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ABSTRACT
Accurate electrical load forecasts are necessary to stabilize the elec-
tricity grid, e.g., by optimally operating energy storage systems or
using demand-side management. However, an implicit assumption
of most load forecasting methods is that future data looks similar
to past data. Unfortunately, this assumption often does not hold;
for example, recruiting new staff or a pandemic can lead to demand
changes resulting in so-called concept drifts in the underlying data.
Most methods for coping with such concept drifts rely on com-
putationally expensive retraining. We propose a new method for
coping with concept drifts based on profiles and a linear regression
model that avoids expensive retraining. Compared to a simple base-
line and five state-of-the-art benchmark models on two different
data sets, our method has lower computational costs and higher
forecast accuracy, making it especially interesting for smart grid
applications.

CCS CONCEPTS
• Applied computing → Forecasting; • Computing method-
ologies → Machine learning.
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1 INTRODUCTION
As the share of renewable energy sources increases, the energy
supply becomes more volatile. This volatility increases the diffi-
culty for grid operators to balance supply and load. To ease any
balancing task, grid operators require not only accurate supply but
also accurate load forecasts. Therefore multiple short-term load
forecasting (STLF) methods exists such as statistical [7], neural
network-based [12, 13, 15], and hybrid [9] forecasting methods.
All these forecasting methods assume that the electrical load in the
future is similar to that in the past. However, in reality, recruiting
new employees, a pandemic, renovating a building, or installing
more photovoltaic panels changes the load and its underlying con-
cepts. The resulting changes are known as concept drifts and can
reduce the forecast accuracy of STLF.
Typically, four concept drifts are distinguished [23]; sudden, grad-
ual, incremental, and recurring concept drifts. A sudden concept
drift describes an abrupt change in a time series, while a gradual
concept drift refers to a transition phase, where an old and a new
concept are alternately active with an increasing activity of the new
concept over time. An incremental concept drift occurs when con-
cepts are consecutively replaced by slightly different concepts. Due
to their similar behavior in recorded time series, we refer to gradual
and incremental concept drifts as incremental concept drifts in the
following. Lastly, a concept drift is recurring when an old concept
reappears in the time series. Since all these concept drifts can occur
in electrical load time series, efficiently coping with concept drifts
is essential in STLF.
Multiple approaches to cope with concept drifts in general time se-
ries exist such as online learning [10, 14], ensemble methods [1, 22],
or drift detectionmethods [2, 16] for triggering retraining. However,
only very few paper explicitly consider concept drifts in load fore-
casting. Online learning methods for load time series include Online
Support Vector Regression [19], Random Functional Link Networks
[18], or Online Adaptive Recurrent Neural Networks (OARNN) [6].
With regard to ensemble methods, Jagait et al. [11] combine the
OARNN with a moving ARIMA to address concept drifts. Lastly,
Vrablecová et al. [20] propose a detection-based method where they
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retrain the linear regression model when the threshold-based detec-
tion recognizes a concept drift. However, all proposed methods rely
on retraining or model selection methods that tend to be compu-
tationally expensive. In smart meter environments, such methods
may not be suitable if computing resources are limited.
As [20], we assume that concept drifts only influence the level of
load time series. Thus, we propose a new method for coping with
concept drifts that models the level and the remainder of a time
series separately. We describe the level part with profiles and the
remainder –for simplicity– with a linear regression model, which
we then add up for the final forecast. This separation allows us to
only update the profile instead of the whole model. Given an ap-
propriate updating strategy, the proposed method’s ability to cope
with concept drifts then only depends on updating the profiles and
does not need expensive retraining. The low computational cost
and high forecast accuracy make the proposed method especially
interesting for smart grid applications. Altogether, the present pa-
per contributes a new method to cope with concept drift using
profiles that does not need a concept drift detection method and
expensive retraining.

The remainder of the paper is structured as follows. In Section 2,
we introduce our method for coping with concept drifts compris-
ing a profile and a linear regression. In Section 3, we describe the
experimental setting applied in the evaluation. Next, Section 4 eval-
uates our method using different profiles, and Section 5 compares it
with existing methods. In Section 6, we discuss the results and our
method. Finally, in Section 7, we wrap up the paper and describe
potential further research.

2 PROFILES FOR CONCEPT DRIFTS
In this section, we introduce our method for coping with concept
drifts. For our method, we assume like [20] that concept drifts in
load forecasting mainly influence the level of a time series. Based on
this assumption, we propose to model the level and the remainder
of a time series separately and to add them later on (see Figure 1).
For the level of a time series, we use adaptive profiles similar to
[9] to consider their periodic nature. For the remainder of the time
series, we use a linear regression that is trained to forecast the
difference between the profile and the actual consumption. Finally,
the prediction of the remainder and the profile are added to form
the prediction. In the following, we introduce both different profile
calculations and the linear regression in detail.

2.1 Profile
To model the level of a time series, we use profiles representing
the typical load of consumers. For the calculation of these profiles,
different methods exist. Each profile calculation method considered
in the present paper distinguishes betweenweekdays and weekends
or holidays and uses past data. However, the past data used and the
weight given, differ between the profile calculation methods (see
Figure 2). In the following, we introduce four exemplary profile
calculation methods which we later use in our experiments, by
first explaining each method before describing its benefits and
drawbacks.

Static Profile. The simplest profile calculationmethod is the Static
Profile. It is determined on the training set and remains unchanged

Linear
Regression 𝑦̂𝑟

Remainder 𝐻𝑙 Profile 𝑝𝑡

Input
Time Series

+

Forecast 𝑦̂𝑡

Exogenous
Features 𝐸𝑡

Figure 1: The proposed method for coping with concept
drifts in short-term load forecasting sums a profile and a lin-
ear regression to obtain a prediction.
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Figure 2: The four considered profile calculation methods
use and weight past data differently.

throughout the test period. We calculate the Static Profile using

𝑝𝑡 =

𝑇0∑
𝑖=0

1
𝑛𝑡, [0,𝑇0 ]

{
𝑙𝑖 , (ℎ𝑡 = ℎ𝑖 ) ∧ (𝑡 mod 𝑆 = 𝑖 mod 𝑆)
0, else,

(1)

where 𝑡 is the current time,𝑇0 is the end of the training set, 𝑆 is the
seasonal length (for profile calculation, we use 24), 𝑡 mod 𝑆 is the
position of 𝑡 in the seasonality (in our case the hour of the day), 𝑙𝑡
is the load at 𝑡 , ℎ𝑡 is a binary variable, which is one if 𝑡 is a holiday
or weekend else ℎ𝑡 is zero, and 𝑛𝑡,𝜒 is the number of elements
with (ℎ𝑡 = ℎ𝑖 ) ∧ (𝑡 mod 𝑆 = 𝑖 mod 𝑆) in the interval 𝜒 which is
used to calculate the profile. Although we do not expect the Static
Profile to adapt to concept drifts, it serves as a baseline and might
be beneficial whenever a time series returns to the original concept
after a drift.

Incremental Profile. To overcome the missing adaption to concept
drifts in the Static Profile, the Incremental Profile adds all data
available at each new time step 𝑡 to the profile calculation. It is thus
calculated as

𝑝𝑡 =

𝑡−1∑
𝑖=0

1
𝑛𝑡, [0,𝑡−1]

{
𝑙𝑖 , (ℎ𝑡 = ℎ𝑖 ) ∧ (𝑡 mod 𝑆 = 𝑖 mod 𝑆)
0, else,

(2)

where 𝑡 , 𝑆 , 𝑡 mod 𝑆 , 𝑙𝑡 , ℎ𝑡 , and 𝑛𝑡,𝜒 are defined as for the Static
Profile. Since all historical data available at time 𝑡 are used for
the calculation, the Incremental Profile slightly adapts to concept
drifts. However, although the data belonging to the old concept are
outdated, they are not discarded and thus still influence the profile.
For this reason, the Incremental Profile changes slowly and never
fully adapts to new concepts.
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Sliding Profile. To forget outdated data and only focus on the
most current data, we apply a sliding window approach. This results
in the Sliding Profile, which is defined as

𝑝𝑡 =

𝑡−1∑
𝑖=𝑡−𝑊

1
𝑛𝑡, [𝑡−𝑊,𝑡−1]

{
𝑙𝑖 , (ℎ𝑡 = ℎ𝑖 ) ∧ (𝑡 mod 𝑆 = 𝑖 mod 𝑆)
0, else,

(3)
where 𝑡 , 𝑆 , 𝑡 mod 𝑆 , 𝑙𝑡 , ℎ𝑡 , and 𝑛𝑡,𝜒 are defined as before and𝑊 is
the window length. The window length has to be set by the user (for
the content of this paper, we set𝑊 = 28 days). The Sliding Profile
requires saving all data used for calculating the profile at a certain
window. Otherwise, it would not be possible to remove the oldest
sample from the sliding window as it moves further. Although the
Sliding Profile only focuses on the most current data, there is also
a lag of𝑊 time steps until it completely adapts to a concept drift.

Exponential Weighted Moving Average (EWMA) Profile. To re-
duce the adaption time, we can weight current values higher than
past values, resulting in an Exponential Weighted Moving Average
(EWMA) Profile. It consists of a subprofile 𝑝𝑡,0 for workdays and a
subprofile 𝑝𝑡,1 for holidays and weekends, resulting in

𝑝𝑡 =

{
𝑝𝑡,1, ℎ𝑡 = 1
𝑝𝑡,0, 𝑒𝑙𝑠𝑒,

(4)

where 𝑡 and ℎ𝑡 are defined as before. Both subprofiles are calculated
based on the previously defined ℎ𝑡−𝑆 , which is 1 if 𝑡 −𝑆 is a holiday
or weekend. As a result, both subprofiles are defined as

𝑝𝑡,ℎ′ =

{
(1 − 𝛼) · 𝑝𝑡−𝑆,ℎ′ + 𝛼 · 𝑙𝑡−𝑆 , ℎ𝑡−𝑆 = ℎ′

𝑝𝑡−𝑆,ℎ′ , 𝑒𝑙𝑠𝑒,
(5)

where 𝑡 , 𝑆 , 𝑙𝑡 , and ℎ𝑡 are defined as before, ℎ′ ∈ 0, 1, 𝑝0,ℎ′ = 0, and
𝛼 is the smoothing factor of the Exponential Weighted Moving
Average. The smoothing factor has to be set by the user (for the
content of this paper, we set 𝛼 = 0.3).

Due to its exponential weighted average, the EWMA Profile re-
sponds more quickly to changes than the Sliding Profile. Moreover,
it does not require saving the data of a particular window. Never-
theless, the EWMA Profile is more vulnerable to anomalies as they
can strongly influence the profile as the most recent value.

2.2 Linear Regression
We choose a linear regression to model the remainder of a time
series. As inputs, it takes the historical remainder time series and
exogenous features for the values to be forecast. We obtain the
historical remainder time series by subtracting the selected profile
from the input time series. The exogenous features comprise calen-
dar information, i.e. the hour of the day, month of the year, and a
flag indicating whether the value to be forecast is a weekend, holi-
day, or neither. Given these inputs, we train the linear regression
to predict future values of the remainder time series. Formally, the
linear regression is defined as

𝑦𝑟 = 𝑐 +
∑
𝑗

𝛽 𝑗 · 𝐸 𝑗 +
∑
𝑙

𝛾𝑙 · 𝐻𝑙 , (6)

where 𝑐 is a constant, 𝐸 𝑗 are all exogenous variables such as calendar
and weather information, and 𝐻𝑙 are the historical remainder input

values. The resulting prediction 𝑦𝑟 is then added to the selected
profile to obtain the final forecast 𝑦𝑡 .

3 EXPERIMENTAL SETTING
This section describes how we evaluate our method for coping with
concept drifts. We first introduce the data sets before explaining
how the forecast models are trained and retrained. Finally, we
describe the applied evaluation metrics and the used hard- and
software.

3.1 Data Sets
We use two real-world data sets to evaluate our method. Both data
sets consist of real-world load time series. However, they differ in
the observed concept drifts; while we insert synthetic concept drifts
into the first, the second already contains recorded concept drifts.

3.1.1 Data with Synthetic Concept Drifts. Sufficiently evaluating
concept drift adaption methods benefits from information on the
concept drifts’ characteristics, such as their intensity, type, and
position. However, this information is typically unavailable in real-
world datasets containing recorded concept drifts. Thus, we ar-
tificially insert concept drifts, which allows us to control their
characteristics. In the following, we first briefly describe the data
set in which we insert the synthetic concept drifts and then explain
how we insert the synthetic concept drifts.

Data Set Description. The basic real-world time series data, in
which we insert synthetic concept drifts, comprises the electrical
load of three consumers on a university campus, namely U1, U2,
and U3 [9, 21]. The time series are recorded from January 1, 2006
to May 18, 2016 with a resolution of 15 minutes. We filter out mea-
surements over the 99% quantile and below zero, likely to be errors,
and linearly interpolate these values as well as single missing val-
ues. For our experiments, we work on an hourly resolution, and
thus aggregate the data. The resulting time series are visualized in
Figure 3. In addition to the load measurements, we use tempera-
ture and humidity as recorded by a nearby weather station of the
German Meteorological Service [5].

Concept Drift Insertion. In the pre-processed time series, we in-
sert six concept drifts with different characteristics (see Table 1).
To create two types of synthetic concept drifts, i.e. incremental
and sudden, we add or subtract either a linear function for incre-
mental concept drifts or a step function for sudden concept drifts.
The linear function increases in 999 steps from 0 to intensity. The
step function increases in one step from 0 to intensity. To analyze
whether the intensity of the drifts makes a difference, we use two
different intensities. Lastly, to avoid distorting the results through
artifacts in the raw data, we vary their positions. The three consid-
ered positions are July (Position 1), August (Position 2), and October
(Position 3). For recurring synthetic concept drifts, the old concept
is restored in December (Position 1), January (Position 2), or March
(Position 3).

3.1.2 Real Data with Concept Drifts. Apart from the synthetic con-
cepts drifts, we also evaluate our method on a data set that already
contains recorded concept drifts. The selected data set is the open
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(a) Consumer U1 has low seasonal and low
daily variations.
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(b) Consumer U2 has low seasonal and strong
daily variations.
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(c) Consumer U3 has strong seasonal and low
daily variations.

Figure 3: The three consumers from an university campus, that are used to insert synthetic concept drifts, show different
seasonal and daily variations.

Table 1: We consider six different concept drifts that vary in
their type, intensity, and recurrence.

Name Type Intensity in kW Recurrence

Sudden 1 Sudden 2 Yes
Sudden 2 Sudden 4 Yes
Sudden 3 Sudden 2 No

Incremental 1 Incremental 2 Yes
Incremental 2 Incremental 4 Yes
Incremental 3 Incremental 2 No

UCI Electricity Load Dataset1 [4]. This data set comprises the elec-
trical load of several consumers in Portugal with a quarter-hourly
resolution from the beginning of 2011 until the end of 2014. From
this data set, we select the electrical load of three consumers (see
Figure 4). Two of the consumers, namely C118 and C188, contain
a sudden concept drift, and one consumer C157 contains an incre-
mental concept drift. For the evaluation, we again aggregate the
chosen electrical load time series to an hourly resolution.

3.2 Training and Retraining
Given these two different data sets, we evaluate if using profiles
improves the forecast accuracy. We train our methods on a train set
and evaluate them on a separate test set. Additionally, some of the
methods apply a retraining during the evaluation, thus repeating
the training procedure with additional past data from the test set.

Training. The train and test set used for the evaluation is different
for the two data sets. For consumers U1, U2, and U3, we use about
three years of data (May 14, 2012 until May 17, 2015) for training
and one year for testing (May 18, 2015 until May 18, 2016); for
consumers C118, C157, and C188, about one year (Jan 1, 2012 until
Jan 4, 2013) for training and about two years for testing (Jan 5,
2013 until Dec 31, 2014). We train our method on this historical
electrical load time series together with calendar information, and,
if available, weather information.

Retraining. We evaluate the forecasts of each model mini batch
by mini batch. Each mini batch comprises one day of the test set
(24 samples). For each sample, the considered forecasting model

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

performs a 24-hours forecast. Based on the forecasts for all samples
from a mini batch, we make the decision whether it is necessary to
retrain the forecasting model or not. For this decision, we apply one
of the following three retraining strategies: None never triggers
a retraining, Periodic triggers a retraining after every 30 days,
and Detection triggers a retraining if ADWIN [2] as concept drift
detection method detects a concept drift.

3.3 Metrics
To evaluate if using profiles improves the forecast of time series
with concept drifts, we use one metric for forecast accuracy and
one for computational cost. We introduce both in the following.

Forecast Accuracy. For assessing the quality of the forecasts, we
measure the forecast accuracy with the Mean Absolute Scaled Error
(MASE). We choose the MASE as it enables us to compare the
forecast accuracy of different load time series. It is calculated as

MASE =

1
𝑛

∑𝑛
𝑡=1 | 𝑦𝑡 − 𝑦𝑡 |

1
𝑛

∑𝑛
𝑡=1 | 𝑦𝑡 − 𝑦𝑡−𝑆 |

, (7)

where 𝑛 is the size of the dataset, 𝑦𝑡 is the forecast, 𝑦𝑡 is the true
value, and 𝑆 is the length of the seasonality. For our evaluation, we
choose 𝑆 = 168, resulting in a scaling by the persistence forecast
with a lag of one week𝑦𝑡−𝑆 . The division by the persistence forecast
makes the metric invariant of the data’s scale. To comprehensively
evaluate the forecast accuracy, we calculate the MASE in two dif-
ferent ways. First, we calculate the MASE over the whole test data
to assess the overall forecast accuracy of the forecasting method.
Second, we calculate a sliding MASE with a window of 24 days that
slides over the data to gain insights into forecast accuracy changes
over time.

Computational Cost. Besides the forecast accuracy, we are also
interested in how computationally expensive the methods for cop-
ing with concept drifts are. We, therefore, consider the training and
retraining time of the introduced methods and take their sum in
seconds as a second metric in our evaluation.

3.4 Hardware and Software
For a better comparability of the results, we apply the same hard-
ware throughout our evaluation, namely an off-the-shelve computer
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(a) ConsumerC118 contains a sudden concept
drift.
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(b) Consumer C157 contains an incremental
concept drift.
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(c) Consumer C188 contains a sudden concept
drift.

Figure 4: We select three clients with different concept drifts from the UCI Electricity Load Dataset.

with a 4 core i7 CPU and 16GB of RAM. Furthermore, all evaluated
forecasting models are implemented in Python. More specifically,
the used Linear Regression model is implemented with SKLearn
[17] and the neural network-based models with Keras [3]. To au-
tomate the evaluation using these implementations, we employ
pyWATTS [8].

4 EVALUATING PROFILES TO COPE WITH
CONCEPT DRIFTS

To evaluate whether profiles improve how the forecasting methods
cope with concept drifts, we perform three experiments on the
consumers U1, U2, and U3 with synthetic concept drifts. In the
first experiment, we use the different previously introduced profiles
in our method and evaluate them based on the resulting forecast
accuracy. In the second experiment, we examine how retraining
strategies influence the forecast accuracy of our method. In the
third experiment, we examine how our method behaves over time
considering the sliding forecast accuracy.

4.1 Evaluating Different Profiles
To evaluate the different previously introduced profiles, we employ
them together with the linear regressionmodel as in ?? and compare
the forecast accuracy.

Table 2 shows the MASE of our method with different profiles
over the whole test time series. Using the EWMA profile achieves
the best MASE for consumers U1 and U2 while using the Sliding
profile obtains the best MASE for consumer U3. For all consumers,
using the Static and Incremental profile performs worst. Addition-
ally, the MASE of our method with the EMWA profile has the
smallest fluctuation across different concept drifts, while the MASE
of our method with the Static and Incremental profile have the
highest fluctuations. Furthermore, we observe that the position of
the concept drift does not have an influence on the accuracy.

4.2 Evaluating Retraining Strategies
To examine how retraining strategies influence the forecast ac-
curacy of our method, we compare it with the three previously
introduced retraining strategies regarding the resulting forecast
accuracy.

Table 3 reports the results of comparing the three training strate-
gies for consumer U1 and the concept drifts at Position 1 (for the
other positions and consumers, see Tables 5 to 7 in the Appendix).
The results show that retraining does not noticeably improve the
forecast accuracy of our method with the best performing pro-
file EWMA; in all cases, our method with the profile EWMA and
without retraining shows at least the same forecast accuracy.

4.3 Evaluating Profiles over Time
To examine our method’s behavior over time, we make use of the
slidingMASE. For this purpose, we exemplarily consider two sliding
MASE, one for the Sudden 1 and one for the Incremental 1 concept
drift for consumer U1.

Based on the results in Figure 5, we make three observations.
First, our method with the Static, and Incremental profiles are
strongly affected by the concept drift in August and their MASE de-
creases when the old concept recurs. Second, for both concept drifts,
our method with the EWMA and Sliding profiles have the lowest
MASE. For the sudden concept drift, an exception is a short period
after the second concept drift, where the MASE is comparatively
higher. For the same short period and the incremental concept drift,
the MASE of our method with the EWMA and Sliding profiles is
on par with the MASE of the our method with the other profiles.
Third, for the sudden concept drift, the MASE of our method with
the EWMA and Sliding profiles show two peaks when the concept
drifts occur (see Figure 5a). However, such peaks are not observable
for the incremental concept drift (see Figure 5b).

5 BENCHMARKING PROFILES TO COPE
WITH CONCEPT DRIFTS

Having established our method with the best performing profiles
for coping with concept drifts, namely the EMWA and Sliding pro-
file, we compare our method with these profiles to six benchmark
models. We analyze the performance on both electrical load time
series with synthetic and recorded concept drifts. In the following,
we first introduce the selected benchmark models, before reporting
the results.
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Table 2: The MASE of our method with different profiles for the three consumers with six different synthetic concept drifts at
the three different positions. The best performing profile for each consumer and position is highlighted in bold.

Position 1 Position 2 Position 3

Co
ns
um

er

Pr
ofi

le

Su
dd

en
1

Su
dd

en
2

Su
dd

en
3

In
cr
em

en
ta
l1

In
cr
em

en
ta
l2

In
cr
em

en
ta
l3

Su
dd

en
1

Su
dd

en
2

Su
dd

en
3

In
cr
em

en
ta
l1

In
cr
em

en
ta
l2

In
cr
em

en
ta
l3

Su
dd

en
1

Su
dd

en
2

Su
dd

en
3

In
cr
em

en
ta
l1

In
cr
em

en
ta
l2

In
cr
em

en
ta
l3

U1

Static 0.86 1.25 2.09 0.88 1.35 2.12 0.85 1.24 1.81 0.87 1.31 1.77 0.90 1.33 2.41 0.91 1.36 2.33
Incremental 0.88 1.34 1.82 0.89 1.40 1.89 0.87 1.30 1.71 0.89 1.34 1.71 0.94 1.46 1.99 0.93 1.46 1.98
Sliding 0.61 0.63 0.63 0.63 0.67 0.63 0.63 0.66 0.65 0.64 0.68 0.65 0.63 0.67 0.65 0.64 0.67 0.65
EWMA 0.60 0.59 0.61 0.63 0.63 0.63 0.61 0.60 0.62 0.63 0.62 0.63 0.61 0.60 0.62 0.63 0.62 0.64

U2

Static 1.18 1.76 3.34 1.17 1.79 3.27 1.17 1.70 2.80 1.25 1.84 2.77 1.19 1.84 4.05 1.21 1.84 3.60
Incremental 1.47 2.21 3.54 1.44 2.19 3.55 1.42 2.05 3.16 1.51 2.19 3.19 1.49 2.35 4.13 1.50 2.30 3.78
Sliding 0.73 0.79 0.76 0.74 0.80 0.76 0.72 0.78 0.74 0.72 0.79 0.76 0.73 0.80 0.78 0.74 0.79 0.76
EWMA 0.65 0.65 0.65 0.66 0.66 0.66 0.64 0.64 0.65 0.65 0.65 0.66 0.65 0.64 0.67 0.66 0.66 0.67

U3

Static 0.45 0.47 0.54 0.45 0.48 0.53 0.44 0.46 0.51 0.46 0.48 0.52 0.45 0.47 0.57 0.46 0.49 0.56
Incremental 0.45 0.46 0.49 0.45 0.47 0.49 0.45 0.45 0.49 0.46 0.47 0.50 0.45 0.46 0.51 0.46 0.47 0.51
Sliding 0.46 0.44 0.45 0.46 0.45 0.45 0.45 0.43 0.45 0.46 0.45 0.46 0.46 0.44 0.46 0.46 0.46 0.46
EWMA 0.48 0.47 0.48 0.49 0.48 0.48 0.48 0.47 0.48 0.49 0.48 0.49 0.48 0.47 0.49 0.49 0.48 0.49

Table 3: TheMASE of our method with the different profiles
and retraining strategies for consumer U1 with a synthetic
concept drift at Position 1. The best retraining strategy for
each profile and consumer is highlighted in bold.
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U1

Static
None 0.86 1.25 2.09 0.88 1.35 2.12
Periodic 0.64 0.62 0.70 0.67 0.65 0.70
Detection 0.68 0.64 0.74 0.71 0.75 0.83

Incremental
None 0.88 1.34 1.82 0.89 1.40 1.89
Periodic 0.65 0.64 0.71 0.69 0.67 0.72
Detection 0.70 0.66 0.74 0.74 0.77 0.84

Sliding
None 0.61 0.63 0.63 0.63 0.67 0.63
Periodic 0.62 0.61 0.65 0.64 0.62 0.63
Detection 0.61 0.60 0.65 0.64 0.65 0.65

EWMA
None 0.60 0.59 0.63 0.63 0.61 0.63
Periodic 0.62 0.60 0.65 0.64 0.65 0.64
Detection 0.61 0.59 0.64 0.63 0.63 0.64

5.1 Benchmark Models
For the comparison, we select six benchmark models, including the
previously introduced linear regression model without a profile,
two deep learning models and three online learning models. We
introduce the latter two groups in the following.

5.1.1 Deep Learning Models. As state-of-the-art deep learning
models we select the Recurrent Inception Network (RIN) [12] and
the Profile Neural Network (PNN) [9]. The RIN combines LSTMs
with an 1-D convolution inception module comprising parallel
convolution layers with different kernel sizes. The PNN aims to
combine advantages from statistical and deep learning forecasting
by splitting the forecasting task in three modules, which respec-
tively represent the trend component, the standard load profile
and the colorful noise of a time series. Their outputs are finally
weighted and aggregated into a final prediction. For the RIN, we
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(a) The MASE of our method with different profiles on the con-
cept drift Sudden 1.
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Figure 5: The MASE of our method with different profiles
and synthetic concept drifts at Position 1 on consumer U1.
The vertical lines indicate the start of a concept drift.

use our own implementation2; for the PNN, we use the pyWATTS
implementation.

5.1.2 Online LearningModels. As online learningmodels, we select
the Online-Sequential Extreme Learning Machine (OS-ELM)[14],
the Online Adaptive Recurrent Neural Network (OARNN) [6], and

2https://github.com/KIT-IAI/Coping-with-Concept-Drift-using-Profiles
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Figure 6: TheMASE of ourmethod with the EWMA and Slid-
ing profiles and the benchmarks on consumer U1 with the
Sudden 1 concept drift at Position 1 for the three retraining
strategies. The bars indicate the average MASE. The errors
bars show the worst and the best achieved MASE of the cor-
responding model.

the Error Intersection Approach (EIA) [1]. The OS-ELM [14] is com-
monly used for concept drifts. It is a three-layered neural network
architecture with random weights between the input and the hid-
den layer. To learn the weights between the hidden and output layer,
the Least Square Method is used instead of the backpropagation
algorithm. The OARNN [6] has been designed to cope with concept
drift in load time series data. It consists of a simple RNN embedded
in an online learning framework, which updates the RNN and the
normalization parameters after each time step. Additionally, the
OARNN performs a Bayesian optimization for the RNN’s hyper-
parameters if the forecasting error is too high. The final online
learning approach, EIA [1], is an easy to implement ensemble ap-
proach and consists of a simple (persistence forecast) and a complex
model (MLP). The EIA measures the errors of both models and if
the error curves intersect, the forecast model is changed3. For the
EIA and the OARNN, we also use our own implementation4, while
for the OS-ELM, we use an existing implementation5.

5.2 Benchmark with Synthetic Concept Drifts
To compare our method with the EWMA and Sliding profiles to the
benchmarks, we use two different evaluations on the consumers
with synthetic concept drifts. First, we measure the forecast accu-
racy. Afterward, we evaluate the computational costs.

Forecast Accuracy. Considering the forecast accuracy of the dif-
ferent models, we exemplarily report the results for the concept
drift Sudden 1 and Consumer 1 at Position 1. For the other concept
drifts, consumers, and positions, the results are similar (for the
other consumers, see Figure 8, and for the concept drift Incremental
1, see Figure 9 in the Appendix). In Figure 6, we make two obser-
vations. First, our method with the EWMA and Sliding profiles
outperforms the other models regardless of the applied retraining
strategy. Second, if profiles are used, as in our method and the PNN,
the effect of retraining is low. In contrast, for the models not using
profiles, retraining improves the forecast accuracy.
3Note that the authors state that this model is only suitable for sudden concept drifts.
4https://github.com/KIT-IAI/Coping-with-Concept-Drift-using-Profiles
5https://github.com/leferrad/pyoselm

Table 4: The computational cost for the Sudden 1, Sudden 2,
Incremental 1, and Incremental 2 concept drifts at Position
1 for consumer U1.
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Sliding
None 0.65 0.65 0.65 0.65
Periodic 3.29 3.26 3.30 3.29
Detection 1.08 1.11 0.88 1.06

EWMA
None 0.67 0.67 0.67 0.67
Periodic 3.26 3.37 3.35 3.32
Detection 1.08 1.07 0.87 0.90

Linear
Regression

None 0.67 0.67 0.67 0.67
Periodic 3.36 3.30 3.24 3.28
Detection 1.07 1.28 1.13 1.30

PNN
None 104.80 104.80 104.80 104.80
Periodic 113.69 112.69 112.83 112.42
Detection 106.55 106.33 106.61 105.95

RIN
None 517.26 517.26 517.26 517.26
Periodic 541.01 541.63 540.94 541.40
Detection 531.43 530.70 526.68 528.29

EIA 75.78 75.78 75.78 75.78
OARNN 307.73 309.08 310.90 310.21
OS - ELM 50.98 50.81 51.33 51.29

Computational Cost. To compare the computational cost of our
method for coping with concept drifts with the benchmarks, we
sum the training and all retraining times for the Sudden 1, Sudden
2, Incremental 1, and Incremental 2 concept drifts at Position 1
for consumer U1. Table 4 shows the resulting computational costs.
In this table, we make two observations. First, we observe that
the benchmarks have clearly higher computational costs than our
method for coping with concept drift. Second, the type or intensity
of concept drifts does not influence the computational costs.

5.3 Benchmark with Recorded Concept Drifts
To compare our method with the EWMA and Sliding profiles to the
benchmarks, we also use recorded concept drifts as found in the
three consumers C118, C157, and C188.

Based on Figure 7, we make three main observations. First, our
method with the EWMA and Sliding profiles always outperforms
the benchmarks regardless of the retraining strategy. Only for con-
sumer C118, the performance of the linear regression is similar to
our method with the EWMA and Sliding profiles. Second, contrary
to the benchmarks, our method with the EWMA and Sliding pro-
files does not benefit from any retraining. Third, the MASE of our
method with the EWMA and Sliding profiles appears stable for all
consumers and varies less than the other benchmarks.

6 DISCUSSION
Based on the previous section results, we discuss our method using
profiles in the following regarding how well the method can cope
with concept drifts, the robustness of results concerning different
concept drifts, and some artifacts in the sliding MASE results.

Profiles Can Cope with Concept Drifts. In load time series forecast-
ing, the results indicate that retraining strategies do not improve
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Figure 7: The MASE of the proposed method and bench-
marks on the three consumers with the recorded incremen-
tal and sudden concept drifts. The bars indicate the average
MASE. The errors bars show the worst and the best achieved
MASE of the corresponding model.

the forecast accuracy of our method with the EWMA and Slid-
ing profiles. Consequently, it is sufficient to use profiles without
expensive retraining strategies for coping with concept drifts. Ad-
ditionally, using profiles leads to good forecasting results compared
to state-of-the-art methods even if we select a simple model, i.e.
a linear regression, for the remainder. As a result, using profiles
helps to cope with concept drift without the need to apply a de-
tection method and retraining. However, it is essential to use an
appropriate profile calculation method, as the methods’ adaption
speed differs. For example, the EWMA profile quickly adapts to new
concepts. Nevertheless, responding too quickly to newly received
data, that, for example, contain anomalies, can reduce the forecast
accuracy. To handle such effects, future work may mix different
profiles for improving the performance. Besides the appropriate
selection of the profile calculation method, it is also necessary for
the Sliding and EWMA profiles to select values for the parameters

window length and smoothing factor 𝛼 . However, without further
tuning of these parameters, our method with these profiles provide
a good forecasting accuracy.

Robust Results. Additionally, we observe that the type and in-
tensity of the concept drifts do not influence our method with the
Sliding and EWMA profiles as much as our method with the Static,
and Incremental profiles or a linear regression without a profile.
Therefore, we assume that our method with the EWMA and Sliding
profiles provides more robust predictions across various concept
drifts than the other methods. This observation might be essential
when deploying a forecasting system in environments with volatile
consumption patterns, where the position, intensity, and type of
concept drifts is unknown.

Peaks in the Sliding Forecast Accuracy. Moreover, we observe
peaks in the Sliding MASE of our method with the EWMA and
Sliding profiles. The reason for these peaks is the adaption time
of the EWMA and Sliding profiles. During an incremental concept
drift, the time series changes slowly, leading to more time for our
method to adapt to the concept drift and thus to avoid peaks.
For recurring concept drifts, theMASE of ourmethodwith the Static
and Incremental profile does not show such peaks. The reason is
that these profiles reflect the old concept. Hence, it may be helpful
for recurring concept drifts to restore the profiles of the past concept
to reduce the adaption time.

7 CONCLUSION
The present paper proposes a new computationally efficient method
for coping with concept drifts based on profiles that does not need
a concept drift detection method and expensive retraining. The
new method assumes that concept drifts mainly affect the level of a
time series and that the time series can be decomposed into a level
part and a remainder. Based on this decomposition, we introduce
profiles to describe the level part and a linear regression model to
describe the remainder. We then add the profile to the regression
output for the final forecast.
We show on two different real-world datasets, one with synthetic
and one with recorded concept drifts, that our method leads to
more accurate forecasts than five state-of-the-art benchmark mod-
els. More specifically, we evaluate our method with four different
profiles and find that an exponential weighted moving average
profile performs best in most cases. At the same time, computation-
ally expensive retraining is not necessary. The new method is more
accurate and computationally cheaper than all benchmark methods,
making it especially interesting for smart grid applications.
Future work will focus on more complex concept drifts, and extend
the forecasting method for the remainder.
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A ADDITIONAL RESULTS

Table 5: TheMASE of our method with the different profiles
and retraining strategies over the whole test time series for
the consumer U2 and U3 with a synthetic concept drift at
Position 1. The best performing retraining strategy for each
profile and consumer is highlighted in bold.
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U2

Static
None 1.18 1.76 3.34 1.17 1.79 3.27
Periodic 0.73 0.74 0.85 0.77 0.82 0.92
Detection 0.61 0.59 0.63 0.64 0.63 0.64

Incremental
None 1.47 2.21 3.54 1.44 2.19 3.55
Periodic 0.73 0.71 0.81 0.79 0.77 0.87
Detection 0.78 0.78 0.90 0.84 0.91 1.03

Sliding
None 0.73 0.79 0.76 0.74 0.80 0.76
Periodic 0.69 0.69 0.76 0.70 0.67 0.71
Detection 0.69 0.70 0.77 0.71 0.71 0.75

EWMA
None 0.65 0.65 0.65 0.66 0.66 0.66
Periodic 0.65 0.64 0.69 0.65 0.64 0.65
Detection 0.64 0.63 0.68 0.66 0.65 0.66

U3

Static
None 0.45 0.47 0.54 0.45 0.48 0.53
Periodic 0.46 0.45 0.47 0.46 0.45 0.47
Detection 0.46 0.47 0.50 0.46 0.47 0.50

Incremental
None 0.45 0.46 0.49 0.45 0.47 0.49
Periodic 0.46 0.45 0.46 0.47 0.46 0.46
Detection 0.46 0.46 0.49 0.46 0.47 0.48

Sliding
None 0.46 0.44 0.45 0.46 0.45 0.45
Periodic 0.46 0.44 0.45 0.46 0.45 0.45
Detection 0.47 0.45 0.46 0.48 0.47 0.46

EWMA
None 0.48 0.47 0.48 0.49 0.48 0.48
Periodic 0.49 0.48 0.49 0.50 0.49 0.49
Detection 0.49 0.48 0.49 0.50 0.49 0.49

Table 6: TheMASE of our method with the different profiles
and retraining strategies for each consumerwith a synthetic
concept drift at Position 2. The best performing retraining
strategy for each profile and consumer is highlighted in
bold.
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U1

Static
None 0.85 1.24 1.81 0.87 1.31 1.77
Periodic 0.62 0.60 0.66 0.65 0.64 0.70
Detection 0.66 0.66 0.75 0.70 0.74 0.82

Incremental
None 0.87 1.30 1.71 0.89 1.34 1.71
Periodic 0.64 0.61 0.68 0.66 0.66 0.71
Detection 0.75 0.68 0.76 0.71 0.77 0.84

Sliding
None 0.63 0.66 0.65 0.64 0.68 0.65
Periodic 0.61 0.59 0.64 0.63 0.61 0.64
Detection 0.62 0.61 0.67 0.63 0.63 0.66

EWMA
None 0.61 0.60 0.62 0.63 0.62 0.63
Periodic 0.61 0.59 0.64 0.63 0.61 0.64
Detection 0.61 0.60 0.64 0.64 0.61 0.64

U2

Static
None 1.17 1.70 2.80 1.25 1.84 2.77
Periodic 0.68 0.67 0.78 0.74 0.72 0.83
Detection 0.74 0.74 0.86 0.79 0.91 1.26

Incremental
None 1.42 2.05 3.16 1.51 2.19 3.19
Periodic 0.70 0.68 0.79 0.76 0.74 0.85
Detection 0.78 0.80 0.95 0.89 1.01 1.25

Sliding
None 0.72 0.78 0.74 0.72 0.79 0.76
Periodic 0.66 0.65 0.73 0.66 0.63 0.69
Detection 0.67 0.67 0.75 0.68 0.64 0.68

EWMA
None 0.64 0.64 0.65 0.65 0.65 0.66
Periodic 0.63 0.62 0.66 0.64 0.60 0.64
Detection 0.63 0.61 0.66 0.64 0.61 0.64

U3

Static
None 0.44 0.46 0.51 0.46 0.48 0.52
Periodic 0.45 0.44 0.46 0.47 0.45 0.47
Detection 0.45 0.45 0.48 0.46 0.46 0.49

Incremental
None 0.45 0.45 0.49 0.46 0.47 0.50
Periodic 0.46 0.44 0.46 0.47 0.46 0.47
Detection 0.46 0.45 0.48 0.48 0.46 0.48

Sliding
None 0.45 0.43 0.45 0.46 0.45 0.46
Periodic 0.46 0.45 0.46 0.48 0.47 0.48
Detection 0.46 0.44 0.46 0.48 0.46 0.48

EWMA
None 0.48 0.47 0.48 0.49 0.48 0.49
Periodic 0.49 0.48 0.49 0.50 0.49 0.50
Detection 0.49 0.47 0.49 0.50 0.48 0.50
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Table 7: TheMASE of our method with the different profiles
and retraining strategies for each consumerwith a synthetic
concept drift at Position 3. The best performing retraining
strategy for each profile and consumer is highlighted in
bold.

Co
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St
ra
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gy

Su
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1

Su
dd

en
2

Su
dd

en
3

In
cr
em

en
ta
l1

In
cr
em

en
ta
l2

In
cr
em

en
ta
l3

U1

Static
None 0.90 1.33 2.41 0.91 1.36 2.33
Periodic 0.65 0.66 0.75 0.68 0.68 0.74
Detection 0.64 0.65 0.79 0.74 0.91 1.41

Incremental
None 0.94 1.46 1.99 0.93 1.46 1.98
Periodic 0.66 0.67 0.75 0.70 0.70 0.76
Detection 0.65 0.67 0.78 0.75 0.77 0.83

Sliding
None 0.63 0.67 0.64 0.67 0.65 0.65
Periodic 0.62 0.62 0.68 0.65 0.63 0.66
Detection 0.62 0.61 0.67 0.64 0.64 0.66

EWMA
None 0.61 0.60 0.62 0.63 0.62 0.64
Periodic 0.65 0.66 0.75 0.68 0.68 0.74
Detection 0.62 0.61 0.65 0.64 0.62 0.65

U2

Static
None 1.19 1.84 4.05 1.21 1.84 3.60
Periodic 0.71 0.73 0.88 0.76 0.73 0.82
Detection 0.77 0.76 0.94 0.79 0.83 0.93

Incremental
None 1.49 2.35 4.13 1.50 2.30 3.78
Periodic 0.73 0.74 0.89 0.78 0.75 0.85
Detection 0.80 0.80 1.01 0.85 0.92 1.03

Sliding
None 0.73 0.80 0.78 0.74 0.79 0.76
Periodic 0.69 0.70 0.80 0.70 0.66 0.71
Detection 0.68 0.71 0.82 0.74 0.71 0.76

EWMA
None 0.65 0.64 0.67 0.66 0.66 0.67
Periodic 0.65 0.65 0.71 0.65 0.62 0.66
Detection 0.65 0.63 0.69 0.66 0.63 0.66

U3

Static
None 0.45 0.47 0.57 0.46 0.49 0.56
Periodic 0.46 0.45 0.48 0.47 0.46 0.48
Detection 0.47 0.48 0.53 0.47 0.49 0.52

Incremental
None 0.45 0.46 0.51 0.46 0.47 0.51
Periodic 0.46 0.45 0.47 0.47 0.46 0.47
Detection 0.46 0.47 0.51 0.46 0.48 0.51

Sliding
None 0.46 0.44 0.46 0.46 0.46 0.46
Periodic 0.47 0.46 0.48 0.48 0.47 0.48
Detection 0.47 0.46 0.48 0.48 0.47 0.47

EWMA
None 0.48 0.47 0.49 0.49 0.48 0.49
Periodic 0.50 0.49 0.50 0.50 0.50 0.50
Detection 0.50 0.49 0.51 0.50 0.50 0.50
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Figure 8: TheMASE of ourmethod with the EWMA and Slid-
ing profiles and the benchmarks on the the consumers U2
and U3 with the Sudden 1 concept drift at Position 1 for
the three retraining strategies. The bars indicate the average
MASE. The errors bars show the worst and the best achieved
MASE of the corresponding model.
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Figure 9: TheMASE of ourmethod with the EWMA and Slid-
ing profiles and the benchmarks on the three consumers
with the Incremental 1 concept drift at Position 1 for the
three retraining strategies. The bars indicate the average
MASE. The errors bars show the worst and the best achieved
MASE of the corresponding model.
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