. Furthermore, the process of the guest leaving from the
cage cavity could not be observed from laboratory experiments. Hence, in
this work, we performed a set of MD simulations as well as metadynamics
calculations to reveal the full extent of the guest’s uptake process.

6.1.2. Computational details

6.1.2.1. Initial Structural Model

Models of all cage structures, as well as cationic ligands NEt4+ and NMe4+,
were constructed with xLeap tool from the AmberTools package [89] em-
ploying the general Amber force field (GAFF) [47, 90]. The atomic charge
of models was calculated by the Hartree-Fock method using GAUSSIAN09
with 6-31G* basis set [91]. The force field parameters of the solvent molecule
dichloromethane and the Cl– counter ions were also selected from the GAFF.
Different cage structures with corresponding cationic ligands were separately
settled in a 5×5×5 Å3 simulation box with periodic boundary conditions. Af-
terwards, dichloromethane molecules were inserted into the box, and one of
those solvent molecules were subsequently replaced by the Cl– to achieve
electroneutrality. A total of 6 systems were set up and each of them com-
prised ca. 4,000 atoms, which contained one cage molecule, one cationic
ligand molecule, ca. 750 dichloromethane molecules and one counter ions.

6.1.2.2. All-atom MD Simulations

All the systems first underwent steepest descents energy minimisation and
2 ns NVT simulation at 298 K in sequence. Afterwards, a 2 ns NPT simulation
was performed at 298 K and 1 bar with the Berendsen barostat [64] and was
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Figure 6.2.: a). Window size of [4+4] imine cages. The size was estimated by horizontal distance
between the atom centres of two closest carbon atoms multiplied by vertical distance between
the atom centres of two closest carbon atoms. b). Cavity volume of imine cages. c). Volume of
NEt4+ and NMe4+. The volume was calculated via SwissPDBViewer by Dr. Jochen Lauer.

followed by 2 ns further NPT simulation with Parrinello-Rahman barostat [67]
under the same thermodynamic conditions. Then, to further stabilise the
system and to collect optimised structure, we performed 100 ns MD simu-
lations for each system. In order to increase the accuracy, two groups (one
comprised the cages molecule, the other one contained the ligand, solvent
and counter ions) were set for temperature coupling in all simulations.
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6.1.2.3. Free Energy Simulations

The free energies of the centre-of-mass distance between the cage and its
corresponding cationic ligands were calculated with classical well-tempered
metadynamics simulations [71]. The initial structure was taken from the
100 ns MD simulations for each system. The Gaussian bias potential was
initially set with height = 0.5 kJ/mol, width 𝜎 = 0.2 Å, and was deposited
each picosecond. Since the higher energy barriers to be crossed for the
cage with the NEt4+, for those who have NEt4+, the bias factor was 100, and
for systems with NMe4+, the bias factor was 50. To enhance the sampling
efficiency, based on the estimation of the cage radius (r ≈ 4.5 Å), the ligand
was restricted to move within 7 Å from the mass centre of the cage. According
to the experiments, we never saw the counter ions BF4 – enter into the cage,
the counter ions Cl– was restrained from moving 5 Å away from the cage
centre. The initial systems were set up with GROMACS in version 4.6.7,
and the following all-atom simulations were performed with GROMACS
in version 2018.3. [92–94] The well-tempered metadynamics simulations
were performed and analysed via GROMACS 2018.3 interfaced with the
Plumed 2.5.1 package [95]. Molecular structures were visualised with VMD
1.9.2 [96].

6.1.3. Results and Discussion

There are two different mechanisms for the uptake process of the ammonium
ions [97]. One possibility is a door-opening mechanism, whereby one or
more imine bonds undergo reversible bond cleavage to “open the lid” of
the cage, allowing the guest ion to be encapsulated without or with low
energy barriers, followed by the reformation of the imine bonds to close the
cage. This mechanism has been proven for an imine based hemicarcerand
by Ro et al. [98]. The second possibility is a squeezing mechanism where
the cage remains intact, and the guest is squeezed through the window
into the cavity without bond breaking and reforming. It is proposed to be
one of the most likely mechanisms for absorbing guest ions by tetrahedral
metalcatecholate cages. Note that, under the squeezing mechanism, even
excessively large guest ions, such as CoCp∗+

2 , which need to cross the energy
barrier of 251 kJ/mol, seem to be able to enter the host cavity [99]. As the
kinetic uptake of the same ammonium ions was found to vary considerably
in the experiments depending on the size of the cage window, it can be
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assumed that the squeezing mechanism is more likely than the door-opening
mechanism.

Activation energies Δ𝐺‡ from NMR estimations as well as MetaD simulations
are illustrated in Table 6.1. The MetaD results show that the larger the guest
volume, the higher the activation energy for the same imine cage. In contrast,
this trend could not be demonstrated in the NMR results for two reasons:
firstly, no binding was found for both NEt4+⊂3-Et and NMe4+⊂3-Et; second,
the larger activation energy for smaller guest was presented in the 3-Me
cage, which is contrary to the pattern we found in the MetaD simulations.
Besides, as discussed in section 6.1.1, underestimated activation energies
were obtained via NMR estimation. Hence, it seems like activation energies
calculated from NMR is not suitable in our case.

Table 6.1.: Activation energy Δ𝐺‡ (kJ/mol) from NMR and MetaD

Host Guest NMR∗ MetaD

3-H NMe4+ 12 61
3-H NEt4+ 34 141
3-Me NMe4+ 50 123
3-Me NEt4+ 42 357
3-Et NMe4+ – 91
3-Et NEt4+ – 359

*NMR resuls are from Jochen Lauer

In addition to the relationship identified between activation energies and guest
volume, compared to the 3-H cage, higher activation energies were found
for both 3-Et and 3-Me cages, which have smaller windows. In other words,
the energy barriers significantly increase as the window size decreases. For
NMe4+ ammonium ions, the activation energy doubles when changing from
3-H cages with an aperture of 49.7 Å2 to 3-Me or 3-Et cages with a window size
of 28.4 Å2 and 24.1 Å2, respectively. Similarly, for NEt4+ guest, the activation
energy nearly triples when changing from 3-H cages to 3-Et or 3-Me cages.
Most interestingly, compared to the cage with medium size windows (3-Me),
for NEt4+ guests, the activation energy of the cage with the smallest window
size (3-Et) drops from Δ𝐺‡ =123 kJ/mol to Δ𝐺‡ =91 kJ/mol.

The free energy surfaces for all six complexes are presented in Fig. 6.3a to
Fig. 6.8a, respectively. It is noticeable that when the cage has a smaller cavity
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volume (NMe4+⊂3-Et in Fig. 6.8a) or a larger guest present (NEt4+⊂3-Me in
Fig. 6.4a) or both (NEt4+⊂3-Et in Fig. 6.5a), a local minimum can be accessed
at the state A, meaning that the guest ion prefers to stay in the centre of the
cage. Conversely, the guest ion tends to be at the edge of the cage, and a local
minimum is obtained at state B.

In the thermodynamically most stable host-guest complexes, different num-
bers of solvent molecules appear as co-guests in the cavity, which may explain
different favourite positions of guests in our three cages. In those complexes
where guests prefer to be located in the centre of the cavity (state A), as
shown in Fig. 6.4A, 6.5A and 6.8A, no solvent molecules appear in the cage
cavity. A possible reason is the small size of the cage cavity or the large
size of the guests. Furthermore, for these complexes, even if the guest has
deviated from the centre of the cage, the excess space in the cavity is still
not sufficient to allow full access to solvent molecules. In Fig. 6.5B and 6.8B,
there is no solvent molecule in the cavity, while in Fig. 6.4B, only half of a
solvent molecule is squeezed into the interior of the cage.

In those complexes where the guests favour to stay close to the cage wall, as
shown in Fig. 6.3B, 6.6B and 6.7B, some solvent molecules were ultimately
squeezed into the cage cavity, thus forcing the guest away from the centre.
Note that substable states are observed in state A in these complexes, suggest-
ing that the guest can still be stable in the middle of the cage under certain
coincidental conditions. Spatially, the six windows of the cage are symmetric
based on the centre of the cage. Thus, for a complex with a large cavity
volume as well as a small guest volume (NEt4+⊂3-H and NMe4+⊂3-H), there
may be a situation where all six windows of the cage are occupied by a single
solvent molecule, resulting in the guest ion being sandwiched by six solvent
molecules in the centre of the cage (Fig. 6.3A and 6.6A). Interestingly, for the
complex NMe4+⊂3-Me, we found that at state A, where solvent molecules
occupy only one symmetric pair of cage windows, the guest ion also remains
stable at the centre (Fig. 6.7A). Nevertheless, this coincidental equilibrium
can not be maintained for long in the system, and once the equilibrium is
broken, the solvent molecules occupying the windows will squeeze into the
excess space of the cage, thus reaching state B.
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Figure 6.3.: Computed decapsulation process for 3-H cage with NEt4+: a). Free energy surface
with activation energy Δ𝐺‡= 141 kJ/mol. b). Host potential energy changes when guest leaves
and comes back once. c). Different conformations at state A, B and C. Due to solvation effects,
the guest is not favoured at the centre of the cage (A), the most stable position is at the cage
walls (B).
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Figure 6.4.: Computed decapsulation process for 3-Me cage with NEt4+: a). Free energy surface
with activation energy Δ𝐺‡= 357 kJ/mol. b). Host potential energy changes when guest leaves
and comes back once. c). Different conformations at state A, B and C.
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Figure 6.5.: Computed decapsulation process for 3-Et cage with NEt4+: a). Free energy surface
with activation energy Δ𝐺‡= 359 kJ/mol. b). Host potential energy changes when guest leaves
and comes back once. c). Different conformations at state A, B and C.
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Figure 6.6.: Computed decapsulation process for 3-H cage with NMe4+: a). Free energy surface
with activation energy Δ𝐺‡= 61 kJ/mol. b). Host potential energy changes when guest leaves
and comes back once. c). Different conformations at state A, B and C. Due to solvation effects,
the guest is not favoured at the centre of the cage (A), the most stable position is at the cage
walls (B).
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Figure 6.7.: Computed decapsulation process for 3-Me cage with NMe4+: a). Free energy surface
with activation energy Δ𝐺‡= 123 kJ/mol. b). Host potential energy changes when guest leaves
and comes back once. c). Different conformations at state A, B and C. Due to solvation effects,
the guest is not favoured at the centre of the cage (A), the most stable position is at the cage
walls (B).
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Figure 6.8.: Computed decapsulation process for 3-Et cage with NMe4+: a). Free energy surface
with activation energy Δ𝐺‡= 91 kJ/mol. b). Host potential energy changes when guest leaves
and comes back once. c). Different conformations at state A, B and C.
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The kinetics of ammonium complexation is undoubtedly impacted by these co-
complexed solvent molecules. For those complexes with large cage cavity, like
NEt4+⊂3-H and NMe4+⊂3-H, as shown in Table 6.2, more solvent molecules
enter the cage when the guest is located at the aperture and is leaving the cage
(state C). However, for the NEt4+⊂3-Me and NMe4+⊂3-Me complexes, when
the guest is on the way to leave the cage, no additional solvent molecules
enter the cage due to the smaller cavity volume. It is worth noting that when
the guest is at state C and multiple solvent molecules have entered the cage,
these solvent molecules accumulate symmetrically inside the cage, centred
on the central position of the cage, as shown in Fig.6.3C, 6.6C and 6.7C. If
there is only one solvent molecule inside the cage (complex NEt4+⊂3-Me as
shown in Fig. 6.4C), it will stand directly in the centre of the cage.

Table 6.2.: Solvation effects of NMe4+ and NEt4+ in different cage cavities.

Host Guest Number of solvent molecules
A B C

3-H NMe4+ 6* 3 4
3-H NEt4+ 6* 2 3
3-Me NMe4+ 2* 2 2
3-Me NEt4+ 0 1* 1
3-Et NMe4+ 0 0 0
3-Et NEt4+ 0 0 0
*Solvent molecules are half inside the cavity.

Based on the above findings, we propose the following speculations on the
mechanism of guest de-encapsulation. Since all three cages are approximately
spatially symmetrical structures, they can be regarded as a non-polar sphere.
When only the guest ion is present in the cavity, since both NEt4+ and NMe4+
are polarised molecules, homogeneous repulsions interact between the host
and the guest due to the solvation effect whereby the guest is located in the
centre of the host. However, when solvent molecules are squeezed into the
host, the repulsive effects between the solvent molecules and the non-polar
cage sphere also force the solvent molecules to prefer the central position of
the cavity due to the strong polarity of the CH2Cl2 solvent molecule. Note
that the dipole moment of CH2Cl2 is 1.67 D, which is larger than the NEt4+
of 1.27 D and the NMe4+ of 0.37 D. Once the repulsive effects between the
cage and solvent molecules are strong enough, it will break the original
equilibrium between the guest and the host so that the guest is squeezed
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out from the centre and tends to occupy a position close to the cage’s wall.
As soon as the solvent molecules occupy entirely the centre of the cage or
more solvent molecules enter the cavity, the guest ion will be pushed out of
the host. However, such “solvent competition” mechanism can not act on
complexes with small windows, such as 3-H cages, because solvent molecules
are too large to enter the cavity despite the guest being about to leave the
cage as shown in Fig. 6.5C and 6.8C. In fact, whilst the guest ion is in the
host, it is not only affected by the cage but also the polar solvent outside the
cage. Therefore, for 3-H cages, the solvation effects between inside guest
ions and outside solvent molecules may play the leading role in the guest
de-encapsulation mechanism.

Figure 6.9.: Schematic view of the mine cage conformational change during the de-encapsulation
of ammonium ion (example for 3-Et with NEt4+). White: Guest in the middle of the cage; Orange:
Guest is leaving the cage.

Finally, for the guest uptake process in all six complexes, the deformations of
cages were found as shown in Fig. 6.9, suggesting that such deformations also
have effects on the de-encapsulation of ammonium ions. Potential energies
changes as guest leaves and enters the host are illustrated in Fig. 6.3b to
Fig. 6.8b for all complexes, respectively. In general, the smaller the aperture
of the cage and the larger the volume of the guest, the greater the change in
potential energy and the more significant the deformation of the host. For
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the NMe4+⊂3-H complex (Fig. 6.6b), which has the largest window size and
the smallest guest ions, no significant change in potential energy is observed
between state B and state C, indicating only slight cage deformation happens
when the guest ion leaves the host and therefore has a weak effect on the guest
uptake process. However, in cases of NEt4+⊂3-Me and NEt4+⊂3-Et complex
(Fig. 6.4b and 6.5b), the change in potential energy is up to 300 kJ/mol for the
former and 200 kJ/mol for the latter, demonstrating a significant change in
the structure of the cage due to its smaller window size, which may explain
why both have activation energies of around 350 kJ/mol, despite the presence
of the “solvent competition” mechanism in the NEt4+⊂3-Me complex.

To sum up, the uptake process of the object is influenced by three main
aspects. First, the “solvent competition” mechanism, in which the more polar
CH2Cl2 solvent molecules enter the cage cavity and occupy the position of the
guest, thus contributing to the guest uptake process. This mechanism plays a
leading role when the complex has a larger cage cavity with a smaller guest.
Second, the solvation effects between the guest inside the host and solvent
molecules outside, which also drives the guest uptake process and plays a
dominant role when the solvent can not enter the cage, especially for those
hosts with small cavity volumes as well as small window sizes. The third is
the cage deformation mechanism, in which the cage partly structural changes
when a large guest ion crosses a smaller cage window, preventing the guest
from the uptake process. This mechanism acts significantly in complexes that
possess smaller cage apertures as well as larger guests. Overall, the sum of all
these energy contributions may explain the mechanism of ammonium ions’
de-encapsulation in our [4+4] imine cages. However, further investigations
are required to understand the extent to which these mechanisms contribute
to the guest uptake process.
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6.2. Nitrogen Transfer within [2+3] Imine Cages

In parts collaborated with Dr. Sven M. Elbert from the Group of Prof.
Mastalerz Michael at Heidelberg University.

6.2.1. Introduction

In this section, Elbert et al. experimentally synthesised [2+3] imine cages, and
we then computationally investigated the nitrogen transfer dynamics within
self–assembled cage crystals by funnel MetaD approach. As shown in Fig. 6.10,
the structure of the three [2+3] imine cages are mainly structured by two trip-
tycenes and three 1,4-diphenylbenzenes. The only difference is substituents
at position 2,5 of the middle benzene ring in the three 1,4-diphenylbenzenes.
Furthermore, the length between the two external triptycenes bridgehead
carbons is 1.85 nm, and the length between the two internal triptycenes
bridgehead carbons is 1.35 nm.

Figure 6.10.: Schematic view of a). F-cage, b). HF-cage and c). H-cage from standard MD
simulations. The positions 2 and 5 on the middle benzene ring of 1,4-diphenylbenzene are
substituted with butyl containing 9 fluorine atoms, butyl containing 5 fluorine atoms and butyl
without fluorine atom, respectively (red circle marked). The carbon atoms are coloured grey,
nitrogen atoms ice blue, hydrogen atoms white, oxygen atoms red and fluorine atoms green.

As shown in Fig. 6.11, the cages self-assemble by 𝜋–𝜋 stacking and form dense
hexagonal crystals. As in hexagonal stacking, a void exists between any six
adjacent cages in space. In this void, six butyl side chains from surrounding
cages constructed a new “cage” (hereafter called a void cage). Therefore, for
the nitrogen transfer between cages that are standing at diagonal positions,
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Figure 6.11.: Schematic view HF-cage crystal. a). View along the crystal c-axis. The solid arrows
represent the “neighbour cage” three-steps pathway, the dashed arrows represent the “void cage”
two-steps pathway. b). View along the crystal a-axis. c). The void cage constructed by six butyl
side chains from surrounding HF-cages.

for instance, from the green cage to yellow cage in Fig. 6.11a, two possible
pathways need to be considered. First, the guest will leave the green cage
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and enter directly into the adjacent cage (grey cage). Then, after passing
two neighbouring cages, the guest will go into the yellow cage. In the other
pathway, the guest will enter the void cage between green and yellow cages
and subsequently move into the yellow cage. As laboratory experiments are
not able to reveal which mechanism the nitrogen molecules prefer to transfer
between cages, molecular dynamics simulations with an enhanced sampling
approach were performed to explain the nitrogen transfer process.

6.2.2. Computational details

6.2.2.1. Initial set up

The atomic charge of cages was calculated by DFT/6-31G* with B3LYP func-
tionals in GAUSSIAN09 [91]. Then, all cages were set up with the xLeap tool
from the AmberTools package [89] employing the general Amber force field
(GAFF) [47, 90]. Each crystal was settled with 22 cages in a 8×8×8 Å3 simula-
tion box with periodic boundary conditions. The host nitrogen molecule was
placed in the middle of the cage that closed to the centre of the crystal. In total,
three systems were established, and each of them contained ca. 5500 atoms.
All the systems first underwent steepest descents energy minimisation and
1 ns NVT simulation at 77 K in sequence. Afterwards, a 10 ns NPT simulation
was performed at 77 K and 1 bar with the Berendsen barostat [64], followed
by 50 ns MD simulations to stabilise the system further. Since we only focus
on the nitrogen transfer between cages, the positions of two triptycenes of
each cage were frozen during all MD simulation so that all cages can fix their
position with three 1,4-diphenylbenzenes as well as their substituents can be
free to move in the crystal.

6.2.2.2. Funnel metadynamics

The free energy surfaces of two possible mechanisms were explored by fun-
nel metadynamics [72, 73] started with the geometries after 50 ns free MD
simulation from the last step. The CVs for each mechanism were taken as
shown in Fig. 6.12, where the CV 𝑥 indicated the guest position along with
the centre line between the currently hosted cage (green) and the target
cage (yellow), the CV 𝑦 presented the deviation of the current nitrogen po-
sition relative to the centre line. The Gaussian bias potential was initially
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set with height = 1.2 kcal/mol, width 𝜎 = 0.2 Å, for both two CVs, and was
deposited each picosecond. To ensure that the guests were sampled only in
the two cages and the void in them, cylindrical potential restrictions with
cross-sectional radii of 6 Å and 7 Å were imposed for the system focusing on
the “neighbour cage” mechanism as well as the system focusing on the “void
cage” mechanism, respectively. The length of the former restrain is 15 Å and
the latter is 36 Å. The initial systems set up and the following all-atom sim-
ulations were performed with GROMACS in version 2018.3. [92, 94] The
well-tempered metadynamics simulations were performed and analysed via
GROMACS 2018.3 interfaced with the Plumed 2.5.1 package [95]. Molecular
structures were visualised with VMD 1.9.2 [96].

Figure 6.12.: Schematic view of collective variables used to describe the nitrogen position in
cages. a). For the mechanism when the guest molecule enters into the neighbour cage. b). For
the mechanism when the guest molecule goes inside the void cage (the orange region). The
cylindrical shading represents the restrains from FM. The coordinates value 𝑥 of nitrogen guest
position increases from green cage to yellow cage in both cases.

6.2.3. Results and Discussion

As the crystal is self-assembled from individual cages by 𝜋-𝜋 interactions,
the 𝜋-𝜋 stacking region exists between two neighbouring cages. When the
guest molecules pass through this area for travelling between cages, the
“neighbour cage” mechanism emerges. Free energy surfaces of “neighbour
cage” mechanism for H-cage crystal, HF-cage crystal and F-cage crystal are
shown in Fig. 6.14, 6.15 and 6.16, respectively. In all crystals, it is clear that
the guest tends to be located far away from the axis between the two cage
centres when passing through the cage junction, indicating that the nitrogen
molecule prefers to bypass the 𝜋-𝜋 stacking region instead of passing directly
through this region. This may be due to the nitrogen molecule having a long
diameter around 4 Å and a short diameter of 3 Å, which is too large for the
window formed by the 𝜋-𝜋 stacking as shown in Fig. 6.13.
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Note that, the activation energy barrier for the H-cage crystals is 5.7 kcal/mol,
approximately 1.5 kcal/mol lower than that of the HF-cage crystal and the
F-cage crystal. One possible reason is that hydrogen atoms at the end of the
butyl side chain of HF-/F-cage crystals are replaced by fluorine atoms, which
reduces the tunnel space outside the 𝜋-𝜋 stacking region, thus increasing the
activation energy of the guest transfer.

Figure 6.13.: Schematic view of the cross-section for the “neighbour cage” mechanism tunnel.
The window produced by the 𝜋 -𝜋 stacking are approximately 3 Å wide. The red circle represents
the potential restrain with a radii of 6 Å in FM calculations. The two orange areas indicate the
tunnels that guests prefer to cross and are partly blocked by F-/HF-cage side chains.

79



6. Unravelling the mechanism of Host-Guest Chemistry

Figure 6.14.: Free energy surface of H-cage crystal with “neighbour cage” mechanism with the
guest activation energy of 5.7 kcal/mol.
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Figure 6.15.: Free energy surface of HF-cage crystal with “neighbour cage” mechanism with the
guest activation energy of 7.2 kcal/mol.
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Figure 6.16.: Free energy surface of F-cage crystal with “neighbour cage” mechanism with the
guest activation energy of 7.1 kcal/mol.
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Fig. 6.17, 6.18 and 6.19 illustrate free energy surfaces of “void cage” mech-
anism for H-cage crystal, HF-cage crystal and F-cage crystal, respectively.
Interestingly, with the “void cage” mechanism, we found different pathways
for the guest transfer between diagonal cages in different crystals. Specifi-
cally, as shown in Fig. 6.17, for H-cage crystals, the guest molecule tends to
move towards the neighbouring cage and then transfers to the diagonal cage,
with an activation energy of 4 kcal/mol for both two steps, which means
the transfer undergoes more likely with the “neighbour cage” mechanism.
Nevertheless, we also found a pathway that proceeds under the “void cage”
mechanism, where the guest molecule first crosses a 6 kcal/mol energy barrier
into the void cage and then into the diagonal cage with activation energy
around 2 kcal/mol. For the HF-cage crystals, however, under the “void cage”
mechanism, the guest is unlikely to move towards the neighbouring cage
nor the void cage to reach the diagonal cage (Fig. 6.18). In fact, the pathway
shows that the nitrogen guest firstly arrives at the edge of the “void cage”
and then enters the diagonal cage with an activation energy of 8 kcal/mol.
In contrast, for the F-cage crystals with more fluorine atoms on their butyl
side chains, the guest pathway indicates that the nitrogen molecule prefers
to enter the “void cage” and then transfers to the diagonal cage.

Finally, under the “void cage” mechanism, the larger the butyl side chain,
i.e. the more the hydrogen atoms are replaced by the fluorine atoms on side
chains, the more likely the guest tends to enter the void cage and thus reach
the diagonal cage. One possible reason is that as the side chain size increasing,
the space outside the void cage is blocked, thus making it difficult for the
guest to pass through.
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Figure 6.17.: Free energy surface of H-cage crystal with “void cage” mechanism. The red solid
arrow represents the pathway close to the “neighbour cage” mechanism from green cage to
yellow cage. The red dash arrow indicates the pathway of the guest entering the void cage and
reaching the yellow cage from green to yellow. The schematic view shows the guest position
with its coordinates labelled as yellow star in the free energy map. The solid blue circle is the
void cage and the dash blue circle is the 𝜋-𝜋 stacking region between green and red cage.
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Figure 6.18.: Free energy surface of HF-cage crystal with “void cage” mechanism. The red solid
arrow represents the pathway from the green cage to the yellow cage. The schematic view shows
the guest position with its coordinates labelled as yellow star in the free energy map. The solid
blue circle is the void cage.
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Figure 6.19.: Free energy surface of F-cage crystal with “void cage” mechanism. The red solid
arrow represents the pathway from the green cage to the yellow cage. The schematic view shows
the guest position with its coordinates labelled as yellow star in the free energy map. The solid
blue circle is the void cage.
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Figure 6.20.: Summary of free energy surfaces for H-cage crystal (a), HF-cage crystal (b) and
F-cage crystal (c) with “neighbour cage” mechanism (A) and “void cage” mechanism (B). The
dash line in B-a represents the pathway of the guest entering the void cage and reaching the
yellow cage from green to yellow.
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To summarise, as shown in Fig. 6.20, the activation energy required when
the guest molecule transfers between cages with the “neighbour cage” mech-
anism is slightly lower compared to that with the “void cage” mechanism.
Specifically, for H-cage crystals, with “neighbour cage” mechanism, an acti-
vation energy of 5.7 kcal/mol is required to enter the adjacent cage, whereas
with the “void cage” mechanism, the nitrogen guest needs to firstly go over
an energy barrier of 6.1 kcal/mol to reach an intermediate state and then
over an barrier with the same height to reach the diagonal yellow cage. For
HF-cage crystals, an energy barrier of 7.2 kcal/mol needs to be overcome
under the “neighbour cage” mechanism, whereas with the “void cage” mech-
anism, two energy barriers of 9.1 kcal/mol and 9.5 kcal/mol are required to
be crossed in steps to reach the diagonal cage. For F-cage crystals, with the
former mechanism, the energy barrier is 7.1 kcal/mol, whereas with the latter
mechanism, 10.5 kcal/mol is required to enter the void cage from the green
cage, and 5.3 kcal/mol is needed from the void cage to the yellow cage.

Note that, the energy barriers given in Fig. 6.20A represent only the transfer
of the nitrogen guest within neighbouring cages for the “neighbour cage”
mechanism. In fact, when focusing on the transfer of guest molecule between
two diagonal cages (from green cage to yellow cage in this study), with
the “neighbour cage” mechanism, the guest molecule needs to enter the
two neighbour cages before arriving at the diagonal cage, which means that
the energy barrier listed in Fig. 6.20A needs to be overcome three times.
Alternatively, there may also be a hybrid mechanism in which the guest first
enters the neighbour cage and then goes into the void cage, finally reaching
the diagonal cage. Unfortunately, to enhance sampling, the potential restrains
do not allow one single simulation to describe the complete picture of the
guest transfer containing both mechanisms. Therefore, further simulations
are required to compare the different mechanisms of guest transfer in the
same crystal from a thermodynamic point of view. Nevertheless, we confirm
the existence of the two speculations at the beginning of this section, the
“neighbour cage” mechanism and “void cage” mechanism. It is also found
that as the size of the butyl side chain increases from the H-cage to the F-
cage, the tunnel between neighbour cages as well as between diagonal cages
are blocked, resulting in an increase in the activation energy of the guest
transfer.
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6.3. Assessment

In this chapter, we investigated the uptake process of ammonium ions in [4+4]
imine cages and the nitrogen transfer in [2+3]imine cages, respectively, using
enhanced sampling approaches based on the molecular dynamics simulation.
By calculating the free energy surface, we revealed reaction mechanisms
that are difficult to justify experimentally in detail. In addition, by applying
MetaD-based approaches, we have also verified the reliability and feasibility
of these tools when facing with systems with large time scales, which can
be employed to study biomacromolecular systems with large system sizes as
well as time scales.
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7. Unravelling the mechanism of
Glucose Binding Protein-based
fluorescence probe

In parts reproduced with permission from with permission from the
Royal Society of Chemistry.

Pang, Ziwei, Monja Sokolov, Tomáš Kubař, and Marcus Elstner.
Unravelling the mechanism of glucose binding in a protein-based

fluorescence probe: molecular dynamics simulation with a
tailor-made charge model. Physical Chemistry Chemical Physics, 24,

pp.2441-2453. DOI: 10.1039/D1CP03733A

7.1. Introduction

The high prevalence of diabetes has launched a challenge to human health.
Effective diabetes treatment requires real-time monitoring of a patient’s
blood glucose concentration. However, such real-time continuous glucose
monitoring (CGM) cannot be achieved by traditional monitoring means,
such as finger prick methods. Although CGM sensors have been developed
considerably, they still suffer from a lack of accuracy and short service time.
Therefore, research and development of a new generation of CGM sensors is
crucial.

Since the bacterial periplasmic glucose/galactose binding protein (GGBP)
of the Gram negative bacteria E. coli [100] and S. typhimorium [101] can
specifically recognise for glucose, it has often been used in recent years as
a receptor for fluorescent probes to achieve CGM. These fluorescent probes
have environmentally sensitive fluorophores attached to a specific location
in the GGBP and the choice of location is decisive for the fluorescent signal
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of the probe. Usually, this position is required so that the environment of the
fluorophore changes in response to the protein conformational change when
glucose is bound, resulting in a strong fluorescence change. Therefore, the
operating range of glucose concentrations, which is related to the glucose
dissociation constant (𝑘D), and the corresponding changes in probe fluores-
cence need to be carefully considered for the design of such probes. Since
the concentration of galactose in blood is much smaller than that of glucose,
the binding of galactose to GGBP has little effect on the binding of glucose to
the protein [102].

In 1998, Marvin and his coworkers selected the position of the fluorophores
based on an examination of the crystal structure and constructed such sensors
for the first time [103]. Subsequently, a large number of experiments have
been carried out in terms of the selection of different fluorophores and posi-
tions of the fluorophores linked to the protein [102, 104–106]. Later, in 2008,
the potential of this sensor for real-time sugar monitoring in microdialysis
was demonstrated by Ge et al. [107].

A large number of achievements have been witnessed in the last two decades.
In particular, Badan (6-bromoacetyl-2-dimethylaminonaphthalene) has proven
as a reliable fluorophore. that can be attached to the H152C single mutant of
GGBP, thus allowing for continuous monitoring of glucose [106]. Here, the
glucose concentration can be simply estimated by,

𝑘D =
[ protein ] [ glucose ]

[ complex ] ≈ [ glucose ]blood . (7.1)

Therefore, if the 𝑘D of a glucose sensor is in or close to the common patho-
physiological glycemic range in human bodies (1.7 mM to 30 mM), an optimal
signal response will happen. This is because the amount of free and bound
glucose is similar when enough fluorescent probes present in the sample,
i.e. when the sugar concentration increases there is a sufficient amount of
protein to bind new glucose molecules and when the sugar concentration
decreases there is a sufficient amount of protein to cause a signal. Although
it was shown in this earlier study that the binding of such single mutant
had improved the 𝑘D to 0.002 mM compared to the wild-type GGBP with
𝑘D = 0.2 µM, it was still well below the ideal range. To make future clinical
measurements possible, probes are need to be optimised to achieve the 𝑘D at
the millimolar level.
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To this end, Khan et al. subsequently constructed a GGBP triple mutant
labelled with Badan as a glucose sensor based on the GGBP single mutant,
which exhibited a reasonable 𝑘D = 11 mM in phosphate-buffered saline
(PBS) [108]. Later, this high 𝑘D triple mutant was immobilised on a solid
surface and demonstrated to measure the fluorescence lifetime after glucose
binding in vitro [109]. Meanwhile, Tiangco et al. developed a complete
fibre-optic biosensor system with the GGBP-Badan single mutant that could
measure transdermal glucose, which has lower concentration in blood than
glucose [110]. In addition, a double GGBP double mutant with Badan was
applied as a detector for changes in liquid glucose concentrations on the
airway surface [111]. An overview of the dissociation constants is given in
Table. 7.1.

Table 7.1.: Dissociation constant of the wild-type GGBP and its mutants with Badan linked to
H152C.

GGBP type 𝑘D/mM Reference
Wild-type 0.0002 Vyas et al.[100]
H152C 0.002 Khan et al.[106]
H152C/A213R 0.86 Helassa et al.[111]
H152C/A213R/L238S (in PBS) 11 Khan et al.[108]

Fig. 7.1A shows the wild-type GGBP crystal structure in the closed state with
the glucose molecule in the binding pocket. The glucose is hydrogen-bonded
(H-bonded) to multiple amino acids as shown in Fig. 7.1E. Four of those
amino acids are charged, making the H-bonds to the glucose molecule even
stronger. Moreover, the sugar is sandwiched between two aromatic amino
acids, phenylalanine and tryptophan. The triple mutant H152C/A213R/L238S
with Badan linked to Cys152 is shown in Fig. 7.1B. The mutation H152C
eliminates one H-bond to the glucose, while another H-bond is introduced
by the mutation A213R. The mutation L238S is also located in the proximity
of the binding pocket but has no direct impact on the interaction pattern.
Overall, there are fewer H-bonded contacts between the glucose and the
protein in the mutant than in wild-type protein, compare Figs. 7.1E,F. This
could be the reason for the large change in 𝑘D, and will be investigated in
this work.

The chemical structure of Badan (as linked to the side chain of Cys152 in the
triple mutant) is shown in Fig. 7.1D. It contains an electron-donating dimethy-
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Figure 7.1.: Schematic view of wild-type GGBP and its triple mutant. A). Wild-type closed state
GGBP. B). GGBP triple mutant H152C/A213R/L238S in its closed state. C). The binding pocket
of the triple mutant. Glucose – orange; Cys-Badan – red; Arg213 – blue; Ser238 – yellow. D).
Chemical structure of Badan linked to the protein via a cysteine side chain. The H-bonds between
glucose and E). the wild-type protein or F). the GGBP triple mutant are shown by dashed lines.
Some of H-bonds are missing due to the mutation.

lamino group and an electron-withdrawing carbonyl group with maximal
distance from each other on the two sides of the naphthalene core, making it
a push-pull charge-transfer system [112]. The first dye of this kind, Prodan,
was synthesized by Weber and Farris [113]. In contrast to Prodan, Badan in
its original form contains a thiol-reactive bromine and thus can be linked
specifically to a cysteine side chain. Badan is a frequently used environmen-
tally sensitive dye that changes its fluorescence properties depending on the
polarity of its surroundings. In the triple mutant, the fluorescence intensity
and excited states lifetime change upon glucose binding. So far, it has been as-
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sumed that the environment of Badan is more hydrophobic when the protein
is in the closed conformation while binding the glucose [108]. However, there
is no crystal structure of the triple mutant, therefore, the overall structure, the
details of the binding pocket and the actual Badan conformations, depending
on the details of the binding site, are unknown. Consequently, the reason for
the change of fluorescence upon glucose binding is unclear, too.

With the development of computers and nanoscale modelling, molecular
dynamics (MD) simulations on biological macromolecules have become af-
fordable, and it is now possible to study the GGBP mechanism in atomistic
detail. Recently, Unione et al. investigated the wild-type GGBP employing
steered MD simulations (SMD) [114]. The free energy surface was estimated
by the combination of two SMD trajectories, which included the protein open-
ing with glucose and closing without glucose. Due to short simulation times,
no continuous free energy map was computed, rather, the information result-
ing from individual MD simulations of open and closed state was plotted in a
single energy scheme. Therefore, the GGBP opening-closing motion and the
free energy surface was inferred from two individual hundred-nanosecond
free MD trajectories, also including information from NMR measurements.
Furthermore, only one collective variable (CV) was used in the SMD, which
tends to be a too limited representation of the system’s degrees of freedom,
since the binding site of the GGBP is buried and the configurational entropy
contribution may be large [73]. Panjaitan et al. also reported several short free
MD trajectories to study the wild-type GGBP [115]. They found that the pro-
tein was unlikely to close after introducing the glucose ligand into the binding
pocket, which is in contrast to the experimental findings. The authors argued
that this may be due to the insufficient length of the simulations. In fact, it
is a challenge for a hundred-nanoseconds free MD simulation to explore a
large conformational change when facing a barrier significantly exceeding
3 kcal/mol, especially for large biomacromolecules like the GGBP.

According to the experimental dissociation constants (0.2 µM for the wild-
type and 11 mM for the triple mutant), a free energy difference between
apo-open (without glucose in the binding pocket) and holo-closed states (with
the glucose in the binding pocket) of 9.2 kcal/mol is expected for the wild-type
protein [100]. A value of 2.7 kcal/mol was reported for the triple mutant with
Badan [108]. However, our initial simulations did not show a stable bound
state over 1 µs, as detailed below, a similar finding as reported in the two
previous simulation studies. In fact, a stable bound state for several hundreds
of nanoseconds has never been reported so far. In one of our simulations
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the closed state opens within 100 ns of simulation time, which leads to an
immediate glucose unbinding in contradiction to the experimental 𝑘D. This
may point at a shortcoming in the simulation protocol.

In fact, the H-bonds stabilising the bound state seem to be too weak in the sim-
ulations, in order to keep the binding pocket closed on the expected temporal
scales. The GLYCAM parameters used here and in the previous computational
studies are derived for use with the TIP3P water model [116, 117]. However,
the glucose molecule bound in the GGBP pocket is highly polarised by several
strong H-bonds as shown in Fig. 7.1B. Therefore, the GLYCAM charge model
may not describe glucose in such polarising environments appropriately.

The importance of polarisation effects on force field parameters, in particular
on the force field charges was pointed out in several studies of protein-ligand
binding [118–121], peptide folding [122, 123], and protein-chromophore
complexes [124, 125]. Standard force field parameters, in particular the force
field charges, can lead to structural instabilities or even a wrong description of
the respective systems. This was previously tackled by explicitly considering
the polarisation induced by the specific environment, using one of several
approaches. The most accurate but also computationally demanding way is
the use of a polarisable force field, where the atomic charges are determined in
an iterative procedure. Computationally less demanding is the use of polarised
protein-specific charges (PPC), which are computed in order to represent the
specific polarised electrostatic state of the protein. The polarised charges are
usually determined for one representative structure, but also charge update
schemes have been proposed [122, 126]. Typically, PPC are determined using
a molecular fractionation with conjugate caps, followed by the calculation of
the electron density of the fragments using DFT with a subsequent restrained
electrostatic potential fit (RESP) [127]. If PPC for a whole protein are to be
determined, an iterative procedure is chosen where the charges of the various
fragments are recalculated until convergence is reached, while the charges
of the remainder of the protein are represented by point charges. It is also
possible to fit only the charge variation (delta-RESP) instead of using the
conventional RESP approach for charge fitting [128, 129].

The importance of considering polarisation effects was demonstrated for
several examples: Mei et al. reported that the melting temperature of a small
Trp-cage protein obtained from the simulation was only in agreement with
the experiment when PPC were applied [123]. Tong et al. reported that in
contrast to Amber charges, PPC kept the studied light-harvesting complex
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stable during the simulation and provided also a reliable description of the
environment in QM/MM calculations on the chromophores [125]. For protein-
ligand binding, Duan et al. showed that the binding energies of complexes of
the cycline-dependent kinase with five different ligands agree significantly
better with experiment using PPC charges than with the unpolarised Amber
charges [120].

In this work, we follow these earlier studies and develop force field parame-
ters that account for the highly polarised protein environment. In a second
step, these charges are applied in free MD simulations to investigate bound
and unbound structures of wild-type GGBP, as well as the GGBP-Badan triple
mutant. These parameters lead to a stable glucose binding pocket with a
preserved number of H-bonds compared to the initial structure. Further, the
overall structure of the protein remains stable, in contrast to the standard GLY-
CAM charge model. Metadynamics simulations applying these charge models
are then performed to achieve a more detailed insight into the mechanism
and energetics of the opening and closing mechanism.

7.2. Computational details

The initial structure of thewild-type GGBP and the GGBP-Badan triplemutant
(hereafter referred to as the “triple mutant”) were taken from the closed GGBP
crystal structure, PDB ID 2FVY [130]. For the triple mutant, the residues
His152, Ala213 and Leu238 were replaced with cysteine, arginine and serine
residues, respectively, and the side chain of Cys152 was functionalized with
the Badan fluorophore, see Fig. 7.1D. These changes were performed with the
xLeap tool from the AmberTools package [131]. The following force fields
were employed: Amber14SB for the protein [132]. general Amber force field
(GAFF) for the newly parametrized Badan moiety [47, 90], Joung–Cheatham
parameters for the ions [133], and GLYCAM 06j for the glucose [117]. Addi-
tionally, new atomic charges for the glucose were derived as detailed in the
following, and bonded parameters were taken from GAFF.

7.2.1. Polarised force field for the glucose molecule

Initial simulations employing the standard GLYCAM 06j atomic charges for
glucose showed no stable binding to the proteins, as detailed in the following
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section 7.3.1. Similar findings have been repeatedly reported in the literature
for a diverse set of systems: there is a large body of evidence that standard
force fields with a fixed point charge model fail to describe H-bond strengths
with sufficient accuracy for a variety of systems [118–125]. This seems to
apply also for the case of GGBP: in pilot simulations, we were unable to find a
stable glucose bound state. The H-bonded network broke and set the glucose
free, in contrast to the stable bound state found in experiment. This indicates
that the GLYCAM 06j charge model may be insufficient to describe the strong
H-bonded network of the GGBP binding pocket, as described above. Here,
the glucose molecule is located in the highly polar protein binding pocket,
restricted to one stable conformation, which seems to be very different from
the more weakly bound floppy structure embedded in water solvent described
by TIP3P water, for which GLYCAM 06j is parametrised.

For GGBP–glucose binding, we consider the major source of error to be the
glucose charges. Therefore, we decided to only update those and leave the
protein charges unchanged. This makes the procedure particularly simple
as it is non-iterative and glucose charges are determined only for a single
conformation, the bound state of the protein. Update schemes developed to
follow conformational changes of proteins [122] seem to be less practical
for the GGBP–glucose binding case. The focus is on enhanced sampling
simulations of the binding–unbinding reaction, during which the glucose is
moving back and forth between the protein and water environments which
would require a frequent charge update making the calculations computa-
tional expensive. Using the charges for the protein-bound state will lead
to less accurate charges for the water-solvent case, an error which we will
estimate using alchemical free energy calculations as described below.

Two different new sets of atomic charges were created for the glucose po-
larised in the binding pocket by Monja Sokolov, one for the wild-type protein
complex and one for the triple mutant. The procedure started by docking
the glucose molecule into the binding pocket of the closed protein, either the
wild-type GGBP or the triple mutant, which was subsequently immersed in a
TIP3P water box. Standard force field parameters were assigned to the entire
system, including the standard GLYCAM 06j atomic charges for the glucose.
Then, energy minimisation was performed with steepest descents.

The resulting glucose conformation was taken as input for HF/6-311G* ESP
calculations, where atomic charges were subsequently determined with RESP.
To account for the polarising environmental effects, we included the force
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field point charges of the apo-protein up to a certain cutoff radius. This was
performed twice, for the wild-type protein and the triple mutant, leading to
two different sets of binding pocket polarised charges (BPC) for each specific
molecular complex. To estimate possible errors due to a hard cut-off, the
results from two different approaches were compared: First, atomic charges
from atoms within different cutoff distances from 5 Å to 8 Å from the glucose
were included. In the other approach, a residue-based cutoff was applied,
including all residues for which at least one atom is found within certain
distances. No obvious difference was observed in pilot free MD simulations
of 50 ns, as shown in Table 7.2, and the charges determined for an atom-based
cutoff at 5 Å were used in the following.

Table 7.2.: The average number of H-bonds generated between water molecules and BPC glucose
molecules with different cut-off.

Cut-off range Average number of H-bonds

4Å with full residues 10.80
5Å with full residues 10.77

5Å with broken residues 10.46
6Å with broken residues 10.76
7Å with broken residues 10.44
8Å with broken residues 10.68

In addition, we also computed a third set of charges for the glucose molecule
in aqueous solution. Glucose was optimised at the B3LYP/6-31G* level in
the presence of implicit water represented by the polarisable continuum
model [134]. Then, the electrostatic potential was computed at the HF/6-
31G*/PCM level, and a set of atomic charges was obtained with RESP; this
charge model will be referred to as water polarised charges (WPC).

We further computed a gas-phase charge model (GPC) using the samemethod-
ology, and in addition, a charge model based on DFTB Mulliken charges. For
the latter, two QM/MM simulations were performed using GROMACS [92–
94, 135]: one with the glucose in water and one with the glucose in the
binding pocket. The sugar was treated with the semi-empirical DFTB/3OB
method [44, 136] using DFTB+ [137, 138], and the environment was described
with a force field. These calculations were intended to investigate charge
fluctuations along trajectories, and are detailed in the Appendix.A. However,
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DFTB Mulliken charges turned out to be largely underpolarised, therefore,
they are not further considered in this work.

7.2.2. Free MD simulations

We performed three free, unrestrained MD simulations of the wild-type GGBP
with a bound glucose molecule: one with the GLYCAM force field for the
glucose, one with the BPC, and one more with the WPC charge model. In
addition, free MD simulations under the same conditions were carried out
on the GGBP-Badan triple mutant with the BPC as well as the WPC glucose,
on the triple mutant without glucose and on the wild-type GGBP without
glucose.

In all of these simulations, the protein–glucose complex was embedded in
a dodecahedral TIP3P water box keeping a distance of the solute from the
edges of the box of at least 20 Å. There is a calcium ion bound to GGBP, and
electroneutrality was achieved by replacing six water molecules by sodium
ions. No extra salt was added. Periodic boundary conditions were applied
and long-range electrostatics was described by the particle–mesh Ewald
method [139]. Each simulation was carried out with cut-offs of 1.4 nm for
both vdW and real-space PME interactions

The equilibration procedure started with a steepest descents minimisation to
reduce all forces below 1000 kJ mol−1 nm−1, followed by a conjugate gradient
minimisation until all forces dropped below 500 kJ mol−1 nm−1. Then, the
system was heated to 298 K during an NVT MD simulation of 1 ns with a
time step of 2 fs using the Bussi thermostat [66]. Here, the lengths of all
bonds were kept constrained to their respective equilibrium values by means
of the LINCS algorithm. Subsequently, an NPT simulation of 1 ns with a time
step of 2 fs was performed at a temperature of 298 K and a pressure of 1 bar
maintained by the Nosé–Hoover thermostat [140, 141] and the Parrinello–
Rahman barostat [67, 142], respectively. Position restraints with a force
constant of 1000 kJ mol−1 nm−2 were imposed on all of the protein atoms
during the equilibration procedure above. Finally, the systemwas equilibrated
for further 10 ns keeping only bonds involving hydrogen atoms constrained
with LINCS. Identical settings were used to carry out the actual production
simulations of 1 µs.
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7.2.3. Well-tempered metadynamics simulations

To further investigate the binding of glucose and the opening of the bind-
ing pocket, well-tempered metadynamics simulations [wtmetad] were per-
formed for both the wild-type GGBP and the triple mutant. These were started
from each respective closed structure and involved the atomic charges on the
glucose molecule that were polarised for each respective binding situation, as
described above. Two collective variables (CV) were employed based on previ-
ous work by others [114, 143]: The opening–closing motion is described with
the angle 𝜃 between centres of mass of the N-terminal domain (residues 3–108
and 258–291), the hinge region (residues 109–111, 255–258 and 292–296) and
the C-terminal domain (residues 112–254 and 297–306). The twisting motion
is described with the torsion angle 𝜙 defined by the centres of mass of the
N-terminal domain, the N-terminal domain base (residues 109, 258 and 292),
the C-terminal domain base (residues 111, 255 and 296) and the C-terminal
domain. These CVs are illustrated in Fig. 7.2 and were also used to analyse
free MD trajectories in the following discussion. Besides, a set of restraints
was imposed on the protein as well as the glucose molecule to maintain the
stability of the protein structure and to concentrate the sampling process on
the binding/unbinding of glucose and opening/closing of the binding pocket;
these are described in detail in Appendix.B via input codes. With a time step
of 1 fs and a bias factor of 10, the metadynamics simulations were extended
to 2.6 µs for both wild-type and the triple mutant, respectively.

7.2.4. Alchemical free energy calculations and funnel
metadynamics simulations

The binding–unbinding simulations were performed with a fixed-charge
model. This BPC charge set, however, is optimised for the glucose molecule
in the binding pocket, and may yield overestimated solvation free energy
of glucose in water. To take into account the change of charge distribution
on the glucose molecule upon unbinding from the protein, a series of free
energy simulations was carried out for both the wild-type GGBP and the
triple mutant, as follows. The resulting free energy shall give an estimate
of a possible error in the free energy profiles obtained from the simulations
described above.
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7. Unravelling the mechanism of Glucose Binding Protein-based fluorescence probe

Figure 7.2.: Schematic view of collective variables used to describe GGBP. Left: 𝜃 , representing
the closing–opening motion; Right: 𝜙 , representing the protein twisting motion. The centres
of mass of respective parts of the protein that define the angle/torsion are shown as solid balls.
N-terminal domain–green, C-terminal domain–red, hinge region–blue, N-terminal domain base–
purple and C-terminal domain base–orange.

First, alchemical simulations were performed to obtain the glucose binding
energy difference when passing from the BPC glucose charges to GLYCAM
charges, with the protein binding pocket remaining in the open state. The
respective wild-type and triple-mutant BPC charge models were used here.
Second, funnel metadynamics simulations [72] were carried out using the
GLYCAM glucose charges to obtain the free energy of unbinding. In all of
these simulations, the protein structure was constrained at the corresponding
open state localminima obtained bywell-temperedmetadynamics simulations
for the respective protein (wild-type or triple mutant GGBP). All sets of
alchemical simulations contain 21 𝜆 windows with a spacing of 0.05, each
consisting of an MD simulation of 4 ns. All funnel metadynamics simulations
were extended to 750 ns to achieve convergence. More details about the
settings of funnel metadynamics simulations can be found in Appendix.B.

Free MD simulations and alchemical calculations were carried out with Gro-
macs 2018.3. Well-tempered metadynamics simulations and funnel metady-
namics were performed with PLUMED 2.5 [95, 144] linked to Gromacs 2018.3.
Molecular structures were constructed and visualised with VMD 1.9.2 [96].
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Quantum chemical calculations were performed with Gaussian09,[91] and
RESP was run with Antechamber [90, 131].

7.3. Results and Discussion

7.3.1. Polarisation of the glucose molecule

The wild-type GGBP has a 𝑘D of 0.2 µM [100], corresponding to a binding free
energy of ca. 9 kcal/mol, which means that at least hundreds of microseconds
would be needed to see a change from the holo closed state to the apo open
state. However, when employing the GLYCAM parameters for glucose, the
wild-type GGBP changed from its closed state to an open state within hundred
nanoseconds, which is orders of magnitude faster than expected, as shown
in Fig. 7.3. This finding agrees with previous studies [114, 115], where no
wild-type GGBP closed state simulation for several hundreds of nanoseconds
is reported. It further indicates that the ligand in the binding pocket may not
be sufficiently stabilised during the MD simulations, most probably due to
too weak H-bonds as a result of the applied GLYCAM 06j charge model.

We applied a polarised charge scheme for glucose. Two sets of polarised
charges were derived for the wild-type and triple mutant (BPC) binding pock-
ets, one for bulk water (WPC) and one for the gas-phase (GPC). Comparison
between these charge models are given in Fig. 7.4 and detail charge parame-
ters are illustrated in the Appendix.A. With our repolarising methods, both
hydrogen and oxygen charges were increased compared to the GLYCAM
charges, so that the H-bonds based binding between ligand and protein can
be strengthened. From another perspective, as shown in Table. 7.3, dipole
moments of BPC charges for both wild-type and triple mutant are larger
than the GLYCAM, which also proves stronger binding happening with BPC
charges. In addition to the larger dipole moment, as shown in Fig. 7.5, the
dipole moment direction of WPC glucose is closed to the GLYCAM glucose.
However, larger direction deviations have been witnessed for both wild-type
and triple mutant BPC glucose, which is caused by the repolarisation in the
binding pocket environment. On the other hand, it indicates that the BPC
charge compensates for the error caused when using the general GLYCAM
force field.
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7. Unravelling the mechanism of Glucose Binding Protein-based fluorescence probe

Figure 7.3.: The RMSDwith respect to the crystal structure (2FVY) of 1 µs pilot free MD trajectory
of the wild-type GGBP.

Figure 7.4.: A) Correlation diagram between repolarised glucose charges and GLYCAM glucose
charges. B) Charges of each glucose atom. H1,6,8,10,12 are O–Hydrogen atoms, H2–5,7,9,11 are
C–Hydrogen atoms.
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Figure 7.5.: Dipole moment direction of wild-type BPC (black), triple mutant BPC (red), WPC
(blue) and GLYCAM (green) charges glucose.To clearly compare the dipole moment directions,
triple mutant BPC, WPC and GLYCAM charges glucose is aligned to the wild-type BPC glucose
in the wild-type GGBP binding pocket.

We also assigned these polarised charges to glucose and performed a set of
50 ns MD simulations for the glucose in the two binding sites, respectively.
As shown in Fig. 7.6, the H-bonded network of the wild type stays intact
when using the BPC and WPC charges. We find an average of nine H-bonds
between the glucose and the binding pocket, which is the number of H-
bonds also found in the crystal structure as indicated in Fig. 7.1E. By contrast,
when using the GLYCAM charges, there are much fewer H-bonds, which
frequently break so that the binding pocket opens. As discussed below, the

Table 7.3.: Dipole moment of polarised glucose with different basis sets

Basis sets GPC WPC wild-type BPC triple mutant BPC
6-31G∗ 3.28 4.15 4.38 4.15
6-311G∗ 3.39 4.29 4.51 4.26

def2-TZVP 3.09 3.99 4.35 4.08
def2-TZVPP – 3.94 4.34 4.06
def2-QZVP – 3.95 4.35 4.06
def2-TZVPD 3.01 3.95 4.37 4.06
def2-TZVPPD – 3.95 4.38 4.09
def2-QZVPD – 3.93 4.36 4.06
MD in water 4.59 4.74 5.40 5.20
GLYCAM charge dipole moment = 3.75 with 6-31G∗ [116]
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7. Unravelling the mechanism of Glucose Binding Protein-based fluorescence probe

Figure 7.6.: A). The number of H-bonds formed between the binding pocket and the glucose
polarised in different environments. B). The histogram of the number of H-bonds observed in
simulations runwith the different glucose chargemodels. The average number of H-bonds of each
corresponding glucose is given in square brackets. Trajectories are taken from corresponding
free MD simulations from 10 ns to 60 ns. For the wild-type protein with GLYCAM charge glucose,
the ligand escaped from the binding pocket at ca. 50 ns.

free energies of opening/closing of the binding pocket agree very well with
the experimental values, supporting the use of such polarised charges.

For the mutant, a smaller number of H-bonds is found as indicated in Fig. 7.1F.
The change in the experimental 𝑘D indicates such a behaviour, and again,
the agreement with experimental estimates of the unbinding free energies
supports the usage of these charges.

The use of fixed polarised charges has some drawbacks, which can only
be avoided using a fully polarisable electrostatic model in principle. The
dynamical transitions, i.e. the opening and closing of the binding pocket and
unbinding and binding of the glucose seem to ask for a change of the charge
model during the process, since the polarisation of glucose in solution differs
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from that in the binding pocket obviously. One way to deal with this could
be the usage of an average model, however, we decided to use both BPC and
GLYCAM models in the simulations and critically discuss the results. Using
the BPC model, glucose could be overstabilised in the solution phase due to
the larger dipole moment, while using the GLYCAM model glucose is most
probably understabilised in the binding pocket. Since we are interested in
the kinetic barrier for unbinding, we use the BPC models for the simulations
and discuss corrections to this polarised model below.

7.3.2. Standard MD simulations of the wild-type and the triple
mutant

The collective variables, 𝜃 and 𝜙 (see Fig. 7.2), adopted for metadynamics
simulations in this study, were also used to analyse free MD trajectories, as
described in the methods section. The corresponding values for the crystal
closed (PDB-ID: 2FVY) and open (PDB-ID: 2FW0) wild-type GGBP are shown
in Tab. 7.4. As discussed above, we performed MD simulations with both
charge models, the WPC and BPC charges.

Table 7.4.: Collective variable values for the crystal wild-type GGBP.

Collective variable closed GGBP open GGBP

𝜃 121.6° 143.1°
𝜙 64.9° 89.6°

Fig. 7.7 shows the results of three extended MD simulations of over 1 µs
each: In the first two simulations, we used the WPC and BPC glucose charges
and started the simulations from a crystal closed state GGBP structure. The
protein remained in a stable closed state in both simulations with the glucose
molecule inside the binding pocket. Both free MD simulations show a root-
mean-squared deviation (RMSD) with respect to the crystal closed wild-type
below 0.2 nm, and keep the distance between the glucose and the centre of the
binding pocket within 0.3 nm during the simulation of 1 µs. It is interesting to
see that both WPC and BPC glucose charges lead to a stable bound state for
1 µs, which is in agreement with the experimental 𝑘D value and is in contrast
to the results using the original GLYCAM parameters.

107
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Figure 7.7.: The structure of the wild-type protein in the free MD simulations of the wild-type
GGBP. Left: Simulation started at crystal closed state with BPC glucose; Middle: Simulation
started at crystal closed state with WPC glucose; Right: Simulation started at crystal open state
without glucose. RMSD from the closed GGBP crystal structure (2FVY) is considered. The angle
𝜃 describing the opening-closing motion of GGBP and the dihedral 𝜙 describing the twisting of
the domains (details in text) are plotted versus simulation time.

As already mentioned, the glucose molecule is strongly H-bonded in the
highly polar binding pocket, therefore, it is expected that the molecule is
polarised to a large degree, and parameters derived for a less polar and less
strongly H-bonded environment may not optimally describe this situation.
The results therefore indicate that the reparametrisation seems to be the right
way to go. That alone, however, is not a justification for this approach: more
evidence comes from the calculation of the free energies of binding/unbinding,
as described below. The fact that the newly derived parameters are able to
describe these energies for both, wild-type and mutant with largely different
energetics, is highly encouraging.

In the third simulation, which was started from the crystal open state GGBP
structure without glucose, the protein immediately closed and then changed
its conformation back to the open state after 50 ns. At this point, we like to
note that the open structure seen in the X-ray experiment [130] had been
crystallised at high salt concentration – different from our simulations that
are closer to low-salt, physiological conditions. This may be a reason why the
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stable open state structure from simulations deviates from the experimentally
observed wild-type open structure. The RMSD compared to the wild-type
crystal closed structure correspondingly dropped from 0.4 nm to 0.2 nm and
then increased up to 0.6 nm, indicating that the wild-type protein is unlikely
to remain in a closed state without the glucose.

Besides, as shown in Tab. 7.5, the structures along these three trajectories
exhibit a highly similar average 𝜃 value of 116◦ in the closed state and 152◦
in the open state similar to the 𝜃 values reported previously [114, 143]. In the
closed state, the 𝜙 value fluctuates around the crystal structure value of 65◦.
The regions of lower 𝜙 values of about 20–30◦ indicate a twisted closed state,
which we will discuss in more detail below. In the open state, the average
𝜙 value is ca. 40◦ larger than the crystal open structure value of 90◦. This
increased flexibility with respect to the crystal structure may be expected due
to the removal of the crystal packing constraints in the simulations of GGBP
in aqueous solution.

Table 7.5.: Average values of 𝜃 and 𝜙 and their deviations compared to the crystal wild-type
GGBP.

Collective variables 𝜃 𝜙

average deviation average deviation

wild-type closed state 116.3° −5.3° 51.3° −13.6°
wild-type open state 151.7° +8.6° 132.7° +43.1°
triple mutant “cc” state 127.5° +5.9° 76.8° +11.9°
triple mutant “cc*” state 124.1° +2.5° 69.7° +4.8°
triple mutant “tc” state 116.7° −4.9° 76.3° +11.4°
triple mutant “tc*” state 127.1° +5.5° 85.9° +21.0°
triple mutant “tc**” state 128.1° +6.5° 128.6° +63.7°
triple mutant “op” state 145.1° +2.0° 126.5° +36.9°
triple mutant “op*” state 154.0° +10.9° 137.0° +47.4°

Just like for the wild type, we performed a set of three MD simulations
of 1 µs each for the GGBP triple mutant. The results from the analysis of
structures along the trajectories are shown in Fig. 7.8. Recall that since no
crystal structure is available for the triple mutant, the crystal structures of the
wild-type protein, 2FVY and 2FW0 were considered as initial structures after
manual mutation of the three residues. In the following, the label ‘crystal
structure’ refers to the mutated 2FVY initial structure. Due to the mutations,
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the glucose is much less tightly bound, as the experimental 𝑘D value indicates,
and we indeed see a more dynamical behaviour already on this microsecond
scale.

As seen in Fig. 7.8A for the BPC model, the protein changes from a crystal
closed state (cc) to an open state (op, red to blue) after 70 ns. After ca. 200 ns,
the protein returns to a metastable twisted closed state (tc, blue to green).
Although the protein was open for a significant amount of time, the glucose
did not leave the binding pocket entirely. Rather, it interacted with the
residues of the C-terminal domain, so that the bound state is recovered after
closing. This state shows slightly larger values of the dihedral angle, and is
therefore called a twisted closed state labelled ‘tc’. The deviation from thewild-
type GGBP can be expected due to less stable H-bonds, as described above.
The bound structure is schematically shown in Fig. 7.9D, and comparison
with the wild type in Fig. 7.9C shows the dramatically reduced H-bonding of
this variant.

In the simulation with WPC glucose (Fig. 7.8B), an unbinding process occurs
as well as large conformational changes of the protein: first, an opening and
closing process are observed (from red to pink), the glucose leaves the binding
pocket at ca. 200 ns when the protein is in the open state during this period.
Afterwards, the protein deformed from the crystal closed state (cc∗) into a
twisted closed state (tc∗, from pink to purple), which is stable for almost
500 ns without containing glucose in the binding pocket. Finally, the protein
opens again (from purple to yellow). Note that the labels with asterisk denote
apo states, while the labels without asterisk stand for holo states, as found
during the different simulations.

To investigate the dynamics without glucose (Fig. 7.8C), a simulation was
started from the crystal open structure. The protein immediately changed to
the crystal closed state (cc∗). After 70 ns, the protein returned to the open
state (from pink to yellow) before finally reaching a super-twisted closed state
(cc∗∗, from yellow to cyan). Note that – just like in the case of the wild-type –
our simulation system has no extra salt, while the X-ray structure had been
resolved in experiments performed at high salt conditions [106, 108]. This is
a possible reason for the open state structure in simulations deviating from
the crystal open state. Furthermore, the mutations in the protein may also
have affected the structure and stability of the open state.

Events occurring along single trajectories, however, may not be conclusive
to evaluate the different parameter sets used. We therefore use the insight
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from these simulations merely to determine intermediate structural motifs,
which we will use to interpret the free-energy simulations as discussed below.
Having now stable structures for sufficiently long temporal scales allows
us to characterise these structures in solution and compare to the crystal
structure.

For both simulations with glucose, average 𝜃 values at crystal closed (red
and pink region, ca. 125◦) and open (blue and yellow region, ca. 150◦) state
agree well with the crystal wild-type GGBP (𝜃 = 122◦ and 143◦), as shown in
Tab. 7.5. The 𝜃 value at “tc” state (green region, ca. 117◦) is, like the wild-type
closed state, ca. 5◦ smaller than the crystal closed state, which indicates that
the twisted state is slightly more closed.

Larger deviations from the wild-type crystal structure are found for 𝜙 , see
Tab. 7.5. The crystal closed states have average 𝜙 values between 51◦–77◦.
The open states have 𝜙 values beyond 90◦ extending to 180◦ (Fig. 7.8C, yellow
region); the twisted closed states have an average 𝜙 value of 76◦ and 86◦;
the super-twisted closed state has an average 𝜙 value of 129◦. In summary,
compared to the closed crystal structure, the wild-type as well as the triple
mutant in solution show metastable states which are similarly closed but
twisted, while both twist directions are possible. Compared to the wild-type
open crystal structure, the structures of the wild-type and triple mutant
proteins in solution are more open and significantly more twisted.

Fig. 7.9 illustrates the average number of H-bonds between the glucose and
the side chains of the proteins. Using the BPC parameters, nearly nine H-
bonded interactions are found for the wild-type protein in the crystal closed
state, which is close to the experimental estimate [100, 145]. Only half of the
H-bonds remain between the BPC glucose and the GGBP triple mutant in the
twisted closed state. In the “tc” state, Arg213 forms an H-bond to the glucose
molecule as shown in Fig. 7.9. Additional H-bonds are formed with Arg158,
Asp236, Asn211 and Glu93. The latter is not interacting with glucose in the
wild-type. Compared to the wild-type, the triple mutant’s twisted closed
state misses H-bonds to Asp14, Asn91, Asp154 and the mutated residue 152.
As a result, the glucose hydroxyl groups are not interacting with protein
residues, and they form H-bonds with solvent water molecules instead. In
the wild-type, the glucose is additionally stabilised by two aromatic residues
Phe16 and Trp183. In the triple mutant, Phe16 moves away from the glucose
molecule and the stabilisation due to the aromatic sandwich structure is
missing, as seen in Fig. 7.9E&F.
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Figure 7.8.: The structure of the GGBP triple mutant protein in the free MD simulations of
the GGBP triple mutant. The RMSD was calculated compared to the backbone of closed wild-
type GGBP crystal structure (2FVY). The glucose is coloured with orange and the Cys-Badan
residue with red. A) Simulation with the BPC glucose started with a holo crystal closed state.
B) Simulation with the WPC glucose started with a holo crystal closed state. C) Simulation
without the glucose started with a apo crystal open state. The red region represents holo crystal
closed (cc) state; The pink region is apo crystal open (cc∗) state; The blue region represents holo
open (op) state; The yellow region represents apo open (op∗) state; The green region represents
holo twisted closed (tc) state; The purple region represents apo twisted closed (tc∗) state; The
cyan region represents apo super-twisted closed (tc∗∗) state. Schematic representation structures
D, E and F were taken from trajectory A, G and I from trajectory B, H and J from trajectory C,
respectively.
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Figure 7.9.: The average number of H-bonds between glucose and the GGBP side chains along
the free MD trajectories of wild-type GGBP with BPC glucose (A) and triple mutant with BPC
glucose (B). C) schematic representation of the H-bond pattern in wild-type at 500 ns, the protein
is at a crystal closed state and there are 9 strong H-bonds; D) schematic representation of the
H-bond pattern in the triple mutant at 750 ns, the protein is at “tc” state and there are 5 strong
H-bonds; E) The carbohydrate–𝜋 interaction between glucose and the wild-type binding pocket;
F) The carbohydrate–𝜋 interaction between glucose and the triple mutant binding pocket. The
glucose–Phe16 interaction is missing due to the mutation. Glucose – orange; Phe16 – green;
Trp183 – blue.
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7.3.3. Free energy surfaces

To explore a full free energy surface (FES) of the closing–opening motion of
the protein, metadynamics simulations of wild-type and triple mutant were
performed beyond 2.5 µs until convergence. We chose the BPC charge model
because a proper description of the bound state has to be assured for the
unbinding barrier to be overcome. This means, however, that the free energy
of solvation in the water bulk phase may be described less accurately.

The FES of wild-type GGBP is shown in Fig. 7.10A, with well defined closed
and open states denoted by a and b. The CV values at the global minimum
a, 𝜃 ≈ 120◦ and 𝜙 ≈ 30◦, agree well with the results from the free MD
simulations discussed above. The CV values of state b, 𝜃 ≈ 160◦ and 𝜙 ≈ 170◦,
are much larger than those reported for the crystal structure. As discussed in
Ref. [114], a possible reason for this deviation is that the ligand-free crystal
structure is stabilised in a more closed state due to the crystallisation reagents.
There is a free energy difference of Δ𝐺 = 9.4 kcal/mol between the closed
state and open state, and the reaction barrier is 11 kcal/mol.

We also find a “semi-closed” state c (Fig. 7.10A), which is twisted compared to
the minimum a. Such a state has never been reported before and could be part
of an alternative pathway for the closing–opening motion in the wild-type
GGBP: the closed protein firstly twists from state a towards state c, which
can be seen as an intermediate, and then opens to state b.

The FES of the triple mutant is shown in Fig. 7.10B with closed state a and
open state b. The free energy difference of 0.8 kcal/mol is slightly less than
the experimental value of ca. 2.7 kcal/mol [108], and the energy barrier of
9 kcal/mol is only slightly lower than that of the wild-type. The states D–
J discussed for the free MD simulations are distributed along the reaction
coordinate connecting the states a and b. Compared to the wild-type crystal
closed structure, the state a is a slightly more closed and twisted conformation
with 𝜃 = 115◦ and 𝜙 = 50◦.

Comparing wild-type and mutant, a slight difference in conformation and
opening mechanism is visible in Fig. 7.10: The closed state a spans a much
wider range of 𝜙 , i.e., this structure can exist in more twisted conformations,
while the global minimum of the mutant is much more localised in the CV
space. Further, the opening motion seems to follow slightly different path-
ways: While a twisting motion along 𝜙 is followed by an opening of the
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Figure 7.10.: A) The free energy landscape of the wild-type GGBP with collective variables 𝜃
and 𝜙 . The label with circle represents the holo state, square represents the apo state. State A
in circle and B in the square is picked up from free MD trajectories of the wild-type GGBP. B)
The free energy landscape of the GGBP-Badan triple mutant with collective variables 𝜃 and 𝜙 .
States D to J are taken from three free MD trajectories of the GGBP triple mutant, and represent
the crystal ‘cc’, ‘cc∗’, ‘op’, ‘op*’, ‘tc’, ‘tc∗’ and ‘tc∗∗’ state as shown in Fig. 7.8, respectively. States
A and B in the triangles indicate wild-type crystal closed and open structures, and the white
arrows indicate pathways between the closed and the open states. The corresponding schematic
representations of local minima a and b for wild-type and triple mutant are shown as A–a, A–b,
B–a and B–b.

pocket with increasing 𝜃 in the wild-type, the motion in the mutant follows
the opposite order.

There are two potentially small imperfections to note. First, the computed en-
ergetics clearly depend on the force field parameters. The glucose molecule is
located in an unusually strongly polarising environment, which is an extreme
situation to deal with. In such a case, the general purpose parameter set does
not depict the true distribution of charge, leading to wrong energetics and
potentially to qualitative errors in simulations. Here, we have reparametrised
the force field charges, which fixed the qualitative failure of the previous
simulations. However, with the BPC charges, a glucose molecule is overpo-
larised in water, which may result in an overstabilisation in water. Second,
the position of the glucose molecule is not accessible from the applied CVs.
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Figure 7.11.: Two series of free energy simulations for protein structural changes from holo
closed state to apo open state. Orange arrows – Free energies of holo protein opening from
metadynamics. Red arrows – ΔΔ𝐺binding from alchemical simulations. Blue arrows – GLYCAM
glucose unbinding energies from funnel metadynamics.

As seen in Fig. 7.12, the glucose remained at the binding site in both open
and close state. The advantage of this is that the closed state is always the
glucose bound state in the simulations, and there is no mixture of closed
holo and apo states. Therefore, the barrier and free energy of binding in the
closed state are described correctly. This is probably due to the fact that the
simulations were started with the closed holo states and the reparametrised
force field charges were taken for the glucose, and the glucose remained in
the binding site during the process of protein opening and closing. For the
open state, however, a small error may arise because the unbinding is not
described fully.

To account for the over-polarisation of glucose in water and the failure
of glucose to unbind in the open state, we compute the glucose binding
free energy difference from BPC to GLYCAM charge sets, and the glucose
unbinding energy with the GLYCAM charge set, as shown in Tab. 7.6. In this
way, the free energies of glucose unbinding accompanied by opening of the
protein pocket were corrected, see Fig. 7.11 for the results.

We find a reaction free energy of 15.1 kcal/mol for the wild-type and 3.6 kcal/-
mol for the triple mutant. Notably, in the holo open state b, when the glucose
leaves the binding pocket, the glucose polarisation by the protein will grad-
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Figure 7.12.: Histogram of distance (Å) between glucose and binding pocket when sampling at
state a (red) and state b (blue).

Table 7.6.: Glucose binding free energy difference and unbinding energy (kcal/mol).

ΔΔ𝐺binding Δ𝐺unbinding

wild-type 0.5 5.2
triple mutant 0.2 2.6

ually decrease, and hence the glucose charges will reduce to the GLYCAM
charges. This means, with GLYCAM charges in our free energy simulations
series, the glucose unbinding energy is slightly underestimated when the
glucose starts to leave. Therefore, the reaction free energy between holo
closed state and apo open state may be slightly higher than obtained from
free energy simulations series.

Note that the experimentally measured 𝑘D may not only describe the process
from holo close state to apo open state, rather it may also correspond to the
processes from holo close state to apo close state or from holo open state to
apo open state, indicated by the large error bars [106, 108, 130]. For both of
the latter situations, the protein conformational changes are missing, leading
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to a smaller reaction free energy. Therefore, in these cases, the experimental
Δ𝐺 will be smaller than our binding free energy results. Nevertheless, the
agreement with experiment is remarkable, and the computed free energy
differences are in line with the qualitative mechanistic picture emerging from
the free simulations discussed above: the H-bonded network is destabilised in
the mutant, leading to a much weaker binding of glucose, which qualitatively
explains the difference in the experimentally reported 𝑘D values.

To resolve the problem altogether, an additional CV describing the glucose
position is necessary. However, for that, either a 3Dmetadynamics simulation
needs to be performed (which is computationally highly expensive) or the
protein motion needs to be described by only one CV, which carries the risk
of missing important regions in the conformational space or of losing the easy
interpretability of the result by an abstract CV. Further, a change in glucose
polarisation along the reaction coordinate would have to be considered in
this case as well, which is a difficult task that would require an explicitly
polarisable force field. Still, we believe that our estimates are sufficiently
accurate to allow for an insight into the mechanisms, and in particular, to
understand the differences between the wild-type and the mutant.

7.3.4. Conformations of Badan

Besides understanding the change in binding, another key aim of this study
is the investigation of Badan conformations and their possible relation to its
fluorescence properties. The conformational changes in the protein impact
the properties of the excited states of Badan, and it was suggested that the
dye resides inside a hydrophobic environment in the protein if and only
if a glucose molecule is bound [108, 146]. Analysis of the MD trajectories
allows to investigate the dynamics of the chromophore coupled to the protein
conformational changes in more detail.

To this end, 2D histograms were obtained with one variable describing the
protein conformation and the other variable describing the orientation of
Badan by Monja Sokolov. The the relative frequencies of appearance of con-
formations of protein and Badan, together with representative conformations
of Badan are presented in Fig. 7.13. These data are derived from the MD
simulations of the GGBP triple mutant, see also Fig. 7.8. The binding of glu-
cose correlates with the conformation of Badan clearly: Badan is outside the
binding pocket when a glucose molecule is bound, being exposed to a more

118



7.3. Results and Discussion

hydrophilic environment (Fig. 7.13A&B) For the protein apo state, Badan is
mostly located inside the binding pocket when the binding pocket is open
(Fig. 7.13D), in which case it is exposed to a probably more hydrophobic
environment (Fig. 7.13C&D). For the apo closed state (Fig. 7.13C), the dye is
found in- and outside of the binding pocket.

Therefore, the environment of Badan changes upon glucose binding clearly,
and is more polarisable, which most probably is responsible for the increase
of fluorescence observed experimentally. It was also observed that in the
stable conformation of Badan folded inside the binding pocket in absence of
glucose, the aromatic core of the dye and Trp183 are in close proximity. This
points to another factor for the intensity increase upon glucose binding – the
presence of Trp183 in the binding pocket, which is a known quencher of the
fluorescence of Badan [147, 148].
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Figure 7.13.: 2D histogram of protein conformation and Badan orientation (created with Python 3.9) with correspond schematic presentations of
Badan in hydrophobic/hydrophilic environment. In the normalised histograms, the x-axis represents the line connecting minima a and b from
the metadynamics simulations. It is scaled such that 0 corresponds to a and 1 corresponds to b. The y-axis shows the distance between the top
of Badan and Pro239. A distance smaller than 15 Å indicates that Badan is inside the binding pocket and a larger distance means that Badan
is outside. Protein hydrophobic region–blue; Protein hydrophilic region–yellow; Cys-Badan–red; Glucose–orange. Water molecules within
4 Å away from the Cys-Badan molecule are described as yellow licorice shapes. Structure A to D were take from Fig. 7.8A-E,A-F,B-G and B-I
respectively. The 2D histograms were done by Monja Sokolov
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7.4. Conclusion and Outlook

In this work, we aimed at a detailed explanation of the mechanisms of glucose
binding in GGBP using classical MD simulations and enhanced sampling
techniques. A particular goal is to understand the changes upon mutation,
which removes four H-bonds, leading to a drastic increase of 𝑘D.

Up to now, no crystal structure of the triple mutant is available, therefore,
our simulations uncover the molecular details of the mutant including Badan
conformations for the first time. In particular, the simulations show how the
conformation of Badan is coupled to the opening and closing of the binding
pocket, and to the presence of glucose. So far, it had been assumed that the
environment of Badan is more hydrophobic when the protein is in the closed
conformation while binding the glucose [108]. Our simulations indicate that
the opposite is true in fact: in the unbound state, Badan interacts with a Trp
side chain, leading to the quenching of fluorescence.

Force field charges turned out to be critical parameters. The standard charge
set, developed for bulk solvent, was unable to describe the binding situation in
this highly polar and charged environment. Correction of charges by means
of reparametrisation lead to a stable binding pocket as well as free energies of
pocket opening in a very good agreement with experimental estimates. The
series of free energy simulations designed in this work provided additional
insight into the processes of interest taking place in such complex protein
systems. Hence, such simulations appear capable of supporting the efforts of
rational design of new glucose sensors.

The knowledge of the conformational dynamics of Badan allows for further
work to investigate the changes of fluorescence of Badan in detail. That will
involve excited-state QM/MM simulations using the semi-empirical TD-LC-
DFTB method to describe the dynamics of Badan in its excited states.

In this work, for the glucose polarisation, the GPC as well as QM/MM glucose
charge models were calculated by Monja Sokolov, Ziwei Pang computed the WPC
and the GPC model, and conducted the evaluation of the repolarised charge
sets. We declare that the simulation and analysis work of the classical MD
simulations were carried out by both of us. The localisation of the Badan fluo-
rophore was mainly done by Monja Sokolov, and Ziwei Pang only undertook the
definition of the hydrophilic/hydrophobic environment in which the fluorophore
was located.
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8.1. Introduction

In principle, quantum chemical methods can quantitatively describe almost
all the properties of various molecular systems. However, for molecular
systems such as biomolecules, which contain a large number of atoms, the
computational effort required to solve Schrödinger’s equation becomes so
large that even with large storage capacity and high computing speed tools,
in practice, the solution process is still difficult and in many cases almost
impossible. Although, with the development of the computational chemistry
discipline, semi-empirical methods such as DFTB have emerged that can be
used for QM calculations of biomolecular systems. However, as summarised
in chapter 3, fast computational speed is often accompanied by a loss of
accuracy.

Thanks to recent rapid developments in machine learning, we now have new
means to model results of QM calculations on large systems. Current applica-
tions of machine learning methods to quantum chemical calculations include
potential energy fitting, optimisation of the QM calculation accuracy, etc. The
algorithms employed contain linear regression, statistical data analysis, artifi-
cial neural networks, etc. In this chapter, we applied the machine learning
approach to learn the predictions of the LC-DFTB QM method to explore and
optimise the excited state potential energy surfaces of 4-Aminophthalimide
(4-AP) fluorescent molecules in different environments.
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8.1.1. The 4-Aminophthalimide Fluorophore

The 4-AP system is a well known fluorescent probe molecule that is widely
used in nanomaterials, microtissues and biological systems due to its fluo-
rescence lifetime, quantum yield and sensitivity of the emission wavelength
to the environment [149–151]. The fluorescence spectra of these molecules
were reported to be significantly red-shifted in polar solvents compared
to non-polar solvents, especially in aqueous solutions, suggesting a strong
interaction between the molecules and the water [151].

Figure 8.1.: Chemical structure of 4-Aminophthalimide.

Specifically, in non-polar solvents, 4-AP is a strongly fluorescent molecule.
The fluorescence quantum yield of 4-AP changes slightly with increasing
solvent polarity, remaining at 0.73 to 0.63. In polar solvents, the fluorescence
quantum yield of 4-AP decreases rapidly due to hydrogen bonding between
the excited state molecules and the solvent molecules, with a quantum yield
of only 0.01 in water. In addition, the excited state of 4-AP has a long lifetime
of about 14-15 ns in non-polar solvents, which decreases rapidly in polar
solvents, to about 1 ns in water [152, 153]. As highly efficient fluorescent dyes,
4-AP and its derivatives have great potential to replace Badan in the design
of novel GGBP-based blood glucose sensors due to their high sensitivity to
the environment.

8.1.2. Motivation

In earlier studies, Monja Sokolov identified the problem of LC-DFTB inac-
curately ordering excited states. Specifically, as shown in Table. 8.1, when
calculating the first excited state of the 4-AP, the largest oscillator strength
was achieved in the S1 state using the DFT method with B3LYP functional
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or using the LC-DFT with CAM-B3LYP functional, whereas when applying
LC-DFTB, the largest oscillator strength appeared in the S3 state. Therefore,
when calculating the S1 state of 4-AP with LC-DFTB, we need to focus on the
S3 state rather than the S1 state in the results.

Table 8.1.: Excited state energies (eV) of 4-AP with oscillator strengths (OS) optimised with
LC-DFTB (pure electronical parameters) in vacuo computed with different methods.*

Time (ps) LC-DFTB** B3LYP CAM-B3LYP
Energy OS Energy OS Energy OS

S1 3.78 0.0000 3.74 0.0660 4.16 0.0760
S2 4.10 0.0002 3.77 0.0074 4.20 0.0018
S3 4.14 0.0680 4.38 0.0000 4.72 0.0210

*done by Monja Sokolov. **with el.params. [154]

Besides, pilot simulations with the LC-DFTB method also showed another
problem for the 4-AP in vacuo. With pure electronical parameters (el. pa-
rameters), for 4-AP in vacuo, it was able to follow the excited state during
the QM/MM calculation. However, when the excitation energies were subse-
quently computed with the el. parameters on the same QM/MM trajectory,
it can not follow the same state. Table. 8.2 illustrates changes in oscillator
strengths corresponding to S1, S2 and S3 states over simulation time from 7 fs
to 11 fs. It is obvious that the LC-DFTB began to follow the S2 state after 9 fs,
i.e. the energy of the S2 state after 9 fs is the energy of the S3 state in the
LC-DFTB results (the energy of the S1 state in B3LYP/CAM-B3LYP results).
Therefore, the energy of the excited state after this time needs to be revised.
To this end, we corrected the S3 energy with the S2 energy when the S2 state
has the largest oscillator strength, and the corrected state (hereafter called
as “target” state) is presented as an orange curve in Fig. 8.2. Note that this
problem does not only occur when 4-AP is in vacuum, but also when 4-AP is
in DMSO as well as in water, as detailed in the Appendix.A.

Such a crossing of excited states does not arise for commonly used QM
approaches like DFT/B3LYP. However, since LC-DFTB is two to three orders
of magnitude faster than DFT [155], and showed to be able to reproduce
trends correctly [75], it is advantageous to optimise the LC-DFTB method.

To efficiently address the state-unfollowing issue and further speed up the
calculations, we used artificial neural networks to learn the data sets from
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Figure 8.2.: The presence of energy level crossing of 4-AP in vacuo. The red curve indicates the
third excited state (S3) energy surface from the QM/MM calculation with LC-DFTB approach.
The orange curve indicates the S3 state after correction.

Table 8.2.: Excited state energies (eV) of 4-AP with oscillator strengths (OS) from LC-DFTB in
vacuo.

Time (ps) S1 S2 S3
Energy OS Energy OS Energy OS

7 2.932 0.0001 3.160 0.0000 3.238 0.0631
8 2.919 0.0002 3.139 0.0002 3.185 0.0629
9 2.955 0.0002 3.168 0.0145 3.178 0.0495
10 3.034 0.0005 3.205 0.0641 3.25 0.0014
11 3.144 0.0009 3.269 0.0667 3.365 0.0006

the pilot calculations and trained machines that can predict the excited state
energies of 4-AP by feeding excited state structures.

8.2. Workflow

In pilot QM/MM simulations, 4-AP was calculated in vacuo, dimethyl sul-
foxide (DMSO), and water. Due to the different state-ordering in LC-DFTB
as mentioned, the focus on experimental S1 state thus became a focus on
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S3 in vacuo, S2 and S3 in DMSO, and S1 in water. All four simulation were
performed for 1 ns producing 10,000 frames each with Gromacs 2021 [94] for
the MM part and DFTB+ 20.1 [138] for the QM part. The repulsive OB2 (base)
parameters for the LC-DFTB were taken from Ref. [154].

Figure 8.3.: Schematic view of the workflow. The black arrows represent the process of training
machines. The red arrows represent the process of applying trained machines to predict excited
state energies that can follow correct excited states.

Afterwards, for each case, excited state calculations were carried out for each
of these 10,000 structures by LC-DFTB with el. parameters. Subsequently,
we applied 8,000 LC-DFTB output data as training sets to train the machine
(10% of which was used for validation) and 2,000 output data as test sets. The
machine was coded by Li et al. [156], and corresponding scripts were created
by Mila Krämer. The ANN initially contains in total four hidden layers, each
with 30 neurons. The training stage had 1,000 epochs, and the batch size was
set to 64.

To evaluate the machine model, four sets of QM/MM trajectories and obtained
10,000 structures for each model with a time interval of one femtosecond were
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additionally performed. Their corresponding excited states were calculated
by LC-DFTB with el. parameters and the excitation energies with largest
oscillator strength were selected as “target” excited state energies. Meanwhile,
the same structures were sent to the trained machine model, and the excited
state energies were produced as “predictions”.

8.3. Results and Discussion

In machine learning, the coefficient of determination (R2) is commonly used
to reflect the accuracy of a model by comparing the error of the evaluated
model with the error of the null model as,

R2 = 1 −
∑

𝑖 (𝑦𝑖 − 𝑦𝑖 )2∑
𝑖 (𝑦𝑖 − 𝑦𝑖 )2 . (8.1)

Here, the error of the null model (denominator) indicates the mean of the
reference data distribution. The better the model fit, the closer the R2 value is
to 1, the more accurate the model being evaluated. Conversely, the worse the
model, the closer the R2 value is to 0, or even negative. Table. 8.3 illustrates
the coefficient of determination for the machine test sets. It is clear that
both machines for the 4-AP in vacuo at S3 state and DMSO at S3 states were
well-trained. Besides, compared to the former two machines, the one trained
in DMSO at S2 state has lower correlations. It is worth noting that the test
sets of the machine that trained 4-AP in water at S1 state showed a very low
correlation, indicating a bad machine model in this case.

Table 8.3.: Coefficient of determination for machine test sets

Environment State of interest R2
test

vacuo S3 0.9228
DMSO S2 0.8557
DMSO S3 0.9486
water S1 0.6657

To further evaluate the well-trained machine and investigate the possible
reasons for producing bad machines, all four models were employed to predict
corresponding excited state energies as follows.
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Figure 8.4.: Correlation diagrams between predictions from DFTB+ (red) as well as the trained
machine (blue), and the reference “target” excited state energies. a). in vacuo, focusing on S3
state. b). in DMSO, focusing on S2 state. c). in DMSO, focusing on S3 state. d). in water, focusing
on S1 state.

Correlations between excited state energy predictions from LC-DFTB and
from the trained machine model as well as excited state energy references
are shown in Fig. 8.4. Compared with the LC-DFTB results, all the excited
states predicted by the machine model fit the reference excited states better.
In particular, the machine models trained in vacuo and DMSO predict excited
state energies very accurately, although the machine trained in DMSO for
the S2 state performed poorly in its test sets. Interestingly, as shown in
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Figure 8.5.: Correction for the energy level crossing of 4-AP in vacuo (S3). The red curve is from
LC-DFTB calculations using DFTB+. The blue curve is prediction from the trained machine. The
orange curve represents the “target” energy surface of the excited state and is from the DFTB+
output for states with the largest oscillation strength.

Figure 8.6.: Correction for the energy level crossing of 4-AP in DMSO (S2). The red curve is from
LC-DFTB calculations using DFTB+. The blue curve is prediction from the trained machine. The
orange curve represents the “target” energy surface of the excited state and is from the DFTB+
output for states with the largest oscillation strength.
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Figure 8.7.: Correction for the energy level crossing of 4-AP in DMSO (S3). The red curve is from
LC-DFTB calculations using DFTB+. The blue curve is prediction from the trained machine. The
orange curve represents the “target” energy surface of the excited state and is from the DFTB+
output for states with the largest oscillation strength.

Figure 8.8.: Correction for the energy level crossing of 4-AP in water (S1). The red curve is from
LC-DFTB calculations using DFTB+. The blue curve is prediction from the trained machine. The
orange curve represents the “target” energy surface of the excited state and is from the DFTB+
output for states with the largest oscillation strength.
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Fig. 8.4d, despite the machine trained in water for the S1 state has a bad
accuracy, it is still possible to substantially correct energy deviations by
LC-DFTB-calculations due to the “target” state unfollowing issue.

Fig. 8.5–8.8 illustrate applying different machine models to correct the excited
state unfollowing problems generated by LC-DFTB in different environments.
It was found that the machine correctly predicts the target state for all the
structures although the LC-DFTB states cross. Note that, for the 4-AP in water,
the 10 ps evaluation trajectory showed that the largest oscillator strengths
for all frames were found for the S2 and S3 states, while we focused on the S1
state in LC-DFTB calculations. That is, the calculation followed the wrong
state during the whole simulation. Nevertheless, by tracking the excited
state energy surface predicted by the machine model, as shown in Fig. 8.8, it
can be inferred that the machine model can effectively fix the excited state
unfollowing problem.

It is worthy to point out that for poor machine models trained in water,
one possible reason is that underfitting has happened. As elaborated in
section 8.1.1, the 4-AP can interact strongly with water, which leads to the
presence of some substable 4-AP-water complexes (4-AP-(H2O)1,2) in aqueous
solutions [157]. In these complexes, alternatives of H-bonds length play a key
role in excited state energy changes. It has been reported that, the H-bond
of 4-AP-(H2O)2 is shorter than that of 4-AP-H2O, resulting in a significant
red shift of the excited state [158]. However, in different 4-AP complexes,
the 4-AP has only slight structural changes. For example, when H-bonds
are formed as C––O···H–O between 4-AP and water, from 4-AP-H2O to 4-
AP-(H2O)2, the C––O length changes only from 1.250 Å to 1.256 Å, whereas
the O···H length changes from 1.828 Å to 1.779 Å, resulting in a red-shift of
wavelength of 29 nm at excited state. Therefore, in this case, it is hard for
machine to learn the excited state energies with only difference structures
due to the solvent. To train a machine model comparable to those trained
in vacuo and DMSO, either a super large training sets is required or solvent
environment is included in the training sets.

Note that in our trained machine models, the excited state energies of the
4-AP were predicted by only inputting their structures. However, in practice,
training machines that can predict excited state energies in different solvent
environments requires additional inputs of environment parameters, such as
the point charges used in Chapter 7. However, including the environment
into ANN algorithms is still a challenge. For technical reasons, the input
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representing the environment should be as compact as possible. One possi-
bility could be even to learn the difference between the excitation energies in
vacuum and within the environment by a neural network only on the basis of
the geometry of the dye and then add this contribution during a simulation.
Another possibility could be to learn the excitation energies within the envi-
ronment or the environmental shift by means of the electrostatic potential
induced by the environment on the atoms of the dye as additional input to
the machine. The work presented here represents the basis for such further
development. It also demonstrated the feasibility of using the ANN algorithm
to predict accurate excited states based on the molecular structure of 4-AP,
which is still of considerable interest.

8.4. Assessment

In this work, we applied the ANN algorithm to successfully train a set of
machines to correctly predict the target excited state of 4-AP based on LC-
DFTB data. In contrast to LC-DFTB, the machine only knows the target state
on which it was trained while in LC-DFTB calculations the state ordering
changes during a simulation which makes it difficult to follow the target state.
The models trained in vacuo as well as in DMSO solvents can accurately
correct the excited states when such problem happens. A larger training data
set is necessary for the machine training in water.

In addition, further studies could incorporate gradients as well as solvent
point charges to achieve the production of continuousML/MM trajectory with
correct excited state description in different environments. This improves
not only for the computational time needed by LC-DFTB, but also avoids the
problem of crossing excited states.
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In this work, we investigated biomolecular systems using several multiscale
modelling approaches. The study explored and revealed thermodynamic as
well as kinetic related problems that can not be explained in laboratory-based
experiments. Thus, this work has implications not only for the development
of the discipline of computational chemistry, but also for the continuation of
relevant laboratory experiments.

In Chapter 6, we explored the reaction mechanism of host-guest chemistry
using classical MD simulations. In the study for [4+4] imine cages, we per-
formed well-tempered MetaD to calculate the free energy surface of the
uptake of ammonium guest ions with different sizes in 3-H, 3-Me and 3-Et
imine cages, respectively. By comparing the activation energy of the guest
uptake, we concluded that as the window size of the host cage became larger,
the smaller the guest ion, the easier it was for the guest to leave the cage.
This result was consistent with the laboratory experiments (the larger the
size of the guest, the smaller the size of the cage and the longer it took for
the guest to dissociate completely). Furthermore, we identified two possible
mechanisms behind the ammonium ion uptake process. The first is a “solvent
competition” mechanism, which often acts when the guest is located within
the cage, and there is enough space in the cavity for the solvent molecules to
enter, i.e. the guest volume is smaller, and the cage cavity is larger. In this
case, more polar solvent molecules will crowd out the ammonium ions and
thus gradually occupy the entire cage, eventually causing the guest to be
squeezed out. The second mechanism occurs when the guest occupies a larger
proportion of the cage cavity. In this case, the ammonium ions located inside
the cage are pulled out due to the solvation effect of the surrounding solvent
molecules outside the cage. In addition, we identified a cage deformation
mechanism that often happens when the window size of the cage is small
and the guest is large. In this case, when the guest crosses the window, the
cage is locally deformed, thus inhibiting the process of the guest uptake.
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In addition, the transfer of liquid nitrogen in [2+3] imine cages has been
investigated using the FM method. The free energy surface shows that
nitrogen molecules can transfer between hosts in two pathways. In the
pathway that follows the “neighbour cage” mechanism, we demonstrated that
the nitrogen molecules did not pass directly through the 𝜋-𝜋 stacking region
but passed through the tunnels on the side. Besides, we found that the guest
molecule did not easily pass through such pathway when the hydrogen atoms
on the butyl substituent of the cage were replaced by fluorine atoms for F-
cages and HF-cages. One possible reason is as such atomic substitution occurs,
the cage side chain becomes larger and thus blocks the passage on either side
of the 𝜋-𝜋 stacking region. In addition, we identified a pathway whereby
the guest entered the cage gap in the crystal before entering other cages.
Such process is called as the “void cage” mechanism. It is important to note
that there is a “void cage” consisting of six side chains of neighbouring cages
in the gap. In fact, we found that only the nitrogen molecule in the F-cage
crystal entered this cage strictly before entering the other cages. However,
in the HF- and H-cages, the guest tended to enter the gap region outside the
“void cage”. We concluded that the reason for this phenomenon was similar
to that of the “neighbour cage” mechanism, the blocking effect of substituted
fluorine atoms.

In Chapter 7, we revealed the mechanism of a glucose binding protein-based
fluorescence probe using QM calculations as well as MD simulations. Due to
the high polarity of the protein binding pocket, we repolarised the glucose
charges and solved the problem of the glucose unstable presence at the binding
sites. In the following classical MD simulations, we obtained molecular
structures similar to the crystal structure in the holo-closed state, and also, for
the first time, we modelled the GGBP-Badan triple mutant and successfully
predicted its multiple metastable structures. Subsequently, we performedwell-
tempered MetaD, alchemical calculation, and FM approaches for wild-type
GGBP and GGBP triple mutant to calculate the glucose unbinding process
in steps and obtained slightly higher free energies than those obtained in
the experiments. We point out that the main reason for the discrepancy is
the failure of the experiment to focus purely on the change of the protein
from its holo closed state to its apo open state. Also, the solvents used in the
experiments differ from the simulations, and the different solvation effects
affect the glucose unbinding energy as well as the protein conformation.
Finally, we tentatively explored the position of the Badan fluorophore for
different states of the GGBP triple mutant. We found that when glucose is in
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the bound state, the fluorophore tends to be located outside the binding pocket,
whereas when glucose is absent, the fluorophore prefers to be enveloped
inside the binding pocket. This finding contradicts previous hypotheses, and
we conclude that the fluorescence quenching seen in the experiments may be
due to tryptophane in the binding pocket. To conclude, in this work, we have
successfully explained the mechanism of this fluorescent probe. However,
further research is still required to optimise this type of fluorescent probe
(e.g. the position of the fluorophore, or the use of alternative fluorophores,
etc.), which may be effectively implemented in the future through machine
learning. Nevertheless, our work is a milestone in theoretically setting a
precedent for studying such fluorescent probes.

In Chapter 8, we investigated the conformational dynamics of the 4-AP ex-
cited state using amachine learning with ANN algorithm. We found that, with
the same training set volume, machine models trained in vacuo and DMSO
solvent have good accuracy, while those trained in aqueous solutions have
poor accuracy. We then performed evaluations on the four machine models,
and the results showed that all machines could solve the “target” excited
states unfollowing issue caused by LC-DFTB. Similar to their performance in
corresponding test sets, the machines trained in vacuo and DMSO can give
convincing results, while the machines trained in aqueous solution can not
accurately predict the excited states. We deduce that one possible reason is
that the strong hydrogen bonding interaction of 4-AP with water molecules
in an aqueous solution makes 4-AP presents as 4-AP-water complexes, lead-
ing to excited state energies more related to the H-bond length than the
4-AP structure. Thus, a super large training sets or a training sets includes
solvent environment is necessary to improve the accuracy of the machine.
Nevertheless, as a preliminary attempt, the present work successfully verified
the feasibility of using ANN algorithm to follow and calculate excited states
accurately. Furthermore, energy gradients as well as solvent environment
could be introduced in future machines to obtain continuous trajectories of
molecular excited states with solvent effects.

In summary, the above three aspects of this work form a blueprint for studying
biomolecular systems from molecular mechanics to quantum mechanics. At
the molecular mechanics level, we attempted enhanced sampling methods
based on MD simulations to reveal receptor-ligand interactions at larger time
scales and in larger systems; at the quantum mechanics level, we applied
a combination of machine learning and semi-empirical LC-DFTB to ensure
computational accuracy while being 2-3 orders of magnitude faster than
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classical DFT calculations. Together, the two have theoretical implications
from a broad perspective, for instance, the design of fluorescent probes,
targeting drugs and so on.
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A. Appendix

A.1. Evaluation of the BPC glucose with different
cut-off

The atoms within different cut-off range were selected on the “closed” wild-
type GGBP crystal structure in the VMD, andwere replaced by their respective
force field point charges. After a set of QM calculation at the HF/6-311G*
level on the glucose molecule, these polarised glucose molecules have un-
dergone a set of 50 ns MD simulations in an explicit aqueous solution. The
average number of H-bonds generated between water molecules and these
PPC glucose molecules are shown in Table. A.1. The variance of population
standard deviation of these results is 0.02, hence the cut-off distance at such
range has few effect on the glucose charge polarisation.

Table A.1.: The average number of H-bonds generated between water molecules and BPC glucose
molecules with different cut-off.

Cut-off range Average number of H-bonds

4Å with full residues 10.80
5Å with full residues 10.77

5Å with broken residues 10.46
6Å with broken residues 10.76
7Å with broken residues 10.44
8Å with broken residues 10.68
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A. Appendix

A.2. Repolarised glucose charges with evaluation in
free MD with water

Figure A.1.: A). The number of hydrogen bonds generated between water molecules and the
glucose polarised in different environments with all approaches. B). The normal distribution
histogram of hydrogen bonds obtained by the different glucose charges. The number in the
square brackets indicates the average number of hydrogen bonds of each corresponding glucose.
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Table A.2.: Polarised charges computed for the glucose molecule with the various methods.
atom pocket wt∗ pocket wt∗ pocket triple∗ implicit gas QM/MM∗ QM/MM∗ Glycam

(6-311G*) (6-311G**) (6-311G*) water phase pocket water
H1 0.540 0.521 0.544 0.483 0.449 0.437 0.413 0.445
O1 −0.747 −0.719 −0.748 −0.708 −0.649 −0.619 −0.625 −0.639
C1 0.347 0.338 0.257 0.414 0.303 0.464 0.451 0.384
H2 0.098 0.098 0.119 0.040 0.053 0.007 0.029 0.
O2 −0.542 −0.544 −0.462 −0.487 −0.400 −0.499 −0.486 −0.471
C2 0.124 0.128 0.022 0.113 0.057 0.144 0.155 0.225
H3 0.140 0.139 0.126 0.089 0.108 0.056 0.056 0.
C3 0.245 0.232 0.105 0.255 0.172 0.137 0.131 0.282
H4 0.031 0.032 0.096 0.047 0.072 0.045 0.058 0.
H5 0.031 0.032 0.096 0.047 0.072 0.059 0.055 0.
O3 −0.835 −0.809 −0.805 −0.730 −0.661 −0.640 −0.626 −0.688
H6 0.533 0.515 0.534 0.450 0.416 0.419 0.406 0.424
C4 0.052 0.052 0.063 0.098 0.077 0.166 0.157 0.276
H7 0.110 0.110 0.125 0.103 0.114 0.045 0.064 0.
O4 −0.717 −0.692 −0.685 −0.748 −0.687 −0.609 −0.626 −0.714
H8 0.516 0.497 0.518 0.500 0.478 0.421 0.407 0.440
C5 0.156 0.135 0.112 0.219 0.116 0.176 0.160 0.284
H9 0.138 0.143 0.160 0.078 0.107 0.053 0.062 0.
O5 −0.806 −0.778 −0.832 −0.741 −0.677 −0.690 −0.624 −0.709
H10 0.522 0.503 0.533 0.487 0.464 0.449 0.406 0.432
C6 0.248 0.246 0.318 0.138 0.110 0.129 0.120 0.310
H11 0.095 0.093 0.095 0.103 0.122 0.080 0.073 0.
O6 −0.858 −0.838 −0.868 −0.724 −0.669 −0.684 −0.623 −0.718
H12 0.581 0.568 0.575 0.474 0.451 0.455 0.407 0.437
*done by Monja Sokolov155



A. Appendix

A.3. Alchemical calculations for glucose binding
free energy

Figure A.2.: Thermodynamics cycle for glucose binding free energy. Δ𝐺1 and Δ𝐺2 is the GGBP
binding free energy for GLYCAMglucose and BPC glucose. Δ𝐺𝑝𝑜𝑐𝑘𝑒𝑡

𝑎𝑙𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙
is the energy difference

for bound glucose when passing from the GLYCAM charges to BPC charges in alchemical
calculations. Δ𝐺𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑎𝑙𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙
is the energy difference for unbound glucose when passing from the

GLYCAM charges to BPC charges in alchemical calculations.

According to the thermodynamics cycle,

Δ𝐺1 + Δ𝐺
pocket
alchemical = Δ𝐺2 + Δ𝐺

pocket
alchemical (A.1)

Hence, the glucose binding free energy difference between BPC glucose and
GLYCAM glucose is,

ΔΔ𝐺binding = Δ𝐺1 − Δ𝐺2 = Δ𝐺
pocket
alchemical − Δ𝐺 solvent

alchemical (A.2)

Table A.3.: Binding free energy difference (kcal/mol) from BPC glucose to GLYCAM glucose.

Δ𝐺
pocket
alchemical Δ𝐺 solvent

alchemical ΔΔ𝐺binding

wild-type 2.0 1.5 0.5
triple mutant 1.2 1.0 0.2
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A.4. Excited state wrong following by LC-DFTB with el.parameters

A.4. Excited state wrong following by LC-DFTB with
el.parameters

Figure A.3.: Oscillator strengths computed with LC-DFTB (el.parameters) along the trajectory
of 4-AP in different environments. a). In vacuo, computed along the S3 trajectory, with correct
state following rate of 17.26%. b). In DMSO, computed along the S2 trajectory with correct
state following rate of 0.76%. c). In DMSO, computed along the S3 trajectory with correct state
following rate of 13.62%. d). In water, computed along the S1 trajectory. The correct state was
not followed. S1–green, S2–red, S3–blue.
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B. Appendix: Codes

B.1. Plumed inputs for the Host-Guest Chemistry

Plumed input file for 3-Et cage with NEt4+ (Chapter 6.1.2):
1 UNITS LENGTH=A TIME=0.001 # Angstrom and femtoseconds

2

3 # Definition for the center of mass of the host and the guest

4 cage_center: COM ATOMS=4,5,13,17,25,29,40,41,49,53,61,65,76,77,85,89,97,101,112,

5 113,121,125,133,137,148,149,157,161,169,173,184,185,193,197,205,209,220,221,229,

6 233,241,245,256,257,265,269,277,281

7 ligand_center: COM ATOMS=289-317

8

9 d1: DISTANCE ATOMS=cage_center,ligand_center

10 d2: DISTANCE ATOMS=cage_center,3998

11

12 # keep the guest not sample the outside of the host

13 UPPER_WALLS ARG=d1 AT=+7.0 KAPPA=500.0 EXP=2 LABEL=uwall

14

15 # keep the counter ions out side the host

16 LOWER_WALLS ARG=d2 AT=+5.0 KAPPA=500.0 EXP=2 LABEL=lwall

17

18 METAD ...

19 LABEL=metad

20 ARG=d1

21 PACE=1000

22 HEIGHT=0.5

23 SIGMA=0.2

24 GRID_MIN=0.0

25 GRID_MAX=30.0

26 GRID_BIN=1000

27 FILE=HILLS

28 BIASFACTOR=100

29 TEMP=298.0

30 ... METAD

31

32 PRINT STRIDE=100 FILE=COLVAR ARG=d1,d2,metad.*,uwall.bias,lwall.bias
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Plumed input file for 3-Et cage with NMe4+ (Chapter 6.1.2):
1 UNITS LENGTH=A TIME=0.001 # Angstrom and femtoseconds

2

3 # Definition for the center of mass of the host and the guest

4 cage_center: COM ATOMS=4,5,13,17,25,29,40,41,49,53,61,65,76,77,85,89,97,101,112,

5 113,121,125,133,137,148,149,157,161,169,173,184,185,193,197,205,209,220,221,229,

6 233,241,245,256,257,265,269,277,281

7 ligand_center: COM ATOMS=289-305

8

9 d1: DISTANCE ATOMS=cage_center,ligand_center

10 d2: DISTANCE ATOMS=cage_center,4051

11

12 # keep the guest not sample the outside of the host

13 UPPER_WALLS ARG=d1 AT=+7.0 KAPPA=500.0 EXP=2 LABEL=uwall

14

15 # keep the counter ions out side the host

16 LOWER_WALLS ARG=d2 AT=+5.0 KAPPA=500.0 EXP=2 LABEL=lwall

17

18 METAD ...

19 LABEL=metad

20 ARG=d1

21 PACE=1000

22 HEIGHT=0.5

23 SIGMA=0.2

24 GRID_MIN=0.0

25 GRID_MAX=30.0

26 GRID_BIN=1000

27 FILE=HILLS

28 BIASFACTOR=50

29 TEMP=298.0

30 ... METAD

31

32 PRINT STRIDE=100 FILE=COLVAR ARG=d1,d2,metad.*,uwall.bias,lwall.bias

Plumed input file for nitrogen transfer in F-cage crystal with “neighbour cage”
mechanism (Chapter 6.2.2):

1 UNITS LENGTH=A TIME=0.001 ENERGY=kcal/mol # Angstrom and femtoseconds

2

3 WHOLEMOLECULES ENTITY0=3-5458

4 lig: CENTER ATOMS=1,2

5

6 #funnel restrains

7 fps: FUNNEL_PS LIGAND=lig REFERENCE=start.pdb ANCHOR=85

POINTS=12.62,17.35,50.85,14.22,19.52,19.81

8 FUNNEL ARG=fps.lp,fps.ld ZCC=40.0 ALPHA=0.01 RCYL=8.0 MINS=0.0 MAXS=40.0

KAPPA=50000 NBINS=500 NBINZ=500 FILE=BIAS LABEL=funnel

9
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B.1. Plumed inputs for the Host-Guest Chemistry

10 LOWER_WALLS ARG=fps.lp AT=2.0 KAPPA=50000 EXP=2 OFFSET=0 LABEL=lwall

11 UPPER_WALLS ARG=fps.lp AT=38.0 KAPPA=50000 EXP=2 OFFSET=0 LABEL=uwall

12 UPPER_WALLS ARG=fps.ld AT=7.0 KAPPA=50000 EXP=2 OFFSET=0 LABEL=uwall1

13

14 METAD ...

15 LABEL=metad

16 ARG=fps.lp,fps.ld

17 PACE=1000

18 HEIGHT=1.2

19 SIGMA=0.2,0.2

20 GRID_MIN=0,0

21 GRID_MAX=40,8

22 GRID_BIN=1000,200

23 FILE=HILLS

24 BIASFACTOR=20

25 TEMP=77.0

26 CALC_RCT

27 ... METAD

28

29 PRINT STRIDE=100 FILE=COLVAR ARG=fps.lp,fps.ld,metad.*

Plumed input file for nitrogen transfer in F-cage crystal with “void cage”
mechanism (Chapter 6.2.2):

1 UNITS LENGTH=A TIME=0.001 ENERGY=kcal/mol # Angstrom and femtoseconds

2

3 WHOLEMOLECULES ENTITY0=3-5458

4 lig: CENTER ATOMS=1,2

5

6 #funnel restrains

7 fps: FUNNEL_PS LIGAND=lig REFERENCE=start.pdb ANCHOR=96

POINTS=12.98,17.84,43.84,9.82,29.65,35.77

8 FUNNEL ARG=fps.lp,fps.ld ZCC=40.0 ALPHA=0.01 RCYL=6.5 MINS=-2.0 MAXS=17.0

KAPPA=50000 NBINS=500 NBINZ=500 FILE=BIAS LABEL=funnel

9

10 LOWER_WALLS ARG=fps.lp AT=0.0 KAPPA=50000 EXP=2 OFFSET=0 LABEL=lwall

11 UPPER_WALLS ARG=fps.lp AT=15.0 KAPPA=50000 EXP=2 OFFSET=0 LABEL=uwall

12 UPPER_WALLS ARG=fps.ld AT=6.0 KAPPA=50000 EXP=2 OFFSET=0 LABEL=uwall1

13

14 METAD ...

15 LABEL=metad

16 ARG=fps.lp,fps.ld

17 PACE=1000

18 HEIGHT=1.2

19 SIGMA=0.2,0.2

20 GRID_MIN=-2,0

21 GRID_MAX=17,8

22 GRID_BIN=475,200
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23 FILE=HILLS

24 BIASFACTOR=20

25 TEMP=77.0

26 CALC_RCT

27 ... METAD

28

29 PRINT STRIDE=100 FILE=COLVAR ARG=fps.lp,fps.ld,metad.*

B.2. Plumed inputs for the GGBP

Plumed input file for wild-type GGBP well-tempered metadynamics (Chapter
7.2.3):

1 UNITS LENGTH=A TIME=0.001 # Angstrom and femtoseconds

2

3 # Definition for the center of mass of the N-domain (n_center), C-domain

(c_center), junction between N-domain & hinge region (n_base), junction

between C-domain & hinge region (c_base), and the hinge region (h_center).

4 n_center: COM ATOMS=15-1673,3897-4393

5 c_center: COM ATOMS=1707-3851,4485-4632

6 n_base: COM ATOMS=1674-1680,3897-3906,4394-4417

7 c_base: COM ATOMS=1695-1706,3852-3870,4469-4484

8 h_center: COM ATOMS=1674-1706,3852-3906,4394-4484

9

10 # Definition for the center of mass of the binding pocket without Badan

side-chain (p_center) and the glucose (g_center)

11 p_center: COM ATOMS=204-215,1377-1390,2318-2334,2349-2360,2396-2419,

3236-3249,3592-3603,3871-3884

12 g_center: COM ATOMS=4633-4656

13

14 # Definition for the center of mass of three residues at junction between

N-domain & hinge region (n_a, n_b, n_c), three residues at junction between

C-domain & hinge region (c_a, c_b, c_c),

15 n_a: COM ATOMS=1674-1680

16 n_b: COM ATOMS=3897-3906

17 n_c: COM ATOMS=4394-4417

18 c_a: COM ATOMS=1695-1706

19 c_b: COM ATOMS=3852-3870

20 c_c: COM ATOMS=4469-4484

21

22 # Collective variables definition for the theta (cv1) and phi (cv2)

23 cv1: ANGLE ATOMS=n_center,h_center,c_center

24 cv2: TORSION ATOMS=n_center,n_base,c_base,c_center

25

26 # limit glucose not too far away from GGBP
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27 restrain1: DISTANCE ATOMS=p_center,g_center

28 UPPER_WALLS ARG=restrain1 AT=+30.0 KAPPA=150.0 EXP=2 LABEL=uwall1

29

30 # limit protein not over-twists

31 restrain2: CUSTOM ARG=cv2 FUNC=sin(x) PERIODIC=NO

32 LOWER_WALLS ARG=restrain2 AT=-0.34 KAPPA=500.0 EXP=4 LABEL=lwall2

33

34 # protect hinge region to avoid protein deconstruction

35 restrain3: DISTANCE ATOMS=n_a,n_c

36 restrain4: DISTANCE ATOMS=n_b,n_c

37 restrain5: DISTANCE ATOMS=c_a,c_c

38 restrain6: DISTANCE ATOMS=c_b,c_c

39 UPPER_WALLS ARG=restrain3 AT=+15.0 KAPPA=500.0 EXP=4 LABEL=uwall3

40 UPPER_WALLS ARG=restrain4 AT=+20.0 KAPPA=500.0 EXP=4 LABEL=uwall4

41 UPPER_WALLS ARG=restrain5 AT=+20.0 KAPPA=500.0 EXP=4 LABEL=uwall5

42 UPPER_WALLS ARG=restrain6 AT=+15.0 KAPPA=500.0 EXP=4 LABEL=uwall6

43

44 # limit protein not over-opened

45 restrain7: DISTANCE ATOMS=c_center,n_center

46 UPPER_WALLS ARG=restrain7 AT=+36.0 KAPPA=500.0 EXP=4 LABEL=uwall7

47 UPPER_WALLS ARG=cv1 AT=+2.80 KAPPA=500.0 EXP=4 LABEL=uwall8

48 LOWER_WALLS ARG=cv1 AT=+1.74 KAPPA=500.0 EXP=4 LABEL=lwall8

49

50 METAD ...

51 LABEL=metad

52 ARG=cv1,cv2

53 PACE=1000

54 HEIGHT=1.2

55 SIGMA=0.2,0.2

56 GRID_MIN=-pi,-pi

57 GRID_MAX=pi,pi

58 GRID_BIN=150,150

59 FILE=HILLS

60 BIASFACTOR=10

61 TEMP=300.0

62 ... METAD

63 PRINT STRIDE=100 FILE=COLVAR ARG=cv1,cv2,metad.*

Plumed input file for GGBP triple mutant well-temperedmetadynamics (Chap-
ter 7.2.3):

1 UNITS LENGTH=A TIME=0.001 # Angstrom and femtoseconds

2

3 # Definition for the center of mass of the N-domain (n_center), C-domain

(c_center), junction between N-domain & hinge region (n_base), junction

between C-domain & hinge region (c_base), and the hinge region (h_center).

4 n_center: COM ATOMS=15-1673,3926-4422

5 c_center: COM ATOMS=1707-3880,4514-4661
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6 n_base: COM ATOMS=1674-1680,3926-3935,4423-4446

7 c_base: COM ATOMS=1695-1706,3881-3899,4498-4513

8 h_center: COM ATOMS=1674-1706,3881-3935,4423-4513

9

10 # Definition for the center of mass of the binding pocket without Badan

side-chain (p_center) and the glucose (g_center)

11 p_center: COM ATOMS=204-215,1377-1390,2318-2326,2372-2383,2419-2442,

3259-3272,3629-3640,3900-3913

12 g_center: COM ATOMS=4662-4685

13

14 # Definition for the center of mass of three residues at junction between

N-domain & hinge region (n_a, n_b, n_c), three residues at junction between

C-domain & hinge region (c_a, c_b, c_c),

15 n_a: COM ATOMS=1674-1680

16 n_b: COM ATOMS=3926-3935

17 n_c: COM ATOMS=4423-4446

18 c_a: COM ATOMS=1695-1706

19 c_b: COM ATOMS=3881-3899

20 c_c: COM ATOMS=4498-4513

21

22 # Collective variables definition for the theta (cv1) and phi (cv2)

23 cv1: ANGLE ATOMS=n_center,h_center,c_center

24 cv2: TORSION ATOMS=n_center,n_base,c_base,c_center

25

26 # limit glucose not too far away from GGBP

27 restrain1: DISTANCE ATOMS=p_center,g_center

28 UPPER_WALLS ARG=restrain1 AT=+30.0 KAPPA=150.0 EXP=2 LABEL=uwall1

29

30 # limit protein not over-twists

31 restrain2: CUSTOM ARG=cv2 FUNC=sin(x) PERIODIC=NO

32 LOWER_WALLS ARG=restrain2 AT=-0.34 KAPPA=500.0 EXP=4 LABEL=lwall2

33

34 # protect hinge region to avoid protein deconstruction

35 restrain3: DISTANCE ATOMS=n_a,n_c

36 restrain4: DISTANCE ATOMS=n_b,n_c

37 restrain5: DISTANCE ATOMS=c_a,c_c

38 restrain6: DISTANCE ATOMS=c_b,c_c

39 UPPER_WALLS ARG=restrain3 AT=+15.0 KAPPA=500.0 EXP=4 LABEL=uwall3

40 UPPER_WALLS ARG=restrain4 AT=+20.0 KAPPA=500.0 EXP=4 LABEL=uwall4

41 UPPER_WALLS ARG=restrain5 AT=+20.0 KAPPA=500.0 EXP=4 LABEL=uwall5

42 UPPER_WALLS ARG=restrain6 AT=+15.0 KAPPA=500.0 EXP=4 LABEL=uwall6

43

44 # limit protein not over-opened

45 restrain7: DISTANCE ATOMS=c_center,n_center

46 UPPER_WALLS ARG=restrain7 AT=+36.0 KAPPA=500.0 EXP=4 LABEL=uwall7

47 UPPER_WALLS ARG=cv1 AT=+2.80 KAPPA=500.0 EXP=4 LABEL=uwall8

48 LOWER_WALLS ARG=cv1 AT=+1.74 KAPPA=500.0 EXP=4 LABEL=lwall8

49

50 METAD ...
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51 LABEL=metad

52 ARG=cv1,cv2

53 PACE=1000

54 HEIGHT=1.2

55 SIGMA=0.2,0.2

56 GRID_MIN=-pi,-pi

57 GRID_MAX=pi,pi

58 GRID_BIN=150,150

59 FILE=HILLS

60 BIASFACTOR=10

61 TEMP=300.0

62 ... METAD

63 PRINT STRIDE=100 FILE=COLVAR ARG=cv1,cv2,metad.*

Plumed input file for wild-type GGBP funnel metadynamics (Chapter 7.2.4):
1 UNITS LENGTH=A TIME=0.001 ENERGY=kcal/mol # Angstrom and femtoseconds

2 WHOLEMOLECULES ENTITY0=1-4632

3

4 lig: COM ATOMS=4633-4656

5

6 #funnel restrains

7 fps: FUNNEL_PS LIGAND=lig REFERENCE=start.pdb ANCHOR=656 POINTS=85,80,32,-20,40,10

8 FUNNEL ARG=fps.lp,fps.ld ZCC=25.00 ALPHA=0.2 RCYL=4 MINS=0 MAXS=30 KAPPA=35100

NBINS=500 NBINZ=500 FILE=BIAS LABEL=funnel

9 LOWER_WALLS ARG=fps.lp AT=2.0 KAPPA=35100 EXP=2 OFFSET=0 LABEL=lwall

10 UPPER_WALLS ARG=fps.lp AT=25.0 KAPPA=35100 EXP=2 OFFSET=0 LABEL=uwall

11

12 METAD ...

13 LABEL=metad

14 ARG=fps.lp

15 PACE=1000

16 HEIGHT=1.2

17 SIGMA=0.2

18 GRID_MIN=0

19 GRID_MAX=30

20 GRID_BIN=750

21 FILE=HILLS

22 BIASFACTOR=10

23 TEMP=300.0

24 ... METAD

25 PRINT STRIDE=100 FILE=COLVAR ARG=fps.lp,metad.*

Plumed input file for GGBP funnel triple mutant metadynamics (Chapter
7.2.4):

1 UNITS LENGTH=A TIME=0.001 ENERGY=kcal/mol # Angstrom and femtoseconds

2 WHOLEMOLECULES ENTITY0=1-4681,4662-4685
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3

4 lig: COM ATOMS=4662-4685

5

6 #funnel restrains

7 fps: FUNNEL_PS LIGAND=lig REFERENCE=start.pdb ANCHOR=2379 POINTS=90,75,45,90,60,20

8 FUNNEL ARG=fps.lp,fps.ld ZCC=20 ALPHA=0.2 RCYL=4 MINS=0 MAXS=30 KAPPA=35100

NBINS=500 NBINZ=500 FILE=BIAS LABEL=funnel

9 LOWER_WALLS ARG=fps.lp AT=2.0 KAPPA=35100 EXP=2 OFFSET=0 LABEL=lwall

10 UPPER_WALLS ARG=fps.lp AT=25.0 KAPPA=35100 EXP=2 OFFSET=0 LABEL=uwall

11

12 METAD ...

13 LABEL=metad

14 ARG=fps.lp

15 PACE=1000

16 HEIGHT=1.2

17 SIGMA=0.2

18 GRID_MIN=0

19 GRID_MAX=30

20 GRID_BIN=750

21 FILE=HILLS

22 BIASFACTOR=10

23 TEMP=300.0

24 ... METAD

25 PRINT STRIDE=100 FILE=COLVAR ARG=fps.lp,metad.*
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