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Abstract

The low-voltage energy distribution grid carries power to industrial and
residential customers. To ensure its correct operation, distribution grid operators
aim to continuously monitor the grid with grid monitoring systems. The system
processes the stream of active and reactive power measurements at customer
connections. Since this imposes major privacy concerns, data gateways typically
sanitize the streams by adding a well-defined amount of noise to each
measurement to achieve differential privacy. This however reduces the utility of
the grid monitoring system. While the utility of a couple of applications like
location monitoring is well known, we still lack the understanding for grid
monitoring. This leads to two research questions, we investigate by means of a
realistic case study. The first question is how to measure the utility appropriately.
The second question is to give an intuition on whether one can achieve
reasonable privacy and utility at the same time. Studying these questions is
challenging due to the plurality of grid analyses a grid monitoring system
conducts, and privacy requirements customers can have. To tackle the challenges,
we identify a set of candidate utility metrics and use a differential privacy
mechanism that unpacks multiple privacy requirements into one scaling
parameter. Our experiments on a real-world grid and realistic measurements
indicate the following. First, the utility of grid monitoring decreases faster than
the sanitation error, that is frequently used in related work on differentially
privacy as utility metric. Second, already under weak privacy requirements, the
utility is lower than under measurement errors.

Keywords: Differential privacy; low-voltage grid; grid monitoring; load-flow
analysis; voltage analysis; loading analysis

1 Introduction
The smart meter roll-out in Europe comes with availability of quarter-hourly power

measurement streams of customers. Distribution system operators (DSOs) aim to

turn these data streams into value by using them to monitor the low-voltage grid

continuously. To this end, DSOs use a plurality of automated grid analyses, like

voltage and line loading analysis, that link measurements with additional data, like

the grid topology from a geographic information system [1, 2, 3] (see Figure 1). How-

ever, it is well-known that active as well as reactive power measurements facilitate

everyone who has access to this data to inference daily habits of the customers [4, 5].

Consequently, customers may have privacy requirements on their measurements. A

prominent example is hiding certain power patters like appliance usage cycles [6, 7].

As Figure 1 shows, to tackle these requirements, a trusted data gateway, that is

locally deployed at each customer connection, sanitizes the measurements with re-

mailto:christine.schaeler@kit.edu
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Figure 1: Differentially private grid monitoring. True data refers to data that is

measured and not sanitized.

spect to the privacy requirements. To this end, the gateway uses a privacy-enhancing

technology (PET). After that, the gateway transmits the sanitized measurements

to the DSO running the grid monitoring system.

The current gold-standard in research are PETs based on the w-event differential

privacy framework [8, 9] and extensions [6, 10, 11]. The w-event DP framework

guarantees that anyone who inspects the measurements is not able to distinguish

whether a power pattern, like an appliance usage cycle, of a maximum length of

w time stamps is present or not. This guarantee is perfectly suitable to sanitize

measurements before transmitting them to DSOs. The reason is that, in contrast

to, e.g., k-anonymity [12], ad-hoc noise adding [13, 14] or temporal aggregation

approaches [15], this guarantee features post-processing immunity [8]. This means

that grid monitoring performed on the sanitized data still features differential pri-

vacy. However, a differentially private PET sanitizes a stream typically by adding

a well-defined amount of noise to the measurements. As this noise may falsify the

grid monitoring results, usually, the goal is to design a mechanism such that the

resulting sanitized measurements feature high utility, i.e., result in grid monitoring

yields useful for the DSO. While the utility of PETs for use cases like location

monitoring is well-studied [9, 16], we still lack understanding for grid monitoring.

Consequently, in this paper, we study the utility of differentially private PETs for

grid monitoring. Specifically, we are interested to answers the following research

questions:

(RQ1) Which utility metrics are appropriate to measure the utility of grid moni-

toring? For instance, is the sanitation error of the measurements, frequently

used in related work on w-event differential privacy, meaningful, or do we need

a separate metric for each grid analysis.

(RQ2) How does the utility of differentially private grid monitoring under rea-

sonable privacy requirements behaves? Can we give an intuition whether the

utility is low or high?

1.1 Challenges

Studying the utility of differential privacy PETs for grid monitoring is challeng-

ing, due to the complexity of grid monitoring systems and privacy requirements

customers may have. Specifically, we face three challenges:
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Defining candidates for utility metrics To answer (RQ1), candidates for util-

ity metrics are required. This is challenging due to the plurality of results [17]

a grid monitoring system usually outputs.

Assessing utility To answer (RQ2), given a utility metric, a subsequent challenge

is to identify utility thresholds stating that the grid monitoring results are

accurate enough for DSOs. This definition should be DSO-independent to

support the generality of our results.

Defining reasonable privacy To answer (RQ1) and (RQ2), it is essential to

study the utility for reasonable privacy requirements. Intuitively, reasonable

privacy is given if realistic privacy requirements are fullfilled. However, se-

lecting them and studying the utility with respect to a plurality of realistic

requirements is challenging without conducting an unlimited amount of ex-

periments.

1.2 Contributions

To tackle these challenges and answer our research questions, we provide the fol-

lowing contributions.

• We identify three steps of differentially private grid monitoring, namely, (1)

measurement sanitation with the PET, (2) load-flow analysis as first step

in each grid monitoring system, (3) subsequent analyses like voltage and line

loading analysis, and candidates for utility metrics for all three. For each step,

the metrics are in line with the metrics used by experts for the individual steps.

• To give an intuition on the utility of grid monitoring results, we consider the

frequent case in which measurement devices are not fully accurate, since the

DSOs already accept this resulting reduced utility.

• We identify realistic power patterns from literature and decode them into pri-

vacy parameters. To study the utility for a plurality of them with a limited

number of experiments, we leverage the differentially private Uniform mech-

anism [9] that unpacks multiple requirements into one scaling parameter.

• To answer our research questions, we perform experiments on a real-world

grid topology with realistic measurements. With respect to the first question,

our study indicates that the utility of grid monitoring decreases faster than

metrics measuring the sanitation error suggest, indicating that grid monitor-

ing specific metrics are needed to assess utility meaningfully. . With respect

to the second one, we observe that the utility of grid monitoring decreases

faster than the sanitation error, that is frequently used in related work on

differentially privacy as utility metric, suggests.

1.3 Outline

This paper is structured as follows: In Section 2, we sketch related work on differen-

tially private grid monitoring. In Section 3, we identify the analyses conducted by

grid monitoring systems and select the data used in our study. Next, in Section 4,

we identify candidates for utility metrics and state how we generate measurement

errors. Then, in Section 5, we select the PET used in our study and identity reason-

able privacy requirements. Section 6 provides and discusses the results of our study

with respect to our research questions. Last, in Section 7, we conclude our paper

and discuss implications on future work.
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Ref. w = 1 w ∈ [2,∞) w →∞

[7] ✓ ✗ ✗
[18] ✓ ✗ ✗
[19] ✗ ✗ ✓
[20] ✓ ✓ ✗
[21] ✓ ✗ ✗

[22] ✓[a] ✗ ✗
[6] ✗ ✓ ✗

This paper ✓ ✓ ✓

Table 1: Comparison related work on differential privacy for measurement data with

respect to the DP variant considered.

[a]Privacy potentially violated by using faithfulness value β computed on the measured data during
post processing.

2 Related Work
In this section, we sketch related work on differentially private PETs for measure-

ments, utility metrics for PETs as well as work on security and privacy with respect

to additional data used in grid monitoring systems.

Differentially Private PETs For streams, w-event differential privacy is the current

state of the art [9]. It is a probabilistic definition claiming the indistinguishably with

a factor eϵ of power measurements that differ at most by a share ∆ at each time

stamp within a window of w consecutive time timestamps. For w = 1 and w → ∞,

w-event DP is equivalent to event-level differential privacy (w = 1) [23] and user-

level differential privacy (w → ∞) [24]. Both has been investigated in related work

for measurement data before (see Table 1). However, event-level DP features only

limited privacy for streams [25, 20], and user-level differential privacy limited utility,

already for finite time series [19]. While w-event DP for w > 1 has proven its worth

for, e.g., location streams [26, 27, 28], so far, it has been sparsely investigated

for measurement data. [20] considers the concept even before the proposal of w-

event DP. However, it features only a limited amount of experiments with respect

to w-event DP. Additionally, it considers a special mechanism called distributed

differential privacy, that generally results in lower utility than other differential

private mechanisms. [6] considers w-event DP only for the total power in a whole

area, and not for data of individual customers.

Measuring Utility of PETs All perturbation methods have the drawback that

they introduce an error into the measurements, that influence the utility of grid

monitoring systems. Related work focusing on w-event DP assesses this error ei-

ther by abstract metrics measuring the error between true and sanitized measure-

ments [6, 29, 19, 20], or by the error of a specific analysis. The latter includes local

energy market analysis [7], specific forecasting algorithms [18], peak-load analy-

sis [30] or state estimation [21]. To the best of our knowledge, these two types

of utility metrics have not been systematically related to each other before, nor

intuitions on ”high enough” utility are given.

Security and Privacy with Respect to Additional Data Besides privacy with re-

spect to measurements, customers may have additional privacy requirements, like
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secure data transmission [31, 32]. Additionally, in case an untrusted service provider

hosts the grid monitoring system, DSOs have to transmit the additional data, like

grid topology data, needed as input for grid monitoring systems (see Figure 1). In

this context, [33, 34] focus on differential privacy for grid topology data, like line

parameters. However, these approaches are orthogonal to our research questions.

3 Fundamentals on Grid Monitoring and Identification of Study
Data

In this section, we first sketch fundamentals on grid monitoring systems, resulting

in requirements on the data used in our study. Based on these requirements, we

select the grid topology and measurements used in our study.

3.1 Fundamentals on Grid Monitoring Systems

In this section, we first sketch fundamentals on grid topologies and measurements

serving as an input into grid monitoring systems. Second, we introduce grid moni-

toring systems as detailed as needed to identify requirements on study data and to

define utility metrics in the remainder.

3.1.1 Grid Topologies and Measurements

Subsequently, we sketch fundamentals on grid topologies and measurements to-

gether with notation on power measurement streams that the PET sanitizes. Then,

we introduce two measurement scenarios considered in this paper.

Grid Topology A low-voltage grid topology is given by

1 a grid topology graph G = (N,E) in which the edges E are the lines, and N

the nodes,

2 a function typeN : N → {Trafo, customer connection box, junction box, sleeve}
assigning nodes a type, and

3 a function typeE : E → R4 assigning lines quintuples of resistance (R1),

reactance (X1), capacitance (C1) and ampacity (Imax) in ampere.

Without loss of generality, we assume that G is a tree, as this simplifies explanations

and applies for most grids. A feeder is a single branch in the tree. Each node and

line has a specific type. For nodes, it holds that the unique root of the tree is of

type Trafo. It serves as connection point to the parent medium-voltage grid. The

leaf nodes of the grid are customer connection boxes (CCB) connecting residential

and industrial customers with the grid. The nodes between the substation and the

customer connection boxes are either junction boxes or sleeves. The type of a line

specifies its electrical parameter resistance, reactance, capacitance and ampacity.

Measurands In a grid, DSOs deploy measurement devices at nodes that measure

specific measurands. Typically, they are measured per phase. However, grid monitor-

ing systems usually consider a one-phase representation of the three-phase grid [17].

Let n ∈ N be a node, and e ∈ E be a line. We denote with V(n, t) the average

voltage magnitude in volts at the secondary side of node n in a time interval ending

at time stamp t. Similarly, with P(n, t) and Q(n, t), we denote the total active power

in kilowatts (kW) and reactive power in kilovar (kVar) injected at time t and node
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Stream S


Consumer/ D1 D2 D3 · · ·
Generator P Q P Q P Q · · ·
Consumer 1 0.00 0.00 1.71 0.20 1.84 0.21 · · ·
Consumer 2 0.00 0.00 0.00 0.00 0.60 0.10 · · ·

Q(Dt) = (P(t)|Q(t)) 0.00 0.00 1.71 0.20 2.44 0.31 · · ·

Figure 2: Example for a measurement stream of a consumer connection.

Pin
t : P* at
all CCBs

Qin
t : Q* at
all CCBs

Step 1 – Load-
flow analysis

Load-Flow
Analysis

Vin
t : V at
Trafo

Grid Topology
(G, typeE, typeN)

Vout
t : V* at
all CCBs

Ioutt : I* at
all lines

Step 2 – Subsequent Analyses

Voltage
Analysis

Line Loading
Analysis

Voltage
Violations

Line Loading

Line Loading
Violations

Grid Monitoring System

True Data Sanitized Data Differentially Private Software

Figure 3: Illustration of the two-step process of grid monitoring.

n into the grid. Additionally, I(e, t) is the average current magnitude in ampere in a

time interval ending at time stamp t at the secondary side of line e. In case they are

clear from the context, we omit the parameters n and e. The PET sanitizes power

at any customer connection box c ∈ N continuously. To specify this, we use the

following additional notation. As illustrated in Figure 2, for a customer connection

box, the database Dt features one row per consumer or generator behind. The

measurements P(t) and Q(t) are the sum Q of these individual power values.

Measurement Scenarios The measurement scenario of a grid specifies which mea-

surands are measured at which grid node or line. Considering real-world scenarios,

we identified two measurement scenarios, namely PQ and P only, imposing different

privacy requirements of a PET. Subsequently, we describe them.

Measurement Scenario PQ This is the measurement scenario stated in Table 2.

Here, the voltages at the Trafo, as well as active and reactive power at all

customer connection boxes are measured.

Measurement Scenario P only In contrast to scenario PQ, the meters at the

customer connection boxes measure only active power, but not reactive power.

This is a frequent setting in real-world. For instance, Smart Meters in Germany

are, by default, configured accordingly [35].

3.1.2 Grid Monitoring Systems

As illustrated in Figure 3, a grid monitoring system usually implements a two-step

process: A load-flow analysis determining non-measured measurands followed by

a plurality of subsequent grid analyses calculating system indicators. Below, we

sketch both steps briefly based on [1], and state specifics relevant for ensuring the

reproducibility of our results.
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Node Type V P Q I

Transformer measured - - -
Junction box calculated - - -
Customer connection box calculated measured measured in PQ only -
Lines - - - calculated

Table 2: Measured measurands, and the ones calculated by load-flow analysis. Re-

active power at customer connection boxes are only measured in scenario PQ, and

are replaced by pseudo-measurements in scenario P only.

Step 1 – Load-flow Analysis The load-flow analysis calculates voltages at all nodes

except the Trafo, and the currents at all lines. The algorithm is stated in Algo-

rithm 1. There, based on grid topology and measurements, the algorithm obtains a

set of linearized, originally non-linear, power balance equations. The unknown vari-

ables correspond to voltages at non-Trafo nodes, and the known ones to active and

reactive power at the customer connection boxes. By solving this system with the

iterative Newton-Raphson method [36] that minimizes the mismatches in active and

reactive power at customer connection boxes, the algorithm obtains the voltages of

all nodes. Based on the obtained voltages, the algorithm calculates the currents. In

a grid, except the power the power at the Trafo, the power, voltage and current

measurements in one feeder are independent of the measurements in another feeder.

Consequently, the load-flow analyses on each feeder are independent.

In our study, we use the load-flow analysis that is implemented in a grid model

developed in [17], and successfully validated in [37]. It is based on the MATLAB

implementation in [38]. We stop as soon as the mismatches are smaller than 10−5, or

after 100 iterations otherwise. Reactive power measurements are a necessary input

into the load-flow analysis. Consequently, in measurement scenario P only, so-called

pseudo measurements are generated using background knowledge on the customer

connection [39]. Since this background knowledge is private information as well, in

our study, we use for reactive power the pseudo-measurement 0 kilovar, which is a

common choice in case no background knowledge is available.

Algorithm 1 Load-flow Analysis at timestamp t [38]

1: function loadFlowt(G, typeN, typeE,Vin
t ,P

in
t ,Q

in
t )

2: Vinit
t ← Vin

t
3: for c ∈ N with typeN(c) == CCB do
4: Vt(c, t)← 0 ▷ Initialization

5: Vinit
t ← Vinit

t ∪ {V(c, t)}
6: end for
7: Vout

t ← Newton-Raphson(G, typeE,Vinit
t ,Pin

t ,Q
in
t )

8: Ioutt ← { |V(c,t)−V(cj ,t)|
typeE(ei,j).R1

| ei,j ∈ E}
9: return Vout

t , Ioutt
10: end function

Step 2 – Subsequent Grid Analyses For a low-voltage feeder, two grid analyses,

namely, voltage analysis and line loading analysis are relevant [1]. In larger low-

voltage, or in medium-voltage grids, a number of additional analysis are relevant

that we however do not consider here. Subsequently, we introduce both analyses.
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Voltage Analysis By European standards [40], the DSO must ensure that the

voltage magnitudes fluctuates at maximum +/− 10% of the nominal voltage

of 400 V. To alert DSOs before they violate this hard limit, the voltage anal-

ysis verifies whether the voltages at all nodes are in range +x% (overvoltage

violation) and −y% (undervoltage violation) of 400 V, and reports violations

in case they are not. In line with industry standards, we use x = y = 5.

Line Loading Analysis Lines can manage a certain nominal current, that is given

by their ampacity. If the actual current is higher, they overheat. The line

loading analysis therefore calculates for e ∈ E the load in percent by

Load(e, t) =
|(I(e, t)|

typeE(e).Imax

and alerts the DSO in case the load is above a certain limit. That way, DSOs

can react before the lines overheat. A common load limit that we use is

90% [41].

3.2 Selection of Study Data

In this section, we select the grid topology and measurement data for our study. For

each of them, we first state requirements we impose on the data to be used in our

study based on the previous sections. Then, we state our selection. A natural overall

requirement is that the grid topology and measurements match, meaning that a data

set containing only measurements or only a grid topology is not appropriate.

Grid Topology We derive the following requirements on a low-voltage grid topology

used in the study. First, we need the grid topology of at least one feeder of a low-

voltage grid. A single feeder is also sufficient, because the results of the load-flow

analysis are independent for each feeder. Second, to ensure the validity of our results,

there should exist a successfully validated digital representation. Third, ideally, it

should be a real-world grid to support the validity of our results. Considering these

requirements, as grid topology, we use a feeder of a real-world grid topology from

the Danish DSO Thy Mors Energi[1] (TME). Several studies before [42, 37] use it as

a reference grid model as well. The grid contains 25 customer connection boxes. Four

of them correspond to industrial customers (e.g., a farm), the others correspond to

residential customers. Additionally, the feeder contains one Trafo and 10 junction

boxes.

Measurements We derive the following requirements on measurements used in the

study. First, to be able to calculate utility metrics, a fully-measured measurement

scenario (i.e., all measurands are measured) is needed. Second, as indicated in pre-

vious work on differential privacy for measurement data [19], measurement streams

of one day are needed and also sufficient. Third, ideally, violations should be present

in order to study the relationship between privacy requirements and violations in

the voltage analysis. Considering these requirements, we use the to quarter-hourly

values aggregated measurements from the undervoltage trace of 25 hours described

[1]www.thymors.dk
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Sanitization Error

Er
(P,CCBres)
L1 Er

(Q,CCBres)
L1

Load-Flow Analysis Error

Er
(V,N\{Trafo})
∞ Er

(I,E
∞

Subsequent Analysis Error

E
(hasVoltVio,N)
L1 Er

(load,E)
∞

Er
(hasLoadVio,E)
L1

Sec. 6.2.1 Sec. 6.2.2

Metric type Specific Metric

Figure 4: Identified utility metric types together with associated error metrics. The

gray metrics are not considered in Section 6.

in [37]. It features a fully-measured measurement scenario (i.e., all electrical pa-

rameters are measured) and contains undervoltage violations. The measurements

are simulated with the hardware-in-the-loop simulator OPAL-RT[2], and were also

used in previous studies [37]. For details regarding the simulation process, we refer

to [37, 42].

4 Defining Reasonable Utility for Grid Monitoring
In this section, we first define candidates for utility metrics for grid monitoring. In

our experiments, we investigate which of them are appropriate. Second, we state

how we generate measurement errors used to give an intuition on the utility achieved

by a PET.

4.1 Defining Utility – Error Metrics

Considering Figures 1 and 3, we identified three types of utility metrics serving as

candidates for our study shown in Figure 4. These are the sanitation error, load-flow

analysis error as well as subsequent analysis error. In the remainder of this section,

we identify the specific metrics commonly used in related work for each of the types,

and propose due to lack of related work novel subsequent analysis error metrics. We

state them by using the following notation: E is a measurand or system indicator

(like line loading), and X is a set of lines or nodes. Measurands or system indicators

with superscript ∗ belong to sanitized measurements or system indicators calculate

by using sanitized measurements. Consequently, e.g., P and Q are the measured

powers, and P∗ and Q∗ the sanitized ones. Additionally, p is the number of time

intervals in the (finite) measurement stream.

Sanitization Error Metric To measure the sanitization error, in related work on

differential privacy, the mean absolute error serves as standard metric [9, 43, 44].

For measurand E and set of lines or nodes X it is defined by

Er
(E,X )
L1 =

1

p · |X |

p∑
t=1

∑
x∈X

|E(x, t)− E∗(x, t)|,

i.e., the average over the L1-norm between E and E∗ at each time stamp and node

or line. Since we sanitize active and reactive power of residential customers, in our

study, we focus on Er
(P,CCBres)
L1 and Er

(Q,CCBres)
L1 , where CCBres is the sub-set of

customer connection boxes of N belonging to residential customers.

[2]www.opal-rt.com
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Load-flow Analysis Error Metric The load-flow analysis calculates the voltages and

currents that are subsequently used in voltage and line loading analysis. This sug-

gests measuring the utility of load-flow analysis by the error in calculated voltages

and current. To define these errors, power engineers usually rely on the maximum

norm [45]. Consequently, to quantify the voltage and current error, we use

Er(E,X )
∞ =

1

p

p∑
t=1

max
x∈X

|E(x, t)− E∗(n, t)|.

Note that our study, measurement streams contains the measured voltages and

currents at all nodes and lines, facilitating us to calculate this error. Since the load-

flow analysis calculates the voltages at all nodes except the Trafo, we are interested

in Er(V,N\{Trafo})
∞ . For currents, we are interested in the current error at all lines,

i.e., Er(I,E)
∞ .

Subsequent Analyses Error Metrics To the best of our knowledge, there is no re-

lated work measuring the utility of voltage and line loading analysis. Consequently,

we propose novel error metrics considering the benefit of the DSO of both analyses.

Voltage Analysis Let the variable hasVoltVio(n, t) indicate whether there is a

voltage violation at node n and time stamp t. With that notation, we measure the

error in the total number of voltage violations that is given by E
(hasVoltVio,N)
L1 .

Line Loading Analysis The line loading analysis first calculates the load of

each line, and then whether the load is below the defined limit. We define an error

metric for each of the two steps. First, we define loading error in percentage points

(% P) by Er(load,E)
∞ . Second, let hasLoadVio(e, t) be the indicator variable for a line

loading violation of line e at time stamp t. With that notation, we measure the

error in the total number of loading violations by Er
(hasLoadVio,E)
L1 .

4.2 Assessing Utility – Measurement Errors

A PET is not the only influence factor that may reduce the utility of grid mon-

itoring system. Specifically, measurement devices are typically not completely ac-

curate, meaning that even the analyses results on measured data are erroneous.

Consequently, to assess whether the utility provided by the PET is reasonable, we

propose to compare the utility of the PET with the utility that can be achieved

if measurement errors are present. This utility is already accepted by DSOs. As

measurement error, in line with previous work [45], we use measurement-dependent

Gaussian noise with σ = 0.01. Specifically, let G be the Gaussian distribution. Then,

the resulting active and reactive power measurement containing measurement errors

are given by (1 + G(0, σ)) · P(t) and (1 + G(0, σ)) · Q(t).

5 Defining and Ensuring Reasonable Privacy for Measurement
Streams

In this section, we first introduce the differentially private PET for measurement

streams we use in our study. The PET is designed such that it allows to evaluate

various privacy requirements with a limited number of experiments, i.e., PET runs.

Second, we define reasonable privacy by identifying meaningful privacy requirements

from literature.
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5.1 Differential Privacy for Measurement Streams

Below, we first briefly introduce the definition w-event differential privacy for

streams as far as required for this paper. For details, we refer to [9]. Then, we

state the PET that we use satisfying w-event differential privacy.

5.1.1 Definition of w-Event Differential Privacy

Intuitively, w-event DP guarantees that anyone who inspects the measurements

is not able to distinguish whether a certain power pattern, like an appliance us-

age cycle, of a maximum length of w time stamps is present or not. To this end,

the definition of w-event differential privacy is based on the notion of neighboring

databases and stream prefixes, that are itself based on power shares and window

lengths. Neighboring stream prefixes are stream prefixes that should be indistin-

guishable. Formally, let S = (D1, D2, ..) be a power measurement stream of a

customer connection box collecting database Dt at time stamp t as illustrated in

Figure 2. Two databases Dt, D
′
t are neighbors if (a) the total active power P(t)

differs by at most ∆P and (b) the total reactive power Q(t) differs by at most

∆Q [46, 10, 20]. Now, let Sp = (D1, .., Dp) be a prefix of the stream S of length p.

According to Definition 1, two stream prefixes are w-neighbors, if (1) the databases

collected at each time are pairwise the same or neighbors, and (2) all neighboring

databases fit into a window of size w.

Definition 1 (w-Neighboring Stream Prefixes [9]) Let w be a positive inte-

ger, and t, t1, t2 ≤ p three time stamps. Two stream prefixes Sp, S
′
p are w-

neighboring, if

1 for each Dt, D
′
t with Dt ̸= D′

t, it holds that Dt, D
′
t are neighboring

2 for each Dt1 , Dt2 , D
′
t1 , D

′
t2 with t1 < t2, Dt1 ̸= D′

t1 and Dt2 ̸= D′
t2 , it holds

that t2 − t1 + 1 ≤ w.

Based on the definition of neighboring stream prefixes, Definition 2 defines w-event

differential privacy. w-event differential privacy is given if the power measurements

of all w-neighboring stream prefixes are hard to distinguish. The hardness is quan-

tified by the privacy budget ϵ, that usually lies between 0.1 and 1.0.

Definition 2 (w-Event ϵ-Differential Privacy [9]) Let M be a randomized

mechanism that takes as input a stream prefix of arbitrary size. We say that M
satisfies w-event ϵ-differential privacy if for all R ∈ Range(M), all w-neighboring

stream prefixes Sp, S
′
p, and all p, holds that

Pr[M(Sp) = R] ≤ eϵ · Pr[M(S′
p) = R].

5.1.2 A PET ensuring w-Event Differential Privacy

To implement a PET, we leverage the Uniform mechanism [9] as stated in Algo-

rithm 2. At each time stamp t, it sanitizes the power measurements P(t) and re-

active Q(t) of a customer according to given, time-invariant, privacy requirements.

The privacy requirements consist of the privacy level ϵ, window size w, the power
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shares ∆P and ∆Q, and noise splitting parameters αP, αQ satisfying αP + αQ = 1.

The noise splitting parameters split the available budget ϵ between active and reac-

tive power. This is required because active and reactive power are correlated [47].

Given these inputs, the PET first calculates the noise scales for the Laplace dis-

tribution in Lines 4 and 5. Then, it perturbs the measurements and outputs are

the sanitized measurements. [9] proofs that this PET satisfies w-event differential

privacy.

Considering the scales in Lines 4 and 5, we observe that multiple privacy re-

quirements result in the same noise scale. For instance, λP(1, 5, 1, 1) = λP(5, 1, 1, 1).

This enables to investigate the utility with respect to an infinite amount of privacy

requirements by one PET run.

Algorithm 2 PET: Uniform Mechanism at timestamp t

1: function Uniformt(P(t), Q(t), ϵ, w,∆P,∆Q, αP, αQ)
2: ϵP ← αP · ϵ
3: ϵQ ← αQ · ϵ
4: λP ← λP(∆P, w, αP, ϵ) = ∆P·w

ϵ·αP

5: λQ ← λQ(∆Q, w, αQ, ϵ) = ∆Q·w
ϵ·αQ

6: return Perturb(P(t),Q(t), λP, λQ)
7: end function
8: function Perturb(P(t),Q(t), λP, λQ)
9: P∗(t)← P∗(t) + Lap(λP) ▷ Laplace mechanism
10: Q∗(t)← Q∗(t) + Lap(λQ)
11: return P∗(t),Q∗(t)
12: end function

5.2 Assessing Reasonable Privacy – Privacy Requirements

To limit the number of experiments, we aim to perform experiments for different

noise scales. To this end, we focus on noise scales representing representing appliance

usages from residential customers. In our study, we sanitize only the measurements

from the residential customers. In the remainder, we select the requirements and

then state the resulting noise scales used in our study.

5.2.1 Selection of Privacy Requirements

Below, we select the privacy requirements. Table 4 provides an overview of the

requirements we discuss.

Selection of privacy level ϵ In compliance with related work, we keep ϵ ∈ (0, 1.0].

Selection of window size w We focus on window sizes that correspond to typical

appliance usage cycles. As stated in Table 3, we consider individual appliance usages,

as well as combinations. An example for an individual appliance usage is the usage of

the washing machine. According to [48], it usually runs for 2 hours and 15 minutes.

Considering that our measurement streams feature an interval length of 15 minutes,

this corresponds to w = 2h15m
15m = 7. We consider additionally combinations of

appliances, because appliance usages are typically correlated. An example is that

the dryer usually runs after the washing machine. To cover this, we have to select

the sum of the cycle duration of both appliances. For instance, if the washing
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machine runs 7 time stamps, and the dryer 9 time stamps, we have to select w = 16.

If two appliances run in parallel, we have to select the maximum of both cycle

durations. For compliance with related work, we integrate the respective window

size for ensuring event-level (w = 1) and user-level (w = ∞) DP in our study

(see Table 3). For user-level DP, that is not implementable for infinite streams, we

consider a so-called flattened variant in which we interpret the stream as a finite

time series. Then, we choose w = p = 100, which is the number of time stamps of

our (finite) measurement streams.

Selection of shares ∆P and ∆Q Related work uses shares according to the classical

local setting that protects the existence of all producer and consumer. To calculate

these shares, we rely on the highest difference in active and reactive power of two

residential customers at one time stamp that can occur in our measurement trace.

Specifically, for E ∈ {P,Q}, the share is given by

∆E = | max
c∈CCBres,t

E(t, c)− min
c∈CCBres,t

E(t, c)|. (1)

For our study data introduced in Section 3.2, these shares are given by ∆P =

4.85 kW and ∆Q = 3.37 kVar. With respect to appliance usages, the shares must

be selected in line with the power usually consumed by the appliances or appliance

combination as stated in Table 3. Since we are not aware of any publication stating

the reactive power consumed by appliances, we consider privacy requirements with

respect to appliance usages only in combination with measurement scenario P only,

in which reactive power is not given.

Selection of splitting parameters αP, αQ In line with related work [9], in the mea-

surement scenario PQ, we use αP = αQ = 0.5. In the measurement scenario P only,

in which we do not need to hide Q, we use the full budget for sanitizing active

power. This means that we use αP = 1.

5.2.2 Resulting Noise Scales

Table 4 states the resulting minimum and maximum noise scales per measurement

scenario. For the measurement scenario P only, we only consider hiding individual

appliance usages explicitly, as the maximum noise scale is in this case is already

similar to the minimum one for achieving user-level DP measurement scenario PQ.

In case we do not achieve reasonable utility for user-level nor event-level DP, we

consider reduced noise scales, limiting the maximum noise scale in scenario P only

to the minimum noise scale needed to achieve event-level DP in scenario PQ. Note

that we cover combinations of appliances implicitly, since the noise scales lie in the

range between user-level privacy and consideration of individual appliances.

6 Results
In this section, we present and discuss the results of our study with respect our two

research questions. Before that, we present grid monitoring results in the ground

truth scenario to give an intuition on grid monitoring results in general. Second, we

answer our first research question (RQ1) by relating the utility metrics of different
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Requirement ∆P ∆Q w

Measurement Scenario PQ

user-level DP Eq. 1 (E = P) Eq. 1 (E = Q) p

w-event DP Eq. 1 (E = P) Eq. 1 (E = Q) [1,p]

event-level DP Eq. 1 (E = P) Eq. 1 (E = Q) 1

Measurement Scenario P only

Individual appliance a power share(a) - cycle duration(a)
15 min.

a1 followed by a2 max
a∈{a1,a2}

{power share(a)} -
∑

a∈{a1,a2}

cycle duration(a)
15 min.

a1 parallel to a2
∑

a∈{a1,a2}
power share(a) - max

a∈{a1,a2}
{ cycle duration(a)

15 min.
}

Table 3: Overview of different shares and window sizes.

Name Measrmt. Requirement ϵ αP αQ λP λQ

Scenario min max min max

user PQ user-level DP [0.1, 1.0] 0.5 0.5 970 9.700 674 6,740
event PQ event-level DP [0.1, 1.0] 0.5 0.5 9.70 97 6.74 67.40
app P only indiv. appliances [0.1, 1.0] 1.0 0.0 0.14[a] 980[b] - -
app’ P only app reduced [0.1, 1.0] 1.0 0.0 0.14 9.7[c] - -

Table 4: Privacy requirements and resulting minimum and maximum noise scales

in each measurement scenario.

[a]Refrigerator cycle with cycle duration= 15 min. (w = 1) [48], power share=140 W (∆P = 0.14
kW) [48] and ϵ = 1.0.
[b]Space heating with cycle duration= 210 min. (w = 14) [48], power share=7,000 W (∆P = 7
kW) [48] and ϵ = 0.1.
[c]Maximum noise scale from event-level DP.

types identified in Section 4.2 to each other. Finally, we state the results with

respect to our second research question (RQ2) using the appropriate utility metrics

identified.

Note, as our experiments depend on random numbers, as usual [49], we execute

each experiment ten times, and report the mean errors.

6.1 Grid Monitoring Results in Measurement Scenario PQ and P only

Below, we present grid monitoring results in the measurement scenario PQ to give

an intuition on grid monitoring results in general. The grid monitoring results in

scenario serve as ground truth for all subsequent experiments. Additionally, we state

the errors in measurement scenario P only compared to scenario PQ, and give an

intuition on the sensitivity of the metrics. They serve as a lower bound on the errors

we can achieve with a PET in scenario P only.

Figure 5 shows the results of the load-flow analysis as well as the subsequent

analyses. These are the voltages and currents calculated by the load-flow analysis,

as well as the resulting line loadings, and voltage respectively line loading viola-

tions determined by subsequent analyses. We observe that the voltages at all nodes

are between 360 and 400 V, which is expected. Additionally, we see the voltage

drop that was provoked during the simulation of the undervoltage trace. In total,

we have 1,555 undervoltage violations: All 25 customer connection and 10 junction
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boxes have at either 44 or 45 time stamps voltages below 380 V. The line currents

are between close to zero and 23 A. The highest currents occur for the lines near the

Trafo when the voltages in the nodes drop. This is expected, as the measurements

are simulated by an online modification of the secondary voltages at the trans-

former [1]. Consequently, the loads of the lines increase during the voltage drop as

well. However, the line load violation limit (90%) is never exceeded, meaning that

no line loading violations are present.

Using pseudo-measurements for reactive power as in scenario P only reduces utility.

Below, beside the pure error numbers, we give a first intuition on the high sensitivity

of the subsequent analyses error metrics. Table 5, Line SCP only, shows the errors

with respect to all defined metrics in the measurement scenario P only. We observe

a small voltage Er(V,N\{Trafo})
∞ and current Er(I,E)

∞ error. Additionally, we observe

an error in the number of voltage violations, but not in the line loading violations.

The rationale for the former is that, as Figure 5 (a) reveals, many voltage values

are close to the undervoltage violation threshold. Consequently, even a small error

in the voltages results in a difference in the number of violations. Inversely, a high

current error is required to achieve a difference in the number of loading violations.
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(a) Voltages at all nodes determined by load-
flow analysis and the violation es determined by
voltage analysis.
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(b) Currents at all lines determined by load-
flow analysis.
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(c) Line loads at all lines determined by line-
loading analysis.

Violation threshold(s)

(a) Total undervoltage violations 1,555
+ Total overvoltage violations 0
= Total voltage violations 1,555

(c) Total line load violations 0

(d) Sums of violations identified by voltage and
line loading analysis.

Figure 5: Grid monitoring results in the ground truth measurement scenario PQ. In

(a), each curve represents one node. In (b) and (c), each curve represents one line.
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6.2 (RQ1) Utility Metric Relationships in Grid Monitoring

The DSO is interested in the results of the subsequent analyses. However, in liter-

ature, the utility of mechanisms with respect to sanitation error are known. This

raises (RQ1) asking how the sanitation, or the error of load-flow analysis as an in-

termediate step, relate to the subsequent analysis error. Considering the increasing

number of subsequent analyses that exist, using the sanitation error or load-flow

analysis error would be preferred if appropriate. Consequently, as illustrated in Fig-

ure 4, we subsequently relate these three types of utility metrics to each other.

Ideally, they have a pairwise linear relation. In this case, the metrics are would be

interchangeable, and all are appropriate to measure the utility of grid monitoring.

To this end, we consider measurement scenario P only, because we have a higher

variety of privacy requirements identified than for PQ.

The key results indicate the following. First, the relations between the metric types

are highly non-linear. Second, the subsequent analysis errors are more measurement

data dependent than the load-flow analysis errors. Consequently, we propose to use

the load-flow analysis error in future work.

6.2.1 Sanitization Error vs. Load-flow Analysis Error

Below, we relate the sanitization error to both error metrics used to measure the

load-flow analysis error, namely, the voltage and the current error. For the Uni-

form mechanism, it holds that the sanitization error with respect to active power

converges towards λP [9]. Consequently, we consider λP as the sanitization error.

Figure 6 (a) reveals that the load-flow analysis errors increase, as the sanitation

error increases. However, not in a linearly. Both, the voltage and current error

increase faster than the sanitation error. This means that the higher the sanitation

error is, the less meaningful is it to assess the utility of grid monitoring. This applies

especially to the current error increasing even faster than the voltage error.

We consequently propose to use not only the sanitation error to assess the utility

of newly proposed w-event DP mechanisms, but to use an analysis-specific metric

in addition.

6.2.2 Load-flow Analysis Error vs. Subsequent Analysis Error

Knowing that the sanitation error is not appropriate, it remains the question

whether the load-flow analysis error is the appropriate, or whether subsequent

analysis metrics should be used. The reason is that subsequent analyses process

the outputs of the load-flow analysis before the results are useful for the DSO.

Consequently, we now discuss the relationship of the voltage and current error

(output of load-flow analysis) on the difference in the voltage and line loading vio-

lations (output of subsequent analyses). They are illustrated in Figure 6 (b). Gener-

ally, we observe that the relationship is again non-linear. In contrast to Figure 6 (a),

the relationship is even more complex. Specifically, regarding the voltage violations,

for voltage errors < 10, the subsequent analyses errors change only slightly. The rea-

son is that for many time stamps and nodes, the voltages are next to the violation

limit (see Figure 5). Regarding the line loading violations, we observe that even

for a current error of 7 A, the violations are still correctly identified. The reason is

that the loads in the undervoltage trace are far below the violation thresholds (see

Figure 5).
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This indicates that errors of subsequent analyses are highly sensitive with respect

to measurements and chosen thresholds. This imposes, however, the question of how

useful they are for DSO-independent utility assessments at all. As a consequence,

we propose to use load-flow analysis error metrics as a compromise.
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Figure 6: Relations between error metrics of different types.

6.3 (RQ2) Reasonable Privacy & Utility for Grid Monitoring

Subsequently, we first assess reasonable utility by determining the utility if measure-

ment errors are present. Second, we compare this utility with the utility achieved

by the PET. To this end, we focus, but not limit ourselves, to load-flow analysis

utility metrics, as the previous section suggests.

Table 5 gives an overview of the results discussed in this section. The scenar-

ios are notated with SCMeasurement Scenario
Noise . The superscript states the measurement

scenario ∈ {PQ,P only}. The subscript states which noise is introduced into the

measurements, if any. In this context, σ = 0.01 stands for noise relating to mea-

surement errors. Additionally, for noise resulting from a PET, the names are in

line with Table 4. Note that both dimensions, i.e., measurement scenario and intro-

duced noise, are orthogonal to each other. All errors are computed by comparing

the analysis results with the ground truth SCPQ.

Key outcome is that it is hard to achieve reasonable utility while keeping reason-

able privacy.
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Scenario Er
(V,N\{Trafo})
∞ Er

(hasVoltVio,N)
L1 Er

(I,E)
∞ Er

(load,E)
∞ Er

(hasLoadVio,E)
L1

Measurement Scenario with P and Q measured

SCPQ ———————————————– Ground Truth ———————————————–

SCPQ
σ=0.01 0.013 V 0.2 0.13 A 0.24 %P 0

SCPQ
event [25; 17·103] V [299; 1,756] [113; 9 ·106] A [201; 7 ·106] %P [1; 3 ]·103

Measurement Scenario with P measured only

SCP only 0.23 V 13 2.64 A 1.55 %P 0

SCP only
σ=0.01 0.24 V 4.8 4.0 A 3.1 %P 0

SCP only
app’ [0.4; 24.4] V [17; 236.9] [3.3; 95.4] A [1; 245.5] %P [0; 751]

Table 5: Overview of utility in all scenarios. Error ranges relate to parameter varia-

tions. Non-integer violation numbers relate to reported mean errors over 10 exper-

iment repetitions.

6.3.1 Utility in the Presence of Measurement Errors

In this experiment, for each measurement scenario, namely, PQ and P only, we de-

termined the utility if we inject measurement errors. We only use this utility to

give an intuition on the utility achieved by a PET in the remainder. The utility

in scenario P only is stated in Table 5, Lines SCPQ
σ=0.01 and SCP only

σ=0.01. For the mea-

surement scenario PQ, we observe that the measurement errors cause only a small

error in voltages and currents. Additionally, they do not affect the number of line

loading violation. Specifically, the voltage, current and loading errors are a magni-

tude smaller than the errors in SCP only. For the measurement scenario P only, we

compare the error in SCP only and SCP only
σ=0.01, since the former is a lower bound of

the latter. It reveals that the measurement errors have only a marginal impact on

the voltage error, but nearly double the current and loading error. Interestingly,

the difference in the number of voltage violation error decreases, which is unex-

pected. However, the reason is that the voltages calculated deviate more upwards

to the ground truth, because there are more imbalances in the measurements than

in SCP only. Consequently, less undervoltage violations are present.

6.3.2 Intuition on the Utility of the PET

Subsequently, we compare the utility with the utility that can be achieved if mea-

surement errors are present.

Measurement Scenario PQ For measurement scenario PQ, we first considered

event-level differential privacy, since we expect higher utility than from a user-level

differentially private PET. The noise scales used in our experiment are compliant

with Table 4, Line 2. In Table 5, the Line SCPQ
event shows the resulting errors. The

lower numbers apply to ϵ = 1.0, and the higher numbers to ϵ = 0.1.

We observe that already for ϵ = 1.0 inducing the lowest privacy guarantee, the

voltage and current errors are three orders of magnitudes higher than for the mea-

surement error scenario SCPQ
σ=0.01. Additionally, we observe over -voltage violations,

that are not in line with the undervoltage trace (not visible in the table). As a result,

we assess the errors are too high to achieve reasonable utility in this scenario.
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Measurement Scenario P only The maximum noise scale Table 4 for hiding individ-

ual appliances is with λP = 980 two orders of magnitudes larger than the minimum

noise scale for event-level DP, that already does not yield reasonable utility. Con-

sequently, in our experiments, we consider the reduced setting and limit the upper

bound to λP = 9.7, hiding the total power at one time stamp only.
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(a) Voltage error for varying noise scales.
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(b) Current error for varying noise scales.

Figure 7: Utility for varying noise scales.

To investigate whether the PET achieves reasonable utility, we now compare the

error in SCP only
app’ with the ones in SCP only

σ=0.01. Figure 7 shows both. We observe that

all considered privacy requirements yield a higher voltage error than in SCP only
σ=0.01.

This means that the usage of a PET yields – even for low privacy requirements

– worse utility than the utility resulting from measurement errors. However, if a

higher error is acceptable for the DSO, the figures are useful to derive the achievable

privacy requirements for a predefined error value, and vice versa. For example, as

illustrated in Figure 7 (a), if a voltage or current error that is one order of magnitude

higher than the errors in SCP only
σ=0.01 is still acceptable, λP = min{1.0, 4.5} = 1.0 is

the maximum possible noise scale, that in turn corresponds to, e.g., the privacy

requirement ’protecting one refrigerator cycle with ϵ = 0.14’. To sum up, the results

suggests that it is hard to achieve reasonable privacy and utility, because the utility

with respect to all considered utility metrics for weak privacy requirements already

low.

7 Conclusions
In this paper, we study the utility of differentially private grid monitoring. Specif-

ically, we ask (1) which utility metrics are appropriate and (2) and how utility of

a PET relates to utility under measurement errors. To this end, we identify candi-

dates for utility metrics for all three steps of differentially private grid monitoring.

To define reasonable privacy, we use privacy requirements relating to appliance us-

ages given in literature. Based on these definitions, we perform a case study on a

real-world grid and realistic measurements. With respect to the first question, we

observe that the utility of grid monitoring decreases faster than the sanitation error,

that is frequently used in related work on differentially privacy as utility metric.
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With respect to the second question, the study indicates that already under weak

privacy requirements, the utility is worse than under measurement errors.

Our work has the following implications on future work: First, our study indicates

that in future work, it is recommended to not only consider the sanitation error as

utility metric, but analysis-specific error as well. Second, our study suggests that it

is hard to achieve reasonable utility and privacy in grid monitoring at the same time.

Consequently, in future work, we work on achieving it. To this end, we investigate

two possible approaches: The first one is allowing a finer granular specification of

privacy requirements by generalizing policy-based notions [10, 11]. The second one is

to design load-flow analysis algorithms that take the additional error due to privacy

mechanism into account, like previously investigated, for measurement errors [50].
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13. Chen, Y., Mart́ınez, J.-F., Castillejo, P., López, L.: A privacy-preserving noise addition data aggregation scheme

for smart grid. Energies 11(11), 2972 (2018)

14. Reinhardt, A., Englert, F., Christin, D.: Averting the privacy risks of smart metering by local data

preprocessing. Pervasive and Mobile Computing 16, 171–183 (2015)

15. Eibl, G., Engel, D.: Influence of data granularity on smart meter privacy. IEEE Transactions on Smart Grid 6(2),
930–939 (2014)

16. Errounda, F.Z., Liu, Y.: Continuous location statistics sharing algorithm with local differential privacy. In:

Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), pp. 5147–5152 (2018). IEEE

17. Pombo, D.V., Iov, F., Silva, N., Schwefel, H.-P., Kristensen, R., Winter, C., Diewald, N., Handrup, K.: Net2dg

deliverable d2.1 - algorithms for grid estimation and observability applications. Technical report, Net2DG

(2018)

18. Eibl, G., Bao, K., Grassal, P.-W., Bernau, D., Schmeck, H.: The influence of differential privacy on short term

electric load forecasting. Energy Informatics 1(1), 93–113 (2018)



Christine Schäler and Hans-Peter Schwefel Page 21 of 22

19. Eibl, G., Engel, D.: Differential privacy for real smart metering data. Computer Science-Research and

Development (CSRD) 32(1), 173–182 (2017)
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