
Coreference Resolution
for Software Architecture Documentation

Bachelor’s Thesis of

Quang Nhat Dao

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Anne Koziolek

Second reviewer: Prof. Ralf Reussner

Advisor: M.Sc. Jan Keim

Second advisor: M.Sc. Tobias Hey

03. February 2022 – 03. June 2022

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Abstract

In software engineering, software architecture documentation plays an important role. It

contains many essential information regarding reasoning and design decisions. Therefore,

many activities are proposed to deal with documentation for various reasons, e.g., extract-

ing information or keeping different forms of documentation consistent. These activities

often involve automatic processing of documentation, for example traceability link recov-

ery (TLR). However, there can be problems for automatic processing when coreferences

are present in documentation. A coreference occurs when two or more mentions refer to

the same entity. These mentions can be different and create ambiguities, for example when

there are pronouns. To overcome this problem, this thesis proposes two contributions to

resolve coreferences in software architecture documentation.

The first contribution is to explore the performance of existing coreference resolution

models for software architecture documentation. The second is to divide coreference

resolution into many more specific type of resolutions, like pronoun resolution, abbrevia-

tion resolution, etc. For each combination of specific resolutions, we will have a specific

approach.

To evaluate the work of this thesis, we will first look at how the approaches perform for

coreference resolution for software architecture documentation. For this, Hobbs+Naive, a

combination of Hobbs’ algorithm and naive non-pronoun resolution, achieves an F1-score

of 63%. Meanwhile StanfordCoreNLP_Deterministic, a deterministic coreference resolution

system of Stanford CoreNLP, scores 59%. Then, we want to see how well the approaches

resolve coreferences for a specific activity, which is TLR. StanfordCoreNLP_Deterministic

reaches an F1-score of 63%, while Hobbs+Naive reaches 59% for this aspect. Lastly, because

coreferences from pronouns are one the biggest issues for TLR, we also evaluate how the

approaches perform for pronoun resolution. In this case, the combinations with Hobbs’

algorithm as pronoun resolution model achieves an F1-score of 74%, whereas Stanford-

CoreNLP_Neural only achieves 71%. To conclude, the combination approaches perform

better for coreference resolution for software architecture documentation. Moreover,

they perform better than the existing model approaches at pronoun resolution for TLR.

Nonetheless, the existing model approaches are superior when it comes to coreference

resolution for TLR.

i

Zusammenfassung

In der Softwareentwicklung spielt die Softwarearchitekturdokumentation eine wichtige

Rolle. Sie enthält viele wichtige Informationen über Gründe und Entwurfsentscheidungen.

Daher gibt es viele Aktivitäten, die sich aus verschiedenen Gründen mit der Dokumen-

tation befassen, z. B. um Informationen zu extrahieren oder verschiedene Formen der

Dokumentation konsistent zu halten. Diese Aktivitäten beinhalten oft eine automatische

Verarbeitung der Dokumentation, z. B. Traceability Link Recovery (TLR). Bei der automa-

tischen Verarbeitung kann es jedoch zu Problemen kommen, wenn in der Dokumentation

Koreferenzen vorhanden sind. Eine Koreferenz liegt vor, wenn sich zwei oder mehr Er-

wähnungen auf dieselbe Entität beziehen. Diese Erwähnungen können unterschiedlich

sein und zu Mehrdeutigkeiten führen, z. B. wenn es sich um Pronomen handelt. Um dieses

Problem zu lösen, werden in dieser Arbeit zwei Beiträge zur Koreferenzauflösung in der

Softwarearchitekturdokumentation vorgeschlagen.

Der erste Beitrag besteht darin, die Leistungsfähigkeit bestehender Modelle zur Kore-

ferenzauflösung in der Softwarearchitekturdokumentation zu untersuchen. Der zweite

Beitrag besteht darin, die Koreferenzauflösung in viele spezifischere Arten von Auflösun-

gen zu unterteilen, wie die Pronomenauflösung, Abkürzungenauflösung usw. Für jede

Kombination von spezifischen Auflösungen haben wir einen spezifischen Ansatz.

Um die Arbeit dieser Abschlussarbeit zu evaluieren, werden wir uns zunächst ansehen,

wie die Ansätze für die Koreferenzauflösung in der Softwarearchitekturdokumentation ab-

schneiden. Hier erreicht Hobbs+Naive, eine Kombination aus Hobbs’ Algorithmus und nai-

ver Nicht-Pronomen-Auflösung, einen F1-Score von 63%. StanfordCoreNLP_Deterministic,

ein deterministisches System zur Koreferenzauflösung von Stanford CoreNLP, erreicht

dagegen 59%. Dann wollen wir sehen, wie gut die Ansätze die Koreferenzen für eine

bestimmte Aktivität, nämlich TLR, auflösen. StanfordCoreNLP_Deterministic erreicht

einen F1-Score von 63%, während Hobbs+Naive 59% für diesen Aspekt erreicht. Da Korefe-

renzen von Pronomen eines der größten Probleme bei TLR sind, bewerten wir schließlich

auch, wie die Ansätze bei der Pronomenauflösung abschneiden. In diesem Fall erreicht die

Kombination mit Hobbs’ Algorithmus als Pronomenauflösungsmodell einen F1-Score von

74%, während StanfordCoreNLP_Neural nur 71% erreicht. Zusammenfassend lässt sich

sagen, dass die Kombinationsansätze eine bessere Leistung bei der Koreferenzauflösung in

der Softwarearchitekturdokumentation erbringen. Außerdem schneiden sie bei der Prono-

menauflösung für TLR besser ab als die bestehenden Modellansätze. Nichtsdestotrotz sind

die bestehenden Modellansätze bei der Koreferenzauflösung für TLR überlegen.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 5
2.1. Software Architecture Documentation . 5

2.2. Traceability Link Recovery . 6

2.3. Coreference Resolution . 7

2.4. Pronoun Resolution . 8

2.5. String Metric Algorithms . 8

2.6. Natural Language Processing Frameworks 9

3. Related Work 11
3.1. Coreference Resolution Models . 11

3.2. Traceability Link Recovery . 13

3.3. Software Architecture Documentation Processing Activities 14

4. Approach 15
4.1. Overview . 15

4.2. Architecture . 16

4.3. Data Definition . 17

4.4. Implementation Details . 20

5. Evaluation 23
5.1. Creation Of Gold Standards . 23

5.2. Metrics . 25

5.3. Evaluation Results . 29

5.4. Threats To Validity . 30

6. Conclusion And Future Work 35

Bibliography 37

A. Appendix 41
A.1. Tables . 41

v

List of Figures

1.1. Formal documentation of the case study TeaStore from the SWATTR

project [1] . 2

2.1. An example of model elements . 6

2.2. An example of TLR linking components from a textual document and a

class diagram . 7

2.3. A constituent tree generated from a sentence by Stanford CoreNLP . . . 9

3.1. An example of NeuralCoref 4.0 resolving coreference 11

3.2. An example of Stanford CoreNLP resolving coreference 12

4.1. Architecture of the Java project . 17

4.2. Links, clusters, and chains as coreference resolution results 19

4.3. Constituent tree from a sentence . 21

5.1. The correct answer of coreference resolution 27

5.2. A possible response from coreference resolution libraries 27

5.3. Another possible response from coreference resolution libraries 27

5.4. A response of coreference resolution where all mentions are in a cluster 28

vii

List of Tables

5.1. Case studies and the numbers of links and clusters in them 25

5.2. Trueness and positivity of elements based on their relevance and whether

they are retrieved or not . 26

5.3. Case studies used in evaluation . 29

5.4. Approachess used in evaluation . 29

5.5. Results of coreference resolution for software architecture documentation

from different approaches . 31

5.6. Coreference resolution results for relevant mentions from different ap-

proaches . 32

5.7. Coreference resolution results for pronoun mentions from different ap-

proaches . 33

A.1. Coreference resolution results from different approaches 42

A.2. Coreference resolution results for relevant mentions from different ap-

proaches . 43

ix

1. Introduction

When it comes to developing software, especially a large software system, software

architecture plays an important role [20]. Software architecture describes the software

system as a set of smaller components [15]. These components relate and work with each

other to perform the main functionalities of the system. This partitioning of the system into

smaller parts allows many people to cooperatively and productively develop the system

[15]. Moreover, a good software architecture also helps improve many desired qualities

like performance, accuracy, security, etc [15]. Given the use of software architecture, it

is crucial to document it so that it can be easily comprehended and shared [15]. Beside

development, software architecture also supports other activities such as deployment and

maintenance [29]. Therefore, it is vital to document the software architecture to provide

these activities with necessary information [29].

Documenting software architecture is essential to capture all reasoning and design

information behind it [28]. These information can also describe domain or technical aspects

of the software. Overall, there are two forms of software architecture documentation:

informal documentation and formal documentation. On one hand, informal documentation

can be written in natural language or sketched in order to be easily accessed and used

[28]. An example of informal documentation would be a natural language text describing

a software architecture. On the other hand, formal documentation is written in modelling

languages, e.g., UML. Thus, it requires technical knowledge to read and understand formal

documentation. In spite of that, this provides benefits such as supporting tracking changes

in software architecture, early evaluation and simulation for performance prediction [29].

Many activities involve automatic processing of the documentation. For example, natu-

ral language processing techniques are used to detect the uncertainty cues in software

architecture documentation [43]. However, a phenomenon can happen in the documen-

tation that can prove problematic for many of those activities. That phenomenon is

coreferences. A coreference can occur, when two or more mentions refer to the same

entity. There are two forms of mentions: indirect and direct mentions. Coreferences from

indirect mentions can cause ambiguities in the documentation. One activity that is much

affected by these ambiguities is traceability link recovery (TLR).

To highlight the problems of coreferences, TLR is explained as follows. Both informal

and formal documentation describe the architecture in one way or another. Along the

course of development, changes can be made to either or both of the documentation. Such

changes can make two documentations no longer consistent to each other. Hence, any

changes made in one form should also be considered for the other to avoid deviation.

Deviation can result into missing or outdated documentation or inconsistency between

artifacts [28]. If left unchecked, the deviation can cause confusion and lead to deficiencies

in the final product [42]. The below excerpt and Figure 1.1 are examples of informal and

1

1. Introduction

Figure 1.1.: Formal documentation of the case study TeaStore from the SWATTR project

[1]

formal documentation. They both describe the software architecture of an application

named TeaStore [31].

The Persistence service provides access to the data persisted in the relational

database back-end. It maps the relational entities to the JSON entity objects

passed between services using the EclipseLink JPA ORM mapper. It features

endpoints for general CRUD-Operations (Create, Read, Update, Delete) for the

persistent entities.

We take a modification in the informal documentation as an example. Assuming that

The Persistence service is to be deleted, not only its mentions in informal documentation

should be removed but also those in formal documentation. Therefore, it is helpful to keep

track which elements in which documentation are related. One way of doing that is by

creating a form of connection between the two forms of documentation. For example, we

can establish a link between a mention in informal documentation and another mention

in formal documentation. Thus, when we change a mention in any of the two forms, we

can see if it is linked to any other mention, and make appropriate adjustment provided

that mention exists.

Hence, TLR was proposed to tackle this problem. TLR is the task in which the dependen-

cies and relationships between software artifacts are identified [32]. Particularly, it creates

links between elements from different artifacts. The links are called tracelinks. In this

thesis, we will constrain the software artifacts in TLR to informal and formal documenta-

tion. In this regard, a tracelink is created when an element in formal documentation is

2

mentioned in informal documentation. For the previous example, we can create tracelinks

between each mention of Persistence service in the informal documentation to the model

element Persistence in the formal documentation. For direct mentions, we only need

to find an element in formal documentation with the same name and create a tracelink.

Nonetheless, we may want to focus more on indirect mentions, since their references are

obscure to us at first glance. This makes tracelinks between them and the model elements

even more interesting and important. Take the following example:

The RecipeManagement class is responsible for managing recipes. It has

methods for creating, reading, updating and deleting recipes.

It is obvious that the word RecipeManagement mentions an element named Recipe-

Management. Therefore, if there is a RecipeManagement model element in the formal

documentation, we should create a tracelink between it and the word RecipeManagement.
Besides, we should also create a tracelink between the word It in the second sentence and

the RecipeManagement model element because it refers indirectly to the RecipeManage-

ment model element. Because RecipeManagement and It are mentioning the same element,

we have a coreference. Due to the ambiguity caused by this coreference, or in other words

because TLR does not know which entity It refers to, the tracelink can not be created.

Thus, we have to resolve the coreference, i.e., find out which entity the mention refer to.

Coreference resolution is the task of gathering mentions into equivalence classes [16].

The mentions in a class all refer to the same entity. Furthermore, coreference resolution

is an important part of many higher level natural language processing (NLP) tasks that

demand NLP understanding such as document summarization, question answering, and

information extraction [2].

Without coreference resolution, TLR is almost certain to miss tracelinks between in-

direct mentions and the model elements, because it does not know which entities the

indirect mentions refer to. Missing these tracelinks can lead to indirect mentions not being

tracked. As a result, if models in formal documentation change, deviation can occur and

lead to inconsistent artifacts, although keeping artifacts consistent is one of many main

responsibilities of TLR. Thus, it is safe to say that coreference resolution is an important

part of TLR. Not only TLR, but also other activities that process software architecture

documentation can be affected by the ambiguities caused by coreferences.

Notwithstanding, coreference resolution for software architecture documentation has

not yet received full attention. Hence, this thesis focuses on tackling coreference resolu-

tion in software architecture documentation. For that, a number of approaches will be

proposed. It will be looked into how these approaches perform for coreference resolution

for software architecture documentation. Moreover, we will see how well the approaches

solve the problems that coreferences cause in TLR. To be more specific, we will see how

our approaches resolve coreferences resulted from mentions, that should be linked to the

model elements in formal documentation by TLR. Additionally, coreferences caused by

pronouns also pose as one of the biggest issues in TLR. Therefore, we will also look into

the performance of our approaches as pronoun resolution models.

First, Chapter 2 describes the terms and definitions that lay the foundation of this thesis.

After that, Chapter 3 covers the works that are related. These works can be used to compare

3

1. Introduction

against the work of this thesis. Subsequently, Chapter 4 explains the approaches to the

problem. Chapter 5 evaluates the results of the approaches. Last but not least, Chapter 6

concludes this thesis and presents potential future work.

4

2. Foundations

This chapter provides a general overview on terms and definitions that lay the foundations

of this thesis. First, Section 2.1 describes the two forms of documentation that represent

software architecture. Then, Section 2.2 explains the concept of traceability link recov-

ery. Next, Section 2.3, 2.4, 2.5 in turn clarify the terms coreference resolution, pronoun

resolution and string metric algorithms. These are important to the understanding and im-

plementation of this thesis. Last but not least, Section 2.6 introduces the natural language

processing frameworks that support the implementation of this thesis.

2.1. Software Architecture Documentation

There is no fixed definition of software architecture. However what most definitions have

in common is that software architecture describes the system under development as a set

of smaller components, that work together to fulfill the main functionalities of the system

[15]. The reason for this division is that it allows members of a team or teams to work

together regardless of temporal or geographical boundaries to develop the software system

[15]. Software architecture provides many benefits for development, e.g, understanding

of the software system, reusability, construction blueprints, communication, etc [23].

Moreover, numerous essential qualities of the software like performance, accuracy, and

security are enabled by software architecture [15]. Apart from development, software

architecture also provides necessary information for other activities like deployment and

maintenance [29]. With the said use and benefits of software architecture, it is without a

doubt important to document the software architecture to share it across team members

and better maintain it should the need arise [15].

Software architecture documentation can be categorized in two forms: informal docu-

mentation and formal documentation. Informal documentation can be written in natural

language for the sake of readability and ease of formulation. One clear example of informal

documentation is texts. The following illustrates one of such.

QuickMeal has the following classes: User, Recipe and Ingredient. User has an

id, user name, password, name, list of their own recipes and list of their favorite

recipes from other users. A recipe has an id, name, tag, list of ingredients, and

cooking time. An ingredient has an id and a name...

The other form of documentation is formal documentation. Different from informal

documentation, the formal documentation is written by modeling languages. One example

of a modeling language is UML, which is mainly used for visualization of design of system

[17]. Therefore, reading and composing this form require special knowledge of the software

5

2. Foundations

Figure 2.1.: An example of model elements

system and the modeling language itself. Some modeling languages like Palladio also

allow with the help of simulation to early predict the performance or reliability of a

software system [40]. Figure 2.1 illustrates an example of formal documentation. The

model elements in this example describe the software architecture more or less like the

one by the previous example of informal documentation.

As we can see from the two examples, informal and formal both describe the same

software system, just in different ways. Thus, it is important to keep the two forms

consistent, otherwise functionalities will be missed or wrongly implemented in the final

product [42]. Hence, the following Section 2.2 will present a solution to such problem.

This is also an example of an activity that processes software architecture documentation.

2.2. Traceability Link Recovery

Traceability link recovery (TLR) is a task in which links are established between elements

in different software artifacts [38]. The created links are called tracelinks. In the case of

software architecture, a tracelink is created when an element in the formal documentation

is mentioned in the informal documentation. This plays a decisive role in keeping the con-

sistency between the forms of documentation, because we can determine which elements

are not mentioned and as a result which information are outdated or contradicted [28].

Moreover, TLR can make improvements to the maintainability and reliability of software

[32]. With a large enough project, manually linking components can be very laborious

and error-prone. Thus, this furthers the need of automatic and accurate TLR.

Figure 2.2 illustrates the linking of components from a textual document to a class

diagram with TLR. The document in the left side mentions an element named user. On

the right side, the class diagram User also happens to exist. Therefore, we can create a

tracelink between them.

Now the clients demand that a user should no longer has a username. We can change

the informal documentation, and use the created tracelink to find the corresponding model

element. Then we adjust the model element so that the two artifacts stay consistent to

each other. We can also make changes in the model elements and use the tracelinks to

6

2.3. Coreference Resolution

Figure 2.2.: An example of TLR linking components from a textual document and a class

diagram

find where the model elements are mentioned in the informal documentation and make

appropriate adjustment.

2.3. Coreference Resolution

Coreference resolution is one of the important topics in the computational linguistics. It is

the task of determining which mentions in a document are jointly making reference to the

same entities. The following example illustrates an example of coreference resolution.

John said: "Today, I went to a super market and bought a watermelon. It was

delicious"

In this small text, John and i are both referring to the same identity, which is a person

named John. On the other hand, a watermelon and it are referring to the delicious water-

melon that John bought from the supermarket. It might seem easy, but there are many

other grammatical rules that make implementing an algorithm for coreference resolution

even more difficult. An example of such rule is gender nouns. The word "she" might refer

to a woman or other feminine nouns like mother, actress, or ship while the word "he"

is more likely connected with masculine nouns like father, husband, and rooster. This

requires the algorithm to be able to distinguish such cases. Moreover, there are instances

in which coreference resolution must depend on the context underlying the text under

examination as shown in the following example.

The parents let their children go to the party because they did well on the

exams.

The parents let their children go to the party because they wanted time for

themselves.

In the first sentence, their children and they are more likely to refer the children of the

mentioned parents. That is because of the context they did well on the exams. Now that

the context has changed to they want time for themselves in the second sentence. The

likelihood that this action belongs to the parents is higher. Thus, The parents and they
may corefer.

In the previous examples so far, we see that one of two coreferencing mentions is a

pronoun. In such cases, the problem of coreference resolution can be characterized as

7

2. Foundations

pronoun resolution. Pronoun resolution will be discussed in the next section. However, it

is not always the case.

In the text below, Microsoft Word and the software corefer to each other. Such problem

requires resolution for non-pronouns. One way to tackle this problem is depicted in

Section 2.5.

Microsoft Word is a word processing software developed by Microsoft. It was

first released on October 25, 1983. The software is written for many platforms

like Microsoft Windows, macOS, and Unix etc.

Because coreference resolution plays an important role in many high level natural

language processing tasks [2], many approaches to the problem have been made. These

approaches can generally be categorized into deterministic, mention-pair, mention-ranking

or entity-based algorithms. Each of these categories has its advantages and disadvantages.

For example, deterministic approach has the lowest F1-score but it does not require data

sets to train the models like those of mention-ranking approach. The concrete models will

be described in Chapter 3.

2.4. Pronoun Resolution

Pronoun resolution can be considered as a part of coreference resolution. Therefore,

coreference resolution models should theoretically be able to resolve pronouns. Besides,

there are algorithms that resolve pronouns exclusively. One prominent example is Hobbs’

algorithm.

Hobbs’ algorithm is an algorithm for pronoun resolution. Like coreference resolu-

tion, pronoun resolution finds out which two mentions are coreferencing to each other.

Nonetheless, one of the two mentions must be a pronoun. Hobbs’ algorithm is built on

a simple tree search procedure defined by terms of depth of embedding and left-right

order [33]. In a nut shell, it traverses the constituent tree upward and leftward from the

pronoun. Along the way, it will propose noun phrases. These noun phrases are potential

coreferencing candidates for the pronoun. The detailed steps of Hobbs’ algorithm can be

found in [26].

2.5. String Metric Algorithms

When we resolve two non-pronoun mentions, there are two ways. The first way is taking

into consideration the context behind them. The second way is resolving them based

on their similarity. We will focus more on the second rather than the first way, because

enabling a computer program to analyze contexts is no easy task. Therefore, this section

will focus on the string metric algorithms. These algorithms measure the distance or

inverse similarity between strings.

Levenshtein distance is a string metric algorithm to measure the difference between

two sequences. It calculates the smallest number of single-character edits that are required

8

2.6. Natural Language Processing Frameworks

ROOT

S

NP

NNP

John

VP

VBD

bought

NP

DT

a

NN

watermelon

PP

IN

at

NP

DT

a

NN

supermarket

.

.

Figure 2.3.: A constituent tree generated from a sentence by Stanford CoreNLP

to change one word into the other. The strings do not have to be the same length. For

example, the levenshtein distance between the word books and back is three.

Hamming distance also calculates the minimum characters between two strings that

are required to transform one word to another. Unlike Levenshtein, the two words must

have equal lengths. For instance, the hamming distance between the word book and back
is two.

2.6. Natural Language Processing Frameworks

Coreference resolution is a well-known natural language processing (NLP) task. Therefore,

many NLP frameworks provide it. Moreover, if we want to develop our own coreference

resolution models, we may have to rely on other NLP tasks, such as tokenization, lemma-

tization, sentence splitting, etc. Thus, we can use available NLP frameworks to support

us. Not only they may provide us with their own coreference resolution models, but they

also support necessary NLP tasks for coreference resolution. This allows us to speed up

the development by focusing more on the main logic of coreference resolution. There are

already many NLP frameworks available like openNLP [3], LingPipe [4], etc. However, we

only concentrate on the frameworks that the implementation of this thesis uses.

The first framework is Stanford CoreNLP [5]. The most work of this thesis is supported

by Stanford CoreNLP. It supports various NLP tasks, e.g., tokenization, constituency pars-

ing, parts of speech etc. Most notable among them is coreference resolution. Stanford

CoreNLP provides three different modes of coreference resolution, namely neural, statisti-

cal, and deterministic. We will discuss more about them in Section 3.1. Each of the NLP

tasks requires a certain set of annotators. These annotators are required to set up a pipeline.

The NLP tasks are then performed on an input document by having the pipeline process

the document. Stanford CoreNLP supports a variety of programming languages, but most

supported is Java. Figure 2.3 illustrates Stanford CoreNLP performing constituency parsing

on a sentence. The result is a constituent tree, which can be used by Hobbs’ algorithm to

resolve pronouns.

9

2. Foundations

The second framework is spaCy [6]. This framework is developed for Python. Neu-

ralCoref 4.0 is an extension of spaCy and it comes with coreference resolution [7]. The

details of NeuralCoref 4.0 will be explained in Section 3.1. With all the important terms

and definitions explained, we can move on to work, that are related to this thesis.

10

3. Related Work

This chapter describes works that are related to this thesis. First, Section 3.1 lists the

coreference resolution models in the natural language processing community. Next,

Section 3.2 explains a number of work that use coreference resolution in traceability link

recovery. Last but not least, Section 3.3 details activities that process software architecture

documentation.

3.1. Coreference Resolution Models

In this section, we will discuss a number of coreference resolution models. Some of them

are used in the implementation of this thesis. Commonly, the average F1-score metric

based on three evaluation models is used to indicate the performance of a coreference

models. The evaluation models are MUC, BCUBED and 𝐶𝐸𝐴𝐹𝜙4. MUC and BCUBED will

be described in Chapter 5.

NeuralCoref 4.0 is a pipeline extension for spaCy. It is composed of two sub-modules.

The first one is a rule-based mentions-detection module. The module adopts SpaCy’s

tagger, parser and NER annotations for the identification of a set of likely coreferencing

mentions. The second one is a feed-forward neural-network computing a coreference

score for each pair of possible mentions [7]. Figure 3.1 shows a result of NeuralCoref 4.0

resolving coreferences. We can see that it gives a score of 2.74 for the pair of mentions a
watermelon and it.
We have stated in Section 2.6 that Stanford CoreNLP provides three different modes

of coreference resolution. There are deterministic, statistical and neural systems. Deter-

ministic system is a multi-pass sieve rule-based coreference system based on the work

described in Lee et al. [34] and Raghunathan et al. [39]. It has the lowest F1 score (49.5 and

Figure 3.1.: An example of NeuralCoref 4.0 resolving coreference

11

3. Related Work

Figure 3.2.: An example of Stanford CoreNLP resolving coreference

based on the CoNLL 2012 evaluation data) among the three modes. Statistical system is a

mention-ranking model. It uses a large set of features and iterates through each mention

in the document and may create a coreference link between the current one and a previous

mention in each iteration. It has a F1-score of 56.2 and the fastest resolution time. Different

from the previous two systems, neural system is a neural-network-based mention-ranking

model. It has the highest F1-score (60) but the slowest resolution time out of the three [5].

Also for this model and all the models below, the metrics are evaluated on the data of the

CoNLL-2012 shared task [27]. Figure 3.2 shows a result of Stanford CoreNLP resolving

coreferences.

Kantor and Globerson (2019) is a coreference resolution model that is based on entity

equaliziation [27]. According to Kantor and Globerson, it is important to capture properties

of entity clusters to resolve coreferences. Hence, to achieve this, they approach the problem

with an entity equalization mechanism. Equalization in this context means to represent

each mention in a cluster by approximating the sum of all mentions in the cluster. The

model has the average F1-score of 76.6.

Joshi et al. (2019a) present a coreference resolution model that uses BERT [24]. The

abbreviation stands for Bidirectional Encoder Representations from Transformers. It was

designed by Devlin et al. to "pretrain deep bidirectional representations from unlabeled

text by jointly conditioning on both left and right context in all layers"[21]. The F1-score

of this coreference resolution model is higher compared to the model from Kantor and

Globerson based on the OntoNotes (+3.9) and GAP (+11.5) benchmarks. On average, the

model has the F1-score of 76.9.

Joshi et al. (2019b) is different from the previous version. It uses SpanBERT instead of

BERT [25]. SpanBERT is a pre-training method designed and improved in representing

and predicting spans of text. It is an extension of BERT in a sense that it masks contiguous

random spans instead of random tokens. Then, it trains the span boundary representations

in order to predict the entire content of the masked span. Therefore, the need to rely on

the individual token representations within the masked span is removed. Compared to its

predecessor, the model has a higher average F1-score (79.6).

Xu et al. (2020) is a coreference resolution model that is supported with higher-order

inference (HOI) [46]. Moreover, they propose an end-to-end coreference system as well

as four different HOI approaches. These approaches have been adapted by many recent

coreference resolution models. They are attended antecedent, entity equalization, span

clustering, and cluster merging. This model has the average F1-score of 80.2.

s2e+Longformer-Large is a model proposed by Kirstain et al [30]. It does not depend

on span representations, handcrafted features, and heuristics. Therefore, it has a smaller

memory footprint. Furthermore, the coreference resolution model competes on par with

12

3.2. Traceability Link Recovery

the then standard model and also is simpler. s2e+Longformer-Large has a slightly higher

F1-score than that of Xu et al. (80.3).

Currently, the most recent coreference resolution model is wl-coref + RoBERTa [22].

Previous models greatly depend on span representations in order to create coreference

links between word spans. The number of word spans is𝑂 (𝑛2) and the number of potential

links is thus𝑂 (𝑛4) with n being the length of input text. This requires a variety of pruning

techniques to make computation of these models feasible. However, wl-coref + RoBERTa

considers coreference links between individual words instead of word spans. Hence, the

complexity is reduced to 𝑂 (𝑛2) and the pruning of mentions is no longer necessary. Later,

the word spans can be reconstructed by the model. This model has the highest average

F1-score (81.0).

3.2. Traceability Link Recovery

Coreference resolution plays an important role in traceability link recovery (TLR). There-

fore, many approaches put great stress on the performance of coreference resolution.

Because this thesis not only focuses on coreference resolution for software architecture

documentation but also for TLR, a relation to the following works can be made.

Keim et al. discuss the topic of trace link recovery for software architecture documenta-

tion [29]. They propose the framework SoftWare Architecture Text Trace link Recovery

(SWATTR) for tracelink recovery. A tracelink is created between a sentence and a model

element if the element was referred in the sentence. This does not exclude coreferences

like It. Currently, the function of coreference resolution is disabled due to low accuracy.

Schlutter and Vogelsang describe how to improve trace link recovery using semantic

relation graphs and spreading activation [41]. In their work, they reuse their natural

language processing (NLP) pipeline with many techniques such as part-of-speech tagging,

lemmatizing (morphological analysis), dependency parser (grammatical structure), SRL

and coreference resolution. Coreference resolution is applied to the semantic relation

graphs. For example, if a phrase is a pronoun, the vertex of the representative is added

instead of the vertex of the phrase.

Zhang et al. introduce an ontological approach for the semantic recovery of traceability

links between software artifacts [48]. In their work, coreference resolution is used to find

references, each of which involves a single entity being referred to with different textual

descriptors, along with pronominal references.

Arunthavanathan et al. focus on adding an NLP support to extend their tool SAT-

Analyzer [14]. SAT-Analyzer stands for Software Artefacts Traceability Analyzer. The tool

uses Standford CoreNLP to resolve coreferences in order to extract the artifact elements

from the requirement document. Stanford CoreNLP was described in previous Section 2.6

and its coreference resolution in Section 3.1.

13

3. Related Work

3.3. Software Architecture Documentation Processing
Activities

Beside traceability link recovery, there are many other activities that also process software

architecture documentation. Coreferences in the documentation may affect the perfor-

mance of those activities. Therefore, the usage of coreference resolution for those activities

can be considered.

Shumaiev and Bhat propose the use of natural language processing techniques for

the detection of uncertainty cues in software architecture documentation [43]. They

analyzed three documentations and retrieved a variety of uncertainty cues. Based on

them, they hypothesized how the communication about the software architecture with

the stakeholders can be improved with on-time uncertainty detection.

According to Su, a software architecture documentation contains architectural informa-

tion, that needs to be structured as chunks in order to improve the use of the documentation

[44]. A chunk is a group of related information. The work aims to identify and create

useful chunks of architectural information in software architecture documentation. More-

over, the development of a tool to create and use this knowledge is also focused on. The

approach is to capture and save the exploration paths of users’ documentation and the

related meta data. The paths are then analyzed to look for common patterns that can be

grouped into chunks.

Architecture recovery focuses on providing a high level abstraction of a system that uses

the architectural elements to represent how it functions and interacts. This abstraction,

or architecture, makes it easier to understand the program and supports all the phases of

software life cycle. Chardigny and Seriai propose the use of the intentional architecture of

a system in order to boost "the adequation between the resulting software architecture and

the architect’s expectations without requiring more human expertise" [19]. The intentional

architecture represent the system as how its designers imagined. The authors present in

their paper a semi-automatic process for intentional architecture recovery from what the

expert recommend and the available documentation.

14

4. Approach

The goal of this thesis is to resolve coreferences in software architecture documentation.

Therefore, we create a number of Java libraries to do that. In this chapter, we will look

into the approaches that will be taken to create these libraries. First, Section 4.1 describes

the general idea to tackle the problem. Then, Section 4.2 presents the architecture of the

Java project to implement the libraries. Next, Section 4.3 explains the terms that are most

important to the domain of the implementation. Last but not least, Section 4.4 explains

details that are important to the implementation of the libraries.

4.1. Overview

One viable way of resolving coreferences is using already existing models implemented

for coreference resolution. These models are for example Stanford CoreNLP, NeuralCoref

4.0, etc. To a certain extent, we can use these models to resolve coreferences. However, if

we break down coreference resolution, we will find that it consists of many more specific

forms of resolution. For instance, coreferences can come from pronouns, two identical

mentions, two nonidentical but coreferent mentions, or abbreviations (KIT and Karlsruher

Institut für Technologie). Instead of using a coreference resolution model to resolve all

types of mentions, we can combine many models and algorithms, and use specific ones

to resolve specific types of mentions. Not only does this improve the performance of

coreference resolution, but also the level of customization of the libraries. For example,

if model A resolves pronouns better than B and B resolves abbreviations better than A,

we can delegate pronoun and abbreviation resolution accordingly. Furthermore, if our

documentation has no pronouns, we can use a trivial pronoun resolution. It will simply

skip the resolution and save the calculation time. Resorting to multiple resolutions also

boosts the extendibility of our Java libraries. In the future, if there is a better resolution

model for some specific types of mentions, we can swap this model in and leave other

models intact. With that said, the calculation time can significantly rise, because some or

all of the models may have to run through the documentation at least once.

To summarize the idea, there are three main objectives to fulfill. First, we have to

integrate the already existing coreference resolution models through adapters. We also

need to create an interface, that these adapters have to implement. This will allow third

party users to use the adapters without having to know about their implementation

details. Second, we have to break down coreference resolution into more specific forms

of resolution. In this thesis, coreference resolution is broken down to pronoun and non-

pronoun resolution. Of course, the non-pronoun resolution can be further broken down

into many other sub-categories like personal names, abbreviations, etc. Nonetheless, we

may want to keep it as general as possible so that our approach can theoretically cover all

15

4. Approach

cases of coreferences. For each of the two specific resolutions, we will have a corresponding

interface to expose its functionalities. The coreference resolution adapters obviously have

to implement both interfaces, because coreference resolution is supposed to resolve any

types of mentions. Lastly, we need to combine the two resolutions to resolve coreferences.

Thus, we have to create another interface to use the pronoun and non-pronoun interfaces.

This interface in turn extends the coreference resolution interface to provide necessary

functionalities. Then, we can choose a pair of adapters from pronoun and non-pronoun

resolution to form a new library.

Our goal after all is to create Java libraries for coreference resolution. With the general

idea already identified, we can move on to specifying the architecture of our Java project.

The next section will go into more details about the architecture and the components

inside it.

4.2. Architecture

Figure 4.1 illustrates the architecture of our Java project. The concrete coreference resolu-

tion Java libraries are created by either extending the abstract class CoreferenceResolver
directly (with the exception of CombinableCoreferenceResolver) or indirectly through the

abstract class CombinableCoreferenceResolver. CoreferenceResolver makes sure that all

concrete classes can provide the third party user with methods and properties necessary

for coreference resolution and retrieving the results. For example, users can initialize

an instance of CoreferenceResolver with an input text, call method resolveCoreferences
to resolve coreferences, and use getter methods for properties mentions, links, chains to
access the results. StanfordCoreNLPCoreferenceResolver and NeuralCoref are the directly

extending classes of CoreferenceResolver, and will be more thoroughly discussed in Section

4.4. CombinableCoreferenceResolver implements the method resolveCoreference of Coref-
erenceResolver. First, it populates the resolvers with results of resolution by calling their

methods resolve<type of mention>s, e.g., resolvePronouns. Then it delegates the resolution

of each mentions by calling the method resolve<type of mention>, e.g., resolveNonPronoun,
of the resolver responsible for these mentions. In the current architecture, we have two

interfaces for specific resolvers, namely PronounResolver and NonPronounResolver. The
pronouns will be resolved by PronounResolver and non-pronouns by NonPronounResolver.
The implementing class of PronounResolver is Hobbs and of NonPronounResolver are Naive
and Levenshtein. They will be explained in more details in Section 4.4. Beside the input text,

the concrete classes of CombinableCoreferenceResolver will be initialized with implement-

ing classes of PronounResolver and NonPronounResolver. For instance, HobbsAndNaive is
initialized with an input text, an instance of Hobbs and an instance of Naive. It will resolve
pronouns with Hobbs’ algorithm and resolve non-pronouns with the naive non-pronoun

resolution. Directly extending classes of CoreferenceResolver also implement PronounRe-
solver and NonPronounResolver and therefore are eligible for combination. Thus we can

have libraries such as HobbsAndStanford and HobbsAndNeuralCoref. Theoretically, the con-
crete classes of CombinableCoreferenceResolver, e.g., HobbsAndStanford, can be combined

as well. However, that is unnecessary, since their abilities to resolve specific mentions

16

4.3. Data Definition

Figure 4.1.: Architecture of the Java project

are already provided by specific resolvers implementing interfaces PronounResolver and
NonPronounResolver.
We have mentioned but not yet explained properties mentions, links, and chains. They

are of classes Mention, Link, and Chain to model the respective terms. Hence, Section 4.3

will provide definition for important terms of the domain.

4.3. Data Definition

The domain of our Java project contains some terms that are important to the understanding

and implementation of the project. In this section, the most important terms will be

explained in detail.

Because coreference resolution is the task of finding mentions that corefer to other

mentions, we therefore need to be able to model mentions. Before we can model a mention,

we have to be able to model smaller units. These units are single words or punctuation

marks in a text. In order to do model them, we can tokenize the text. Tokenization is a

natural language processing (NLP) task supported by many NLP frameworks. The results

are in-memory data models providing different properties of the units such as starting

position, ending position, original text, etc. Our interest however is the IDs of the tokens.

They are the indexes of appearance in the tokenized text. Below is a text, in which each

token is assigned with its ID directly below.

17

4. Approach

One o f the main components o f Media S t o r e i s a s e rv e r − s i d e

0 1 2 3 4 5 6 7 8 9 10

web f r o n t end , namely the Facade component , which

11 12 13 14 15 16 17 18 19 20

d e l i v e r s web s i t e s to the u s e r s and p r ov i d e s s e s s i o n

21 22 23 24 25 26 27 28

management . To meet the u se r a u t h e n t i c a t i o n requ i r emen t ,

29 30 31 32 33 34 35 36 37

r e g i s t r a t i o n and log − in have to be o f f e r e d . To t h i s end ,

38 39 40 41 42 43 44 45 46 47 48 49

the Facade component d e l i v e r s the co r r e spond ing r e g i s t r a t i o n

50 51 52 53 54 55 56

and log − in pages to u s e r s .

57 58 59 60 61 62

A mention is a noun phrase that refers to an entity in a text. Entities can be identical,

so some mentions can have identical string representation. Therefore, we need to find a

way to model each of the mentions uniquely. One possible way is using the IDs of the first

and the last tokens. For example, the mention One of the main components can be modeled

with indexes 0 and 4. If a mention is a single word, the first and the last token are identical.

For instance, the mention websites can be modeled with index 22.

Links are the results of coreference resolution. When two mentions are found to corefer

to each other, we can create a link between them. That link connects from the mention

that appears earlier to the mention that appears later in the text. To model a link, we can

use the two mentions that the link is made of. An example of a link is the link between

mention the Facade component (16 to 18) and the Facade component (50 to 52).

Another result of coreference resolution is clusters. Each mention relates to a cluster.

Cluster is a set of mentions that the relating mention corefers with, including itself. For

example, mention the Facade component (16 to 18) relates to the cluster containing itself

and mention the Facade component (50 to 52).

Links and clusters are two different results of coreference resolution. The former

emphasizes strict order of mentions while the latter does not. We need both of them

for the evaluation later. Nonetheless, we do not have to return both of them to users as

coreference resolution results. We can resort to another form of data called chains. Chains

are sets of coreferent mentions like clusters. However, the mentions in a chain are sorted

by the order of their appearance. That way chains can still model clusters and a link can

be implicitly modeled by two consecutive mentions in the containing chain. As a result,

we can return our results in a more memory-saving manner. Although our main result of

coreference resolution is chains, links and clusters are still provided for the convenience

of evaluation in Chapter 5. Figure 4.2 illustrates links, clusters and chains and how they

are constructed from mentions. The chain combines the links and the cluster as one form

of data.

Our main focus is still the coreference resolution Java libraries. In the next Section 4.4,

we will look into the important details regarding the implementation of the libraries.

18

4.3. Data Definition

Figure 4.2.: Links, clusters, and chains as coreference resolution results

19

4. Approach

4.4. Implementation Details

In this section, we will take a look at details that are important to the implementation

of the coreference resolution Java libraries. In our implementation, there are two types

of libraries. They both will resolve coreferences by finding the coreferent mentions for

each mention in the text. They will return the results as links, clusters and chains. Their

differences are the fundamental way they are structured to resolve coreferences. The first

type of libraries are those that directly extend the abstract class CoreferenceResolver to
integrate coreference resolution models. They resolve coreferences with the help of the

underlying coreference resolution models.

There are two concrete classes of the first type, StanfordCoreNLPCoreferenceResolver and
NeuralCoref. These classes derive from the already existing coreference resolution models,

StanfordCoreNLP and NeuralCoref 4.0. StanfordCoreNLP is a well-known natural language

processing (NLP) framework [5]. It supports a lot of NLP tasks such as tokenization,

sentence splitting, lemmatization, etc. Among those tasks is coreference resolution, hence

the reason why we choose this framework. The way it works is that we have to specify

a number of annotators to configure a pipeline. These annotators are required for the

pipeline to perform specific NLP tasks. The pipeline then performs those NLP tasks

on input documents. For coreference resolution, there are certain annotators that are

required. Moreover, StanfordCoreNLP provides three different modes of coreference

resolution, namely neural, statistical, and deterministic. Each of themmay require different

or additional annotators and options to configure the pipeline. The core idea behind

the implementation of StanfordCoreNLPCoreferenceResolver is to set up the pipeline for

coreference resolution, run the input text through the pipeline, retrieve and convert the

results into our desired format, chains.

NeuralCoref 4.0 is an extension of spaCy, which is in turn aNLP framework. Furthermore,

spaCy is developed for Python instead of Java like StanfordCoreNLP. This makes it difficult

to directly integrate Neural Coref 4.0 to our Java project and use it. To use NeuralCoref 4.0

to resolve coreferences, we can start a remote server. This server will set up the pipeline

for coreference resolution. The Java library NeuralCoref then makes a HTTP POST request

containing the input text. The server upon receiving the request runs the attached input

text through the pipeline and sends the results back as JSON data format. The Java library

NeuralCoref then parses the JSON to reconstruct the chains.

The second type are those that indirectly extend CoreferenceResolver through Combin-
ableCoreferenceResolver. They employ multiple specific resolvers to resolve coreferences.

CombinableCoreferenceResolver delegates the resolution of specific types of mentions to spe-

cific resolvers. In our implementation, we have resolvers for pronouns and non-pronouns.

For pronoun resolution, we use the Hobbs’ algorithm. The approach for the libraries using

Hobbs is first constituency-parsing all the sentences in the input text. Figure 4.3 illustrates

an example of constituent tree created from a sentence. Each yellow tag represents a token

and each green tag represents the grammatical role of one or a group of tokens.

Then, for each sentence we apply Hobbs on every pronoun contained in that sentence.

The Hobbs’ algorithm consists of nine steps which basically starts from the pronoun,

traverses the constituent-tree derived from the sentence containing the pronoun, and

proposes noun phrases (mentions) along the way. However, Hobbs’ algorithm did not

20

4.4. Implementation Details

ROOT

S

SBAR

WHADVP

WRB

When

S

NP

DT

a

NN

user

VP

VBZ

uploads

NP

DT

an

JJ

audio

NN

file

,

,

NP

DT

the

NNP

MediaAccess

NN

component

VP

MD

will

VP

VB

store

NP

PRP

it

PP

IN

at

NP

DT

the

JJ

predefined

NN

location

.

.

Figure 4.3.: Constituent tree from a sentence

mention which noun phrase to choose out of the proposed noun phrases. In the previous

example 4.3, noun phrases a user, an audio file, and the MediaAccess component will be
proposed by Hobbs’ algorithm.

Hence, we can use a ranking system to score the proposed nodes and choose the nodes

with the highest score. One of such ranking system is proposed by Lappin and Leass [33].

In this paper, salience factors are introduced to score the proposed nodes. For example,

noun phrases that are head nouns will be given 80 points. Those that are not will be

given 0. An example of head nouns is a bag of candies in I have a bag of candies. . A
counterexample would be candies because it is contained in a bag of candies. Nonetheless,
those factors are not enough to differentiate between plural or single nouns or nouns with

different genders. Thus, we can extend that ranking system. We can do that by looking

whether the pronoun and the proposed noun phrase have the same state of plurality or

the same gender. For plurality checking, we can see the tags that Stanford CoreNLP gives

the nouns after constituency-parsing. The tags will be NNS for plural nouns or NN for

single nouns. For gender nouns, Stanford CoreNLP also provides gender identification.

If the pronoun and the proposed noun phrase do not share the same state of plurality or

gender, the noun phrase will be excluded from scoring and therefore from choosing.

For non-pronoun resolvers, we have two libraries, Naive and Levenshtein. Naive is
implemented as a naive non-pronoun resolver. It checks for equality and links them if

identical. However, there are also mentions that are not identical but still coreferent to each

other. For this, Levenshtein uses Levenshtein distance to calculate the degree of similarities

between two mentions. The calculated degree is called distance. If the distance is smaller

than a predefined threshold, then we link the two mentions. We want to define our

threshold in a way that it is not too strict to miss partly identical coreferent mentions and

not too lenient to let partly identical but uncoreferent mentions through. In spite of that,

there are mentions that bear little resemblance yet still corefer to each other. For example,

Teastore, the name of an application, corefers to the application. Another example is KIT
and Karlsruher Institut für Technologie. For such mentions, it would be more preferable

to use resolvers that take the context of the input text into consideration or resolve the

abbreviation. To that end, we can break down the coreference resolution into more than

21

4. Approach

two specific resolution. We do that by creating more interfaces that CoreferenceResolver
have to implement. The CombinableCoreferenceResolver is then responsible to delegate the

resolution of mentions to the correct resolvers.

When the concrete pronoun and non-pronoun resolvers are at our disposal, we can create

new coreference resolution libraries out of them. Classes extending CombinableCorefer-
enceResolver have to specify a concrete class that implements PronounResolver and another
that implements NonPronounResolver. Concrete classes that directly extend CoreferenceRe-
solver, e.g., NeuralCoref, can serve both as pronoun resolvers and non-pronoun resolvers.

Therefore, they can also be used for combination. With one pronoun resolver, two non-

pronoun resolvers, two coreference resolvers (Stanford CoreNLP has also 3 different modes)

in our implementation, we can create multiple combination.

22

5. Evaluation

The goal of this thesis is to resolve coreferences in software architecture documentation.

To achieve this goal, a number of approaches from Chapter 4 has been proposed. For the

evaluation of the work of this thesis, we have to look to how the approaches perform based

on three different sets of coreferences. The first set is all coreferences in the documentation.

This will show us how the approaches perform for coreference resolution for software

architecture documentation. Then, to see the influence of coreference resolution for

specific activities that process the documentation, we use traceability link recovery (TLR)

as an example. The second set is the coreferences, that must be resolved so that TLR can

create tracelinks between related mentions and model elements in formal documentation.

We can call these coreferences relevant coreferences. The last set is the coreferences

resulted from pronouns. One of such examples is the first example in Section 2.3. These

pronoun coreferences is one of the biggest factors that contribute to missing tracelinks.

To summarize we have to answer the following three questions for coreference resolution

for software architecture documentation:

1. How do the approaches perform for all coreferences ?

2. How do the approaches perform for relevant coreferences ?

3. How do the approaches perform for pronoun coreferences ?

First, Section 5.1 describes the process of creating gold standards. These gold standards

are created from case studies and contain resources necessary for the evaluation. Next,

Section 5.2 describes the metrics used to evaluate the results. These metrics help answering

the above-mentioned questions in a measurable way. Then, Section 5.3 presents the

evaluation results based on the gold standards and metrics that we have created and

defined in two previous sections. The results will show how the approaches perform in

regard to the questions. Last but not least, Section 5.4 lists the threats to the validity of the

work of this thesis.

5.1. Creation Of Gold Standards

Gold standards are created from a number of case studies. These case studies areMediastore

[8], TEAMMATES [9], Teastore [10], BigBlueButton [11], CoronaWarnApp [12] and Docker

[13]. The first three case studies are from the SoftWare Architecture Text Tracelink

Recovery project [1]. The case studies are chosen because they are informal software

architecture documentation of software projects. For example, case study Docker is an

informal documentation describing the software Docker. It is mainly used to containerize

23

5. Evaluation

software in packages. To create a gold standard, we begin with creating a key for each

case study. A key is a set of all coreferences that we manually resolve. On the contrary, a

response is a set of all coreferences that an approach resolved. Responses and keys can be

used together with the metrics in Section 5.2 to calculate the evaluation results.

The coreference resolution results from the responses are in the forms of chains. Each

chain in turn represent a cluster and related links. Mentions, links, clusters and chains

are described in more details in Section 4.3. Links and clusters are the central figures

in the evaluation models. These models will be explained in Section 5.2. Therefore, we

should represent each key as a set of chains. To do this, we can form each key as JSON

data format. A key will be an array of chains, a chain will be an array of mentions and a

mention will be an array of exact two integers. The following is an example of a key.

[

. . .

[[6 , 7] , [2 1 5 , 2 16]] ,

[[9 , 1 3] , [1 6 , 1 8] , [5 0 , 5 2] , [1 1 3 , 1 15]] ,

. . .

]

Regarding the manual coreference resolution, the above key may be suitable for the

evaluation Java library, but not for humans. It is difficult to know which noun phrase

mention [215, 215] represents without having to look to the tokenized case study. If we

intend to continuously work on the keys, it is best to have another version of the keys, that

are more understandable to us. An automatic process can create a simplified version of a

key by providing for each mention its noun phrase, and the sentence to which it belongs.

It is worth noting, that this simplified key is for continuously improving the result of

manual coreference resolution only. To serve as input for the evaluation, the key in JSON

is more preferable. Below is an excerpt of a simplified key.

[

Media S to re , 1 , [6 , 7]

Media S to re , 1 3 , [2 1 5 , 2 16]

−−−−

a s e rve r − s i d e web f r o n t end , 1 , [9 , 1 3]

the Facade component , 1 , [1 6 , 18]

the Facade component , 3 , [5 0 , 52]

the Facade component , 6 , [1 1 3 , 1 15]

]

We also have to create relevant keys and pronoun keys. The chains in relevant keys are

the chains in original keys. Nonetheless, those chains must represent mentions that TLR

should link to the model elements in formal documentation. In other words, the chains

of a relevant key are a subset of the chains of the original key. For the pronoun keys we

must make some adjustments. Each mention will have another integer element in its JSON

form to indicate whether it is a pronoun or not. If it is a pronoun, the integer will be 1,

otherwise -1. Below is an example of a pronoun key.

24

5.2. Metrics

Case Studies Words

Links Clusters

All Relevant Pronoun All Relevant

Mediastore 572 70 33 19 22 10

TEAMMATES 2513 315 70 56 113 12

Teastore 661 65 31 32 19 7

BigBlueButton 1190 136 62 24 41 17
CoronaWarnApp 1309 126 27 16 34 5

Docker 915 99 45 30 26 7

Table 5.1.: Case studies and the numbers of links and clusters in them

[

. . .

[[1 7 , 1 7 , −1] , [1 3 7 , 1 37 , 1] , [1 5 6 , 1 56 , −1]] ,

[[1 9 , 2 0 , −1] , [1 4 3 , 1 43 , 1] , [1 8 8 , 1 90 , −1]] ,

. . .

]

Table 5.1 shows the case studies used in the evaluation. The smallest is Mediastore with

572 words and the biggest is TEAMMATES with 2513 words. Moreover, the numbers of

different types of links and clusters are also presented. For the all, relevant and pronoun

links, TEAMMATES has the most. It also has the most all clusters. However, BigBlueButton

has the most relevant clusters. The numbers of pronoun clusters are not shown because

they are not used for the evaluation. The reason for this will be explained after the

evaluation models have been introduced.

5.2. Metrics

The work of this thesis are evaluated by recall, precision and F1-score. This section will

describe these metrics and how we can calculate them based on a key and a response.

Moreover, the metrics depend on specific evaluation models, e.g., MUC and BCUBED. This

section will also describe those evaluation models and explain why we need them.

The idea behind recall, precision and F1-score is based on the relevance of the elements

that are retrieved and of those that are not retrieved. Table 5.2 assigns trueness and

positivity to elements based on their relevance and whether they are retrieved or not . The

elements in this thesis depend on which evaluation models we use. At the moment, we

deem them as abstract. On one hand, retrieved elements are elements in the response. On

the other hand, relevant elements are elements in the key. Correct elements are elements

from both response and key. Therefore, we have recall and precision as follows.

Recall is a metric that describes the ratio between the number of correct elements and

the number of all relevant elements. Its value is between 0 and 1.

Recall =
number of correct elements

number of relevant elements
=

true positives

true positives + false negatives

25

5. Evaluation

Element Retrieved Unretrieved
Relevant true positive false negative

Irrelevant false positive true negative

Table 5.2.: Trueness and positivity of elements based on their relevance and whether they

are retrieved or not

Precision is a metric that describes the ratio between the number of correct elements

and the number of all retrieved elements. Its value is between 0 and 1.

Precision =
number of correct elements

number of retrieved elements
=

true positives

true positives + false positives

To combine recall and precision, we use the harmonic mean of both of them. This metric

is called F1-score.

F1-score = 2
recall . precision

recall + precision

There are many existing models to evaluate coreference resolution, but the most used are

MUC and BCUBED [37]. Therefore, we evaluate the results of the approaches with MUC

and BCUBED. Each of them has its advantages and disadvantages and will be described as

follows.

MUC stands for Message Understanding Conference [45]. It considers links as elements

in the evaluation of coreference resolution. Links are provided by keys and responses.

Retrieved links are links in the response and relevant links are links in the key. A correct

link is both in a key and a response. Therefore, recall and precision can be calculated like

the above-mentioned formulas.

This metric is simple to calculate, but unsuitable for singleton mentions. Singleton

mentions are mentions that are mentioned only once [18]. MUC cannot evaluate the result

of an input that has only singleton mentions, since there are no links created [35]. Another

problem of MUC is that it considers every error to be the same [47]. That means every

missing link affects recall in the same way. The same thing goes for every wrong link to

precision. A link can wrongly connect two large chains and still affect precision exactly

like a link wrongly connecting two small chains. The following example illustrates the

mentioned shortcomings of MUC.

Figure 5.1 illustrates a correct answer of coreference resolution. We have chains that

represent entities. Note that entities are different from mentions. A mention refers to one

entity. One entity can be referred by many mentions. Mentions are denoted with 1 to 6, x

to z, and A to F to refer to three different entities. In this answer we have 12 links.

Figure 5.2 illustrates a possible response of coreference resolution. We have 13 links, 12

links correct and 1 link wrong. First, we have recall of 100% because, all relevant links are

retrieved. Then, we have precision of 92.3%, because 12 links over 13 retrieved links are

correct. Finally, F1-score is 96% resulted from the calculated recall and precision.

Figure 5.3 illustrates another response of coreference resolution libraries. This response

is clearly worse than the first response, because it wrongly connects two large chains of

coreferences. However, it has the same recall, precision and F1-score, because it has the

same number of wrong and correct links as the previous response.

26

5.2. Metrics

Figure 5.1.: The correct answer of coreference resolution

Figure 5.2.: A possible response from coreference resolution libraries

Figure 5.3.: Another possible response from coreference resolution libraries

27

5. Evaluation

Figure 5.4.: A response of coreference resolution where all mentions are in a cluster

BCUBED is proposed to overcome the shortcomings of MUC. There are two things that

BCUBED are different from MUC. First, it does not evaluate the overall result but rather

the result based on each mention and then sum them up. That means, for each mention it

will calculate the recall and precision separately and add each of them to the overall recall

and precision respectively. Second, it does not consider links but instead mentions. For

the calculation of recall and precision of each mention, mentions that corefer with this

mention are the elements. The set of mentions from the key is called key cluster, and the

set of mentions from the response is called response cluster. The correct mentions are in

the intersection between the key and response cluster. Recall and precision are calculated

by dividing the number of correct mentions to the number of mentions in key cluster and

response cluster respectively. The following shows how recall and precision of a mention

can be calculated.

Recall =
number of correct mentions

number of mentions in key cluster
=

true positives

true positives + false negatives

Precision =
number of correct mentions

number of mentions in response cluster
=

true positives

true positives + false positives

Though improved compared to MUC, BCUBED can be counter-intuitive when the

response has only one cluster and all mentions are in it. This results in 100% recall even

though the response cluster is not a subset of the correct answer. Figure 5.4 illustrates one

of such cases.

For each mention of entity 1 we have recall of 100% (all six elements are in the cluster)

and precision of 40% (6 out 15). With the same rules of calculation, recall and precision

for each mention of entity 2 are 100% and 20%, for entity 3 100% and 40%. Overall we

have recall of 100%. This is counter-intuitive because we have three different entities in

the key. However, in the response we have only one. One may argue that we have all

mentions in the cluster so recall of 100% is reasonable. Nonetheless, the evaluation of

the overall coreference resolution does not consider mentions as central elements but

rather the evaluation of each mention does. The overall recall or precision is calculated by

summing up recall or precision of each individual mention.

For the evaluation of the approaches as pronoun resolution models, we can constraint

the links between mentions to pronoun links. Each of these links has at least one pronoun.

Thus we can use MUC to evaluate this aspect of the approaches. However, BCUBED is not

intended for pronoun resolution evaluation. Thus, the pronoun clusters are not needed as

stated in the previous section.

28

5.3. Evaluation Results

Case Studies Definition

CS1 Mediastore

CS2 TEAMMATES

CS3 Teastore

CS4 BigBlueButton

CS5 Corona Warn App

CS6 Docker

Table 5.3.: Case studies used in evaluation

Approaches Definition

A1 StanfordCoreNLP_Neural

A2 StanfordCoreNLP_Statistical

A3 StanfordCoreNLP_Deterministic

A4 NeuralCoref

A5 Hobbs+Naive

A6 Hobbs+Levenshtein

A7 Hobbs+StanfordCoreNLP

A8 Hobbs+NeuralCoref

A9 StanfordCoreNLP+NeuralCoref

A10 NeuralCoref+StanfordCoreNLP

Table 5.4.: Approachess used in evaluation

In Section 3.1, it was mentioned that beside MUC and BCUBED, 𝐶𝐸𝐴𝐹𝜙4 evaluation

model is also used to calculate the average metrics. By BCUBED, repeated key mentions

in the response can lead to recall larger than one [36]. CEAF or 𝐶𝐸𝐴𝐹𝜙4 are proposed to

tackle this problem. However, in the implementation of the approaches we prevented key

mentions from repeating in the response. Hence, 𝐶𝐸𝐴𝐹𝜙4 is not needed.

5.3. Evaluation Results

Before we dive into the evaluation results, Table 5.3 and Table 5.4 will present the case

studies and approaches that are used in the evaluation. The first three approaches are

different modes of coreference resolution from Stanford CoreNLP. They are followed by

NeuralCoref, an approach from Neural Coref 4.0. Then six different approaches from

different combination between pronoun resolution, non-pronoun resolution and corefer-

ence resolution will be presented. The two operands between the plus symbol represent

the two resolution. The left operand is for pronoun resolution, while the second is for

non-pronoun resolution.

First, Table 5.5 presents the result of coreference resolution for software architecture

documentation. Each of the results is evaluated based on MUC and BCUBED models.

However, the table shows only the average values of metrics from the two models. The

full results can be found in the appendix. Generally speaking, the values of the metrics

29

5. Evaluation

from MUC are lower than those of BCUBED. That is to be expected, because BCUBED is

more lenient than MUC in a sense that a mention only has to be in a coreference chain

with other mentions to be considered coreferencing with them. Whereas MUC demands

strict order of appearance, i.e, a mention in a chain can only corefer with mentions directly

behind or after it. Hobbs+Naive is the approach with the highest average precision (0.72)

and F1-score (0.63). Besides, StanforeCoreNLP_Deterministic has the second highest F1-

score (0.59) but the highest recall (0.61). Hobbs+Levenshtein has the same F1-score as

StanforeCoreNLP_Deterministic, higher precision (0.63 to 0.57) but lower recall (0.57 to

0.61). It is surprising that StanforeCoreNLP_Deterministic outperformed the other two

modes, even though the authors claim that neural and statistical mode are more performant

than the deterministic one. Furthermore, NeuralCoref has the lowest average F1-score

(0.42). If a case study has more than 50 lines of text, the approach performs poorly. For

example, NeuralCoref only has an average F1-score of 0.33 with case study TEAMMATES

(198 lines). Therefore, combinable approaches that have NeuralCoref in their combination

have average F1-score less or equal than 0.50. For coreference resolution for software

architecture documentation, Hobbs+Naive performs best among the approaches.

Next, we look at how the approaches perform when they only concern mentions that

are important to traceability link recovery (TLR). These mentions are mentioned in the

formal software architecture documentation of the case studies. Table 5.6 displays the

results of the evaluation. The metrics are the average results of MUC and BCUBED

metrics. The full results can be found in the appendix. StanforeCoreNLP_Deterministic

surpasses other approaches with the highest average F1-score (0.63). Other modes of

Stanford CoreNLP along with Hobbs+Naive all have the second highest average F1-score

(0.59). Most notably, Hobbs+Naive has the highest precision (0.82). However, its recall

is quite low (0.49). This can be due to the fact that it uses a naive approach to resolve

non-pronouns. Therefore only identical non-pronoun mentions can be resolved, hence the

high precision and low recall. Similar to previous evaluation, NeuralCoref and approaches

that use it have poor results with long case studies. Thus, to resolve coreferences for TLR,

StanforeCoreNLP_Deterministic is most preferable among the approaches.

Lastly, there are the results of pronoun resolution from the approaches. The metrics are

based on MUC evaluation models. In this evaluation, combinable approaches using Hobbs

to resolve pronouns all have the highest average F1-score (0.74). They have the same recall

(0.74) and precision (0.74). This is understandable since they all use Hobbs’ algorithm to

resolve pronouns. Moreover, neural and statistical modes all beat deterministic mode in

this evaluation (average F1-scores of 0.71 and 0.68 to 0.47). NeuralCoref and the approaches

using it to resolve pronouns have the lowest F1-scores (0.20 for A4 and A10). Among

the approaches, approaches using Hobbs’ algorithm are most suitable when it comes to

pronoun resolution.

5.4. Threats To Validity

There are some threats to the validity of the evaluation of the approaches. First, there is

reliability. The manual coreference resolution was done only by the writer of this thesis

30

5.4. Threats To Validity

C
a
s
e
S
t
u
d
i
e
s

C
S
1

C
S
2

C
S
3

C
S
4

C
S
5

C
S
6

A

L
i
b
r
a
r
i
e
s

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F

A
1

.5
7

.5
0

.5
3

.4
7

.5
8

.5
2

.4
9

.5
9

.5
4

.5
8

.6
1

.5
9

.5
6

.5
6

.5
6

.4
8

.5
1

.4
9

.5
3

.5
6

.5
4

A
2

.5
7

.5
4

.5
5

.4
6

.6
0

.5
2

.5
0

.6
1

.5
5

.5
7

.6
1

.5
9

.5
4

.5
8

.5
6

.4
6

.5
2

.4
9

.5
2

.5
8

.5
5

A
3

.7
4

.6
9

.7
1

.6
1

.5
5

.5
8

.5
4

.5
8

.5
6

.6
3

.5
9

.6
1

.6
1

.5
3

.5
7

.5
2

.4
7

.4
9

.6
1

.5
7

.5
9

A
4

.4
7

.5
3

.4
9

.2
8

.4
1

.3
3

.4
4

.5
2

.4
8

.3
5

.4
7

.4
0

.4
0

.5
1

.4
5

.3
0

.3
4

.3
2

.3
8

.4
7

.4
2

A
5

.6
8

.8
1

.7
4

.6
3

.6
9

.6
5

.5
9

.7
9

.6
7

.5
6

.7
5

.6
4

.4
8

.6
3

.5
4

.4
8

.6
3

.5
4

.5
7

.7
2

.6
3

A
6

.6
8

.6
9

.6
8

.6
3

.6
2

.6
2

.5
7

.6
9

.6
2

.5
6

.6
4

.5
9

.4
9

.5
4

.5
1

.4
8

.5
5

.5
0

.5
7

.6
3

.5
9

A
7

.4
9

.6
2

.5
5

.4
2

.6
4

.5
1

.4
9

.6
8

.5
7

.5
0

.6
9

.5
8

.4
6

.6
3

.5
3

.4
1

.5
8

.4
8

.4
7

.6
4

.5
4

A
8

.4
2

.6
2

.5
0

.2
5

.6
7

.3
5

.4
2

.6
9

.5
2

.3
2

.7
4

.4
3

.3
5

.7
1

.4
7

.2
8

.7
0

.4
0

.3
4

.6
9

.4
5

A
9

.4
3

.6
2

.5
0

.2
6

.7
0

.3
6

.3
7

.6
2

.4
6

.3
2

.7
3

.4
4

.3
6

.7
5

.4
8

.2
6

.6
5

.3
6

.3
4

.6
8

.4
4

A
1
0

.4
7

.6
1

.5
3

.3
8

.6
4

.4
8

.4
4

.6
7

.5
3

.4
5

.7
0

.5
5

.4
3

.6
3

.5
1

.3
2

.5
4

.4
0

.4
2

.6
4

.5
0

T
a
b
l
e
5
.5
.:
R
e
s
u
l
t
s
o
f
c
o
r
e
f
e
r
e
n
c
e
r
e
s
o
l
u
t
i
o
n
f
o
r
s
o
f
t
w
a
r
e
a
r
c
h
i
t
e
c
t
u
r
e
d
o
c
u
m
e
n
t
a
t
i
o
n
f
r
o
m

d
i
ff
e
r
e
n
t
a
p
p
r
o
a
c
h
e
s

31

5. Evaluation

C
a
s
e
S
t
u
d
i
e
s

C
S
1

C
S
2

C
S
3

C
S
4

C
S
5

C
S
6

A

L
i
b
r
a
r
i
e
s

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F

A
1

.6
9

.5
9

.6
3

.5
1

.6
4

.5
7

.4
8

.6
1

.5
3

.58
.6
2

.6
0

.70
.7
4

.72
.40

.5
7

.47
.5
6

.6
3

.5
9

A
2

.6
9

.5
9

.6
3

.4
9

.6
5

.5
6

.4
8

.6
4

.5
5

.58
.6
2

.6
0

.6
7

.7
6

.7
1

.3
8

.5
6

.4
5

.5
5

.6
4

.5
9

A
3

.80
.94

.86
.67

.7
2

.70
.4
4

.6
9

.5
4

.5
4

.5
5

.5
5

.6
3

.7
3

.6
8

.3
5

.5
0

.4
1

.58
.6
9

.63
A
4

.5
6

.4
9

.5
2

.1
3

.5
2

.2
1

.4
6

.6
8

.5
5

.2
3

.6
8

.3
3

.5
1

.7
8

.6
2

.1
0

.4
4

.1
6

.3
4

.6
0

.4
0

A
5

.6
8

.9
3

.7
8

.4
5

.78
.5
6

.52
.84

.64
.5
2

.85
.64

.4
1

.8
0

.5
4

.3
5

.7
0

.4
4

.4
9

.82
.5
9

A
6

.6
8

.9
3

.7
8

.4
3

.7
1

.5
2

.5
1

.7
7

.6
1

.4
8

.7
5

.5
8

.3
4

.6
7

.4
5

.3
5

.6
4

.4
3

.4
7

.7
5

.5
7

A
7

.5
8

.7
2

.6
4

.3
9

.7
0

.5
0

.5
0

.7
6

.6
0

.4
9

.7
3

.5
8

.5
2

.8
0

.6
3

.2
8

.5
6

.3
6

.4
6

.7
2

.5
6

A
8

.5
0

.6
5

.5
7

.1
7

.6
9

.2
7

.4
3

.6
9

.5
3

.2
6

.7
9

.3
8

.4
3

.89
.5
8

.1
5

.7
3

.2
4

.3
3

.7
4

.4
3

A
9

.5
1

.6
4

.5
7

.1
9

.7
5

.3
0

.3
4

.5
7

.4
3

.2
5

.7
6

.3
7

.4
3

.89
.5
8

.1
5

.81
.2
4

.3
2

.7
4

.4
2

A
1
0

.5
6

.6
9

.6
2

.3
7

.6
6

.4
8

.4
9

.7
7

.6
0

.4
6

.7
3

.5
7

.5
2

.8
0

.6
3

.2
4

.5
4

.3
2

.4
4

.7
0

.5
4

T
a
b
l
e
5
.6
.:
C
o
r
e
f
e
r
e
n
c
e
r
e
s
o
l
u
t
i
o
n
r
e
s
u
l
t
s
f
o
r
r
e
l
e
v
a
n
t
m
e
n
t
i
o
n
s
f
r
o
m

d
i
ff
e
r
e
n
t
a
p
p
r
o
a
c
h
e
s

32

5.4. Threats To Validity

C
a
s
e
S
t
u
d
i
e
s

C
S
1

C
S
2

C
S
3

C
S
4

C
S
5

C
S
6

A

L
i
b
r
a
r
i
e
s

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F

L
1

.6
0

.6
0

.6
0

.6
7

.8
0

.7
3

.6
7

.6
7

.6
7

.5
6

.7
1

.6
3

1.
0

1.
0

1.
0

.5
8

.6
4

.6
1

.6
8

.7
4

.7
1

L
2

.6
0

.7
5

.6
7

.6
1

.7
9

.6
9

.6
7

.7
5

.7
1

.4
4

.6
7

.5
3

.7
5

1.
0

.8
6

.5
8

.6
4

.6
1

.6
1

.7
7

.6
8

L
3

1.
0

1.
0

1.
0

.3
9

.5
0

.4
4

.3
3

.4
3

.3
8

.2
2

.4
0

.2
9

.2
5

.2
5

.2
5

.4
2

.4
5

.4
3

.4
4

.5
1

.4
7

L
4

.4
0

.4
0

.4
0

.0
0

.0
0

.0
0

.6
7

.8
6

.7
5

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.1
8

.2
1

.2
0

L
5

.6
0

.6
0

.6
0

.6
7

.6
3

.6
5

1.
0

1.
0

1.
0

.6
7

.6
0

.6
3

.7
5

.7
5

.7
5

.7
5

.8
2

.7
8

.7
4

.7
4

.7
4

L
6

.6
0

.6
0

.6
0

.6
7

.6
3

.6
5

1.
0

1.
0

1.
0

.6
7

.6
0

.6
3

.7
5

.7
5

.7
5

.7
5

.8
2

.7
8

.7
4

.7
4

.7
4

L
7

.6
0

.6
0

.6
0

.6
7

.6
3

.6
5

1.
0

1.
0

1.
0

.6
7

.6
0

.6
3

.7
5

.7
5

.7
5

.7
5

.8
2

.7
8

.7
4

.7
4

.7
4

L
8

.6
0

.6
0

.6
0

.6
7

.6
3

.6
5

1.
0

1.
0

1.
0

.6
7

.6
0

.6
3

.7
5

.7
5

.7
5

.7
5

.8
2

.7
8

.7
4

.7
4

.7
4

L
9

.6
0

.6
0

.6
0

.6
7

.8
0

.7
3

.6
7

.6
7

.6
7

.5
6

.7
1

.6
3

1.
0

1.
0

1.
0

.5
8

.6
4

.6
1

.6
8

.7
4

.7
1

L
1
0

.4
0

.4
0

.4
0

.0
0

.0
0

.0
0

.6
7

.8
6

.7
5

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.1
8

.2
1

.2
0

T
a
b
l
e
5
.7
.:
C
o
r
e
f
e
r
e
n
c
e
r
e
s
o
l
u
t
i
o
n
r
e
s
u
l
t
s
f
o
r
p
r
o
n
o
u
n
m
e
n
t
i
o
n
s
f
r
o
m

d
i
ff
e
r
e
n
t
a
p
p
r
o
a
c
h
e
s

33

5. Evaluation

and the resolution can be subjective. Different researchers can come up with different

resolution results. Take the following for example:

To this end, the requested files are first reencoded. The re-encoded files

are then digitally and individually watermarked by the TagWatermarking

component.

One can link The re-encoded files to the requested files simply by taking the context

into consideration. However, another may argue that the files due to re-encoding are

completely different from each other.

Second, half of the case studies (3 out of 6) are the case studies used in SoftWare Archi-

tecture Text Tracelink Recovery (SWATTR). We want to see how coreference resolution

contribute to activities, that process software architecture documentation. SWATTR is

a project for traceability link recovery. This can contribute to selection bias, because

other activities can process different kinds of case studies. Selection bias is a threat to

internal validity. Thirdly, we only looked in the case of TLR but not other activities. Hence,

a generalization of the findings of this study may not be entirely correct. For example,

Klym Shumaiev and Manoj Bha propose an activity that uses natural language processing

techniques to detect uncertainty cues in software architecture documentation [43]. The

work mainly looks for words like would, could,most likely in an input text. It is not entirely

sure how coreference resolution can contribute to the performance of this work. This is

an ecological validity and a threat to external validity.

34

6. Conclusion And Future Work

In natural language software architecture documentation, coreferences can occur. These

coreferences can be problematic for some activities that process the documentation. This

thesis focused on resolving these coreferences. Therefore, it proposed a number of ap-

proaches for coreference resolution.

Beside conventional approaches, this thesis proposed a different type to resolve coref-

erences. Instead of solely using already implemented models or algorithms to resolve

coreferences, we broke the problem of coreference resolution down to two specific reso-

lutions, pronoun and non-pronoun resolution. In other words, we looked into the types

of the mentions that are to be resolved. Then, we used different models or algorithms to

resolve different types of mentions. This theoretically allows for higher level of maintain-

ability, customization and optimization. This thesis also provided a software architecture

to implement the approaches. The core idea behind was that we made abstraction of

coreference resolution, and other specific types of resolutions. As a result, we can combine

many types of resolutions to resolve coreferences.

The evaluation of the approaches was made in three different aspects. For coreference

resolution for software architecture documentation, the standard Hobbs’ algorithm com-

bined with a naive approach to resolve non-pronouns outperformed other approaches.

When it came to coreference resolution for a specific activity, the deterministic mode of

Stanford CoreNLP surpassed others. For pronoun resolution, Hobbs’ algorithm combined

with any other non-pronoun resolution yielded high and consistent results.

With that said, there is still room for improvement. The coreference resolution for soft-

ware architecture documentation results can still be improved by using better coreference

resolution models. Moreover, the biggest issue in the proposed combination approaches

was that they required all resolutions to have resolved coreferences beforehand. Conse-

quently, each of the resolvers already have answers for all of its responsible mentions.

When requested to resolve a mention, a resolver only has to look for the answers it has

made. For instance, Hobbs’ algorithm and naive non-pronoun resolver must process an

input text in advance to provide answers for Hobbs+Naive. This can result into large

calculation time and effort, when the number of types of resolvers increases. It was found

out during inspecting the results of the approaches that nonsensical results considerably

reduce the performance. For example. if we have two phrases of In this situation in a text,

most approaches will link the two this situation, despite they do not corefer to each other.

In this case, we might need a kind of "anti-resolution". This resolution will ignore mentions

in idioms, common phrases or mentions that are deemed unnecessary for resolution by

users. With the high level of extendibility of the architecture, it should be uncomplicated

to integrate new resolution and also interesting to see how they play out.

The case studies used for evaluation can also be expanded to avoid selection bias. At the

moment, half of the case studies are also used by the SoftWare Architecture Text Tracelink

35

6. Conclusion And Future Work

Recovery project. These may not cover the case studies of other activities. Moreover,

the manual coreference resolution result may need to be checked by the writers of the

case studies for the sake of correctness. This will increase the reliability of the evaluation.

Furthermore, we should look for other activities beside TLR, that also process software

architecture documentation. This will provide a more general statement on the influence

of coreference resolution for software architecture documentation.

36

Bibliography

[1] url: https://github.com/ArDoCo/SWATTR.

[2] url: https://nlp.stanford.edu/projects/coref.shtml.

[3] url: https://opennlp.apache.org/.

[4] url: http://www.alias-i.com/lingpipe/.

[5] url: https://stanfordnlp.github.io/CoreNLP/.

[6] url: https://spacy.io/.

[7] url: https://github.com/huggingface/neuralcoref.

[8] url: https://github.com/ArDoCo/SWATTR/blob/main/case_studies/mediastore/

text/Palladio_MediaStore_Text.txt.

[9] url: https://github.com/ArDoCo/SWATTR/blob/main/case_studies/teammates/

text/TeammatesForEvalText.txt.

[10] url: https://github.com/ArDoCo/SWATTR/blob/main/case_studies/teastore/

text/EcsaText.txt.

[11] url: https : / / github . com / ArDoCo / Benchmark / blob / main / bigbluebutton /

bigbluebutton.txt.

[12] url: https://github.com/corona- warn- app/cwa- server/blob/main/docs/

ARCHITECTURE.md.

[13] url: https://delftswa.github.io/chapters/docker/.

[14] A Arunthavanathan et al. “Support for traceability management of software arte-

facts using Natural Language Processing”. In: 2016 Moratuwa Engineering Research
Conference (MERCon). IEEE. 2016, pp. 18–23.

[15] Felix Bachmann et al. Software architecture documentation in practice: Document-
ing architectural layers. Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST, 2000.

[16] Eric Bengtson and Dan Roth. “Understanding the value of features for coreference

resolution”. In: Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing. 2008, pp. 294–303.

[17] Grady Booch. The unified modeling language user guide. Pearson Education India,

2005.

[18] Jie Cai andMichael Strube. “Evaluationmetrics for end-to-end coreference resolution

systems”. In: Proceedings of the SIGDIAL 2010 Conference. 2010, pp. 28–36.

37

https://github.com/ArDoCo/SWATTR
https://nlp.stanford.edu/projects/coref.shtml
https://opennlp.apache.org/
http://www.alias-i.com/lingpipe/
https://stanfordnlp.github.io/CoreNLP/
https://spacy.io/
https://github.com/huggingface/neuralcoref
https://github.com/ArDoCo/SWATTR/blob/main/case_studies/mediastore/text/Palladio_MediaStore_Text.txt
https://github.com/ArDoCo/SWATTR/blob/main/case_studies/mediastore/text/Palladio_MediaStore_Text.txt
https://github.com/ArDoCo/SWATTR/blob/main/case_studies/teammates/text/TeammatesForEvalText.txt
https://github.com/ArDoCo/SWATTR/blob/main/case_studies/teammates/text/TeammatesForEvalText.txt
https://github.com/ArDoCo/SWATTR/blob/main/case_studies/teastore/text/EcsaText.txt
https://github.com/ArDoCo/SWATTR/blob/main/case_studies/teastore/text/EcsaText.txt
https://github.com/ArDoCo/Benchmark/blob/main/bigbluebutton/bigbluebutton.txt
https://github.com/ArDoCo/Benchmark/blob/main/bigbluebutton/bigbluebutton.txt
https://github.com/corona-warn-app/cwa-server/blob/main/docs/ARCHITECTURE.md
https://github.com/corona-warn-app/cwa-server/blob/main/docs/ARCHITECTURE.md
https://delftswa.github.io/chapters/docker/

Bibliography

[19] Sylvain Chardigny and Abdelhak Seriai. “Software architecture recovery process

based on object-oriented source code and documentation”. In: European Conference
on Software Architecture. Springer. 2010, pp. 409–416.

[20] Paul Clements et al. “Documenting software architectures: views and beyond”. In:

25th International Conference on Software Engineering, 2003. Proceedings. IEEE. 2003,
pp. 740–741.

[21] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language

understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[22] Vladimir Dobrovolskii. “Word-Level Coreference Resolution”. In: arXiv preprint
arXiv:2109.04127 (2021).

[23] David Garlan. “Software architecture”. In: (2008).

[24] Mandar Joshi et al. “BERT for coreference resolution: Baselines and analysis”. In:

arXiv preprint arXiv:1908.09091 (2019).

[25] Mandar Joshi et al. “Spanbert: Improving pre-training by representing and predicting

spans”. In: Transactions of the Association for Computational Linguistics 8 (2020),

pp. 64–77.

[26] Daniel Jurafsky and James HMartin. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition.

[27] Ben Kantor and Amir Globerson. “Coreference resolution with entity equalization”.

In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 2019, pp. 673–677.

[28] Jan Keim and Anne Koziolek. “Towards consistency checking between software

architecture and informal documentation”. In: 2019 IEEE International Conference on
Software Architecture Companion (ICSA-C). IEEE. 2019, pp. 250–253.

[29] Jan Keim et al. “Trace Link Recovery for Software Architecture Documentation”. In:

European Conference on Software Architecture. Springer. 2021, pp. 101–116.

[30] Yuval Kirstain, Ori Ram, and Omer Levy. “Coreference Resolution without Span

Representations”. In: arXiv preprint arXiv:2101.00434 (2021).

[31] Jóakim von Kistowski et al. “TeaStore: A Micro-Service Reference Application for

Benchmarking, Modeling and Resource Management Research”. In: Proceedings of
the 26th IEEE International Symposium on the Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems. MASCOTS ’18. Milwaukee, WI, USA,

Sept. 2018.

[32] Raúl Lapena. “Traceability Links Recovery in BPMN Models.” In: CAiSE (Doctoral
Consortium). 2019, pp. 52–59.

[33] Shalom Lappin and Herbert J Leass. “An algorithm for pronominal anaphora resolu-

tion”. In: Computational linguistics 20.4 (1994), pp. 535–561.

[34] Heeyoung Lee et al. “Stanford’s multi-pass sieve coreference resolution system at the

conll-2011 shared task”. In: Proceedings of the fifteenth conference on computational
natural language learning: Shared task. 2011, pp. 28–34.

38

[35] Xiaoqiang Luo. “On coreference resolution performance metrics”. In: Proceedings of
Human Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing. 2005, pp. 25–32.

[36] Xiaoqiang Luo and Sameer Pradhan. “Evaluation metrics”. In: Anaphora Resolution.
Springer, 2016, pp. 141–163.

[37] Lluís Màrquez, Marta Recasens, and Emili Sapena. “Coreference resolution: an

empirical study based on SemEval-2010 shared Task 1”. In: Language resources and
evaluation 47.3 (2013), pp. 661–694.

[38] Chris Mills. “Automating traceability link recovery through classification”. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 2017,
pp. 1068–1070.

[39] Karthik Raghunathan et al. “A multi-pass sieve for coreference resolution”. In:

Proceedings of the 2010 conference on empirical methods in natural language processing.
2010, pp. 492–501.

[40] Ralf H Reussner et al. Modeling and simulating software architectures: The Palladio
approach. MIT Press, 2016.

[41] Aaron Schlutter and Andreas Vogelsang. “Improving Trace Link Recovery using

Semantic Relation Graphs and Spreading Activation”. In: (2021).

[42] Sophie Schulz. Linking So ware Architecture Documentation and Models. 2020.

[43] Klym Shumaiev and Manoj Bhat. “Automatic uncertainty detection in software

architecture documentation”. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). IEEE. 2017, pp. 216–219.

[44] Moon Ting Su. “Capturing exploration to improve software architecture documen-

tation”. In: Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume. 2010, pp. 17–21.

[45] Marc Vilain et al. “A model-theoretic coreference scoring scheme”. In: Sixth Message
Understanding Conference (MUC-6): Proceedings of a Conference Held in Columbia,
Maryland, November 6-8, 1995. 1995.

[46] Liyan Xu and Jinho D Choi. “Revealing the myth of higher-order inference in

coreference resolution”. In: arXiv preprint arXiv:2009.12013 (2020).

[47] Yimeng Zhang and Yangbo Zhu. “Machine Learning for Coreference Resolution:

Recent Developments”. In: ().

[48] Yonggang Zhang et al. “Ontological approach for the semantic recovery of trace-

ability links between software artefacts”. In: IET software 2.3 (2008), pp. 185–203.

39

A. Appendix

A.1. Tables

41

A. Appendix
C
a
s
e
S
t
u
d
i
e
s

C
S
1

C
S
2

C
S
3

C
S
4

C
S
5

C
S
6

A

L
i
b
r
a
r
i
e
s

M
o
d
e
l
s

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F

L
1

M
.3
8

.3
9

.3
8

.2
7

.4
0

.3
2

.3
3

.4
3

.3
7

.4
0

.4
4

.4
2

.3
9

.4
0

.4
0

.3
0

.3
0

.3
0

.3
5

.4
0

.3
7

B
.7
6

.6
1

.6
8

.6
7

.7
6

.7
1

.6
6

.7
4

.7
0

.7
6

.7
7

.7
6

.7
3

.7
2

.7
3

.6
5

.7
1

.6
8

.7
1

.7
2

.7
1

A
.5
7

.5
0

.5
3

.4
7

.5
8

.5
2

.4
9

.5
9

.5
4

.5
8

.6
1

.5
9

.5
6

.5
6

.5
6

.4
8

.5
1

.4
9

.5
3

.5
6

.5
4

L
2

M
.3
8

.4
2

.4
0

.2
6

.4
1

.3
2

.3
3

.4
5

.3
8

.3
9

.4
5

.4
2

.3
7

.4
1

.3
9

.2
9

.3
1

.3
0

.3
4

.4
1

.3
7

B
.7
6

.6
6

.7
0

.6
5

.7
8

.7
1

.6
7

.7
6

.7
1

.7
4

.7
7

.7
6

.7
2

.7
4

.7
3

.6
3

.7
3

.6
8

.7
0

.7
4

.7
2

A
.5
7

.5
4

.5
5

.4
6

.6
0

.5
2

.5
0

.6
1

.5
5

.5
7

.6
1

.5
9

.5
4

.5
8

.5
6

.4
6

.5
2

.4
9

.5
2

.5
8

.5
5

L
3

M
.6
0

.5
4

.5
7

.4
1

.3
2

.3
6

.3
3

.3
5

.3
4

.4
3

.3
7

.4
0

.4
0

.3
0

.3
5

.2
7

.2
0

.2
3

.4
1

.3
5

.3
8

B
.8
7

.8
4

.8
5

.8
2

.7
8

.8
0

.7
6

.8
2

.7
9

.8
3

.8
1

.8
2

.8
2

.7
6

.7
9

.7
6

.7
4

.7
5

.8
1

.8
0

.8
0

A
.7
4

.6
9

.7
1

.6
1

.5
5

.5
8

.5
4

.5
8

.5
6

.6
3

.5
9

.6
1

.6
1

.5
3

.5
7

.5
2

.4
7

.4
9

.6
1

.5
7

.5
9

L
4

M
.2
7

.3
9

.3
2

.0
0

.0
1

.0
1

.2
2

.2
9

.2
5

.0
8

.1
4

.1
1

.2
0

.2
8

.2
3

.0
0

.0
0

.0
0

.1
3

.1
9

.1
6

B
.6
7

.6
6

.6
7

.5
6

.8
1

.6
6

.6
5

.7
6

.7
0

.6
2

.7
9

.7
0

.6
0

.7
5

.6
6

.6
0

.6
7

.6
3

.6
2

.7
4

.6
7

A
.4
7

.5
3

.4
9

.2
8

.4
1

.3
3

.4
4

.5
2

.4
8

.3
5

.4
7

.4
0

.4
0

.5
1

.4
5

.3
0

.3
4

.3
2

.3
8

.4
7

.4
2

L
5

M
.6
7

.7
1

.6
9

.5
8

.5
2

.5
5

.5
4

.6
6

.6
0

.5
2

.6
1

.5
6

.3
7

.4
1

.3
9

.4
4

.4
5

.4
4

.5
2

.5
6

.5
4

B
.6
9

.9
1

.7
8

.6
8

.8
6

.7
6

.6
3

.9
1

.7
5

.6
1

.8
8

.7
2

.5
8

.8
4

.6
9

.5
2

.8
1

.6
3

.6
2

.8
7

.7
3

A
.6
8

.8
1

.7
4

.6
3

.6
9

.6
5

.5
9

.7
9

.6
7

.5
6

.7
5

.6
4

.4
8

.6
3

.5
4

.4
8

.6
3

.5
4

.5
7

.7
2

.6
3

L
6

M
.6
7

.5
4

.6
0

.5
7

.4
2

.4
9

.5
2

.5
2

.5
2

.4
9

.4
7

.4
8

.3
6

.3
0

.3
3

.4
2

.3
4

.3
8

.5
1

.4
4

.4
7

B
.7
0

.8
4

.7
6

.6
9

.8
2

.7
5

.6
2

.8
5

.7
2

.6
2

.8
2

.7
1

.6
1

.7
8

.6
9

.5
4

.7
5

.6
3

.6
3

.8
1

.7
1

A
.6
8

.6
9

.6
8

.6
3

.6
2

.6
2

.5
7

.6
9

.6
2

.5
6

.6
4

.5
9

.4
9

.5
4

.5
1

.4
8

.5
5

.5
0

.5
7

.6
3

.5
9

L
7

M
.3
8

.4
4

.4
0

.2
7

.4
2

.3
3

.3
9

.5
1

.4
4

.4
1

.5
4

.4
7

.3
7

.4
5

.4
0

.3
3

.3
8

.3
5

.3
6

.4
6

.4
0

B
.6
0

.8
1

.6
9

.5
7

.8
5

.6
8

.5
8

.8
4

.6
9

.5
8

.8
4

.6
9

.5
5

.8
1

.6
5

.5
0

.7
7

.6
1

.5
7

.8
3

.6
7

A
.4
9

.6
2

.5
5

.4
2

.6
4

.5
1

.4
9

.6
8

.5
7

.5
0

.6
9

.5
8

.4
6

.6
3

.5
3

.4
1

.5
8

.4
8

.4
7

.6
4

.5
4

L
8

M
.2
9

.4
4

.3
5

.0
6

.3
9

.1
1

.2
8

.5
2

.3
7

.1
5

.5
6

.2
3

.2
3

.5
4

.3
2

.1
2

.4
7

.2
0

.1
9

.4
9

.2
7

B
.5
5

.8
0

.6
5

.4
4

.9
4

.6
0

.5
5

.8
7

.6
7

.4
8

.9
3

.6
4

.4
8

.8
9

.6
2

.4
4

.9
2

.6
0

.4
9

.9
0

.6
3

A
.4
2

.6
2

.5
0

.2
5

.6
7

.3
5

.4
2

.6
9

.5
2

.3
2

.7
4

.4
3

.3
5

.7
1

.4
7

.2
8

.7
0

.4
0

.3
4

.6
9

.4
5

L
9

M
.2
9

.4
5

.3
5

.0
6

.4
6

.1
1

.2
2

.4
2

.2
9

.1
4

.5
2

.2
2

.2
4

.5
9

.3
4

.1
0

.4
1

.1
6

.1
8

.4
8

.2
5

B
.5
6

.7
9

.6
5

.4
5

.9
5

.6
1

.5
2

.8
2

.6
3

.5
0

.9
3

.6
5

.4
8

.9
0

.6
3

.4
2

.8
9

.5
7

.5
0

.8
8

.6
3

A
.4
3

.6
2

.5
0

.2
6

.7
0

.3
6

.3
7

.6
2

.4
6

.3
2

.7
3

.4
4

.3
6

.7
5

.4
8

.2
6

.6
5

.3
6

.3
4

.6
8

.4
4

L
1
0

M
.3
5

.4
3

.3
9

.2
1

.4
1

.2
8

.3
3

.5
0

.3
9

.3
5

.5
4

.4
2

.3
4

.4
5

.3
9

.2
1

.3
1

.2
5

.3
0

.4
4

.3
6

B
.5
9

.8
0

.6
8

.5
5

.8
6

.6
7

.5
5

.8
4

.6
7

.5
6

.8
5

.6
8

.5
2

.8
1

.6
3

.4
4

.7
8

.5
6

.5
4

.8
3

.6
5

A
.4
7

.6
1

.5
3

.3
8

.6
4

.4
8

.4
4

.6
7

.5
3

.4
5

.7
0

.5
5

.4
3

.6
3

.5
1

.3
2

.5
4

.4
0

.4
2

.6
4

.5
0

T
a
b
l
e
A
.1
.:
C
o
r
e
f
e
r
e
n
c
e
r
e
s
o
l
u
t
i
o
n
r
e
s
u
l
t
s
f
r
o
m

d
i
ff
e
r
e
n
t
a
p
p
r
o
a
c
h
e
s

42

A.1. Tables
C
a
s
e
S
t
u
d
i
e
s

C
S
1

C
S
2

C
S
3

C
S
4

C
S
5

C
S
6

A

L
i
b
r
a
r
i
e
s

M
o
d
e
l
s

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F
R

P
F

R
P

F

L
1

M
.5
7

.5
9

.5
8

.4
1

.5
7

.4
8

.3
8

.5
0

.4
3

.4
2

.4
6

.4
4

.6
4

.6
7

.6
5

.3
2

.3
5

.3
3

.4
6

.5
3

.4
9

B
.8
1

.5
8

.6
8

.6
0

.7
1

.6
5

.5
8

.7
1

.6
4

.7
3

.7
7

.7
5

.7
7

.8
2

.7
9

.4
9

.7
8

.6
0

.6
7

.7
3

.6
9

A
.6
9

.5
9

.6
3

.5
1

.6
4

.5
7

.4
8

.6
1

.5
3

.5
8

.6
2

.6
0

.7
0

.7
4

.7
2

.4
0

.5
7

.4
7

.5
6

.6
3

.5
9

L
2

M
.5
7

.5
9

.5
8

.4
0

.5
7

.4
7

.3
8

.5
3

.4
4

.4
2

.4
6

.4
4

.5
9

.6
8

.6
3

.2
9

.3
4

.3
1

.4
5

.5
3

.4
8

B
.8
1

.5
8

.6
8

.5
9

.7
3

.6
5

.5
9

.7
4

.6
6

.7
3

.7
7

.7
5

.7
5

.8
4

.7
9

.4
7

.7
9

.5
9

.6
6

.7
5

.6
9

A
.6
9

.5
9

.6
3

.4
9

.6
5

.5
6

.4
8

.6
4

.5
5

.5
8

.6
2

.6
0

.6
7

.7
6

.7
1

.3
8

.5
6

.4
5

.5
5

.6
4

.5
9

L
3

M
.7
4

.8
9

.8
1

.6
0

.6
0

.6
0

.3
3

.5
3

.4
1

.3
8

.3
6

.3
7

.5
0

.5
5

.5
2

.2
4

.2
6

.2
5

.4
7

.5
4

.5
0

B
.8
6

.9
8

.9
1

.7
4

.8
5

.7
9

.5
5

.8
4

.6
6

.7
0

.7
4

.7
2

.7
7

.9
1

.8
3

.4
7

.7
4

.5
7

.6
9

.8
5

.7
5

A
.8
0

.9
4

.8
6

.6
7

.7
2

.7
0

.4
4

.6
9

.5
4

.5
4

.5
5

.5
5

.6
3

.7
3

.6
8

.3
5

.5
0

.4
1

.5
8

.6
9

.6
3

L
4

M
.3
9

.4
3

.4
1

.0
2

.1
3

.0
3

.3
3

.5
3

.4
1

.0
7

.4
3

.1
2

.4
5

.7
1

.5
6

.0
0

.0
0

.0
0

.2
1

.3
8

.2
6

B
.7
4

.5
5

.6
3

.2
5

.9
1

.3
9

.5
8

.8
2

.6
8

.3
9

.9
4

.5
5

.5
6

.8
5

.6
8

.1
9

.8
9

.3
2

.4
6

.7
8

.5
5

A
.5
6

.4
9

.5
2

.1
3

.5
2

.2
1

.4
6

.6
8

.5
5

.2
3

.6
8

.3
3

.5
1

.7
8

.6
2

.1
0

.4
4

.1
6

.3
4

.6
0

.4
0

L
5

M
.7
0

.8
9

.7
8

.5
2

.6
8

.5
9

.5
0

.7
5

.6
0

.5
1

.7
7

.6
1

.4
1

.6
9

.5
1

.4
5

.5
7

.5
0

.5
2

.7
3

.6
0

B
.6
6

.9
6

.7
9

.3
8

.8
7

.5
3

.5
5

.9
2

.6
9

.5
3

.9
3

.6
8

.4
1

.9
0

.5
6

.2
5

.8
3

.3
9

.4
7

.9
1

.6
1

A
.6
8

.9
3

.7
8

.4
5

.7
8

.5
6

.5
2

.8
4

.6
4

.5
2

.8
5

.6
4

.4
1

.8
0

.5
4

.3
5

.7
0

.4
4

.4
9

.8
2

.5
9

L
6

M
.7
0

.8
9

.7
8

.4
8

.5
8

.5
3

.5
0

.6
7

.5
7

.4
7

.6
2

.5
3

.3
2

.5
0

.3
9

.4
5

.5
0

.4
7

.4
9

.6
3

.5
5

B
.6
6

.9
6

.7
9

.3
7

.8
3

.5
2

.5
2

.8
8

.6
5

.5
0

.8
7

.6
3

.3
7

.8
4

.5
1

.2
6

.7
9

.3
9

.4
5

.8
7

.5
9

A
.6
8

.9
3

.7
8

.4
3

.7
1

.5
2

.5
1

.7
7

.6
1

.4
8

.7
5

.5
8

.3
4

.6
7

.4
5

.3
5

.6
4

.4
3

.4
7

.7
5

.5
7

L
7

M
.5
7

.6
2

.5
9

.4
0

.5
7

.4
7

.5
0

.6
7

.5
7

.4
4

.6
1

.5
1

.5
9

.7
2

.6
5

.3
2

.3
9

.3
5

.4
7

.6
0

.5
3

B
.6
0

.8
3

.7
0

.3
9

.8
2

.5
3

.5
1

.8
5

.6
4

.5
4

.8
5

.6
6

.4
5

.8
9

.6
0

.2
4

.7
4

.3
7

.4
6

.8
3

.5
9

A
.5
8

.7
2

.6
4

.3
9

.7
0

.5
0

.5
0

.7
6

.6
0

.4
9

.7
3

.5
8

.5
2

.8
0

.6
3

.2
8

.5
6

.3
6

.4
6

.7
2

.5
6

L
8

M
.4
3

.5
3

.4
8

.0
7

.4
4

.1
2

.3
8

.5
6

.4
5

.1
1

.6
3

.1
9

.4
5

.8
3

.5
9

.0
5

.5
0

.1
0

.2
5

.5
9

.3
3

B
.5
7

.7
8

.6
6

.2
6

.9
4

.4
1

.4
9

.8
2

.6
1

.4
0

.9
5

.5
6

.4
2

.9
5

.5
8

.2
4

.9
7

.3
9

.4
0

.9
1

.5
4

A
.5
0

.6
5

.5
7

.1
7

.6
9

.2
7

.4
3

.6
9

.5
3

.2
6

.7
9

.3
8

.4
3

.8
9

.5
8

.1
5

.7
3

.2
4

.3
3

.7
4

.4
3

L
9

M
.4
3

.5
3

.4
8

.0
9

.5
6

.1
5

.2
5

.4
0

.3
1

.0
9

.5
7

.1
5

.4
5

.8
3

.5
9

.0
5

.6
7

.1
0

.2
3

.6
0

.3
0

B
.5
8

.7
6

.6
6

.3
0

.9
4

.4
5

.4
3

.7
5

.5
5

.4
1

.9
5

.5
8

.4
2

.9
5

.5
8

.2
4

.9
6

.3
8

.4
0

.8
9

.5
4

A
.5
1

.6
4

.5
7

.1
9

.7
5

.3
0

.3
4

.5
7

.4
3

.2
5

.7
6

.3
7

.4
3

.8
9

.5
8

.1
5

.8
1

.2
4

.3
2

.7
4

.4
2

L
1
0

M
.5
2

.5
7

.5
5

.3
4

.5
3

.4
2

.4
6

.6
9

.5
5

.4
0

.6
0

.4
8

.5
9

.7
2

.6
5

.2
6

.3
4

.3
0

.4
3

.5
8

.5
0

B
.5
9

.8
1

.6
9

.4
0

.8
0

.5
4

.5
1

.8
6

.6
4

.5
2

.8
6

.6
5

.4
5

.8
9

.6
0

.2
3

.7
4

.3
5

.4
5

.8
3

.5
8

A
.5
6

.6
9

.6
2

.3
7

.6
6

.4
8

.4
9

.7
7

.6
0

.4
6

.7
3

.5
7

.5
2

.8
0

.6
3

.2
4

.5
4

.3
2

.4
4

.7
0

.5
4

T
a
b
l
e
A
.2
.:
C
o
r
e
f
e
r
e
n
c
e
r
e
s
o
l
u
t
i
o
n
r
e
s
u
l
t
s
f
o
r
r
e
l
e
v
a
n
t
m
e
n
t
i
o
n
s
f
r
o
m

d
i
ff
e
r
e
n
t
a
p
p
r
o
a
c
h
e
s

43

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Software Architecture Documentation
	Traceability Link Recovery
	Coreference Resolution
	Pronoun Resolution
	String Metric Algorithms
	Natural Language Processing Frameworks

	Related Work
	Coreference Resolution Models
	Traceability Link Recovery
	Software Architecture Documentation Processing Activities

	Approach
	Overview
	Architecture
	Data Definition
	Implementation Details

	Evaluation
	Creation Of Gold Standards
	Metrics
	Evaluation Results
	Threats To Validity

	Conclusion And Future Work
	Bibliography
	Appendix
	Tables

