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ABSTRACT:

UAS imagery has become a widely used source of information in geomorphic research. When photogrammetric methods are
applied to quantify geomorphic change, camera calibration is essential to ensure accuracy of the image measurements. Insufficient
self-calibration based on survey data can induce systematic errors that can cause DEM deformations. The typically low geometric
stability of consumer grade sensors necessitates in-situ calibration, as the reliability of a lab based calibration can be affected by
transport. In this research a robust on-site workflow is proposed that allows the time-efficient and repeatable calibration of thermal
and optical sensors at the same time. A stone building was utilised as calibration object with TLS scans for reference. The approach
was applied to calculate eight separate camera calibrations using two sensors (DJI Phantom 4 Pro and Workswell WIRIS pro), two
software solutions (Vision Measurement System (VMS) and Agisoft Metashape) and two different subsets of images per sensor.
The presented results demonstrate that the approach is suitable to determine camera parameters for pre-calibrating photogrammetric
surveys.

1. INTRODUCTION

With the availability of increasingly powerful SfM photogram-
metry software and off-the shelf Unmanned Aircraft Systems
(UAS) comes an increase of photogrammetric applications in
geomorphologic research. SfM photogrammetry is applied in
several areas of geomorphic research, including the study of
mass movements, coastal erosion and fluvial environments.
Surveys are cost-efficient and thus SfM photogrammetry from
UAS allows repeat surveys to monitor earth surface processes.
Modern SfM photogrammetry workflows detect and match key-
points and subsequently determine lens distortion parameters,
camera position and orientation in a self-calibrating bundle ad-
justment. The algorithms approximate intrinsic and extrinsic
camera parameters as an optimisation problem with a large
numbers of variables. However, the simultaneous solution of
several parameters can cause overparameterisation (James et
al., 2017).

Moreover, image sets with near parallel nadir viewing direc-
tions can result in the inadequate determination of lens distor-
tion during bundle adjustment, resulting in dome shaped DEM
deformations (James et al., 2020, SanzAblanedo et al., 2020).
Vertical imaging survey designs were common practice in clas-
sical aerial photogrammetry from manned aircraft and required
pre-calibrated metric cameras with high geometric stability.
However, systematic errors from weak geometric configuration
can be omitted by careful design of flight plans with sufficient
overlap, various viewing angles and flying heights (James, Rob-
son, 2014).

Nevertheless,certain applications require data acquisition
strategies that counteract a robust bundle adjustment (Cramer

∗ Corresponding author

et al., 2017). For example, in the case of through-water-
photography for bathymetric SfM, imagery must be captured
with the optical axes in the near vertical direction. This is
to minimize the offset of the apparent positions of submerged
areas due to the refraction of light at the water surface. Besides
affecting the generated DEMs of the submerged areas, the mis-
placement of tie points by refraction affects the self-calibrating
bundle adjustment when water is present in the scene. In such
survey, an alternative strategy to self-calibrating bundle adjust-
ment is to determine an accurate camera model in a separate
pre-calibration.

1.1 Problem statement

The overarching research to which this paper relates explores
the application of bathymetric SfM photogrammetry to assess
geomorphic changes induced by river restoration on the River
Gairn, Scotland. Dry and submerged topography were mon-
itored over several time steps before and after the placement
of artificial logjams into the stream. This paper describes the
development of a geometric pre-calibration approach for the
adopted UAS that is equipped with both optical and thermal
sensors.

A common approach for geometric sensor pre-calibration in-
volves using 2D or 3D calibration arrays with known geometry
(e.g. surveyed targets) in laboratory environments (Cramer et
al., 2017). Camera calibration parameters are determined by
self-calibration bundle adjustment from a survey designed to
create a robust network. However, off-the-shelf sensors of-
ten have low geometric stability that can affect the calibration
when transported, e.g. over rough tracks and due to deformation
with changing temperature (Elias et al., 2020, SanzAblanedo et
al., 2020). Cramer et al., (2017) investigated user grade UAS
sensors in lab experiments and found large variations of geo-
metric stability. However, they found especially low deviations

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-355-2020 | © Authors 2020. CC BY 4.0 License.

 
355



in the DJI Phantom 3, suggesting geometric stability “close to
the concept of a metric camera”. Similar results have been de-
scribed for the DJI Phantom 4 Pro (e.g. Fraser, 2018)). Nev-
ertheless, ideally the sensor system is calibrated on-site imme-
diately prior to the survey and repeated afterwards for consist-
ency (Cramer et al., 2017). Since field work is often planned
with a tight schedule and subject to real-world restraints such as
weather conditions, calibration must be carried out quickly and
effectively. Consequently, a permanent, re-usable, on-site struc-
ture would be preferable for field surveys. However, the refer-
ence features of any such object must provide sufficient contrast
in the observed spectra and must be large enough to be recog-
nizable in all of the sensors being utilized (in this work, optical
and thermal cameras are utilized simultaneously). Moreover,
considering the critical influence of focal length on the calibra-
tion, research (Griffiths, Burningham, 2019) suggests that pre-
calibration should be conducted at the scale of data acquisition.
Hence, ideally the distance between sensor and calibration ob-
ject should be equivalent to the targeted flying height.

In summary, an on-site calibration object should be suitable for
optical and thermal sensors and stable over time so as to allow
time-efficient repetitions. The survey design must yield a robust
photogrammetric network with similar distance as in survey to
be conducted. A new workflow has been developed to meet
these criteria for camera pre-calibration (Figure 2).

2. METHODOLOGY AND MATERIALS

Permanent structures that can potentially be used as calibration
array, e.g. bridges or walls, can be found in many locations.
Cramer et al. (2017) used an abandoned industrial wasteland
featuring several towers and Fraser (2018) used detached build-
ings in several experiments. In this research, a freestanding
granite building in the study area was an obvious choice, as
granite shows minimal rates of expansion with temperature and
is thus geometrically stable (Richter, Simmons, 1974). Struc-
tural features are recognizable at a variety of image resolutions
and scales (Figure 1 b). Furthermore, the emitted radiation of
the stone allows feature recognition in thermal images while
doors and windows are large enough to be recognisable despite
the low image resolution of the thermal images (Figure 1 a).
The higher resolution of the scenes captured by RGB sensors
allow recognition of features on a smaller scale such as joints,
individual stones or window frames.

2.1 Study site and data acquisition

We acquired all datasets on 13th September 2019 from a reach
of the River Gairn in the Cairngorms National Park, Scotland

a b

Figure 1. Example images of the calibration building captured
with the Workswell WIRIS Pro. a: thermal, b: RGB. The

studied River Gairn is visible in the background

Photos

Target

Observations

Locate 

target 

positions

Merged

Scans

Define 

targets

Reference 

Coordinates
Control / Check

RGB

Thermal

Calibration Data Reference Data

SfM

align

Co-

registered 

scenes

M
e

ta
S

h
a
p

e

optional

Validation

check 

points

Determine 

camera 

parameters

distortion 

parameters

VMS

distortion 

parameters

MetaShape

Calibration

UAS River  

survey

M
e

ta
S

h
a

p
e

Photos

GNSS

Application

C
lo

u
d

C
o

m
p

a
re

VMS vs 
Metashape

SfM self-

calibration

Bathymetric

SfM Workflow

Pre- vs. self-

calibration

Figure 2. Process diagram of the calibration workflow

under primarily sunny conditions. The on-site calibration build-
ing is Corndavon Lodge, a former shooting lodge built from
granite and measuring approximately 12.5 m x 7.5 m x 10.5 m.

We used two UAS to collect thermal and RGB imagery.
Thermal imagery was captured from a DJI M600 system
equipped with a Workswell WIRIS pro sensor. The resolution
of the WIRIS pro is 640 x 512 pixels with a pixel size of 17 mi-
crons and a nominal focal length of 13 mm. Visible optical im-
agery was acquired separately using a DJI Phantom 4 pro with
the built-in RGB sensor of 5472 x 3648 pixel resolution, pixel
size of 2.41 microns and nominal focal length of 8.8 mm. The
RGB sensor is equipped with a polarizing filter which reduces
the reflection at the water surface in bathymetric photogram-
metry survey.

We captured imagery in circular flight patterns around the build-
ing to incorporate various angles, heights and distances (Fig-
ure 3 a). Circular flight geometries create the most conver-
gent images and thus allow strong photogrammetric networks
to determine the most accurate calibration parameters (SanzAb-
lanedo et al., 2020). The sensors were set to trigger at 3 second
intervals and a total of 158 thermal and 101 RGB images were
captured.

To generate a reference dataset, we scanned the building with
a Leica ScanStation P40 Terrestrial Laser Scanner (TLS) from
three perspectives. The scans were captured from a minimum
distance of 20 m with a resolution of 3.1 mm at a distance of
10 m. We did not georeference the scans as only a local coordin-
ate system is required in the workflow. We registered, merged
and exported the collected point clouds using Leica Cyclone
9.2.1. Subsequently, we used CloudCompare (GPL Software,
2019) to extract visible features from the TLS point cloud in or-
der to create the calibration array. Firstly, we exported approx-
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Sensor Software Dataset
RMSE (pixels)

Images Observations Control Check Sigma

th
er

m
al VMS

subset 12 317 0.48 1.00
add6 17 404 0.53 1.00

MetaShape
subset 14 331 0.81 0.54
add6 20 432 0.88 0.73

R
G

B

VMS
subset 15 609 0.88 1.36
add6 21 752 1.02 1.23

MetaShape
subset 16 630 0.92 0.71
add6 21 773 1.19 1.31

Table 1. The input datasets and the resulting quality metrics

imate locations by digitizing point locations with the Point List
Picking Tool in CloudCompare. In the next step this preliminary
label-x-y-z point cloud was split up into several single points to
be placed accurately using the Translate Tool and merged again
in CloudCompare. The split and merge operations were per-
formed using R scripts (R Core Team, 2019). Finally, the gen-
erated coordinate reference network was divided into control
points and check points.

2.2 Generating image observations

For sensor calibration we adopted two different software solu-
tions. Firstly, VMS (Vision Measurement System) (Geomsoft,
2008), close range photogrammetry software that has been ap-
plied for geometric calibration (e.g. James et al. 2020; Shortis
and Luhmann 2018). In the context of this study the calibration
in VMS serves as a benchmark against which the widely used
SfM photogrammetry software Agisoft Metashape Professional
(Agisoft LLC, 2020) is compared.

We aligned the full datasets of both sensors using Metashape
to efficiently create subsets (Figure 3 a). We imported the ref-
erence target coordinates and placed a few markers in order to
locate the preliminarily aligned photos in the reference dataset.
Specialized calibration software such as VMS is designed to run
on a smaller number of convergent images and a large number
of target observations.Therefore, we created two subsets from
both sensor datasets: A smaller one of 14 images, hereafter
referred to as SUBSET and a larger one of 20 images ADD6.
The preliminary SfM based alignment facilitates the selection
of sufficiently convergent images. Subsequently, we carefully
placed markers as observations on the features defined as ref-
erence points in the TLS point cloud. Metashapes suggested
marker placement speeds up the process of digitizing a large
number of image coordinates. SUBSET comprises all images
and target observations from ADD6. Removing images that
would not align or adding images to improve network stability
in certain areas during calibration resulted in different numbers
of images. An overview of the datasets can be found in Table 1.

Finally we exported all target observations using a script in
Metashape’s Python console. Subsequently, we generated the
standardized initial VMS project files (project, camera calib-
ration, image observations, target reference and photo orienta-
tion) via a R script (R Core Team, 2019).

2.3 Determining calibration parameters

We used VMS to determine the camera calibration parameters.
To speed up the calibration process in VMS we adopted para-
meters from Metashape as initial values, thereby facilitating the

initial orientation of images. We calculated the first network
keeping all parameters fixed. Subsequently, we released fur-
ther parameters over several iterations as suggested by Shortis
and Luhmann (2018): starting with the radial distortion para-
meters (K1, K2 and K3), adding the principal point coordinates
(PPx and PPy), the tangential distortion parameters (P1 and P2)
and finally affinity and orthogonality terms (a1 a2). With each
additional enabled calibration parameter the initial parameters
were successively overwritten. We kept the the observations
and targets fixed by resetting them from the initial files in every
iteration to avoid drifting of the network.

VMS does not provide an option to determine the radial dis-
tortion parameter K4. To test if K4 could be omitted, it was
calculated using Metashape (for RGB ADD6) and the correla-
tion between K3 and K4 was found to be 0.99, thus we decided
that it could be safely neglected for the sake of comparison with
VMS. The omission of lower order radial distortion parameters
is common practice, especially for smaller sensor sizes on non-
metric cameras (e.g. Eltner and Schneider 2015; Remondino et
al. 2012). .

We subsequently we applied a similar workflow in Metashape:
starting from an aligned chunk with the whole dataset we cre-
ated a copy and removed unnecessary images to create the sub-
sets. The small number of tie points between adjacent thermal
images resulted in misalignment rather than improvement of the
network. The weak tie points might be caused by the character-
istics of the thermal images having low resolution in combina-
tion with angle dependent radiation, Metashape’s image match-
ing algorithms having not been designed for processing thermal
images. For this reason and to ensure comparability with VMS,
we removed all tie points and calibrated solely based on the
markers. We determined the calibration parameters in the same
order as in VMS iterating through alignment, camera calibra-
tion and updating the errors of the reference. We exported the
calibration parameters in the ’australis’ format.

To visualize lens distortion we calculated the profiles according
to Fraser et al., (1995):

K(r) = K1r
3 +K2r

5 +K3r
7 (1)

for the radial distortion and:

P (r) = (P 2
1 + P 2

2 )
1
2 r2 (2)

for the tangential distortion along the direction of maximum
distortion (Figures 5 and 6). To evaluate the distribution of ob-
servations on the sensor area through the subsets, we created
scatterplots with marginal histograms (Figure 4).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-355-2020 | © Authors 2020. CC BY 4.0 License.

 
357



a

b

Figure 3. (a) Aligned thermal images, markers on wire mesh for
visualisation and the DJI M600 with the thermal sensor.

(b) Merged TLS scans of the reference dataset and Leica P40
scanner

3. RESULTS AND ANALYSIS

The three point clouds obtained from the TLS survey were re-
gistered with an RMS of 0.011 m and a total of 11,163,796
points (Figure 3 b). An overview of the included images and
observations, as well as the resulting metrics, can be found in
Table 1. The calculated calibration factors for the datasets can
be found in Table 2. The distortion profiles are visualized in
Figure 6 for thermal and Figure 5 for RGB. We removed images
that did not align and observations with excessively large resid-
uals during the processing in VMS. Therefore, the number of
images varies between the datasets. The distribution of obser-
vations over the sensor area is visualized in Figure 4. The distri-
bution shows a higher frequency of observations in the central
sensor area than the edges and the corners.
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Figure 4. Scatterplot of the XY-distribution of all target
observations projected onto the sensor areas of both sensors.
Marginal histograms of the density along the X and Y axes

VMS solved the network of 12 (17) images with a total of 317
(404) observations of 51 (58) targets and yielded RMS values
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Figure 5. Lens distortion profiles for the DJI phantom 4 Pro
RGB sensor

0 1 2 3 4 5 6

0
10

20
30

40
50

60

thermal

radius [mm]

ra
di

al
 [m

ic
ro

ns
]

vms        metashape

subset
add6

(a) radial

0 1 2 3 4 5 6

0
10

20
30

40
50

60

thermal

radius [mm]

ta
ng

en
tia

l [
m

ic
ro

ns
]

vms        metashape

subset
add6

(b) tangential

Figure 6. Lens distortion profiles for the Workswell wiris pro

close to half a pixel and σ of 1 for SUBSET (ADD6) (Table 1).
VMS calculated a network solution with an RMS of 0.88 (1.02)
pixels and a σ of 1.36 (1.23) from 609 (752) observations of 91
(105) targets from the RGB dataset SUBSET (ADD6) consisting
of 15 (21) images (Table 1). VMS does not calculate the RMS
for control and check points separately, but instead outputs a
single value.

We processed the thermal dataset in Metashape where the SUB-
SET (ADD6) included 14 (20) images with a total of 331 (432)
target observations. The RMS values were 0.81 (0.88) pixels
for the control points and 0.54 (0.73) pixels for the check points
(Table 1). The RGB dataset has 16 (21) images with 630 (773)
observations and the network was solved with RMSE of 0.92
(1.19) pixels for the control points and 0.71 (1.31) pixels for
the check points (Table 1).

The radial distortion profiles (RGB: Figure 5 a and thermal:
Figure 6 a) show similar patterns for both sensors. The greatest
similarity is between the data pairs that come from the same
software, where VMS is slightly higher than Metashape. The
tangential distortion profiles (RGB: Figure 5 b and thermal:
Figure 6 b) show smaller magnitude and less similarities
between the sensors. For RGB the tangential distortion values
remain smaller than 1.3 and the thermal tangential distortion
profile is very inconsistent between all data sets.

For both sensors the values calculated for the principal distance
(C) and the principal point coordinates show only small vari-
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ance between the datasets (Table 2). Analogously we gained by
far the highest precisions for the principal distance. The preci-
sion values were 3 (thermal) and 4 (RGB) orders of magnitude
above the other parameters. At the principal point we calcu-
lated higher precisions for X displacement than the Y value.
The radial parameters displayed similar values for RGB and
were more heterogeneous for thermal. This is also reflected in
the precisions that are between a factor of 2 and 5 above the
parameter values for RGB and lower for thermal. Overall the
precision was low with the exception of C. RGB showed higher
precisions than thermal and VMS had a higher precision than
Metashape.

4. DISCUSSION

Using TLS instead of total station measurements as a reference
allowed us to revisit the dataset during processing. The meas-
urements were carried out on the point cloud rather than during
the often limited time on-site. We registered the three scans
with an overall RMS of 0.011 m, which is sufficient to prove
the concept. However, we do suggest using a larger number of
scans to reduce RMS by introducing more redundancy through
overlap for future applications. A robust point cloud registra-
tion is crucial for creating a reference dataset for camera cal-
ibration. The wavelength used by conventional laser scanners
provides high contrast in the measured intensities due to the ra-
diative properties of the stone building (Figure 3). Combined
with a high point density this allowed precise placement of ref-
erence points.

To find out whether our proposed workflow is suitable for sim-
ultaneously calibrating both thermal and optical sensors, we
investigated if the reference points could be located with suf-
ficient accuracy in the imagery. To evaluate the internal con-
sistency of the network solutions, we first looked at the RMS.
Under ideal conditions i.e. auto detection of coded targets, a
calibration can yield a RMS of 1/10 of a pixel whereas 1/2 or
2/3 are realistic for manual target measurements or natural fea-
tures (Fraser, 2018, Shortis, 2015, Shortis et al., 1995, Geom-
soft, 2008).

In our study design VMS served as benchmark software for
the calibration performance (James et al., 2020). We interpret
VMS’ better performance for accuracy and precision as con-
firmation. The calibration of the thermal sensor in VMS resul-
ted in RMS values of 0.48 (SUBSET) and 0.53 pixels (ADD6)
and a sigma of 1 indicating a good calibration accuracy. These
values exceeded our expectations due to the low contrast and
resolution imagery. However, these image characteristics could
have caused a wider distribution of the target observations
around features. This could be related to the the low parameter
precisions. Furthermore we compared images acquired under
different lighting conditions and found that direct sunlight is
preferable over diffuse irradiation under cloudy skies. Recog-
nizing individual bricks in the north facing wall remained diffi-
cult. We assume that a calibration with cloud cover would still
be feasible but might lead to larger errors.

For the RGB datasets, VMS calculated RMS values of 0.88
(SUBSET) and 1.02 pixels (ADD6) and sigma 1.36 and 1.23 that
are above the expected range. The precision values of the RGB
datasets were larger than the thermal. This is probably due to
a combination of different reasons. Firstly, due to the higher
image resolution the marker placement allows a more precise

placement of the observations. This, in turn, increases the re-
quirements for the accuracy of the feature definition in the ref-
erence. However, this is challenging for natural features such
as corners of bricks or intersections between window frames
and horizontal window sills. This is clearly a disadvantage over
automatic detection of target features in conventional calibra-
tion arrays measured by total station. Secondly, the smaller
ground sampling distance increased the impact of the accur-
acy of the reference dataset and the point cloud registration.
Thirdly, the low geometric stability of consumer grade optical
cameras is further enhanced by the high sensor resolutions. In
this context it is certainly advisable to use optical systems of
higher construction quality. At the time of our survey, however,
no other optical sensor could be accommodated on the avail-
able UAS. However, in comparison with other consumer grade
UAS sensors, the DJI Phantom series has been shown to be one
of the most stable (Cramer et al., 2017, Fraser, 2018). We will
investigate the geometric stability of our system in further ex-
periments and by processing additional datasets from surveys at
different time.

The processing in Metashape resulted in slightly higher RMS
values compared to VMS which is in line with our expectations
(James et al., 2020). While VMS is a dedicated photogram-
metric software, in the workflow we have deprived Metashape
of its SfM functionality by removing the tie points in order to
perform a purely marker based calibration. Even though fea-
tures are easier to recognize in RGB than in thermal, higher
RMS values resulted for RGB. The reason could be that the
higher number of observations introduces a higher variation
of placement. Similarly additional images caused an increase
in RMS. Metashape does not provide reprojection errors in a
marker based calibration. Therefore, we could not compare the
fit of the network solution against the corresponding VMS’ σ
value.

Radial distortion is the main geometric optical effect in non-
metric cameras with values up to two orders of magnitude above
the tangential distortion (James et al., 2020). Our results show
a similar ratio of the radial and tangential profiles. With mag-
nitudes below 0.5 pixels the distortion values exceed the corres-
ponding precisions and cannot be determined as significantly
different from zero. For this reason tangential distortion is of-
ten removed from camera models (Fraser, 2001, Gruen, Beyer,
2001). Due to high correlation between the radial parameters,
overparameterisation (James et al., 2017) may occur and of-
ten two radial distortion parameters provide a sufficient cam-
era model (Eltner, Schneider, 2015, Remondino et al., 2012).
We assume that we can determine a more robust camera model,
less prone to systematic errors (e.g. DEM doming), by omitting
more parameters (James et al., 2020). Therefore, we will carry
out further experiments to avoid potential overparameterisation.

The uniformity and high precisions in focal length and principal
point coordinates indicates that we can transfer our parameters
to the SfM photogrammetry survey that was subsequently con-
ducted with a similar distance between UAS and object (James
et al., 2020, Griffiths, Burningham, 2019). However, maintain-
ing the distance has the drawback that the image format is not
always covered by the calibration array (Figure 4). To improve
the coverage towards the sensor edges, the UAS operator must
therefore ensure that the array is not always in the center of
the frame (Shortis, 2015). In addition, an equal distribution of
observations must be considered when selecting the calibration
images.
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Sensor Software Dataset C XP YP K1 K2 K3 P1 P2
T

he
rm

al VMS
subset 13.10 -1.25x10−1 -1.63x10−1 5.34Ex10−4 -3.76x10−5 8.90Ex10−7 -5.36x10−5 -6.47x10−4

add6 13.09 -1.02x10−1 -3.15x10−2 2.35Ex10−4 -1.11x10−5 3.26Ex10−7 -8.64x10−5 -2.56x10−4

MetaShape
subset 13.12 -1.09x10−1 -7.55x10−2 -1.11x10−4 1.19Ex10−5 -4.12x10−7 2.52Ex10−5 3.67Ex10−4

add6 13.13 -9.76x10−2 6.32Ex10−2 -2.98x10−5 3.69Ex10−6 -2.41x10−7 0.00Ex10+0 2.18Ex10−5

R
G

B

VMS
subset 8.84 1.82Ex10−2 -3.20x10−3 1.80Ex10−4 -1.15x10−5 1.96Ex10−7 3.01Ex10−5 1.85Ex10−5

add6 8.84 2.04Ex10−2 -7.60x10−3 2.04Ex10−4 -1.25x10−5 2.11Ex10−7 3.46Ex10−5 4.15Ex10−6

MetaShape
subset 8.85 1.64Ex10−2 -6.30x10−3 -1.30x10−4 8.24Ex10−6 -1.43x10−7 -1.43x10−5 5.39Ex10−6

add6 8.85 1.97Ex10−2 -1.29x10−2 -1.18x10−4 7.16Ex10−6 -1.20x10−7 -1.60x10−5 2.16Ex10−5

Table 2. Overview of the calibration parameters calculated for all datasets [mm]

4.1 Conclusions

This research has demonstrated a field approach to calibrate a
thermal and an optical sensor using the same calibration object.
Our method allows the time-effective acquisition of calibration
data on site that is required for work with UAS borne sensors
of low geometric stability. We are confident that our calib-
ration results are suitable to be transferred for pre-calibrating
the sensors in the subsequent SfM photogrammetry survey. We
will compare the performance of a self-calibration against pre-
calibration for our bathymetric survey dataset. In the scope
of this paper we only analysed the data from one epoch, and
which will be used for the calibration of the survey which was
subsequently performed. However, we can not provide a con-
clusion on the geometric stability of the sensor system and the
magnitude of disturbance by, for example, transportation, tem-
perature variation and handling. To investigate this question we
will analyse further datasets that were acquired during the same
field campaign.

In addition to this, we found several potential strategies to fur-
ther improve our calibration workflow. First of all, we assume
that by including observations of a maximum of three sides of
the calibration building we would achieve a higher overlap us-
ing the same number of images, while maintaining a stable net-
work. The registration of the TLS point clouds could be im-
proved analogously, but more scan positions must be added.
Another consideration must be the on-board pre-processing in
consumer grade UAS sensors to mitigate radial distortion of the
lenses (Cramer et al., 2017). We will test if the unprocessed
RAW images allow us to calculate improved camera parameters
and whether proprietary correction affects the tangential para-
meters (James et al., 2020). Finally, we are confident that we
can apply our workflow to calibrate additional sensors. During
the data acquisition we also acquired a multispectral calibration
dataset using a MicaSense RedEdge-m sensor, that was moun-
ted on the M600, and further investigations will follow.
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