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Zusammenfassung

Zur effektiven Thermalkontrolle in der Luft- und Raumfahrt sowie in terrestrischen An-
wendungen werden Loop Heat Pipes (LHPs) eingesetzt. Um die Betriebstemperatur dieser
mehrphasigen Wärmetransportsysteme zu regeln, werden elektrische Heizelemente genutzt.
Aktuelle Regler der Heizelemente mit aufwändigem, heuristischem Entwurfsprozess erreichen
jedoch mäßige Regelungsergebnisse und können nichtlineare Phänomene, wie Temperatur-
schwingungen, nicht kompensieren. Des Weiteren stoßen diese Regler bei hochentwickelten
Wärmetransportsystemen mit mehreren LHPs oder Komponenten an ihre Grenzen. Um diese
Defizite zu eliminieren, konzentriert sich diese Arbeit auf die dynamische Modellierung und
den modellbasierten Reglerentwurf.

Zur Modellierung des dynamischen Verhaltens der geregelten Temperaturen gegenüber
Eingangs- und Störgrößenänderungen wird ein nichtlineares Zustandsraummodell der LHP
entwickelt. Auf Basis dieses Modells werden nichtlineare Zustandsregler entworfen, um die
Betriebstemperatur konstant zu halten. Anhand eines vereinfachten Modells können alterna-
tive Regler modellbasiert entworfen werden, die durch einen geringeren Implementierungs-
und Rechenaufwand sowie niedrige Sensoranforderungen charakterisiert sind. Durch mo-
dulare Erweiterungen werden das nichtlineare Modell und entsprechend die Regler an die
hochentwickelten Wärmetransportsysteme angepasst.

Die umfangreiche Validierung der Modelle erfolgt durch Messungen verschiedener LHP-
Systeme. Außerdem wird das Verhalten interner, schwer zugänglicher Variablen und die
Performance der vorgeschlagenen Regler in einer numerischen LHP-Simulation verifiziert
und verglichen. Darüber hinaus können die ungewollten Temperaturschwingungen während
des Betriebs der LHP reproduziert und durch die entwickelten Regler kompensiert werden.
Die Ergebnisse dieser Arbeit legen den Grundstein für die Optimierung von Reglerparametern
und -strukturen sowie den effizienten Reglerentwurf für zukünftige LHP-Anwendungen.
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Abbreviations

Abbreviation Description

ArHP arterial heat pipe
AW anti-windup
BMWi Bundesministerium für Wirtschaft und Energie (Federal Ministry for

Economic Affairs and Energy)
CC compensation chamber
CIT Control in Information Technology
CO condenser
CPU central processing unit
DF disturbance feedforward control
DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Cen-

ter)
EDRS European Data Relay System
EKF extended Kalman filter
ESA European Space Agency
EV evaporator
FZI FZI Forschungszentrum Informatik (FZI Research Center for Informa-

tion Technology)
HFLA high frequency low amplitude
HTS heat transport system
ID parameter identification
IRS Institut für Regelungs- und Steuerungssysteme (Institute of Control

Systems)
ISS International Space Station
KIT Karlsruhe Institute of Technology
LCT laser communication terminal
LEO low-Earth orbit
LFHA low frequency high amplitude
LHP loop heat pipe
LHS left-hand side
LL liquid line
LTI linear time-invariant
LY nonlinear Lyapunov-based controller
MAD maximal absolute deviation
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Abbreviation Description

MIMO multiple-input-multiple-output
Model 4D four-dimensional complex state-space model of a conventional LHP
Model C complex state-space model of a conventional LHP
Model M advanced state-space model of a single LHP with attached thermal mass
Model P advanced state-space model of parallel LHPs with ArHPs
Model S simplified state-space model of a conventional LHP
nMIAC nonlinear model identification adaptive control
nMIACc/S cascade control based on nMIAC/S
nMIAC/S nonlinear model identification adaptive control based on Model S
NPV nonlinear parameter-varying
nSF/C nonlinear PI state feedback controller based on Model C
nSFc/C cascade control based on nSF/C
nSF/M nonlinear PI state feedback controller based on Model M
nSFc/M cascade control based on nSF/M
nSF/P nonlinear PI state feedback controller based on Model P
OF output feedback control
OP operating point
OT operating temperature
P proportional
PE parameter estimation
PI proportional-integral
piAW/M PI controller with AW structure based on Model M
piAW/P PI controller with AW structure based on Model P
piAW/S PI controller with AW structure based on Model S
piAWc/S cascade control based on piAW/S
PID proportional-integral-derivative
piDF/S PI controller with disturbance feedforward control based on Model S
piDFc/S cascade control based on piDF/S
piDF/M PI controller with disturbance feedforward control based on Model M
piOF/S PI output feedback control based on Model S
piOFc/S cascade control based on piOF/S
PR state prediction
RAM random access memory
RHS right-hand side
RMSE root mean square error
SE state estimation
SF state feedback control
SIM numerical LHP simulation of [MKHW19]
SIMO single-input-multiple-output
SISO single-input-single-output
SRUKF square-root unscented Kalman filter
SSOT steady-state operating temperature
TEC thermoelectric cooler
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Abbreviation Description

TS temperature sensor
TVT Institut für Thermische Verfahrenstechnik (Institute of Thermal Process

Engineering)
UKF unscented Kalman filter
UT unscented transformation
VCHP variable conductance heat pipe
VL vapor line

Symbols

Symbol Description

A cross-sectional area
Ap pipe cross-sectional area of the condenser / transport lines
As heat transfer surface area
As,ll effective heat transfer surface area of the LL
As,vl effective heat transfer surface area of the VL
Awf Antoine constant A of the working fluid
Aex extended system matrix
Alin system matrix
Anpv system matrix of the NPV system
Atn system matrix of a thermal network
a unforced vector function of the state equation of an input-affine system
A parameter
α convective heat transfer coefficient
αrad effective radiation heat transfer coefficient
αukf SRUKF parameter
B momentum
Bwf Antoine constant B of the working fluid
B momentum vector
Blin input matrix
Btn input matrix of a thermal network
b forced vector function of the state equation of an input-affine system
bex extended input vector
blin input vector
bnpv input vector of the NPV system
B parameter
β volume fraction ratio of the CC subsystem



XVIII Symbols

Symbol Description

βop
co volume fraction ratio of the condenser subsystem in the OP

βukf SRUKF parameter
C controller transfer function
Ccc thermal capacity of the CC subsystem
Cop

cc thermal capacitance of the CC subsystem in the OP
Cop

co thermal capacitance of the condenser subsystem in the OP
Cop

ev thermal capacitance of the evaporator subsystem in the OP
Cev,sf thermal capacitance of the evaporator body
Cth thermal capacitance
Ctm thermal capacitance of the LCT structure
Cwf Antoine constant C of the working fluid
Clin output matrix
Ctn output matrix of a thermal network
c velocity
c̄ mean isobaric specific heat capacity
cp isobaric specific heat capacity
clp isobaric specific heat capacity of liquid
cvp isobaric specific heat capacity of vapor
c velocity vector / output vector function of an input-affine system
c⊤lin output vector
C parameter
D thickness
Di inner diameter of a pipe
Dp pipe diameter of the condenser / transport lines
Dlin direct transition matrix
d disturbance vector
dop disturbance vector in the OP
dtn disturbance vector of a thermal network
D parameter
∆hv (latent) heat of evaporation
∆hv

cc (latent) heat of evaporation at Tcc

∆hv
co (latent) heat of evaporation at Tco,s / Tco

∆hv
ev (latent) heat of evaporation at Tev,s / Tev

∆L length difference
∆ṁ mass flow rate difference
∆pca capillary pressure
∆Q̇cc CC power difference
∆T temperature difference
∆t time difference
∆Tcc CC temperature difference
∆Tcoo condenser outlet temperature difference
∆Tm logarithmic mean temperature difference
δ relative degree
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Symbol Description

δnpv relative degree of the NPV system
Ekin kinetic energy
Epot potential energy
Esys total energy of a system
Elin state disturbance matrix
Etn state disturbance matrix of a thermal network
e CC control error
eev evaporator control error
eid identification error vector
eukf residual output error vector
E expectation
E set of edges
E parameter
ϵ surface emissivity
η coefficient
ηukf scaling parameter
F force / Laplace transform of f
Ffr friction pressure force
Fw weight against z-direction
F force vector / vector function of the discrete state equation
F tn output disturbance matrix of a thermal network
f function
f vector function of the state equation
fnpv vector function of the NPV system
F parameter
φ phase margin
G system transfer function
G vector function of the discrete output equation
g gravitational constant / function
g vector function of the output equation
G graph
G parameter
γ coefficient
γ̄ mean void fraction in the two-phase region of the condenser
γukf scalar weighting factor
H enthalpy
Hcc enthalpy of the CC subsystem
H l

cc liquid enthalpy of the two-phase fluid in the CC subsystem
Hv

cc vapor enthalpy of the two-phase fluid in the CC subsystem
H vector function of the discrete parameter-dependent output equation
Ḣ enthalpy flow rate
Ḣ l

cc,i liquid enthalpy flow rate into the CC subsystem
Ḣ l

cc liquid enthalpy flow rate out of the CC subsystem
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Symbol Description

h specific enthalpy
hl specific enthalpy of liquid
hv specific enthalpy of vapor
H parameter
I identity matrix
i index
ipi integral part of the PI controller
I parameter
J Jacobian matrix
j index
J parameter
Kaw feedback gain of the AW structure
Ki integral gain
Ki2 integral gain of the outer control loop
Kp proportional gain
Kp1 proportional gain of the inner control loop
Kp2 proportional gain of the outer control loop
Kq gain of the disturbance feedforward control
Kr maximum setpoint rate
Kex state feedback gain matrix of the extended control system
Ks first part of Kex

Kukf Kalman gain matrix
Kx state feedback gain matrix of the linear control model
k discrete time
k2ϕ heat transfer coefficient of the two-phase region in the condenser
kll heat transfer coefficient of the LL
ksc heat transfer coefficient of the subcooled region in the condenser
ksh heat transfer coefficient of the superheated region in the condenser
kth overall heat transfer coefficient
kvl heat transfer coefficient of the VL
K parameter
L length / Lie derivative
L2ϕ length of the two-phase region in the condenser subsystem
Lop
2ϕ length of the two-phase region in the OP

Lco total length of the condenser subsystem
Llc total length of the liquid column in the LHP
Lll length of the LL
Lsc length of the subcooled region in the condenser subsystem
Lsh length of the superheated region in the condenser subsystem
Lvl length of the VL
l index
L parameter
λ eigenvalue
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Symbol Description

λly rate of decrease of the control Lyapunov function Vly

λth thermal conductivity
λukf scaling parameter
M leading principal minor
m mass
m2ϕ

cc total mass of the two-phase fluid in the CC subsystem
ml

cc liquid mass of the two-phase fluid in the CC subsystem
mv

cc vapor mass of the two-phase fluid in the CC subsystem
ml liquid mass
ṁl,op liquid mass flow rate in the OP
mv vapor mass
ṁ mass flow rate
ṁ2ϕ

o mass flow rate across the boundary between the two-phase and the
subcooled region in the condenser

ṁ2ϕ
i mass flow rate across the boundary between the superheated and the

two-phase region in the condenser
ṁl liquid mass flow rate
ṁv vapor mass flow rate
M parameter
µ dynamic viscosity
µl
co,o dynamic viscosity of the liquid at the outlet of the condenser subsystem

µl dynamic viscosity of the liquid
N identification matrix
n number of state variables / temperature nodes in a thermal network
N parameter
∇T temperature gradient
νmn measurement noise
νpn process noise
νppn parameter process noise
O parameter
P power
P xy cross-covariance matrix
p pressure / number of input variables
pcc saturation pressure in the CC subsystem
pco saturation pressure in the two-phase region of the condenser subsystem
pev saturation pressure in the evaporator subsystem
ps saturation pressure
p parameter vector
p∗ optimal parameter vector
p̂ estimated parameter
p̂ estimated parameter vector
p̂− updated parameter vector
P parameter
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Symbol Description

p sigma point vector of the parameters
Q heat
Qctr controllability matrix
Q−1

ctr,ex inverse controllability matrix of the extended control system
Qobs observability matrix
Q̇ heat flow rate
Q̇2ϕ heat flow rate from the two-phase condenser region to the heat sink
Q̇cc rate of heat input to the CC by the control heater
Q̇op

cc rate of heat input to the CC by the control heater in the OP
Q̇co overall heat flow rate at the condenser subsystem to the heat sink
Q̇ev heat load at the evaporator
Q̇op

ev heat load at the evaporator in the OP
Q̇SIM

ev heat load at the evaporator of SIM
Q̇hs dissipated heat of the heat source
Q̇lk heat leak
Q̇ll heat flow rate to the LL subsystem from the surroundings
Q̇sc heat flow rate from the subcooled condenser region to the heat sink
Q̇sf heat load at the surface of a thermal mass
Q̇sh heat flow rate from the superheated condenser region to the heat sink
Q̇ssot,h highest heat load, for which the SSOT can be controlled at the setpoint

temperature by CC heating
Q̇ssot,l lowest heat load, for which the SSOT can be controlled at the setpoint

temperature by CC heating
Q̇ssot,m heat load at the minimal SSOT
Q̇ssot,t heat load at the transition of the LHP operation mode from fixed to

variable conductance mode
Q̇vl heat flow rate from the VL subsystem to the surroundings
q number of output variables / external heat flows into a thermal network
q⊤
ctr,ex last row of the inverse controllability matrix Q−1

ctr,ex

q̇ heat flux
R specific gas constant
Rco thermal resistance of the heat flow at the condenser to the heat sink
Rhp1,tm thermal resistance between ArHP 1 and the LCT structure
Rhp2,tm thermal resistance between ArHP 2 and the LCT structure
Rlk thermal resistance of the heat leak
Rp pore radius of the primary wick
Rsf thermal resistance between the surface and the fluid of the evaporator
Rsf,tm thermal resistance between the evaporator surface and the LCT struc-

ture
Rsh thermal resistance of the superheated vapor in the evaporator subsystem
Rth thermal resistance
Rmn measurement noise covariance matrix
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Symbol Description

Rpn process noise covariance matrix
r number of LHPs in a coupled heat transport system
R set of real numbers
R parameter
ρ density
ρ2ϕ homogeneous density in the two-phase region of the condenser
ρlcc liquid density in the CC subsystem
ρvcc vapor density in the CC subsystem
ρlco liquid density in the two-phase region of the condenser subsystem
ρlco,o liquid density at the outlet of the condenser subsystem
ρlcc,i liquid density at the inlet of the CC subsystem
ρvco vapor density in the two-phase region of the condenser subsystem
S entropy
Sy Cholesky factor of the output covariance matrix
S Cholesky factor of the state covariance matrix
Sp Cholesky factor of the state covariance matrix of the parameter process
S− updated S
S−

p updated Sp

Ṡg entropy generation rate
s complex variable in the Laplace domain
σ surface tension
T temperature
Tamb ambient temperature
Tcc mean temperature in the CC subsystem
Tcc,i temperature at the CC inlet
Tcc,m measured CC temperature
T off
cc temperature offset of the CC subsystem

T op
cc CC temperature in the OP

Tco mean temperature in the condenser subsystem
Tco,i temperature at the condenser inlet
Tco,o temperature at the condenser outlet
Tco,s saturation temperature in the condenser subsystem
Td delay time constant
Tev mean temperature in the evaporator subsystem
Tev,m measured evaporator temperature
Tev,s saturation temperature in the evaporator subsystem
Tev,sf evaporator surface temperature
Thp1 temperature of ArHP 1
Thp2 temperature of ArHP 2
Ti inlet temperature
To outlet temperature
Tref reference temperature
Ts saturation temperature
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Symbol Description

Tset setpoint temperature for the CC temperature
Tset,act actual setpoint temperature for the CC temperature
Tset,ev setpoint temperature for the evaporator temperature
Tsk sink temperature
T op
sk sink temperature in the OP

Tssot,m minimal SSOT
Tst sampling time constant
Ttm temperature of the LCT structure
t time
T set of vertices
θc contact angle in the primary wick
θe elevation angle of the system
U internal energy / Laplace transform of u
Ucc internal energy of the CC subsystem
Uco thermal conductance of the heat flow at the condenser to the heat sink
Uev internal energy of the evaporator subsystem
Ulk thermal conductance of the heat leak
Ull thermal conductance of the LL
Usys internal energy of a system
Uth thermal conductance
Uvl thermal conductance of the VL
u specific internal energy / input variable
uop input variable in the OP
utn input variable of a thermal network
u input vector
utn input vector of a thermal network
V volume
Vcc total fluid volume of the CC subsystem
Vly control Lyapunov function
v specific volume / input variable
vl specific liquid volume
vv specific vapor volume
v input vector
W work
w height
xaw output of the AW structure
xex external state variable
xtn state variable of a thermal network
x state vector
x0 initial state vector
xin internal state vector
xop state vector in the OP
xtn state vector of a thermal network
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Symbol Description

x̂ estimated state vector
x̂− updated state vector
x sigma point vector of the states
Y Laplace transform of y
y output variable
ycl output of the total control
ydf output of the feedforward control
yp output of the P controller
ypi output of the PI controller
y output vector
yd desired output vector
ytn output vector of a thermal network
ŷ− updated output vector
ŷ−
d updated desired output vector

y sigma point vector of the outputs
Za weight of a sigma point
Zb weight of a sigma point transition error
Z decoupling matrix
z Cartesian coordinate
Z parameter





1 Introduction

The reliability, durability, and performance of an electronic device depend significantly on its
thermal management. During the operation, electrical energy is partially transformed into
waste heat that raises the operating temperature (OT) of the device. Thus, the excess heat
must be transferred to a suitable cooling system at a lower temperature in order to keep the
OT at a required setpoint for optimal operating conditions.

The thermal control of electronic components in space applications is a particular challenge
although space is just above absolute zero [KW15]. Since space is a vacuum, matter can
only release its heat in the form of electromagnetic waves. Thus, thermal radiation is the
fundamental heat transfer mechanism that enables the dissipation of heat into space. In order
to transfer the waste heat of an electronic component to the radiant heat sink of the spacecraft,
heat transport systems are necessary. Through the removal of the excess heat, the OT of
the electronic component is controlled. To satisfy the growing power demands of electronic
components in space applications and to push these components toward optimal performance
and long service lifetimes for successful missions near the earth or in outer space, accurate and
reliable heat transport systems are needed to achieve the best possible operating conditions.

An example of space applications with integrated heat transport systems can be found in the
European Data Relay System (EDRS), the ongoing project of the public-private partnership
between the European Space Agency (ESA) and Airbus Defence and Space [Eur15a].

Figure 1.1: The European Data Relay System (EDRS) with two geostationary satellites connecting the ground stations
in Europe with two satellites and the International Space Station (ISS) on low-Earth orbits (LEOs) [Eur14]
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As depicted in Fig. 1.1, two geostationary nodes of the EDRS network are currently orbiting
around Earth on host satellites to relay data between low-Earth orbit (LEO) satellites and
the fixed ground stations in Europe. Due to the higher position of the relay satellites on the
geostationary orbit at approximately 36,000 km, these satellites always have a direct line of
sight with the ground stations for a continuous data transmission. In contrast, LEO satellites
have only a limited transmission window with the ground stations on their trajectory around
Earth. Based on the indirect communication with the ground stations through the relay satel-
lites, the transmission window of LEO satellites is considerably increased. Furthermore, the
data transmission in the EDRS network is based on laser communications technology, which
reduces the transfer delays and increases the data transfer rate compared to the commonly
used radio technology [Eur15a].

Figure 1.2: Laser communication terminal (LCT) with loop heat pipes (LHPs) for thermal control [Eur15b]

The geostationary host satellites are equipped with laser communication terminals (LCTs) (see
Fig. 1.2), which have been developed by Tesat-Spacecom GmbH & Co. KG. The optical direct
link between two LCTs reaches data transfer rates with up to 1800Mbit s−1 over more than
40,000 km to transfer data from space to ground in near real-time [Eur15a]. These numbers
are only possible if the laser is controlled in a narrow temperature corridor. Thus, the excess
heat of the LCT must be transferred to the remote radiator with adequate heat transport
systems.

For the thermal control of LCTs, Tesat-Spacecom works with so-called loop heat pipes (LHPs)
(see silver structure on the LCT platform in Fig. 1.2). LHPs are widely used in thermal control
of aerospace systems due to their passive, two-phase working principle [Ku99]. As multiphase
thermodynamic systems, LHPs use the latent heat of the phase transition to reach a higher heat
transport capacity, i.e. a higher overall thermal conductance, than conventional single-phase
heat transport systems. Thus, the size and the weight of the heat transport system based on
two-phase LHPs can be reduced to meet the strict mass requirements in aerospace applications
[vEvG13]. Another advantage of LHPs is connected with the passive driving force of the mass
flow in the pipes. Without the use of power-consuming, error-prone mechanical pumps, the
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mass flow of the working fluid in the flexible transport lines is established self-sufficiently by
capillary forces in a fine-pored wick during evaporation [May05]. This wick is located in the
evaporator (EV), one of the five components of an LHP (see Fig. 1.3). The evaporator near
the heat source is named after the phase transition process evaporation. It is connected to
the corresponding condenser (CO) near the heat sink via the transport lines: one line for the
vapor phase (vapor line, VL) and one line for the liquid phase (liquid line, LL). A reservoir
or compensation chamber (CC) is attached to the evaporator to balance the two-phase mass
distribution in transient states. Compared to conventional multiphase heat pipes without
the local separation of evaporation and condensation via transport lines, LHPs provide a
reliable and effective solution to the heat transport problem against gravity and over increased
distances [Shu15].

heat sourcecontrol heater

heat sink

condenser (CO)

liq
ui
d
lin

e
(L
L)

vaporline
(VL)

compensation
chamber (CC)

evaporator
(EV)

Figure 1.3: Schematic of a conventional LHP with its five components and three main external influences

Although the specific benefits of LHPs in terms of their power and mass effectiveness are espe-
cially relevant for aerospace systems [vEvG13], their application has spread to various other
domains in recent years, such as server and automotive systems (see [ZSC+08], [MVPF10]
and [PAP16], [BCG+18]). These terrestrial applications make additional use of the LHP’s high
thermal conductance, flexibility, and quiet, reliable operation. For all applications, an LHP
has to be characterized and designed specifically by a thermodynamic engineer to meet the
various requirements of the cooled object and its environment. However, the use of LHPs as
heat transport systems also poses a significant challenge to control engineers. In order to keep
the OT of the cooled object in a desired temperature corridor, the OT of the LHP itself must
be controlled. Different control devices exist to regulate the OT of the LHP of which electrical
control heaters (see Fig. 1.3) are most common for their simple implementation [Ku08] and
reliable operation without any mechanical parts. Such control heaters are installed on the
LHPs used in the LCT. While the OT is fixed at a desired setpoint temperature by a comparably
small amount of applied heat, the natural behavior of the LHP, which is the transport of large
amounts of excess heat, is maintained.
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So far, heuristic controllers for the control heaters are applied to characterize and design
temperature-controlled LHPs. The repeated manual adaptions of these controllers to their
specific applications requires a high number of experiments. These experiments are performed
on test benches in vacuum chambers for a near-space simulation of the slow thermodynamic
processes and therefore consume a lot of expensive test bench time. Moreover, the current
controllers with a trial-and-error parameterization show moderate control results and reach
their limits in advanced LHP systems, i.e. systems with more than one LHP, multiple LHP
components or further attachments. Thus, the performance of control heaters in LHP-based
heat transport systems must be improved.

A model-based control design does not share the disadvantages of the current heuristic
approach. Instead, it lays the foundation for an improved control performance of LHP-based
heat transport systems by adjusting the control architecture and control parameters to the
modeled system’s dynamics. This requires the profound understanding of the fundamental
dynamics of the basic LHP up to the advanced LHP system. Accurate physical modeling of
an LHP like any other multiphase system, however, is challenging because of the individual
complexity of the combined heat and mass transfer processes [Ku99]. Furthermore, the
model-based control design has to be aligned with the situation of the LHP application.
The collaboration between the manufacturer and the end user of the LHP may complicate
the modeling and control design process. Considering the example of the LCT, the LHP
manufacturer is not willing to share detailed information about the interior of the LHP with
the LCT manufacturer as LHP end user and control designer who also maintains business
relationships with competitive LHP manufacturers. Since the internal structures of LHP
components are subject to the trade secret of the LHP manufacturer, internal geometries and
parameters are rarely included when acquiring an LHP. In addition, constructional changes of
the LHP as hermetically sealed heat transfer device to influence and measure its OT need to
be avoided since toxic ammonia is used as working fluid inside the LHP to meet the thermal
requirements in space. That is why the LHP end user prefers noninvasive actuators and
sensors to provide information about the system, which are usually easy to install. However,
the possibility and the accuracy to determine internal variables and parameters externally
with surface measurements is naturally limited. Consequently, there is a particular need for
a model-based control design for LHP-based systems which focuses on a limited number of
internal parameters and variables and still achieves the desired model accuracy and control
performance.

Sustainable improvement must be obtain by an alternative control design in order to mitigate
the shortcomings of current LHP controllers regarding their control performance and their
application to advanced LHP-based heat transport systems. To meet the demands for accurate
and reliable LHP-based systems with a cost-effective adaption to future applications and
missions, this thesis focuses on the following two goals:

• Modeling and simulation of the fundamental dynamics of LHP-based heat transport
systems for model-based control design

• Corresponding development of control strategies and model-based design of adequate
control algorithms based on the introduced models for the OT control of LHP-based
heat transport systems
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The necessity to reach these goals is further underlined by the current state of science in
Chapter 2. It elucidates why the previous control approaches are not sufficient for the LHP-
based heat transport systems under investigation in terms of their disturbance behavior and
which undesired phenomena, such as temperature oscillations, are to be eliminated by a model-
based control design. For this reason, different modeling approaches of LHP systems are
discussed considering their applicability in model-based control design under consideration
of the available parameters and variables. The modeling in this thesis is introduced by
thermodynamic preliminaries regarding the heat and mass transfer in multiphase systems
and the fundamental LHP characteristics under operating temperature control in Chapter 3.
A complex dynamical model of a basic LHP is derived in Chapter 4 which adapts, combines,
and extends the existing approaches in the literature to the needs of a model-based control
design. Subsequently, the chosen control design approach, which is consistent with the
structure of the derived dynamical model, is presented. In order to take advantage of a
model-based control design in LHP applications with limited energy and mass, which is
especially relevant in the aerospace sector, the complex dynamical model is further simplified
in Chapter 5. It becomes clear which influences and dynamics are explicitly considered
by the proposed simple controllers like the state-of-the-art controller with lower hardware
requirements in comparison to the computationally complex controllers introduced before.
Furthermore, the control parameters and architectures of already delivered LHP-based heat
transport systems can be improved and updated on the short run according to the model-
based control design and in consideration of the existing hardware. The extension of the
complex modeling and control approach in Chapter 4 to advanced LHP systems with further
attachments or multiple LHPs is shown in Chapter 6. In this chapter, the advantages of
the modular modeling approach and the extensibility of the previously introduced control
algorithm become apparent. A comprehensive comparison and validation of the proposed
models and controllers is performed in Chapter 7. This chapter shows that the proposed
controllers are able to achieve the aforementioned requirements including an improved control
performance and the elimination of undesired behaviors. At the end, a short summary and
conclusion completes this thesis in Chapter 8.





2 State of Science

In this chapter, the state of science concerning the modeling and control of LHP-based heat
transport systems is outlined in order to identify the research gap to be closed in this thesis.
At first, different control devices are discussed to introduce the corresponding state-of-the-art
control algorithms for the operating temperature control of LHPs. Subsequently, the modeling
approaches of LHPs in the literature are detailed and classified to clarify their usability for a
model-based control design. In the third section, the focus is set on the extensions in advanced
LHP systems and their impact on the LHP behavior, which presents another challenge to the
modeling and the control design. An undesired behavior to be eliminated by an adequate
controller is temperature oscillation, which is differentiated in terms of its occurrence and
cause in the different advanced LHP-based systems. A discussion on the addressed aspects
concerning the modeling as well as the control of LHP systems is given, before the research
gap and related research questions of this thesis are finally stated.

2.1 Operating Temperature Control of Loop Heat Pipes

The fundamental task of an LHP is the transfer of heat between a heat source and a heat
sink. Due to its passive, self-sufficient working principle induced by the heat transfer itself,
the LHP adapts its OT to changes in the temperature of the heat sink and the amount of
heat dissipated by the cooled object. This OT variation in order to maintain the thermal
equilibrium affects the temperature of the cooled object in return. Temperature-sensitive
electronic devices, however, require a narrow temperature corridor to reach their maximum
performance. As for the mentioned LCT, the pointing mechanism of the laser requires a stable,
homogeneous OT to achieve the desired precision [RMT16]. Therefore, the OT of the heat
transport system must be controlled to adjust a stable temperature level at the cooled object
under varying operating conditions. Furthermore, the startup of an LHP can be supported
by adequate control devices. The LHP startup is characterized by the initialization of the
circulation of the mass flow through evaporation and condensation. An additional heat input
to the evaporator promotes a fast liquid evaporation and thus a successful startup. Thus, this
thesis concentrates on the OT control during the continuous operation of a running LHP.

Overviews of several OT control devices of LHPs are given in [NKS99] and [Ku08]. Basically,
the devices are classified concerning both the power consumption and the heat resource.
Passive control devices without the need of external energy redistribute heat autonomously
between hot and cold areas of the LHP, whereby the thermal equilibrium is altered internally
to a desired OT level. Examples are the organized heat exchange with coupling blocks [NKS99],
[NW07], [Ku08] and the pressure regulators like valves in a bypass line [NKS99] or with a
bypass line [BSR+05], [TMK14]. Since passive devices achieve a rough temperature control
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for a fixed setpoint while adding more mass and complexity to the system, they are often
combined with or transferred into active devices. Thus, the precision of the control result is
increased, and the required amount of external energy is reduced. In addition, the setpoints
of active devices can be changed during operation according to the task or due to aging
[Ku08]. By attaching an electrical heater on the bypass valve, an active saturation pressure
regulation is established. This enables a heat transfer stop in the LHP to avoid situations
where the cooled electronic components are too cold to start or operate. Due to the internal
redistribution of the hot vapor mass flow, active valves consume less power than other active
control devices. However, electrical heaters are often attached directly on LHP components,
such as the compensation chamber or the liquid line, which carry the cold liquid from the
condenser [NKS99]. By heating one of these LHP components externally, a control heater is
able to alter the saturation temperature and therefore the OT of the LHP reliably. In contrast,
valves are not as reliable, as they entail an increased risk of failure due to moving parts.
Typically, the CC is cold-biased so that heating is sufficient to keep the desired setpoint
temperature over the considered operating range [Ku08]. Nevertheless, active cooling and
heating is possible with thermoelectric coolers (TECs). TECs are able to supply and withdraw
heat based on the Peltier effect [HMS16, p. 758]. This thermoelectric effect describes the
occurrence of a temperature difference by applying an electric potential difference to a solid.
Depending on the flow direction of the electric current, the temperature gradient between
both sides of the TEC can be inverted. The effectiveness of the TEC is mainly defined by the
thermal conductivity of the interfaces to the evaporator and the CC [Ku08]. Furthermore,
the heat exchange between the two LHP components is intensified by the TEC since both
heat resources are combined: internal heat is redirected through the interface as external
heat is provided [NKS99]. A TEC contributes to the reduction of the required external energy
and a successful LHP startup [NKS99], i.e. the evolution of a mass flow in the LHP cycle
for a continuous heat transport. However, the thermal interfaces are prone to shear stress
[Ku08]. In addition, the lifetime of the TEC is rather short for a successful application in
aerospace systems without any maintenance option [NW07]. Further approaches combining
the internal and external heat exchange for the reduction of the power consumption are based
on the organized heat exchange with a secondary evaporator, a variable conductance heat
pipe (VCHP), or a separate subcooler, which add additional mass to the system and complicate
the routing of the transport lines [Ku08].

In recent years, two innovative LHP control device concepts have been published. In [JGKY15],
the saturation pressure of the LHP is controlled by injecting and withdrawing immiscible
gas into and out of the CC, respectively. Due to the hydraulic action, the pressure-controlled
LHP achieves a stable and precise OT control. The second concept, introduced in [KAS18],
integrates a steel ball into the evaporator in order to manipulate the heat and mass flow
mechanically. By moving the steel ball inside the evaporator with two external magnets, the
flow resistance is altered. Consequently, the OT of the LHP adapts itself to the new conditions
demonstrating a new active control possibility. Both concepts are still under development, but
may extend the variety of active control devices for different LHP applications in the future.

A different active control concept for special LHP-based cooling systems is presented in
[LWL10] and [DLWW12]. Due to the combination of an LHP with a variable emittance
radiator as heat sink, one of the influences on the operating conditions of the LHP is controlled.
By manipulating the heat dissipation of the radiator through a microelectromechanical louver,
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the cooling ability of the heat sink at the condenser is adjusted. This LHP-related control
concept does not correspond to the investigated LHP systems and the focus on a direct OT
control in this thesis. Furthermore, the mechanical structure is susceptible to shear stresses
and thus more prone to failure.

Most of the literature about actively controlled LHPs concentrates on the experimental and
numerical investigation of the feasibility and control performance of the proposed control
devices. Only a few mention the designs of the underlying control algorithms for their active
devices, e.g. [BSR+05], [SN17], [UK17]. Among these control algorithms, a feedback control
structure with a temperature measurement is commonly used to determine the electrical
power of the active control device. Depending on the characteristics of the power supply, the
active control device is either turned on and off or is able to provide a variable heat output.
A two-point controller is used in [GKB06] to turn the heater of a bypass valve on and off
according to the measured temperature moving above or below the setpoint temperature. The
same simple controller type is applied in [BBD98], [KB01], and [KSK+14] to regulate control
heaters on the CC. A hysteresis is added in [UK17] to reduce the switching of the control
heater and therefore stabilize the temperature near the setpoint temperature. In [BSR+05],
the control law for the heater of a bypass valve is adapted linearly to the temperature of
the cooled object to reduce its stationary deviation from the setpoint temperature. Classical
feedback controllers with proportional-integral-derivative (PID) action are utilized for control
heaters and TECs in several works, e.g. [KN07], [KPM11a], [KPM11b], [SN17]. Compared
to the results with a two-point controller, a smoother temperature curve near the setpoint
temperature is observed with PID controllers. Furthermore, the feedback controllers with an
integral term show a converging behavior of the temperature toward its setpoint temperature
minimizing the residual control error. The authors of [KPM11a] and [KPM11b] describe the
impact of different temperature sensor locations on the controller performance. Depending on
the LHP component, temperature oscillations occur, which suggests the adaption of the control
parameter to different LHP settings. However, the design process of the control parameters
is not reported in any literature, indicating a heuristic control parameter tuning on the test
bench.

To the best of the author’s knowledge, there is no physically motivated, model-based de-
sign process of the proposed controllers. In general, the control technology of LHPs is little
researched which may be related to the fact that LHPs are often regarded as passive ther-
mal control devices [DLWW12]. The increased development time of a model-based design
approach may be another reason why this approach has not been applied in the control
technology of LHPs so far. However, a model-based design approach for the active OT control
of LHPs contributes to the minimization of expensive test-bench time, facilitates the adaption
to new systems, and lays the foundation for more elaborate control algorithms with a higher
accuracy and robustness. The development of model-based LHP controllers requires the exis-
tence of an adequate dynamical model of the LHP. Therefore, the current thermal modeling
approaches of LHP systems in the literature are presented in the next section.
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2.2 Modeling Approaches for Loop Heat Pipes

The variety of LHP models in the literature can be divided into two main groups: stationary
models and transient models. Stationary models are commonly developed for thermodynamic
systems since the variation of the temperature in time is not necessary for the characterization
and design of these systems. While numerical stationary models are rather used to simulate
the steady-state characteristics of the LHP, analytical stationary models are preferred for the
specification of the design and sizing of LHP components [Fur06]. Transient models, however,
are essential to evaluate the coupled time-variant heat and mass transfer processes, charac-
terize the impact of external influences, and understand the overall dynamics and transient
phenomena of an LHP. Hence, transient models are required for a model-based control design.
Many publications establish their model equations mainly on a physical basis by considering
the mass, energy, and momentum conservation laws. These numerical transient models focus
on the local one-dimensional discretization of the LHP into many segments or nodes to handle
the coupled thermodynamic and hydraulic behavior of the different LHP components. For
the mathematical description of the resulting nodal networks, the conservation equations are
derived for each node. For the simulation of the overall transient LHP behavior, the balancing
solutions of the large-scale equation systems are obtained numerically achieving satisfactory
agreements between the models and the experiments. Some publications rely on commercial
software products like EcosimPro [GTPK05], [KPGT08] or Sinda/Fluint [KR10] to solve the
large-scale equation systems, where not all specific model equations are accessible or given.
In most of the available publications, the numerical models are stated completely.374.8651pt

In order to classify the variety of numerical transient LHPmodels of the past decades according
to the modeling aspects in this thesis, an extensive literature review is carried out. The results
of the review are presented in Table 2.1. The available LHP models differ in their modeling
purpose. Due to their specific purpose, differently detailed discretizations in axial and radial
direction are chosen to consider the geometric structures of the LHP components and spatial
distribution of the two-phase fluid. The possibility to track the liquid-vapor interfaces in the
CC and the condenser is mainly based on the determination of the two-phase volume and
the vapor quality in each node for a precise identification of the local temperatures in the
complex, two-phase regions of the LHP. The evaluation of the model reactions to external
heat changes, either by uncontrolled components like the heat source and the heat sink or by
the control heater, is especially relevant to characterize the model performance in terms of
designing and testing adequate controllers.

In [SN17], the active temperature control with a TEC is compared between experiments and
the established numerical model. As in [BCG+18], [NNK13], [AFN19], [BLW10], and [VR08],
the discretization of the LHP components focuses on an axial one-dimensional discretization
of the pipe system including the condenser and the transport lines. Radially, only the wall
mass of the evaporator is considered with one layer of nodes in [SN17] and [BCG+18]. The
liquid-vapor interface of the condenser in [SN17] is not tracked in contrast to the rest of the nu-
merical models, since the condenser temperatures are not evaluated. Instead, the uncontrolled
and controlled temperatures at the CC-evaporator assembly are presented showing stationary
and dynamic deviations in both the uncontrolled and the controlled case for variable heat loads.
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Publication

LHP components
Modeling
purpose

Liquid-
vapor

interface
tracking

Operating
conditions

Axial 1D
discretiza-

tion

Radial dis-
cretization

[SN17]
condenser,
transport
lines

evaporator
(single layer)

active TEC
control no tracking

variable
source and
CC control,
constant
sink

[BCG+18]
condenser,
transport
lines

evaporator
(single layer)

waste heat
usage in
electric
vehicles

condenser

variable
source,
constant
sink

[NNK13]
condenser,
transport
lines

evaporator
(multilayer)

heat load
distribution condenser

variable
source,
constant
sink

[AFN19]
condenser,
transport
lines

evaporator
(multilayer)

internal
flow and
temperature
oscillations

condenser
constant
source and
sink

[BLW10]
condenser,
transport
lines

all LHP
components
(single layer)

startup
scenarios condenser

constant
source, sink,
and CC
control

[VR08]
condenser,
transport
lines

all LHP
components
(single layer),
evaporator
(multilayer)

space
conditions
at radiator
and
condenser

condenser,
CC

variable
source and
sink,
constant CC
control

[MKHW19] condenser no walls
considered

overall LHP
dynamics
for LHP end
users

condenser

variable
source,
constant
sink

[HK03]
Lagrangian
fluid flow
method

all LHP
components
(single layer)

LHP fluid
dynamics
for design
refinements

condenser,
CC

variable
source,
constant
sink

[LPDJ07]
global
hydraulic
balance

CC,
evaporator
(single layer)

temperature
oscillations

condenser,
CC

variable
source and
sink

Table 2.1: Classification of numerical transient LHP models
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Even an opposite behavior of the CC temperature due to the roughly determined heat leak
and the stationary flow model is observed without control. The model is more sensible to the
controller action than the measured system due to inaccurate thermal capacities and heat
transfer coefficients.

By tracking the liquid-vapor interface in [BCG+18], the effects of different working fluids on
the LHP performance are detailed. A focus is set on a numerical model with low computational
effort to perform a feasibility study and parametric analysis of LHP designs for the waste
heat usage in electric vehicles. The model reproduces the overshoots of the evaporator wall
temperature to heat load changes correctly, but stationary and dynamic differences persist. In
[NNK13], the steady-state error between the calculated and measured variables under heat
load variations is smaller, but the deviation in the dynamic behavior remains as well due
to inaccuracies in the thermal capacities and heat transfer coefficients. As a result of the
analysis of the heat flow distribution, the heat flows between the CC and the surroundings
and between the CC and the bayonet may be neglected compared to the heat leak from the
evaporator to the CC as part of the heat load as well as the subcooling of the liquid flow
from the condenser. Both the models in [NNK13] and [AFN19] use a detailed radial model of
the evaporator and its wick with multiple layers of nodes to specify the heat flows and the
internal mass flows, respectively. According to [AFN19], the impact of the internal flow on
the simulated temperature oscillations of LHPs without active control is traced back to the
two-phase fluid penetration into the LL. In addition, a temperature oscillation is connected
with an oscillation of the condensation length in the condenser.

The simulation of the LHP startup regarding the change in the temperatures at different
constant operating conditions is modeled in [BLW10] considering the walls of all components
to include the effects of the thermal capacities. It is concluded that a successful startup is
promoted by a high initial heat load at the evaporator, a low heat leak to the CC, and active CC
cooling. The walls of all components are also modeled in [VR08] but with a different modeling
purpose. The validated model is used to simulate changing space conditions at the heat sink,
namely the condenser and the radiator, to predict the expected LHP performance in space. By
considering the variations of the liquid-vapor interfaces in both the condenser and the CC,
the responses of the wall temperatures in the CC-evaporator assembly to heat load changes
show a good agreement between the simulated and measured results. The aforementioned
two-phase fluid penetration is observed in the simulation results as well due to changing
conditions at the radiator and condenser or active CC control. Moreover, a high sensitivity of
the CC to control heater actions is also reported as before. A mutual advantage of the models
in both publications, [BLW10] and [VR08], over the previous models is the consideration of
the momentum of the fluid flow to model the dynamics of the distributed mass flow rates
in the condenser adequately. In contrast, only a stationary functional determination of a
single mass flow rate in the entire loop is established in [SN17], [BCG+18], [NNK13], and
[AFN19].

An overall simulation of the LHP dynamics for LHP end user is the objective of the "pragmatic
modeling approach" [MKHW19, p. 898] of Meinicke et al. In combination with an inexpensive
experimental characterization with only noninvasive surface measurements, the model is able
to capture the most significant dynamic behaviors of different measured and unmeasured
variables. By dividing the condenser into fine segments, the internal mass flow rates and
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phase distributions are calculated separately in each time step. The accumulation of the
locally distributed two-phase mass changes in the condenser nodes defines the difference
of the mass flow rates in the LL and the VL making a balancing solution method necessary.
Furthermore, the mass and energy conservation equations to derive the thermal submodel are
established for the remaining LHP components without local division. To model the impact of
the operating conditions on the temperatures in close agreement with the measurements, the
heat leak is finally fitted from the derived experimental data as a function of the operating
conditions.

A different modeling approach is chosen in [HK03] to model the LHP fluid dynamics for LHP
design refinements. The transient liquid flow is established with the Lagrangian fluid flow
method, where the position and velocity of the liquid flow particles are regarded instead of
locally discretizing the pipes containing the liquid. The heat flows of the thermal submodel are
derived from the thermal energy balance of the LHP. Combined with the momentum equation
of the liquid flow and the change of the vapor volume in the condenser, the overall model
forms a mass-spring-damper system introducing one possible explanation for temperature
oscillations in LHPs. The presented numerical model is used for the transient simulation of
the LHP and shows the qualitative LHP behavior to heat load changes without experimental
validation. At low heat loads, however, the predicted heat leak is much lower than the
presented test data reveal.

In contrast to the previous models, a more global numerical approach is chosen in [LPDJ07] to
model the temperature oscillations of LHPs without active control at the limits of the operating
range. By establishing the global thermal and hydraulic balance of each LHP component, the
dynamics of the temperatures and the mass flow rates are described in a more explicit way. To
consider the transient mass flow rate in the LL, the mass and momentum balance equations of
the liquid are established. The hydraulic balance in the condenser is based on the condenser
modeling in [WBB78], which neglects a superheated region at the beginning of the condenser.
This superheat, however, is modeled in [AFN19], [BLW10], and [MKHW19] to consider the
temperature gradient in the VL for a more accurate determination of the vapor temperatures.
In order to track the liquid-vapor interfaces in the condenser and in the CC under variations
of the heat source and the heat sink, the dynamics of the liquid CC volume are derived from
the two-phase mass balance in the CC. In addition to the interface tracking, the frequency and
amplitude of the reported temperature oscillations can be determined from the simulations.
Nevertheless, a numerical solution is necessary due to implicit equations and a case-by-case
analysis.

None of these numerical models are intended or designed for a model-based control design.
Classically, dynamical models for the model-based design of controllers are given by a set of
ordinary differential equations in the explicit state-space form according to Def. 2.1.
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Definition 2.1 (State-space model of a dynamic system (cf. [Kha15, p. 14]))
The state-space model of a dynamic system is given by the following nonlinear vector
equations:

ẋ(t) = f(x(t),u(t), t), (2.1a)
y(t) = g(x(t),u(t), t) (2.1b)

with the state vector x(t) containing the n state variables xi(t) (i = 1, ..., n), its derivative
ẋ(t) w.r.t. the time variable t, the input vector u(t) containing the p input variables
uj(t) (j = 1, ..., p), and the output vector y(t) containing the q output variables yl(t)
(l = 1, ..., q). The initial condition of (2.1) is given by the initial state x0:

x(0) = x0. (2.2)

In terms of control technology, the state variables xi(t) in the state vector x(t) stand for the
independent storage of a dynamic system. The influence of external variables on the system
is represented by the input variables uj(t) in the input vector u(t). The output variables yl(t)
in the output vector y(t) resemble physically measurable variables or variables with a desired
behavior. [Kha15, p. 13]

The nonlinear vector function f in the state equation (2.1a) is formed from the n coupled
first-order ordinary differential equations:

ẋ1(t) = f1(x1(t), ..., xn(t), u1(t), ..., up(t), t), (2.3)

ẋ2(t) = f2(x1(t), ..., xn(t), u1(t), ..., up(t), t), (2.4)
...

...

ẋn(t) = fn(x1(t), ..., xn(t), u1(t), ..., up(t), t). (2.5)

Correspondingly, the nonlinear vector function g in the output equation (2.1b) is derived from
the q equations that define the output variables yl(t):

y1(t) = g1(x1(t), ..., xn(t), u1(t), ..., up(t), t), (2.6)

y2(t) = g2(x1(t), ..., xn(t), u1(t), ..., up(t), t), (2.7)
...

...

yq(t) = gq(x1(t), ..., xn(t), u1(t), ..., up(t), t). (2.8)

For linear time-invariant (LTI) systems, where the vector functions f and g do not depend
explicitly on the time t, the general state-space form in Def. 2.1 can be rewritten into the
following matrix representation:
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Definition 2.2 (Linear state-space model)
The state-space model of an LTI system is given by the following equations:

ẋ(t) = Alin · x(t) +Blin · u(t), (2.9a)
y(t) = Clin · x(t) +Dlin · u(t) (2.9b)

with the state matrix Alin ∈ Rn×n, the input matrix Blin ∈ Rn×p, the output matrix
Clin ∈ Rq×n, and the direct transition matrix Dlin ∈ Rq×p. The initial condition of (2.9)
is given by the initial state x0:

x(0) = x0. (2.10)

Besides the state-space representation of LTI systems in the time domain, the frequency domain
is often used in the context of control technology to describe the input-output behavior of
linear dynamic systems. The representation in the frequency domain is also utilized in this
thesis and in the following literature and shall therefore be briefly explained here. Due to
the decomposition of the signals at the system’s input and output into periodic signals, the
transformation of the system from the time domain into the frequency domain is achieved by
the Laplace transform [Lun20a, p. 257]:

F (s) =

∫ ∞

−0

f(t) · exp(−s · t) dt (2.11)

with the Laplace transform F (s) of the signal f(t). By introducing the complex Laplace
variable or complex frequency s, the transfer characteristics of a linear dynamic system is
described by the so-called transfer function G(s):

g(t) c sG(s) =
Y (s)

U(s)
(2.12)

with the Laplace transforms U(s) and Y (s) of the input signal u(t) and the output signal y(t),
respectively. The order of a transfer function corresponds to the highest order of the linear
differential equation that describes the LTI system.

Considering the dynamical modeling of an LHP, few efforts are made in the literature to
accomplish this goal since the thermohydraulic coupling complicates the design of dynamical
models.

In [HHL09], the proportional time-delaying behavior of the CC temperature has motivated the
identification of multiple second-order transfer functions in different operating points to study
the dynamic behavior of the LHP temperatures. The different identified transfer functions are
combined in a variable structure system that depends on the operating conditions. Accordingly,
four startup modes in dependence on the heat load are defined: failure, oscillation, overshoot,
and normal. However, the averaged dynamical black-box model without physical background
is only accurate when the condenser is fully utilized and higher heat loads result in higher
temperatures.
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The thermo-fluid dynamics of an LHP are investigated in [Shu08]. The ordinary differential
equation of the vapor temperature is established based on themass and the energy conservation
equations in the condenser assuming the vapor to be a compressible ideal gas. The vapor
temperature at the LHP startup is simulated for two different heat loads showing only a
small deviation between both cases. Furthermore, the radial heat leak in the wick from the
evaporator to the CC is determined according to Fourier’s law (see Sec. 3.1.2). The average
wick temperature is presented as a function of the dimensionless Fourier number under a
varying heat load. Unfortunately, all simulation results in [Shu08] are given without any
numerical or experimental validation so that a final evaluation of the proposed modeling
approaches for the two LHP components, i.e. the condenser and the CC-evaporator assembly,
is not possible.

For the analysis of the transient performance of the aforementioned microelectromechanical
thermal management system based on a variable emittance radiator and an LHP in Sec. 2.1,
three dynamical models of the overall system are presented in [LWL10]. The models are
compared in simulations to obtain the necessary level of detail for the desired performance
analysis. Based on the detailed numerical model of an LHP with a radiator in [VR08], both
a three-nodal and a four-nodal thermal network of the overall system are derived. In these
networks, the LHP subsystem is represented by only one and two temperature nodes, re-
spectively. The four-nodal network extends the purely thermal modeling of the three-nodal
network to include the transient behavior of the liquid and the vapor phases in the LHP.
However, the corresponding enthalpies of both phases and the saturation pressure of the
working fluid inside the LHP are calculated by fitted polynomials as functions of the nodal
temperatures without a physical background for a deeper understanding. For the extension of
the system modeling, the models of both networks are combined to form a hybrid model with
one intermediate mass flow in the entire LHP cycle. Such a kind of modeling is also chosen
for the numerical models in [SN17], [BCG+18], [NNK13], and [AFN19] since the assumption
of a single mass flow rate simplifies the complex, two-phase flow dynamics of an LHP vastly.
The single mass flow rate in the hybrid model is expressed as a function of only the thermal
parameters. Thus, the dependency of the resulting hybrid model on hydraulic parameters is
eliminated to be more independent of design and material specifications. For the validation of
the transient performances of the presented dynamical models with different levels of detail, a
variable heat load profile is applied to the four-nodal model, the hybrid model, and the detailed
numerical model. As a result, the temperatures of the cooled object in all three models agree
for sufficiently small heat load changes. The simplifications of the LHP subsystem with two
temperature nodes and a single mass flow are sufficient for the analysis of the coarse transient
performance of the overall thermal management system with the presented hybrid model,
but the model is only accurate for the local behavior around an equilibrium point. However,
for an adequate dynamical modeling of the temperatures of all LHP components, especially
the governing CC, over the entire operating range of the LHP, the hybrid model lacks further
temperature nodes and a convenient tracking of the liquid-vapor interface movement in the
condenser.

So far, the focus has been set on modeling approaches for heat transport systems comprising
a single conventional LHP. In the next section, different extensions and combinations of LHPs
in advanced heat transport systems are shortly highlighted.
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2.3 Advanced Loop Heat Pipe Systems

A conventional LHP includes a single evaporator and a single condenser and is utilized as a
two-phase heat transport system in many applications. To reach the most effective and reliable
heat exchange between a heat source and a heat sink, a conventional LHP is often extended
to enlarge its range of application. Reasons for these extensions are the cooling of electronic
components with distributed heat sources or the requirement of a higher overall thermal
conductance. Thus, the gained flexibility in the design and operation of such heat transport
systems comes along with an increase in complexity [Ku99]. Furthermore, any extension
has a significant impact on the dynamic behavior of the LHP due to the thermodynamic
interdependence.

Two kinds of extensions are presented in the literature: changes with effects on the flow cycle
of the working fluid and changes to the proximity of the LHP body. The former include the
integration of multiple components in one LHP flow cycle: dual evaporator LHP [BWN+97],
LHP with two evaporators and two condensers [Ku99], [KB01], [KOB04], LHP with multiple
evaporators and multiple condensers [GGK00]. Thus, the dissipated heat of several distributed
heat sources can be transported in one system. The main focus in the literature is set on the
fabrication and test of such advanced LHP systems since new guidelines for the sizing of the
LHP components and the charging with a working fluid are required [BWN+97]. A successful
OT control is reported in [KB01] when either one or both CC temperatures are controlled in
an LHP with two evaporators and two condensers. For this type of advanced LHP system, a
steady-state model is presented in [HK04], while the transient performance of an LHP with
multiple evaporators is simulated in Sinda/Fluint [KR10].

Several other publications focus on the second kind of extension around the body of an LHP.
The obvious modification to the LHP body is the attached electronic component or heat source
itself since it adds mass to the evaporator’s own mass. In many LHP tests on ground, the
heat load at the evaporator is simulated by directly attached heaters without considering
any additional mass [Ku99]. However, the overall mass of the evaporator that stores thermal
energy has a significant impact on the dynamic behavior of the LHP. Although an increased
thermal mass helps to damp out fast transients due to heat load changes [Ku99], several
disadvantages are reported in the literature. In general, a high heat load at the evaporator
contributes to a successful LHP startup due to a fast initialization of the liquid evaporation. A
large mass at the evaporator, however, may complicate the LHP startup since most of the heat
is used to raise the temperature of the thermal mass, and the initial heat load at the evaporator
is low. Therefore, the startup can take some time since less heat is presented for the boiling
process [Ku16]. Furthermore, the transient behavior of the heat load at the evaporator as
the driving force of the mass flow is not only influenced by the heat source but also by the
OT and therefore by the CC temperature. Due to the bilateral influence, the net heat load
at the evaporator can be higher or lower than the dissipated heat of the heat source for a
short time according to the rise and fall of the CC temperature [KOB04]. The intensity of the
modulation of the net heat load depends on the size of the total thermal mass of the evaporator
including its own mass and the attached mass. In combination with the interaction between
the thermal interface and the fluid, the LHP temperatures tend to oscillate at low heat loads
depending on the ratio between the total evaporator mass and the total CC mass [Hoa19].
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Furthermore, the interaction has an impact on the OT control with control heaters on the CC.
The OT control is impaired by the thermal mass that increases the time delay between the
control action and the system’s response [GGK+13]. As mentioned before in Sec. 2.1, different
locations of the temperature sensor for the OT control of the LHP with two-point and PID
controllers are tested experimentally in [KPM11a] and [KPM11b]. Especially with a sensor
on the thermal mass, the controlled temperature tends to oscillate, while the direct control of
the CC temperature shows a smoother progression over time. Previous transient models that
consider such an additional thermal mass at the evaporator in form of a cooled object [LWL10],
an evaporator saddle as an interface to a cooled object [VR08], or a heating block [NNK13],
include the extra component as thermal capacity in their thermal networks. However, the
models showed no oscillatory behavior under the investigated operating conditions.

In connection with the consideration of additional thermal masses, redundant [Ku99] or par-
allel [KSK+14] LHPs are developed for the thermal control of complex electronic components.
They are suitable for the heat transfer of distributed heat sources as an alternative to LHPs
with multiple components, and contribute to an isothermal electronic component [Ku99].
If one LHP cannot transfer the desired amount of heat alone, parallel LHPs are an effective
solution to raise the overall heat transport capability. By sharing both the heat source and the
heat sink, there is an interaction between the self-regulating LHPs. Hence, their operation may
become problematic when the heat distribution between both evaporators is uneven and a
redistribution of the heat flows takes place. The mutual interaction between both evaporators
across the thermal mass of the heat source has thus an impact on their individual startup
moment and complicates the thermal control of the heat source due to the heat distribution
rather than the amount of the total heat load itself [Ku99].

In the example of the thermal control of an LCT, two parallel LHPs are thermally coupled
at their condensers and at their evaporators, as the silver structure on the LCT platform in
Fig. 1.2 reveals. An illustration of such an advanced heat transport system with parallel LHPs
is also given in Fig. 2.1.

Figure 2.1: Parallel LHPs with arterial heat pipes (ArHPs) for the thermal control of an LCT (adapted from [RMT16])

Both condensers share a radiator as the heat sink and run in parallel through the condenser
plates, which are mounted on the heat sink body. The body of the LCT serves as the coupling
thermal mass between the evaporators of both LHPs. In addition to the connecting thermal
mass, four arterial heat pipes (ArHPs) are attached to the evaporators to collect the dissipated
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heat of the distributed heat sources (cf. [RMT16], [MKHW19]). These ArHPs are sealed
hermetically like the LHP itself, and the heat exchange takes place via the thermal coupling
instead of a mass exchange. In [RMT16], a valve in each VL controls the vapor flow to the
condenser. Control heaters with PID controllers on the CCs can be used as backup controllers
in the case of a valve failure. Nevertheless, the impact of the thermal mass and the individual
OT control of both coupled LHPs must be also considered in the design of adequate control
algorithms to improve the startup of both LHPs and to reduce phenomena like temperature
oscillations.

A closer look on the occurrence and causes of temperature oscillations in the considered LHP
systems and in connection with an additional thermal mass at the evaporator is given in the
next section.

2.4 Temperature Oscillations in Loop Heat Pipe Systems

A known but undesirable phenomenon during the operation of LHP systems is the appearance
of temperature oscillations. Typically, the OT of an LHP reaches a steady state under constant
operating conditions. Even if the heat load or the sink temperature changes, the OT usually
finds a new steady state eventually [KOK+01]. However, the OT can oscillate under certain
operating conditions. Two relevant types of temperature oscillations of a conventional LHP
without OT control are specified in [Ku03]: oscillations with a high frequency and a low
amplitude (HFLA) with a period of seconds to minutes and an amplitude on the order of one
Kelvin as well as oscillations with a low frequency and a high amplitude (LFHA) with a period
and an amplitude on the order of hours and tens of Kelvin, respectively. HFLA oscillations are
connected to the liquid-vapor front in the condenser and its inability to find a stable position
inside the condenser under certain operating conditions. Thus, the liquid-vapor interface
oscillates at either the condenser inlet, when a high heat load is applied at the evaporator, or the
condenser outlet, when a low heat load and a low sink temperature exist [Ku03]. In contrast,
LFHA oscillations occur because of either an oscillating sink temperature at a constant heat
load, which the CC temperature follows with a delay, or a large thermal mass at the evaporator
combined with a low heat load and a sink temperature lower than the ambient temperature of
the LHP [KR03]. The experimental descriptions of both oscillation phenomena are supported
by two of the aforementioned numerical models. In [LPDJ07], the HFLA oscillations at the
condenser outlet and the LFHA oscillations in connection with a thermal mass are reproduced
in order to predict their frequencies and amplitudes in dependence on design and operational
parameters. In order to investigate the connection between the internal flow and the HFLA
oscillations at the condenser outlet more closely, another model with a focus on the vapor
quality in the transport lines is developed in [AFN19]. It is noted that HFLA oscillations are
already triggered when the two-phase flow in the condenser enters the LL once. Nevertheless,
the investigated HFLA oscillations occur at very low or high heat loads, which are usually
outside the intended operating range of the LHP. Furthermore, HFLA oscillations disappear
when the liquid-vapor interface is kept inside the condenser over the entire operating range
with an active OT control [Ku03].
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Temperature oscillations in connection with an actively controlled conventional LHP are
traced back again to the thermal mass at the evaporator. Especially an external heat input,
e.g. with a control heater, promotes temperature oscillations due to the interacting heat
and mass exchange processes inside the LHP [GGK+13]. In addition, the position of the
controlled temperature sensor is also relevant for the control accuracy (cf. Sec. 2.1). Due to
the time delay between the control action and the response of the cooled object, which is
enlarged by the thermal mass at the evaporator, the design of an active OT control is hindered
[GGK+13]. In [HB12], the authors come to the same conclusion by establishing a stability
criterion for the LHP operation based on the theory of a mass-spring-damper system in the
form of a Van der Pol oscillator [vdPvdM27]. In this approach, the combination of the phase
transition processes, the heat and mass exchange processes, and the fluid dynamics in an LHP
resemble the fluctuating energy exchange processes in a mass-spring-damper system. By
strongly simplifying their former numerical model in [HK03], the nonlinear LHP dynamics
are described by a Van der Pol oscillator to underline their stability theory. The condition for
reaching a periodic state is transformed into a criterion that relates the stability of the LHP
operation to the ratio of the thermal masses between the CC and the evaporator, a low OT, and
a high vapor generation in the CC due to corresponding heat inputs, e.g. by a control heater.
The theory is repeated, simplified, and generalized in further publications [HBM15], [HB16],
[Hoa19] of the main author to support the experimental investigations of LFHA and HFLA
oscillations in conventional LHPs without active control as well. By introducing the linear
stability theory of nonlinear dynamical systems based on the linearization and perturbation
in an equilibrium point, two more stability criteria for both oscillation types are derived.
It is shown that both oscillation types are mutually exclusive and therefore do not appear
simultaneously [Hoa19]. However, the established models catch the fundamental dynamic
characteristics of an LHP, but are not suitable to simulate the LHP operation [HB12].

Another undesirable behavior is observed when the CC is heated actively by a control heater
at a higher rate than the evaporator by the heat load accordingly. The rise of the evaporator
temperature is delayed additionally by a large thermal mass at the evaporator due to the
modulation of the net heat load. As explained in [Ku16], such situations result in a continuous
LHP startup and shutdown cycle since both the temperature and the saturation pressure of
the CC rise over those of the evaporator. The phenomenon is connected to a cold shock of the
CC after the LHP startup, when a large amount of the subcooled liquid from the condenser
enters the CC leading to a CC temperature decrease of several degrees. Immediately, the
LHP is flooded with liquid and shuts down. The repeated interruption of the normal LHP
operation presents itself as temperature oscillation. In contrast to the previously described
temperature oscillations, however, the heat transfer between the heat source and the heat
sink is interrupted periodically. Thus, a continuous heat transfer cannot be ensured and must
be prevented by either an increase of the heat load or an adequate limitation of the control
heater.
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2.5 Conclusion and Research Gap

The preceding literature review demonstrates the need to investigate LHP-based multiphase
heat transport systems from a control engineering perspective. Based on the highlighted
research gaps in the previous sections, the corresponding objectives of this thesis concerning
the two goals in Chapter 1 are stated in the following. The corresponding research question is
derived subsequent to each paragraph that specifies the respective research gap.

In the field of thermal control with LHP systems, state-of-the-art controllers with a heuristic
design are applied for the OT control so far. These show a certain lack of accuracy, stability, and
structured design process. A model-based control design is a promising solution to mitigate
the listed problems while reducing the high design efforts and costs of the existing controllers
at the same time. Based on a control model, more sophisticated controllers can handle the
complex performance characteristics of an LHP effectively. Especially with a control heater as
the considered active control device, there is no model-based designed control algorithm for
any LHP-based system to the best of the author’s knowledge. Such a control heater on the CC
with a variable power output impresses with his low failure risk and fast response to changes
in the operating conditions, while only heating is indeed sufficient for the operating range of
the considered LHP systems. Model-based control design for control heaters has the potential
to improve the control accuracy, compensate temperature oscillations and control advanced
LHP -based systems. This leads to the first research question:

1. Which model-based designed control structure is suitable to meet the performance
requirements of an LHP the best?

As a basis for the desired control design approach, an adequate dynamical model of the LHP
system must be established as it has not yet appeared in the literature. Thus, the modeling
purpose in this thesis, i.e. for the control design, differs from the ones in the literature, but
has a clear focus on the temperature dynamics. A deeper view of the dynamics of the system
through the states is pursued with a physically motivated control model as defined in Def. 2.1.
This control model is based on the adaption, extension, and combination of the reviewed
LHP models which have been available in the literature at the start of this thesis. The desired
control model should simulate the transient performance of the LHP temperatures during the
ongoing operation with a continuous heat transfer. Furthermore, the existing stability theory
of an LHP can be extended to the corresponding closed-loop LHP systems to support a stable
controller performance in general. This leads to the second research question:

2. Which level of detail is necessary for control models of LHP-based heat transport
systems to allow a successful control design?

A next step is the extension of the desired models and controllers of a conventional LHP
to more advanced LHP systems, which provides another challenge to handle the dynamic
behavior of LHP-based multiphase heat transport systems. The OT control of advanced LHP
systems with control heaters on the CCs are investigated. In these systems, an increased
thermal mass at the evaporator and parallel LHPs, as they can be found in the heat transport
system of the introduced LCT, are considered. This leads to the third research question:
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3. How can the extensions of advanced LHP systems be integrated into the corresponding
models and controllers?

Besides the general improvement of the temperature control performance of the different
LHP-based systems, temperature oscillations during the continuous LHP operation are highly
unwelcome and must be prevented by the controller. Against this phenomenon, an appropriate
modeling and control approach is necessary to reach a better performance than with the
state-of-the-art controllers. This leads to the fourth research question:

4. Which control algorithms are able to eliminate temperature oscillations during the
continuous LHP operation?

The remainder of this thesis is structured as follows: The thermodynamic preliminaries of the
multiphase heat and mass transfer and the fundamentals of LHP OT control are illustrated in
Chapter 3. On this basis, a complex and a simplified LHP model including different levels of
detail, together with corresponding model-based control designs, are established in Chapter 4
and Chapter 5 for a conventional LHP. Subsequently, the complex model and its controllers
are extended for the advanced LHP-based heat transport systems in Chapter 6. The validation
and comparison of all models and controllers, also in the context of reducing temperature
oscillations, is elaborated in Chapter 7, where the results are discussed and answers to the
research questions are given. In Chapter 8, the conclusions of this thesis are stated.



3 Thermodynamic Preliminaries and Loop
Heat Pipe Characteristics

In this chapter, the fundamental thermodynamic preliminaries and the LHP characteristics
are described shortly while introducing the abbreviations and symbols used in the subsequent
descriptions and equations of the LHP. The first section goes into detail about the laws of
conservation, the heat transfer, and the basics of multiphase systems, which are relevant for
the understanding of the thermodynamic processes in an LHP. In the second section, the
characteristic working principle of temperature-controlled LHPs is explained.

3.1 Thermodynamic Preliminaries

The modeling approaches of the LHP in this thesis are based on conservation and balance equa-
tions. Combined with the fundamental equations of the phase change in multiphase systems,
the model equations of the LHP are derived. The following thermodynamic preliminaries are
mainly based on [BK16], [BS19], [HMS16], [Nat18], [Str14], and [vBW17].

3.1.1 Laws of Conservation

Energy Conservation

One of the key variables for describing the physical phenomena of a dynamic system is the
energy. Energy cannot be created or destroyed in a system, but energy appears in different
forms, which can be transformed into each other by corresponding processes [Str14, p. 33].
Furthermore, energy can be stored in a system and transferred between systemswhile changing
the systems’ state [vBS15, p. 90]. The dynamic behavior of the state of a system is closely
connected to the energy in the system. Hence, a specific system behavior is achieved by
controlling the state of a system. The state can be stabilized and altered by the supplied energy
of a control system.

Starting from the basics of physics, the total energy of a mechanical system without energy
exchange with the surroundings remains constant, i.e. energy is conserved, and the law of
conservation of energy holds [HMS16, p. 55]:

Esys = Ekin + Epot = constant. (3.1)
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The total energy Esys of a mechanical system is the sum of the kinetic energy Ekin and the
potential energy Epot. Both energies are a function of the massm of the system:

Ekin =
1

2
·m · c2, (3.2)

Epot = m · g · w, (3.3)

with the velocity c of the system, the gravitational constant g, and the height w of the system
above a reference level. Compared to the total energy of a mechanical system in (3.1), the
total energy of an isolated system in thermodynamics includes the internal energy Usys

additionally, which describes the energy of a system in rest [BK16, p. 41]:

Esys = Ekin + Epot + Usys = constant. (3.4)

Equation (3.4) describes the first law of thermodynamics for isolated systems. In general, the
total energy of an isolated system, i.e. the sum of all forms of energy within the system,
is constant. Based on his experience, Hermann von Helmholtz concluded that there is no
machine that works continuously without absorbing energy in any form [HMS16, p. 174]. Such
a perpetual motion machine of the first kind would contradict the first law of thermodynamics
and the law of conservation of energy in general.

In contrast to an isolated system, a closed system is able to exchange energy over its borders
with another system in consideration of the first law of thermodynamics. Hence, the system’s
energy changes depending on not only the work1 W done on the system but also the heat2 Q
added to the system [BK16, p. 47]:

∆Esys = ∆Ekin +∆Epot +∆Usys = W +Q. (3.5)

Here,∆ denotes the difference between the energies in the initial and the final state of the
system. The energy balance equation (3.5) presents the first law of thermodynamics for closed
systems. It describes the quasi-stationary process of the heat and work transfer to a closed
system, which finds an equilibrium state at the starting and the end point of the process.

Taking into account the time dependency of an instationary process, the temporal change of
the total energy of the closed system is described by the power balance equation

dEsys

dt
= P + Q̇, (3.6)

with the derivative dEsys/dt of the total energy Esys with respect to the time t, the power P
as the time derivative of the workW , and the heat flow rate Q̇ as the time derivative of the
heat Q.

Another possibility to transport energy over system borders is connected with the mass flow
of a fluid. The internal energy of the mass flow, which enters and leaves an open system,
1 In the English literature on thermodynamics, the sign of the work W in the energy balance equation (3.5) is

often negative, indicating the work done by the system (cf. [Sto07, p. 81]).
2 The sign convention for the heat Q in the energy balance equation (3.5) defines that positive heat is received by

a system and negative heat is released by a system.
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increases and decreases the total energy of the system. This energy is called enthalpy H . In
the flow process, additional moving boundary work is done on the fluid to be transported in
and out of the system. Hence, the enthalpy H of a fluid is defined as the sum of its internal
energy U and the moving boundary work, which is the product of the pressure p and the
volume V of the fluid [LKLT17, p. 103]:

H = U + p · V. (3.7)

In addition, the enthalpy is expressed by the mass m and the specific enthalpy h of the fluid,
which results from the specific internal energy u and the specific volume v:

H = h ·m = (u+ p · v) ·m. (3.8)

In thermodynamics, the specific property is a special class of the intensive property with
respect to the corresponding mass. An intensive variable, in contrast to an extensive variable,
is independent of the size of the system [Str14, p. 14]. Accordingly, the extensive enthalpy
flow rate Ḣ is calculated by the extensive mass flow rate ṁ and the intensive specific enthalpy
h:

Ḣ = h · ṁ. (3.9)

With the kinetic and potential energies of the entering (index i) and leaving (index o) fluid flows,
the general form of the first law of thermodynamics for open systems is derived [BK16, p. 78]:

dEsys

dt
=
∑
j

Pj+
∑
k

Q̇k+
∑
i

ṁi·
(
hi + g · wi +

1

2
· c2i
)
−
∑
o

ṁo·
(
ho + g · wo +

1

2
· c2o
)
.

(3.10)
The mechanical energies of the fluid on the right side of (3.10), which correspond to the
kinetic energy in (3.2) and the potential energy in (3.3), can often be neglected compared to
the enthalpy of the fluid in (3.8) [LKLT17, p. 89]. On the left side of (3.10), the mechanical
energies Ekin and Epot in the total energy Esys of the thermodynamic system according to
(3.4) are negligible [vBW17, p. 9]. Both assumptions are also valid for the LHP. Hence, (3.10)
can often be rewritten as

dU

dt
=
∑
j

Pj +
∑
k

Q̇k +
∑
i

ṁi · hi −
∑
o

ṁo · ho. (3.11)

The different forms of the heat flow Q̇ are explained in detail in Sec. 3.1.2. The specific enthalpy
h of the fluid is expressed as a function of the temperature T and the pressure p, also known
as caloric equation of state [Str14, p. 103]:

h = h(T, p). (3.12)

The total differential of the specific enthalpy is

dh =
∂h

∂T

∣∣∣∣
p

dT +
∂h

∂p

∣∣∣∣
T

dp. (3.13)
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The first partial derivative in (3.13) is defined as the isobaric specific heat capacity cp(T , p). It
is used in the calculation of specific enthalpy differences at the same pressure level p:

h(T2, p)− h(T1, p) =

∫ T2

T1

cp(T, p) dT. (3.14)

For small temperature differences, the temperature dependency of cp(T , p) can be neglected
[BK16, p. 85], and the integral in (3.14) is approximated by the mean isobaric specific heat
capacity c̄. Thus, (3.14) is given by

h(T2, p)− h(T1, p) = c̄2,1 · (T2 − T1) , (3.15)

where c̄2,1 is determined by the arithmetic mean of the specific heat capacities at T1 and T2:

c̄2,1 =
cp(T1, p) + cp(T2, p)

2
. (3.16)

In order to ease notation, the isobaric subscript p is replaced in (3.15) by the subscripts of the
two temperatures T1 and T2 of the corresponding temperature difference. The calculation of
the individual specific enthalpies for the different phases of a fluid is presented in Sec. 3.1.3.

Mass Conservation

Similar to the law of conservation of energy, mass can neither be created nor destroyed. Thus,
the total mass m in a closed system is constant and does not change in time t. Hence, the
following law of conservation of mass for closed systems holds:

dm

dt
= 0. (3.17)

In open systems, mass can be transferred across the system’s boundaries as mass flows between
the systems. The mass balance equation

dm

dt
=
∑
i

ṁi −
∑
o

ṁo (3.18)

describes the relation between the temporal change of the total massm of the open system
and the mass flows ṁ into (index i) and out of (index o) the system. [BK16, p. 73]

Momentum Conservation

Besides the energy and the mass, the law of conservation also applies to the momentum.
Isaac Newton stated in his second law of motion that a force F acting on a system equals the
temporal change of the momentum B of a system [HMS16, p. 44]:

dB

dt
= F . (3.19)
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Since the direction of the momentum B is parallel to the force F , both physical variables are
expressed in bold font as the vectorsB and F . The momentum vectorB is defined by the
product of the mass m and the velocity vector c:

B = m · c. (3.20)

In open thermodynamic systems like pipes, the mass transfer across the boundaries of the
system includes a momentum flux in and out of the system. Hence, the conservation of
momentum of a fluid flow in a pipe is described by the following balance equation:

dB

dt
+Bo −Bi −

∑
j

F j = 0. (3.21)

The force vector F acts on the fluid volume along the direction of motion. Hence, F is
perpendicular to the cross-sectional area A of the pipe and its normal component is given
by

F = p ·A. (3.22)
The longitudinal section of an elevated pipe is illustrated in Fig. 3.1.
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L

Figure 3.1: Momentum conservation for a fluid in an elevated pipe (cf. [Cha14, p. 43])

According to [Cha14, p. 44], the one-dimensional, differential form of the law of conservation
of momentum for the transient fluid flow through a pipe of infinitesimal length in z-direction
is given by

∂ (ρAc)

∂t
+
∂
(
ρAc2

)
∂z

+
∂F

∂z
+

∂Fw

∂z
+

∂Ffr

∂z
= 0, (3.23)

with the density ρ and the velocity c of the fluid. The terms in (3.23) from the left to the right
correspond to the temporal and local change of the momentum B of the fluid in the pipe,
and the local changes of the pressure force F , the z-component Fw of the fluid weight, and
the pressure force Ffr due to friction. Assuming a constant density ρ of the fluid, (3.23) is
rewritten as

∂ṁ

∂t
+

1

ρA
· ∂ṁ

2

∂z
+
∂F

∂z
+

∂Fw

∂z
+

∂Ffr

∂z
= 0, (3.24)
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where the mass flow rate ṁ is expressed by the product of the fluid density ρ, the cross-
sectional area A, and the fluid velocity c:

ṁ = ρ ·A · c. (3.25)

The length L of the pipe in Fig. 3.1 is given by the difference between the positions of the
outlet at zo and the inlet at zi:

∆z = zo − zi = L. (3.26)

By integrating (3.23) over L, the following equation is obtained:

L · dṁ
dt

+
1

ρA
· ṁ2

o −
1

ρA
· ṁ2

i +A · po −A · pi +∆Fw +∆Ffr = 0. (3.27)

The pressure force difference ∆Ffr due to friction losses results from (3.22):

∆Ffr = A ·∆pfr. (3.28)

For laminar flow, the pressure drop in smooth pipes can be calculated by the Hagen-Poiseuille
law [WGWS10, p. 1057]:

∆pfr =
32µcL

D2
i

=
32µṁL

ρAD2
i

. (3.29)

In (3.29), Di represents the inner diameter of a pipe with circular cross section:

A = π ·D
2
i

4
. (3.30)

The dynamic viscosity µ depends on the average temperature between the inlet and outlet of
the pipe at zi and zo. The corresponding weight difference of the fluid against the z-direction
is given by

∆Fw = ρ · g ·A · L · sin (θe) . (3.31)

The elevation of the pipe toward the horizontal is described by the elevation angle θe. The
corresponding term in (3.23) vanishes if the pipe is horizontal, i.e. θe is zero and the weight
has no z-component.

3.1.2 Heat Transfer

Nature always strives to balance temperature differences and establish a thermal equilibrium.
According to the first law of thermodynamics and in addition to (3.4), the equilibrium tem-
perature in an isolated system is the same everywhere in the system. If any temperature
deviation is present, energy in the form of heat is transferred across the boundaries of the
subsystems with the different temperatures. While the first law of thermodynamics describes
the energy conversion between the two subsystems, it does not determine the direction of the
heat flow. In fact, the restriction of the heat flow is stated in the second law of thermodynamics
by introducing the extensive quantity, the entropy S. The entropy in an isolated system is
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maximized when it reaches a stable equilibrium state. Mathematically speaking, the change
of the entropy in an isolated system is always greater or equal to zero [Str14, p. 56]:

dS

dt
= Ṡg ≥ 0, (3.32)

where Ṡg is the entropy generation rate within the system.

Similar to the power balance equation of the first law of thermodynamics in (3.6), the corre-
sponding entropy balance equation of a closed system that exchanges heat with the surround-
ings is given by the following equation [Str14, p. 57]:

dS

dt
=

Q̇

T
+ Ṡg. (3.33)

In the example of a heat conductor connected to two reservoirs at different temperatures, as
presented in [Str14, p. 63], both heat and entropy are exchanged because of a temperature
difference. Thus, the heat conductor receives the heat flows Q̇h and Q̇l from the corresponding
reservoirs at the higher temperature Th and the lower temperature Tl. According to (3.6) and
(3.33), the respective steady-state balance equations of the heat conductor are given by

Q̇h = −Q̇l = Q̇ (3.34)

and thus
Q̇ ·
(
1

Tl
− 1

Th

)
= Ṡg ≥ 0. (3.35)

According to [Str14, p. 64], the inequality (3.35) only holds if

Th > Tl, for Q̇ > 0 and T ≥ 0. (3.36)

Thus, the heat flow Q̇ is only possible from the subsystem with the higher temperature to the
subsystem with the lower temperature. For a more detailed determination of the heat flow Q̇,
the three fundamental heat transfer modes are elucidated in the next sections: heat conduction,
convection, and thermal radiation [Nat18, p. 1]. While heat conduction and thermal radiation
occur independently, the heat transfer process of convection always includes heat conduction
[vBW17, p. 3].

Heat Conduction

Heat conduction occurs in materials where a temperature gradient exists. Nearby molecules
carry out an energy transfer among themselves. This energy transfer presents itself as the
conduction of heat and is characterized by the temperature. Accordingly, the basic law of heat
conduction is described by Fourier’s law [BS19, p. 6]:

q̇ = −λth · ∇T. (3.37)

The gradient ∇T of the temperature T multiplied by the thermal conductivity λth equals the
vector of the heat flux q̇. The minus sign relates to the heat flow direction based on the second
law of thermodynamics.
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Figure 3.2: Heat conduction in a wall

Based on Fig 3.2, the equation for the mean steady-state one-dimensional heat conduction in a
wall with thickness D and heat transfer surface area As is derived from (3.37) [BS19, p. 6]:

Q̇ = q̇ ·As = λth ·
∆T

D
·As =

λthAs

D
· (T1 − T2) , (3.38)

with the difference ∆T of the temperatures T1 and T2 on both sides of the wall. The thermal
conductivity λth is substance-specific and both temperature- and pressure-dependent. Hence,
its value is usually determined via appropriate measurements.

Convection

Convection describes the energy transport in fluids in the form of heat. In addition to heat
conduction in the fluid itself, heat is transferred via the macroscopic motion of the fluid. The
kinetic energy and the enthalpy of the fluid is released as heat to the passing solid matter due
to friction. For this reason, the velocity and the temperature of the fluid in the boundary layer
near the solid matter differ from the values in the center of the fluid flow. Besides the physical
properties of the fluid and the geometry of the solid matter, the transferred heat depends on
the local temperature and velocity fields. [BS19, p. 10]

According to Newton’s law of cooling, the convective heat flow rate Q̇ to the surface of an
area As can be approximated by the following equation to average the local dependencies
[Nat18, p. 12]:

Q̇ = α ·As ·∆T = α ·As · (T1 − T2) , (3.39)

with the mean convective heat transfer coefficient α and the temperature difference ∆T
between the temperature T1 of the fluid and the temperature T2 of the surface (see Fig. 3.3).
The convective heat transfer coefficientα describes the complex relations in the boundary layer.
Because of its dependency on the local velocity and the temperature fields, the exact convective
heat transfer coefficient can only be determined by application-specific measurements. In this
context, the known dimensionless variables of fluid dynamics are introduced to specify and
facilitate the determination process of the coefficient α if necessary (see e.g. [BS19, p. 17]).
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Figure 3.3: Convective heat transfer

Thermal Radiation

The thermal radiation of a body results from the emission of thermal energy in the form of
electromagnetic waves to its surroundings. A body converts its internal energy into energy
that can be transported without matter. Hence, the energy transport in vacuum is possible
[BS19, p. 28]. The decisive factor of thermal radiation is not a linear temperature gradient
as with the other two heat transfer modes, but the thermodynamic temperature of the body
itself since every body with a temperature above absolute zero (at 0K or −273.15 ◦C) emits
thermal radiation [vBW17, p. 226]. According to the Stefan-Boltzmann law, the emitted heat
flow via the thermal radiation of a body with temperature T and surface areaAs is given by

Q̇ = ϵ(T ) · σ ·As · T 4, (3.40)

with the Stefan-Boltzmann constant σ [Nat18, p. 15]:

σ = 5.67× 10−8 W/m2K4. (3.41)

The temperature-dependent surface emissivity ϵ describes the ability of a body to emit thermal
radiation and depends mainly on the physical properties of the material but also on the nature
of the surface. In comparison with an ideal emitter, which is a black body with

ϵ = 1, (3.42)

the surface emissivity is
ϵ(T ) ≤ 1. (3.43)

for all other emitters [BS19, p. 29].

Since all bodies above absolute zero emit thermal radiation, the radiative heat exchange
between a body at T and its surroundings is summed up by the net radiative heat flow

Q̇ = ϵ(T ) · σ ·As ·
(
T 4
amb − T 4

)
, (3.44)

where the surroundings of the body behave like a black body at the ambient temperature
Tamb [Nat18, p. 15]. The equation holds under the assumption based on Kirchhoff’s law of
thermal radiation that the emission ratio equals the absorption ratio of a body with a diffuse
surface [BS19, p. 643].
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Combined Heat Transfer Considering Electrical Analogy

Typical heat transfer processes include the heat exchange between several fluids or layers by
a combination of all three heat transfer modes, which are described in the previous sections.
Hence, the total heat transfer process is determined by a combination of (3.38), (3.39), and
(3.44). For a consistent description of such heat transfer processes, the heat transfer modes
are unified, and their calculations are facilitated by the analogy between the heat transfer and
the energy transfer in electrical circuits. As a result, models of heat transfer processes are
illustrated as thermal circuits [Sid15, p. 3], thereby representing lumped thermal parameters
by circuit elements.

Already with the LHP in mind, the example of the heat transfer in pipes is chosen to illustrate
the aforementioned combination of the heat transfer modes, as depicted in Fig. 3.4.

x1 x2 x3

T2

T1

Tamb

T

x
T

D

Q̇1

Q̇2

Q̇3

Figure 3.4: Combined heat transfer in a pipe

The working fluid inside the pipes exchanges heat through the pipe wall with the surroundings.
When heat is exchanged between a fluid in a pipe at T and the surroundings at Tamb, convec-
tion and thermal radiation take place in parallel on the outside of the pipe at T1 [BS19, p. 31].
Hence, the heat flows (3.39) and (3.44) of both heat transfer modes are added up:

Q̇1 = α1 ·As,1 · (Tamb − T1) + ϵ(T1) · σ ·As,1 ·
(
T 4
amb − T 4

1

)
. (3.45)

With the linearization of the radiation part (see [Nat18, p. 15]), (3.45) is rewritten and the heat
transfer coefficients are combined:

Q̇1 = (α1 + αrad) ·As,1 · (Tamb − T1) , (3.46)

where the effective radiation heat transfer coefficient αrad is defined by

αrad = ϵ(T1) · σ ·
(
T 2
amb + T 2

1

)
· (Tamb + T1) . (3.47)

In the pipe wall, the heat is transferred from the outside at T1 to the inside at T2 via heat
conduction:

Q̇2 =
λthAs,2

D
· (T1 − T2) . (3.48)
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Finally, the heat is exchanged with the fluid at T inside the pipe via convection:

Q̇3 = α3 ·As,3 · (T2 − T ) . (3.49)

With the thermal analogy of Ohm’s law, the calculation of the separate heat flows Q̇1, Q̇2,
and Q̇3 are unified with the thermal resistance Rth:

Q̇i =
1

Rth,i
·∆Ti with i = 1, 2, 3. (3.50)

Hence, the heat flow corresponds to the electrical current, whereas the temperature difference
corresponds to the electrical potential difference or voltage. The reciprocals of the heat transfer
coefficients of the different heat transfer modes in (3.46), (3.48), and (3.49) correspond to their
respective thermal resistances:

Rth,1 =
1

(α1 + αrad)As,1
, (3.51)

Rth,2 =
D

λthAs,2
, (3.52)

Rth,3 =
1

α3As,3
. (3.53)

Continuing with the analogy, the rules of electrical circuits can also be applied to the thermal
domain. Since the resistors Rth,1, Rth,2, and Rth,3 are connected in series, the separate heat
flows Q̇1, Q̇2, and Q̇3 must be equal:

Q̇1 = Q̇2 = Q̇3 = Q̇. (3.54)

In addition, the total temperature difference∆T between the fluid and the surroundings is
given by the sum of the separate temperature differences:

∆T = (Tamb − T ) = (Tamb − T1) + (T1 − T2) + (T2 − T ) . (3.55)

Hence, the total heat transfer from the surroundings through the wall to the fluid is given
by

Q̇ =
1

Rth,4
· (Tamb − T ) = kth ·As,4 · (Tamb − T ) , (3.56)

with the overall heat transfer coefficient kth and the effective surface area As,4 [BS19, p. 35].
Because Rth,1, Rth,2, and Rth,3 are connected in series, the total thermal resistance Rth,4 is
determined by their sum:

Rth,4 = Rth,1 +Rth,2 +Rth,3. (3.57)

Analogous to the electrical conductance, the reciprocal of the thermal resistance Rth corre-
sponds to the thermal conductance Uth [Nat18, p. 184]:

Uth =
1

Rth
. (3.58)
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Since the heat transfers always expand over entire areas, the temperatures in the respective
temperature differences are averaged over the area. The fluid temperature T in (3.56) is also
assumed to be homogeneous over As,4. To consider a one-dimensional temperature gradient
along the pipe length, which would extend into the third dimension in Fig. 3.4, based on the
heat exchange with the surroundings, the temperature difference in (3.56) is substituted by
the logarithmic mean temperature difference ∆Tm for heat exchanger [vBW17, p. 254]:

Q̇ = Uth ·∆Tm (3.59)

with
∆Tm =

(Tamb − Ti)− (Tamb − To)

ln
(
Tamb−Ti

Tamb−To

) (3.60)

if
Ti < To < Tamb (3.61)

with the inlet temperature Ti and the outlet temperature To of the pipe in flow direction holds.
According to (3.11), the absorbed heat flow rate Q̇ of the fluid equals the enthalpy flow rate
difference of the fluid in the pipe for stationary processes. Hence, the following equation
holds:

Uth ·∆Tm = ṁ · c̄o,i · (To − Ti) . (3.62)

Thus, the outlet temperature To is calculated by

To = Tamb + (Ti − Tamb) · exp
(
− Uth

ṁc̄o,i

)
. (3.63)

If Tamb is smaller than the fluid temperatures in the pipe, the fluid releases heat to the
surroundings. In this case, (3.63) still holds.

For instationary heat transfer processes, the electrical analogy is also applied to the description
of the temporal change of the total energy Esys stored in a system, which does not experience
any phase change processes [Sid15, p. 41]:

dEsys(t)

dt
= Cth ·

dT (t)

dt
. (3.64)

The thermal capacity of the system is interpreted as the thermal capacitance Cth, which is
given by the product of the constant density ρ, the constant volume V , and the constant
specific heat capacity cp [Nat18, p. 55]:

Cth = ρ · V · cp. (3.65)

A graphical approach to model the heat transfer between several systems is the construction
of a nodal network, where each system is characterized by one temperature node. According
to (3.50) and (3.64), the corresponding differential equations of the temperature nodes are
established based on the electrical analogy, as presented in Example 3.1.
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Example 3.1:
Two temperature nodes T1(t) and T2(t) of the thermal network in Fig. 3.5 are connected via a
thermal resistance Rth,12 to exchange energy in the form of heat.

Rth,12 T2

Cth,2

Q̇2

T1

Cth,1

Q̇1
Q̇hs

Figure 3.5: Thermal network with two temperature nodes T1 and T2 in the electrical circuit representation

The energy change in a system with temperature node T1(t) or T2(t) depends on the respective
thermal capacitanceCth,1 orCth,2. The dissipated heat Q̇hs(t) of the heat source in the shape
of an ideal current source enters the system characterized by T1(t). Similar to Kirchhoff’s
current law, the sum of the entering and leaving heat flows at a temperature node must be
zero. Hence, the dynamics of the temperatures T1(t) and T2(t) are modeled by the following
first-order differential equations:

Cth,1 ·
dT1(t)

dt
= − 1

Rth,12
·
(
T1(t)− T2(t)

)
+ Q̇hs(t), (3.66)

Cth,2 ·
dT2(t)

dt
=

1

Rth,12
·
(
T1(t)− T2(t)

)
. (3.67)

For a general thermal network with n temperature nodes Ti(t) (i = 1, ..., n) and q external
heat inputs Q̇hs,j(t) (j = 1, ..., q), the following differential equation in matrix notation is
derived:

ẋtn(t) = Atn · xtn(t) +Btn · utn(t), (3.68)

with xtn(t) = [T1(t), ..., Tn(t)]
⊤, utn(t) = [Q̇hs,1(t), ..., Q̇hs,q(t)]

⊤, Atn ∈ Rn×n, and
Btn ∈ Rn×q . In the case of an available temperature measurement for each node, the dy-
namics of the thermal network are described by the following dynamical state-space model
according to Def. 2.2:

ẋtn(t) = Atn · xtn(t) +Btn · utn(t), (3.69a)
ytn(t) = xtn(t), (3.69b)

with ytn(t) ∈ Rn×1. With every temperature node and corresponding thermal capacitance,
the dimension of the state-space model (3.69) rises, which can result in a high computational
effort. Therefore, further network simplifications can be necessary to keep the number of
dimensions low and to be able to handle the matrices efficiently.
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The previous equations refer to the single-phase heat transfer in thermodynamic systems.
These fundamental equations are extended in the next section to multiphase systems.

3.1.3 Multiphase Systems

In the modeling process of complex control systems, one of the first steps is the delimitation of
subsystems as parts of the total system to divide the complexmodeling task into several simpler
subtasks. Transferred to the field of thermodynamics, this means that heterogeneous systems
are preferably divided into homogeneous subsystems, where all intensive and specific variables
have a constant value in the equilibrium state throughout the subsystem [SSSM13, p. 10]. A
phase is such a homogeneous subsystem in a multiphase system with an ambiguous meaning:
While a phase may refer to different components in a multicomponent system, it can also
stand for the different states of matter in a single-component multiphase system. The LHP
is a multiphase system of the latter type with a working fluid in two states of matter: liquid
and gas. These states are transformed into each other by condensation and evaporation.
In this case, the gas phase is also called vapor phase to emphasize the experienced phase
transition. The subsystems of the LHP are filled with either a single-phase fluid (liquid or
vapor) or a two-phase fluid (liquid and vapor). While model equations for the subsystems can
be established based on the previous laws of conservation in Section 3.1.1, the composition of
the fluid in the subsystems has to be considered additionally since the laws and the values of
the physical properties of the working fluid differ in both phases. The two relevant phases
and their respective boundary in a single-component multiphase system, such as the LHP, are
presented by the vapor-pressure curve in the pressure-temperature (p-T ) diagram in Fig. 3.6a.
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Figure 3.6: Phase diagrams of a single-component multiphase system (cf. [Str14, pp. 109, 111])
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There only exists an equilibrium between the vapor and the liquid phase for pressures and
temperatures below the critical point. Hence, the phase-changing processes condensation and
vaporization on the vapor-pressure curve occur for temperatures lower than the temperature
at the substance-specific critical point. Temperatures and pressures on the vapor-pressure
curve between the liquid and the vapor phase are in a saturated equilibrium state since both
phases coexist [BK16, p. 145].

The slope of the vapor-pressure curve in Fig. 3.6a is described by the Clapeyron equation
[Str14, p. 408]:

dps
dTs

=
∆hv

Ts (vv − vl)
, (3.70)

with the saturation temperature Ts, the saturation pressure ps, and the specific volumes vv and
vl of the saturated vapor and the saturated liquid. The specific enthalpy difference∆hv of the
phase transition is called latent heat of evaporation and is defined by the difference between
the specific enthalpy hv of vapor and the specific enthalpy hl of liquid at the saturation
temperature Ts:

∆hv = hv − hl. (3.71)

Since the specific volume v is the reciprocal of the density ρ, (3.70) can be rewritten:

dps
dTs

=
∆hv

Ts

(
1
ρv − 1

ρl

) =
∆hvρvρl

Ts (ρl − ρv)
. (3.72)

For the direct calculation of the vapor pressure on the vapor-pressure curve, the author of
[Ant88] derived a relation between the saturation pressure ps and the saturation temperature
Ts, which can be traced back to the Clapeyron equation (3.72) (cf. [BK16, p. 196]). The common
form of the Antoine equation with the empirical substance-specific constants Awf , Bwf , and
Cwf is given by

ps = exp

(
Awf −

Bwf

Cwf + Ts

)
. (3.73)

Accordingly, the corresponding temperature Ts is calculated by

Ts = −
Bwf

ln(ps)−Awf
− Cwf . (3.74)

On the vapor-pressure curve, both phases coexist in the saturation state. The differentiation
between the saturated liquid and the saturated vapor becomes visible in the pressure-specific
volume (p-v) diagram in Fig. 3.6b. Here, a third area exists besides the single-phase areas of
the liquid and the vapor. Below the saturation lines, the two-phase area contains both vapor
and liquid in saturation state. In this area, the phase transition is isobaric and isothermal.
It takes place under constant pressure and constant temperature, while the specific volume
varies according to the volume ratio of the vapor and the liquid.

Combining both diagrams, the pressure p is a function of both the temperature T and the
specific volume v, also called the thermal equation of state [Str14, p. 22]:

p = p(T, v). (3.75)
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At the boundaries between the single-phase areas and the two-phase area, (3.75) is not
continuously differentiable with respect to the specific volume v. Hence, there is no pressure
function for the total area. Instead, the subfunctions must be approximated separately for each
phase by appropriate measurements of the temperature T , the pressure p, and the specific
volume v. At least in the vapor area, the pressure coincides with the ideal gas law assuming
small pressures [BK16, p. 203]:

p =
RT

v
= R · T · ρ, (3.76)

with the specific gas constant R. In the two-phase area, the extensive variables, e.g. the mass
m, the volume V , and the enthalpy H , equal the sum of their corresponding parts of the
saturated liquid phase and the saturated vapor phase [BK16, p. 197]:

m = ml +mv, (3.77)

V = V l + V v = vl ·ml + vv ·mv, (3.78)

H = H l +Hv = hl ·ml + hv ·mv, (3.79)

with the masses mv and ml, the specific volumes vv and vl, and the specific enthalpies hv

and hl of the saturated vapor and the saturated liquid, respectively.

In the case of the specific enthalpy, its calculation also differs in the corresponding phase.
According to (3.15), the absolute specific enthalpy hl of the subcooled liquid at the temperature
T1 up to the saturation temperature Ts is calculated by

hl(T1) = hl(Tref ) + c̄l1,ref · (T1 − Tref ) (3.80)

or in abbreviated form
hl
1 = hl

ref + c̄l1,ref · (T1 − Tref ) . (3.81)

Equations (3.80) and (3.81) are based on the constant reference temperature Tref , which is
often arbitrarily chosen according to the corresponding problem [BS19, p. 2]. Accordingly,
the absolute specific enthalpy hv of saturated vapor at the saturation temperature Ts is given
by

hv
s = hl

ref + c̄ls,ref · (Ts − Tref ) + ∆hv. (3.82)

In the vapor area, the vapor may reach temperatures above the saturation temperature Ts and
thus is superheated. Therefore, the absolute specific enthalpy hv of the superheated vapor at
the temperature T2 is calculated by

hv
2 = hl

ref + c̄ls,ref · (Ts − Tref ) + ∆hv + c̄v2,s · (T2 − Ts) . (3.83)

When considering the different kinds of a fluid in the calculation of the mean specific heat
capacity c̄ in (3.15), the specific heat capacity clp of an incompressible liquid is approximated
by

clp = clp(T ), (3.84)

while the specific heat capacity cvp of the vapor is independent of the pressure p in general
assuming ideal gases [BK16, p. 86]:

cvp = cvp(T ). (3.85)
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With the definition of the specific enthalpies, the thermodynamic preliminaries are sufficient
to describe the LHP behavior in necessary detail. The important variables and expressions are
introduced for the subsequent sections and chapters. The next section goes into detail about
the specific characteristics of the multiphase system under investigation, the LHP.

3.2 Loop Heat Pipe Characteristics

The heat transport effectiveness of the LHP is based on its complex characteristics. Various
thermodynamic and fluid-dynamic processes interact in an LHP on a microscopic scale, which
makes the deduction of the macroscopic, control-relevant dynamics more difficult. To start
the modeling process from a basic knowledge of the LHP operation, the fundamental working
principle of the LHP is described in detail in Sec. 3.2.1. Afterwards, the characteristic behavior
of the OT is explained in Sec. 3.2.2, which gives a closer look on the characteristics of the
temperature-controlled LHP.

3.2.1 Working Principle

LHPs are especially known for their passive, two-phase working principle [Ku99]. The
passivity of the LHP refers to the generation of a mass flow in the pipes by capillary forces
in a porous wick [May05]. Thus, active mass transport components like power-consuming,
error-prone mechanical pumps are avoided for a reliable heat transport. Furthermore, an
effective heat transport is achieved by continuously changing the phase of the working fluid
through evaporation and condensation. With the use of the latent heat during these phase
transitions, the two-phase LHP reaches a higher heat transfer coefficient than single-phase
heat transport systems. Accordingly, the overall thermal conductance and resistance of the
LHP are high and low respectively [AAV+12]. In addition, the LHP sustains the required
pressure difference and therefore their high heat transfer coefficient despite its orientation
in the gravity field because of the local separation of the evaporation and the condensation.
Apart from each other, the liquid and the vapor mass flow follow their own transport lines
between the LHP components for evaporation and condensation. The corresponding reduced
pressure drops in the transport lines together with a fine-pored primary wick enable a heat
transport against gravity forces and over long distances up to several meters compared to
conventional heat pipes without separation [May05].

The following description of the structure and the operation cycle of the LHP is illustrated
by the two-dimensional schematic of the LHP in Fig. 3.7 for a better understanding of the
challenges of controlling the LHP. The considered LHP is divided into five components. As
their names imply, the evaporation and the condensation of the working fluid take place in
the cylindric, multilayered evaporator (EV) and the condenser pipe (CO) accordingly. The
transport lines include the liquid line (LL) and the vapor line (VL) corresponding to their
contained phases. The last component of the LHP, the two-phase compensation chamber
(CC), is attached to the evaporator and contributes to the stability of the LHP operation.
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Figure 3.7: Structure of an LHP with its internal geometries and its fluid distribution (cf. [Ku99])

The LHP operation cycle starts in the evaporator when the liquid evaporates at the primary
wick’s outer surface due to the heat load at the evaporator generated by the heat source. During
the evaporation of the liquid at the liquid-vapor interface, curved surfaces or menisci are
formed in the pores of the primary wick, which develop capillary forces [Ku99]. These forces
drive the accumulating vapor through the vapor channels to the outlet of the evaporator. On
its way, the vapor absorbs additional heat from the heat load until it leaves the evaporator as
superheated vapor. After the evaporator, the vapor is guided through the VL to the condenser.
In the condenser, the vapor is cooled down to saturation temperature by the heat sink,
condensates and releases its latent heat to the heat sink during the phase transition. Depending
on the position of the liquid-vapor interface in the condenser, the condensed liquid is subcooled
by the heat sink in the remaining length from the liquid-vapor interface to the outlet of the
condenser. The subcooled liquid continues through the LL to the CC, where it is guided
through a bayonet into the evaporator core. Here, the LHP operation cycle closes, as the
returning liquid replenishes the primary wick for repeated evaporation by the heat load again.
In short, the heat source induces the circulation of the working fluid in the loop, where the
primary wick works as passive capillary pump.

A reliable and efficient heat transport of the LHP relies on a continuous evaporation of the
liquid in the primary wick inside the evaporator. If the returning liquid from the condenser
does not moisten the primary wick sufficiently, a dryout of the primary wick will disrupt
the fluid circulation and thus the continuous operation of the LHP. Therefore, a secondary
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wick with larger pores than the primary wick for a bidirectional liquid exchange connects the
evaporator core with the liquid reservoir in the CC [Ku99]. This secondary wick in the CC
ensures a sufficient supply of liquid to the primary wick at all times [CHKK98]. Furthermore, as
a result of changing operating conditions, the CC as a two-phase reservoir counterbalances the
movement of the liquid-vapor interface in the condenser and therefore the mass distribution in
the entire loop in transient states. When the liquid-vapor interface in the condenser proceeds
to the outlet of the condenser due to a high evaporation at high heat loads, the liquid column
between the liquid-vapor interfaces in the condenser and the CC shifts toward the CC. In the
process, excess liquid is transported through the secondary wick to be stored in the CC. If
vapor is generated in the evaporator core because of high heat loads thereby blocking the
direct liquid transport from the LL to the primary wick, it is discharged through the arteries
into the CC. Thus, the CC has a direct impact on the LHP operation. It governs the OT of
the LHP and supports a smooth LHP startup [Ku99]. To clarify the dependence of the LHP
behavior on the external influences, a detailed description of the behavior of the OT and its
control is given in Sec. 3.2.2.

3.2.2 Active Operating Temperature Control

The OT of an LHP is characterized by the temperature level, which the LHP adjusts itself at the
current operating conditions [Ku99]. This equilibrium state ensures the necessary pressure
distribution, at which a mass flow persists for a continuous heat transport during an on-going
LHP operation. Usually, the OT refers to the vapor temperature at the evaporator [CVM07].
That is why the temperature sensor on the evaporator is usually used by the LHP end user to
check the requirements of the thermal interface between the LHP and the cooled object to be
met by the LHP manufacturer. The thermal interface and therefore the OT at this measuring
point depend on many parameters and conditions [CM05]. A detailed characterization of its
complex behavior follows in this section to determine the relevant influences on the LHP OT
control under investigation.
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Figure 3.8: Active closed-loop OT control of an LHP with a control heater
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The general temperature control loop of an LHP with a control heater (see Fig. 3.7) is depicted
in Fig. 3.8, including the used signal names.

By measuring the controlled temperature with a temperature sensor, the control error as
input of the controller to be designed is obtained as the difference between the measured
temperature and the setpoint temperature. The controller output is transformed by the control
heater into the corresponding heat input to the CC of the LHP, which adapts the controlled
temperature in return. Depending on the variable operating conditions of the LHP, which
are defined by the sink temperature and the heat load, the heat input must be determined
in such a way that the controlled temperature remains as close as possible to the setpoint
temperature over the entire operating range.

As the OT of the LHP is governed by the saturation temperature of the CC, the maintaining
of a desired OT by controlling the CC temperature actively at a corresponding setpoint
temperature with a control heater is commonly preferred [Ku08]. Instead of controlling the
evaporator temperature as the nearest temperature to the cooled object, the control of the CC
temperature provides the most stable temperatures and less temperature oscillations at low
heat loads [KPM11a]. A small amount of external heat to the CC of the LHP is already enough
to control the OT compared to the expected heat load at the evaporator supplied by the heat
source. The heat of the control heater is able to alter the steady state of the CC and therefore
the OT of the LHP by providing an additional changeable term to the energy balance in the CC.
The CC energy balance is mainly influenced by the subcooling of the returning liquid from
the LL and the heat leak from the evaporator to the CC as part of the heat load [Ku08]. With
the additional heat of the control heater, the steady states at the desired setpoint temperature
dependent on both the sink temperature and the heat load can be reached. Thus, the hardware
design of the control system includes the adequate selection of the control heater with enough
output power to cover the entire operating range of the LHP.

Besides the power limits of the control heater itself, another restriction regarding the self-
sufficient working principle of the LHP must be considered when controlling the CC tempera-
ture with a control heater. To ensure a continuous heat transfer during LHP operation, the
circulation of the working fluid has to be guaranteed. However, the mass circulation may stop
if the CC is heated too quickly and its temperature rises above the evaporator temperature.
In this case, the required pressure difference between the CC and the evaporator collapses.
Consequently, the evaporator is flooded with liquid, and no vapor continues to the condenser
for dissipation. If the CC is further heated, repeated startup and shutdown cycles may follow,
as described in Sec. 2.4. In order to prevent the interruption of the mass flow in the LHP,
the temperature gradient in the CC must be restricted by limiting the output of the control
heater during operation. A practical approach is the adequate limitation of the controller gains
since the LHP temperatures react very sensitively to changes of the control heater output. A
deliberate LHP shutdown by excessive CC heating, in contrast, is sometimes used to prevent
a continuous heat transport and therefore the temperature of the cooled object from dropping
too low when no heat is to be dissipated, e.g. in situations where the cooled object has no
power. [Ku99]

As mentioned before, the controlled OT of the LHP is subject to different external influences,
mainly the sink temperature and the heat load. These influences evoke different processes at
the same time due to the coupling of all LHP components in a loop. However, the complex
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operating characteristics of the LHP can be comprehended by regarding the static characteris-
tics of the LHP in the form of the steady-state operating temperature (SSOT) as a function of
the heat load and the sink temperature. Thus, the equilibrium point of the LHP system in a
steady state depends on the external influences. The natural SSOT over the heat load Q̇ev for
a given sink temperature Tsk forms a straight line if the ambient temperature Tamb in the
surroundings of the LHP is lower than Tsk. In contrast, the LHP-typical U-shaped curve of
the SSOT in Fig. 3.9 is generated if Tamb is higher than Tsk . In this case, the heat flow from
the surroundings has an essential influence on the LL. [Chu03]
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Figure 3.9: Typical curve of the steady-state operating temperature (SSOT) of an LHP over the heat load Q̇ev for a
sink temperature Tsk below the ambient temperature Tamb (cf. [Ku08], [Chu03])

Following the graph from the left to the right, a low heat load Q̇ev causes little liquid to
evaporate in the evaporator. Thus, the menisci in the primary wick generate low capillary
forces, and the mass flow rates in the VL as well as the LL are small. The subcooled liquid
enters the LL from the condenser at almost the temperature Tsk of the heat sink. As the liquid
flows slowly through the LL, the rather large temperature difference to the surroundings
compared to the conditions at the VL heats up the liquid since the ambient temperature Tamb

is higher than the sink temperature Tsk. Consequently, the liquid reaches the CC with less
subcooling, i.e. with a higher temperature, than when it left the condenser. Therefore, the
liquid in the LL contributes naturally to an increased CC temperature and SSOT (black line)
accordingly. The higher the heat load, the higher the evaporation, and the higher the mass
flow rates. Hence, the residence time of the liquid in the LL decreases leaving less time to
absorb heat from the surroundings. More subcooling shifts the energy balance in the CC to a
lower natural SSOT. At the same time with more vapor generated, the liquid-vapor interface
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in the condenser proceeds in the direction of the condenser outlet. The length for subcooling
between the liquid-vapor interface and the condenser outlet shrinks. With not enough space
for cooling the liquid down to near sink temperature, the liquid leaves the condenser with
higher temperatures, which finally contribute to a rising natural SSOT. [Ku99]

At the heat load Q̇ssot,m, the minimal natural SSOT Tssot,m is reached caused by a low
condenser outlet temperature and a low mass flow-dependent heat gain at the LL. When the
heat load passes Q̇ssot,t, the LHP operationmode changes from a variable thermal conductance
to a fixed thermal conductance. The LHP operation mode refers to the overall thermal
conductance of the LHP, which depends on the overall heat transfer coefficient and the
difference between the SSOT and the sink temperature. In the variable conductance mode, not
only condensation but also subcooling takes place in the condenser. Hence, the condenser
is not fully utilized, and the LHP has not yet reached its maximal heat transport capability.
In the fixed conductance mode, the liquid-vapor interface is located at the condenser outlet
leaving no space for subcooling. The LHP operates with its maximal overall heat transfer
coefficient and the natural SSOT rises linearly with increasing heat load. [Chu03]

In Fig. 3.9, the extension of the straight line of the natural SSOT in the fixed conductance
mode intersects the temperature axis at the sink temperature. When the sink temperature
changes, the slope of the natural SSOT in the fixed conductance mode stays the same since
the overall heat transfer coefficient of an LHP is constant. Only the curve of the natural
SSOT in the variable conductance mode changes. When the sink temperature rises toward the
ambient temperature, the size of the area in the graph, in which the natural SSOT is in variable
conductance mode, decreases, until the sink temperature passes the ambient temperature, and
the LHP operates only in fixed conductance mode with a linear natural SSOT. [Chu03]

In order to control the natural SSOT at a fixed SSOT (blue line) at the setpoint temperature
Tset, various actions are required depending on the amount of heat load at the evaporator
[Ku08]. For heat loads between Q̇ssot,l and Q̇ssot,h, the CC is heated to reach the fixed SSOT
(red area). Typically, the LHP is designed for this area, where a control heater is sufficient to
control the OT of the LHP actively at a desired setpoint temperature over the entire operating
range of the given heat source. Then, the lowest heat load Q̇ssot,l coincides with the minimal
dissipated excess heat of the heat source on standby, and the highest heat load Q̇ssot,h with
the heat source operating at maximum power. The amount of necessary heat input to the CC
from the control heater does not correspond to the distances between the natural and the
fixed SSOT in Fig. 3.9 because of the dependencies of the mass flow rates on the heat load
[Ku99]. If required by the operating conditions, the CC must be cooled (blue area) to keep
the setpoint temperature for heat loads lower than Q̇ssot,l. From a practical point of view,
the condenser would need to be enlarged constructively in the design process for heat loads
higher than Q̇ssot,h (green area) to loose the excessive heat to the heat sink while preventing
the rise of the total temperature level of the LHP [Ku08].
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3.3 Summary

In this chapter, the basics of thermodynamics, heat transfer, and multiphase systems have
been introduced, which are relevant for the dynamical modeling of LHP-based heat transport
systems. Starting from the fundamental laws of conservation, the elementary equations to
describe the heat transfer in single- and multiphase systems have been stated, and the electrical
analogy has been illustrated to facilitate the modeling process. On this basis, the LHP working
principle has been elucidated, and the specific challenges of modeling and controlling the
OT of the LHP have been identified. In the following chapters, these findings are considered
in the development of adequate model-based control designs for LHP-based heat transport
systems.





4 Nonlinear Model-Based Control Designs for
Loop Heat Pipes

The core of this thesis is based on the physically motivated modeling of a conventional LHP
for the subsequent model-based design of controllers for the control heater. Because of the
different focuses of the LHP models in the literature on the characterization of the LHP’s
working principle and the design of LHP components, a new modeling approach is necessary,
which concentrates on the fundamental LHP dynamics influenced by the system’s inputs. By
physically describing the system’s dynamics based on the thermodynamic preliminaries in
Sec. 3.1 with differential equations in an explicit form, a dynamical state-space model according
to Def. 2.1 is established that connects the system’s inputs with its outputs. Based on this
low-dimensional model, adequate controllers are designed methodically for an improved
performance and an easy adaption to different thermal control applications on ground, in the
air, or in space.

The investigated LHP in this thesis with its considered actuators and sensors is used for the
thermal control of LCTs in space applications, as introduced in Chapter 1. Under consideration
of the limited access to the interior of the LHP, the model-based control design is oriented
toward the mentioned circumstances. In particular, the internal structures of the CC and
the evaporator are often known to a limited extent to the LHP end user, and their direct
determination is only achievable with great effort. Thus, related internal parameters, which
are used in some of the transient LHP models in the literature (see Sec. 2.2), are not always
known to the LHP end user and the thermal control engineer, respectively. However, for the
desired state-space modeling of an LHP, an alternative modeling approach is sufficient, in
which as few model parameters as possible are included to be determined from the outside
with the available measurements. In addition, the model equations are designed in such a
modular way that they can be adapted easily to applications with different actuator and sensor
concepts.

For the specific hardware concept in this thesis, the input and output variables of the subse-
quent dynamical LHP state-space model are adapted to the available actuators and sensors.
This state-space model was introduced in [GSO+20] and extended in [GMSH20b] to model
the system dynamics between all actuators and sensors. The locations of these actuators and
sensors on the considered LHP are shown in Fig. 4.1.
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Figure 4.1: Structure of an LHP with the temperature sensors (TS 1 to TS 4) in orange, the actuator in green, and the
external influences in violet

The LHP is equipped with four superficial temperature sensors TS 1 to TS 4 to monitor the
LHP operation. For the desired OT control (see Sec. 3.2.2), one superficial control heater
is installed on the CC. The operating range of the considered LHP is defined by the value
ranges of the input variables, which are the dissipated heat Q̇hs of the heat source, the sink
temperature Tsk at the condenser, and the control heater output Q̇cc at the CC. Their value
ranges according to LCT specifications are listed in Table 4.1.

Variable Minimum value Maximum value

Q̇cc 0W 10W

Q̇hs 20W 100W

Tsk −25 ◦C 15 ◦C

Table 4.1: Considered operating range of the running LHP given by the value ranges of the control heater output
Q̇cc, the dissipated heat Q̇hs of the heat source, and the sink temperature Tsk

In the considered operating range, the LHP works in the variable conductance mode since
the condenser is never fully used (see Sec. 3.2.2). To maintain the OT at a desired setpoint
temperature in this operating range, it is sufficient to heat the CC with the control heater.
The control heater enables the suppression of the disturbances of the LHP, namely the sink
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temperature Tsk and the dissipated heat Q̇hs of the heat source. The disturbances influence
not only the curvature of the natural SSOT in Fig. 3.9, but also the transient behavior of the
temperatures during LHP operation. Thus, the LHP can be described as a controlled system
with one input, four outputs, and two disturbances (see Fig. 4.2).

Q̇cc
Tev

Tcc

Tco,i

Tco,o

Tsk Q̇hs

LHP

Figure 4.2: System view of an LHP with the input variable Q̇cc in green, the output variables Tcc, Tev , Tco,i, and
Tco,o in orange, and the disturbance variables Tsk and Q̇hs in violet

The complex dynamics of the LHP require the combination of different engineering areas to
derive a suitable control model of this multiphase heat transport system in state-space form.
Besides the description of the thermodynamic processes with the fundamental laws of ther-
modynamics, the heat transfer presents another important domain. The consideration of the
different heat transfer modes needs to be included to reproduce the measured temperatures of
the LHP precisely. Because of the essential movement of the working fluid, flow dynamics
have an impact on the system’s behavior and play a major role in capturing the two-phase heat
transport process of the LHP. By combining the basic equations of all domains, the LHP model
reproduces the response of the measured temperatures to input changes accurately to be used
in the model-based control design with an improved controller performance compared to the
state-of-the-art controllers. In addition to the desired control design, the model is able to track
the liquid-vapor interface in the condensation area as one of the important indicators of the
operating status of the LHP and the occurrence of undesirable phenomena (see Sec. 2.4).

To separate the various dynamics for the modeling process, the LHP is divided into individual
subsystems in the next section. For each subsystem, adequate model equations are derived
from the fundamental laws of conservation and the balance equations in Sec. 3.1 to build
the state-space model of the LHP. Subsequently, the control design based on the introduced
state-space model is presented.

4.1 Complex Dynamical Modeling

A first step to facilitate the complex dynamical modeling is the delimitation of the multiphase
LHP system into smaller subsystems as explained in Sec. 3.1.3. Hence, the LHP structure in
Fig. 4.3 is divided into five subsystems. These subsystems include the two-phase compensation
chamber (CC) in red, the single-phase evaporator (EV) in green, the single-phase vapor line
(VL) in orange, the single-phase liquid line (LL) in blue, and the two-phase condenser (CO) in
violet.
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Figure 4.3: LHP subsystems with their corresponding main heat flows

The division of the LHP system into these five subsystems is based on the boundaries between
the LHP components except for the boundary between the CC and the evaporator subsystems.
In the CC-evaporator assembly, where the capillary pump of the LHP is situated, the boundary
between both subsystems coincides with the liquid-vapor interface at the outer surface of
the primary wick. In this way, the modeling of the LHP has the following advantage: The
CC subsystem includes the evaporator core since they both reach the same absolute pressure
during steady LHP operation [Ku99], while the evaporator subsystem is only vapor-filled.

In addition to the colored boundaries of the LHP subsystems, the fundamental heat flows across
the boundaries of each subsystem are presented in Fig. 4.3. The heat load Q̇ev is applied to the
evaporator subsystem by the heat source and results from the dissipated heat Q̇hs. Besides
the heat input Q̇cc by the control heater to the CC subsystem, the heat leak Q̇lk is exchanged
between the CC subsystem and the evaporator subsystem. Furthermore, both transport lines
exchange heat with the surroundings considering an ambient temperature between the liquid
and the vapor temperatures (see Sec. 3.2.2). The cold liquid from the condenser is heated by
the heat flow Q̇ll to the LL. At the VL, the temperature of the superheated vapor is reduced
by the heat flow Q̇vl. The total heat flow from the condenser to the heat sink results from
the sum of the heat flows Q̇sh and Q̇sc in the superheated and the subcooled single-phase
regions, and the heat flow Q̇2ϕ in the two-phase condensation region.
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4.1.1 Model Assumptions

Before the individual equations of the subsystems are established, general assumptions are
stated in this section for modeling the LHP with the objective of a model-based control design
based on Def. 2.1. In the course of the model description in the next sections, these assumptions
are referenced at the respective locations in the text to highlight their impact and necessity.

Assumption 4.1. The sink temperature Tsk is considered to be spatially constant.

Assumption 4.2. The thermal and the fluid inertia are neglected for the single-phase subsystems.

Assumption 4.3. The homogeneous fluid in the CC and the two-phase region of the condenser
is in saturation state at all times.

Assumption 4.4. The vapor is assumed to be an ideal gas, the liquid is incompressible.

Assumption 4.5. The physical properties of the working fluid are functions of the respective
subsystem temperatures in the operating point (OP).

Assumption 4.6. The homogeneous flow regime of the liquid working fluid in the pipes of the
LHP is laminar in the considered operating range.

Discussion of the Assumptions

Assumption 4.1 is based on experimental data from the LHP test bench described in [MKHW19].
The data show that the temperature gradient along the condenser length varies only by few
degrees Kelvin. Assumption 4.2 applies to the single-phase subsystems with a small pipe
diameter, i.e. the evaporator and the transport lines. It is assumed that neither heat nor
mass are stored in these subsystems since the corresponding temperature measurements
show almost no delay between the inlet and the outlet of each subsystem compared to the
temperature dynamics3. Assumption 4.3 is ensured by the LHP manufacturer through the
size of the CC and the fluid inventory of the LHP. For a reliable operation in the considered
operating range, an LHP is charged with such an amount of working fluid that the CC is
always filled with liquid and vapor in saturation state under all operating conditions [Ku99].
It follows from Assumption 4.4 that the density of the liquid and the specific heat capacities
of the liquid and the vapor are assumed to be independent of the pressure. In addition to
Assumption 4.5, the temperature derivatives of the physical properties of the working fluid
are neglected, as their temperature dependencies are small in the considered LHP operating
range. This does not hold for the temperature derivative of the vapor density to consider
the vapor’s compressibility. Assumption 4.6 is verified in the numerical LHP simulation of
[MKHW19].

3 A delay on the order of seconds versus a settling time on the order of a quarter of an hour according to
measurements.
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4.1.2 Compensation Chamber

The CC has an important role when it comes to the OT control of the LHP (see Sec. 3.2.1). In
this LHP component, the subcooling of the liquid returning from the condenser meets the heat
input by the heat leak of the evaporator. The resulting temperature level in the CC governs
the OT of the LHP. To control this temperature level, the additional heat input by the control
heater on the CC is adapted, while the continuous heat transport between the heat source
and the heat sink is maintained. During LHP operation, the primary and the secondary wick
in the CC subsystem are assumed to be soaked with liquid at all times, i.e. the fluid enters and
leaves the CC in liquid state. The CC contains both a liquid and a vapor phase in saturation
state (Assumption 4.3). In order to model the dynamics of the CC, it is common practice to
evaluate the mass and the energy balance of the fluid inside the two-phase CC subsystem (see
[LPDJ07], [VR08], [MKHW19]). The difference of these CC modeling approaches lies in the
individual establishment of the balance equations and the numerical solution method of the
distributed-parameter systems (see Sec. 2.2). In this thesis, an own modeling approach with
lumped parameters is derived in detail based on the mentioned CC submodels to obtain the
necessary model accuracy with regard to the desired low-dimensional state-space form.

The total mass m2ϕ
cc (t) in the two-phase CC is defined by the following sum of the liquid and

the vapor massesml
cc(t) and mv

cc(t):

m2ϕ
cc (t) = ml

cc(t) +mv
cc(t). (4.1)

Themass balance in (3.18) implies that the change of the total massm2ϕ
cc (t) equals the difference

of the mass flows across the boundary of the CC subsystem. Therefore, the CC mass balance
is described by the following equation:

dm2ϕ
cc (t)

dt
= ṁl(t)− ṁv(t), (4.2)

where ṁl(t) denotes the liquid mass flow rate, which enters the CC, and ṁv(t) denotes the
mass flow rate that evaporates at the outer surface of the primary wick and leaves the CC.

The liquid and the vapor mass ml
cc(t) andmv

cc(t) in the CC are expressed by

ml
cc(t) = ρlcc · V l

cc(t), (4.3)

mv
cc(t) = ρvcc(t) · V v

cc(t), (4.4)

with the corresponding densities ρlcc and ρvcc(t)
4 (see Assumption 4.5). The liquid volume

V l
cc(t) and the vapor volume V v

cc(t) in the CC are determined by their volume fraction ratio
β(t):

V l
cc(t) = β(t) · Vcc, (4.5)

V v
cc(t) =

(
1− β(t)

)
· Vcc. (4.6)

4 The time dependency of ρvcc(t) results from its temperature dependency, i.e. ρvcc
(
T (t)

)
, which is abbreviated to

ease notation.
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Their sum equals the total fluid volume Vcc in the CC subsystem:

Vcc = V l
cc(t) + V v

cc(t). (4.7)

According to Assumption 4.4, the ideal gas law (3.76) is applied to the vapor density ρvcc(t) of
the CC subsystem:

ρvcc(t) =
pcc(t)

RTcc(t)
. (4.8)

Hence, the time derivative of ρvcc(t) yields:

dρvcc(t)

dt
=

1

RTcc(t)
· dpcc(t)

dt
− pcc(t)

R
(
Tcc(t)

)2 · dTcc(t)

dt
, (4.9)

where the time derivative of the saturation pressure pcc(t) on the right hand side is expressed
by its temperature derivative:

dρvcc(t)

dt
=

1

RTcc(t)
· dpcc(t)
dTcc(t)

· dTcc(t)

dt
− pcc(t)

R
(
Tcc(t)

)2 · dTcc(t)

dt
, (4.10)

By inserting (4.8) and the Clapeyron equation (3.72) into (4.10), the time derivative of ρvcc(t)
is defined as a function of the time derivative of Tcc(t):

dρvcc(t)

dt
=

(
∆hv

ccρ
l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)
· dTcc(t)

dt
, (4.11)

where ∆hv
cc denotes the specific heat of evaporation at a fixed Tcc. With (4.3), (4.4), (4.7), and

(4.11), the CC mass balance in (4.2) takes the following form:(
ρlcc − ρvcc(t)

)
· dβ(t)

dt
· Vcc

+

(
∆hv

ccρ
l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)
· dTcc(t)

dt
·
(
1− β(t)

)
· Vcc

= ṁl(t)− ṁv(t). (4.12)

Thus, the change of the mass in the CC in (4.12) is a function of the homogeneous saturation
temperature Tcc(t) and the volume fraction ratio β(t), their change rates, and the vapor
density ρvcc(t).

Based on the first law of thermodynamics in (3.11), the thermal energy balance of the CC is
given by

dH l
cc(t)

dt
+
dHv

cc(t)

dt
− d

dt
(pcc(t) · Vcc) = Ḣ l

cc,i(t)− Ḣ l
cc(t) + Q̇cc(t) + Q̇lk(t). (4.13)

In (4.13), the left-hand side (LHS) describes the change of the internal energy Ucc(t) in the
CC. The moving boundary work defined in (3.7) is required for pushing the fluid out of the
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CC. Following (3.8), (3.81), and (3.82), the enthalpies H l
cc(t) and Hv

cc(t) of the liquid and the
vapor phase are established as follows:

H l
cc(t) = ml

cc(t) · hl
cc(t)

= ρlcc · β(t) · Vcc ·
(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref )

)
, (4.14)

Hv
cc(t) = mv

cc(t) · hv
cc(t)

= ρvcc(t) ·
(
1− β(t)

)
· Vcc ·

(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref ) + ∆hv

cc

)
. (4.15)

The right-hand side (RHS) of (4.13) describes the energy flows across the boundary of the
subsystem as depicted in Fig. 4.3. According to (3.9), the enthalpy flow rates Ḣ l

cc,i(t) at
the CC inlet temperature Tcc,i(t) and Ḣ l

cc(t) at Tcc(t) in and out of the CC depend on the
corresponding mass flow rates ṁl and ṁv :

Ḣ l
cc,i(t) = ṁl(t) · hl

cc,i(t) = ṁl(t) ·
(
hl
ref + c̄lcc,i,ref · (Tcc,i(t)− Tref )

)
, (4.16)

Ḣ l
cc(t) = ṁv(t) · hl

cc(t) = ṁv(t) ·
(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref )

)
. (4.17)

The heat flow Q̇cc(t) is applied to the CC by the control heater. The variable Q̇lk(t) denotes
the heat flow, which leaks from the evaporator subsystem at Tev(t) to the CC subsystem at
Tcc(t) by heat conduction through the wicks. This internal heat flow is approximated with
the thermal resistance Rlk using (3.50) to

Q̇lk =
1

Rlk
·
(
Tev(t)− Tcc(t)

)
. (4.18)

With (4.14) and (4.15), the LHS of the CC energy balance equation (4.13) is rewritten:

LHS: ρlcc ·
dβ(t)

dt
· Vcc ·

(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref )

)
+ ρlcc · β(t) · Vcc · c̄lcc,ref ·

dTcc(t)

dt

+
dρvcc(t)

dt
·
(
1− β(t)

)
· Vcc ·

(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref ) + ∆hv

cc

)
− ρvcc(t) ·

dβ(t)

dt
· Vcc ·

(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref ) + ∆hv

cc

)
+ ρvcc(t) ·

(
1− β(t)

)
· Vcc · c̄lcc,ref ·

dTcc(t)

dt
− Vcc ·

dpcc(t)

dt
. (4.19)
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The time derivative of the saturation pressure pcc(t) can be expressed by its temperature
derivative. Inserting (3.72) and (4.11) into (4.19), the LHS yields:

LHS:
[(

ρlcc · β(t) + ρvcc(t) ·
(
1− β(t)

))
· c̄lcc,ref −

∆hv
ccρ

l
ccρ

v
cc(t)

Tcc(t)
(
ρlcc − ρvcc(t)

)] · Vcc

· dTcc(t)

dt
+
(
ρlcc − ρvcc(t)

)
· dβ(t)

dt
· Vcc ·

(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref )

)
− ρvcc(t) ·

dβ(t)

dt
· Vcc ·∆hv

cc +

(
∆hv

ccρ
l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)

· dTcc(t)

dt
·
(
1− β(t)

)
· Vcc ·

(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref ) + ∆hv

cc

)
. (4.20)

The RHS of the CC energy balance equation (4.13) is reshaped with (4.16) and (4.17):

RHS: ṁl(t) ·
(
hl
ref + c̄lcc,i,ref · (Tcc,i(t)− Tref )

)
− ṁv(t) ·

(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref )

)
+ Q̇cc(t) + Q̇lk(t). (4.21)

By inserting the CC mass balance equation (4.12) into (4.21), the RHS is given by

RHS: ṁl(t) ·
(
hl
ref + c̄lcc,i,ref · (Tcc,i(t)− Tref )

)
−
[
ṁl(t)−

(
ρlcc − ρvcc(t)

)
· dβ(t)

dt

· Vcc −
(

∆hv
ccρ

l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)
· dTcc(t)

dt
·
(
1− β(t)

)
· Vcc

]
·
(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref )

)
+ Q̇cc(t) + Q̇lk(t) (4.22)

and

RHS: ṁl(t) · c̄lcc,i,cc ·
(
Tcc,i(t)− Tcc(t)

)
+

[(
ρlcc − ρvcc(t)

)
· dβ(t)

dt
· Vcc

+

(
∆hv

ccρ
l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)
· dTcc(t)

dt
·
(
1− β(t)

)
· Vcc

]
·
(
hl
ref + c̄lcc,ref · (Tcc(t)− Tref )

)
+ Q̇cc(t) + Q̇lk(t), (4.23)

respectively. By recombining (4.20) and (4.23), the following equation is established:[(
ρlcc · β(t) + ρvcc(t) ·

(
1− β(t)

))
· c̄lcc,ref −

∆hv
ccρ

l
ccρ

v
cc(t)

Tcc(t)
(
ρlcc − ρvcc(t)

)
+

(
∆hv

ccρ
l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)
·
(
1− β(t)

)
·∆hv

cc

]

· Vcc ·
dTcc(t)

dt
− ρvcc(t) ·

dβ(t)

dt
· Vcc ·∆hv

cc

= ṁl(t) · c̄lcc,i,cc ·
(
Tcc,i(t)− Tcc(t)

)
+ Q̇cc(t) + Q̇lk(t). (4.24)
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Finally, the differential equations (4.12) and (4.24) are rearranged resulting in the time deriva-
tives of the CC temperature Tcc(t) and the volume fraction ratio β(t):

dTcc(t)

dt
=

1

Ccc(t)
·
[
ṁl(t) · c̄lcc,i,cc ·

(
Tcc,i(t)− Tcc(t)

)
+ Q̇cc(t) + Q̇lk(t)

+
ρvcc(t)∆hv

cc

ρlcc − ρvcc(t)
·
(
ṁl(t)− ṁv(t)

)]
, (4.25)

dβ(t)

dt
=

1

Vcc

(
ρlcc − ρvcc(t)

) · [ṁl(t)− ṁv(t)

−
(

∆hv
ccρ

l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)
·
(
1− β(t)

)
· Vcc ·

dTcc(t)

dt

]
, (4.26)

with the thermal capacity

Ccc(t) =

[(
ρlcc · β(t) + ρvcc(t) ·

(
1− β(t)

))
· c̄lcc,ref −

∆hv
ccρ

l
ccρ

v
cc(t)

Tcc(t)
(
ρlcc − ρvcc(t)

)
+

(
∆hv

ccρ
l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)
·
(
1− β(t)

)
·∆hv

cc

+
ρvcc(t)∆hv

cc

ρlcc − ρvcc(t)
·
(

∆hv
ccρ

l
ccρ

v
cc(t)

R
(
Tcc(t)

)2(
ρlcc − ρvcc(t)

)− ρvcc(t)

Tcc(t)

)
·
(
1− β(t)

)]
· Vcc. (4.27)

4.1.3 Evaporator

The closest LHP component to the heat source is the evaporator. The liquid working fluid from
the CC is evaporated in the primary wick in the evaporator body. Because of the capillary
effect, menisci in the pores of the primary wick form themselves to drive the working fluid
through the LHP system. Due to the chosen delimitation in Fig. 4.3, the evaporator subsystem
contains only a single phase of superheated vapor. Following the first law of thermodynamics
in (3.11), the thermal energy balance of the evaporator subsystem yields

dUev(t)

dt
= ṁl(t) · hl

cc(t)− ṁv(t) · hv
ev(t) + Q̇ev(t)− Q̇lk(t). (4.28)

In the evaporator subsystem, the enthalpy flows are determined by the incoming mass flow
ṁl(t) of the liquid from the CC subsystem, which evaporates instantly at the liquid-vapor
interface in the primary wick, and the outgoing mass flow ṁv(t) of the vapor. The heat flows
across the boundary of the evaporator subsystem include the leaving heat leak Q̇lk(t) and the
incoming heat flow Q̇ev(t) from the heat source.

Following Assumption 4.2, neither mass nor heat are stored in the evaporator subsystem.
Hence, the incoming and outgoing mass flow rates ṁl and ṁv are the same. Since the
transported amount of material is determined by the evaporation process [Ses19, p. 29], the
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equation to describe the vapor mass flow rate ṁv(t) is derived from the steady-state energy
balance of the evaporator subsystem:

0 = ṁv(t) · hl
cc(t)− ṁv(t) · hv

ev(t) + Q̇ev(t)− Q̇lk(t), (4.29)

0 = ṁv(t) ·
[
hl
ref + c̄lcc,ref · (Tcc − Tref )−

(
hl
ref + c̄lev,s,ref · (Tev,s − Tref )

+ ∆hv
ev + c̄vev,ev,s · (Tev − Tev,s)

)]
+ Q̇ev(t)− Q̇lk(t), (4.30)

with the mean evaporator temperature Tev(t) and the specific heat of evaporation ∆hv
ev at

the saturation temperature Tev,s. Hence, the equation of the vapor mass flow rate ṁv(t) is
given by

ṁv(t) =
Q̇ev(t)− Q̇lk(t)

c̄lev,s,cc ·
(
Tev,s(t)− Tcc(t)

)
+∆hv

ev + c̄vev,ev,s ·
(
Tev(t)− Tev,s(t)

). (4.31)

According to (3.74), the saturation temperature Tev,s(t) is a function of the saturation pressure
pev(t) in the evaporator subsystem since the temperature and the pressure are linked to each
other in the saturation state:

Tev,s(t) = −
Bwf

ln
(
pev(t)

)
−Awf

− Cwf , (4.32)

where the specific parameters Awf , Bwf , and Cwf of the working fluid are given in Ap-
pendix A.1. In contrast to [LPDJ07], the saturation pressure pev(t) is calculated from the
saturation pressure pcc(t) in the CC subsystem and not from the pressure in the VL to form
an explicit equation system for the desired state-space form. This is due to the pressure
drop along the loop between the evaporator and the CC, which is balanced by the pressure
difference∆pca across the liquid-vapor interface caused by the capillary action in the pores
of the primary wick. Thus, pev(t) is given by

pev(t) = pcc(t) + ∆pca, (4.33)

where pcc(t) results from (3.73):

pcc(t) = exp

(
Awf −

Bwf

Cwf + Tcc(t)

)
. (4.34)

The formula for the capillary pressure ∆pca of the primary wick is given in [Ku99]:

∆pca =
2σ cos (θc)

Rp
, (4.35)

with the surface tension σ of the liquid working fluid in saturation state (see Appendix A.1), the
wick pore radiusRp, and the contact angle θc between the liquid-vapor interface and the wick.
Formula (4.35) is based on the nonlinear partial differential Young-Laplace equation for artery
wicks (see [Zoh16, p. 52]). The maximum capillary pressure is reached with the minimum
contact angle θc = 0◦. As the pore radius Rp of the wick in the considered LHP is unknown,
it is chosen as Rp = 1 µm by means of literature values [Chu03], [KG06], [RWH07].
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While the saturated vapor flows through the vapor channels to the evaporator outlet, it
absorbs more heat from the heat source, and its temperature rises. Thus, the lumped thermal
resistance Rsh is introduced to describe the temperature difference between the superheated
temperature Tev(t) and Tev,s(t), which itself is a function of the CC saturation temperature
Tcc(t). Based on Sec. 3.1.2, the respective thermal network of the evaporator subsystem, as
depicted in Fig. 4.4, is constructed to derive the equation for Tev(t).

Tev

Rsh

Tev,s

Rlk

Q̇lkTcc
Q̇ev

EV

CC

Figure 4.4: Thermal network representation of the evaporator subsystem

According to Kirchhoff’s current law, the superheated mean evaporator temperature Tev(t)
is calculated from the heat load Q̇ev(t), the heat leak Q̇lk(t) and the saturation temperature
Tev,s(t):

Tev(t) = Tev,s(t) +Rsh ·
(
Q̇ev(t)− Q̇lk(t)

)
. (4.36)

The difference between Q̇ev(t) and Q̇lk(t) forms the heat flow, which evaporates the liquid in
the primary wick to raise the vapor mass flow rate ṁv(t) in (4.31). By inserting (4.18) into
(4.36), the following equation is obtained:

Tev(t) = Tev,s(t) +Rsh · Q̇ev(t)−
Rsh

Rlk
· Tev(t) +

Rsh

Rlk
· Tcc(t). (4.37)

Finally, the evaporator temperature Tev(t) is explicitly given by

Tev(t) =
Rlk

Rlk +Rsh
·
(
Tev,s(t) +Rsh · Q̇ev(t) +

Rsh

Rlk
· Tcc(t)

)
. (4.38)

4.1.4 Transport Lines

The transport lines include the VL and the LL (see Fig. 4.3). These lines are made of thin
pipes, which are typical features of LHP systems. Compared to compact heat pipe systems,
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the separation of the fluid flows in LHPs makes it possible to transport the heat between the
evaporator near the heat source and the condenser near the heat sink over several meters.
Because of their great length in comparison with their width, the temperature gradients of the
fluid in the transport lines caused by the heat exchanges with the surroundings are considered
in the calculations of the temperatures in both subsystems.

Liquid Line

Especially in the LL, the heat input Q̇ll(t) to the subcooled liquid has a significant impact on
the behavior of the OT forming its characteristic U-shaped curve in Fig. 3.9, as explained in
Sec. 3.2.2. According to Assumption 4.2, the thermal and fluid inertia in the transport lines are
neglected since the transport delay is relatively small compared to the temperature dynamics
due to the small diameter of the pipes. Therefore, additional states are not necessary, and
the LHP state-space model is kept low-dimensional. The temperature gradient between the
inlet and the outlet of a pipe is approximated by the logarithmic mean temperature difference
∆Tm in (3.60) instead. Thus, the temperature decreases exponentially along the LL, and the
CC inlet temperature Tcc,i(t), which corresponds to the LL outlet temperature, is calculated
using (3.63):

Tcc,i(t) = Tamb + (Tco,o(t)− Tamb) · exp
(
− Ull

ṁl(t)c̄lcc,i,co,o

)
, (4.39)

where the thermal conductance Ull of the LL is defined by

Ull = kll ·As,ll = kll · π ·Dp · Lll, (4.40)

with the heat transfer coefficient kll of the LL, the heat transfer surface area As,ll of the
LL, the pipe diameter Dp of the transport lines, and the length Lll of the LL. In the VL, the
superheated vapor from the evaporator subsystem exchanges heat with the surroundings
until it reaches the inlet of the condenser.

Vapor Line

The same approach for heat exchanger like the LL is applied to the VL considering the heat
flow Q̇vl(t). The inlet temperature Tco,i(t) of the condenser is approximated by

Tco,i(t) = Tamb + (Tev(t)− Tamb) · exp
(
− Uvl

ṁv(t)c̄vev,co,i

)
. (4.41)

Accordingly, the thermal conductance Uvl of the VL is given by

Uvl = kvl ·As,vl = kvl · π ·Dp · Lvl, (4.42)

with the heat transfer coefficient kvl of the VL, the heat transfer surface area As,vl of the VL,
and the length Lvl of the VL.
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4.1.5 Condenser

In order to model the dynamic behavior in the two-phase condenser, the condenser is further
subdivided into three regions. Following the flow direction in the loop, the first region in the
condenser is the superheated region. As stated in Sec. 4.1.4, the superheated vapor enters
the condenser coming from the VL and is cooled down to the saturation temperature of the
condenser. Next to the superheated region, the saturated, two-phase region is located, whose
saturation temperature and pressure are assumed to be homogeneous, as pure substances
condense at constant pressure and temperature. Finally, the subcooled region is located near
the outlet of the condenser subsystem, where the liquid leaves the condenser at almost sink
temperature depending on the operating status of the LHP (see Sec. 3.2.2). To illustrate the
spatial phase and temperature distribution of the condenser subsystem, Fig. 4.5 shows the
two-dimensional schematic of the condenser with its three regions and the relevant parameters
and variables.

Lco

L2ϕLsc Lsh

subcooled two-phase superheated

ṁvṁl ṁ2ϕ
o ṁ2ϕ

i

Q̇sc Q̇2ϕ Q̇sh

Tco,o Tco,s Tco,s Tco,i

Figure 4.5: Condenser subsystem with the corresponding temperatures, mass flow rates, heat flows and lengths

For the condenser subsystem, the condensation model of [WBB78] with a two-phase and a
subcooled region, which is also used in [LPDJ07], is extended to consider the superheated
region as well. This zero-dimensional, transient condensation model enables the tracking of
the liquid-vapor interface in the condenser. By describing the point of complete condensation
as well as the liquid mass flow rate ṁl at the outlet of the condenser as a function of the vapor
mass flow rate ṁv at the inlet of the condenser, the position of the liquid-vapor interface is
determined, when the vapor enters the condenser in saturation state. The advantage of this
model is that it is a dynamical, lumped-parameter model that needs only one constant, which
is the heat transfer coefficient k2ϕ of the two-phase region.

To calculate the temperatures, lengths, and mass flow rates of all three regions in the condenser
subsystem, as depicted in Fig. 4.5, the behavior of the condenser is assumed to be governed by
mass and energy conservation principles, while the minor influences of the momentum are
neglected with a mean void fraction [WBB78, p. 101]. The distance between the condenser
inlet at Tco,i and the point, where the vapor flow reaches the saturation temperature Tco,s of
the condenser subsystem, is described by Lsh. The length Lsh correlates with the length of the
superheated region in the condenser as part of the total condenser length Lco. Furthermore,
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L2ϕ denotes the distance between the end of the superheated region and the point of complete
condensation and corresponds to the length of the two-phase region. In the remaining distance
Lsc, the condensed liquid is further subcooled.

The mass balance in (3.18) for the two-phase region yields

d

dt

(
ρ2ϕ ·Ap · L2ϕ(t)

)
= ṁ2ϕ

i (t)− ṁ2ϕ
o (t), (4.43)

with the cross-sectional areaAp of the condenser pipe, the inlet mass flow rate ṁ2ϕ
i (t) and the

outlet mass flow rate ṁ2ϕ
o (t). The variable ṁ2ϕ

o (t) denotes the mass flow rate, which flows
across the moving liquid-vapor interface between the two-phase region and the subcooled
region, while ṁ2ϕ

i (t) flows across the moving interface between the superheated region and
the two-phase region (see Fig. 4.5). In order to simplify the transient problem, the condenser
model neglects the change of the fluid momentum by assuming a homogeneous density ρ2ϕ

in the two-phase region [WBB78]:

ρ2ϕ = ρlco · (1− γ̄) + ρvco · γ̄, (4.44)

with the mean void fraction γ̄ and the time-invariant densities ρlco and ρvco of the saturated
liquid and the saturated vapor flow in the two-phase region. According to the calculations of
[WBB78] based on experimental data while assuming steady condensing flow conditions, an
approximated value of

γ̄ = 0.82 (4.45)

is appropriate for the condensation process in the LHP.

According to the first law of thermodynamics in (3.11), the energy balance of the two-phase
region is given by

d

dt

((
ρlco · hl

co · (1− γ̄) + ρvco · hv
co · γ̄

)
·Ap · L2ϕ(t)

)
= −Q̇2ϕ(t) + hv

co · ṁ2ϕ
i (t)− hl

co · ṁ2ϕ
o (t), (4.46)

where the LHS describes the change of homogeneous enthalpy in the subsystem and the RHS
stands for the enthalpy flows of the entering vapor flow and the leaving condensate minus
the heat flow Q̇2ϕ(t). The variable Q̇2ϕ(t) denotes the heat flow, which is released during
condensation and is transferred to the heat sink by heat convection and heat conduction. It is
expressed by

Q̇2ϕ(t) = k2ϕ · π ·Dp · L2ϕ(t) ·
(
Tco,s(t)− Tsk(t)

)
, (4.47)

with the aforementioned heat transfer coefficient k2ϕ of the two-phase region. The sink
temperature Tsk(t) is assumed to be constant along the condenser (see Assumption 4.1).

Combining (4.43), (4.44), and (4.46), the following equations are obtained:(
ρlco · hl

co · (1− γ̄) + ρvco · hv
co · γ̄

)
·Ap ·

dL2ϕ(t)

dt

= −Q̇2ϕ(t) + hv
co · ṁ2ϕ

i (t)− hl
co · ṁ2ϕ

i (t) + hl
co · ρ2ϕ ·Ap ·

dL2ϕ(t)

dt
(4.48)
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and(
ρlco · hl

co · (1− γ̄) + ρvco · hv
co · γ̄ − ρlco · hl

co · (1− γ̄)− ρvco · hl
co · γ̄

)
·Ap ·

dL2ϕ(t)

dt

= −Q̇2ϕ(t) + ∆hv
co · ṁ2ϕ

i (t), (4.49)

with the specific heat of evaporation ∆hv
co at the fixed saturation temperature Tco,s. Thus,

with (4.47), the differential equation for L2ϕ(t) is obtained [WBB78]:

dL2ϕ(t)

dt
= −k2ϕπDp

(
Tco,s(t)− Tsk(t)

)
ρvcoγ̄Ap∆hv

co

· L2ϕ(t) +
1

ρvcoγ̄Ap
· ṁ2ϕ

i (t). (4.50)

In contrast to [WBB78] and [LPDJ07], a third length Lsh(t) and a second interface mass flow
rate ṁ2ϕ

i (t) are introduced together with the superheated region. The length Lsh(t) depends
on the required distance between the inlet of the condenser and the start of the two-phase
region to cool the superheated vapor flow down to the saturation temperature Tco,s(t). As
a hermetically sealed system with a fixed working fluid charge, the mass distribution in the
loop changes with the varying operating conditions. Correspondingly, the lengths of the
regions in the LHP condenser automatically adapt to new operating conditions. To determine
the lengths of all three regions, it is sufficient to establish two equations for the two lengths
L2ϕ(t) > 0 and Lsh(t) ≥ 0, while the third length Lsc(t) ≥ 0 is calculated from the fixed
total length Lco of the condenser:

Lsc(t) = Lco − L2ϕ(t)− Lsh(t). (4.51)

Thus, the equation for the mass balance of the subcooled region is given by

d

dt

(
ρlco ·Ap ·

(
Lco − L2ϕ(t)− Lsh(t)

))
= ṁ2ϕ

o − ṁl. (4.52)

Due to the smaller length5 and lower density of the superheated region in comparison with
the other two regions, the impact of the fluid inertia in the superheated region on the phase
distribution in the condenser subsystem is neglected. Hence, the change in Lsh(t) equals zero,
and the mass balance of the superheated region yields

d

dt

(
ρvco ·Ap · Lsh(t)

)
= ṁv(t)− ṁ2ϕ

i (t) = 0. (4.53)

Thus, the following equation holds:

ṁ2ϕ
i (t) = ṁv(t). (4.54)

With this approximation, (4.52) is simplified:

−ρlco ·Ap ·
dL2ϕ(t)

dt
= ṁ2ϕ

o (t)− ṁl(t). (4.55)

5 A maximum of about 16% of the total condenser length is occupied by the superheated region in the considered
LHP operating range according to the numerical LHP simulation of [MKHW19].
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Furthermore, (4.43) is inserted into (4.55):

−ρlco ·Ap ·
1

ρ2ϕAp

(
ṁv(t)− ṁ2ϕ

o (t)
)
= ṁ2ϕ

o (t)− ṁl(t). (4.56)

Finally, the interface mass flow rate ṁ2ϕ
o (t) is expressed by the following equation

(cf. [LPDJ07]):

ṁ2ϕ
o (t) = ṁv(t)− ṁv(t)− ṁl(t)

1− ρl
co

ρ2ϕ

. (4.57)

Both the superheated region and the subcooled region are single-phase regions, where a
single-phase heat exchange with the heat sink takes place. While the temperature Tco,s(t) of
the two-phase region is spatially constant (see Fig. 3.6b), the temperatures in the superheated
and the subcooled region decrease along their lengths due to the heat flows Q̇sh(t) and Q̇sc(t)
to the heat sink. Hence, the heat exchanger approach in Sec. 4.1.4 is also established for these
two regions. The following equation of the saturation temperature Tco,s(t) results:

Tco,s(t) = Tsk(t) +
(
Tco,i(t)− Tsk(t)

)
· exp

(
− πDpksh
ṁv(t)c̄lco,s,co,o

· Lsh(t)

)
, (4.58)

with the heat transfer coefficient ksh of the superheated region. By rearranging (4.58), the
length Lsh(t) of the superheated region is determined:

Lsh(t) = ln

(
Tco,s(t)− Tsk(t)

Tco,i(t)− Tsk(t)

)
· −ṁ

v(t)c̄lco,s,co,o
πDpksh

. (4.59)

Analogously, the condenser outlet temperature Tco,o(t) is calculated by

Tco,o(t) = Tsk(t) +
(
Tco,s(t)− Tsk(t)

)
· exp

(
− πDpksc
ṁl(t)c̄lco,s,co,o

· Lsc(t)

)
, (4.60)

with the heat transfer coefficient ksc of the subcooled region. In order to determine the
saturation temperature Tco,s(t), the steady-state energy and mass balance of the two-phase
region in (4.43) and (4.46) are evaluated:

Tco,s(t) = Tsk(t) +
∆hv

co

k2ϕπDpL2ϕ(t)
· ṁ2ϕ

o (t), (4.61)

where ṁ2ϕ
o (t) is determined in (4.57) as a function of the vapor mass flow rate ṁv(t) in (4.31)

and the liquid mass flow rate ṁl(t). In order to close the system of equations and to establish
the desired LHP state-space model, the liquid mass flow rate ṁl(t) is derived in the next
section.

4.1.6 Liquid Column

The movements of the liquid-vapor interfaces in the CC and the condenser, which are defined
by the dynamics of the CC volume fraction ratio β(t) in (4.26) and the length L2ϕ(t) of
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the two-phase condenser region in (4.50), are directly connected to the movement of the
total liquid column in the LHP for transient operating conditions. According to (3.19), the
momentum of the liquid column is influenced by the forces of the interfaces on both sides
of the column. Furthermore, the position of the interfaces determine the total length of the
column, which extends over three subsystems: the condenser, the LL, and the CC subsystem.
In contrast to [LPDJ07], the length of the liquid column in the CC is neglected in this thesis.
This is due to the fact that, on the one hand, the exact interior of the CC for determining
the total length of the column is not always known to the LHP end user (see Chapter 1).
On the other hand, the effective length of the liquid column in the CC is relatively small in
comparison with the lengths in the LL and the condenser. Accordingly, the dynamic influence
of the liquid-vapor interface in the CC on the column through the variation of the volume
fraction ratio β(t) is negligible compared to the other influences. Hence, the considered liquid
column ranges from the end of the two-phase region in the condenser subsystem to the end
of the LL.

Llc

LscLll

COLLCC

pcc pco
ṁlṁl ṁ2ϕ

o

Tco,o Tco,sTcc,i

Figure 4.6: Liquid column in the condenser, the LL, and the CC with the corresponding temperatures, mass flow
rates, pressures, and lengths

As shown in Fig. 4.6, the time-variant length Llc(t) ≥ Lll of the liquid column is calculated
to

Llc(t) = Lsc(t) + Lll. (4.62)

The effects on the liquid column can be described by the transient form of the law of conser-
vation of momentum in Sec. 3.1.1. According to Assumption 4.6, the one-dimensional form
for laminar flow in a pipe in (3.27) is adapted to the momentum of the liquid column in an
LHP. Since the components of the considered LHP are on the same level, no inclination is
regarded, i.e. θe = 0◦. From Fig. 4.6, the following equation results:

Llc(t) ·
dṁl(t)

dt
+

1

ρlcc,iAp
·
(
ṁl(t)

)2 − 1

ρlcoAp
·
(
ṁ2ϕ

o (t)
)2

+Ap · pcc(t)

−Ap · pco(t) +
32µl

co,oṁ
l(t)Llc(t)

ρlco,oD
2
p

= 0, (4.63)
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with the dynamic viscosity µl of the liquid defined in Appendix A.1 and the cross-sectional area
Ap of the liquid column in the pipes6. Thus, the differential equation for the incompressible
liquid mass flow rate ṁl(t) (see Assumption 4.4) is obtained by rearranging (4.63):

dṁl(t)

dt
=

1

Llc(t)
·
((

ṁ2ϕ
o (t)

)2
ρlcoAp

−
(
ṁl(t)

)2
ρlcc,iAp

+Ap · pco(t)−Ap · pcc(t)

− 32µl
co,oṁ

l(t)Llc(t)

ρlco,oD
2
p

)
, (4.64)

with ρlcc,i, ρlco,o, and µl
co,o being the densities and the dynamic viscosity of the liquid at the

inlet of the CC subsystem and the outlet of the condenser subsystem, respectively. Similar
to pcc(t) in (4.34), the saturation pressure pco(t) in the two-phase region of the condenser
subsystem is calculated by the Antoine equation (3.73) with the saturation temperature Tco,s(t)
defined in (4.61):

pco(t) = exp

(
Awf −

Bwf

Cwf + Tco,s(t)

)
. (4.65)

After establishing the mass and energy balance equations of the subsystems in the previous
sections, the system of equations for the LHP state-space model is now closed by the momen-
tum balance equation of the liquid column across the subsystems with the differential equation
for the liquid mass flow rate ṁl in (4.64). Consequently, the resulting LHP state-space model
is constructed in the next section.

4.1.7 State-Space Representation of Loop Heat Pipes

After the thermodynamic and hydraulic modeling of each LHP subsystem in the previous
sections, the established differential and algebraic equations are combined to build the desired
LHP model in state-space form. For an explicit first-order differential equation system in
dependence on inputs, states, and parameters only, the established state- and disturbance-
dependent algebraic equations must be inserted into the four differential equations (4.25),
(4.26), (4.50), and (4.64). As a result, the novel dynamical model of the LHP is given by the
following nonlinear, four-dimensional state-space model:

ẋ(t) = f
(
x(t), u(t),d(t)

)
, (4.66a)

y(t) = g
(
x(t),d(t)

)
, (4.66b)

with x(t) = [Tcc(t), L2ϕ(t), β(t), ṁ
l(t)]⊤, u(t) = Q̇cc(t), d(t) = [Q̇ev(t), Tsk(t)]

⊤, and
y(t) = [Tcc(t), Tev(t), Tco,i(t), Tco,o(t)]

⊤. The four state variables in the state vector x(t)
correspond to the temperature Tcc(t) in the CC, the length L2ϕ(t) of the two-phase region in
the condenser, the volume fraction ratio β(t) in the CC, and the liquid mass flow rate ṁl(t).
The four temperatures in the output vector y(t) coincide with the temperature sensors TS 1
to TS 4 in Fig. 4.1. The heat flow Q̇cc(t) from the control heater to the CC is the single input
6 It should be noted that in contrast to the depiction in Fig. 4.6 in the style of Fig. 4.3, the condenser and the

transport lines have the same pipe diameter Dp and therefore the same pipe cross-sectional area Ap.
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variable u(t) of the system. The disturbance vector d(t) is characterized by the heat load
Q̇ev(t) at the evaporator and the sink temperature Tsk(t) at the condenser as the two external
disturbance inputs of the system. The functions f1, f2, f3, and f4 in the vector function f of
the state equation (4.66a) are given as follows:

f1 =
1

Ccc(t)
·
[
ṁl(t) · c̄lcc,i,cc ·

(
Tcc,i(t)− Tcc(t)

)
+ Q̇cc(t) + Q̇lk(t)

+
ρvcc(t)∆hv

cc

ρlcc − ρvcc(t)
·
(
ṁl(t)− ṁv(t)

)]
, (4.67)

f2 = −k2ϕπDp

(
Tco,s(t)− Tsk(t)

)
ρvcoγ̄Ap∆hv

cond

· L2ϕ(t) +
1

ρvcoγ̄Ap
· ṁ2ϕ

i (t), (4.68)

f3 =
1

Vcc

(
ρlcc − ρvcc(t)

) ·{ṁl(t)− ṁv(t)−
(

1(
Tcc(t)

)2 · ρlccR · ρvcc(t)∆hv
cc

ρlcc − ρvcc(t)
− ρvcc(t)

Tcc(t)

)

·
(
1− β(t)

)
· Vcc

Ccc(t)
·
[
ṁl(t) · c̄lcc,i,cc ·

(
Tcc,i(t)− Tcc(t)

)
+ Q̇cc(t) + Q̇lk(t)

+
ρvcc(t)∆hv

cc

ρlcc − ρvcc(t)
·
(
ṁl(t)− ṁv(t)

)]}
, (4.69)

f4 =
1

Llc(t)
·
((

ṁ2ϕ
o (t)

)2
ρlcoAp

−
(
ṁl(t)

)2
ρlcc,iAp

+ pco(t) ·Ap − pcc(t) ·Ap

− 32µl
co,oṁ

l(t)Llc(t)

ρlco,oD
2
p

)
. (4.70)

Similarly, the functions g1, g2, g3, and g4 in the vector function g of the output equation
(4.66b) are the following:

g1 = Tcc(t), (4.71)

g2 =
Rlk

Rlk +Rsh
·
(
Tev,s(t) +Rsh · Q̇ev(t) +

Rsh

Rlk
· Tcc(t)

)
, (4.72)

g3 = Tamb + (Tev(t)− Tamb) · exp
(
− kvlπDpLvl

ṁv(t)c̄vev,co,i

)
, (4.73)

g4 = Tsk(t) +
(
Tco,s(t)− Tsk(t)

)
· exp

(
− πDpksc
ṁl(t)c̄lco,s,co,o

· Lsc(t)

)
. (4.74)

For the sake of readability, not all state- and disturbance-dependent equations are inserted
into one another to form the functions (4.67), (4.68), (4.69), and (4.70), as well as (4.71), (4.72),
(4.73), and (4.74) explicitly. Instead, the dependencies of the different variables are presented
individually:

pcc(t) = f
(
Tcc(t)

)
, (4.75)
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Tev,s(t) = f
(
Tcc(t)

)
, (4.76)

Q̇lk(t) = f
(
Tcc(t), Q̇ev(t)

)
, (4.77)

ṁv(t) = f
(
Tcc(t), Q̇ev(t)

)
, (4.78)

Tco,s(t) = f
(
Tcc(t), L2ϕ(t), ṁ

l(t), Q̇ev(t), Tsk(t)
)
, (4.79)

pco(t) = f
(
Tcc(t), L2ϕ(t), ṁ

l(t), Q̇ev(t), Tsk(t)
)
, (4.80)

Llc(t) = f
(
Tcc(t), L2ϕ(t), ṁ

l(t), Q̇ev(t), Tsk(t)
)
, (4.81)

Tcc,i(t) = f
(
Tcc(t), L2ϕ(t), ṁ

l(t), Q̇ev(t), Tsk(t)
)
. (4.82)

Simplification of the Nonlinear Model

In addition to their presentation, the mathematical analysis of the model equations in the
subsequent sections is complicated due to their size and algebraic complexity. That’s why
numerical solutions are also pursued in the following for a first statement. Besides the
dependencies of the exponential functions in (4.39), (4.41), and (4.60) on the state and input
variables, the complexity results from the nested logarithm and exponential functions in (4.32)
and (4.76), respectively. However, this nonlinear state-space model (4.66) has the desired model
form as described in Def. 2.1 for a model-based control design. The model is able to predict
the dynamic behavior of the LHP over the complete operating range of the running LHP
according to the input and output variables in Fig. 4.2. The internal state variables represent
the system’s change in time. This change includes the dynamics of the CC temperature Tcc(t)
and the liquid mass flow rate ṁl(t). In addition, the dynamics of the liquid-vapor interfaces
in the CC and the condenser are traceable through the remaining two state variables β(t) and
L2ϕ(t). The seven model parameters Rlk, k2ϕ, ksc, kll, kvl, ksh, and Rsh in the established
LHP state-space model depend on flow regimes, velocity-dependent pressure losses, and
spatial variation. In accordance with Assumption 4.5, these parameters are assumed to be
constant over the considered LHP operating range and are determined in the individual OP of
the LHP systems under investigation.

Due to the fundamental derivation of the CC modeling with a variable volume fraction ratio
β(t) in Sec. 4.1.2, a deeper insight into the numerical LHP models related to this thesis is
possible. At the same time, it becomes clear which dominant dynamics must be considered
for the desired control system modeling of the LHP. While a varying β(t) is considered in the
CC modeling approach in [LPDJ07] as well, the differential equation for the CC temperature
Tcc(t) in [VR08] and [MKHW19] for the transient modeling of the LHP temperatures can
be reproduced from (4.25) by fixing β. This means that the total mass m2ϕ

cc (t) of the CC
in (4.1) depends mainly on the vapor density ρvcc(t) in (4.4). Consequently, a reduction of
the order of the four-dimensional state-space model (4.66) is possible since the variation of
the third state β(t) has only a negligible impact on the LHP dynamics. Indeed, β(t) only
influences the first state equation (4.67) through the thermal capacity Ccc(t) given in (4.27).
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Furthermore, both the dependency of Ccc(t) on β(t) and on Tcc(t) are weak. For this reason,
a thermal capacity is often chosen as a fixed parameter (cf. [vBW17, p. 10]), which is fitted to
the investigated system. Especially when the exact interior of the CC is unknown and the
total fluid volume is approximated by the exterior dimensions of the CC, as it is the case in
this work, a fixed thermal capacity must be adapted to measurements. Analogous to (3.64),
the thermal capacity Ccc(t) in (4.27) is thus approximated by a constant thermal capacitance
Cop

cc of the CC subsystem in the OP with a fixed volume fraction ratio βop and temperature
T op
cc of the saturated two-phase CC:

Cop
cc =

[(
ρlcc · βop + ρv,opcc · (1− βop)

)
· c̄lcc,ref −

∆hv
ccρ

l
ccρ

v,op
cc

T op
cc (ρlcc − ρv,opcc )

+

(
∆hv

ccρ
l
ccρ

v,op
cc

R(T op
cc )2 (ρlcc − ρv,opcc )

− ρv,opcc

T op
cc

)
· (1− βop) ·∆hv

cc

]
· Vcc. (4.83)

Since (4.26) cannot be solved for βop in steady state, i.e. where ṁl(t) = ṁv(t), it is fitted to
experimental data of the investigated system. In doing so, the dynamics of the CC temperature,
which are governed by (4.83), are adapted to the CC dynamics of the investigated LHP
system.

From a control engineering point of view, not only the system order is reduced with a constant
βop, but also the introduction of an additional unobservable state due to the simultaneous
connection between (4.25) and (4.26) is prevented for the subsequent model-based control
design. The order reduction is further evaluated in Sec. 7.2.4 by comparing the results of both
state-space models.

In conclusion, the final three-dimensional LHP state-space model for the subsequent model-
based control design is derived:

ẋ(t) = f
(
x(t), u(t),d(t)

)
, (4.84a)

y(t) = g
(
x(t),d(t)

)
, (4.84b)

with x(t) = [Tcc(t), L2ϕ(t), ṁ
l(t)]⊤, u(t) = Q̇cc(t), d(t) = [Q̇ev(t), Tsk(t)]

⊤, and
y(t) = [Tcc(t), Tev(t), Tco,i(t), Tco,o(t)]

⊤. The functions f1, f2, and f3 of the state equa-
tion (4.84a) are given by

f1 =
1

Cop
cc
·
[
ṁl(t) · c̄lcc,i,cc ·

(
Tcc,i(t)− Tcc(t)

)
+ Q̇cc(t) + Q̇lk(t)

]
, (4.85)

f2 = −k2ϕπDp

(
Tco,s(t)− Tsk(t)

)
ρvcoγ̄Ap∆hv

cond

· L2ϕ(t) +
1

ρvcoγ̄Ap
· ṁ2ϕ

i (t), (4.86)

f3 =
1

Llc(t)
·
((

ṁ2ϕ
o (t)

)2
ρlcoAp

−
(
ṁl(t)

)2
ρlcc,iAp

+ pco(t) ·Ap − pcc(t) ·Ap

− 32µl
co,oṁ

l(t)Llc(t)

ρlco,oD
2
p

)
. (4.87)

The corresponding output equation (4.84b) is the same as for the four-dimensional model
(4.66).
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With the formulation of the LHP state-space model (4.84), the desired dynamical modeling
of a conventional LHP is finished. Based on this model structure, the following section
concentrates on the design of adequate controllers for the OT control of LHPs.

4.2 Nonlinear Control Designs Based on the Complex
Model

For the nonlinear state-space model (4.84), nonlinear controllers for the CC temperature and
the evaporator temperature are designed in the following sections. It becomes clear from (4.84)
that the state-space model is an input-affine single-input-multiple-output (SIMO) system:

ẋ(t) = a
(
x(t),d(t)

)
+ b · u(t), (4.88a)

y(t) = c
(
x(t),d(t)

)
, (4.88b)

where the control heater output Q̇cc(t) as system input u(t) appears linearly in the system
equations. The unforced part a of (4.88a) is defined by

a1 =
1

Cop
cc
·
[
ṁl(t) · c̄lcc,i,cc ·

(
Tcc,i(t)− Tcc(t)

)
+ Q̇lk(t)

]
, (4.89)

a2 = −k2ϕπDp

(
Tco,s(t)− Tsk(t)

)
ρvcoγ̄Ap∆hv

cond

· L2ϕ(t) +
1

ρvcoγ̄Ap
· ṁ2ϕ

i (t), (4.90)

a3 =
1

Llc(t)
·
((

ṁ2ϕ
o (t)

)2
ρlcoAp

−
(
ṁl(t)

)2
ρlcc,iAp

+ pco(t) ·Ap − pcc(t) ·Ap

− 32µl
co,oṁ

l(t)Llc(t)

ρlco,oD
2
p

)
. (4.91)

Accordingly, the forced part b has the form of the vector

b =

 1
Cop

cc

0
0

 . (4.92)

In the output equation (4.88b), the vector function c is equal to g in (4.84b):

c1 = Tcc(t), (4.93)

c2 =
Rlk

Rlk +Rsh
·
(
Tev,s(t) +Rsh · Q̇ev(t) +

Rsh

Rlk
· Tcc(t)

)
, (4.94)

c3 = Tamb + (Tev(t)− Tamb) · exp
(
− kvlπDpLvl

ṁv(t)c̄vev,co,i

)
, (4.95)

c4 = Tsk(t) +
(
Tco,s(t)− Tsk(t)

)
· exp

(
− πDpksc
ṁl(t)c̄lco,s,co,o

· Lsc(t)

)
. (4.96)
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The described system property is exploited in the subsequent model-based control de-
signs, which stabilize the LHP in the OP as desired equilibrium point, i.e. where
xop = [T op

cc , L
op
2ϕ, ṁ

l,op]⊤, uop = Q̇op
cc , d

op = [Q̇op
ev, T

op
sk ]

⊤ holds.

4.2.1 Nonlinear PI State Feedback Control Based on Exact
Input-Output Linearization

In this section, a nonlinear PI state feedback controller for the CC temperature is intro-
duced based on exact linearization [Isi95, p. 147], also called exact input-output linearization
[Ada18, p. 314] or partial feedback linearization [Kha15, p. 219], to control the nonlinear dy-
namics of the LHP and stabilize the LHP in the OP at a fixed setpoint. Thus, the corresponding
LHP control model forms a single-input-single-output (SISO) system based on (4.88) since the
CC temperature Tcc(t) is the controlled output variable y(t) (cf. (4.71)):

ẋ(t) = a
(
x(t),d(t)

)
+ b · u(t), (4.97a)

y(t) = c1
(
x(t)

)
. (4.97b)

The nonlinear PI state feedback controller with exact input-output linearization avoids a
control design based on the classical linearization of the system equations about the OP, but
compensates the relevant nonlinear dynamics with a feedback controller to achieve a linear
input-output behavior over the entire state space. The corresponding control loop with a fixed
setpoint is presented in Fig. 4.7.

PI SF LHPTset
e ypi ycl Q̇cc

Tcc−

Tsk Q̇ev

x

Figure 4.7: Control loop of an LHP with a PI controller and a nonlinear state feedback control (SF) with fixed setpoint

For the subsequent design of the nonlinear PI state feedback controller, the state vector x
of the LHP state-space model (4.97) is initially considered to be known. Since only the first
state, the CC temperature Tcc, is indeed measured in the real application, the other two states,
namely the length L2ϕ of the two-phase region in the condenser and the liquid mass flow
rate ṁl, has to be estimated. An adequate state estimation method is introduced later on
in Sec. 4.2.3 to fill this gap in the control loop. In a first attempt, the availability of the sink
temperature Tsk and the heat load Q̇ev is assumed for the control design.

In the case of the nonlinear LHP dynamics, the exact input-output linearization does not
require an initial transformation of the system into the Byrnes-Isidori normal form (see [AG93])
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since the LHP control model (4.97) is already given in this form. Therefore, the division of the
three-dimensional system state x(t) into an external part with the state variable xex(t) and
an internal part with the two-dimensional state vector xin(t) is already recognizable from
the state equation (4.97a):

x(t) =

Tcc(t)
L2ϕ(t)
ṁl(t)

 =

[
xex(t)
xin(t)

]
. (4.98)

Accordingly, the first row of (4.97a) corresponds to the external dynamics of the LHP, i.e. the
dynamics of the CC temperature Tcc(t), which are directly influenced by the system input
u(t) = Q̇cc(t):

ẋex(t) = Ṫcc(t) = a1
(
xex(t),xin(t),d(t)

)
+ b1 · u(t). (4.99)

The nonlinearity of (4.99) will be canceled by the intended exact input-output linearization in
the form of a state feedback controller. The other two rows of (4.97a), i.e. the dynamics of the
length L2ϕ(t) and the mass flow rate ṁl(t), belong to the internal dynamics of the LHP:

ẋin(t) =

[
L̇2ϕ(t)
m̈l(t)

]
=

[
a2
(
xex(t),xin(t),d(t)

)
a3
(
xex(t),xin(t),d(t)

)] . (4.100)

While the internal dynamics (4.100) are not taken into account by the state feedback controller,
their stability is necessary for the stability of the overall control system and is examined
after the control design. The stability of the external dynamics is ensured by the selection of
adequate controller gains.

A first step of designing the exact input-output linearization is the determination of the relative
degree δ of (4.97). Based on the Byrnes-Isidori normal form, δ is equal to the dimension of the
external dynamics, i.e.

δ = 1. (4.101)
In addition, δ corresponds exactly to the time derivative of the output y(t), which depends
explicitly on the input u(t) for the first time [AG93]. For (4.97), the first time derivative of the
CC temperature Tcc(t) depends on the control heater output Q̇cc(t). Thus, δ is the smallest
natural number for which the following equation holds [AG93]:

LbL
δ−1
a c1

(
x(t)

)
̸= 0. (4.102)

The operator L in (4.102) is called Lie derivative and is defined as follows:

Definition 4.1 (Lie derivative [Ada18, p. 310])
The Lie derivative is the gradient of a scalar function f(x) multiplied by the vector field
g(x):

Lgf(x) =
∂f(x)

∂x
g(x) = grad⊤f(x) · g(x). (4.103)
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According to Def. 4.1, (4.102) can be resolved:

Lbc1
(
x(t)

)
=

1

Cop
cc
̸= 0. (4.104)

The relative degree δ is well-defined since (4.104) holds for allx(t) ∈ Rn [Ada18, p. 315]. Thus,
the static state feedback controller u

(
x(t)

)
can be designed to achieve an exact input-output

linearization [AG93]:

u
(
x(t)

)
=

v(t)− Lδ
ac1
(
x(t)

)
LbL

δ−1
a c1

(
x(t)

) −∑δ
i=1 ηi−1L

i−1
a c1

(
x(t)

)
LbL

δ−1
a c1

(
x(t)

) , (4.105)

with the new input variable v(t) and the scalar coefficients ηi. The input-output behavior
of the linearized external dynamics is given by the transfer function G(s) with the complex
variable s in the Laplace domain according to (2.11):

G(s) =
y(s)

v(s)
=

1

ηδsδ + ηδ−1sδ−1 + ...+ η1s+ η0
. (4.106)

The poles of (4.106) can be specified by an appropriate choice of the coefficients ηi [AG93].

Considering (4.101), the formula in (4.105) yields the state feedback controller7 ycl(t) according
to the control model (4.97):

ycl(t) =
v(t)− Lac1

(
x(t)

)
− η0c1

(
x(t)

)
Lbc1

(
x(t)

) =
v(t)− a1

(
x(t),d(t)

)
− η0c1

(
x(t)

)
b1

. (4.107)

Based on (4.106) with v(t) = ypi(t) or by inserting (4.107) into (4.97) and transferring the
resulting system dynamics into the Laplace domain, the transfer functionG(s) of the linearized
external dynamics is derived:

G(s) =
Tcc(s)

ypi(s)
=

1

s+ η0
. (4.108)

For an improved stationary accuracy, the current exact input-output linearized control loop
in (4.108) is extended by a PI controller:

C(s) =
ypi(s)

e(s)
= Kp +Ki ·

1

s
, (4.109)

with the proportional gain Kp, the integral gain Ki, and the Laplace-transformed control
error e(s). The control error e(t) in the time domain is calculated by the difference between
the setpoint temperature Tset and the CC temperature Tcc(t):

e(t) = Tset − Tcc(t). (4.110)

By introducing an integrator to the control loop with (4.109), the stationary accuracy is
improved by reducing the control error asymptotically. This control error is due to the
mismatch between the model and the real system and the influence of the disturbances.
7 The nonlinear LHP controller based on a control Lyapunov function in [GSO+20] corresponds to the control law

in (4.107) if the state feedback controller is extended by a prefilter v(t) = η0 · Tset
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After the design of the PI state feedback controller, the stability of the overall control loop is
examined. A stable overall control loop does not follow from the stability of the linearizing
feedback controller (4.107) in general. Instead, the stability of the internal dynamics (4.100)
must be verified additionally. Since the internal dynamics are strongly nonlinear, the stability
of equilibrium points is evaluated. For this purpose, the analysis of the zero dynamics of
(4.100) at the balanced OP is sufficient (see [Ada18, p. 345]):

ẋin(t) =

[
a2(x

op
ex,xin(t),d

op)
a3(x

op
ex,xin(t),d

op)

]
. (4.111)

The stability of the OP of the zero dynamics8 (4.111) is determined according to Theorem 4.1.

Theorem 4.1 (Lyapunov’s indirect method (cf. [Kha15, p. 56]))
Consider the system

ẋ = f(x) (4.112)

with the equilibrium point x = xop and f being continuously differentiable around the
equilibrium point. Then, the eigenvalues λi (i = 1, ..., n) of the Jacobian of f

J =
∂f(x)

∂x

∣∣∣∣
x=xop

(4.113)

determine the stability characteristics of (4.112) according to the following conditions:

1. The OP is exponentially stable if and only if Re{λi} < 0 for all i,

2. The OP is unstable if Re{λi} > 0 for at least one i.

Since a2 becomes independent of L2ϕ when inserting (4.61) into (4.90), the Jacobian J of
(4.111) is given by

J =

 0
∂a2(x

op
ex,xin(t),d

op)

∂ṁl(t)
∂a3(x

op
ex,xin(t),d

op)

∂L2ϕ(t)

∂a3(x
op
ex,xin(t),d

op)

∂ṁl(t)


∣∣∣∣∣∣∣∣
xin=xop

in

. (4.114)

For the determination of the eigenvalues λ1 and λ2 of (4.114), the corresponding characteristic
polynomial is constructed:

det (λ · I − J) = λ2 + γ1 · λ+ γ0 = 0, (4.115)

with the coefficient γ0 and γ1. If (4.115) is a Hurwitz polynomial according to Theorem A.1
in Appendix A.2, all eigenvalues have a negative real part. Since (4.115) is a second-order
polynomial, the first Hurwitz condition is already necessary and sufficient [Unb08, p. 145].
8 The explicit transformation of the OP into the origin for the creation of a vanishing output variable

y(t) = xex(t) = 0 as input variable of the internal dynamics (4.100) is skipped in (4.111).
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According to (4.115), γ2 = 1 is always positive. Hence, the coefficients γ0 and γ1 must
be positive as well for an exponentially stable OP of the zero dynamics (4.111). Thus, only
these two coefficients must be further analyzed. A numerical solution of the inequalities in
Theorem A.1 is pursued by inserting the values of xop

ex, x
op
in , and d

op and the model parameters.
Hence, the positive solution of random OPs within the LHP operating range enables practically
the verification of the stability of the internal dynamics and thus of the LHP control loop
over the entire LHP operating range. The corresponding numerical results are positive, as
presented in Sec. 7.4.4. Furthermore, the overall stability of the control loop is also verified in
the simulations presented in Sec. 7.4.

Because of the power limitation of the control heater (see Table 4.1), the introduced integral
action may cause an undesired dynamic behavior of the LHP control loop, i.e. when the
integration in the PI controller winds up. This effect makes it necessary to implement an
anti-windup (AW) strategy after the design process of the actual stable controller [Ort13, p. 27].
First, the state feedback control (SF) in (4.107) and the PI controller in (4.109) with the integral
action are designed without considering the limitation and the corresponding windup. In a
second step, the control loop is extended with a suitable AW structure. Therefore, the block
diagram in Fig. 4.7 is extended by the AW structure below the saturation block to consider the
limitation of the control heater. The overall control loop with a fixed setpoint is presented in
Fig. 4.8.

PI SF LHPTset
e ypi ycl Q̇cc

Tcc−

Tsk Q̇ev

AW

xaw
x

Figure 4.8: Control loop of an LHP with a PI controller, a nonlinear state feedback control (SF), a fixed setpoint, and
an AW structure

The back-calculation method is one of the standard tracking AW strategies [BA95]. This
AW strategy allows for a simple implementation in the control loop to achieve the desired
limitation of the integral action. As depicted in Fig. 4.8, this classical AW structure is based on
the additional feedback of the difference between the controller output values before and after
the saturation. To prevent the windup of the integral term of the PI controller, the difference
between ycl(t) and Q̇cc(t) is multiplied by a feedback gain Kaw to form the output xaw of
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the AW structure that is subtracted from the integrator input:

xaw(t) = Kaw ·
(
ycl(t)− Q̇cc(t)

)
, (4.116)

ypi(t) = Kp · e(t) +Ki ·
∫ (

e(t)− xaw(t)
)
dt. (4.117)

The feedback gain of the back-calculation method is set to the inverse of the proportional
gain Kp of the PI controller [GKU+03]:

Kaw = 1/Kp. (4.118)

This is the end of the controller design for the CC temperature control of an LHP. The
implementation of the algorithm in the real application is shortly presented in Appendix A.3.
Thus, the discrete PI controller with the chosen AW strategy is given by

xaw(k) = Kaw ·
(
ycl(k − 1)− Q̇cc(k − 1)

)
, (4.119)

ipi(k) = Ki · Tst ·
(
e(k)− xaw(k)

)
+ ipi(k − 1), (4.120)

ypi(k) = Kp · e(k) + ipi(k), (4.121)

with the sampling time Tst, the time constant k, and the discrete control error e(k):

e(k) = Tset − Tcc(k). (4.122)

Accordingly, the discrete state feedback control is given by

ycl(k) =
ypi(k)− a1

(
x(k),d(k)

)
− η0c1

(
x(k)

)
b1

. (4.123)

After the design of the CC control loop with the nonlinear PI state feedback controller, this
controller is adapted in the next section to include the control of the evaporator temperature.

4.2.2 Nonlinear PI State Feedback Cascade Control Based on Exact
Input-Output Linearization

In the previously designed control loop, the CC temperature, which governs the OT of the LHP,
is the controlled temperature as it is common practice (see Sec. 3.2.2). However, changes in the
dissipated heat at the heat source still have a direct impact on the evaporator temperature. This
temperature is the nearest measurable LHP temperature to the cooled object that varies while
keeping the CC temperature at a fixed setpoint temperature. Since the CC temperature control
yields the most stable temperatures and the least risk for temperature oscillations at low
powers compared to directly controlling the evaporator temperature (see Sec. 3.2.2), the model-
based design of a cascade control makes it possible to control both the CC and the evaporator
temperature simultaneously. By stabilizing the evaporator temperature, temperature changes
of the cooled object are also further reduced. The structure of the nonlinear PI state feedback
cascade control for LHPs is presented in Fig. 4.9.
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Figure 4.9: Cascade control loop of an LHP with a PI controller, a disturbance feedforward control (DF), and a
nonlinear P state feedback control (PSF), the divided system parts LHP Part 1 and LHP Part 2, and an AW
structure

The inner loop of the cascade control in Fig. 4.9 controls the CC temperature Tcc, while the
outer loop controls the evaporator temperature Tev . If the inner control loop reacts faster
to changes than the outer control loop, the inner control loop can be regarded as a static
transfer element for the design of the controller in the outer loop [Lun20a, p. 602]. Thus,
the controllers in both loops can be designed in an iterative model-based design process. To
reduce the residual control error of the evaporator temperature and to improve its stationary
accuracy, an integral term in the outer controller of the cascade is sufficient [Vis06, p. 252].
That is why the nonlinear PI state feedback control in Sec. 4.2.1 is reduced to a nonlinear
P state feedback control in the inner loop of the cascade control, while the integral term is
incorporated in the linear controller of the outer loop. Hence, the inner control loop consists
of the submodel LHP Part 1, represented by the SISO model (4.97), and the corresponding
nonlinear P state feedback control, for which the state feedback control (4.107) is extended by
a P controller C1(s) with v(t) = yp(t):

C1(s) =
yp(s)

e(s)
= Kp1, (4.124)

with the proportional gain Kp1.

For the model-based control design of the PI controller in the outer control loop, the transfer
functionG1(s) of the total inner control loop is first established. It is composed of the transfer
functions (4.106) and (4.124) in a feedback structure:

G1(s) =
Tcc(s)

Tset(s)
=

C1(s)G(s)

1 + C1(s)G(s)
=

Kp1

s+η0

1 +
Kp1

s+η0

=
Kp1

s+ (η0 +Kp1)
. (4.125)

Accordingly, the transfer function G2(s) of the submodel LHP Part 2 in Fig. 4.9 describes the
transfer behavior between the controlled temperatures Tcc(s) and Tev(s). This behavior is
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modeled in (4.38) based on the thermal network of the LHP’s evaporator in Fig. 4.4. Linearizing
(4.38) around the OP with the Taylor series expansion and neglecting the higher-order terms,
the linearized equation of Tev(t) is given by the following equation:

∆Tev(t) = Z ·
Rlk

Rlk +Rsh
·∆Tcc(t) +

RlkRsh

Rlk +Rsh
·∆Q̇ev(t), (4.126)

with the parameter Z :

Z =
Rsh

Rlk
+

B2
wf · popcc(

Awf − ln (popev)
)2 · (T op

cc + Cwf )
2 · popev

. (4.127)

The respective pressures in (4.127) are calculated in the OP using (4.33) and (4.34):

popev = popcc +∆pca, (4.128)

popcc = exp

(
Awf −

Bwf

Cwf + T op
cc

)
. (4.129)

The differences are defined as follows:

∆Tev(t) = Tev(t)− T op
ev , (4.130)

∆Tcc(t) = Tcc(t)− T op
cc , (4.131)

∆Q̇ev(t) = Q̇ev(t)− Q̇op
ev. (4.132)

Transferring the system dynamics into the Laplace domain yields the transfer function
G2(s):

G2(s) =
Tev(s)

Tcc(s)
= Z · Rlk

Rlk +Rsh
. (4.133)

Thus, the linear transfer behavior between Tcc(s) and Tev(s) is a proportional gain since the
inertia of the evaporator subsystem is neglected in the LHP control model (4.84) according to
Assumption 4.2. The final transfer function G3(s) of the controlled subsystem in the outer
control loop is obtained by the series connection of (4.125) and (4.133):

G3(s) =
Tev(s)

Tset(s)
= G1(s) ·G2(s) =

Kp1

s+ (η0 +Kp1)
· Z · Rlk

Rlk +Rsh
. (4.134)

Similar to (4.109), the transfer function C2(s) of the PI controller in the outer control loop is
established by the following equation:

C2(s) =
Tset(s)

eev(s)
= Kp2 +Ki2 ·

1

s
, (4.135)

with the transformed evaporator control error eev(s) being defined as the difference between
the transformed evaporator setpoint temperature Tset,ev(s) and the transformed evaporator
temperature Tev(s):

eev(s) = Tset,ev(s)− Tev(s). (4.136)
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The controller gains Kp2 and Ki2 in (4.135) are determined based on (4.134) with the method
described in the previous section.

The disturbance transfer behavior between Q̇ev(t) and Tev(t) in (4.126) is modeled by the
corresponding transfer function G4(s):

G4(s) =
Tev(s)

Q̇ev(s)
=

RlkRsh

Rlk +Rsh
. (4.137)

For an improved disturbance response, a disturbance feedforward control (see [Lun20a, p. 596])
is suggested, as depicted in Fig. 4.9. Based on (4.137), the transfer function Kq(s) of the
feedforward component is determined by the quotient of (4.134) and (4.137).

Kq(s) =
G4(s)

G3(s)
=

Rsh ·
(
s+ (η0 +Kp1)

)
Kp1 · Z

. (4.138)

Since the degree of the numerator is smaller than the degree of the denominator in (4.138),
only a stationary disturbance feedforward control is technically realizable, i.e. for s = 0
[Lun20a, p. 597]:

Kq =
Rsh · (η0 +Kp1)

Kp1 · Z
. (4.139)

For the sake of completeness, the total nonlinear PI state feedback cascade controller is given
in the discrete domain for the real implementation by

ycl(k) =
yp(k)− a1

(
x(k),d(k)

)
− η0c1

(
x(k)

)
b1

, (4.140)

with the P controller
yp(k) = Kp1 · e(k) (4.141)

and the discrete control error

e(k) = Tset(k)− Tcc(k). (4.142)

The discrete PI controller with AW structure and disturbance feedforward control is given
by

xaw(k) = Kaw ·
(
ycl(k − 1)− Q̇cc(k − 1)

)
, (4.143)

ipi(k) = Ki2 · Tst ·
(
eev(k)− xaw(k)

)
+ ipi(k − 1), (4.144)

yff (k) = −Kq · Q̇ev(k − 1), (4.145)

Tset(k) = Kp2 · eev(k) + ipi(k) + yff (k). (4.146)

As mentioned before, both the cascade controller and the single-loop controller in the previous
section based on the exact input-output linearization depend on the availability of all three
LHP states. The determination of the unmeasured states in the control loop is presented in
the next section.
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4.2.3 Nonlinear State and Parameter Estimation

The designed nonlinear state feedback controllers (4.123) and (4.140) are functions of the
system’s states. For the control design, the states have been assumed to be available so far.
Now, since not all states are measurable in the considered LHP system, an adequate state
estimation method is proposed for the operation of the controller in the real application.

First of all, the observability of the nonlinear LHP model (4.84) is investigated. According
to [Ada18, p. 526], a general nonlinear system in the form of (2.1) is said to be observable
if all initial states x0 are uniquely determinable from the input vector u(t) and the output
vector y(t) for all inputs u in finite time. If the determination of x0 is only possible in the
neighborhood of a point in the state space for all points, the system is said to be weakly
observable.

Since the relative degree δ of the input-affine LHP model (4.97) is smaller than the system
order, i.e. δ < n in accordance with (4.101), the observability of (4.97) cannot be deduced
from the equality of both numbers (see Theorem 87 in [Ada18, p. 540]). Instead, the criterion
in Theorem 4.2 based on [Ada18, p. 538] enables the investigation of the observability.

Theorem 4.2 (Weak observability of an input-affine system)
An input-affine system

ẋ = a(x) + b(x) · u, (4.147a)
y = c(x). (4.147b)

is said to be weakly observable if the following condition holds for all x and u:

rank (Qobs) = n (4.148)

with the observability matrix

Qobs =



∂c(x)
∂x

∂Lac(x)
∂x + ∂Lbc(x)

∂x u

∂L2
ac(x)
∂x + ∂LbLac(x)

∂x u+ ∂LaLbc(x)
∂x u+

∂L2
bc(x)
∂x u2 + ∂Lbc(x)

∂x u̇

...

∂Ln−1
a c(x)
∂x +

∂LbL
n−2
a c(x)
∂x u+ ...+ ∂Lbc(x)

∂x u(n−2)


. (4.149)
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For the LHP model (4.97), the followingQobs results from the evaluation of the Lie derivatives
in (4.149):

Qobs =


1 0 0

da1
dTcc

da1
dL2ϕ

da1
dṁl

d
(
∂a
dx

)
dTcc

+
d
(

da1

dTcc
b1

)
dTcc

u
d
(
∂a
dx

)
dL2ϕ

+
d
(

da1

dTcc
b1

)
dL2ϕ

u
d
(
∂a
dx

)
dṁl

+
d
(

da1

dTcc
b1

)
dṁl

u

 .

(4.150)
A statement about the rank of (4.150) is possible through a numerical analysis with values for
the states Tcc(t), L2ϕ(t), and ṁl(t) as well as the inputs Q̇cc(t), Q̇ev(t), and Tsk(t) distributed
over the LHP operating range. This numerical analysis, as presented in Appendix A.4, has not
yielded any exception to the condition (4.148). Thus, it suggests that (4.150) has indeed a full
rank inside the operating range, and therefore, the LHP model is assumed to be weakly observ-
able. The functionality of an LHP state estimation is additionally verified in the simulations
in Sec. 7.4.1.

For the nonlinear estimation of the LHP states, the square-root unscented Kalman filter (SRUKF)
in [vdMW01] is chosen based on the following considerations (cf. [GMSH20b]). The classical
Kalman filter was originally developed for the state estimation of linear systems [Kal60]. For
nonlinear systems, the extended Kalman filter (EKF) is commonly used, which linearizes the
nonlinear transformation of the states around the OP [QSWL18]. For the strongly nonlinear
LHP state-space model (4.84), the state estimation with an EKF does not converge due to the
constrained local validity of the disturbed linearized model over the entire operating range.
Therefore, the unscented Kalman filter (UKF) [JU97] is often the preferred Kalman filter for
nonlinear systems, which replaces the linearization with the unscented transformation (UT).
The UT transforms the mean and the covariance of a random state vector directly based on a
set of deterministic vectors, the so-called sigma points. Their ensemble mean and covariance
equal the mean and covariance of the random state vector [Sim06, p. 441]. Hence, the UKF
provides a derivative-free alternative to the EKF. In addition, the square-root form of the
UKF enables an efficient implementation and an improved numerical stability by directly
updating the matrix square root of the state covariance instead of the entire covariance itself
[vdMW01].

According to the SRUKF algorithm given in Appendix A.5 with the estimated state vector x̂,
the sigma points of the states and outputs are calculated and transformed in every discrete
time step k. Thus, the continuous progression of the states of the LHP state-space model (4.84)
must be approximated by a finite number of points in time. For such an approximation of the
continuous LHP model, Euler’s forward method is usually utilized because of its simplicity.
This time discretization method forms a system of difference equations via the numerical
integration of the time derivative in (4.84a):

x(k) = x(k − 1) +

∫ kTst

(k−1)Tst

f
(
x(t), u(t),d(t)

)
dt

≈ x(k − 1) + Tst · f
(
x(k − 1), u(k − 1),d(k − 1)

)
. (4.151)
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In the case of the LHP, a peculiarity of the ordinary differential equation system (4.84) becomes
apparent when simulating (4.151) discretized by the explicit one-step Euler method. A very
small fixed step size in the range of Tst = 0.1ms is required to resolve the differential
equation of ṁl correctly, although a step size of Tst = 1 s is sufficient for the other two
differential equations. The small step size is connected to the fact that the CC temperature
Tcc as first state and the length of the two-phase region L2ϕ as second state show higher
change rates on the order of 1 × 10−2 Ks−1 and 1 × 10−3 ms−1, respectively, while the
liquid mass flow rate ṁl varies to a much smaller extend on the order of 2× 10−6 kg s−2. In
other words, the dynamics of the three states differ strongly. This property of the underlying
ordinary differential equation system is called stiffness [Ada18, p. 52]. Due to the small step
size consistent with the shortest time constant, a high number of calculations and therefore an
excessive simulation time of the stiff LHP model results. The elevated computation time may
also jeopardize the real-time capability of Euler’s forward method for the LHP application.
Furthermore, the temperature sensors of the LHP are usually sampled in the range of seconds
similar to the cycle time of the control algorithm. Thus, a multi-rate framework is necessary to
integrate the discretized state-space model with a smaller step size into the control algorithm.
In the framework, the final states for the controller in one cycle correspond to the last discrete
time step of the repeatedly solved difference equation (4.151).

A great impact on the states has the heat load Q̇ev , which directly influences the superheated
evaporator temperature Tev according to (4.38). The size of the impact depends on the
introduced thermal resistance Rsh, which is exposed to fluctuations over the LHP operating
range due to the complex flow dynamics inside the evaporator. Based on the measurement of
Tev and the availability of Q̇ev , the parameter Rsh can be adjusted to the varying operating
conditions to improve the consistency between the model results and the measurements.
For this purpose, the thermal resistance Rsh in the output equation (4.72) is estimated by
minimizing the error between the calculated and the measured evaporator temperature Tev .
An adequate parameter estimation method for the LHP control loop follows directly from the
state estimation based on the SRUKF. The corresponding algorithm to calculate the estimated
parameter p̂ is detailed in Appendix A.5.2.

The combined estimation of the state variables Tcc, L2ϕ, and ṁl and the parameter Rsh of
the state-space model (4.84) and its integration into the final control loop are presented in
Fig. 4.10 using the example of the nonlinear PI state feedback controller in Sec. 4.2.1.

With the application of the SRUKFs, the model-based control design based on the established
nonlinear LHP state-space model (4.84) is completed. The SRUKFs as well as both controllers
are evaluated in simulations in Sec. 7.4.1. A short conclusion of this chapter is given in the
following section.
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Figure 4.10: Control loop of an LHP with a state- and parameter-dependent nonlinear PI state feedback controller
(PISF) and two square-root unscented Kalman filters (SRUKFs) for the nonlinear state (SE) and parameter
estimation (PE)

4.3 Conclusion

In contrast to the state of the art, the presented nonlinear LHP model with lumped parameters
includes all the equations necessary to physically model the significant dynamics of a multi-
phase heat transport system with in fact distributed parameters, such as the LHP. Only by
modeling the relevant mass flow dynamics and phase transitions with the liquid mass flow rate
ṁl and the length of the two-phase region L2ϕ, the variations of the uncontrollable inputs,
namely the disturbances Q̇ev and Tsk, can be incorporated. Thus, an efficient simulation
of the dynamics of the measured LHP temperatures is possible. Furthermore, the desired
state-space form for the model-based design of controllers for the control heaters of LHPs has
been met.

The proposed nonlinear model-based designed controller based on the exact input-output
linearization simplifies the nonlinear external dynamics of the governing CC temperature Tcc

including the impact of the disturbances, while the internal dynamics of ṁl and L2ϕ have no
impact on the controlled Tcc. Instead, their stability has been investigated for a stable overall
control loop. With every change of the inputs, a new OP is targeted. Thus, the local stability
of the multiple equilibrium points of the internal dynamics has been investigated and verified
with Lyapunov’s indirect method.

Due to the model-based design approach, the development of a cascade control for the LHP
is possible. The cascade control is able to control the evaporator temperature as closest
temperature to the cooled object besides the CC temperature for a smoother temperature
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curve of the object. Furthermore, the precise modeling of the disturbance influence enables a
disturbance feedforward control when controlling the evaporator temperature.

For the unmeasured states, a nonlinear state estimation in form of an SRUKF is necessary. It
has been proven that the LHP model is already weakly observable with the controlled CC
temperature as single output variable. The integrated parameter estimation, also based on an
SRUKF, adapts the state estimation to the measured evaporator temperature to consider the
influence of the unmodeled flow dynamics on the heat transfer in the evaporator.

By simplifying the model equations, a different state-space representation is formed in the
next chapter for the model-based design of controllers with lower complexity and hardware
requirements for a simplified application.





5 Simplified Model-Based Control Designs for
Loop Heat Pipes

Considering the limitation of energy demand and mass in aerospace systems, a model-based
design of controllers for the temperature control of LHPs with minor algebraic complexity
and reduced computational effort is preferred. For this reason, a simplified modeling approach
based on further model assumptions is introduced in this chapter. By concentrating on
the control-relevant system dynamics, not only the modeling approach is simplified with
regard to the analytical solvability of the complex equations, but also the number of model
parameters is reduced to save expensive test bench time for parameter determination. In the
resulting simplified control model, the dynamics of the measurable states are modeled leading
to the model-based design of the state-of-the-art controllers and further extensions with low
computational effort for the efficient use in aerospace or terrestrial applications. In this way,
LHP systems already delivered with state-of-the-art control software can be re-parameterized
and extended with little effort since no hardware adjustments are necessary. In the first
section, the simplified modeling approach is presented. In the second section, the model-based
designs of the state-of-the-art LHP controller and LHP-specific extended controllers based on
the simplified model are derived.

5.1 Simplified Dynamical Modeling

The result of the simplified modeling approach, which is based on [GSHH18], is a three-
dimensional LHP state-space model. With further assumptions, the complex LHP control
model in Sec. 4 is adapted to derive a simplified control model, in which the dynamics
of the basic temperatures of the LHP are decoupled from the fluid dynamics reducing the
mathematical complexity. In doing so, the validity of the simplified control model is restricted
to the OP, while incorporating only measurable temperatures as state variables for a simplified
control design. Similar to the modeling approach in Sec. 4, the fundamental equations of
the simplified model are still established based on the relevant thermodynamic principles
presented in Sec. 3.1.
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5.1.1 Model Assumptions

In addition to the assumptions in Sec. 4.1.1, further simplifications are necessary to reduce the
complexity of the LHP control model for simplified model-based control designs.

Assumption 5.1. The mass flow rates ṁl and ṁv between the condenser and the CC-evaporator
assembly are equal in transient states.

Assumption 5.2. The temperature change between the evaporator output and the CC input can
be simplified by one temperature node Tco.

Assumption 5.3. Superheating is neglected.

Discussion of the Assumptions

In steady state, the mass flow rates ṁl and ṁv are equal, and the temperatures reach their
equilibria. Assumption 5.1 transfers this property to transient states since the imbalance of
the mass flow rates ṁl and ṁv caused by temperature changes can be neglected [LWL10].
Furthermore, they only change with the OP, as the fluid inertia has a smaller impact on the
temperature profiles than the thermal inertia [KPGT08]. Assumption 5.2 results from the fact
that the controlled variable of the LHP is the CC temperature Tcc. In addition, a temperature
sensor at the input of the CC for parameter approximation is not available in the considered
LHP setting. Since little superheating takes place in the considered LHP operating range
(see [MKHW19]), Assumption 5.3 applies. Hence, the vapor in the evaporator is assumed to
be in a saturation state at all times.

Delimitation of the Subsystems

In accordance with Sec. 3.1.3, the LHP is subdivided in such a way that the evaporator (EV)
only contains a vapor phase, and the compensation chamber (CC) and the condenser (CO)
are two-phase subsystems at all times. In Fig. 5.1, the respective boundaries of the three
subsystems are depicted in color.

In comparison with the subdivision in Sec. 4, the boundary between the CC and the evaporator
subsystems persists at the liquid-vapor interface in the primary wick. However, the condenser
subsystem combines the transport lines with the condenser based on Assumption 5.2. Hence,
the heat exchange of the working fluid with the heat sink and the surroundings is described
with one overall heat flow Q̇co. The remaining heat flows in Fig. 5.1 correspond to the heat
flows described in Sec. 4.1.
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Figure 5.1: Simplified LHP subsystems with their corresponding main heat flows

5.1.2 Simplified State-Space Representation of Loop Heat Pipes

After the division of the LHP into three subsystems in the previous section, the respective
balance equations are established independently based on the first law of thermodynamics in
(3.11). One by one, the equations of the CC subsystem, the evaporator subsystem, and the
condenser subsystem are derived and combined to the simplified state-space model of the
LHP.

Compensation Chamber

According to Assumption 5.1, the mass flow ṁl(t) and ṁv(t) of the liquid phase and the
vapor phase of the simplified model coincide with one overall constant mass flow ṁ:

ṁv(t) = ṁl(t) = ṁ. (5.1)

Hence, the energy balance equation of the CC in (4.13) is rewritten for the simplified model
since the same boundary of the CC subsystem is chosen in both models (see Fig 4.3 and
Fig. 5.1):

dUcc(t)

dt
= ṁ ·

(
hl
co(t)− hl

cc(t)
)
+ Q̇cc(t) + Q̇lk(t), (5.2)
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where the inlet of the CC subsystem corresponds to the outlet of the condenser subsystem.
The heat leak Q̇lk(t) is defined in (4.18). With (5.1), the total massm2ϕ

cc (t) of the two-phase
fluid in the CC subsystem does not change following the law of conservation of mass in
(3.18):

dm2ϕ
cc (t)

dt
= 0. (5.3)

With a fixed ratio β between the volumes of the liquid and the vapor phase in the two-phase
CC in saturation state, no work is done on the boundary between both phases, and the internal
energy Ucc(t) of the CC subsystem reduces to the sum of the enthalpies of the saturated
phases (see (3.79)):

Ucc(t) = Hcc(t) = hl
cc(t) ·ml

cc + hv
cc(t) ·mv

cc. (5.4)

Considering (5.3), the time derivative of the enthalpyHcc(t) is a function of the time derivative
of the mean temperature Tcc(t) in the CC subsystem:

dUcc(t)

dt
=

dHcc(t)

dt
=

dHcc(t)

dTcc(t)
· dTcc(t)

dt
. (5.5)

Applying the electrical analogy in Sec. 3.1.2 and the determination of the specific enthalpies
in Sec. 3.1, (5.2) is rewritten as

Cop
cc ·

dTcc(t)

dt
= ṁ · c̄lco,cc ·

(
Tco(t)− Tcc(t)

)
+ Q̇cc(t) + Q̇lk(t), (5.6)

with the thermal capacitance Cop
cc . Under consideration of Assumption 4.5, Cop

cc results from
(3.81), (3.82), (4.3) - (4.6), and (4.11) in the OP:

Cop
cc = Vcc · c̄lcc,ref ·

(
βop · ρlcc + (1− βop) · ρv,opcc

)
+ Vcc · (1− βop) ·

(
∆hv

ccρ
l
ccρ

v,op
cc

R(T op
cc )2 (ρlcc − ρv,opcc )

− ρv,opcc

T op
cc

)
·
(
hl
ref + c̄lcc,ref · (T op

cc − Tref ) + ∆hv
cc

)
. (5.7)

Evaporator

For the single-phase evaporator, the energy balance equation in (4.28) holds for the simplified
model as well due to the equally selected delimitation of the evaporator subsystems in both
models (see Fig 4.3 and Fig. 5.1). Considering Assumption 5.1 and Assumption 5.3, the specific
enthalpy in (4.28) is resolved based on (3.82) and (5.1) as follows:

dUev(t)

dt
= ṁ ·

(
c̄lcc,ev ·

(
Tcc(t)− Tev(t)

)
−∆hv

ev

)
+ Q̇ev(t)− Q̇lk(t). (5.8)

Finally, the internal energy Uev(t) is rewritten with the thermal capacitance Cop
ev in the OP:

Cop
ev ·

dTev(t)

dt
= ṁ ·

(
c̄lcc,ev ·

(
Tcc(t)− Tev(t)

)
−∆hv

ev

)
+ Q̇ev(t)− Q̇lk(t). (5.9)
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The thermal capacitance Cop
ev is derived from (5.7) considering the saturated, vapor-filled

evaporator:

Cop
ev = Vev · c̄lev,ref · ρv,opev

+ Vev ·
(

∆hv
evρ

l
evρ

v,op
ev

R(T op
ev )2 (ρlev − ρv,opev )

− ρv,opev

T op
ev

)
·
(
hl
ref + c̄lev,ref · (T op

ev − Tref ) + ∆hv
ev

)
. (5.10)

Condenser

Similar to the previous two energy balance equations, the energy balance equation of the
condenser subsystem is obtained by applying the first law of thermodynamics in (3.11):

Cop
co ·

dTco(t)

dt
= ṁ ·

(
c̄lev,co ·

(
Tev(t)− Tco(t)

)
+∆hv

ev

)
− Q̇co(t), (5.11)

where the incoming enthalpy flow of the vapor from the evaporator and the outgoing enthalpy
flow of the liquid to the CC along with the overall heat flow Q̇co(t) determine the change of
the internal energy of the condenser subsystem. The overall heat flow Q̇co(t), which describes
the heat exchange of the condenser subsystem with the heat sink and the surroundings, is
approximated with (3.50):

Q̇co(t) =
1

Rco
·
(
Tev(t) + Tco(t)

2
− Tsk(t)

)
, (5.12)

where the arithmetic mean of the evaporator temperature Tev(t) and the condenser temper-
ature Tco(t) is taken as the average temperature in the condenser subsystem. The thermal
capacitance Cop

co is calculated similar to (5.7) in the OP:

Cop
co = Vco · c̄lco,ref ·

(
βop
co · ρlco + (1− βop

co ) · ρv,opco

)
+ Vco · (1− βop

co ) ·
(

∆hv
coρ

l
coρ

v,op
co

R(T op
co )2 (ρlco − ρv,opco )

− ρv,opco

T op
co

)
·
(
hl
ref + c̄lco,ref · (T op

co − Tref ) + ∆hv
co

)
, (5.13)

with the fixed volume fraction ratio βop
co .

Simplified LHP State-Space Model

The simplified dynamical model of the LHP forms the following nonlinear, three-dimensional
state-space model according to Def. 2.1:

ẋ(t) = f
(
x(t), u(t),d(t)

)
, (5.14a)

y(t) = x(t), (5.14b)
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with x(t) = [Tcc(t), Tev(t), Tco(t)]
⊤, u(t) = Q̇cc(t), and d(t) = [Q̇ev(t), Tsk(t)]

⊤. The
three state variables in the state vector x(t) correspond to the temperatures Tcc(t) at the CC,
Tev(t) at the evaporator, and Tco(t) at the condenser outlet. These three state variables are
related to the three temperature sensors TS 1, TS 2, and TS 4 in Fig. 4.1 and form the output
vector y(t) as well. The heat flow Q̇cc(t) from the control heater to the CC is the single input
variable u(t) of the system. The disturbance vector d(t) is characterized by the heat load
Q̇ev(t) at the evaporator and the sink temperature Tsk(t) at the condenser as the two external
disturbance inputs to the system. The state equation (5.14a) of the simplified LHP state-space
model is obtained by combining the previously established first-order differential equations
(5.6), (5.9), and (5.12) in the vector function f = [f1, f2, f3]

⊤ as follows9:

f1 =
1

Cop
cc
·
(
ṁ · c̄lco,cc · (Tco − Tcc) + Q̇cc +

1

Rlk
· (Tev − Tcc)

)
, (5.15)

f2 =
1

Cop
ev
·
(
ṁ ·

(
c̄lcc,ev · (Tcc − Tev)−∆hv

ev

)
+ Q̇ev −

1

Rlk
· (Tev − Tcc)

)
, (5.16)

f3 =
1

Cop
co
·
(
ṁ ·

(
c̄lev,co · (Tev − Tco) + ∆hv

ev

)
− 1

Rco
·
(
Tev + Tco

2
− Tsk

))
. (5.17)

Besides the physical properties of the working fluid, which are the mean specific heat capacities
c̄ and the specific heat of evaporation ∆hv , six parameters are included in the simplified
dynamical model. The three thermal capacitances Cop

cc , Cop
ev , and Cop

co of the three subsystems
determine the dynamics of the corresponding temperatures. The two thermal resistances
Rlk and Rco define the heat leak and the heat flow to the heat sink, respectively. As the last
parameter, the steady-state mass flow rate ṁ governs the enthalpy exchange between the
subsystems.

For the subsequent linear control designs, the nonlinear LHP state-space model (5.14) is
linearized about the steady-state OP. By performing the Taylor series expansion of the state
about the OP, while neglecting the higher-order terms, the linear approximation of (5.14)
yields the linearized simplified LHP state-space model according to Def. 2.2:

∆ẋ(t) = Alin ·∆x(t) + blin ·∆u(t) +Elin ·∆d(t), (5.18a)
∆y(t) = Clin ·∆x(t) (5.18b)

with

∆x(t) =

Tcc(t)− T op
cc

Tev(t)− T op
ev

Tco(t)− T op
co

 , (5.19)

∆u(t) = Q̇cc(t)− Q̇op
cc , (5.20)

∆d(t) =

[
Q̇ev(t)− Q̇op

ev,
Tsk(t)− T op

sk .

]
. (5.21)

With the separation of the disturbance variables Q̇ev and Tsk from the input variable Q̇cc, the
state disturbance matrix Elin is established besides the system matrix Alin, the input vector
9 In order to ease notation, time dependencies are dropped.
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blin, and the output matrix Clin:

Alin =


− 1

Cop
cc

(
c̄lco,ccṁ+ 1

Rlk

)
1

Cop
cc Rlk

1
Cop

cc

(
c̄lco,ccṁ

)
1

Cop
ev

(
c̄lcc,evṁ+ 1

Rlk

)
− 1

Cop
ev

(
c̄lcc,evṁ+ 1

Rlk

)
0

0 1
Cop

co

(
c̄lev,coṁ− 1

2Rco

)
− 1

Cop
co

(
c̄lev,coṁ+ 1

2Rco

)
 , (5.22)

blin =

 1
Cop

cc

0
0

 , (5.23)

Elin =

 0 0
1

Cop
ev

0

0 1
Cop

coRco

 , (5.24)

Clin =

1 0 0
0 1 0
0 0 1

 . (5.25)

5.2 Control Designs Based on the Simplified Model

According to the state of the art in Sec. 2, heuristic PID controllers are commonly used for
the LHP temperature control due to their comparatively simple application and adequate
performance in most systems. To replace the individual heuristic tuning approach with a
systematic parameterization, the first model-based design of this linear LHP controller is
proposed in the following. Based on the simplified LHP model in the previous section, further
extensions of the PID controller and a nonlinear controller are presented, which are especially
suitable for the LHP temperature control in applications with low computational power.

5.2.1 PI Controller with Anti-Windup Strategy

Due to its simple structure and low computational effort, the PID controller is most commonly
used in the industry for automation processes since it provides a stable control result in
most applications and an acceptable disturbance behavior [Vis06, p. 1]. In contrast to the
elaborate heuristic PID control design, the model-based design of this controller with the
introduced simplified LHP model in Sec. 5.1.2 is presented here. Thus, the general advantages
of the model-based approach (see Sec. 1) are exploited when designing PID controllers for the
LHP temperature control. In fact, the design of a PI controller without a derivative term is
sufficient for LHP temperature control. This is due to the required limitation of the temperature
dynamics of the control loop for a continuous heat transport, which is described in detail
in Sec. 3.2.2. Besides this controller constraint, the windup effect in the PI controller has to
be considered. As stated in Sec. 4.2.1, the commonly used back-calculation AW method is
also suitable for the PI controller and will be adapted after the design of the controller gains.
The final control loop containing the LHP system, the PI controller and the AW structure is
depicted in Fig. 5.2.
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PI LHPTset
e ypi Q̇cc

Tcc−

Tsk Q̇ev

AW

xaw

Figure 5.2: Control loop of an LHP with a PI controller and an AW structure

The PI controller in the corresponding block in Fig. 5.2 sees the LHP as an SISO system. The
controlled output variable y(t) is equivalent to the state variable Tcc(t) and the output matrix
Clin of the linearized LHP state-space model (5.18) reduces to the output vector c⊤lin:

c⊤lin =
[
1 0 0

]
. (5.26)

In accordance with (2.11), the transfer function G(s) of the linearized LHP state-space model
(5.18) in the Laplace domain with the complex variable s is defined by the ratio of the trans-
formed output Tcc(s) and the transformed input ypi(s):

G(s) =
Tcc(s)

Q̇cc(s)
=

Tcc(s)

ypi(s)
= c⊤lin · (s · I −Alin)

−1 · blin, (5.27)

with the identity matrix I ∈ R3×3. Inserting (5.22), (5.23), and (5.26) into (5.27) yields:

G(s) =
A · s2 + B · s+ C

D · s3 + E · s2 + F · s+ G. (5.28)

with the parameters A to G:

A = 2 · Cop
co · Cop

ev ·Rco ·Rlk, (5.29)

B = 2 · Cop
co ·Rco + Cop

ev ·Rlk + 2 · Cop
co ·Rco ·Rlk · c̄lcc,ev · ṁ

+ 2 · Cop
ev ·Rco ·Rlk · c̄lev,co · ṁ, (5.30)

C = 2 ·Rco · c̄lev,co · ṁ+Rlk · c̄lcc,ev · ṁ+ 2 ·Rco ·Rlk · c̄lcc,ev · c̄lev,co · ṁ2 + 1, (5.31)

D = 2 · Cop
cc · Cop

co · Cop
ev ·Rco ·Rlk, (5.32)

E = 2 · Cop
cc · Cop

co ·Rco + 2 · Cop
co · Cop

ev ·Rco + Cop
cc · Cop

ev ·Rlk

+ 2 · Cop
cc · Cop

co ·Rco ·Rlk · c̄lcc,ev · ṁ+ 2 · Cop
co · Cop

ev ·Rco ·Rlk · c̄lco,cc · ṁ
+ 2 · Cop

cc · Cop
ev ·Rco ·Rlk · c̄lev,co · ṁ, (5.33)
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F = Cop
cc + Cop

ev + 2 · Cop
co ·Rco · c̄lco,cc · ṁ+ 2 · Cop

cc ·Rco · c̄lev,co · ṁ
+ 2 · Cop

ev ·Rco · c̄lev,co · ṁ+ Cop
cc ·Rlk · c̄lcc,ev · ṁ+ Cop

ev ·Rlk · c̄lco,cc · ṁ
+ 2 · Cop

co ·Rco ·Rlk · c̄lco,cc · c̄lcc,ev · ṁ2 + 2 · Cop
cc ·Rco ·Rlk · c̄lcc,ev · c̄lev,co · ṁ2

+ 2 · Cop
ev ·Rco ·Rlk · c̄lco,cc · c̄lev,co · ṁ2, (5.34)

G = 2 ·Rlk · c̄lco,cc · c̄lcc,ev · ṁ2 + 2 · c̄lco,cc · ṁ. (5.35)

According to (5.28), the transfer function G(s) of the LHP includes no integral term. Hence,
the integral term for stationary accuracy has to be included in the controller, i.e. the integral
gain Ki of the PI controller transfer function C(s) must not be zero:

C(s) =
ypi(s)

e(s)
= Kp +Ki ·

1

s
. (5.36)

The transformed control error e(s) is defined as the difference between the transformed
setpoint temperature Tset(s) and the transformed CC temperature Tcc(s) as output variable
of the system:

e(s) = Tset(s)− Tcc(s). (5.37)

For the model-based tuning of the controller gainsKp and Ki in (5.36), the robust response
time algorithm [Mat20b, p. 12-85] in the Control System Toolbox in Matlab is used, as
introduced in Sec. 4.2.2. As mentioned at the beginning of this section, the performance of the
PI controller has to be constrained since a continuous heat transfer of the LHP depends on
the change rate of the controlled CC temperature (see Sec. 3.2.2). By adapting the response
time in the algorithm, a suitable rise time of the controlled CC temperature is set, and the PI
gains are determined within the temperature-rate restriction accordingly.

For the implementation of the PI controller in the real application, (5.36) is transformed into
the discrete time domain according to Appendix A.3, which yields the discrete control law
ypi(k):

∆ipi(k) = Ki · Tst ·∆e(k) + ∆ipi(k − 1), (5.38)

ypi(k) = Kp ·∆e(k) + ∆ipi(k) + yoppi , (5.39)

with the discrete time k, the integral term ∆ipi(k) of the PI controller, the sampling time Tst,
and the discrete control error ∆e(k). After determining the PI controller and its gains for the
LHP control heater, the strategy against the windup of the integral term of the PI controller
in saturation, described in Sec. 4.2.1, is added to the control loop as follows:

∆xaw(k) = Kaw ·
((

ypi(k − 1)− yoppi
)
−∆Q̇cc(k − 1)

)
, (5.40)

∆ipi(k) = Ki · Tst ·
(
∆e(k)−∆xaw(k)

)
+∆ipi(k − 1), (5.41)

ypi(k) = Kp ·∆e(k) + ∆ipi(k) + yoppi . (5.42)

This past section enables the implementation and first model-based parameterization of the
state-of-the-art controller for the OT control of an LHP under consideration of the control
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heater limits. This controller and all controllers that follow in this chapter are applied in
simulations in Sec. 7.4.1. The performance of the AW strategy is verified in the third subsection
of Sec. 7.4.1. For the specific improvement of its disturbance rejection, the state-of-the-art
controller is extended in the next section.

5.2.2 PI Controller with Disturbance Feedforward Control

The performance of the designed PI controller is adjusted in Sec. 5.2.1 by determining the
controller gains based on the simplified LHP state-space model. To further improve the
disturbance performance of the PI controller in particular, which is most important for the
LHP temperature control, the control structure is extended by a disturbance feedforward
control, as suggested in [GMK+18]. The resulting controller has a two-degree-of-freedom
structure, where the total control law ycl(k) is defined by the superposition of the PI controller
output ypi(k) and the disturbance feedforward control output ydf (k):

ycl(k) = ypi(k) + ydf (k). (5.43)

A two-degree-of-freedom control achieves a stable temperature control and an improved
reaction to disturbances. Due to the separation of the response to setpoint changes from
the response to disturbances, both control objectives can be adjusted independently by two
controller parts [AT03]. The combination of a disturbance feedforward control with another
controller is indeed reasonable in order to compensate the low robustness of the feedforward
component against model uncertainties [Lun20b, p. 190]. The two-degree-of-freedom control
structure for the LHP is shown in Fig. 5.3.

PI LHPTset
e ypi ycl Q̇cc

Tcc−

Tsk Q̇ev

AW

xaw

DF

ydf

Figure 5.3: Control loop of an LHP with a PI controller, a disturbance feedforward control (DF), and an AW structure

The first degree of freedom is determined by the proposed PI controller with anti-windup
strategy in Sec. 5.2.1. For the second degree of freedom, the classical disturbance feedforward
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control (see [Lun20b, p. 190]) based on the linearized LHP state-space model (5.18) is given by
the following equation in discrete time:

ydf (k) = −
(
b⊤lin · blin

)−1

· b⊤lin ·Elin ·∆d(k) + yopdf =

[
0
0

]
·∆d(k) + yopdf . (5.44)

The resulting gain vector in (5.44) based on (5.23) and (5.24) is a zero vector. The disturbances
have no influence on the controller input, since the control input Q̇cc and the measurable
disturbances Q̇ev and Tsk do not have a direct impact on the same state in the simplified model.
Therefore, the proposed disturbance feedforward control for LHPs in this thesis is based on
the numerical disturbance-dependent determination of the stationary control heater output.
A vivid description of the stationary control heater output being the heat input to the CC is
the heat gap between the natural and the desired SSOT (see Sec. 3.2.1). This basic heat input is
necessary to compensate the subcooling of the liquid returning to the CC. Adequate stationary
LHP models are already commonly used to improve the characterization and the design of
LHP components, as described in Sec. 2.2. In order to improve the LHP temperature control
performance, these stationary LHP models are harnessed to predict the stationary control
heater output and balance the influences of the disturbances on the LHP system through the
disturbance feedforward control.

For an efficient online implementation of the disturbance feedforward control, a repeated
online prediction of the required control heater output value with a stationary LHP model
can be replaced by reading the value from a lookup table. Such a multi-dimensional lookup
table can be created offline from the stationary model results according to the number of
the relevant disturbances and the setpoint temperature. The more accurate the modeled
steady-state values are over the LHP operating range, the more the PI controller can focus on
the disturbance response, which results in a better overall control performance. The data for
the lookup table could also be determined from measurements of the investigated LHP on a
test bench. However, a huge number of measurements would be necessary to cover the whole
operating range in a suitable accuracy, which would consume a lot of expensive test bench
time. Therefore, the use of stationary models fitted to a smaller number of measurements is
preferable.

As presented in [GMK+18], a numerical stationary model is used for the disturbance feedfor-
ward control, which has already been developed for the experimental and numerical thermal
characterization of an LHP on a test bench in [MKHW19] (see also Sec. 2.2). This stationary
model calculates the steady states of the LHP temperatures depending on the control heater
output and the disturbances. It relies on energy balance equations of the principal LHP compo-
nents and on the relevant heat transfer kinetics. For the disturbance feedforward control, the
stationary system model is easily inverted by introducing another optimization loop. Thus,
the necessary stationary control heater output is determined for a desired CC temperature at
given disturbances.

In [GGK+13], the stationary control heater output at the CC is determined as a function of the
heat load to be compared to different heat input locations for electrical energy consumption
minimization. In this thesis, however, the required stationary control heater output ydf (k)
is not only a function f of the heat load Q̇ev(k). It depends also on the sink temperature
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Tsk(k) and the setpoint temperature Tset(k) to extend the accuracy of the predicted stationary
control heater output over the entire operating range of the LHP:

ydf (k) = f
(
Q̇ev(k), Tsk(k), Tset(k)

)
. (5.45)

As an example, the corresponding three-dimensional graph of ydf for a fixed Tset = 27 ◦C

and different values of Q̇ev and Tsk in consideration of the power limitation is presented in
Fig. 5.4.

Figure 5.4: Surface plot of the modeled stationary control heater output ydf as a function of the heat load Q̇ev and
the sink temperature Tsk for a fixed setpoint temperature Tset = 27 ◦C

Over the larger part of the operating range, the available control heater output is sufficient to
control the CC temperature at the setpoint temperature. The limits of the control heater output
at 0W and 10W are only reached at the extreme ends of the operating range in the lower right
and the upper left corner of the graph in Fig. 5.4. These extreme ends correspond to the highest
sink temperatures at the lowest heat loads and the lowest sink temperatures at the highest
heat loads, respectively. With a closer look on the stationary behavior of LHPs in Fig. 3.9
in Sec. 3.2.1, the LHP operation mode in this operating range is the variable conductance
mode since the condenser at the highest heat load is not yet fully utilized. In addition, the
decreasing surface supports the statement in Sec. 3.2.1 that the amount of necessary control
heater output does not correspond to the distance between the natural and the fixed SSOT in
Fig. 3.9.

5.2.3 PI Output Feedback Control

Both previous controllers focus on one controlled variable, the CC temperature Tcc, whose
feedback closes the SISO control loop. A powerful alternative to PID controllers for the control
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of linear system’s dynamics is the state feedback control

yof (t) = −Kx ·∆x(t) + yopof = −Kx ·

∆Tcc(t)
∆Tev(t)
∆Tco(t)

+ yopof , (5.46)

with the state feedback gain matrixKx ∈ R1×3 and the three states∆Tcc(t),∆Tev(t), and
∆Tco(t) of the linearized LHP state-space model (5.18). The advantage of state feedback
control is the possibility to place the poles of the closed control loop at desired positions in
the complex plane provided that the system is fully controllable [Lun20b, p. 256]. Since all
three states in ∆x(t) are measurable temperatures, as shown by the output matrix Clin in
(5.25), the full-state feedback control of the LHP in (5.46) coincides with the output feedback
control:

yof (t) = −Kx ·∆y(t)+yopof = −Kx ·Clin ·

∆Tcc(t)
∆Tev(t)
∆Tco(t)

+yopof = −Kx ·∆x(t)+yopof . (5.47)

By enhancing the output feedback control with the proposed PI controller with anti-windup
strategy of Sec. 5.2.1, the resulting two-degree-of-freedom control achieves an accurate LHP
temperature control with disturbance rejection:

ycl(t) = yof (t) + ypi(t). (5.48)

The simple but efficient structure of this PI output feedback control is displayed in Fig. 5.5.

PI LHPTset
e ypi ycl Q̇cc

Tev

Tcc

Tco
−

Tsk Q̇ev

AW

xaw

OF

yof

Figure 5.5: Control loop of an LHP with a PI controller, an output feedback control (OF), and an AW structure
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The design of the PI output feedback control is similar to the design of a sole state feedback
control, when the linearized system (5.18) is extended by the control error e(t) [Föl16, p. 375]:

∆Ṫcc(t)

∆Ṫev(t)

∆Ṫco(t)
∆ė(t)

 =

[
Alin 0
−c⊤lin 0

]
︸ ︷︷ ︸

Aex

·


∆Tcc(t)
∆Tev(t)
∆Tco(t)
∆e(t)

+

[
blin
0

]
︸ ︷︷ ︸

bex

·∆Q̇cc(t) +

[
Elin

0

]
·
[
∆Q̇ev(t)
∆Tsk(t)

]
, (5.49)

with the zero matrix 0, the extended system matrix Aex ∈ R4×4, and the extended input
vector bex ∈ R4×1 consisting of the matrices and vectors defined in (5.22), (5.23), (5.24) and
(5.26), respectively. The condition for adjusting the closed-loop dynamics with a state feedback
control is the controllability of the extended control system (5.49). According to Kalman’s
criteria (see [Föl16, p. 292]), the former linear system (5.18) withAlin ∈ R3×3, blin ∈ R3×1,
and c⊤lin ∈ R1×3 is fully controllable if its controllability matrixQctr is full rank:

rank (Qctr) = rank
([
blin Alin · blin A2

lin · blin
])

= n = 3. (5.50)

The general controllability matrixQctr of a linear state-space system (2.9) is defined in [Föl16,
p. 293]:

Qctr =
[
Blin Alin ·Blin ... An−1

lin ·Blin

]
. (5.51)

In addition to (5.50), it must also hold [Föl16, p. 375]:

rank
([

Alin blin
c⊤lin 0

])
= n+ q = 4. (5.52)

Since both conditions (5.50) and (5.52) are fulfilled, the extended control system (5.49) is
indeed controllable. Hence, the PI output feedback control is determined by applying the state
feedback control law with the gain matricesKex ∈ R1×4 andKs ∈ R1×3 to the extended
control system (5.49):

ycl(t) = −Kex ·


∆Tcc(t)
∆Tev(t)
∆Tco(t)
∆e(t)

+ yopcl = −
[
Ks −Ki

]
·


∆Tcc(t)
∆Tev(t)
∆Tco(t)
∆e(t)

+ yopcl , (5.53)

where the extended state feedback gain matrixKex is determined via pole placement. Here,
Ackermann’s formula is applied [Lun20b, p. 254]:

Kex =
[
a0 a1 a2 a3 1

]
·


q⊤
ctr,ex

q⊤
ctr,exAex

q⊤
ctr,exA

2
ex

q⊤
ctr,exA

3
ex

q⊤
ctr,exA

4
ex

 , (5.54)

with q⊤
ctr,ex being the last row of the inverse controllability matrixQ−1

ctr,ex of the extended
control system (5.49):

q⊤
ctr,ex =

[
0 0 0 1

]
·Q−1

ctr,ex =
[
0 0 0 1

]
·


bex

Aexbex
A2

exbex
A3

exbex


−1

. (5.55)
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The parameters a0 to a3 in (5.54) correspond to the coefficients of the characteristic equation
ofAex:

det (λ · I −Aex) = λ4 + a3 · λ3 + a2 · λ2 + a1 · λ+ a0 = 0. (5.56)

The characteristic equation is solved with the desired eigenvalues λ1, ..., λ4 of the closed-loop
system. After the design ofKex, the separate gainsKp andKi of the PI controller andKx

of the output feedback control can be derived from Kex. According to (5.53), Ki corresponds
to the last element of Kex:

Ki = −Kex(4). (5.57)

The state feedback gain matrix Kx and the proportional gain Kp are calculated under the
condition of a static feedforward control according to [Klu13] using

Kp = −
(
c⊤lin ·A−1

lin · blin
)−1

, (5.58)

Kx = Ks −Kp · c⊤lin. (5.59)

With the extension of the AW structure in Sec. 5.2.1, the discrete PI output feedback control is
finalized for the LHP temperature control:

∆xaw(k) = Kaw ·
((

ypi(k − 1)− yoppi
)
−∆Q̇cc(k − 1)

)
, (5.60)

∆ipi(k) = Ki · Tst ·
(
∆e(k)−∆xaw(k)

)
+∆ipi(k − 1), (5.61)

ypi(k) = Kp ·∆e(k) + ∆ipi(k) + yoppi , (5.62)

ycl(k) = −Kx ·∆y(k) + yopof + ypi(k). (5.63)

5.2.4 Nonlinear Model Identification Adaptive Control

For the previous control designs, the selection of the OP plays a major role in adjusting the
controller performance over the entire operating range of the LHP. The nonlinear simplified
control model, described in Sec. 5.1, is linearized about the OP for a linear control design.
Thus, the accuracy of the simplified model is limited to the proximity around the steady state
given by the OP. Consequently, the performance of the corresponding linear controllers varies
over the entire operating range. Furthermore, the model parameters are determined and fixed
in the OP. However, the disturbances that define the LHP operating range (see Table 4.1) have
a direct impact on the model parameters. Thus, the model parameters do change over time
in the real application due to the disturbances and in addition to the variable heat and mass
transfer. To detach from the dependencies on the fixed OP, two approaches are combined
in an adaptive control structure, as presented in [GZSH19]: In a first approach, a nonlinear
controller is designed based on the nonlinear simplified control model (5.14). This controller
is based on a so-called control Lyapunov function as defined in Def. 5.1.
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Definition 5.1 (Control Lyapunov function [Ada18, p. 411])
Consider the system

ẋ = f(x,u) (5.64)

with the equilibrium point x = 0 for u = 0. Then, a continuously differentiable function
Vly(x) is called control Lyapunov function, if the following conditions are met:

1. Vly(0) = 0,

2. Vly(x) > 0 for all x ̸= 0,

3. Vly(x)→∞ for x→∞,

4. There exists a u(x), so that V̇ly(x) < 0 for all x ̸= 0.

The existence of a control Lyapunov function ensures in turn the existence of a stabilizing
state feedback control for the nonlinear system according to Lyapunov’s direct method stated
in Theorem 5.1.

Theorem 5.1 (Lyapunov’s direct method [Ada18, p. 97])
The differential equation ẋ = f(x) with the equilibrium point x = 0 has a continuous and
unique solution for each initial state in the domain Z1(0) that contains the origin. If there
exists a function Vly(x) with continuous partial derivatives in the domain Z2(0) ⊆ Z1(0),
and the following conditions hold:

1. Vly(0) = 0,

2. Vly(x) > 0, x ̸= 0,

3. V̇ly(x) < 0, x ̸= 0,

then the equilibrium point x = 0 is asymptotically stable.

If the second and third condition in Theorem 5.1 hold globally for all x in the state space, and
Vly(x) is radially unbounded according to the third condition in Def. 5.1, then the equilibrium
point is globally asymptotically stable [Ada18, p. 98]. Based on this nonlinear design approach,
the linearization of the system equations about the OP for a linear control design as in the
previous sections is avoided. However, the nonlinear controller alone shows a low robustness
when using the fixed model parameters of the OP, as investigated in [GSO+20]. Therefore,
the relevant model parameters are identified online and the states are predicted in a second
approach to cover the variations of these parameters and their influences on the states for
continuous adaption of the state-dependent controller over the entire LHP operating range.

The resulting nonlinear model identification adaptive control (nMIAC) structure for the
temperature control of the LHP is depicted in Fig. 5.6.
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LY LHPTset
e ycl

Q̇cc

Tcc

Tev−

Tsk Q̇ev

IDPR
p∗

T̂

Figure 5.6: Control loop of an LHP with an nMIAC consisting of an online parameter identification (ID), a state
prediction (PR), and a nonlinear Lyapunov-based controller (LY)

The influences of the time-variant disturbances on the model parameters are as follows. The
heat load Q̇ev(t) at the evaporator has a significant, direct impact on the mass flow rate ṁ
and the lumped thermal resistance Rlk . The sink temperature Tsk(t) influences the lumped
thermal resistanceRco. Hence, the model error of (5.14) grows with rising distance to the fixed
OP values of the model parameters. By including the time dependencies of the parameters
in the nonlinear simplified control model in (5.14), the emerging state-space model forms a
nonlinear parameter-varying (NPV) system10:

ẋ(t) = Anpv

(
p(t)

)
· x(t) + bnpv · u(t) + fnpv

(
p(t),d(t)

)
, (5.65a)

y(t) = x(t), (5.65b)

with the time-variant parameter vector p(t) under consideration of (3.58):

p(t) =

Ulk(t)
ṁ(t)
Uco(t)

 . (5.66)

The matrix Anpv

(
p(t)

)
is derived from the differential equations of the simplified control

model in (5.14) as follows:

Anpv

(
p(t)

)
=

−I
Ulk(t)
Cop

cc

1
Cop

cc

(
c̄lco,ccṁ(t)

)
H −H 0

0 1
Cop

co

(
c̄lev,coṁ(t)− Uco(t)

2

)
− 1

Cop
co

(
c̄lev,coṁ(t) + Uco(t)

2

)
 , (5.67)

with the parametersH and I :

H =
1

Cop
ev
·
(
c̄lcc,ev · ṁ(t) + Ulk(t)

)
, (5.68)

I =
1

Cop
cc
·
(
c̄lco,cc · ṁ(t) + Ulk(t)

)
. (5.69)

10 For the simplification of the subsequent identification problem, all fractions in (5.14) containing a thermal
resistance are substituted by their corresponding thermal conductance, as introduced in (3.58).



102 5 Simplified Model-Based Control Designs for Loop Heat Pipes

Accordingly, the vector bnpv and the vector function fnpv

(
p(t),d(t)

)
are given by

bnpv =

 1
Cop

cc

0
0

 (5.70)

and

fnpv (p(t),d(t)) =

 0
1

Cop
ev

(
Q̇ev(t)−∆hv

evṁ(t)
)

1
Cop

co

(
Uco(t)Tsk(t) + ∆hv

evṁ(t)
)
 . (5.71)

Nonlinear Control Design

The subsequent nonlinear control design takes advantage of the natural connection between
the temperatures in the LHP. As stated in Sec. 3.2.2, the behavior of the OT is governed by
the CC temperature Tcc(t), which is commonly controlled instead. Similar to the complex
LHP control model (4.97) with output variable Tcc(t) in Chapter 4, the simplified LHP control
model in the form of the NPV system (5.65) for the desired control design is also given in
Byrnes-Isidori normal form with its relative degree δnpv = 1:[

ẋex(t)
ẋin(t)

]
= Anpv

(
p(t)

)
·
[
xex(t)
xin(t)

]
+ bnpv · u(t) + fnpv

(
p(t),d(t)

)
, (5.72a)

y(t) = xex(t). (5.72b)

The nonlinear controller in Fig. 5.6 is designed based on the external dynamics of (5.72). The
external dynamics correspond to the dynamics of the CC subsystem. For the initial design
process, the saturation block is neglected, i.e. u(t) = Q̇cc(t) ≜ ycl(t). The corresponding
input-affine state equation of the controlled Tcc(t) is given by

ẋex(t) = Ṫcc(t) = −I · Tcc(t) +
1

Cop
cc
· ycl(t)

+
Ulk(t)

Cop
cc
· Tev(t) +

1

Cop
cc
·
(
c̄lco,cc · ṁ(t)

)
· Tco(t). (5.73)

To stabilize Tcc(t) in the OP at the setpoint temperature Tset, the control error

e(t) = Tset − Tcc(t) (5.74)

is eliminated by the desired nonlinear controller. According to Theorem 5.1, a candidate for
a positive definite control Lyapunov function Vly(t) must be chosen for an asymptotically
stable equilibrium point. The following candidate consists of the squared control error e(t) to
meet the first three conditions of Def. 5.1:

Vly(t) =
1

2
·
(
e(t)

)2
. (5.75)
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The control law for the control heater is determined by ensuring a negative definite derivative
of the control Lyapunov function Vly(t) according to the fourth condition of Def. 5.1. Thus,
the Vly(t) decreases outside Tset along every trajectory e(t). The derivative of the control
Lyapunov function (5.75) is given by

V̇ly(t) = e(t) · ė(t) =
(
Tset − Tcc(t)

)
·
(
−Ṫcc(t)

)
. (5.76)

The requirement for a negative derivative (5.76) is met by choosing the following condition:

Ṫcc(t) = λly ·
(
Tset − Tcc(t)

)
, (5.77)

with
λly > 0. (5.78)

The parameter λly sets the rate of decrease of the control Lyapunov function (5.75) and is
adjusted to the system’s dynamics to achieve the desired controller performance. Inserting
(5.73) into (5.77) results in the following control law ycl(t) for the control heater of the LHP:

ycl(t) = Cop
cc ·

(
λly ·

(
Tset − Tcc(t)

)
+ I · Tcc(t)

− Ulk(t)

Cop
cc
· Tev(t)−

1

Cop
cc
·
(
c̄lco,cc · ṁ(t)

)
· Tco(t)

)
= Cop

cc · λly ·
(
Tset − Tcc(t)

)
− Ulk(t) ·

(
Tev(t)− Tcc(t)

)
− ṁ(t) · c̄lco,cc ·

(
Tco(t)− Tcc(t)

)
. (5.79)

For a stable overall control system, stable internal dynamics must be present according to
Sec. 4.2.1. Therefore, the stability of the OP of the zero dynamics of the simplified LHP control
model (5.72) are investigated in the following. By setting xex(t) as input variable of the
internal dynamics to its OP value, the zero dynamics are determined:

ẋin(t) =

[
−H 0

1
Cop

co

(
c̄lev,coṁ(t)− Uco(t)

2

)
− 1

Cop
co

(
c̄lev,coṁ(t) + Uco(t)

2

)] · xin(t)

+

[
H
0

]
· xop

ex +

[
1

Cop
ev

(
Q̇ev(t)−∆hv

evṁ(t)
)

1
Cop

co

(
Uco(t)Tsk(t) + ∆hv

evṁ(t)
)] . (5.80)

For the stability analysis of the equilibrium point of (5.80), Theorem 4.1 is applied. The
Jacobian of (5.80) is given by

J =

[
−H 0

1
Cop

co

(
c̄lev,coṁ

op − Uop
co

2

)
− 1

Cop
co

(
c̄lev,coṁ

op +
Uop

co

2

)]∣∣∣∣∣
xin=xop

in

. (5.81)
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Since (5.81) is a lower triangular matrix, its eigenvalues λ1 and λ2 based on the characteristic
polynomial (4.115) correlate with its diagonal elements (see [TT13, pp. 283, 333]):

λ1 = −H

= − 1

Cop
ev
·
(
c̄lcc,ev · ṁop + Uop

lk

)
, (5.82)

λ2 = − 1

Cop
co
·
(
c̄lev,co · ṁop +

Uop
co

2

)
. (5.83)

All parameters in (5.82) and (5.83) are positive during the normal LHP operation over the
entire operating range. Thus, the eigenvalues λ1 and λ2 have negative real parts, and the zero
dynamics (5.80) are consequently exponentially stable. Furthermore, the control loop with
the nonlinear Lyapunov-based controller (5.79) is indeed stable around the OP.

A suitable online identification method for the adaption of the model parameters in (5.79)
in the form of the nMIAC is designed and integrated into the control loop in the following
section.

Online Parameter Identification

The nonlinear Lyapunov-based controller in (5.79) depends on the time-variant model param-
eters Ulk(t) and ṁ(t). However, the dynamics of both model parameters are unknown. Since
these parameters are not directly measured or determinable in the considered LHP setup (see
Chapter 1), they are estimated quasi-continuously from the available superficial temperature
measurements for the adaption of the controller to the varying operating conditions. The
discrete form of (5.79) is given by

ycl(k) = Cop
cc · λly ·

(
Tset − Tcc(k)

)
− Ulk(k) ·

(
Tev(k)− Tcc(k)

)
− ṁ(k) · c̄lco,cc ·

(
Tco(k)− Tcc(k)

)
. (5.84)

The parameters Ulk(k) and ṁ(k) are identified from the two measured temperatures Tcc(k)
and Tev(k) as depicted in Fig. 5.6. The parameter vector p(k) to be identified is given by

p(k) =

[
Ulk(k)
ṁ(k)

]
. (5.85)

Due to Assumption 5.1, the time-variant parameter vector p(k) in (5.85) is considered quasi-
continuous over time. Hence, both parameters in the parameter vector are estimated from the
measured temperatures Tcc,m(k) and Tev,m(k) of the CC and the evaporator in every discrete
time step k. For the online parameter identification, the differential equations of the relevant
measured temperature states in (5.65a) are discretized with Euler’s forward method and the
sampling time constant Tst and transformed into the following form:[

Tcc(k)
Tev(k)

]
= Tst · p(k − 1) ·N(k − 1) +

[
Tcc(k − 1) + Tst

1
Cop

cc
Q̇cc(k − 1)

Tev(k − 1) + Tst
1

Cop
ev
Q̇ev(k − 1)

]
, (5.86)
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with the identification matrix N being defined by

N(k) =

[
N11(k) N12(k)
N21(k) N22(k)

]
, (5.87)

with

N11(k) =
Tev(k)− Tcc(k)

Cop
cc

, (5.88)

N12(k) =
c̄lco,cc

(
Tco(k)− Tcc(k)

)
Cop

cc
, (5.89)

N21(k) =
Tcc(k)− Tev(k)

Cop
ev

, (5.90)

N22(k) =
c̄lcc,ev

(
Tcc(k)− Tev(k)

)
−∆hv

ev

Cop
ev

. (5.91)

The parameter identification problem is posed as a nonlinear unconstrained optimization
problem for the identification error vector eid(k) between themeasured temperatures Tcc,m(k)
and Tev,m(k), and the calculated temperature outputs in (5.86):

eid(k) =

[
Tcc,m(k)
Tev,m(k)

]
−
[
Tcc(k)
Tev(k)

]
. (5.92)

In every time step k, the optimal parameter vector p∗(k) denotes the argument, for which the
square of the identification error vector (5.92) is minimized:

p∗(k) =

[
U∗
lk(k)

ṁ∗(k)

]
= argmin

p(k)

e⊤id(k) · eid(k). (5.93)

The minimization problem (5.93) is solved with the direct search method of [LRWW98],
an extended version of the simplex method of [NM65]. For its computation, the available
Matlab implementation is used (see [Mat20d, p. 9-4]). The initial parameter vector in every
time step k is taken from the OP, which is also an equilibrium point of the NPV system
(5.65).

State Prediction

With the online identification of the time-variant parameters in the previous section, only
the determination of the states Tcc(k), Tev(k), and Tco(k) in the state vector x(k) in (5.84) is
left to complete the equations of the nMIAC structure in Fig. 5.6. These are determined by
predicting the temperatures with the NPV system (5.65). The differential equations in (5.65a)
are discretized with Euler’s forward method resulting in the following discrete form of (5.65a)
with (5.67), (5.70), and (5.71):

x(k) = Tst ·Anpv

(
p(k − 1)

)
· x(k − 1) + Tst · bnpv · u(k − 1)

+ Tst · fnpv

(
p(k − 1),d(k − 1)

)
+ x(k − 1). (5.94)
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The model parameter Uco is fixed in the OP. The parameter vector p(k − 1) with the two
model parameters Ulk(k− 1) and ṁ(k− 1) is determined by the online parameter estimation
method in the previous section.

The performance of the state prediction and parameter identification, integrated in the pro-
posed nMIAC, are evaluated in simulations in the fourth subsection of Sec. 7.4.1 and with
measurement data in [GZSH19]. The nMIAC in this section and the LHP controllers in the pre-
vious sections control the CC temperature. Their simulation results are presented in the first
subsection of Sec. 7.4.1. To additionally control the evaporator temperature, corresponding
cascade controls are introduced in the next section.

5.2.5 Cascade Control

The benefits of the cascade control for the temperature control of the LHP are already high-
lighted in Sec. 4.2.2. Here, the cascaded extensions of the previous controllers based on the
simplified model are introduced. For the PI controller in Sec. 5.2.1, it is shown in [GH20]
that the influences on the evaporator temperature during LHP operation are decreased in
a PI cascade control compared to the direct PI control of the evaporator temperature in a
single control loop. However, the cascade control design in [GH20] based on the linearized
simplified LHP state-space model (5.18) facilitates not only the extension of the single PI
control loop, but also of all other previous single-loop controllers in Sec. 5.2.2 to 5.2.4. In each
case, both control loops are adapted to each other for a provably stable overall control system
by a model-based design approach. Thus, the advantages of controlling the CC temperature as
governing temperature are not only preserved, but the evaporator temperature as the nearest
measurable LHP temperature to the heat source is also controlled.

The general structure of the PI cascade control for LHPs is depicted in Fig. 5.7.

CC
control

LHP
Part 1

e ycl Q̇cc

−
LHP
Part 2

Tcc
TevPI

Tset

−Tset,ev
eev

Q̇evTsk

AW
xaw

Figure 5.7: Cascade control loop of an LHP with a PI controller and a CC controller, the divided system parts LHP
Part 1 and LHP Part 2, and an AW structure

As the inner control loop in Fig. 5.7, one of the previously designed control loops in Sec. 5.2.1
to Sec. 5.2.4 can be chosen according to the design requirements. From the PI controller’s
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point of view, the controlled system in the outer control loop consists therefore not only of
the system part LHP Part 2 but also of the chosen inner control loop.

For the determination of LHP Part 2, its transfer function G2(s) is derived from the linearized
differential equation for Tev in (5.18):

∆Ṫev(t) = R ·∆Tcc(t)−R ·∆Tev(t) +
1

Cop
ev
·∆Q̇ev(t), (5.95)

∆Ṫev(t) +R ·∆Tev(t) = R ·∆Tcc(t) +
1

Cop
ev
·∆Q̇ev(t), (5.96)

with the parameterR:
R =

1

Cop
ev
·
(
c̄lcc,ev · ṁ+

1

Rlk

)
. (5.97)

The Laplace transformation of (5.96) yields

s · Tev(s) +R · Tev(s) = R · Tcc(s) +
1

Cop
ev
· Q̇ev(s), (5.98)

(s+R) · Tev(s) = R · Tcc(s) +
1

Cop
ev
· Q̇ev(s), (5.99)

Tev(s) =
R

s+R · Tcc(s) +

1
Cop

ev

s+R · Q̇ev(s). (5.100)

Hence, the transfer function G2(s) is determined as

G2(s) =
Tev(s)

Tcc(s)
=
R

s+R =

1
Cop

ev

(
c̄lcc,evṁ+ 1

Rlk

)
s+ 1

Cop
ev

(
c̄lcc,evṁ+ 1

Rlk

). (5.101)

Combined with the transfer function G3(s) of the chosen inner control loop, the transfer
function G4(s) of the controlled system in the outer control loop is established:

G4(s) =
Tev(s)

Tset(s)
= G3(s) ·G2(s). (5.102)

The transfer function G4(s) is controlled by the PI controller C2(s) in the outer control loop,
which has the following form:

C2(s) =
Tset(s)

eev(s)
= Kp2 +Ki2 ·

1

s
, (5.103)

with the controller gainsKp2 andKi2. This controller determines the setpoint temperature
Tset for the CC controller in the inner control loop. Besides the transformed control error e(s)
of the inner control loop in (5.37), the transformed evaporator control error eev(s) is defined
as the difference between the transformed setpoint temperature Tset,ev(s) of the evaporator
and the transformed evaporator temperature Tev(s):

eev(s) = Tset,ev(s)− Tev(s). (5.104)
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Analogous to Sec. 5.2.1, the AW structure is attached to the integral term of C2(s) to finalize
the entire cascade control in Fig. 5.7. The condition of a separate design process with a faster
inner control loop than the outer control loop must be considered during the determination
of the control parameters Kp2 and Ki2 with the mentioned methods in Sec. 5.2.1. According
to the chosen inner-loop controller, this is done by choosing either the poles of the inner
control loop to the left of the poles of the outer control loop in the complex plane, i.e. with
a smaller real part, or a smaller robust response time and a greater cutoff frequency for the
inner control loop, respectively.

In the following subsections, the individual transfer function G3(s) of the different inner
control loops is formed from the adapted CC control loops in the previous sections. The
performance of these cascade controls is presented in the fifth subsection of Sec. 7.4.1.

Cascade Control Based on PI Controllers

The designs of the LHP cascade controls based on the PI controllers in Sec. 5.2.1 and Sec. 5.2.2
are similar since the disturbance feedforward control is designed independently, as mentioned
in Sec. 5.2.2. Hence, both cascade controls consist of two linear SISO controllers, as depicted
in Fig. 5.8.

P LHP
Part 1

e yp ycl Q̇cc

−
LHP
Part2

Tcc
TevPI

Tset

−Tset,ev
eev

Q̇evTsk

AW
xaw

DF

ydf

Figure 5.8: Cascade control loop of an LHP with a PI controller and a P controller with an optional disturbance
feedforward control (DF), the divided system parts LHP Part 1 and LHP Part 2, and an AW structure

As presented in Fig. 5.8, the combination of a PI and a P controller is commonly used in
the industry for its good performance [KRJD90]. For the stationary accuracy of the entire
cascade control loop, an integral term in the linear controllers of the outer loop is sufficient
[Vis06, p. 252]. Hence, the inner control loop for the CC temperature must be redesigned by
using a P controller. The transfer functionG1(s) of LHP Part 1 is already given in (5.28), i.e.

G1(s) =
Tcc(s)

Q̇cc(s)
= G(s) =

A · s2 + B · s+ C
D · s3 + E · s2 + F · s+ G, (5.105)
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with the parametersA to G in (5.29) to (5.35). For the inner control loop, the transfer function
of the P controller C1(s) is constructed according to (5.36):

C1(s) =
Q̇cc(s)

e(s)
= Kp1, (5.106)

with the transformed P controller output yp(s) and the controller gainKp1. Then, the transfer
function

G3(s) =
Tcc(s)

Tset(s)
=

C1(s)G1(s)

1 + C1(s)G1(s)
(5.107)

of the inner control loop is established.

The disturbance feedforward control in block DF in Fig. 5.8 is adapted from Sec. 5.2.2 to its
corresponding cascade control in such a way that the predicted stationary control heater
output ydf (k) is not a function f of the CC setpoint temperature Tset, as in (5.45), but of the
evaporator setpoint temperature Tset,ev :

ydf (k) = f
(
Q̇ev(k), Tsk(k), Tset,ev(k)

)
. (5.108)

Cascade Control Based on the PI Output Feedback Control

Since an integral term in one of the controllers in the cascade control loop in Fig. 5.7 is
sufficient, the PI output feedback control in Sec. 5.2.3 is adapted for the inner control loop of
the corresponding cascade control by designing a P output feedback control without integral
part:

ycl(t) = yof (t) + yp(t), (5.109)

with (5.47) and

yp(t) = Kp1 ·∆e(t) + yopp

= Kp1 ·
(
∆Tset(t)−∆Tcc(t)

)
+ yopp

= Kp1 ·
(
∆Tset(t)− c⊤lin ·∆x(t)

)
+ yopp

= −Kp1 · c⊤lin ·∆x(t) +Kp1 ·∆Tset(t) + yopp . (5.110)

With this control structure, the linearized system (5.18) does not have to be extended with the
control error e(t) for the application of Ackermann’s formula, as it is the case in Sec. 5.2.3.
Instead, the formula for the design of the state feedback control is directly applied to the
linearized system (5.18) while considering the structure of the P output feedback control in
(5.109):

ycl(t) = −
(
Kx +Kp1 · c⊤lin

)
·∆x(t) + yopcl = −Ks1 ·∆x(t) + yopcl . (5.111)

Thus, Ackermann’s formula can be directly applied to determine the gain Ks1 of the state
feedback control in (5.111). By striving for a stationary disturbance rejection, the individual
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gains Kp1 and Kx are derived, as described in Sec. 5.2.3:

Kp1 = −
(
c⊤lin ·A−1

lin · blin
)−1

, (5.112)

Kx = Ks1 −Kp1 · c⊤lin. (5.113)

Thus, the transfer function G3(s) of the closed control loop is established by inserting (5.109)
into the linearized system (5.18):

∆ẋ(t) = Alin ·∆x(t) + blin ·
(
−
(
Kx +Kp1 · c⊤lin

)
·∆x(t) +Kp1 ·∆Tset(t)

)
+Elin ·∆d(t). (5.114)

Subsequently, the system dynamics in (5.114) are transformed into the Laplace domain:

G3(s) =
Tcc(s)

Tset(s)

= c⊤lin ·
(
s · I −

(
Alin − blin ·

(
Kx +Kp1 · c⊤lin

)))−1

· blin ·Kp1. (5.115)

Cascade Control Based on the Nonlinear Model Identification Adaptive Control

For the determination of the transfer function G3(s) of the inner control loop based on the
nMIAC in Sec. 5.2.4, the control law (5.79) is inserted into the nonlinear subsystem equation
(5.73):

Ṫcc(t) = −I · Tcc(t) +
1

Cop
cc
·
(
Cop

cc ·
(
λly ·

(
Tset − Tcc(t)

)
+ I · Tcc(t)

− Ulk(t)

Cop
cc
· Tev(t)−

1

Cop
cc
·
(
c̄lco,cc · ṁ(t)

)
· Tco(t)

))

+
Ulk(t)

Cop
cc
· Tev(t) +

1

Cop
cc
·
(
c̄lco,cc · ṁ(t)

)
· Tco(t)

= λly ·
(
Tset − Tcc(t)

)
(5.116)

Transforming (5.116) into the Laplace domain yields

s · Tcc(s) = λly ·
(
Tset(s)− Tcc(s)

)
. (5.117)

Thus, the transfer function of the inner control loop results:

G3(s) =
Tcc(s)

Tset(s)
=

λly

λly + s
. (5.118)
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5.3 Conclusion

In this chapter, a simplified LHP state-space model has been derived from the complex
nonlinear LHP state-space model in Chapter 4. The simplified model is based on the first
law of thermodynamics for open systems and includes the important mass flow rate as a
model parameter. With that in mind, the state-of-the-art PI controller has been designed
based on the simplified state-space model in the desired steady-state OP. Furthermore, several
two-degree-of-freedom control structures have been proposed that exploit the optimization
potential of the common PI controller under consideration of the given requirements. On
the one hand, one of the common steady-state models in the literature has been adapted and
incorporated in a disturbance feedforward control to improve the disturbance performance of
the PI controller. Thus, the required stationary heater output is already set in the controller
by modeling the power gap between the natural and the desired stationary behavior of the
OT. On the other hand, the full-state feedback control has harnessed the measurability of
all states which has not been given in the previous chapter. Thus, the need for elaborate
state estimation methods, which place higher demands on the hardware, has been eliminated.
However, the linear controllers have been designed for the local behavior around a fixed
OP. To adapt the controller to the varying OPs and to incorporate the variation of the mass
flow rate over the operating range due to changing operating conditions in the controller,
an nMIAC has been designed based on Lyapunov’s direct method. This nonlinear controller
identifies the temporal progression of the mass flow rate and the thermal resistance of the
heat leak from the measured temperatures. Thus, the controller is able to adapt the OP to the
varying disturbances improving the precision of the LHP OT control.

All four controllers have been designed to control the CC temperature. For the control of
the evaporator temperature as closest temperature to the cooled object, these controllers
have been extended with an outer control loop. Thus, the direct control of the evaporator
temperature with a PI controller, which may lead to an undesired dynamic behavior of the
control loop as reported in the literature, has been circumvented by the cascade structure.
This structure still reduces the temperature variations of an LHP-cooled object based on the
close evaporator temperature.

Up to this point, the focus has been set on modeling and controlling a conventional LHP. In
the next chapter, advanced LHP-based heat transport systems are investigated, which further
extend the current structures and methods.





6 Nonlinear Model-Based Control Designs for
Advanced Loop Heat Pipe Systems

In the previous chapters, a single LHP is modeled and controlled in order to design an
effective thermal control system. The single LHP structure, as it is shown in Fig. 4.1, can be
referred to as the basic LHP structure since it represents a conventional LHP with its five
fundamental components. As reported in Sec. 2.3, different advanced heat transport systems
are based on connecting a conventional LHP with further components. In this thesis, two
relevant extensions are investigated. An attached heat source with significant thermal mass
at the evaporator has a non-negligible impact on the dynamics of the LHP, which may cause
temperature oscillations during LHP operation (see Sec. 2.4). These oscillations need to be
prevented by adequate control algorithms. Another kind of extension is used for the thermal
control of LCTs, where two parallel LHPs with ArHPs are thermally coupled to increase the
overall heat transfer and contribute to an isothermal LCT platform. Thus, a multiple-input-
multiple-output (MIMO) system is created in which two control heaters must be coordinated.
Besides the modeling of these advanced heat transport systems, the model-based design of
suitable control algorithms is in the focus of the next sections.

6.1 Complex Dynamical Modeling of Advanced Loop Heat
Pipe Systems

A modular modeling approach is derived in this section to model advanced LHP systems,
e.g. an LHP with an attached thermal mass or parallel LHPs of an LCT. For the overall
dynamical state-space models of such complex systems, the theory of thermal networks in
Sec. 3.1.2 is used to describe the structural extensions of the evaporators in these systems.
The corresponding state-space representation of the application-specific thermal networks
is created out of a given set of thermal resistances and capacitances. Combined with one or
several LHP state-space models (4.84), formerly developed in Chapter 4, the overall dynamical
model of the advanced LHP system is established.

First, the general state-space model (3.69) of a thermal network is adapted to the specific
structures of the advanced LHP system with one or several LHPs. The total heat Q̇hs of the
heat source splits into q heat inputs Q̇sf at the surfaces of the thermal masses in the thermal
network. At the interfaces between the evaporators of the r LHPs and the thermal network,
r heat loads Q̇l

ev(t) (l = 1, ..., r) are functions of the corresponding surface temperatures
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T l
ev,sf (t) and the fluid temperatures T l

ev(t) of the r evaporators:

Q̇l
ev(t) =

1

Rl
sf

·
(
T l
ev,sf (t)− T l

ev(t)
)
, (6.1)

with the thermal resistance Rsf between the surface and the fluid of the evaporator. Inserting
(4.38) into (6.1) and solving the resulting equation for the heat load Q̇l

ev(t) yields a function
of the LHP temperatures T l

ev,s(t) and T l
cc(t):

Q̇l
ev(t) =

(
Rl

sh +Rl
lk

)
T l
ev,sf (t)−Rl

lkT
l
ev,s(t)−Rl

shT
l
cc(t)

Rl
sfR

l
lk +Rl

lkR
l
sh +Rl

sfR
l
sh︸ ︷︷ ︸

=:J l

=
Rl

sh +Rl
lk

J l︸ ︷︷ ︸
=:Kl

·T l
ev,sf (t)−

Rl
lk

J l︸︷︷︸
=:Ll

·T l
ev,s(t)−

Rl
sh

J l︸︷︷︸
=:Ml

·T l
cc(t), (6.2)

with the parameters J l toMl. Consequently, a disturbance vector dtn(t) extends the state-
space model (3.69) by the LHP temperatures T l

ev,s(t) and T l
cc(t). In addition, the dimension of

the output vector ytn(t) changes due to the addition of the evaporator surface temperatures
T l
ev,sf (t). With these modifications, the state equation (3.69a) and the output equation (3.69b)

are adapted as follows:

ẋtn(t) = Atn · xtn(t) +Btn · utn(t) +Etn · dtn(t), (6.3a)
ytn(t) = Ctn · xtn(t) + F tn · dtn(t), (6.3b)

with the vectors

xtn(t) =
[
T1(t) · · · Tn(t)

]⊤
, (6.4)

utn(t) =
[
Q̇sf,1(t) · · · Q̇sf,q(t)

]⊤
, (6.5)

dtn(t) =
[
T 1
ev,s(t) T 1

cc(t) · · · T r
ev,s(t) T r

cc(t)
]⊤

, (6.6)

ytn(t) =
[
Q̇1

ev(t) T 1
ev,sf (t) · · · Q̇r

ev(t) T r
ev,sf (t)

]⊤
, (6.7)

and the matricesAtn ∈ Rn×n,Btn ∈ Rn×q ,Ctn ∈ R2r×n,Etn ∈ Rn×2r , F tn ∈ R2r×2r .

Following the subsequent step-by-step instructions, the matrices of the state-space model
(6.3) are constructed. These instructions describe the implemented algorithm that determines
the matrices of arbitrary thermal networks attached to the evaporator of one or several LHPs
automatically. Based on the given set of thermal resistances and conductances in the thermal
network, the matrices of (6.3) are directly established according to the order of the variables
in (6.4), (6.5), and (6.7). In this way, the construction of the differential equation system
of the thermal network based on Kirchhoff’s current law, as presented in Example 3.1, is
skipped. For the system matrix Atn, graph theory is utilized to describe the thermal network
mathematically. The developed instructions include the following steps:
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1. Construction of an adjacency matrix Atn ∈ Rn×n (cf. [TT13, p. 421]) from the fi-
nite undirected graph G = (T,E) of the thermal network with the set of vertices
T = {T1, ..., Tn} and the set of edges E = {{T1, T1}, {T1, T2}, ..., {Tn, Tn}}. Each
vertex Ti ∈ T corresponds to the dedicated temperature node in the thermal network.
The weights of the edges {Ti, Tj} ∈ E correspond to the reciprocals of the thermal
resistances Rth,ij between two vertices Ti, Tj ∈ T:

Atn(i, j) =

{
1

Rth,ij
, if {Ti, Tj} ∈ E,

0, else.
(6.8)

2. Subtraction of the sum of all row elements Atn(i, j) in Atn from the diagonal element
Atn(i, i) in each row i:

Atn(i, i) = Atn(i, i)−
n∑

j=1

Atn(i, j), ∀i ∈ {1, ..., n}. (6.9)

3. Subtraction of the coefficient Kl in (6.2) from the diagonal element Atn(i, i), to which
xtn,i(t) = T l

ev,sf (t) applies:

Atn(i, i) =

{
Atn(i, i)−Kl, if xtn,i(t) = T l

ev,sf (t), ∀l ∈ {1, ..., r},
Atn(i, i), else.

(6.10)

4. Multiplication of the i-th row of Atn with the corresponding reciprocal of the thermal
capacitance Cth,i:

Atn(i, j) = Atn(i, j) ·
1

Cth,i
, ∀i, j ∈ {1, ..., n}. (6.11)

The construction of the input matrix Btn ∈ Rn×q is given as follows:

1. For each external heat input Q̇sf,j(t) to the temperature node xtn,i(t) = Ti(t),
Btn(i, j) = 1 holds, otherwise Btn(i, j) = 0:

Btn(i, j) =

{
1, if Q̇sf,j(t) to xtn,i(t) = Ti(t), ∀j ∈ {1, ..., q},
0, else.

(6.12)

2. Multiplication of the i-th row of Btn with the corresponding reciprocal of the thermal
capacitance Cth,i:

Btn(i, j) = Btn(i, j) ·
1

Cth,i
, ∀i ∈ {1, ..., n}, j ∈ {1, ..., q}. (6.13)

The matrix Ctn ∈ R2r×n results from the following:
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1. The element Ctn(2 · l − 1, i) equals the coefficient Kl in (6.2), for which
xtn,i(t) = T l

ev,sf (t) holds, otherwise Ctn(2 · l − 1, i) = 0:

Ctn(2 · l − 1, i) =

{
Kl, if xtn,i(t) = T l

ev,sf (t), ∀l ∈ {1, ..., r},
0, else.

(6.14)

2. If the state xtn,i(t) corresponds to the evaporator surface temperature T l
ev,sf (t), then

Ctn(2 · l, i) = 1, otherwise Ctn(2 · l, i) = 0:

Ctn(2 · l, i) =
{
1, if xtn,i(t) = T l

ev,sf (t), ∀l ∈ {1, ..., r},
0, else.

(6.15)

The matrix Etn ∈ Rn×2r is given as follows:

1. The element Etn(i, 2 · l − 1) equals the coefficient Ll in (6.2), for which
xtn,i(t) = T l

ev,sf (t) holds:

Etn(i, 2 · l − 1) =

{
Ll, if xtn,i(t) = T l

ev,sf (t), ∀l ∈ {1, ..., r},
0, else.

(6.16)

2. The elementEtn(i, 2·l) equals the coefficientMl in (6.2), for which xtn,i(t) = T l
ev,sf (t)

holds:

Etn(i, 2 · l) =
{
Ml, if xtn,i(t) = T l

ev,sf (t), ∀l ∈ {1, ..., r},
0, else.

(6.17)

3. Multiplication of the i-th row of Etn with the corresponding reciprocal of the thermal
capacitance Cth,i:

Etn(i, j) = Etn(i, j) ·
1

Cth,i
, ∀i ∈ {1, ..., n}, j ∈ {1, ..., 2 · r}. (6.18)

The matrix F tn ∈ R2r×2r is constructed as follows:

1. The element Ftn(2 · l− 1, 2 · l− 1) equals the negative coefficient Ll in (6.2), otherwise
Ftn(2 · l − 1, 2 · l − 1) = 0:

Ftn(2 · l − 1, 2 · l − 1) =

{
−Ll, if xtn,i(t) = T l

ev,sf (t), ∀l ∈ {1, ..., r},
0, else.

(6.19)

2. The element Ftn(2 · l − 1, 2 · l) equals the negative coefficientMl in (6.2), otherwise
Ftn(2 · l − 1, 2 · l) = 0:

Ftn(2 · l − 1, 2 · l) =
{
−Ml, if xtn,i(t) = T l

ev,sf (t), ∀l ∈ {1, ..., r},
0, else.

(6.20)
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These specific instructions enable a state-space modeling of arbitrary thermal networks
connecting multiple LHPs. Based on this procedure, the corresponding state-space models of
the considered advanced LHP systems in this thesis are constructed in the next sections.

6.1.1 Loop Heat Pipe with Attached Thermal Mass

For the consideration of the thermal behavior of an additional thermal mass at the evaporator
and its impact on the LHP dynamics, the network representation of a thermal mass is attached
to the thermal network of the evaporator subsystem in Fig. 4.4. Thus, the LHP state-space
model is extended to form the overall state-space model of a conventional LHP with a critical
total evaporatormass in relation to the total thermalmass of the CC (cf. [HB12]) by establishing
the state-space model of the thermal network with the previous modular modeling approach.
A schematic of the resulting LHP system and its corresponding thermal network are depicted
in Fig. 6.1 and Fig. 6.2, respectively.

thermal mass

heat sourcecontrol heater

heat sink

condenser (CO)

liq
ui
d
lin

e
(L
L)

vaporline
(VL)

compensation
chamber (CC) evaporator

(EV)

Figure 6.1: Structure of an LHP with attached thermal mass

With the extension at the evaporator, the initial impact point of the heat source moves further
away from the working fluid. The heat input from the heat sources is applied directly to the
thermal mass, which subsequently transfers the heat through the evaporator body into the
working fluid for evaporation and further transport to the heat sink.
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Tev

Rsh

Tev,s

Rlk

Q̇lkTcc

Cev,sf

Tev,sf

Rsf

Q̇ev

Q̇sf

EV

CC

Figure 6.2: Thermal network representation of the evaporator subsystem with attached thermal mass

Using the above instructions, the following one-dimensional state-space model of the thermal
mass network in Fig. 6.2 is established:

ẋtn(t) = atn · xtn(t) + btn · utn(t) + etn · dtn(t), (6.21a)
ytn(t) = ctn · xtn(t) + F tn · dtn(t), (6.21b)

with the variables and vectors xtn(t) = Tev,sf (t), utn(t) = Q̇sf (t),
dtn(t) = [Tev,s(t), Tcc(t)]

⊤, and ytn(t) = [Q̇ev(t), Tev,sf (t)]
⊤.

The matrices in (6.21) are defined as follows:

atn = − 1

Cev,sf
K, (6.22)

btn =
1

Cev,sf
, (6.23)

ctn =

[
K
1

]
, (6.24)

etn =
[

1
Cev,sf

L 1
Cev,sf

M
]
, (6.25)

F tn =

[
−L −M
0 0

]
, (6.26)
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with the thermal capacitance Cev,sf , the thermal resistance Rsf , and the parameters K, L,
andM defined in (6.2).

For the overall state-space model of the LHP with attached thermal mass, (6.21) is con-
nected with the LHP state-space model (4.84) by merging both state spaces. Further-
more, the heat load Q̇ev(t) in the overall state-space model results from the output of
the extended thermal network in (6.21b). Thus, the final state-space model with the
extended state vector x(t) = [Tcc(t), L2ϕ(t), ṁ

l(t), Tev,sf (t)]
⊤, the same input variable

u(t) = Q̇cc(t), the new disturbance vector d(t) = [Q̇sf (t), Tsk(t)]
⊤, and the new output

vector y(t) = [Tcc(t), Tev,sf (t), Tco,i(t), Tco,o(t)]
⊤ results:

ẋ(t) = f
(
x(t), u(t),d(t)

)
, (6.27a)

y(t) = g
(
x(t),d(t)

)
. (6.27b)

While f1 - f3 in (6.27a) correspond to the previous state functions (4.85), (4.86), (4.87), the
fourth state function is derived from (6.21a):

f4 = − K
Cev,sf

· Tev,sf (t) +
1

Cev,sf
· Q̇sf (t) +

L
Cev,sf

· Tev,s(t) +
M

Cev,sf
· Tcc(t). (6.28)

Accordingly, g1, g3, and g4 in (6.27b) result from the previous output equation of (4.84), i.e.
the output functions (4.71), (4.73), and (4.74), while the second output function g2 corresponds
to the second output of (6.21b).

With this model, the simulation of the LHP behavior under consideration of different sizes of
the thermal mass at the evaporator is possible. Furthermore, the basis for a corresponding
model-based control design to handle the possible nonlinear effects in form of temperature
oscillations is set. The stability limit of (6.27) in the OP in dependence on Cev,sf can be
determined based on Theorem 4.1. The resulting critical value of Cev,sf for the considered
LHP system is calculated in Sec. 7.2.5.

In the following section, the introduced approach is extended to model two parallel LHPs.

6.1.2 Parallel Loop Heat Pipes with Arterial Heat Pipes

According to Fig. 2.1, the heat transport system of an LCT consists of parallel LHPs with
ArHPs. Both LHPs spread across the structure that carries the LCT and make sure that the
LCT is cooled homogeneously. Thus, a balanced temperature level is achieved that supports
the optimal operation of the laser for high precision communications. For the modeling of
the complex heat transport system with parallel LHPs, the LCT structure is regarded as one
accumulated thermal mass, which is thermally coupled with the ArHPs and the evaporators of
both LHPs. A schematic of LHP a and LHP b with their respective ArHPs on the LCT structure
and its corresponding thermal network are presented in Fig. 6.3 and Fig. 6.4, respectively.
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Figure 6.3: Structure of two parallel LHPs (LHP a and LHP b) each with two ArHPs mounted on the thermal mass of
a heat source (e.g. an LCT)
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Figure 6.4: Thermal network representation of the evaporator subsystems of two parallel LHPs (LHP a and LHP b)
each with two ArHPs mounted on the thermal mass of a heat source (e.g. an LCT)
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Following the previous instructions, a thermal network is designed that is able to connect two
parallel LHPs with a thermal mass. Before the dynamical models of the two LHPs are coupled
to form the model of the advanced LCT heat transport system, the following assumption is
made.

Assumption 6.1. The heat exchange between the condenser lines of both LHPs in the condenser
plates is neglected.

Assumption 6.1 applies to the condenser plates of the LCT, as presented in Fig. 2.1, since the
local temperature difference as the driving force of the heat exchange is smaller between both
condenser lines than between each condenser line and the heat sink. In addition to perfect
cooling conditions under consideration of Assumption 4.1, a thermal network between the
heat source, the evaporators, and their respective ArHPs is established to model the heat
transfer paths starting from the heat load Q̇sf (t) at the surface of the thermal mass. The
resulting seven-dimensional state-space model is given by

ẋtn(t) = Atn · xtn(t) + btn · utn(t) +Etn · dtn(t), (6.29a)
ytn(t) = Ctn · xtn(t) + F tn · dtn(t), (6.29b)

where

xtn(t) =
[
T a
hp1(t) T a

hp2(t) T a
ev,sf (t) T b

hp1(t) T b
hp2(t) T b

ev,sf (t) Ttm(t)
]⊤

, (6.30)

utn(t) = Q̇sf (t), (6.31)

dtn(t) =
[
T a
ev,s(t) T a

cc(t) T b
ev,s(t) T b

cc(t)
]⊤

, (6.32)

ytn(t) =
[
Q̇a

ev(t) T a
ev,sf (t) Q̇b

ev(t) T b
ev,sf (t)

]⊤
, (6.33)

with the temperature Ttm(t) and the thermal capacitance Ctm of the LCT structure. The
superscripts a and b of the temperatures Thp1(t), Thp2(t), and Tev,sf (t) as well as of the heat
load Q̇ev(t) mark the affiliation with the respective LHP. The system matrix Atn ∈ R7×7

contains the following diagonal elements:

Atn(1, 1) = −
1

Ca
hp1

(
1

Ra
hp1

+
1

Ra
hp1,tm

)
,

Atn(2, 2) = −
1

Ca
hp2

(
1

Ra
hp2

+
1

Ra
hp2,tm

)
,

Atn(3, 3) = −
1

Ca
ev,sf

(
1

Ra
hp1

+
1

Ra
hp2

+
1

Ra
sf,tm

+Ka

)
,

Atn(4, 4) = −
1

Cb
hp1

(
1

Rb
hp1

+
1

Rb
hp1,tm

)
,

Atn(5, 5) = −
1

Cb
hp2

(
1

Rb
hp2

+
1

Rb
hp2,tm

)
,
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Atn(6, 6) = −
1

Cb
ev,sf

(
1

Rb
hp1

+
1

Rb
hp2

+
1

Rb
sf,tm

+Kb

)
,

Atn(7, 7) = −
1

Ctm

(
1

Ra
hp1,tm

+
1

Ra
hp2,tm

+
1

Ra
sf,tm

+
1

Rb
hp1,tm

+
1

Rb
hp2,tm

+
1

Rb
sf,tm

)
,

with the respective thermal resistances Rhp1,tm, Rhp2,tm, and Rsf,tm of LHP a and LHP b.
All other elements of Atn are zero except for the following elements:

Atn(1, 3) =
1

Ra
hp1C

a
hp1

, Atn(1, 7) =
1

Ra
hp1,tmCa

hp1

,

Atn(2, 3) =
1

Ra
hp2C

a
hp2

, Atn(2, 7) =
1

Ra
hp2,tmCa

hp2

,

Atn(3, 1) =
1

Ra
hp1C

a
ev,sf

, Atn(3, 2) =
1

Ra
hp2C

a
ev,sf

,

Atn(3, 7) =
1

Ra
sf,tmCa

ev,sf

, Atn(4, 6) =
1

Rb
hp1C

b
hp1

,

Atn(4, 7) =
1

Rb
hp1,tmCb

hp1

, Atn(5, 6) =
1

Rb
hp2C

b
hp2

,

Atn(5, 7) =
1

Rb
hp2,tmCb

hp2

, Atn(6, 4) =
1

Rb
hp1C

b
ev,sf

,

Atn(6, 5) =
1

Rb
hp2C

b
ev,sf

, Atn(6, 7) =
1

Rb
sf,tmCb

ev,sf

,

Atn(7, 1) =
1

Ra
hp1,tmCtm

, Atn(7, 2) =
1

Ra
hp2,tmCtm

,

Atn(7, 3) =
1

Ra
sf,tmCtm

, Atn(7, 4) =
1

Rb
hp1,tmCtm

,

Atn(7, 5) =
1

Rb
hp2,tmCtm

, Atn(7, 6) =
1

Rb
sf,tmCtm

.
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The other matrices of the state-space model (6.29) are given by

btn =
[
0 0 0 0 0 0 1

Ctm

]⊤
, (6.34)

Ctn =


0 0 Ka 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 Kb 0
0 0 0 0 0 1 0

 , (6.35)

Etn =



0 0 0 0
0 0 0 0

1
Ca

ev,sf
La 1

Ca
ev,sf
Ma 0 0

0 0 0 0
0 0 0 0
0 0 1

Cb
ev,sf

Lb 1
Cb

ev,sf

Mb

0 0 0 0


, (6.36)

F tn =


−La −Ma 0 0
0 0 0 0
0 0 −Lb −Mb

0 0 0 0

 . (6.37)

Finally, the state-space model of the parallel LHPs with ArHPs is constructed by connecting
(6.29) with two state-space models (4.84) for LHP a and LHP b. The combination results in the
overall state-space model (6.38):

ẋ(t) = f
(
x(t),u(t),d(t)

)
, (6.38a)

y(t) = g
(
x(t),d(t)

)
, (6.38b)

with the extended state vector

x(t) =
[
T a
cc(t) La

2ϕ(t) ṁl,a(t) T b
cc(t) Lb

2ϕ(t) ṁl,b(t) x⊤
tn(t)

]⊤
, (6.39)

the new input vector
u(t) =

[
Q̇a

cc(t) Q̇b
cc(t)

]⊤
, (6.40)

the disturbance vector
d(t) =

[
Q̇sf (t) Tsk(t)

]⊤
, (6.41)

and the new output vector

y(t) =
[
T a
cc(t) T a

ev,sf (t) T a
coi(t) T a

coo(t) T b
cc(t) T b

ev,sf (t) T b
coi(t) T b

coo(t)
]⊤

.
(6.42)

Similar to the division of the vector functions of (2.1) into (2.3) to (2.5) and (2.6) to (2.8), the
individual functions of f and g in (6.38) are derived from the LHP state-space model (4.84)
and the thermal network model (6.29). The order of the functions is related to the order of
the states in (6.39) and of the outputs in (6.42). Both the functions f1 to f3 for LHP a and f4



124 6 Nonlinear Model-Based Control Designs for Advanced Loop Heat Pipe Systems

to f6 for LHP b in (6.38a) correspond to the previous state functions (4.85), (4.86), (4.87). The
seven other functions f7 to f13 are derived from the state equation (6.29a). Similarly, g1, g3,
and g4 for LHP a as well as g5, g7, and g8 for LHP b in (6.38b) result from the previous output
functions (4.71), (4.73), and (4.74) of the LHP state-space model (4.84). The output functions
g2 and g5 correspond to the second and the fourth output of (6.29b).

The state-space model (6.38) enables the simulation of parallel LHPs with ArHPs as they can
be found in the heat transport system of an LCT. Due to the coupling of both LHPs with the
thermal mass of the LCT, the overall behavior of the advanced LHP system is significantly
influenced. For the consideration of the coupling effects, an adequate MIMO controller is
designed in the subsequent section.

6.2 Nonlinear Control Designs for Advanced Loop Heat
Pipe Systems

For the model-based design of adequate controllers for the considered advanced LHP systems
in Sec. 6.1.1 and 6.1.2, the nonlinear designs based on the exact input-output linearization in
Sec. 4.2 are adapted. A nonlinear controller is designed for the LHP with attached thermal
mass considering the new system equations. For the heat transport system with parallel LHPs,
the nonlinear control design is extended to the MIMO case.

6.2.1 PI State Feedback Control Based on Exact Input-Output
Linearization for Loop Heat Pipes with Attached Thermal Mass

The design of nonlinear controllers for the LHPwith attached thermal mass results analogously
from the approaches in Sec. 4.2. Both the CC controller and the cascade controller are designed
for the new state-space model (6.27).

Compensation Chamber Control

The input-affine form of (6.27) for the desired CC control design is given by

ẋ(t) = a
(
x(t),d(t)

)
+ b · u(t), (6.43a)

y(t) = c1
(
x(t)

)
= Tcc(t), (6.43b)

with the input vector
b =

[
1

Cop
cc

0 0 0
]⊤

. (6.44)

Thus, the functions a1, a2, and a3 of a correspond to (4.89), (4.90), and (4.91), while a4 is equal
to f4 of (6.27a). The function c1 in (6.43b) corresponds to g1 in (6.27b).
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According to (4.102), the well-defined relative degree δ = 1 of (6.43) is determined from the
condition

Lbc1
(
x(t)

)
=

1

Cop
cc
̸= 0. (6.45)

Thus, the first state corresponds to the external dynamics while the other three states de-
scribe the internal dynamics. The following state feedback controller ycl(t) is obtained from
(4.105):

ycl(t) =
v(t)− a1

(
x(t),d(t)

)
− η0c1

(
x(t)

)
b1

, (6.46)

where the new input variable v(t) is calculated by a PI controller of the form (4.109) with AW
strategy (cf. Sec. 4.2.1). The local stability of the OP of the internal dynamics is numerically
evaluated in Sec. 7.4.4 according to Lyapunov’s indirect method in Theorem 4.1 and Hurwitz
criterion in Theorem A.1. In addition, it is verified in simulations in Sec. 7.4.2.

Evaporator Control

For the control of the evaporator temperature with the temperature sensor TS 2 in Fig. 4.1 on
the surface of the evaporator mass, a cascade control is designed according to the approach in
Sec. 4.2.2. Since the state Tev,sf corresponds to the measured evaporator temperature, the
output equation of (6.43) is extended for the cascade control design according to (6.27b):

y(t) =

[
Tcc(t)

Tev,sf (t)

]
(6.47)

Based on (6.28), the differential equation for Tev,sf (t) is given by

Ṫev,sf (t) = −
K

Cev,sf
·Tev,sf (t)+

1

Cev,sf
· Q̇sf (t)+

L
Cev,sf

·Tev,s(t)+
M

Cev,sf
·Tcc(t). (6.48)

As before, (6.48) is linearized about the OP and transferred into the Laplace domain, which
results in the transfer function G2(s) of LHP Part 2 (cf. Fig. 4.9):

G2(s) =
Tev,sf (s)

Tcc(s)
=
N

s−O, (6.49)

with the parameters N and O:

N =
1

Cev,sf
·
(
M+ L ·

B2
wf · popcc

popev ·
(
Awf − ln (popev)

)2 · (T op
cc + Cwf )2

)
, (6.50)

O = − 1

Cev,sf
· K. (6.51)

The considered capacity of the thermal mass causes a linear behavior between Tcc(t) and
Tev,sf (t). This is described by the first-order transfer function (6.49). The transfer function
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G1(s) of the inner control loop arises from the transfer function G(s) of the exact input-
output linearized external dynamics of (6.43) with the arbitrary coefficient η0 extended by a
P controller of the form (4.124) with proportional gain Kp1:

G1(s) =
Tcc(s)

Tset(s)
=

Kp1

s+ (η0 +Kp1)
. (6.52)

The series connection of (6.49) and (6.52) describes the final transfer function G3(s) for the
model-based PI control design of the outer control loop:

G3(s) =
Tev(s)

Tset(s)
= G1(s) ·G2(s) =

Kp1

s+ (η0 +Kp1)
· N
s−O. (6.53)

The form of the PI controller is given in (4.135).

The disturbance transfer function G4(s) is derived from (6.48):

G4(s) =
Tev,sf (s)

Q̇sf (s)
=
P

s−O, (6.54)

with the parameter P :
P =

1

Cev,sf
. (6.55)

Similar to the approach in Sec. 4.2.2, a stationary disturbance feedforward control

yff (t) = Kq · Q̇sf (t) (6.56)

is added to the cascade controller. The gainKq of the feedforward component is determined
by the quotient of (6.53) and (6.54) with s = 0:

Kq =
P
N ·

η0 +Kp1

Kp1
. (6.57)

The cascade controller is applied in simulations in Sec. 7.4.2. The parameterization and
discretization of both previously designed controllers are carried out as presented in Sec. 4.2.1
and 4.2.2, respectively.

After the completion of the control designs for an LHP with attached thermal mass, the control
design for parallel LHPs is presented in the following.

6.2.2 PI State Feedback Control Based on Exact Input-Output
Linearization for Parallel Loop Heat Pipes with Arterial Heat
Pipes

For the application of the exact input-output linearization to the advanced heat transport
systemwith parallel LHPs and ArHPs, this section follows the MIMO case of the corresponding
control design described in [Ada18, p. 371]. While the linear state-of-the-art controllers for
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the two control heaters on both CCs consider only the linear transfer behavior between their
individual inputs and outputs, the coupling of both LHP is neglected. An MIMO control design
approach, however, incorporates the coupling to improve the controller performance as well
as to handle corresponding nonlinear effects like undesirable temperature oscillations.

The input-affine form of (6.38) is given by the following state-space model:

ẋ(t) = a
(
x(t),d(t)

)
+B · u(t), (6.58a)

y(t) =

[
c1
(
x(t)

)
c2
(
x(t)

)] = [T a
cc(t)

T b
cc(t)

]
, (6.58b)

with the input matrix

B =
[
b1 b2

]
=



1
Cop,a

cc
0

0 0
0 0
0 1

Cop,b
cc

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0



. (6.59)

The functions c1 and c2 in (6.58b) correspond to g1 and g5 of g in (6.38b), respectively. The
state functions a1, a2, and a3 representing LHP a and a4, a5, and a6 representing LHP b
of a in (6.58a) are equal to the functions (4.89), (4.90), and (4.91). Consequently, the other
state functions a7 to a13 of a are derived from the corresponding functions f7 to f13 of f in
(6.38a).

As before in Sec. 4.2.1, the Byrnes-Isidori normal form of (6.58) is directly derived from the
model itself, since the external dynamics consists of the first and fourth state, while the other
states form the state vector of the internal dynamics. For both output variables y1 and y2
in (6.58b), the relative degree δi (i = 1, 2) is defined by the smallest natural number which
fulfills the following equation for at least one j ∈ {1, 2} [Ada18, p. 347]:

LbjL
δi−1
a ci

(
x(t)

)
̸= 0. (6.60)

For (6.58), it holds:

Lb1c1
(
x(t)

)
=

1

Cop,a
cc
̸= 0, (6.61)

Lb2
c2
(
x(t)

)
=

1

Cop,b
cc

̸= 0. (6.62)
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Thus, the relative degrees of both outputs are well-defined and given by

δ1 = 1, (6.63)

δ2 = 1. (6.64)

In order to apply the exact input-output linearization to the coupled model (6.58), the de-
coupling matrix Z must be regular [Ada18, p. 373]. For the coupled model, Z is defined as
follows:

Z =

[
Lb1

c1
(
x(t)

)
0

0 Lb2
c2
(
x(t)

)] = [ 1
Cop,a

cc
0

0 1

Cop,b
cc

]
. (6.65)

The matrix condition is verified via the determinant of Z:

det (Z) =
1

Cop,a
cc Cop,b

cc

̸= 0. (6.66)

Since (6.66) is nonzero, Z is regular. Thus, the state feedback controller for the coupled model
(6.58) can be constructed according to [Ada18, p. 373]:

ycl(t) = −Z−1 ·
[
Lac1

(
x(t)

)
+ η10c1

(
x(t)

)
Lac2

(
x(t)

)
+ η20c2

(
x(t)

)]+Z−1 · v(t), (6.67)

with the scalar coefficients η10 and η20 as well as the new input vector v(t). Similar to
Sec. 4.2.1, the state feedback controller is extended by two PI controllers of the form (4.109)
with AW strategy (cf. Sec. 4.2.1) for improved robustness:

v(t) =

[
yapi(t)
ybpi(t)

]
. (6.68)

The total control loop for the heat transport system comprising the parallel LHPs with ArHPs
is depicted in Fig. 6.5.

The local stability of the OP of the internal dynamics is numerically evaluated in Sec. 7.4.4
according to Lyapunov’s indirect method in Theorem 4.1 and Hurwitz criterion in TheoremA.1
as well as verified in simulations in Sec. 7.4.3.
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Figure 6.5: Coupled control loops of a heat transport system (HTS) consisting of parallel LHPs (LHP a and LHP b)
with a PI controller each, a nonlinear state feedback control (SF), and the AW structures

6.3 Conclusion

For the modeling and control of advanced LHP-based heat transport systems, the complex
model of a conventional LHP in Chapter 4 has been extended to include an attached thermal
mass at the evaporator as well as to form a coupled model of two parallel LHPs with ArHPs.
By using the electrical analogy of thermal networks, the model extensions have been described
in a clear and comprehensible manner. Furthermore, the developed step-by-step instructions
for thermal networks of LHPs enable the automatic construction of the matrices of the
corresponding state-space model. In addition, the algorithm allows for the simple adaption of
the model to further advanced LHP-based systems with a different thermal setting including
one or several LHPs.

The simulation of LHP-based heat transport systems with additional thermal mass including
its impact on the LHP dynamics is now possible. Due to the coupling of the thermal networks
with the respective LHP systems, the heat load at the evaporators is influenced by both sides.
Thus, the modulation of the net heat load at the evaporator has been modeled to consider
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possible temperature oscillations in LHPs with increased thermal evaporator mass and the
heat distribution between two parallel LHPs in simulations.

Besides the models, the previous model-based control designs based on the exact input-output
linearization have been extended to the new system structures in order to consider their
dynamics in the control design. While the increased thermal evaporator mass adds a new
state to the previous complex model of an LHP, the coupled state-space model of parallel
LHPs forms an MIMO system with two control inputs and two controlled outputs. For this
reason, the model-based control designs introduced in Chapter 4 could also been applied to
the LHP model with attached thermal mass. For parallel LHPs, however, the corresponding
control design for MIMO systems has been used to consider the coupled model structure in
contrast to the linear state-of-the-art controllers based on the main transfer paths.

In the next chapter, the comprehensive verification and validation of the introduced models
and proposed controllers are given. Moreover, the advantages and disadvantages of the models
and controllers are highlighted.
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For the comparison and the validation of the introduced state-space models and proposed
controllers for the conventional LHP and the advanced LHP-based heat transport systems in
the previous chapters, measurement data of three different LHP systems on two different test
benches are available within the framework of the joint project on behalf of the DLR Space
Administration. The first test bench was assembled temporarily during the aforementioned
project for the thermal characterization of LHPs. On this test bench, two conventional LHPs
(LHP 1 and LHP 2) of different manufacturers were tested and thermally characterized. The
second test bench is situated in a vacuum chamber and used for the realization of qualification
tests of ready-to-fly hardware such as the advanced heat transport system of an LCT consisting
of parallel LHPs on an LCT dummy (LHP 3), as discussed in Sec. 6.1.2. Both test facilities
were subject to limited availability, accessibility, and capacity. Thus, test campaigns had
to be planned with progression in the early phase of this thesis. Regarding the slow LHP
processes and the large amount of possible influences on the LHP operation, a limited range of
operating points and conditions could be reached during the time-consuming test runs within
this limited period. In later phases of this thesis, no test facility was accessible. Therefore, the
available test results of the real application are utilized in this thesis to underline the validity
of the state-space models selectively.

Extensive analysis and performance evaluations of the models and the corresponding con-
trollers in this thesis are done using a validated simulation model. The numerical LHP model
in [MKHW19], hereinafter referred to as SIM, is designed in close agreement with the experi-
mental characterization of LHP 1. It is able to provide an LHP simulation solution to LHP end
users for the evaluation of the performances and robustness of controllers. The corresponding
publication [MKHW19] includes the detailed description of the numerical LHP model and the
experimental test bench. As introduced in Sec. 2.2, the model uses the finite-difference method
to solve the partial differential equations of the condenser for a precise prediction of the
mass flows, the phase distribution, and the temperatures along the LHP cycle over the entire
operating range. Thus, the results of this thesis can be further supported by the experimentally
validated mathematical simulation of a conventional LHP as a safe test environment with
unlimited access. In this way, not only arbitrary variations of the operating conditions can be
considered, but also the curves of internal variables are available, which cannot be measured
on the test benches due to the restriction to noninvasive temperature measurements on the
surface of the hermetically sealed LHP.

Some small extensions are realized in order to fit the LHP simulation in [MKHW19] to the
needs in this thesis. For the consideration of a control heater on the CC, the variable Q̇cc

representing the power input of the control heater is added to the corresponding CC energy
balance equation as before in the introduced state-space models (cf. (4.13) or (5.2)). The heat
flow Q̇SIM

ev into the fluid inside the evaporator is approximated exponentially in [MKHW19]
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by a limited growth function fitted to measurement data to model the transfer delay between
the dissipated heat Q̇hs of the heat source and the heat load Q̇SIM

ev . For this thesis, the
limited growth function is substituted by a discrete first-order transfer function based on
Euler’s backward method. This approximates the exponential input-output behavior of the
unidirectional heat transfer path for a user-friendly implementation of arbitrary heat load
profiles in the LHP simulation SIM:

Q̇SIM
ev (k) =

1

1 + Td

Tst

·
(
Q̇hs(k − 1)− Q̇SIM

ev (k − 1)
)
+ Q̇SIM

ev (k − 1), (7.1)

with the delay time constant Td. The same filter approach is applied to obtain the given heat
loads of the state-space models which also experience a transfer delay between the dictated
heating profiles of the heaters imitating heat sources on the test benches and the actual heat
flows into the LHP systems. Hence, Q̇ev of the conventional LHP and Q̇sf of the advanced
LHP systems are delayed by substituting Q̇SIM

ev in (7.1), accordingly. The used time constant
Td of the delays is approximated by means of the delay of the measured temperatures. For the
different LHP systems, the respective values of Td are given in the following table:

Symbol SIM LHP 1 LHP 2 LHP 3

Td 500 s 250 s 222 s 2500 s

Table 7.1: Values of the delay time constant Td with regard to the different LHP systems SIM, LHP 1, LHP 2, and
LHP 3

The controllers designed for the conventional LHP without additional thermal mass at the
evaporator are tested in the LHP simulation SIM, which is implemented inMatlab. For the
verification of the controllers for advanced LHP-based heat transport systems, the introduced
state-space models are implemented in Simulink. A simple controller startup routine is
described in Appendix A.6 to drive the LHP gently into the desired OP without interrupting
the LHP operation and to ensure a safe startup on the test benches.

The parameterization of the state-space models and controllers according to the introduced
approaches in the previous chapters is performed in the next section.

7.1 Parameterization

The parameterization includes the repeated adaption of the state-space models and controllers
to the different LHP systems SIM, LHP 1, LHP 2, and LHP 3. First, the model parameters
are determined based on the respective measurements at steady-state conditions. For this
purpose, the OP of each LHP system is defined in the individual equilibrium point of the same
LHP system at the desired temperature levels. Since the equilibrium points vary with the
controlled and uncontrolled inputs, OPs with values in the middle area of the operating range,
which is given in Table 4.1, are chosen for the respective version of the state-space models.
Second, the control parameters are calculated based on the parameterized models according
to the introduced design approaches.
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7.1.1 Model Parameters

The model parameters are calculated by means of the measured data of the investigated
LHP systems. However, it is only possible to measure temperatures on the exterior surface
of the LHP, and additionally, the interior is rarely known to LHP end user (see Chapter 1).
Thus, the lumped model parameters, which describe distributed thermodynamic processes,
are roughly deduced from the external geometries and by solving the derived steady-state
equations in the OP. The other model parameters are manually adjusted within their physical
limits to ensure that the model represents the values and the system dynamics according to
the temperature measurements as closely as possible. With this parameter-determination
method, the parameters of the LHP state-space models are easily adapted to different LHP
setups without detailed LHP design information and extensive measuring effort for the LHP
end user.

Complex LHP State-Space Model

The complex LHP state-space model (4.84), hereinafter called Model C, includes seven lumped
model parameters Rlk, k2ϕ, ksc, kll, kvl, ksh, and Rsh. For the determination of these pa-
rameters, the known data of the investigated LHP systems are used to solve an appropriate
equation system in the OP. The data includes the input uop and the disturbances dop as well as
the first state T op

cc . Besides the CC temperature, more information is available with the three
measured temperatures T op

ev , T
op
co,i, and T op

co,o. In the OP as equilibrium point of the system,
the derivatives of the states are equal to zero. Hence, the steady-state equations of (4.84) yield
the following three equations:

fop
1 = 0, (7.2)

fop
2 = 0, (7.3)

fop
3 = 0. (7.4)

Furthermore, it holds that the mass flow rates ṁl,op and ṁv,op in the OP are equal. The
second state Lop

2ϕ remains undefined and therefore enlarges the number of parameters. Thus,
an eight-dimensional system of equations is necessary, for which the previous three steady-
state equations (7.2) to (7.4) are already present. Three of the remaining five equations are
obtained by building the difference between the output equations (4.72), (4.73), and (4.74) in
the OP and the measured temperatures T op

ev , T
op
co,i, and T op

co,o:

T op
ev − gop2 = 0, (7.5)

T op
co,i − gop3 = 0, (7.6)

T op
co,o − gop4 = 0. (7.7)
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With the differences between (4.39) and the CC inlet temperature T op
cc,i as well as between

(4.61) and the condenser saturation temperature T op
co,s, the system of equations is completed:

T op
cc,i −

(
Tamb +

(
T op
co,o − Tamb

)
· exp

(
− kllπDpLll

ṁl,opc̄lcc,i,co,o

))
= 0, (7.8)

T op
co,s −

(
T op
sk +

∆hv
co

k2ϕπDpL
op
2ϕ

· ṁ2ϕ,op
o

)
= 0. (7.9)

The temperatures T op
cc,i and T op

co,s are either available based on the thermal characterization of
the investigated system or narrowed down by the heat transfer kinetics of the LL and by the
distribution of the saturated pressures during LHP operation. The same procedure applies to
the contact angle θopc to set the pressure difference (4.35).

The complexity of the equations mentioned in Sec. 4.1.7 impedes an analytical solution for the
parameters. Hence, the values of the parameters are optimized by means of the least squares
method. For this purpose, the square sum of the previous equations is minimized. By an
appropriate choice of the initial parameter values, the optimization yields the OP values of the
parameters. Since the third state ṁl takes the smallest values in the area of 10−5, an extremely
small deviation from zero in (7.4) in the area of 10−12 is desirable. This precision has been
achieved with an optimization based on the direct search method applied in Sec. 5.2.4. For
the tuning of the model’s dynamics, βop is finally adapted in such a way that the dynamics
of the CC temperature fit to the measured Q̇cc step response. The different values of the
variables and parameters of Model C in the respective OPs of SIM, LHP 1, and LHP 2 are given
in Table 7.2.

During the parameter tuning, the focus is set on a good agreement between the measured
and the simulated temperatures. While SIM and LHP 1 are based on the same LHP design,
the dimensions of the LHP components of LHP 2 differ slightly which has a small impact on
the OP values of the model parameters and variables. Thus, the length Lop

2ϕ of the two-phase
region in the larger condenser of LHP 2 is greater than for the other two systems. Another
difference is the sink temperature T op

sk . Due to the higher T op
sk , a lower control heater output

Q̇op
cc is sufficient to reach the same setpoint temperature. For the same reason, the temperature

T op
co,o of the condenser outlet and the temperature T op

cc,i of the CC inlet are higher according
to T op

sk . The similar heat loads Q̇op
ev cause a similar mass flow rate ṁl,op in all three systems,

which are designed for the same LHP operating range. All systems operate in the variable
conductance mode since the condenser is not fully used, and the subcooling area is sufficiently
large to cool the liquid temperature T op

co,o down to near sink temperature T op
sk . Furthermore,

most of the OP values between SIM and LHP 1 agree well. However, the CC dynamics are
slightly faster in the numerical simulation. That is why the volume fraction ratio βop and
thus the thermal capacitance Cop

cc of the CC for SIM is smaller than for LHP 1. Another
slight difference occurs in the heat transfer coefficients ksh, k2ϕ, and ksc of the condenser
regions, which result from the different temperatures T op

co,i and T op
co,o at the inlet and outlet

due to parasitic heat flows to the heat sink in the real system as well as a different saturation
temperature T op

co,s and corresponding phase distribution in the condenser. The magnitudes of
the heat transfer coefficients rising from ksh over ksc to k2ϕ are plausible compared to the
local values calculated in SIM.
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Symbol SIM LHP 1 LHP 2

Q̇op
cc 4.653W 3.941W 2.902W

Q̇op
ev 60W 58.93W 61.38W

T op
sk 0 ◦C 0.45 ◦C 10.24 ◦C

T op
cc 26.86 ◦C 27.72 ◦C 27.07 ◦C

T op
ev 28.58 ◦C 29.27 ◦C 28.33 ◦C

T op
co,i 27.88 ◦C 28.81 ◦C 28.11 ◦C

T op
co,o 0 ◦C 0.45 ◦C 10.24 ◦C

Rlk 1.226KW−1 0.7196KW−1 1.159KW−1

k2ϕ 1058Wm−2 K−1 1049Wm−2 K−1 1053Wm−2 K−1

ksc 798.6Wm−2 K−1 817.9Wm−2 K−1 804.0Wm−2 K−1

kll 2.343Wm−2 K−1 1.498Wm−2 K−1 2.218Wm−2 K−1

kvl 5.647Wm−2 K−1 2.900Wm−2 K−1 1.469Wm−2 K−1

ksh 454.9Wm−2 K−1 388.4Wm−2 K−1 455.9Wm−2 K−1

Rsh 0.02566KW−1 0.02364KW−1 0.01738KW−1

Lop
2ϕ 0.3268m 0.3145m 0.5397m

ṁl,op 50.41mg s−1 49.02mg s−1 51.97mg s−1

T op
cc,i 1.372 ◦C 1.344 ◦C 10.88 ◦C

T op
co,s 26.86 ◦C 27.72 ◦C 27.07 ◦C

βop 0.45 0.50 0.50

θopc 80◦ 80◦ 80◦

Cop
cc 21.85 JK−1 60.90 JK−1 89.57 JK−1

Table 7.2: Values of the model parameters and variables of Model C in the OPs of the investigated LHP systems SIM,
LHP 1, and LHP 2

A comparison of the measured 1W Q̇cc step responses of the investigated LHP systems in
their OPs with the respective simulated step response of Model C are presented in Fig. 7.1,
7.2, and 7.3. The four measurable temperatures Tcc, Tev , Tco,i, and Tco,o are compared to the
results of Model C. In accordance with their respective parameterization, the OPs of all three
systems are met by Model C, and the CC dynamics are closely adapted via βop.

Compared to SIM, Model C reaches a different equilibrium point at higher output tem-
peratures after the 1W step in Fig. 7.1. Thus, a stationary deviation of approximately
∆Tcc(2000 s) = 0.69K between the CC temperatures exists, which also affects the other
temperatures. The approximate value of the stationary deviation of the CC temperatures in
equilibrium is taken at the end of the figure at t = 2000 s. This small deviation in Tcc is traced
back to the different modeling approaches of the internal mass flows resulting in stationary
mass flow rates of different sizes, which is discussed in more detail in Sec. 7.2.3. However, the
dynamics of the measured temperatures agree well.
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Figure 7.1: Comparison of 1W Q̇cc step responses of SIM and Model C in the OP

In contrast to the comparison with SIM, more differences are visible between Model C and
LHP 1 in Fig. 7.2. Here as well, a stationary deviation between the CC temperature of approxi-
mately∆Tcc(2800 s) = 0.89K is present after the 1W step, but in the opposite direction. The
higher CC temperature in the measured data results from the superficial temperature sensor
on the CC that is situated near the impact point of the control heater. Hence, a larger temper-
ature difference before and after the step results, which is also passed on to the evaporator
temperature. A greater deviation between Model C and LHP 1 presents itself in the third row
of Fig. 7.2. Here as well, the difference is caused by the superficial temperature measurement.
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Figure 7.2: Comparison of 1W Q̇cc step responses of LHP 1 and Model C in the OP

Due to the flow direction during the normal LHP operation, the saturation pressure pco and
the corresponding saturation temperature Tco,s in the condenser must be slightly higher than
in the CC. However, the measured condenser inlet temperature Tco,i at the beginning of the
superheated condenser region is lower than Tcc due to the proximity of the temperature
sensor to the cooled condenser area. Thus, parasitic heat flows distort the measurement, and
a superficial temperature is measured at the condenser inlet that is too low for the expected
fluid temperature Tco,i. For this reason, the OP value of Tco,i for LHP 1 in Table 7.2 is placed
between T op

ev and T op
co,s accordingly. The minor deviations in the dynamics of the four temper-
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atures result from Assumption 4.2, because of which the inertia-related delays between the
temperatures are neglected in Model C.

Figure 7.3: Comparison of 1W Q̇cc step responses of LHP 2 and Model C in the OP

In Fig. 7.3, the measured temperatures of the second LHP design, LHP 2, are compared to
Model C. The deviation in the CC temperatures is in a similar range as in the previous figures
with a value of approximately ∆Tcc(4800 s) = 0.73K at the end of the figure. However, the
temperature sensor on the VL measuring Tco,i is located further away from the condenser and
thus is less distorted by the heat sink. Nevertheless, a lower Tco,i than expected is measured
here as well. Furthermore, a small, constant deviation between the measured and the simulated
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condenser outlet temperature Tco,o is shown in the fourth row of Fig. 7.3. The 1W step has no
major impact on Tco,o as in the simulations before, since the condenser is not fully used. Hence,
the liquid in the subcooling areas of both systems is cooled down to near sink temperature Tsk .
Due to the local distance of the temperature sensors of LHP 2, the measured Tco,o of LHP 2 lays
slightly above the measured Tsk and Tco,o of Model C, respectively. However, the resulting
temperature gradient based on a thermal resistance between both sensors is not modeled in
Model C. The deviation between both temperatures is ∆Tcoo(4800 s) = 0.24K and hence
small. Overall, the desired agreement between the temperature dynamics of Model C and
LHP 2 remains very satisfactory.

Simplified LHP State-Space Model

The six model parameters of the simplified LHP state-space model (5.14), hereinafter called
Model S, include the three thermal capacitancesCop

cc ,Cop
ev , andCop

co , the two thermal resistances
Rlk and Rco, and the mass flow rate ṁ. The latter are determined from the steady-state
equations of (5.14). The respective system of equations is solved analytically in dependence
on the measured OP values of the states T op

cc , T op
ev , and T op

co and the inputs Q̇op
cc , Q̇op

ev , and
T op
sk :

Rlk =
(T op

cc − T op
ev )
(
∆hv

ev − c̄lco,cc (T
op
co − T op

cc )− c̄lcc,ev (T
op
cc − T op

ev )
)

Q̇op
cc

(
∆hv

ev − c̄lcc,ev (T
op
cc − T op

ev )
)
+ Q̇op

ev c̄lco,cc (T
op
co − T op

cc )
, (7.10)

Rco =
(T op

co + T op
ev − 2T op

sk )
(
∆hv

ev − c̄lco,cc (T
op
co − T op

cc )− c̄lcc,ev (T
op
cc − T op

ev )
)

2
(
Q̇op

cc + Q̇op
ev

) (
∆hv

ev + c̄lev,co (T
op
ev − T op

co )
) , (7.11)

ṁ =
Q̇op

cc + Q̇op
ev

∆hv
ev − c̄lco,cc (T

op
co − T op

cc )− c̄lcc,ev (T
op
cc − T op

ev )
. (7.12)

The thermal capacitances Cop
cc , Cop

ev , and Cop
co are approximated by (5.7), (5.10), and (5.13)

by means of the outer dimensions of the LHP components and an adequate choice of the
volume fraction ratios βop and βop

co . Due to the superficial temperature measurements and the
chosen boundary between the CC subsystem and the evaporator subsystem (see Fig. 5.1), the
capacitances are manually adapted to the system’s dynamics in addition. The different values
of the variables and parameters of Model S in the respective OPs of SIM, LHP 1, and LHP 2
are given in Table 7.3.

The calculation of Rlk and ṁ with (7.10) and (7.12) yields OP values very close to the
corresponding values of Model C in Table 7.2 due to the similarity of the modeling ap-
proaches. The thermal resistance Rco describes the effective heat exchanges of the VL, the
condenser, and the LL with the surroundings. Thus, its reciprocal approximates the sum
of the heat transfer coefficients in Table 7.2 multiplied by their respective effective sur-
face areas. The mentioned differences between the temperature dynamics is reflected in
the thermal capacitances Cop

cc , Cop
ev , and Cop

co . The faster dynamics of SIM, which concen-
trates on the temperatures of the fluid inside the LHP, is approximated by small thermal
capacitances, whereas the thermal capacitances for LHP 1 and LHP 2 are larger due to the
thermal mass of the walls and the increased volumes of the LHP 2 components, respectively.
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Symbol SIM LHP 1 LHP 2

Q̇op
cc 4.653W 3.941W 2.902W

Q̇op
ev 60W 58.93W 61.38W

T op
sk 0 ◦C 0.45 ◦C 10.24 ◦C

T op
cc 26.86 ◦C 27.72 ◦C 27.07 ◦C

T op
ev 28.58 ◦C 29.27 ◦C 28.33 ◦C

T op
co 0 ◦C 0.45 ◦C 10.46 ◦C

Rlk 1.004KW−1 0.6583KW−1 1.057KW−1

Rco 0.2210KW−1 0.2292KW−1 0.1424KW−1

ṁ 50.32mg s−1 49.00mg s−1 52.01mg s−1

Cop
cc 15 JK−1 35 JK−1 80 JK−1

Cop
ev 2 JK−1 25 JK−1 15 JK−1

Cop
co 9 JK−1 9 JK−1 9 JK−1

Table 7.3: Values of the model parameters and variables of Model S in the OPs of the investigated LHP systems SIM,
LHP 1, and LHP 2

The relation between the different Cop
cc is similar to Model C in Table 7.2. The variation in

their values, however, results from the fixed mass flow rate in Model S.

Fig. 7.4, 7.5, and 7.6 compare the 1W Q̇cc step responses of the investigated systems in the OP
with the results of Model S. For this purpose, the measured temperatures Tcc, Tev and Tco,o

are compared to the states of Model S. In comparison with Model C, the stationary deviation
of Tcc in Fig. 7.4 after the 1W step increases to approximately ∆Tcc(2000 s) = 1.12K due
to the neglected influences of the fluid dynamics on the temperatures with a fixed mass
flow parameter. This also results in a deviation between the evaporator temperatures in the
same range. Another difference is visible in the third row of Fig. 7.4, which also exists in the
following two figures with step responses of Model S. The dynamics of the 1W step lead to a
decrease of Tco in order to balance the CC and evaporator temperatures in the measured levels.
This is due to the aggregation of the VL, the condenser, and the LL into one temperature node
Tco that is correlated with the temperature Tco,o at the condenser outlet.

The missing influence of the fluid dynamics on the temperatures is also visible when com-
paring the curves of the temperatures between Model S and the experiments with LHP 1
and LHP 2 in Fig. 7.5 and 7.6. The deviation between the CC temperatures is approximately
∆Tcc(2800 s) = 2.79K for LHP 1 and ∆Tcc(4800 s) = 2.50K for LHP 2. It becomes clear
that Model S with fixed model parameters over the entire operating range is not able to fully
describe the steady-state behavior of the temperatures outside the proximity of the OP. For
the intended model-based control design, however, the focus is set on a good agreement of
the dynamics of the controlled temperatures Tcc and Tev in an OP in order to correctly param-
eterize the controllers to the system’s dynamics, which are indeed sufficiently approximated
by Model S.
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Figure 7.4: Comparison of 1W Q̇cc step responses of SIM and Model S in the OP
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Figure 7.5: Comparison of 1W Q̇cc step responses of LHP 1 and Model S in the OP
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Figure 7.6: Comparison of 1W Q̇cc step responses of LHP 2 and Model S in the OP
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Advanced LHP State-Space Models

For the parameterization of the advanced LHP state-space models in Chapter 6, the same
procedure as for Model C is applied. From the masses of the attached structures, the corre-
sponding thermal capacitances in the attached thermal networks are derived according to
(3.65) for aluminum with an approximate specific heat capacity cp = 900 J kg−1 K−1. The
respective thermal resistance Rsf between the thermal network of the evaporator and the
attached thermal network is chosen to Rsf = 0.0031KW−1.

The following OPs in Table 7.4 are determined for the state-space model (6.27) of the LHP
with the attached thermal mass characterized by Cev,sf , hereinafter called Model M, with
respect to SIM, LHP 1, and LHP 2.

Symbol SIM LHP 1 LHP 2

Q̇op
cc 4.653W 3.941W 2.902W

Q̇op
sf 60W 58.93W 61.38W

T op
sk 0 ◦C 0.45 ◦C 10.24 ◦C

T op
cc 26.86 ◦C 27.72 ◦C 27.07 ◦C

T op
ev,sf 28.58 ◦C 29.27 ◦C 28.33 ◦C

T op
co,i 27.88 ◦C 28.81 ◦C 27.98 ◦C

T op
co,o 0 ◦C 0.45 ◦C 10.24 ◦C

Rlk 1.155KW−1 0.6363KW−1 0.9586KW−1

k2ϕ 1060Wm−2 K−1 1050Wm−2 K−1 1053Wm−2 K−1

ksc 804.8Wm−2 K−1 845.8Wm−2 K−1 810.0Wm−2 K−1

kll 3.005Wm−2 K−1 1.566Wm−2 K−1 1.800Wm−2 K−1

kvl 4.266Wm−2 K−1 1.790Wm−2 K−1 1.097Wm−2 K−1

ksh 455.8Wm−2 K−1 388.6Wm−2 K−1 400.3Wm−2 K−1

Rsh 0.02246KW−1 0.02042KW−1 0.01423KW−1

Lop
2ϕ 0.3268m 0.3145m 0.5397m

ṁl,op 50.50mg s−1 49.05mg s−1 51.98mg s−1

T op
cc,i 1.742 ◦C 1.383 ◦C 10.76 ◦C

T op
co,s 26.86 ◦C 27.72 ◦C 27.07 ◦C

βop 0.45 0.50 0.50

θop 80◦ 80◦ 80◦

Cop
cc 21.85 JK−1 60.90 JK−1 89.57 JK−1

Cev,sf 40 JK−1 40 JK−1 40 JK−1

Table 7.4: Values of the model parameters and variables of Model M in the OPs of the investigated LHP systems SIM,
LHP 1, and LHP 2
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The extension of Model C at the evaporator has no significant impact on the model parameters
as it can be seen by comparing Tables 7.2 and 7.4. The considered attached mass at the
evaporator weighs approximately m = 44.4 g. With this small mass, the temperature curves
of the step responses of Model M in the OP with constant disturbances hardly differ from the
ones of Model C. Thus, the explanations of the figures of Model C also apply to the figures
of Model M. The respective comparisons between Model M and the considered systems are
depicted in Fig. 7.7, 7.8, and 7.9. The stationary deviations of the CC temperatures after the
1W step are ∆Tcc(2000 s) = 0.68K, ∆Tcc(2800 s) = 0.90K, and ∆Tcc(4800 s) = 0.74K,
respectively, and thus slightly smaller than for Model C.

Figure 7.7: Comparison of 1W Q̇cc step responses of SIM and Model M in the OP
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Figure 7.8: Comparison of 1W Q̇cc step responses of LHP 1 and Model M in the OP
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Figure 7.9: Comparison of 1W Q̇cc step responses of LHP 2 and Model M in the OP

The parameterization of the state-space model (6.38) based on parallel LHPs with ArHPs,
indicated by Model P, is done by the same procedure as before. Thus, the optimized model
parameter vector is doubled to include the parameters for LHP a and LHP b. Since both
condenser pipes run in parallel through the plates of the heat sink, one temperature sensor
for the outlet temperature is placed on the condenser system for both LHPs. Hence, the
measured condenser outlet temperatures of both LHPs are equal. Furthermore, the temperature
measurement point for the condenser outlet coincides with the measurement point of the heat
sink. Thus, elevated sink temperatures are determined for the heat transport system, which
result in rather high heat transfer coefficients of the condenser subsystem, especially k2ϕ.
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In Table 7.5, the parameters and variables of Model P in the OP are stated with respect to
LHP 3.

Symbol
LHP 3

LHP a LHP b

Q̇op
sf 167.9W

T op
sk 19.24 ◦C

Q̇□,op
cc 0W 0W

T□,op
cc 21.80 ◦C 21.59 ◦C

T□,op
ev,sf 22.76 ◦C 22.51 ◦C

T□,op
co,i 22.87 ◦C 22.64 ◦C

T□,op
co,o 19.24 ◦C 19.24 ◦C

R□
lk 0.8382KW−1 0.8735KW−1

k□2ϕ 2188Wm−2 K−1 2295Wm−2 K−1

k□sc 746.2Wm−2 K−1 711.9Wm−2 K−1

k□ll 1.054Wm−2 K−1 0.4844Wm−2 K−1

k□vl 5.832Wm−2 K−1 5.201Wm−2 K−1

k□sh 633.8Wm−2 K−1 639.1Wm−2 K−1

R□
sh 0.005299KW−1 0.004973KW−1

L□,op
2ϕ 2.4m 2.4m

ṁl,□,op 71.71mg s−1 69.15mg s−1

T□,op
cc,i 19.34 ◦C 19.28 ◦C

T□,op
co,s 21.80 ◦C 21.59 ◦C

β□,op 0.85 0.85

θ□,op 80◦ 80◦

C□,op
cc 97.64 JK−1 97.66 JK−1

C□
hp1 65 JK−1 65 JK−1

C□
hp2 65 JK−1 65 JK−1

C□
ev,sf 180 JK−1 180 JK−1

R□
hp1 0.1429KW−1 0.1429KW−1

R□
hp2 0.1429KW−1 0.1429KW−1

R□
hp1,tm 0.5556KW−1 0.5882KW−1

R□
hp2,tm 0.5556KW−1 0.5882KW−1

R□
sf,tm 0.5556KW−1 0.5882KW−1

Table 7.5: Values of the model parameters and variables of Model P in the OP of the investigated LHP system LHP 3
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The parameters between both LHPs vary slightly due to the different lengths and routing of the
pipes. For the thermal capacitance Ctm of the LCT dummy, a value of Ctm = 45,000 JK−1 is
assumed considering a total aluminummass ofm = 50 kg. All other parameters of the thermal
network are based on the practical knowledge of the LHP end users and their investigations
on the test bench with parallel LHPs.

The corresponding step responses of the parameterized Model P are presented in Fig. 7.10.

Figure 7.10: Comparison of 1W Q̇cc step responses of LHP a and LHP b of LHP 3 and Model P in the OP
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In the chosen OP with the given heat load Q̇op
sf , the parallel LHPs are considered to be in the

variable conductance mode. Thus, the subcooling regions in the condensers of both LHPs
are sufficient to cool the condenser outlet temperatures T a

co,o and T b
co,o down to near sink

temperature Tsk. Since the measured sink temperature is taken as the sink temperature of
Model P as well, the modeled condenser outlet temperatures follow the measured condenser
outlet temperatures in the fourth row of Fig. 7.10. The 1W step responses of the modeled CC
temperatures T a

cc and T b
cc as well as of the modeled evaporator temperatures T a

ev and T b
ev are

similarly close to their corresponding measured temperatures. The stationary deviations of the
modeled and measured CC temperatures after the 1W Q̇cc step are ∆T a

cc(4500 s) = 0.75K
and ∆T b

cc(4500 s) = 0.85K, respectively. Differences between the dynamic behaviors of the
condenser inlet temperatures T a

co,i and T b
co,i are apparent which are caused again by the

parasitic heat flows through the walls of the VL to the nearby heat sink as recognizable from
the inverted change of the condenser outlet temperatures T a

co,o and T b
co,o in the lower row.

After the parameterization of the models of the different LHP-based heat transport systems,
the control parameters of the proposed controllers are determined based on the corresponding
models in the next section.

7.1.2 Control Parameters

In this section, the parameters connected to the different control algorithms in the previous
chapters are presented. These parameters are tuned based on the respective state-space models
considering the limitation of the change rate of the controlled temperature for a continuous
heat transfer of the investigated LHP system (see Sec. 3.2.2). For an extensive comparison of
the performances of all controllers, the experimentally evaluated numerical LHP simulation
SIM in Matlab is used, to which the controllers based on Model C and Model S in Chapter 4
and Chapter 5 are adapted. Considering the modeled advanced LHP-based heat transport
systems in Chapter 6, their controllers are verified with their respective state-space models in
Simulink.

The assumed availability of the disturbances for the control design is given in most applications
since the heat sink is often temperature-controlled itself, especially in aerospace systems, and
the dissipated heat of the heat source can be reconstructed from its operating status. Another
possibility could be the estimation of both influences with a disturbance observer which is
not in the scope of this thesis.

The combined state and parameter estimation for the state-dependent controllers is imple-
mented based on Sec. 4.2.3. A more elaborate but faster calculation of the discrete LHP
states x(k) compared to Euler’s forward method is possible with implicit multistep methods
[Ada18, p. 54]. Such numerical methods for solving initial value problems improve the nu-
merical stability of the solution. In order to verify their usage for the discretization of the LHP
model, Matlab’s ode15s solver [Mat20d, p. 11-5] is used in comparison to Euler’s forward
method. This solver adapts the step size of the discretization automatically. More detailed
information about the solver ode15s can be found in [SR97].

Some of the proposed controllers in this thesis incorporate a PI controller to eliminate the
remaining control error. Besides the classical model-based design methods of PID controllers
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based on the analysis of the root locus or the frequency domain to determine a suitable
crossover frequency and phase margin for a stable control loop (see [Lun20a, p. 460]), the
determination of the controller gains can be facilitated nowadays by PID tuning software as
e.g. present in the Control System Toolbox [Mat20b] in Matlab. With its robust response
time algorithm, a stable closed loop of a PID controller with a given linear control system
is accomplished, i.e. the poles of the corresponding transfer function of the closed-loop
system have negative real parts. The algorithm determines appropriate PID gains based on
the desired balance between the speed and the robustness of the PID controller. This balance
is specified by an adequate closed-loop response time as reciprocal of the crossover frequency
[Mat20a, p. 2-775] and phase margin to achieve either a fast setpoint and disturbance response
or a high robustness against modeling errors. Accordingly, the gains of the PI controllers
in this thesis are determined to adjust the speed and the robustness of the controller by the
mentioned algorithm based on the respective transfer function of the LHP and the desired
crossover frequency and phase margin. For all PI controllers, a phase margin of φ = 60◦

is chosen to receive a smooth controlled temperature curve. The crossover frequency is
determined in such a way that the change rate of the CC temperature Tcc does not exceed
the experimentally determined operation limit of∆Tcc/∆t = 0.07K s−1 during a 1K step of
the setpoint temperature Tset and Tset,ev , respectively. For the proposed controllers without
PI part, the respective control parameters are adjusted manually according to their previous
explanations to meet the mentioned specification of the operation limit.

The following two tables contain the determined control parameters for SIM. In Table 7.6, the
controllers for the CC temperature based on Model S and Model C are listed. The designation
of the controllers consists of the abbreviation of the controller type, the underlying model in
the subscript, and the optional extension for the cascade control. The CC controllers include
the PI controller with AW structure (piAW/S) in Sec. 5.2.1, the PI controller with disturbance
feedforward control (piDF/S) in Sec. 5.2.2, the PI output feedback control (piOF/S) in Sec. 5.2.3,
the nonlinear model identification adaptive control (nMIAC/S) in Sec. 5.2.4, and the nonlinear
PI state feedback control (nSF/C) in Sec. 4.2.1. Subsequently, the corresponding cascade
controllers for the evaporator temperature, i.e. piAWc/S, piDFc/S, piOFc/S, and nMIACc/S in
Sec. 5.2.5 and nSFc/C in Sec. 4.2.2, are given in Table 7.7.
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Control
algorithm

Control parameter

Kp

inWK−1
Ki

in WK−1 s−1
Kx

inWK−1
λly

in s−1
η0
in s−1

piAW/S 1.201 0.122 - - -
piDF/S 1.201 0.122 - - -
piOF/S 0.429 0.548 [5.000, 0.447, 0.223] - -
nMIAC/S - - - 0.078 -
nSF/C 0.052 0.009 - - 0.060

Table 7.6: Control parameters of the different CC controllers for SIM

Control
algorithm

Control parameter

Kp1

inWK−1
Kp2

in WK−1
Ki2

inWK−1 s−1
Kx

inWK−1
λly

in s−1
η0
in s−1

piAWc/S 2.375 0.236 0.141 - - -
piDFc/S 2.375 0.236 0.141 - - -
piOFc/S 0.429 0.184 0.958 [2.857, 0.290, 0.207] - -
nMIACc/S - 0.760 0.129 - 0.078 -
nSFc/C 0.108 0.032 0.163 - - 0.050

Table 7.7: Control parameters of the different evaporator controllers for SIM
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Using the examples of the CC controllers in SIM, the setpoint responses of the five controllers
are compared in Fig. 7.11.

Figure 7.11: Comparison of 1K Tset step responses of the CC control loops in the OP

As expected by the chosen parameterization of the controllers, the operation limit of
∆Tcc/∆t = 0.07K s−1 is met by all control loops. Differences are present at the transient
oscillation of the CC temperature Tcc when adjusting the new setpoint temperature Tset.
During this phase, piAW/S and piDF/S show the highest overshoots of ∆Tcc = 0.26K and
the longest settling time. In contrast, the other three controllers show a similar settling time
while the transient oscillation is damped well by piOF/S and nMIAC/S, and nSF/C produces
a small overshoot of ∆Tcc = 0.09K. All control loops, however, are stable and follow the
setpoint change smoothly.

The performances of the controllers for a single LHP based on Model S and Model M, i.e.
piAW/S, piDF/S, piOF/S, nMIAC/S, and nSF/C, are evaluated with respect to an attached
thermal mass at the evaporator by adapting the respective controllers to Model M with the
temperature change rate limitation in mind. The controllers are parameterized based on
two different thermal masses to evaluate the influence of the LHP design on the controller
performance. Additionally, the linear controllers piAW/S and piDF/S are designed based on
the linearized equations of Model M to achieve the best possible adaption of these controllers
to the system. For the identification of the underlying model, these controllers are named
piAW/M and piDF/M, accordingly. Furthermore, the nonlinear state feedback controller in
Sec. 6.2.1 based on Model M is called nSF/M. The resulting control parameters are given in
Table 7.8.
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Control
algorithm

Thermal mass Control parameter

Cev,sf

in JK−1
Kp

in WK−1
Ki

inWK−1 s−1
Kx

in WK−1
λly

in s−1
η0
in s−1

piAW/M 40 1.228 0.083 - - -
280 0.870 0.001 - - -

piDF/M 40 1.228 0.083 - - -
280 0.870 0.001 - - -

piOF/S 40 0.429 0.514 [4.767, 0.429, 0.215] - -
280 0.429 0.214 [2.743, 0.268, 0.153] - -

nMIAC/S 40 - - - 0.075 -
280 - - - 0.064 -

nSF/C 40 0.046 0.010 - - 0.070

280 0.016 0.005 - - 0.070

nSF/M 40 0.050 0.010 - - 0.065

280 0.045 0.009 - - 0.065

Table 7.8: Control parameters of the different CC controllers for Model M parameterized in the OP of SIM
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For the sake of completeness, the control parameters of nMIACc/S and the nonlinear PI
state feedback cascade controller in Sec. 6.2.1, hereinafter named nSFc/M, are adapted to the
dynamics of Model M as well. They are used in the verification of the respective controller
performances of a single LHP with a critical attached thermal mass of Cev,sf = 280 JK−1.
The resulting control parameters are stated in Table 7.9.

Control
algorithm

Control parameter

Kp1

inWK−1
Kp2

in WK−1 s−1
Ki2

inWK−1
λly

in s−1
η0
in s−1

nMIACc/S - 0.568 0.103 0.075 -
nSFc/M 0.088 0.498 0.118 - 0.065

Table 7.9: Control parameters of the different evaporator controllers for Model M parameterized in the OP of SIM

To compare the performance of the uncoupled state-of-the-art PI controllers with the new
nonlinear PI state feedback controller of Model P in Sec. 6.2.2, hereinafter called nSF/P, the
PI gains are determined from the linearized Model P with the design procedure described
in Sec. 5.2.1. The resulting control parameters of the respective PI controllers, denoted by
piAW/P, are given in Table 7.10 besides the control parameters of nSF/P.

Control
algorithm

Control parameter

Ka
p ,Kb

p

in WK−1
Ka

i , Kb
i

inWK−1 s−1
η10, η20
in s−1

piAW/P 6.700 0.350 -
nSF/P 0.064 0.012 0.065

Table 7.10: Control parameters of the different CC controllers for Model P parameterized in the OP of LHP 3

The corresponding setpoint responses of the different CC controllers for parallel LHPs are
shown in Fig. 7.12. Both controllers piAW/P and nSF/P are stable, follow the setpoint change
smoothly, and meet the operation limit of ∆Tcc/∆t = 0.07K s−1. Similar to the setpoint
responses of the controlled single LHP in Fig. 7.11, the transient oscillations of the CC tem-
peratures T a

cc and T b
cc with piAW/P show higher overshoots of∆T

a/b
cc = 0.25K and longer

settling times than with nSF/P (∆T
a/b
cc = 0.13K).
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Figure 7.12: Comparison of 1K Tset step responses of the CC control loops of parallel LHPs in the OP

7.2 Validation of the State-Space Models for a Single Loop
Heat Pipe

For the validation of the introduced dynamical models of a single LHP in this thesis, their
behaviors to changing operating conditions are compared to the available two LHP systems
and the numerical LHP simulation. The main focus is set on the models’ ability to represent
the measured temperatures of the investigated LHP system subject to variations of the system
inputs and the disturbances. Furthermore, the impact of the model assumptions on the results
are reviewed. In Sec. 7.1.1, the variation of the system input has already been evaluated for
each LHP system in the OPwith adequate step responses. Here, the focus is set on the variation
of the system input outside the OP besides the variation of the disturbances. Subsequently, the
numerical LHP simulation is used to dive deeper into the dynamics of internal LHP variables
and the applied model order reduction. Finally, the mentioned temperature oscillations during
the LHP operation are reproduced and analyzed in dependence on the LHP design.
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7.2.1 Response to a Variable System Input

The validation of the introduced modeling approaches comprises the comparison of the
measured and simulated variables in consideration of the control engineering application.
Thus, a model analysis with variations of the system input follows relating the findings to the
expected controller performance. The model accuracy is determined by both the established
model equations and the determined model parameters. In order to separate the influence
of fixed model parameters from the influence of the model equations on the model accuracy,
another set of model parameters is determined for another 1W Q̇cc step different from the
previous OP (see Table 7.2). Using the example of the measured CC temperature Tcc of Model C
to identify the influence of the fixed model parameters, the new Q̇cc step response of LHP 2 is
compared to the results of Model C parameterized in the OP and in the new equilibrium point.
The newly determined parameters in the new equilibrium point are given in Table 7.11.

Symbol LHP 2

Q̇op
cc 1.937W

Q̇op
ev 102.2W

T op
sk 0.62 ◦C

T op
cc 11.74 ◦C

T op
ev 13.77 ◦C

T op
co,i 14.21 ◦C

T op
co,o 1.61 ◦C

Rlk 1.193KW−1

k2ϕ 742.7Wm−2 K−1

ksc 260.3Wm−2 K−1

kll 1.929Wm−2 K−1

kvl 2.828Wm−2 K−1

ksh 157.8Wm−2 K−1

Rsh 0.01664KW−1

Lop
2ϕ 1.928m

ṁl,op 82.10mg s−1

T op
cc,i 2.227 ◦C

T op
co,s 11.74 ◦C

βop 0.50

θopc 80◦

Cop
cc 89.44 JK−1

Table 7.11: Values of the model parameters and variables of Model C in the alternative equilibrium point of LHP 2
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The alternative equilibrium point includes a higher heat load Q̇op
ev and thus a higher mass flow

rate ṁl,op. The sink temperature T op
sk , however, is lower. With a lower Q̇op

cc , the temperature
level of the LHP is also lower. Because of the clearer lower temperature difference between
the fluid and the heat sink at the condenser, a larger two-phase region, defined by Lop

2ϕ, is
necessary to transfer the applied heat load to the heat sink. A major difference between the
parameter sets is visible in the heat transfer coefficients. Due to their local dependencies on
the mass flow rate, the flow pattern, and the temperature (see Sec. 3.1.2), the different values
are still plausible and have the same proportion among each other as in Table 7.2.

The corresponding comparison of Model C with both parameter sets is depicted in Fig. 7.13.

Figure 7.13: Comparison of 1W Q̇cc step responses of LHP 2, Model C with OP parameters, and Model C with the
newly determined parameters in Table 7.11

Due to the determination of the new parameters based on the measured temperatures, the
correct initial CC temperature level is met by Model C in Fig. 7.13. In contrast, Model C with
the OP parameters shows a permanent offset of∆Tcc ≈ 2K. This offset is caused by the fixed
OP parameters which are determined in a different equilibrium point. Since it is possible
from the nature of the thermodynamic system to arrive at arbitrary temperature levels with
an adequate Q̇cc, the offsets of the temperatures can be adjusted by adding an offset to the
system input Q̇cc. Hence, Model C can reach the desired temperature level while its model
parameters stay the same by calculating the necessary Q̇cc in the equilibrium point with OP
model parameters. This offset adjustment simplifies the comparison of the dynamics of the
real system and the models, which have a major impact on the performance of a corresponding
model-based designed controller. In the following model comparisons in this chapter, the
offset adjustment is performed for all models.

Another reason for focusing on the dynamics is that stationary deviations between a model
and the real system can be easily compensated. Based on the determination of the system
input Q̇cc by the controller, a stationary deviation due the fixed model parameters or further
model discrepancies, such as unknown parasitic heat flows, is automatically compensated.
The stationary model deviations are eliminated without great effort by controllers with an
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adaptive or integral action, whereas deviations in the dynamics of the model and the real
system have a negative impact on the controller performance.

The offset-adjusted comparison of Tcc between the Q̇cc step responses of Model C and LHP 2
is depicted in Fig. 7.14.

Figure 7.14: Comparison of 1W Q̇cc step responses of LHP 2, the offset-adjusted Model C with OP parameters, and
Model C with the newly determined parameters in Table 7.11

The calculated initial offset is ∆Q̇cc(0 s) = 0.55W. Due to the displacement, the model error
based on the OP parameters becomes visible. The dynamics in both parameter cases are almost
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identical because of the fixed thermal conductance Ccc with a fixed volume fraction ratio β.
However, the gradients of the CC temperature rise in both cases are similar but slightly higher
compared to LHP 2. As before, Model C does not reach the CC temperature level of LHP 2
after the step. Furthermore, the deviation of the heights of the CC step responses are smaller
for Model C with OP parameters than with the new parameters, whereupon the absolute
deviation at the end of the figure is only∆Tcc(5100 s) = 0.67K and∆Tcc(5100 s) = 1.11K,
respectively.

A disadvantage of Model C with OP parameters becomes clear in the fourth row of Fig. 7.14
when comparing the condenser outlet temperatures Tco,o. At the considered OP with a
high heat load, the two-phase region in the condenser extends across a major part of the
condenser length. That is why the subcooled region is rather small, and the liquid is not fully
cooled down to near sink temperature when leaving the condenser. Thus, Tco,o of LHP 2 and
Model C with the newly determined parameters are elevated and react with a decrease to the
Q̇cc step. In contrast, the offset-adjusted response of Tco,o of Model C with OP parameters
remains constant near the sink temperature since the resulting distribution of the regions
in the condenser together with their heat transfer coefficients enables a sufficient cooling
of the liquid. Thus, the model is able to reproduce the nonlinear influence of the region
lengths on the condenser temperatures. However, this ability depends on the OP of the model
parameters. Due to the focus of the model-based designed controllers on controlling the CC
or the evaporator temperature, a satisfactory controller performance should still be possible
based on a model with fixed model parameters.

The influence of the model discrepancy on the value of the system input Q̇cc in an arbitrary
equilibrium point is also obvious from Table 7.2 since the values of Q̇op

cc between the first and
second column vary although SIM and LHP 1 are based on the same LHP design.

For the general comparison of Model C, Model S, and Model M taking into account varia-
tions of the system input, their respective Q̇cc step responses are compared to the results
of SIM, LHP 1, and LHP 2. The responses to a 2W Q̇cc step starting from 0W at a low
sink temperature Tsk = −15 ◦C are depicted in Fig. 7.15. Due to the changed operating
conditions with unchanged model parameters, minor deviations in the gradients of the step
responses are visible when comparing the temperatures of the models and the simulation.
Similar to Fig. 7.4, the stationary deviation of Tcc in Fig. 7.15 after the step is greater for
Model S (∆Tcc(2000 s) = 4.28K) than for Model C (∆Tcc(2000 s) = 0.84K) and Model M
(∆Tcc(2000 s) = 0.87K). The same tendency applies to the evaporator temperature Tev .
While the accuracy of Model S in Tcc and Tev is sufficient outside the OP, a major er-
ror is done when matching the third state Tco of Model S with Tco,o. This error is
traced back to the mass flow rate ṁ being a fixed parameter of Model S and the strong
simplification of the two-phase condenser system with a single temperature node Tco.
However, it is expected that the desired controllers based on Model S controlling Tcc

or Tev achieve a sufficient controller performance over the entire operating range due
to the good agreement between the measured and modeled Tcc and Tev , respectively.
Thus, Model S can still represent the first two temperatures Tcc and Tev when the sink
temperature changes, while a larger model error prevails in the third temperature Tco,o.
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Figure 7.15: Comparison of 2W Q̇cc step responses of SIM, Model C, Model S, and Model M (Q̇hs = 60W,
Tsk = −15 ◦C)

In Fig. 7.16, 1W Q̇cc step responses starting at Q̇cc = 0W are compared to the measured
step response of LHP 1. Here as well, Tcc and Tev of Model C and Model M have
similar curves according to the previous description, while Tcc and Tev of Model S
show lower step responses due to the fixed parameters and simplified equations.
The respective deviations of Tcc are ∆Tcc(7650 s) = 1.03K for Model C,
∆Tcc(7650 s) = 2.76K for Model S, and ∆Tcc(7650 s) = 1.05K for Model M.
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Figure 7.16: Comparison of 1W Q̇cc step responses of LHP 1, Model C, Model S, and Model M (Q̇hs = 60W,
Tsk = 0 ◦C)

The dynamics of the step responses of all models still deviate slightly from the measured
step response of LHP 1 as in the previous Q̇cc step responses in Fig. 7.15. Again, a major
difference between model and reality is present in the third row of Fig. 7.16. The condenser
outlet temperature Tco,o of Model S is significantly increased compared to the respective
temperatures of Model C and Model M as well as LHP 1. In comparison with Fig. 7.2, 7.5, and
7.8, the stationary error after the step has remained about the same for all models. However,
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the temperature level adjusted by Q̇cc has a small influence on the dynamic behavior of the
temperatures.

Figure 7.17: Comparison of 1W Q̇cc step responses of LHP 2, Model C, Model S, and Model M (Q̇hs = 100W,
Tsk = −15 ◦C)

Fig. 7.17 contains the comparison of 1W Q̇cc step responses starting from Q̇cc = 2W at a heat
load of Q̇hs = 100W. All three models are able to match the step response of Tcc of LHP 2.
The stationary deviation after the step is again higher for Model S (∆Tcc(5000 s) = 0.88K)
than for Model C (∆Tcc(5000 s) = 0.67K) and Model M (∆Tcc(5000 s) = 0.68K). However,
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a higher heat load produces higher mass flows. This connection is included in the complex
models Model C and Model M by the dynamics of the third state ṁl, whose curve of Tev is
similar to the one of LHP 2. In contrast, Model S does not adapt its OP parameter ṁ and thus,
there is not only a stationary deviation in Tco,o as in the previous Fig. 7.15 and 7.16, but also
in Tev , as the additional heat is used in the model to heat up the evaporator subsystem instead
of evaporating the liquid. Furthermore, the higher system input after the step produces a
different behavior of the condenser outlet temperatures Tco,o of the models. Model S shows
a decrease of Tco,o based on the increased evaporator temperature Tev which results in an
increased heat transfer from the condenser to the heat sink due to an increased temperature
difference. The actual curve of Tco,o of LHP 2 shows a step-related temperature decrease like
Model S as well. In the complex models, the low Tco,o is connected to the fixed OP parameters
as mentioned above in relation to Fig. 7.14. This discrepancy between the complex models
and LHP 2, however, is small and has a negligible effect on the overall LHP behavior of the
models, especially on the controlled temperatures Tcc and Tev .

7.2.2 Response to Variable Disturbances

For the evaluation of the behavior of the introduced models of the LHP-based heat transport
systems with regard to variations of the disturbances, arbitrary test profiles are applied to
the heat sink and the heat source. As noted in Sec. 5.1, Model S is restricted to the OP, where
the disturbances do not change and thus is not included in this part of the evaluation. In the
following, the different results of SIM, LHP 1, and LHP 2 with respect to disturbance variations
are compared to those of Model C and Model M.

In Fig. 7.18, a 10W Q̇hs step starting from Q̇hs = 60W is applied to SIM and the complex
models Model C and Model M. All four measurable temperatures of the simulation and the
models are in a good agreement. The stationary error of the CC temperatures Tcc after the
step is∆Tcc(10,000 s) = 0.14K for Model C and∆Tcc(10,000 s) = 0.19K for Model M. The
dynamics of the step response is also met by both models.

In the real systems LHP 1 and LHP 2, a −20W Q̇hs step is applied starting from Q̇hs = 80W
and Q̇hs = 40W, respectively, which causes a temperature rise of Tcc, Tev , and Tco,i in
Fig. 7.19 and 7.20. The subcooling regions in the condensers are large enough to cool the liquid
down to near sink temperature Tsk over the entire time frame in both cases. Here as well,
the dynamics of the temperatures are well met by the models. The stationary deviations of
Tcc after the step in Fig. 7.19 and 7.20 are∆Tcc(3000 s) = 0.23K and∆Tcc(7000 s) = 0.25K
for Model C as well as ∆Tcc(3000 s) = 0.19K and ∆Tcc(7000 s) = 0.21K for Model M. A
greater deviation results in the condenser inlet temperature Tco,i, which is also recognizable
in the previous Q̇cc step responses, due to the influence of the heat sink on the temperature
sensor. The small difference in the results of Model C and Model M is traced back to the
extended thermal network at the evaporator, whereby the measured evaporator temperature
is matched with a different model variable, i.e. Tev for Model C and Tev,sf for Model M. The
two controlled temperatures Tcc and Tev , however, are closely reproduced by the models.
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Figure 7.18: Comparison of 10W Q̇hs step responses of SIM, Model C, and Model M (Tsk = 0 ◦C)
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Figure 7.19: Comparison of −20W Q̇hs step responses of LHP 1, Model C, and Model M (Tsk = −10 ◦C)
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Figure 7.20: Comparison of −20W Q̇hs step responses of LHP 2, Model C, and Model M (Tsk = 0 ◦C)
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The variation of the heat sink is realized by ramping up a given temperature difference. The
respective comparisons between the system and the models is presented in Fig. 7.21, 7.22, and
7.23.

Figure 7.21: Comparison of SIM, Model C, and Model M with a ramp-shaped 5K Tsk variation (Q̇hs = 60W)

In Fig. 7.21, the temperatures of the models reach a higher end level than the simulation when
changing the sink temperature from Tsk = −10 ◦C to Tsk = −5 ◦C, although the condenser
outlet temperature Tco,o are close to each other. A similar exceeding is already present in the
other comparisons of Model C and Model M with SIM. As before, the deviation is related to the
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mass flow rates, which are adapted to the new conditions to varying degrees. The resulting
deviations in Tcc are ∆Tcc(2000 s) = 1.05K and ∆Tcc(2000 s) = 0.97K for Model C and
Model M, respectively. In addition, the slope of the temperature increase is slightly higher for
the models than for SIM. Nevertheless, the deviations are small enough in order to design an
adequate controller.

Figure 7.22: Comparison of LHP 1, Model C, and Model M with a ramp-shaped−10K Tsk variation (Q̇hs = 60W)

A deviation in the delay of the temperatures along the loop is recognizable in Fig. 7.22 and 7.23.
While Tco,o shows the same curve for all three systems close to the ramp-shaped variation
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of the heat sink, the other temperatures follow the variation with a delay. The variable heat
transfer between the condenser and the heat sink as well as the transport delay inside the
LHP are possible causes for the larger delay on the test benches. A minor stationary error of
Tcc after the Tsk step remains again for both models in both cases. In Fig. 7.22, the deviations
in Tcc are ∆Tcc(6000 s) = 0.43K and ∆Tcc(6000 s) = 0.33K for Model C and Model M.
Accordingly, the deviations in Tcc are∆Tcc(8000 s) = 0.63K and∆Tcc(8000 s) = 0.65K for
Model C and Model M in Fig. 7.23.

Figure 7.23: Comparison of LHP 2, Model C, and Model M with a ramp-shaped−10K Tsk variation (Q̇hs = 60W)
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7.2.3 Behavior of State Variables

With the availability of the numerical simulation SIM of a single LHP, it is possible to further
evaluate the accuracy of the complex models Model C and Model M. Thus, the behavior of
the state variables of the complex models are verified, which are not all measured on the test
benches. In addition, this section presents the analysis of the LHP fluid dynamics and the
tracking of the liquid-vapor interface in the condenser based on the complex models.

Figure 7.24: Test Profile 1 with variations in the system input and the disturbances including a 1W Q̇cc step, a 1W
Q̇hs step, and a 1K Tsk step in the OP



172 7 Validation and Comparison

The curves of the inputs in Fig. 7.24 are chosen as a test profile in order to compare the
unmeasured state variables of both models against the results of SIM. The test profile includes
the relevant changes of the operating conditions as separately evaluated in the previous
sections. The corresponding step responses of the three systems regarding the three states
Tcc, L2ϕ, and ṁl are given in Fig. 7.25.

Figure 7.25: Step responses of the state variables Tcc, L2ϕ, and ṁl of SIM, Model C, and Model M to Test Profile 1
in Fig. 7.24
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The curves of the measured state variable Tcc of Model C, Model M, and SIM are closely
together. The complex models reproduce the dynamics of Tcc of SIM precisely, and the reaction
to all three steps is consistent. Minor stationary deviations occur due to the varying mass
flow rates, as explained in the following. The maximum absolute deviations of Tcc between
SIM and the models are max (∆Tcc) = 0.80K for Model C and max (∆Tcc) = 0.71K for
Model M in this scenario.

The second state variable L2ϕ in the second row of Fig. 7.25 is the two-phase length of the
condenser. Here as well, a good accordance with L2ϕ of SIM is achieved by both complex
models. The dynamic variation of L2ϕ to the three inputs is similar between the systems
including the over- and undershoots due to the Tsk step and the rise due to the Q̇hs step.
Although Tcc rises during both the Q̇cc step and the Tsk step, L2ϕ falls and rises instead,
accordingly. This is related to the heat transfer kinematic at the condenser. The positive step
of Q̇cc causes a rise of Tcc and the condenser saturation temperature Tco,s, respectively. As a
result, the temperature difference between Tco,s and Tsk rises as well causing an increased
heat flow to the heat sink and thus a smaller required condensation length L2ϕ. The maximum
absolute deviation of L2ϕ are max (∆L) = 5.6mm for Model C and max (∆L) = 12.6mm

for Model M. In contrast to the Q̇cc step, a rise of Tsk comes along with a lower delayed
increase of Tcc and Tco,s. Therefore, the difference between Tco,s and Tsk forming the heat
flow to the heat sink finds a new lower balance, and the condensation length L2ϕ increases.
The final Q̇hs step results in an increase of the mass flow rates ṁv as well as ṁl, and L2ϕ rises
accordingly. However, Tcc falls since the heat gain in the LL is smaller due to the increased
ṁl, which is depicted in the third row.

Further minor deviations are visible in the third row of Fig. 7.25 when comparing the
liquid mass flow rates ṁl of the systems. The maximum absolute deviations of ṁl are
max (∆ṁ) = 1.4mg s−1 for Model C andmax (∆ṁ) = 1.7mg s−1 for Model M. Due to the
different condenser models used in SIM and in the complex models Model C and Model M,
the over- and undershoots caused by the Q̇cc and the Tsk steps are pronounced differently
in contrast to the Q̇ev step. As ṁl results from the balanced accumulated mass change of
all LHP components in SIM, Q̇cc and Tsk have a greater direct impact on ṁl of SIM than
on ṁl of the complex models. Their ṁl is dependent on ṁv instead (see Sec. 4.1.6), where
ṁv is calculated using the stationary energy balance equation of the evaporator and a fixed
mean void fraction in the two-phase region of the condenser. Thus, the difference between
the levels of ṁl before and after the first two steps is greater with SIM than with the complex
models. Accordingly, the balanced temperature levels of Tcc in the first row after the steps
vary between the systems, as mentioned early.

The first peak of ṁl after the rising flank of the Tsk step is lower for both complex models
than for SIM. The subsequent undershoot of Model M, however, is similar to the one of SIM
since the additional evaporator capacitance Cev,sf incorporates the thermal inertia of the
evaporator mass into the model, which is considered for the evaporator fluid in SIM. The
resulting manipulation of the net heat load Q̇ev at the evaporator in Model M amplifies the
discussed reaction of ṁl to the Tsk step in contrast to Model C. The same applies inverted to
the falling flank of the Tsk step. An amplification of the behavior of ṁl is also visible after
the Q̇cc step. Similar to SIM, the over- and undershoots of ṁl are more pronounced with
Model M than with Model C.
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To analyze the LHP mass flow dynamics, the difference between ṁl and ṁv is presented in
Fig. 7.26.

Figure 7.26: Step responses of the difference between the mass flow rates ṁl and ṁv of SIM, Model C, and Model M
to Test Profile 1 in Fig. 7.24

The three rows correlate with the divided time axis of Fig. 7.25 to take a closer look at the
separate step responses. Since the mass flow rates are equal in an equilibrium point, the mass
flow difference always converges back to zero after a change of the inputs. The qualitative
reaction to the three input changes is similar between the models and SIM. However, a smaller
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displacement of the mass flow difference of the complex models from zero is visible compared
to SIM due to the mentioned modeling mismatch. Only for the Q̇cc step, Model M shows
initial spikes due to the integrated evaporator mass, which quickly return to the curve of
Model C.

For tracking the liquid-vapor interface in the condenser, the lengths of the condenser regions
are calculated based on the condenser inlet in the complex models. Thus, the position of the
liquid-vapor interface results from the sum of the lengths Lsh and L2ϕ. For the test profile in
Fig. 7.24, the variations of the position of the liquid-vapor interface and the condenser outlet
temperature Tco,o are depicted in Fig. 7.27.

Figure 7.27: Step responses of the liquid-vapor interface in the condenser of SIM, Model C, and Model M to Test
Profile 1 in Fig. 7.24

The maximum absolute deviations of the sums toward SIM are max (∆L) = 8.2mm for
Model C and max (∆L) = 12.7mm for Model M. Since Lsh is small compared to L2ϕ, the
differences between the curves in the first row of Fig. 7.27 and in the second row of Fig. 7.25
are small as well. With a considered total length Lco = 1.85m, the remaining length Lsc of
the subcooled region is large enough to cool the liquid down to near sink temperature at the
condenser outlet as can be seen by comparing Tco,o in the second row of Fig. 7.27 to Tsk in
the third row of Fig. 7.24. The only deviation between the complex models and SIM is present
during the Q̇cc step when Tco,o of SIM with its numerical solution method falls below Tsk
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which contradicts the second law of thermodynamics (cf. Sec. 3.1.2). Such a contradiction is
not possible with the heat exchanger approach of the complex models (see Sec. 4.1.4).

All curves of the mass flows and the region lengths in the previous figures are plausible from
the models’ point of view. To determine the proximity to the real LHP systems on the test
benches, appropriate measurements of the interior of the LHP are necessary, which is not in
the scope of this thesis.

7.2.4 Validation of the Order Reduction of the Complex Dynamical
Model

A reduction of the order of the four-dimensional state-space model (4.66), hereinafter denoted
as Model 4D, to the final three-dimensional state-space model (4.84), i.e. Model C, has been
performed and qualitatively analyzed in Sec. 4.1.7. By assuming a constant volume fraction
ratio βop and thus a constant thermal capacitance Cop

cc , the model equations have been simpli-
fied, and the order of Model 4D has been reduced. Now, the simplification is quantitatively
investigated by comparing the results of SIM and both models. For the comparison, the same
parameter set is used as defined in Table 7.2 to set the focus on the differences of the model
equations.

Figure 7.28: Test Profile 2 with variations in the disturbances across the LHP operating range
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A test profile is chosen that includes the variation of the disturbances, i.e. the heat load Q̇ev

and the sink temperature Tsk, at a constant system input Q̇cc, which is commonly used in
qualification tests of LHPs. Their respective curves are depicted in Fig. 7.28.

The presented test profile expands over a great part of the operating range of the LHP to
evaluate the performance of the models outside the OP as well. The corresponding state
variables of both models in comparison to the state variables of SIM are presented in Fig. 7.29.

Figure 7.29: Results of SIM, Model 4D, and Model C to Test Profile 2 in Fig. 7.28
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A similar curve of the three state variables Tcc, L2ϕ, and ṁl results from the chosen test
profile despite the differences in the state variable β. For the comparison of the models with
SIM, β of SIM is calculated by solving (4.83) with the fixed thermal capacity of the two-phase
CC given in [MKHW19], since no separate determination is included. Due to the different
modeling approaches, a negligible stationary deviation between the β curves of SIM and
Model C exists. Although β of Model 4D slightly adapts to the variations of the disturbances,
the effect of a varying β on the overall LHP behavior is low. Hence, the state variables Tcc,
L2ϕ, and ṁl of Model 4D and Model C in Fig. 7.29 are similar, and the model simplification is
valid. Furthermore, L2ϕ and ṁl are proportional to Q̇ev of Fig. 7.28, while Tcc decreases with
increasing Q̇ev . A decreasing Tsk reduces the rise and fall of the three state variables during
the variation of Q̇ev , respectively.

The results in Fig. 7.29 underline once again the very good agreement between the complex
dynamical models and the experimentally validated numerical LHP simulation SIM over the
entire operating range of the LHP.

7.2.5 Occurrence of Temperature Oscillations

The investigated conventional LHP systems SIM, LHP 1, and LHP 2 include minor attached
masses at the evaporators. Thus, Model Cwithout considering a thermalmass at the evaporator
and Model M with an appropriate thermal capacitance for the mass show related results in
the previous model validation when comparing the measured and simulated temperatures.
As discussed in Sec. 2.4, temperature oscillations in the normal operation of the LHP within
its operating range are traced back to a significant thermal evaporator mass, as theoretically
shown in the literature. With the introduced Model M, it is now possible to analyze the
stability of conventional LHPs with attached thermal mass and to simulate corresponding
temperature oscillations. In addition, an adequate controller compensating these oscillations
can be designed based on the introduced model in a subsequent step.

The curves of the measured temperatures of Model M parameterized in the OP of SIM (see
Table 7.4) for three different thermal masses

C1
ev,sf = 40 JK−1, (7.13)

C2
ev,sf = 260 JK−1, (7.14)

C3
ev,sf = 280 JK−1 (7.15)

are depicted in Fig. 7.30. For the investigation of the stability of the nonlinear system Model M,
the stability of the chosen OP of the system is regarded. Based on a displacement from the
equilibrium point, the stability of the OP is analyzed in dependence on Cev,sf . Due to the
bidirectional connection between the LHP fluid cycle and the evaporator mass, which is
situated between the LHP and the heat source, the net heat load Q̇ev at the evaporator is
manipulated both by the fluid temperature of the evaporator, i.e. Tev , and by the temperature
Tev,sf of the evaporator mass near the heat source. The interaction between both subsystems
can cause temperature oscillations when the difference between the dynamics of the related
temperatures are sufficiently large depending on the value of Cev,sf .
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Figure 7.30: Comparison of Model M in the OP of SIM with different thermal masses C1
ev,sf = 40 JK−1,

C2
ev,sf = 260 JK−1, and C3

ev,sf = 280 JK−1

In the chosen OP, the applied initial offset of the CC temperature is T off
cc = 0.03K. As

expected, the temperatures of Model M with the smallest thermal mass (7.13) are stable and
run into the balanced OP, as presented in Fig. 7.30. By increasing the thermal mass to the
value of (7.14), decreasing temperature oscillations become visible, but the trajectories of the
temperatures are still stable. The stability limit of the OP is crossed when the thermal mass is
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further increased to the value of (7.15). Then, increasing oscillations are present, and the OP
is unstable.

The stability limit can be calculated by means of Theorems 4.1 and A.1. For this purpose,
the characteristic polynomial of the Jacobian of (6.27a) is established and the necessary
and sufficient conditions of Theorem A.1 are solved for the thermal mass Cev,sf . The most
restrictive condition for a stable OP finally results from the second and third leading principal
minors:

0 < Cev,sf < 269.1 JK−1. (7.16)

Thus, the upper limit in (7.16) lays between (7.14) and (7.15) which confirms the results of the
simulative comparison in Fig. 7.30.

The presented system stability analysis can be performedwith any other LHP parameterization.
For the other two investigated LHP systems LHP 1 and LHP 2, the respective upper limits
in (7.16) are Cev,sf = 864.3 JK−1 and Cev,sf = 1844.7 JK−1, respectively. The different
sizes of the Cev,sf limits match the rising order of the sizes of the thermal masses of the
respective CC (cf. Table 7.4). The dependence of the operating stability of an LHP on the
relation between the thermal masses of the CC and the evaporator thus coincide with the
theoretical considerations in [HB12]. Thanks to the introduced Model M in this thesis, these
findings can now be reproduced in simulations for the first time.

7.3 Analysis of the State-Space Model for Parallel Loop
Heat Pipes

The combination of two LHPs across a thermal mass, as given by the heat transport system
of an LCT, poses additional challenges to the modeling and control process. Besides the
exact modeling of the heat flows in the attached LCT structure and between the LHPs, the
manipulation of two controllers on one system must be coordinated to ensure overall stability.
In this section, the focus is therefore set again on the dynamics of parallel LHPs under variation
of the system inputs.

In Fig. 7.31, another 1W Q̇cc step at a different equilibrium point of LHP 3 is measured and
compared to the results of Model P. The offset adjustment of the system inputs, as explained
in Sec. 7.2.1, is applied to evaluate the validity of the fixed OP values over the operating range
of LHP 3. In comparison to the 1W Q̇cc step in Fig. 7.10, both the heat load Q̇hs and the sink
temperature Tsk are reduced. Here as well, the dynamics of the CC temperature Tcc in the
first row of Fig. 7.31 are closely reproduced by Model P despite the fixed model parameters.
Only a small stationary deviation between the modeled and the measured Tcc remains after
the step (∆T a

cc(2200 s) = 0.35K, ∆T b
cc(2200 s) = 0.17K).

For the evaporator temperature Tev in the second row, a similarly precise behavior of Model P
is shown where the simulated temperatures follow the measured temperatures closely. The
largest deviation is present in the third row with the condenser inlet temperatures Tco,i. The
reasons are connected to the unmodeled influences of the close condenser system on the
pipes causing parasitic heat flows between the condenser and the VL. Due to the sensor
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Figure 7.31: Comparison of 1W Q̇cc step responses of LHP a and LHP b of LHP 3 and Model P (Q̇hs = 126W,
Tsk = 10 ◦C)

placement on the condenser mentioned in Sec. 7.1.1, the measured and simulated condenser
outlet temperatures Tco,o are very close to the sink temperature Tsk and coincide with each
other. Overall, Model P with fixed parameters keeps a satisfactory behavior toward variations
of the system inputs under a balanced heat distribution between both LHPs.

The analysis of the oscillation behavior of Model P with regard to the thermal masses
of the evaporators yields a different result compared to Model M with a single LHP. Ac-
cording to the procedure in Sec. 7.2.5, the upper limits of Ca

ev,sf and Cb
ev,sf for LHP 3 are
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Cev,sf = 149,835 JK−1. This would be equivalent to an aluminum mass of approximately
m = 166 kg. Since such a value is hardly ever reached or desired in any application, a con-
nection between the operating stability and the thermal masses of the evaporator can not be
confirmed for Model P. Instead, instability is reached in simulations due to an unbalanced
heat distribution between both LHPs and thus an unequal operation of the coupled LHPs. The
heat distribution in a heat transport system depends on the individual heat source structure.
Based on an exact investigation of the heat flow paths of each distributed heat source instead
of the total heat load, a more detailed thermal network of the heat source structure can be
constructed to evaluate the stability limit of each heat transport system separately.

7.4 Simulative Validation of the Controller Performances

The objective of this section is the evaluation of the proposed controllers concerning various
aspects of an effective LHP-based heat transport system, i.e. its stability, accuracy, and
disturbance rejection. The operating conditions are varied to test the controller performance
over the entire operating range of the respective applications at a constant setpoint temperature.
Two quantitative validation metrics are chosen to evaluate both the static and the dynamic
performance of the controllers:

1. The maximal absolute deviation (MAD) specifies the largest station-
ary difference between the points of two temperature curves at the
same instant of time t to assess the accuracy of the controllers with
regard to the characterization of the thermal interface of the heat
transport system.

2. The root mean square error (RMSE), i.e. the square root of the mean
squared difference between all points of two temperature curves,
considers the temporal change to evaluate the smoothness of the
controlled temperatures with regard to the thermal load of the system.

In the following analysis of the controller performances, the model-based designed PI con-
troller piAW/S is comparable with the heuristic state-of-the-art PI controller in the literature.
The setpoint temperatures Tset for the CC temperature Tcc and Tset,ev for the evaporator
temperature Tev of the controllers are fixed on the following values, which are within the
specifications of the considered applications:

Tset = 27 ◦C, (7.17)

Tset,ev = 29 ◦C. (7.18)

First, the temperature control of single LHPs is evaluated taking into account the complexity,
computational effort, and implementation requirements of the respective controllers. Subse-
quently, the temperature control of advanced LHP-based heat transport systems including the
single LHP with attached thermal mass and the parallel LHPs are investigated and analyzed.
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7.4.1 Temperature Control of a Single Loop Heat Pipe

A typical benchmark for the performance of an LHP-based heat transport system is the
variation of the disturbances along its operating range. In the application, these variations
correspond to the changing dissipated heat of the cooled object in accordancewith its operating
status and the variability of the heat sink. In Fig. 7.32, such a benchmark profile is presented
which is used for the subsequent validation of the controller performances.

Figure 7.32: Benchmark profile of a single LHP

Both the CC controllers in Table 7.6 and the evaporator controllers in Table 7.7 are tested in
SIM with the benchmark profile in Fig. 7.32.

Compensation Chamber Control

The comparison of the controlled CC temperatures Tcc of the different control loops is
presented in Fig. 7.33.
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Figure 7.33: Disturbance behavior of the proposed CC controllers with respect to the benchmark profile in Fig. 7.32
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The largest deviation from the setpoint temperature Tset is reached by piAW/S and thus by
the state-of-the-art controller. All other controllers proposed in this thesis achieve a better
performance result. While a heat load change yields an over- or undershoot dependent on the
movement on the U-shaped curve of the SSOT (see Fig. 3.9) with a subsequent convergence
to the setpoint, a change of the sink temperature results in an offset of Tcc. The qualitative
results are underlined by the quantitative metrics in Table 7.12.

Controller MAD
in K

RMSE
in K

Required
temperature sensors

Required
disturbances

piAW/S 0.113 0.0252 Tcc -
piDF/S 0.0276 0.00278 Tcc Q̇ev , Tsk

piOF/S 0.0241 0.00615 Tcc, Tev , Tco,o -
nMIAC/S 0.0155 0.00260 Tcc, Tev Q̇ev , Tsk

nSF/C 0.0241 0.00223 Tcc, Tev Q̇ev , Tsk

Table 7.12: Evaluation of the proposed CC controllers based on Model S and Model C

The lowest over- and undershoots are visible in Tcc controlled by nMIAC/S. Accordingly, its
MAD is the smallest. However, the convergence to Tset is slower for nMIAC/S and is exceeded
by piDF/S and nSF/C. Measured by the RMSE, the deviation error for nMIAC/S is smaller than
for piDF/S, but nSF/C achieves the smallest RMSE and thus the best disturbance rejection.
Although piOF/S has a similar MAD like nSF/C, its overall performance measured by the
RMSE is the second worst.

The good performance of piDF/S is traced back to the good agreement between the stationary
and the transient LHP simulation of SIM. Thus, the controller performance of piDF/S is
also significantly dependent on the agreement between the stationary model and the real
system in contrast to the dependence of the performances of the other controllers on their
dynamic models. The improved performances of the proposed controllers are bought by
the additionally required knowledge of the system’s operating state. Therefore, additional
sensors are necessary which come along with elevated costs. As presented in the third and
fourth column of Table 7.12, piDF/S, nMIAC/S, and nSF/C with the lowest RMSE require the
availability of the disturbances to include the directly connected dynamics of the mass flow
rates. In contrast, piOF/S achieves an improved performance compared to piAW/S by two
additional temperature sensors. Due to the proximity of the sensors to the impact points of
the disturbances, a faster reaction to disturbance changes is possible.

Computational Time

In order to evaluate the different controllers with respect to the necessary computing power of
the target processor hardware, the computational time of each controller step is averaged over
the total time frame of the benchmark profile. The CPU used for the simulations is an Intel
Core i7-7700 at 3.60GHz and with 16GB of RAM. The results of the different controllers are
given in Table 7.13.
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Controller Mean computational time
inms

piAW/S 0.0114

piDF/S 0.06

piOF/S 0.0153

nMIAC/S 1.36

nSF/C 17.2

Table 7.13: Evaluation of the computational time of the proposed CC controllers based on Model S and Model C

As expected, piAW/S being based on the state-of-the-art PI controller has the lowest mean
computational time and thus the lowest processor requirements. Similarly small is the mean
computational time of piOF/S due to both their simple controller structures. The disturbance
feedforward control implemented as lookup table requires additional computational time in
order to interpolate the output value of the table. A significantly larger distance exists to
the next fastest controller, piDF/S. In contrast, the mean computational time of nMIAC/S is
already above 1mswhich is traced back to the optimization method to determine the identified
model parameters for the subsequent state estimation. The largest mean computational time,
however, is necessary for nSF/C based on Model C. Since the state feedback controller is
based on the state estimation via an SRUKF, additional computational time is needed for the
discrete transformation of the sigma points through the stiff system equations (see Sec. 4.2.3).
The computational time of nSF/C in Table 7.13 is based on the proposed implementation
of Matlab’s ode15s solver. However, a mean computational time of 595ms is measured
when the multi-rate framework and Euler’s forward method is implemented. Such a high
computational time is already close to the sampling time Tst = 1 s commonly used for the
control cycles of LHPs considering the additional computational time required for processing
the data of sensors and actors. Hence, the choice of the controller also depends on the available
processor hardware of the developed LHP-based heat transport system. However, the real-
time capability of all introduced controllers has been verified by assuring that the respective
maximal computational time over all simulation steps is smaller than Tst.

Anti-Windup Strategy

For the verification of the proposed AW strategy, the controlled CC temperatures Tcc and the
manipulated variables Q̇cc of all controllers are depicted in Fig. 7.34.

Due to a reduction of the heat load Q̇ev during the saturation of the control heater, Tcc rises
again, and a lower Q̇cc is sufficient to keep Tcc at Tset. The controller piAW/S leaves the
saturation the latest since the output xaw of the AW structure is the largest, and the overshoot
is most distinct. Both the controllers with integral action and AW strategy, namely piAW/S,
piDF/S, piOF/S, and nSF/C, as well as nMIAC/S leave the saturation of the control heater
smoothly without major overshoots.
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Figure 7.34: Performance comparison of the proposed CC controllers when leaving the saturation of the control
heater (Tsk = −25 ◦C)

Integrated State Estimation Methods

In order to analyze the satisfactory performance of nMIAC/S and nSF/C in Fig. 7.33 closer,
their integrated state estimation methods are evaluated in this section separately.

In Fig. 7.35, the results of the state prediction for the nonlinear Lyapunov-based controller
of nMIAC/S are presented in comparison with the corresponding temperatures of SIM. The
two state variables in the first two rows are closely reproduced by the state prediction based
on Model S since the two model parameters ṁ and Ulk are optimized by the parameter
identification with respect to both measured state variables. As it can already be seen in the
validation of Model S in Sec. 7.2.1, a major deviation is visible when comparing the third state
variable of Model S, the condenser temperature Tco, with the condenser outlet temperature
Tco,o of SIM. As expected, this mapping is indeed imperfect from the model’s point of view,
but the measured temperature Tco,o comes closest to the effective model temperature Tco,
which is the overall temperature of the three subsystems VL, condenser, and LL. Since the
other model parameters of Model S are fixed in the OP based on the mapping of Tco and
Tco,o in Sec. 7.1.2, a close agreement between all three curves of Fig. 7.35 is achieved in the
proximity of the OP at approximately t = 5900 s.
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Figure 7.35: Comparison of the predicted states of nMIAC/S with the corresponding temperatures of SIM

The integrated parameter identification based on the measured temperatures Tcc and Tev

is responsible for the high agreement between Tcc and Tev of Model S and SIM. The opti-
mized model parameters ṁ and Ulk enable the adaption of Model S to the varying operating
conditions. A comparison of the identified parameters of nMIAC/S with the corresponding
variables of SIM is presented in Fig. 7.36.
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Figure 7.36: Comparison of the identified model parameters of nMIAC/S with the corresponding parameters of SIM

The simulated mass flow rates ṁl,SIM and ṁv,SIM show a similar behavior confirming the
remarks in Assumption 5.1. Thus, a single mass flow rate ṁ is sufficient to approximate the
LHP fluid dynamics in Model S closely. Due to the online identification of ṁ in dependence on
the heat load Q̇ev , the variation of the mass flow rate can be considered in the state prediction
based on Model S. Besides the mass flow rate, the CC dynamics are influenced by the heat leak
between the CC and the evaporator as part of the heat load. Furthermore, the temperature of
the liquid entering the CC is governed by the other disturbance, the sink temperature Tsk.
By identifying the thermal conductance Ulk in nMIAC/S, the adaption of the temperature
difference between Tcc and Tev to the changing operating conditions including the variation of
both disturbances is considered. The energy balance in the CC is set by adapting the heat leak
from the evaporator through Ulk to the incoming liquid flow from the condenser subsystem
at Tco. In comparison to the fixed USIM

lk of SIM, where the heat leak is fitted to experimental
data in dependence on the disturbances, the identified Ulk changes over time but within a
reasonable order of magnitude close to the constant USIM

lk . Thus, the deviation between
both Ulk is caused by the adaption of the CC energy balance to the measured temperatures
besides the adaption to the varying disturbances. In summary, the performance of nMIAC/S is
very satisfactory due to the adaption of the controlled CC dynamics based on the parameter
identification.

The reason for the spikes of Tcc in Fig. 7.33 and 7.35 at approximately t = 6100 s can be
explained using Fig. 7.36. A spike is also visible in ṁl,SIM at the same time which is traced
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back to numerical inaccuracies in the balancing solution method of the numerical LHP
simulation SIM for the mass flow rates ṁl,SIM and ṁv,SIM . This numerical inaccuracy of
the mass flow rates reproduces in the simulated temperature Tcc and thus is not related to the
action of the controller.

The combined state and parameter estimation of nSF/C is based on an SRUKF for the states
Tcc, L2ϕ, and ṁl as well as an SRUKF for the parameter Rsh, which include the influences
of the disturbances on the LHP dynamics through the complex equations of Model C. Due
to the considered phase transition in the condenser, an adaption of the CC energy balance
is not necessary compared to the nMIAC algorithm. The results of the combined state and
parameter estimation of the nSF/C in the closed control loop are depicted in Fig. 7.37.

In the third row, the estimated liquid mass flow rate ṁl follows the simulated ṁl of SIM
closely. Despite the different modeling approaches of the mass flow in Model C and SIM, a high
agreement is achieved. Another good result is obtained for the length L2ϕ of the two-phase
condenser region. While a high agreement is present at the lower sink temperatures, the
already mentioned deviation at high sink temperatures due to the fixed OP parameters is
also the reason for a slightly higher deviation in L2ϕ. The biggest deviation, however, is
visible in the controlled CC temperature Tcc. Compared to the estimated Tcc, a small deviation
of less than 0.55K remains because of the discrepancy between the reached temperature
equilibria for the same value of the input variable Q̇cc (see Sec. 7.2.1). The integrated parameter
estimation with another SRUKF contributes to the decrease of this discrepancy besides an
improved general estimation of the states. As depicted in the fourth row of Fig. 7.37, the
agreement between the estimated Rsh and the equivalent resistance of SIM is high. Thus,
the influence of the flow dynamics in the evaporator on the states under varying operating
conditions are correctly reproduced.

With regard to the CC temperature control in Fig. 7.12, the PI controller of nSF/C takes over
the adjustment of the controller output subject to the state deviations in comparison with the
adaptive function of nMIAC/S. By using the measured Tcc instead of the estimated Tcc inside
the nSF/C, its disturbance rejection is further improved due to the relief of the PI controller.
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Figure 7.37: Comparison of the estimated variables of nSF/C with the corresponding variables of SIM

Evaporator Control

With the benchmark profile in Fig. 7.32, the evaporator controllers based on a cascade control
are evaluated next. The results of the controllers in SIM are presented in Fig. 7.38.
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Figure 7.38: Disturbance behavior of the proposed evaporator controllers with respect to the benchmark profile in Fig. 7.32
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All introduced evaporator controllers show a good disturbance rejection considering the small
y-axis range of 0.06K. Although the controlled Tev of nSFc/C shows the largest deviation
from the setpoint temperature Tset,ev at the highest sink temperature Tsk , the performance
of nSFc/C improves with falling Tsk resulting in a decreasing control error. The larger
control error of nSFc/C at higher Tsk is related to the fact that Model C with fixed model
parameters yields the largest model error compared to SIM at these operating conditions
due to unconsidered changing heat transfer processes and fluid kinematics. In contrast to
nSFc/C, the other cascade controllers based on Model S show increasing over- and undershoots
with decreasing Tsk. It is noticeable that piDFc/S and nMIACc/S show a similar curve of
the controlled evaporator temperature Tev because of their good CC control characteristics
in the inner control loop. Thus, the setpoint temperature Tset dictated by the outer control
loop is closely realized by both controllers. In contrast, piAWc/S and piOFc/S have the worst
performance under disturbance variation since they do not consider the disturbances explicitly
in their control law.

The quantitative analysis of the performance of the evaporator controllers is performed with
the metrics in Table 7.14.

Controller MAD
in K

RMSE
in K

Required
temperature sensors

Required
disturbances

piAWc/S 0.0291 0.00640 Tcc, Tev -
piDFc/S 0.0291 0.00498 Tcc, Tev Q̇ev , Tsk

piOFc/S 0.0376 0.00415 Tcc, Tev , Tco,o -
nMIACc/S 0.0342 0.00537 Tcc, Tev Q̇ev , Tsk

nSFc/C 0.0367 0.00392 Tcc, Tev Q̇ev , Tsk

Table 7.14: Evaluation of the proposed evaporator controllers based on Model S and Model C

Once again, the cascade control piAWc/S with the state-of-the-art PI controllers achieves the
worst overall performance based on the RMSE. For changes of both the heat sink and the heat
source, the control error of piAWc/S is the largest. However, its MAD is slightly smaller than
the MAD of the other controllers due to a better reaction to the dropping dissipated heat of
the heat source after every operating cycle (see Fig. 7.32). The best overall result based on
the RMSE is achieved by nSFc/C due to the exact state and parameter estimation based on
Model C.

7.4.2 Compensation of Temperature Oscillations

In this section, the behavior of the introduced controllers for a single LHP with a relevant
thermal mass at the evaporator is investigated. Furthermore, the controller performances for
a stable and for an unstable thermal mass setting are compared and evaluated.
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Figure 7.39: Disturbance behavior of the proposed controllers for a single LHP with Cev,sf = 40 JK−1 with respect to the benchmark profile in Fig. 7.32
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As elucidated in Sec. 7.2.5, the oscillatory behavior of a single LHP depends on the size of
the attached thermal mass at the evaporator. At a thermal mass of Cev,sf = 40 JK−1, the
behavior of Model C and Model M is similar and stable. Thus, all introduced controllers,
namely piAW/M, piDF/M, piOF/S, nMIAC/S, nSF/C, and nSF/M, are able to stabilize the CC
temperature Tcc and keep the desired setpoint temperature Tset as depicted in Fig. 7.39.

The largest deviations from Tset occur for piAW/M while the smallest control errors are
achieved by the nonlinear PI state feedback controllers nSF/C and nSF/M. Both controllers
benefit from the good agreement between Model C and Model M for the exact input-output
linearization.

With increasing thermal mass, the LHP temperatures start to oscillate until the stability limit is
reached according to (7.16). As simulations of the proposed control approaches show, not all of
the controllers are able to stabilize Tcc and compensate for the temperature oscillations despite
their adaption to the increasing thermal mass. With decreasing sink temperature Tsk, the
amplitudes of the oscillations increase until the control loops become unstable. Furthermore,
the stability limit is reached with piAW/M, piDF/M, and nSF/C for lower Cev,sf than with
piOF/S. Only nMIAC/S and nSF/M enable a stable temperature control due to their accurate
adaption to the disturbance impacts. The successful performances of both controllers at
Cev,sf = 280 JK−1 above the calculated stability limit of Model M is presented in Fig. 7.40.

Figure 7.40: Disturbance behavior of the oscillation-compensating CC controllers for a single LHP with
Cev,sf = 280 JK−1 with respect to the benchmark profile in Fig. 7.32

For a stable state estimation of nSF/M with an SRUKF based on Model M, the sampling time
must be reduced to Tst = 0.1 s in the simulations compared to the SRUKF based on Model C
with Tst = 1 s. This leads to a slightly increased computational time but is still within the
requirements of the LHP control cycle. However, without considering the thermal mass in the
nonlinear PI state feedback control, as it is the case with nSF/C based on Model C, a stable
temperature control without oscillations cannot be achieved. While nMIAC/S achieves the
desired compensating performance due to its parameter identification, although it is based
on Model S, nSF/M rebuilds the modulation of the net heat load physically with the attached
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thermal network of the evaporator. Thus, the disturbance rejection of nSF/M yields clearly
smaller over- and undershoots compared to nMIAC/S in Fig. 7.40.

The same stability results as before with the CC controllers apply to the evaporator controllers
of a single LHP with attached thermal mass. Thus, only the respective cascade controllers
based on nMIAC/S and nSF/M are able to compensate the temperature oscillations. The
performance of nSFc/M is verified as well in simulations and compared to nMIACc/S. Both
controllers are parameterized based on Model M as given in Table 7.9. The results of the
simulations are presented in Fig. 7.41.

Figure 7.41: Disturbance behavior of the oscillation-compensating evaporator controllers for a single LHP with
Cev,sf = 280 JK−1 with respect to the benchmark profile in Fig. 7.32

Over the operating range of the LHP, both controllers nMIACc/S and nSFc/M keep the
controlled evaporator temperature Tev in a narrow corridor around the setpoint temperature
Tset,ev . Although both controllers are based on different evaporator models within Model S
and Model M, a stable control loop is achieved in both cases due to the parameter adaption
and the physical foundation, respectively.

7.4.3 Temperature Control of Parallel Loop Heat Pipes

For the verification of the performances of piAW/P and nSF/P, the test profile in Fig. 7.42 is
used. The test profile considers the increased heat transport capability of the parallel LHPs by
means of an increased dissipated heat of the heat source compared to Fig. 7.32.
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Figure 7.42: Test Profile 3 with variations in the disturbances across the operating range of LHP 3

The corresponding comparison of the performances of both controllers is depicted in Fig. 7.43.
To set the focus on the controllers, the state input of nSF/P is connected with the state feedback
of the system. For the realization of nSF/P, the state estimation based on the SRUKF in Sec. 4.2.3
for a single LHP can be extended accordingly.

The controlled CC temperatures T a
cc and T b

cc of both LHPs are given in the first and the
second row of Fig. 7.43, respectively. Both controllers stabilize the system and keep T a

cc and
T b
cc near the setpoint temperature Tset. A smaller deviation from Tset is achieved by the

introduced nSF/P compared to the state-of-the-art PI controllers of piAW/P. During the sink
temperature change, a larger deviation between Tset and Tcc results for piAW/P than for nSF/P.
The deviations caused by heat load changes turn out to be smaller than in the case of a single
LHP due to the low disturbance dynamics based on the increased delay of the thermal mass
of the LCT dummy (cf. Table 7.1). As a consequence of the same parameterization of the
controllers for LHP a and LHP b, the heat transport performance of both LHPs is comparable
and thus leads to similar Tcc curves during the modeled balanced heat distribution.
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Figure 7.43: Disturbance behavior of the proposed CC controllers for parallel LHPs based on Test Profile 3 in Fig. 7.42

7.4.4 Numerical Stability Analysis of the Control Loops Based on the
Complex Model

In this section, the numerical results of the stability analysis of the control loops with the
controllers based on the complex models, i.e. nSF/C, nSF/M, and nSF/P, are presented. While
the other proposed controllers based on Model S are stable due to their individual control
designs and parameterizations, the stability of the internal dynamics of Model C, Model M, and
Model P must be evaluated specifically according to Sec. 4.2.1, 6.2.1 and 6.2.2, respectively.

Model C

For the stability of the zero dynamics of Model C in dependence on the OP, its Jacobian (4.114)
is evaluated according to Theorem 4.1. In order to consider the multiple equilibrium points of
the LHP, (4.114) is analyzed for a number of sample OPs which are determined at equilibrium
over the entire operating range. Furthermore, the external state variable xop

ex is fixed in the
setpoint temperature Tset according to (7.17) in order to calculate the different internal state
vectors xop

in in the balanced OP in dependence on the varying disturbance vector dop. The
numerical solution of the stationary state equations (7.2) to (7.4) with the model parameters of
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SIM in Table 7.2 is obtained by minimizing the squared sum of the equations for xop
in and the

input variable uop with the direct search method applied in Sec. 5.2.4. For the analysis of the
eigenvalues of the resulting Jacobians, the Hurwitz criterion in Appendix A.2 is applied which
refers to the characteristic polynomial of a Jacobian. Since the first condition in Theorem A.1
is a necessary and sufficient condition for the second-order characteristic polynomial (4.115),
the corresponding coefficients γ0 and γ1 must be positive for stable eigenvalues and thus
stable OPs of the zero dynamics. The calculated coefficients in dependence on the determined
OPs are depicted in Fig. 7.44 as surface plots above dop.

Figure 7.44: Surface plots of the coefficients γ0 and γ1 of the characteristic polynomial (4.115) of the zero dynamics
of Model C in different OPs within the LHP operating range at xop

ex = Tset

The slopes of the surfaces in Fig. 7.44 deliver insight into the dynamics of a controlled LHP. The
highest values of the coefficients are reached for the highest heat load Q̇ev and the highest sink
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temperature Tsk . With falling Q̇ev as well as falling Tsk , the values of the coefficients decrease.
As coefficients of the characteristic polynomial of the zero dynamics, the absolute values
of the eigenvalues become smaller as the coefficients decrease. Hence, the zero dynamics
become slower. Transferred to the overall dynamics of the LHP, the lower both disturbances
the slower the system reacts to input changes. This explains the decreasing performance of
the controllers with falling Tsk resulting in increasing over- and undershoots, e.g. from the
left to the right of Fig. 7.33.

Considering the exponents of the z-axes in Fig. 7.44, both surfaces are situated above zero and
do not cross the xy-plane. Therefore, the coefficients γ0 and γ1 in (4.115) are positive over the
LHP operating range. This means that the eigenvalues of the Jacobian (4.114) are negative,
and thus, the OPs of the zero dynamics of Model C are locally exponentially stable according
to Theorems 4.1 and A.1, i.e. nSF/C stabilizes Model C over the entire operating range.

Model M

Due to the extension of the state vector x of Model M in (6.27) by Tev,sf compared to Model C,
the Jacobian of the zero dynamics of Model M in Theorem 4.1 is four-dimensional. Hence, the
corresponding characteristic polynomial is three-dimensional, and both the coefficients γ0 to
γ2, since γ3 = 1, and the minorsM1 toM3 has to be evaluated according to the previously
described procedure. The resulting surface plots of the calculated coefficients and minors are
presented for Cev,sf = 280 JK−1 in Fig. 7.45 and 7.46.

As depicted in both figures, the slopes of the surfaces are similar to the ones in
Fig. 7.44, since the fundamental behavior of Model C and Model M is similar as well.
They also explain the varying controller performances in Fig. 7.39 as mentioned before.
All surfaces are fully situated again above zero, and the coefficients and minors are positive.
Hence, the OPs of the zero dynamics of Model M are locally exponentially stable according to
Theorems 4.1 and A.1, i.e. nSF/M stabilizes Model M over the entire operating range of the
running LHP.
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Figure 7.45: Surface plots of the coefficients γ0, γ1, γ2 of the characteristic polynomial of the zero dynamics of
Model M in different OPs within the LHP operating range at xop

ex = Tset
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Figure 7.46: Surface plots of the minors M1, M2, and M3 of the characteristic polynomial of the zero dynamics of
Model M in different OPs within the LHP operating range at xop

ex = Tset
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Model P

The stability of the OP of the zero dynamics of Model P in dependence on the disturbances
further increases the complexity of the calculation according to the previous procedure due to
the increased dimension of thirteen of the state vector (6.39). While the operating range with
the respect to the heat sink stays the same, the range of the dissipated heat of the heat source
increases due to the double heat transfer by the parallel LHPs. Thus, Q̇hs ranges from 40W
to 200W. Because of the resulting high number of coefficients and minors and the connected
high values, the illustration of all corresponding surface plots is omitted here. Instead, the
minima of both are listed in the following, whereby the inequalities of Theorem A.1 can be
verified:

min (γ0) = 2.1, min (M1) = 1.1 · 104,
min (γ1) = 1.1 · 104, min (M2) = 3.9 · 109,
min (γ2) = 3.6 · 105, min (M3) = 1.5 · 1016,
min (γ3) = 4.9 · 106, min (M4) = 3.4 · 1023,
min (γ4) = 3.2 · 107, min (M5) = 2.6 · 1031,
min (γ5) = 1.1 · 108, min (M6) = 3.1 · 1039,
min (γ6) = 1.6 · 108, min (M7) = 2.7 · 1047,
min (γ7) = 1.0 · 108, min (M8) = 4.5 · 1054,
min (γ8) = 1.9 · 107, min (M9) = 4.8 · 1060,
min (γ9) = 1.1 · 106, min (M10) = 9.7 · 1063,
min (γ10) = 2.0 · 103, min (M11) = 9.7 · 1063,
min (γ11) = 1.0.

Since the listed minima of the coefficients and minors are positive, all their values are positive.
Thus, the OPs of the zero dynamics of Model P are locally exponentially stable according to
Theorems 4.1 and A.1, i.e. nSF/P stabilizes Model P over the entire operating range of the
running LHP.

7.5 Discussion

In order to discuss the performance of themodels and corresponding controllers in the previous
validation, the differences as well as their advantages and disadvantages are highlighted in
this section. Finally, answers to the initial research questions in Sec. 2.5 are found based on
the discussion.

The benefit of a complex model with and without additional thermal mass and its impact on
the corresponding controller performance has been clearly shown in the previous sections.
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Combining the mass flow dynamics with the thermodynamics of an LHP enables the complex
state-space modeling of a correct disturbance behavior of the measured temperatures on
a physical basis. The corresponding nonlinear PI state feedback control law is thus able
to consider these influences during the control of the CC or evaporator temperature. By
simplifying the state-space model around an OP, the linear and nonlinear controllers based on
this model are restricted to that OP and their performances vary in other equilibrium points
over the entire operating range. Nevertheless, the adaption of the relevant model parameters
in the nonlinear state feedback controller of nMIAC related to the mass flows and the heat
leak let it reach almost the same performance as being based on the complex model. Thus,
both the nMIAC and the nonlinear PI SF are able to compensate oscillations and achieve the
best disturbance rejection as verified in Sec. 7.4.2.

For the review of the proposed controllers for a single LHP, the different controller types are
assessed qualitatively with respect to five categories. These categories include the implemen-
tation effort concerning the complexity of the respective algorithms, the general performance
of the controllers based on the relevant disturbance rejection, the computational effort for
the target processor dependent on the computational time of the implemented controllers in
Table 7.13, the ability to compensate temperature oscillations due to an attached thermal mass
(see Sec. 7.4.2), and the number of required sensors of each controller regarding the effort and
costs of the application. The grading distinguishes between four grades: ++, +, -, --. These
symbols correspond to the rating of each category between low and high or bad and good,
respectively. The results of the assessment are recorded in Table 7.15.

Controller
type

Imple-
men-
tation
effort

Distur-
bance
rejection

Compu-
tational
effort

Oscillation
compen-
sation

Sensor
require-
ment

PI controller
with AW strategy ++ -- ++ -- ++

PI controller
with DF - + + -- -

PI OF + + ++ -- +
nMIAC -- ++ - ++ --
nonlinear PI SF -- ++ -- ++ -

Table 7.15: Evaluation table of the introduced controller types for a single LHP

The grades in this evaluation table are the results of the analysis in the previous sections in this
chapter. The table facilitates the choice of the correct controller for the specific application by
an LHP end user being a tradeoff between the desired performance and hardware requirements.
While the PI controller, as commonly used in the literature, has an advantage over the more
complex controllers regarding their implementation and computational efforts as well as their
sensor requirements, an improved disturbance rejection and oscillation compensation comes
along with a higher degree of complexity. A better disturbance rejection of the PI controller
with DF is outweighed by a worsening in all other categories. In contrast, the PI OF achieves
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this advantage at a similar computational effort with a better sensor requirement since it does
not need knowledge about the disturbances. The good performance of the PI controller with
DF, however, is based on the good agreement between the stationary and the transient model
of SIM. On the test bench, a higher mismatch between model and reality may be expected, as
a lower benefit compared to the PI controller appears in the test bench results presented in
[GMK+18]. The best performances are achieved by the nMIAC and the nonlinear PI SF. For
such a performance, the nMIAC needs one more temperature sensor than the nonlinear PI SF
for the CC temperature control. However, the computational effort is higher for the nonlinear
PI SF due to the more elaborate state estimation. In contrast to the other controllers, their
implementation efforts are clearly increased due to the integrated optimization method and
unscented Kalman filter, respectively.

The parallel LHPs are modeled by connecting their evaporators via the thermal network of
the supporting structure with a single heat source. The investigated Q̇cc step responses are
closely reproduced by the introduced model. However, the sensibility of such a system with
respect to its stability can already be experienced when determining the equilibrium states for
the parameterization and numerical stability analysis as well as in the subsequent simulation.
Minor changes to the model parameters may already result in infinite solutions. Furthermore,
an imbalance between LHP a and LHP b due to the supposed heat distribution promote
unstable temperature curves. The impact of the evaporator masses on the stability of the
system cannot be verified. Instead, a reconstruction of the heat flow paths with a more detailed
thermal network could clarify the situation of the imbalance, which is an application-specific
challenge to the LHP end user. For now, the proposed MIMO controller shows the potential of
model-based designed advanced controllers for the improved performance of heat transport
systems with multiple LHPs.

Following the initial research questions in Sec. 2.5, an answer to each question can now be
found:

1. According to the comprehensive validation of each proposed controller, the best perfor-
mance for a single LHP is achieved by a nonlinear state feedback controller extended
by a PI controller based on a complex LHP model.

2. An essential insight into the overall dynamic behavior of an LHP is gained through the
combined detailedmodeling of the heat transfer and the fluid flow. Only this combination
enables the modeling of variations of the disturbances whereby a correct reproduction
of the states over the entire operating range becomes possible. A model-based control
design of linear controllers is already successful by concentrating on the temperature
dynamics of an LHP alone. However, the corresponding optimization-based adaption of
relevant model parameters improves the performance of a temperature-based adaptive
controller significantly.

3. The extension of a single LHP with an arbitrary thermal network in state-space form for
the modeling of advanced LHP-based heat transport systems provides the LHP end user
with further possibilities to model individual future LHP-based heat transport systems.
Especially the explicit consideration of a variable thermal mass at the evaporator makes
it possible to simulate and investigate the temperature oscillations during the continuous
LHP operation. The simulation of such temperature oscillation makes it possible to
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test the compensation ability of LHP controllers besides their disturbance rejection.
As it has been shown in this chapter, the model extension can be transferred to the
subsequent model-based control design smoothly.

4. In the end, two proposed controllers have been identified which are able to compensate
the temperature oscillations in contrast to the state-of-the-art PI controller. Besides
the aforementioned nonlinear state feedback controller based on the extended accurate
Model M, the unstable LHP system can be controlled by the adaptive controller based on
the simplified Model S, which both enable the smooth control of the CC and evaporator
temperature.

7.6 Conclusion

This chapter has delivered the evaluation of the introduced state-space models and the pro-
posed linear and nonlinear controllers. The dynamical models have been thoroughly validated
with measurements from two different single LHPs on a test bench and a numerical LHP
simulation confirming the validity and the transferability of the introduced models. The con-
trollers have proven their stable performance and improved disturbance rejection compared
to the state-of-the-art controller, and their advantages and disadvantages have been listed.
The choice of the correct controller for the specific application is finally a tradeoff between
performance and hardware requirement.

The investigation of the Q̇cc step responses has shown the weaknesses of Model S compared
to Model C and Model M. However, Model S has achieved a good model accuracy in certain
operating areas sufficiently representing the dynamics of relevant temperatures of an LHP for
a subsequent model-based design of simple controllers with low processor requirements as
preferred in aerospace systems.

The strongest disturbance rejection of a Model S-based controller is achieved by the proposed
nMIAC that adapts the disturbance-related model parameters to the mass and fluid dynamics
through the model identification adaptive structure. In contrast, the physical modeling of
the disturbance behavior with Model C and Model M, mainly based on incorporating the
relevant mass flow dynamics and phase transitions, has enabled a precise reproduction of the
LHP temperatures subject to disturbance changes. The corresponding model-based designed
controllers have gained even further performance advantages compared to the state-of-the-art
controllers.

The correct agreement between Model P and the parallel LHPs of the heat transport system
of an LCT has been validated with measured data of another test bench. For a balanced heat
distribution, Model P with its simplified thermal network representation of an LCT models the
advanced LHP-based heat transport system precisely as it has been shown by the comparison
of the control heater steps. Accordingly, the corresponding MIMO controller has shown an
improved performance compared to the separate PI controllers of the state of the art.

In the case of parallel LHPs, these temperature oscillations, however, have not been repro-
ducible with Model P. Instead, temperature oscillations during the normal LHP operation of
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parallel LHPs are more likely to be caused by the individual heat distribution of the connecting
thermal mass of the heat source and not by the specific LHP designs.

Besides the desired model-based control designs, the simulation of the LHP behavior with an
attached thermal mass and its impact on the LHP dynamics is now possible with Model M.
Thus, the theoretical arguments in [HB12] have been reproduced in simulations for the first
time. Furthermore, the simulations have confirmed the cause for temperature oscillations
during the normal operation of an LHP when a significant evaporator mass is present. Thus,
a quantitative answer to the question when a running LHP starts to oscillate is possible. As
previously shown, these temperature oscillations are compensable by two of the proposed
controllers in contrast to the common state-of-the-art PI controller.
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The increasing number of temperature-sensitive electronic components in aerospace and
terrestrial systems comes alongwith a need formore effective thermal control systems. LHPs as
passive, two-phase heat transport systems are in the focus of the industry for the construction
of successful thermal management systems. In addition to ensuring the multiphase heat
transfer from the heat source to the heat sink, adequate control methods and algorithms are
necessary to keep the cooled objects at optimal operating conditions. Control heaters provide
a potent solution with a low risk of failure for the operating temperature (OT) control of
LHPs. So far, simple controllers with a heuristic parameterization are commonly used in the
literature to control the heater output showing moderate performances with a high design
effort at the same time. For a structural approach to the design of control algorithms with
improved performance for the control heaters of current and future LHP-based systems, a
model-based control design is pursued in this thesis for the first time.

The first complex dynamical model of a conventional LHP is based on a system of differential
equations in the desired state-space form. The decomposition of the multiphase system
is chosen according to its components. It simplifies the derivation of the required energy
balance equations from the respective conservation laws to form the final three-dimensional
state-space model with lumped parameters. A major emphasis is set on integrating the mass
flow dynamics into the model. The mass flows are connected to the phase transition in the
two-phase regions of the LHP and govern the disturbance behavior of the LHP. The resulting
nonlinear model is able to reproduce the measured temperatures of an LHP subject to changes
in the operating conditions. For the corresponding nonlinear model-based control design, a
PI state feedback controller is designed based on the exact input-output linearization that
fits to the present model structure. The classical approach to govern the OT is the control of
the compensation chamber (CC) temperature. Owing to the complex model, a corresponding
cascade control design is now possible to achieve smoother temperature curves of the cooled
object. This is achieved by keeping the evaporator temperature, i.e. the temperature closest to
the object, near its constant setpoint temperature. The required feedback of the unmeasured
states in both controllers is provided by a nonlinear state estimation with a square-root
unscented Kalman filter (SRUKF).

Based on the detailed investigation of a single LHP with the complex state-space model, the
model-based control design approach is extended to advanced LHP systems including LHPs
with attached thermal mass and parallel LHPs. For these complex thermodynamic systems,
the introduced model of a single LHP is adapted based on the thermal analogy of electrical
networks. Analogously, the state feedback controllers are adjusted to the new models. Besides
the consideration of extended state vectors in both cases, the MIMO form of the controller is
designed to include the coupled dynamics of parallel LHPs. The modular model-based control
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design approach in this thesis provides access to further investigations and improvements of
advanced heat transport systems with multiple components or LHPs.

Taking into account the complexity of the previous LHP state-space model and the increased
hardware requirements of the corresponding controllers, a simplified second state-space
model of a conventional LHP is derived. This model includes less model parameters and fully
measurable states. It enables the model-based design of various controllers that consider
different LHP-specific extensions to improve the disturbance rejection. The proposed linear
controllers include an additional disturbance feedforward control based on a stationary
LHP model, which is commonly established for the characterization and design of LHPs.
Furthermore, an output feedback control based on the fully measurable states of the linearized
model is designed, accordingly. In addition to the linear controllers, a nonlinear model
identification adaptive control is proposed based on the simplified model. This approach
directly includes the influence of the disturbances in the controller by optimizing the related
model parameters with regard to the measured temperatures. For the alternative control of the
evaporator temperature, all introduced controller types are extended to cascade controllers.
Thus, a range of controllers with different hardware requirements is made available for single
LHPs to address the various constraints of power demand and mass in aerospace and terrestrial
applications.

The practical relevance and transferability of the proposedmodels is verifiedwithmeasurement
data from different LHP designs on various test benches. The improved performance of the
controllers compared to the state of the art is verified in simulations showing the tradeoff
between complexity and performance. The stability of the multiple operating points (OPs) of
the controlled nonlinear systems is proven numerically based on Lyapunov’s indirect method.
A critical stability factor of single LHPs is the attached thermal mass at the evaporator that can
have a negative impact on the controller performance. The simulated temperature oscillations
of single LHPs are consistent with the theoretical findings in the literature. In contrast to the
state-of-the-art PI controller, two of the proposed controllers are able to compensate these
oscillations and stabilize the LHP in the desired OP. The same type of oscillation cannot be
reproduced in parallel LHPs. However, the heat distribution between both LHPs is more
likely to cause instabilities which can only be considered by adequate measurements of the
heat flows and a corresponding detailing of the thermal network of the laser communication
terminal (LCT) structure.

In summary, this thesis contributes to the model-based control design for LHP-based heat
transport systems. Besides the detailed consideration of single LHPs, the procedure is also
adapted to the control design of parallel LHPs in advanced LHP systems. The introduced
models are able to simulate the significant dynamics of an LHP. Furthermore, the proposed
controllers are successfully applied in simulations showing an improved performance and
accuracy. This thesis can be seen as a foundation for the dynamical modeling and model-based
control design for future LHP-based heat transport systems. Its results may be a guideline to
update current control parameters, improve control designs, and efficiently adapt controllers
to new applications.



A Appendix

In this appendix, the physical properties of the considered working fluid inside the LHP
and their mathematical approximations are stated, which are used throughout this thesis.
Furthermore, the algorithms of the state and the parameter estimation based on unscented
Kalman filtering are described in detail, before the implemented startup strategy of a controlled
LHP is shortly presented.

A.1 Physical Properties of the Working Fluid

The working fluid of the considered LHP is ammonia. The corresponding values of the physical
properties are taken from the tables in [WKSK10] with respect to the reference temperature
Tref = 0 ◦C. In the following, all temperatures are expressed in ◦C.

The density ρl of the saturated liquid is approximated with the polynomial

ρl(T ) = −4 · 10−5 · T 3 − 0.0027 · T 2 − 1.3522 · T + 638.57. (A.1)

The density ρv of the saturated vapor is approximated with the polynomial

ρv(T ) = 1 · 10−5 · T 3 − 0.0017 · T 2 + 0.1229 · T + 3.4553. (A.2)

The specific heat capacities are

clp(T ) = 5 · 10−4 · T 3 + 3 · T 2 + 5.6 · T + 4616.5 (A.3)

for the saturated liquid and

cvp(T ) = 0.1 · T 2 + 15.1 · T + 2680.8 (A.4)

for the saturated vapor.

The heat of evaporation ∆hv is given by

∆hv(T ) = −3 · 10−2 · T 3 − 11.5 · T 2 − 3572.3 · T + 1262300. (A.5)

The dynamic viscosity µl of the liquid is approximated by the polynomial

µl(T ) =
(
−2 · 10−8 · T 5 + 10−6 · T 4 − 10−4 · T 3

+ 0.0151 · T 2 − 1.8665 · T + 170.1
)
· 10−6. (A.6)
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The Antoine parameters are

Awf = 21.633, (A.7)

Bwf = 2026.1, (A.8)

Cwf = 235.00. (A.9)

The surface tension σ of the saturated liquid is

σ(T ) = 0.10175 ·
(
1− T + 273.15

405.50

)1.21703

(A.10)

according to [KJS10].

A.2 Hurwitz Criterion

Theorem A.1 (Hurwitz criterion [Lun20a, p. 434])
Consider the polynomial

p(λ) = γn · λn + γn−1 · λn−1 + ...+ γ1 · λ+ γ0. (A.11)

All zeros of (A.11) have a negative real part if both following conditions hold:

1. All coefficients γi are positive:

γi > 0, i = 0, 1, 2, ..., n. (A.12)

2. The n leading principal minorsM i of the (n× n)-matrix

H =



γ1 γ3 γ5 γ7 . . .
γ0 γ2 γ4 γ6 . . .
0 γ1 γ3 γ5 . . .
0 γ0 γ2 γ4 . . .
...

...
...

...
. . .

γn


(A.13)

are positive:
Mi > 0, i = 1, 2, ..., n. (A.14)
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A.3 Discrete Implementation

The implementation of the continuous controllers on electronic hardware requires a discrete
representation of the corresponding equations. By choosing sufficiently high sampling rates
compared to the maximal frequency of the signal, both a quasi-continuous reconstruction of
the controlled temperature signal and a quasi-continuous control signal are realized. According
to the Nyquist-Shannon sampling theorem, the sampling rate must be greater than twice the
maximum frequency of the signal (see [Lun20b, p. 430]). Due to the slow temperature processes
of the LHP, such a realization is possible without increased hardware requirements. Thus,
a simple discretization method is sufficient for the proposed control law. For the discrete
representation in this thesis, Euler’s backward method is used to perform the transformation
between the continuous and the discrete time domain. In the case of the state feedback
controllers, the structure of the differential equations of the resulting state variables can lead
to increased hardware requirements based on the required state estimation, which makes it
necessary to use different discretization methods (see Sec. 4.2.3).

A.4 Numerical Analysis of the Rank of the Observability
Matrix

The rank of the observability matrix Qobs in (4.150) is analyzed for a number of sample
values for the states Tcc(t), L2ϕ(t), and ṁl(t) as well as the inputs Q̇cc(t), Q̇ev(t), and
Tsk(t) distributed over the entire LHP operating range. SinceQobs is a quadratic matrix, its
determinant must be nonzero forQobs to be regular and thus full rank. Due to the dependence
on six parameters, some example values of the calculation are given in Table A.1:

det(Qobs)
Tcc

in ◦C
L2ϕ

inm
ṁl

in mg s−1
Q̇cc

inW
Q̇ev

inW
Tsk

in ◦C

6.92 · 106 20 0.8 50 3 60 5

1.55 · 107 25 1.2 50 3 60 5

1.47 · 107 25 0.8 60 3 60 5

1.51 · 107 25 0.8 50 4 60 5

1.34 · 107 25 0.8 50 3 50 5

2.53 · 107 25 0.8 50 3 60 0

Table A.1: Example values of the determinant of the observability matrix Qobs in (4.150)



XXX A Appendix

A.5 Square-Root Unscented Kalman Filtering

The algorithm of the square-root unscented Kalman filter (SRUKF) used in this thesis is based
on [vdMW01]. The advantage of a direct time update of the matrix square root of the state
covariance matrix results from the application of the Cholesky factorization. At the same
time, this factorization guarantees the calculation of positive semidefinite state covariances in
each time step for unique matrix square roots [vdMW01]. For more information about the
algorithm and the underlying linear algebra techniques, the reader is referred to [vdMW01]
and [vdM04].

A.5.1 State Estimation

For the discrete state estimation, a nonlinear system extended with additive process and
measurement noise is considered:

x(k) = F (x(k − 1),u(k − 1)) + νpn(k − 1), (A.15a)
y(k − 1) = G(x(k − 1),u(k − 1)) + νmn(k − 1), (A.15b)

with the vector functions F and G as well as the process noise νpn(k) and the measurement
noise νmn(k) being Gaussian. The estimated state vector x̂(k) is initialized by the expectation
E{·} of the initial state vector x0:

x̂0 = E {x0} . (A.16)

Accordingly, the initialization of the Cholesky factor S(k) is done via the Cholesky fac-
torization of the initial state covariance matrix denoted by the function chol() (see also
[Mat20c, p. 1-1489]):

S0 = chol
(
E
{
(x0 − x̂0) · (x0 − x̂0)

⊤
})

. (A.17)

For the calculation of the sigma points x(k), the previous state estimates x̂(k−1) are weighted
with S(k − 1):

x(k − 1) =
[
x̂(k − 1) x̂(k − 1) + ηukf · S(k − 1) x̂(k − 1)− ηukf · S(k − 1)

]
,

(A.18)
with the scaling parameters ηukf and λukf :

ηukf =
√
n+ λukf , (A.19)

λukf = n ·
(
α2
ukf − 1

)
. (A.20)

The spread of the sigma points (A.18) is set by the SRUKF parameter αukf , for which usually
holds [vdMW01]:

10−4 ≤ αukf ≤ 1. (A.21)

The next step is the transformation of the sigma points x(k) with the nonlinear function F in
(A.15a):

x(k) = F (x(k − 1),u(k − 1)) . (A.22)
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By weighting the transformed x(k), the updated state vector x̂−(k) is determined:

x̂−(k) =

2n∑
i=0

Za
i · xi(k), (A.23)

with Za being the weight of a sigma point. The first weight Za
0 in (A.23) is given by

Za
0 =

λukf

n+ λukf
, (A.24)

while the rest of the weights are calculated by

Za
i =

1

2 (n+ λukf )
, i = 1, ..., 2n. (A.25)

To propagate S(k) in time, the QR decomposition (see also [Mat20c, p. 1-10168]) is first used
to calculate the updated Cholesky factor S−(k):

S−(k) = qr
([√

Zb
1 ·
(
x1:2n(k)− x̂−(k)

) √
Rpn

])
, (A.26)

with the process noise covariance matrixRpn and the weights Zb, where

Zb
1 = Za

1 . (A.27)

The compound matrix in (A.26) consists of the weighted state error of the sigma points and
the matrix square root ofRpn [vdMW01]. Second, consecutive updates with the transition
error denoted by the function cholupdate() are applied to the upper triangular part of S−(k)
that has the necessary square matrix form (see also [Mat20c, p. 1-1499]):

S−(k) = cholupdate
(
S−(k), x0(k)− x̂−(k),

√
Zb
0

)
, (A.28)

with
Zb
0 =

λukf

n+ λukf
+
(
1− α2

ukf + βukf

)
. (A.29)

The positive SRUKF parameter βukf is chosen to βukf = 2 assuming Gaussian distribution of
the states x(k) [vdM04, p. 56]. Depending on the sign of Zb

0 , either an update or a downdate
is performed in (A.28) with the absolute value of Zb

0 (see [QSWL18]).

For the prediction of the system’s outputs, the sigma points x(k) are also transformed with
the nonlinear functionG of (A.15b) to form the sigma points y(k) of the output:

y(k) = G (x(k − 1),u(k − 1)) . (A.30)

Accordingly, the updated output vector ŷ−(k) is given by

ŷ−(k) =

2n∑
i=0

Za
i · yi(k). (A.31)
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Thus, the correction of the state estimates with the measurements follows in the filter process.
Similar to (A.26) and (A.28), the Cholesky factor Sy(k) is calculated and updated subse-
quently:

S−
y (k) = qr

([√
Zb
1 ·
(
y1:2n(k)− ŷ−(k)

) √
Rmn

])
, (A.32)

S−
y (k) = cholupdate

(
S−

y (k), y0(k)− ŷ−(k),
√
Zb
0

)
, (A.33)

with Rmn being the measurement noise covariance matrix. The cross-covariance matrix
P xy(k) is then calculated by

P xy(k) =

2n∑
i=0

Zb
i ·
(
xi(k)− x̂−(k)

)
·
(
yi(k)− ŷ−(k)

)⊤
. (A.34)

With (A.34), the Kalman gain matrix Kukf (k) is derived:

Kukf (k) =
(
P x,y(k)/S

−
y (k)

⊤) /S−
y (k), (A.35)

where the nested divisions are efficiently solved by a QR decomposition with pivoting
[vdMW01]. Thus, the state estimates x̂(k) result from the correction of x̂−(k):

x̂(k) = x̂−(k) +Kukf (k) ·
(
y(k)− ŷ−(k)

)
. (A.36)

Finally, another time update is required for the correction of the Cholesky factor S(k):

S(k) = cholupdate
(
S−(k),Kukf (k) · S−

y (k),−1
)
. (A.37)

A.5.2 Parameter Estimation

The discrete parameter estimation with an SRUKF is directly derived from Sec. A.5.1 by
describing the nonlinear output equation (A.15b) in dependence on the parameter vector p to
be estimated:

y(k) = H(x(k),p), (A.38)

with the nonlinear function H . Thus, a new state-space model can be established for the
stationary process of p(k) [vdMW01]:

p(k) = p(k − 1) + νppn(k − 1), (A.39a)
yd(k − 1) = H(x(k − 1),p(k − 1)) + eukf (k − 1), (A.39b)

with the parameter process noise νppn(k) and the residual output error eukf (k) between the
desired output vector yd(k) and the output ofH . The convergence and tracking performance
of the parameter estimation is determined by the chosen variances in νppn(k) [vdMW01].

Due to the stationary state equation (A.39a), the time update of the state covariance is much
simpler. As a result, the prediction part of the SRUKF algorithm for the parameter estimation
is shorter than in the previous section. After the initialization of the estimated parameter
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vector p̂(k) and its corresponding Cholesky factor Sp(k) in accordance with the approaches
in (A.16) and (A.17), the updated parameter vector p̂−(k) is directly given by the previous
estimated parameter vector p̂(k − 1):

p̂−(k) = p̂(k − 1). (A.40)

The updated Cholesky factor S−
p (k) is calculated by weighting past data exponentially

[vdMW01]:
S−

p (k) = γ
−1

2

ukf · Sp(k − 1), (A.41)

with the weighting factor γukf < 1. Thus, the sigma points p(k) are determined by

p(k) =
[
p̂−(k) p̂−(k) + ηukf · S−

p (k) p̂−(k)− ηukf · S−
p (k)

]
. (A.42)

Subsequently, the sigma points p(k) are transformed by H similar to (A.30):

yd(k) = H (x(k),p(k)) . (A.43)

With (A.43), the updated desired output vector ŷ−
d (k) is given by

ŷ−
d (k) =

2n∑
i=0

Za
i · yd,i(k). (A.44)

For the correction step with measurements, the parameter estimation follows the same proce-
dure as for the state estimation starting from (A.32). In the procedure, the variables of (A.15)
are replaced by their corresponding variables of (A.39), which finally yields the estimated
parameter vector p̂(k) and the Cholesky factor Sp(k).
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A.6 Startup Strategy for Actively Controlled Loop Heat
Pipes

When the controller of the control heater of an actively controlled LHP is turned on, a high
deviation between the controlled temperature and the desired setpoint temperature may exist
dependent on the operating status of the LHP. Based on a high control error, a high control
heater output would be dictated by a control algorithm to quickly raise the OT toward its
setpoint temperature. As a result, the LHP would shutdown and stop the heat transfer from
the heat source to the heat sink (see Sec. 3.2.2). In order to achieve a gentle setpoint approach,
an adequate startup process for the controller of the control heater is required.

For the discrete OT control of an LHP, the actual setpoint temperature Tset,act for the controller
is initialized at the controlled temperature T and increases continuously with a fixed value,
until it reaches the desired setpoint temperature Tset. The fixed value is calculated by the
maximum setpoint rateKr and the sampling time Tst. The variableKr is chosen in accordance
with the permitted maximum temperature gradient of the LHP, e.g. the experimentally
determined operation limit of∆Tcc/∆t = 0.07K s−1 in this thesis. The setpoint ramp allows
the LHP to reach its desired OP smoothly without interrupting its operation. The relevant
controller startup is tracked by the boolean variable reset. The overall startup strategy is
implemented as follows:

Algorithm 1 Controller startup
1: if Tset − Tset,act > Tst ·Kr and reset is true then
2: Tset,act ← Tst ·Kr + Tset,act

3: else
4: reset← false
5: Tset,act ← Tset

6: end if
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