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ABSTRACT
With the development of the smart grid, the number of recorded
energy and power times series increases noticeably. This increase
allows for the automation of smart grid applications such as load
forecasting and load management. This automation, however, re-
quires data that only represents the typical behavior of the system.
To ensure that such data is available, detecting the anomalies often
present in recorded data is important. As a result, anomaly detection
methods are a recent research topic. However, their development
is often limited by undefined anomaly characteristics and a lack of
labeled anomalous data. To overcome this challenge, we propose
a method that generates synthetic anomalies based on real-world
anomalies that can be inserted into energy and power time series.
For this, we analyze real energy and power time series to identify
four types of commonly occurring anomalies. Given the identified
anomaly types, we formally model each type and use these models
to insert synthetic anomalies of each type into arbitrary energy or
power time series. We show that our method is not only capable
of generating synthetic anomalies with real-world properties, but
also beneficial for training supervised anomaly detection methods.
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1 INTRODUCTION
The increasing share of renewable energy sources in energy supply
is accompanied by the implementation of smart grids [24]. A key
element of smart grids are smart meters that record power or energy
consumption and generation as time series [1]. Given the growing
availability of these recorded time series, the goal of automating
smart grid applications using these time series, e.g., load analysis,
load forecasting, load management [44], becomes feasible. As these
applications’ performance depends on the quality of the input data,
they rely on the assumption that the input data only reflects the
normal behavior of the underlying system.

However, recorded time series typically contain anomalies [44],
i.e., patterns that differ from "a well defined notion of normal behav-
ior" [3, p. 15:2]. While anomalies occur due to various reasons such
as theft [21], unusual consumption [37], and technical faults [28],
they can all comprise data points or patterns representing wrong
or misleading information, which can be particularly problematic
for down-stream applications [44]. For example, spikes that violate
the underlying distribution that corresponds to normal behavior
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could be problematic. Using data containing these spikes can lead
to inappropriate forecasting models, operational optimizations, and
scheduling, which ultimately may affect energy system stability.

Especially in fully automated smart grid settings, reliably and
effectively detecting anomalies is thus important, making anomaly
detection in energy time series a recent research topic [17]. While
a portion of existing works develop detection methods with an
exploratory approach to discover anomalies contained in time series
[e.g., 6, 9, 25], several works base their method development on
knowledge about the anomalies to be detected [e.g., 15, 20, 21, 33].
However, gaining precise knowledge of the anomalies to be detected
is associated with several challenges. By definition, anomalies are
scarce and thus available datasets are imbalanced and there are
comparatively few instances available in the time series that can be
used for developing anomaly detection methods [46]. Furthermore,
this scarcity is particularly problematic for promising deep learning
anomaly detection methods that require large training datasets
to perform well [30]. Additionally, a precise and comprehensive
definition of relevant anomalies is missing [17]. Moreover, there is
a lack of openly available energy time series with labeled anomalies
or at least energy time series known to contain anomalies [16, 17].

In order to meet these challenges, different strategies can be
applied for time series. Obviously, one canmanually label anomalies
in energy time series [33, 36, 47]. This strategy provides potentially
very accurately labeled anomalies. However, it is limited to the
anomalies contained in the time series, requires knowledge of the
underlying system and typical patterns, often involves third parties
such as facility managers or users, is time-consuming and costly,
and potentially raises privacy concerns [12].

Alternatively, one can apply a means to define the majority of the
time series as non-anomalous and the rest as anomalous, including
selection [36], rules [15], statistical methods [12], or pattern recogni-
tion methods [47]. This strategy depends less on experts. However,
it can also be limited to the anomalies contained in the time series,
it requires a strong notion of non-anomalous time series, anomalies
may remain hidden in the time series, and a time-consuming and
costly verification by an expert could still be necessary.

Another way is to increase the number of available time series
through generation, augmentation, or sampling methods, either
assuming the used time series to be anomaly-free or reproducing
time series with labeled anomalies [14, 22, 26, 46, 49]. This strategy
allows one to control the number of available time series containing
or not containing anomalies, while also requiring a strong notion of
non-anomalous time series or time series with labeled anomalies.

Lastly, as a special case of augmentation, one can insert syn-
thetic anomalies into existing time series [12, 36, 47]. This strat-
egy requires anomalies that well resemble real-world anomalies
[12, 36]. Being able to control the number and location of specified
anomalies provides a properly defined object of investigation for
anomaly detection methods [36] and turns an unsupervised into a
supervised learning task [39]. Since this strategy can be applied to
various datasets from a domain, it can also help increase the use
of available, currently underutilized unlabeled datasets to develop
anomaly detection methods [35].

Similar to other domains like intrusion detection [10, 34], secu-
rity [31], and performance monitoring [42], synthetic anomalies
are used to develop anomaly detection methods for energy time

series [e.g., 8, 20, 21, 27, 41]. However, the inserted synthetic anom-
alies and their related parameters such as amplitude and quantity
are generally not derived from real-world data and do not cover
both energy and power, the typically recorded physical quantities.
Furthermore, although [23] considers the insertion of anomalies for
time series in general, the implementation of methods to generate
the considered synthetic anomalies are not openly available and
thus cannot yet be directly applied.

Therefore, the present paper proposes a method for generating
four types of synthetic anomalies derived from real-world energy
and power time series for developing anomaly detection methods.
As a first step towards well-defined anomalies derived from real-
world data, we identify anomalies in real-world time series contain-
ing energy and power measurements that are likely to be technical
faults caused by the metering infrastructure and that may violate
the underlying distribution corresponding to normal behavior. We
then model the identified anomalies with parameters according to
their characteristics observed in the considered real-world time
series. Given the modeled anomalies, we are able to insert them as
synthetic anomalies in an arbitrary time series containing energy
and power measurements. We evaluate the identified and modeled
anomalies in two ways. First, we examine whether inserted syn-
thetic anomalies resemble the anomalies identified in real-world
time series. Second, we show the benefit of inserted anomalies for
training supervised anomaly detection methods.

The remainder of the present paper is structured as follows.
Section 2 introduces the anomalies identified in real-world time
series, before Section 3 describes how the identified anomalies
are modeled and inserted as synthetic anomalies in arbitrary time
series. In Section 4, we evaluate the generated synthetic anomalies.
In Section 5, we discuss the results and our method, before Section 6
concludes the paper.

2 IDENTIFYING REAL-WORLD ANOMALIES
In order to be able to generate realistic synthetic anomalies, we first
derive anomalies from real-world time series containing energy
and power measurements.

For this purpose, we consider electrical energy and power data
collected at the KIT Campus North, which is a subset of the data de-
scribed in [43]. This subset contains approximately 600 smart meter
readings with a quarter-hourly resolution over a period of several
years. Since these smart meters are installed in a variety of loca-
tions such as office buildings, industrial facilities, gas motors, and
photovoltaic panels, their recorded data presents typical patterns
and anomalies of consumers and producers found in an ordinary
district. For each smart meter, a time series containing energy mea-
surements and a time series containing power measurements is
available.

By carefully visually examining these time series, we are able
to (i) find typical patterns for each smart meter and (ii) identify
unusual patterns across all smart meters. In addition to both, we
make use of knowledge about the facilities recorded by the smart
meters to distinguish between anomalies and normal behavior in
each time series. For example, we expect the power consumption
of an office building not to drop to zero while an automatic lighting
system may have no power consumption at all during the day.
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(a) Anomaly type 1: The energy
time series drops to zero for at
least one time step and then
jumps back to a plausible new
value, corresponding to a nega-
tive spike potentially followed by
zero values and finally a positive
spike in the power time series.
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(b) Anomaly type 2: The gradi-
ent of the energy time series de-
creases and can fully stagnate for
several time steps, before return-
ing to the correct value. This cor-
responds to a drop to potentially
zero followed by a positive spike
in the power time series.
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(c) Anomaly type 3: The energy
time series dips suddenly, which
corresponds to a sudden negative
spike in the power time series.
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(d) Anomaly type 4: The energy
time series contains a sudden in-
crease in gradient, corresponding
to a sudden positive spike in the
power time series.

Figure 1: Examples of the four different anomaly types that are identified in the selected real-world data.

During this examination, we focus on anomalies that are likely to
be technical faults caused by the metering infrastructure and that
may violate the underlying distribution corresponding to normal
behavior with very low or high values.

Across all smart meters, we find that many of the observed anom-
alies can be assigned to one of four anomaly types (see Figure 1)
that also match general classes of anomalies described in the litera-
ture (see Table 2 in Appendix B). For each identified anomaly type,
we shortly describe its characteristics in time series containing en-
ergy and power measurements and provide a potential explanation
considering the metering infrastructure in the following.

Anomaly type 1. Anomalies of type 1 are characterized by a drop
to zero for at least one time step in the energy time series. After
the zero values, the energy time series jumps back to a plausible
new value (see Figure 1a). The corresponding power time series is
characterized by a negative spike potentially followed by multiple
zero power values and finally a positive spike. Anomalies of this
type are likely to be caused bymissing values in the recorded energy
time series that are filled with zeros.

Anomaly type 2. Anomalies of type 2 are characterized by a no-
ticeable decrease in the gradient of the energy time series. For one
time step, there can be a decrease in the gradient that can be fol-
lowed by constant energy values and that ends with a sharp increase
in the gradient until a plausible new value is reached. Alternatively,
there may be immediately constant energy values ending with an
increased gradient (see Figure 1b). In the corresponding power time
series, there is a drop followed by a positive spike. If the energy
time series contains constant energy values, the power values drop

to zero. In most of the observed cases, the height of the power spike
is closely related to the length of the anomaly, suggesting that the
power values of the constant sequence accumulate at one time step
and thus form the spike. Anomalies of this type could be due to an
interruption in the transmission of smart meter readings.

Anomaly type 3. Anomalies of type 3 are characterized by a
sudden dip in the energy time series (see Figure 1c). In the corre-
sponding power time series, there is a negative power spike at one
time step. Since this spike is rather small in some occurrences and
rather strong in others, we observe two cases, i.e., a slight and an
extreme negative power spike. Anomalies of this type could occur
due to an external adjustment of a smart meter such as a recalibra-
tion that aims to match the readings from multiple smart meters
with a specific amount of energy. Anomalies with an extreme nega-
tive power spike could be caused by a reset of the respective smart
meter.

Anomaly type 4. Anomalies of type 4 are characterized by a sud-
den increase in gradient of the energy time series relative to the
quarter-hourly resolution (see Figure 1d). In the corresponding
power time series, there is a positive power spike at one time step.
Since this spike is also rather small in some occurrences and rather
strong in others, we again observe two cases, i.e., a slight and an
extreme positive power spike. Anomalies of this type can be caused
by, for example, the change from daylight saving time to standard
time. Because of this clock change by one hour, the consumption or
generation within that hour is allocated to a single time step. This
type of anomaly can also be observed in combination with anom-
alies of type 3, indicating an external adjustment of the smart meter.
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We label anomalies of these four identified types in 50 one-year
energy and one-year power time series. Although it is theoretically
possible to derive energy time series to obtain the power time series,
we simultaneously label anomalies in both time series to eliminate
possible sources of error and guarantee reliable labels. To obtain the
50 time series, we randomly select 23 smart meters from the con-
sidered data for 2016, 21 for 2017, and three smart meters that are
present in both 2016 and 2017. As shown in Table 1 in Appendix A,
the 50 related energy and power time series of the selected smart
meters are reasonably diverse, which is consistent with the fact
that the used data set comprises smart meters at various locations.

3 MODELING AND GENERATING THE
IDENTIFIED ANOMALY TYPES

To be able to generate the identified anomalies as synthetic anom-
alies, we need to model them and to design an insertion method.
Modeling anomalies of the different types requires several parame-
ters. Before describing the concrete modeling of each anomaly type,
we briefly introduce the used parameters and how to set them.

For each previously identified anomaly type, we describe the
necessary manipulation of values — despite their proportional phys-
ical relationship — independently of each other in a given arbitrary
time series 𝐸 = 𝑒1, 𝑒2, . . . , 𝑒𝑁 containing energy measurements and
a given arbitrary time series 𝑃 = 𝑝1, 𝑝2, . . . , 𝑝𝑁 containing power
measurements. With the described manipulation, we replicate an
anomaly 𝑒 𝑗,𝑖 or 𝑝 𝑗,𝑖 of type 𝑗 with start index 𝑖 .

While anomalies of types 1 and 2 have a length 𝑙 , anomalies
of types 3 and 4 affect all entries after the time series entry 𝑖 in
an energy time series and only the entry 𝑖 itself in a power time
series. More precisely, for anomalies of types 1 and 2, we assume
the length 𝑙 ∼ U[𝑙𝑚𝑖𝑛,𝑙𝑚𝑎𝑥 ] to be from a uniform distribution in
an interval [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 ]. For anomalies of types 1 and 3 for power
time series, we additionally consider the fact that the amount of
energy at a given time step in the power time series in terms of the
constant offset 𝑘 is lost when deriving a power time series from an
energy time series. For anomalies of these types, we thus explicitly
consider the constant 𝑘 , which has to be identical for all anomalies
inserted into the same power time series, to better represent the
characteristics of power time series. Moreover, anomalies of types
3 and 4 comprise the random value 𝑟 that determines the amplitude
of their spike. We assume to be from a uniform distribution in an
interval [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥 ], i.e., 𝑟 ∼ U[𝑟𝑚𝑖𝑛,𝑟𝑚𝑎𝑥 ] .

To generate anomalies of the modeled types, all these described
parameters need to be set. For this, they can either be determined
from available labeled data (as, for example, done in Section 4.2) or
from values reported in literature (e.g., in Table 3 in Appendix C).

Anomaly type 1. We reproduce anomalies of type 1 with length
𝑙 in an energy time series 𝐸 by setting the time series entries 𝑒𝑖 to
𝑒𝑖+𝑙−1 to zero. We model anomalies of this type as

𝑒1,𝑖+𝑛 = 0, 0 ≤ 𝑛 < 𝑙, (1)

where 𝑙 is the length of the anomaly.
In order to insert anomalies of type 1 with length 𝑙 into a power

time series 𝑃 , we set the first anomalous entry 𝑝𝑖 to the negative
value of the power aggregated up to this time step 𝑖 . The next 𝑙 − 2

entries are set to zero and the last entry of the anomaly 𝑝𝑖+𝑙−1 to the
sum of the power aggregated up to time step 𝑖 + 𝑙 − 1 corresponding
to the jump in the energy time series. Formally, we describe this as

𝑝1,𝑖+𝑛 =


−1 · (∑𝑖−1

𝑡=1 𝑝𝑡 ) − 𝑘, 𝑛 = 0
0, 0 < 𝑛 < 𝑙 − 1,
(∑𝑖+𝑙−1

𝑡=1 𝑝𝑡 ) + 𝑘, 𝑛 = 𝑙 − 1
(2)

where 𝑙 ≥ 2 is the anomaly’s length and 𝑘 is the constant offset.

Anomaly type 2. To replicate anomalies of type 2 with length
𝑙 in an energy time series 𝐸, we determine the first anomalous
value 𝑒𝑖 as the average of the observed value at index 𝑖 , 𝑒𝑖 , and the
previous value 𝑒𝑖−1 weighted by the random number 𝑟 ∼ U[0,1) . All
following 𝑙−1 anomalous entries are then set to this first anomalous
value 𝑒𝑖 . Anomalies of this type can be described by

𝑒2,𝑖+𝑛 = 𝑟 · 𝑒𝑖 + (1 − 𝑟 ) · 𝑒𝑖−1, 0 ≤ 𝑛 < 𝑙, (3)

where 𝑙 is the length of the anomaly and 𝑟 ∼ U[0,1) can be assumed
from a uniform distribution and the same for all entries. Note that,
in the special case of 𝑟 = 0, the anomaly directly starts with the
value of the previous time step.

To insert anomalies of type 2 with length 𝑙 into a power time
series 𝑃 , we scale down the first anomalous entry 𝑝𝑖 using a random
number 𝑟 ∼ U[0,1) and set the subsequent 𝑙 − 2 entries to zero. In
order to form the observed peak at the last entry of the anomaly,
we set the last entry 𝑝𝑖+𝑙−1 to the sum of the original values of the
previously manipulated entries and subtract the first manipulated
value 𝑝𝑖 . Formally, the anomaly can be described as

𝑝2,𝑖+𝑛 =


𝑟 · 𝑝𝑖 , 𝑛 = 0
0, 0 < 𝑛 < 𝑙 − 1,
(1 − 𝑟 ) · 𝑝𝑖 + (∑𝑖+𝑙−1

𝑡=𝑖+1 𝑝𝑡 ), 𝑛 = 𝑙 − 1
(4)

where 𝑙 ≥ 2 is the length of the anomaly and 𝑟 ∼ U[0,1) . Analo-
gously to the energy time series, in the special case of 𝑟 = 0, the
manipulated entries directly start with a zero.

Anomaly type 3. We reproduce anomalies of type 3 in an energy
time series 𝐸 by subtracting a certain amount of energy from every
time series entry with an index greater than or equal to 𝑖 . The
amount of energy to be subtracted depends on the observed case,
i.e., the slight and the extreme negative spike. For the slight negative
power spike, we insert anomalies of type 3 by subtracting a value
based on the energy difference between the anomalous entry 𝑒𝑖 and
its predecessor 𝑒𝑖−1 multiplied by a random value 𝑟 . The anomaly
can formally be described by

𝑒3,𝑖+𝑛 = 𝑒𝑖+𝑛 − 𝑟 · |𝑒𝑖 − 𝑒𝑖−1 |, 𝑛 ≥ 0, (5)

where 𝑟 is the random value.
For the extreme negative power spike that is likely caused by

a smart meter reset to zero, we subtract the value of the entry 𝑒𝑖
from all subsequent time series entries, i.e.,

𝑒3,𝑖+𝑛 = 𝑒𝑖+𝑛 − 𝑒𝑖 , 𝑛 ≥ 0. (6)

In order to insert anomalies of type 3 into a power time series
𝑃 , we generate anomalies for the slight negative peak, by setting
the anomalous entry 𝑝𝑖 to the previous value 𝑝𝑖−1 multiplied by a
random value 𝑟 . Formally, we describe this as

𝑝3,𝑖 = −𝑟 · 𝑝𝑖−1, (7)
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(a) Synthetic anomalies of type
1: The characteristic drop to zero
in the energy time series and
the first negative, then positive
spikes in the power time series
are clearly visible.
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(b) Synthetic anomalies of type
2: We observe the characteristic
stagnation in the gradient and
following spring in the energy
time series, as well as the drop
and subsequent positive spike in
the power time series.
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(c) Synthetic anomalies of type 3:
The characteristic decrease in the
gradient of the energy time se-
ries and corresponding negative
spike in the power time series are
clearly observable.
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(d) Synthetic anomalies of type
4: We observe the characteristic
sudden increase in gradient of
the energy time series and cor-
responding positive spike in the
power time series.

Figure 2: Examples of generated synthetic anomalies for each the four modeled anomaly types inserted into exemplary data.
The generated synthetic anomalies show similar characteristics as the identified real-world anomalies.

where 𝑟 is the random value.
For the extreme negative spike corresponding to a drop of the

energy time series to zero, we use

𝑝3,𝑖 = −1 · (
𝑖−1∑︁
𝑡=1

𝑝𝑡 ) − 𝑘, (8)

where 𝑘 is the previously defined constant offset.

Anomaly type 4. To replicate anomalies of type 4, we apply a
similar manipulation as for anomalies of type 3. To cover both the
observed slight and extreme cases, we use two different sampling
intervals for 𝑟 . The anomaly is thus defined as

𝑒4,𝑖+𝑛 = 𝑒𝑖+𝑛 + 𝑟 · |𝑒𝑖 − 𝑒𝑖−1 |, 𝑛 ≥ 0, (9)

where 𝑟 is the random value sampled twice to represent the slight
and the extreme case

To insert anomalies of type 4 into a power time series 𝑃 , we
model the observed positive spike 𝑝𝑖 by multiplying its predecessor
𝑝𝑖−1 with a random value 𝑟 sampled from two different intervals.
Again, to cover both the observed slight and the extreme case, we
use two different sampling intervals for 𝑟 . Formally, it is defined as

𝑝4,𝑖 = 𝑟 · 𝑝𝑖−1, (10)

where 𝑟 is the random value sampled twice to represent the slight
and the extreme case.

When generating anomalies of these four types, we need to con-
sider the potential interaction between the modeled anomaly types.
With regard to energy time series, one first has to insert anomalies

of types 3 and 4 before anomalies of types 1 and 2 because anom-
alies of types 3 and 4 affect all values after their occurrence and
thus potentially influence anomalies of the other types. Concern-
ing power time series, one can, however, insert anomalies in the
ascending order of the type. To avoid overlapping anomalies, we
use a sequential approach. For each anomaly to be generated, we
firstly search for an anomaly-free sequence (𝑥𝑖 , ..., 𝑥𝑖+𝑙 ) in the time
series 𝑋 before we insert the anomaly. Figure 2 shows a synthetic
anomaly of each anomaly type generated with this implementation.

To be able to reproducibly generate anomalies of the four types
for an energy or power time series, we implement an openly avail-
able pipeline1 using pyWATTS2 [13]. It allows to control the types,
the quantities, and the parameters of the synthetic anomalies that
are inserted into an arbitrary energy or power time series.

4 EVALUATION
To evaluate the modeled anomalies, we perform a twofold evalu-
ation. First, we examine whether generated synthetic anomalies
resemble the anomalies identified in real-world time series. Sec-
ond, we evaluate the benefit of synthetic anomalies for training
supervised anomaly detection methods. Before describing both eval-
uations in detail, we introduce the selected data, the calculation
of the parameters used for the evaluated generation method, the
applied evaluation methods, and the experimental setting.

1https://github.com/KIT-IAI/GeneratingSyntheticEnergyPowerAnomalies
2https://github.com/KIT-IAI/pyWATTS
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4.1 Used Data
For the evaluation, we also use the previously introduced electrical
energy and power data collected at the KIT Campus North. More
specifically, we again consider the previously labeled 50 time series
for the evaluation because of the available labels for the related
time series containing energy and power measurements. Since time
series containing energy measurements are typically monotonically
rising and thus non-stationary, one would usually apply differenc-
ing to make it stationary and thus useful for time series analyses
[19]. As the already available time series containing power mea-
surements are exactly the result of such a differencing due to the
proportional physical relationship between energy and power, we
focus on them in the following.

To obtain anomaly-free time series containing power measure-
ments for the following analyses, we first use the corresponding
manually labeled 50 one-year time series containing energy mea-
surements. More precisely, we mark the labeled anomalies in these
time series as missing values and apply the Copy-Paste Imputation
(CPI) method [45]. The CPI method has shown a strong perfor-
mance in imputing missing values with realistic patterns while
preserving the amount of energy associated with the missing val-
ues. After imputing the anomalies marked as missing values in
these energy time series, we calculate their derivative to obtain the
corresponding anomaly-free power time series. We use the result-
ing anomaly-free power time series as the basis for inserting the
generated synthetic anomalies used in the evaluation.

For the application of the selected evaluation methods, we finally
create overlapping samples with a size of 96 from all considered
power time series, namely the power time series containing iden-
tified anomalies, the power time series reproducing the identified
anomalies with synthetic anomalies, and the power time series
containing additional synthetic anomalies.

4.2 Used Anomaly Generation Parameters
We determine the parameters required for the generation of the
desired synthetic anomalies from the selected labeled power time
series. From these time series, we can directly determine the number
of anomalies of all four types as well as the minimum and maximum
length 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 of type 1 and 2 anomalies. For 𝑘 , we use the
first value in the corresponding available energy times for the
comparison between synthetic and identified anomalies or set it
to zero when evaluating the benefit of synthetic anomalies for the
training of detection methods3.

Lastly, we determine 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 for the slight and the extreme
case for anomaly type 3 and 4 using DBSCAN [7]. For both anomaly
types, we calculate 𝑟 = 𝑝𝑖/𝑝 for all labeled anomalies of this type
in the power time series4, where 𝑝 = (∑𝑖+5

𝑡=𝑖−5 𝑝𝑡 − 𝑝𝑖 )/10 is the
local average with an arbitrarily selected range of 10. We cluster
the result into two classes. For both types, we assume that the class
with the majority of the considered anomalies represents the slight
power spike case and the other the extreme spike case. For anomaly

3If energy time series are not available, one could sum the power over a year of data
and multiply it by the presumed number of years the smart meter has been in service.
4Given energy time series, one could analogously calculate 𝑟 =

𝑒𝑖−1 − 𝑒𝑖

𝑒𝑖−1 − 𝑒𝑖−2
for anom-

alies of type 3 and 𝑟 =
𝑒𝑖 − 𝑒𝑖−1
𝑒𝑖−1 − 𝑒𝑖−2

for anomalies of type 4.

type 3, we thus select the smallest and the largest value in the
majority class as 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 . For anomaly type 4, we select the
smallest and the largest value from each class as 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 for
the corresponding case.

Using this calculation, we aim to reproduce the anomalies con-
tained in the original power time series with the parameters re-
ported in Table 4 in Appendix C to examine whether the synthetic
anomalies resemble the anomalies identified in the real-world time
series. To evaluate the benefit of synthetic anomalies for training
supervised anomaly detection methods, we additionally increase
the number of anomalies compared to the original power time series
by doubling the number of anomalies (see Table 5 in Appendix C).
Note that, for both evaluations, we limit the minimum length of
type 1 anomalies to 92 and type 2 anomalies to 44 to consider the
imbalanced distributions of these lengths. Additionally, we insert
only anomalies of the extreme case of types 3 and 4 as soon as one
exists in the corresponding labeled power time series.

4.3 Applied methods
In the evaluation, we apply four different methods, which we de-
scribe in the following.

To examine whether the synthetic anomalies resemble the iden-
tified anomalies, we apply a statistical visualization and a discrim-
inator method. As visualization method, we use the t-distributed
stochastic neighbor embedding (t-SNE) [40]. The t-SNE visualizes
high-dimensional data in a two-dimensional map such that simi-
lar data points are likely to appear close together and dissimilar
data points far apart. As discriminator method, we implement a
simple three-layered fully-connected Neural Network (NN) with
ten neurons in the hidden layer and ReLU as activation function.
In this NN, all neurons are interconnected across the layers and
the neuron in the output layer determines whether the input data
belong to the original data or not. For training the NN, we use the
binary cross-entropy as loss and RMSprop [18] as optimizer.

To evaluate the benefit of synthetic anomalies for their training,
we apply two supervised anomaly detection methods. More pre-
cisely, we select a kNN classifier and a decision tree classifier. The
kNN classifier uses a proximity measure to classify a test sample
based on the similarity of training instances [5]. In comparison, as
a non-parametric method, the decision tree learns simple decision
rules inferred from data features [2].

4.4 Experimental Setting
The experimental setting for the evaluation comprises the selected
metrics and the used hard- and software.

Metrics. The evaluation is based on the two following metrics.
For the aforementioned discriminator method, we use the dis-

criminative score. It is defined as

Discriminative score = |Accuracy − Dummy|, (11)

where Accuracy is the result from the applied discriminator method.
For the supervised anomaly detection methods, we apply the

commonly used F1-Score. It is the harmonic mean between preci-
sion and recall and is defined as

F1-Score =
TP

TP + 1
2 · (FP + FN)

, (12)
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Figure 3: A t-SNE visualization of an identical number of samples containing identified anomalies and synthetic anomalies
from three exemplary time series. For all three time series, the majority of the identified and inserted synthetic anomalies
overlap, indicating that they have similar properties.

where 𝑇𝑃 are the true positives, 𝐹𝑃 the false positives, and 𝐹𝑁 the
false negatives in the considered classification.

Hardware and software. Throughout the evaluation, we apply
a standard computer with a four core i7 CPU and 16 GB of RAM.
Moreover, all applied methods are implemented in Python. The t-
SNE, the decision tree, and the kNN are implemented with SKLearn
[32] and the fully-connected NN with Keras [4]. The evaluation is
automated using these implementations with pyWATTS5 [13].

4.5 Comparing Identified and Synthetic
Anomalies

For the synthetic anomalies to be useful, they must resemble the
identified real-world anomalies and ideally be indistinguishable
from them. In this section, we first qualitatively compare identified
and synthetic anomalies with the help of t-SNE visualizations, be-
fore quantitatively comparing them with the discriminator method.

Firstly, we examine the t-SNE visualizations of an identical num-
ber of samples containing identified and synthetic anomalies from
three exemplary time series in two versions, with identified anom-
alies and with synthetic anomalies reproducing the identified anom-
alies.

As show in Figure 3, we observe that, for all three time series, the
samples with identified anomalies and the samples with inserted
synthetic anomalies overlap in most cases. The overlap indicates
that the synthetic anomalies exhibit properties similar to the iden-
tified anomalies.

Secondly, we consider the discriminative score of the discrimina-
tor method in detecting the difference between identified anomalies
and inserted synthetic anomalies. For this, we consider samples con-
taining anomalies from all 50 considered time series in two versions.
The first version comprises the power time series with identified
anomalies, whereas the second version contains the anomaly-free
power time series with inserted synthetic anomalies.

A histogram of the discriminative score is shown in Figure 4. The
discriminative score rounded to one decimal digit, whose maximum
5https://github.com/KIT-IAI/pyWATTS
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Figure 4: A histogram of the discriminative score of all sam-
ples containing identified or synthetic anomalies from the
50 considered time series. The x-axis shows the histogram
bins for the discriminative score in steps of 0.125, whereas
the number of occurrences in each bin is plotted on the y-
axis. The majority of the samples has a discriminative score
of 0.25 or smaller, indicating that the discriminator cannot
distinguish between identified and synthetic anomalies.

is 0.5, is plotted on the x-axis to provide bins for the histogram and
the number of occurrences in each bin is shown on the y-axis. We
observe that the discriminative score is 0.25 or smaller for a large
majority of the samples and higher for only few samples. This result
indicates that the discriminator is mostly unable to differentiate
between identified and synthetic anomalies.

4.6 Benefit of Synthetic Anomalies for Anomaly
Detection

To evaluate whether synthetic anomalies exhibiting real-world char-
acteristics are beneficial, we exemplarily analyze this benefit for
training supervised anomaly detection methods. For this, we com-
pare the detection performance of two different training strategies
based on the F1-Score. The first strategy is Train Real Test Real
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Figure 5: A comparison of the detection performance of the
two training strategies TrainReal Test Real (TRTR) and Train
Synthetic Test Real (TSTR) based on the F1-Score for the
two supervised detection methods kNN and decision tree.
A strategy wins, if the resulting detection performs better
than that of the other strategy and is considered equal if it
performs equally.

(TRTR), where we use original data with identified anomalies for
both the training and testing. The second strategy is Train Synthetic
Test Real (TSTR), where we train the anomaly detection method on
data containing more synthetic anomalies than the original data
and test its performance on original data with identified anomalies.

Figure 5 shows a comparison of the detection performance of
these two strategies for the kNN and the decision tree. This com-
parison comprises the number of wins for each strategy, whereby
a strategy is considered to win when its detection performance
is better than that of the other strategy. If both strategies provide
an identical detefection performance, they are considered equal.
Independent of the considered detection method, data containing
more synthetic anomalies than the original data wins far more often
than data only containing identified anomalies. For the kNN, the
number of wins with synthetic anomalies is 2.6 times larger (21
vs. 8), while both strategies perform equally in 21 cases. For the
decision tree, data containing more synthetic anomalies than the
original data wins 25 times, whereas data with identified anomalies
only wins 20 times, and in 5 cases the strategies perform equally.

5 DISCUSSION
This section discusses the results, the modeled anomalies, and the
proposed method for modeling and generating synthetic anomalies.

In the results, the t-SNE visualizations of synthetic and identified
anomalies illustrate that the generated synthetic anomalies mostly
overlap with the identified anomalies. Similarly, the histogram of
the discriminative scores shows that synthetic and identified anom-
alies are difficult to distinguish with the discriminator method. Both
results confirm that our synthetic anomalies accurately replicate
the identified anomalies. From this observation, we conclude that
the proposed method is capable of generating synthetic anomalies
with real-world properties. Furthermore, since the TSTR strategy
performs better or as well as TRTR in most cases, considering these

synthetic anomalies in the training of an unsupervised anomaly
detection method is beneficial for its detection performance. Given
this observation, the proposed anomaly generation method can be
used to improve anomaly detection methods in the future.

Despite these promising initial results, we note that our experi-
ments are limited to the considered data, the associated production
and consumption, and the anomalies identified in this data. Specifi-
cally for the extreme cases of anomaly types 3 and 4, the number of
occurrences in our data set are small. Therefore, the parameters se-
lected for the synthetic anomalies are based on a small sample size
and we expect that more accurate results could be achieved with
more data. Furthermore, the identified anomaly types are likely to
be the result of technical failures in the metering infrastructure that
cause unusual values such as extreme positive or negative spikes
or a series of zeros. These types of anomalies have clearly defined,
often extreme characteristics and are therefore relatively easy to
detect. We expect that anomalies characterized by typical patterns
at uncommon levels – such as unusual consumption – are more dif-
ficult to detect and, therefore, synthetic anomalies that reflect these
characteristics could further improve anomaly detection methods.

We also note that our method currently inserts synthetic anom-
alies for energy and power time series separately. Since most appli-
cations only consider either energy or power time series separately,
we believe this limitation to be not critical. However, due to the
physical relationship between energy and power, simultaneously
inserting multivariate synthetic anomalies for both energy and
power time series could be beneficial in some cases.

6 CONCLUSION
The present paper introduces a method for generating four types of
synthetic anomalies derived from real-world anomalies that can be
inserted into arbitrary energy and power time series. To develop this
generation method, we firstly analyze real-world energy and power
time series to identify four commonly occurring anomaly types.
Given this identified anomaly types, we formally model each type
and then use our generation method to insert a chosen number of
each synthetic anomaly type into arbitrary energy and power time
series. We show that our method is capable of generating realistic
synthetic anomalies and that these anomalies are beneficial for
training supervised anomaly detection methods.

In future work, we plan to consider further energy and power
time series, especially those that contain anomalies characterized
by abnormal patterns such as anomalies caused by unusual con-
sumption. Furthermore, to model the physical relationship between
energy and power, future work should consider the simultane-
ous multivariate generation of synthetic anomalies for energy and
power time series. Lastly, future work could include fuzziness into
the generation to increase the variation of the synthetic anomalies.
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A STATISTICS
Table 1: Overview of the 50 one-year time series from the selected smart meters that are used to label the four identified types
of anomalies. For each time series, the overall average power and energy consumption as well as the number, minimum length,
maximum length, average power consumption, and average energy consumption of the labeled anomalies of all four types are
reported. Note that anomalies of types (3) and (4) always have a length of one and that these types comprise two cases.

Overall Type 1 Type 2 Type 3 Type 4

Ti
m
e
se
rie

s

kW kW
h

# M
in

M
ax

k W kW
h

# M
in

M
ax

k W kW
h

# k W kW
h

# k W k W
h

1 11.8 36136.4 8 2 208 16.9 9839.4 3 2 3 15.5 36334.9 0 - - 1 36779.9 27.1
2 28.6 6308.5 7 2 208 22.9 1590.8 3 2 3 36.8 5310.9 1 6740.1 14.0 1 6776.9 62.7
3 121.3 16508.4 8 2 208 144.3 3905.3 14 2 27 144.0 9231.7 2 6255.1 -10008059.8 4 10786.9 5006955.5
4 35.7 51037.7 7 2 208 34.6 15653.9 3 2 3 36.9 50612.8 1 53132.4 15.5 1 53290.0 80.7
5 91.6 67761.1 9 2 208 -13389.9 18031.2 15 2 27 98.5 34858.4 2 12797.3 -25481.8 3 8718.7 2740483.8
6 1.7 58368.5 8 2 8931 0.9 12781.4 0 - - - - 0 - - 0 - -
7 301.7 28417.3 7 2 208 250.8 8649.4 3 2 3 345.5 27697.7 1 30783.5 178.1 1 30923.4 480.5
8 58.1 1247.5 9 2 208 11662.8 375.7 13 2 27 124.6 688.8 2 490.4 -23582.7 2 331.9 456993.9
9 15.5 15227.5 7 2 208 12.3 4678.7 3 2 332 16.8 15105.7 1 16234.2 8.9 1 16311.2 37.1
10 4.4 65001.2 9 2 208 -2523.3 12794.6 7 2 27 0.8 22416.6 0 - - 0 - -
11 69.2 29795.1 7 2 208 64.4 9191.6 3 2 332 74.7 29882.1 1 30572.6 37.0 1 30622.0 144.9
12 11.9 49030.3 7 2 208 14.8 15179.6 3 2 332 9.0 49333.9 1 49416.9 4.6 2 49375.3 29.8
13 27.8 7366.5 8 2 208 63.3 2381.6 7 2 270 35.4 7299.3 1 8021.2 21.2 1 8077.8 50.2
14 12.0 25829.4 9 2 208 20.2 8235.4 5 3 270 11.3 25985.9 1 26075.4 5.2 1 26081.9 26.3
15 13.9 62656.2 7 2 208 16.5 19379.0 4 2 5 17.8 63026.7 1 63571.0 8.0 2 63322.9 25.0
16 0.7 6757.4 7 2 208 0.6 2091.7 4 2 6 0.7 6798.9 1 6822.1 0.3 2 6811.0 1.4
17 56.6 72354.2 7 2 208 66.3 22360.6 4 2 5 72.3 72769.3 1 73590.1 33.1 1 73651.3 102.7
18 19.6 39898.6 7 2 208 22.1 12328.3 2 3 16 23.1 40021.8 1 40593.7 8.7 2 40667.8 63.4
19 0.3 8018.0 7 2 208 0.4 2480.6 2 3 16 0.2 8058.0 1 8089.7 0.1 1 8091.9 0.5
20 2.3 34096.7 7 2 208 3.2 10546.5 2 3 16 2.2 34301.2 1 34398.8 1.2 1 34412.7 8.1
21 1.7 173336.8 7 2 208 1.1 53519.8 3 3 16 0.4 171582.1 1 178587.3 0.7 2 174707.7 3.9
22 34.0 24674.7 7 2 208 36.8 7574.9 2 3 16 44.0 24409.0 1 26082.4 21.5 1 26165.2 53.7
23 1.0 8222.8 7 2 208 1.3 2135.3 2 3 16 1.1 8763.0 1 9449.6 0.1 1 9474.5 0.3
24 1.1 79733.7 7 2 208 0.4 24468.9 0 - - - - 0 - - 1 83031.0 4.9
25 1.7 25918.2 7 2 208 1.7 7405.4 2 3 16 2.0 26573.7 1 28404.9 0.3 1 28593.6 2.4
26 25.3 47407.2 7 2 208 28.6 14622.6 2 3 16 30.3 47470.3 1 48514.9 13.6 1 48585.8 53.9
27 28.2 151172.1 12 2 6 28.8 85601.1 0 - - - - 0 - - 1 235908.3 41.3
28 7.1 58558.8 5 2 9 8.3 13350.9 2 10 17 6.1 58462.0 0 - - 3 58827.1 279.6
29 13.1 38328.4 5 2 9 18.6 8748.0 1 17 17 6.5 38388.1 0 - - 1 38717.3 22.4
30 0.7 570.7 18 2 9 0.5 219.4 1 17 17 0.7 575.1 0 - - 0 - -
31 0.2 183.4 16 2 9 0.3 67.0 1 17 17 0.2 183.6 0 - - 1 187.4 0.5
32 83.3 91543.3 5 2 9 99.4 20869.8 1 17 17 113.4 91660.3 0 - - 1 92873.7 127.0
33 1.0 56481.2 5 2 9 0.9 12980.3 1 17 17 1.2 56629.4 0 - - 1 59574.2 2.3
34 1.1 163877.9 6 2 1363 1.9 32573.8 2 1731 6452 0.6 171591.2 0 - - 0 - -
35 2.0 170468.5 5 2 9 3.4 39103.9 2 17 3535 2.0 170194.1 0 - - 2 176801.9 9.2
36 54.6 455610.1 7 2 9 64.9 126438.8 2 17 4425 13.4 461428.7 0 - - 0 - -
37 0.4 224231.4 5 2 9 0.3 51062.6 3 17 2290 0.3 224305.7 0 - - 1 225476.6 1.5
38 1.1 52122.9 5 2 9 1.6 11861.1 2 10 17 1.9 52123.0 0 - - 2 52182.2 3.2
39 0.6 7139.3 5 2 9 0.6 1627.7 2 7 17 0.9 7086.7 0 - - 2 7176.6 1.0
40 3.1 11695.8 5 2 9 4.6 2685.1 2 10 17 1.9 11667.7 0 - - 2 11754.8 165.1
41 19.3 31659.7 6 2 386 36.1 6086.3 5 17 3516 12.4 32017.5 0 - - 0 - -
42 0.7 103539.5 6 2 452 0.7 19983.6 1 17 17 0.8 105146.9 0 - - 2 105784.1 195.0
43 4.6 19312.0 5 2 9 6.8 4425.2 2 2 17 5.6 19260.8 0 - - 1 19401.5 25.7
44 96.3 93851.6 5 2 9 90.1 21437.6 1 17 17 166.7 94007.3 0 - - 1 96294.1 188.9
45 85.4 45205.9 5 2 9 67.0 10358.4 1 17 17 193.9 45306.2 0 - - 1 47441.0 203.2
46 18.8 17973.7 6 2 488 33.1 3497.5 2 727 1957 33.6 18307.7 0 - - 1 18924.6 19.9
47 0.2 199217.2 5 2 9 0.1 45346.7 0 - - - - 0 - - 1 199777.8 0.9
48 1.6 43087.4 6 2 9 3.3 9424.6 4 8 17 2.4 40338.4 0 - - 1 44925.4 5.2
49 1.2 8411.2 7 2 9 1.2 2724.2 3 8 17 1.1 8273.2 0 - - 1 8594.0 2.6
50 56.4 28194.2 6 2 9 0.0 6050.3 5 8 14869 52.8 28081.2 0 - - 0 - -
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B ANOMALY TYPES IN THE LITERATURE
Table 2: Overview of the anomaly types identified in the power and energy time series of the considered data and exemplary
matching classes in the literature.

Time series Matching classes in literature

Anomaly type (1) Energy "temporary change (ST-VIIb)" and "variation change (ST-VIIf)" [11], "CONSTANT fault" [38]
Power "temporary change (ST-VIIb)" and "variation change (ST-VIIf)" [11]

Anomaly type (2) Energy "temporary change (ST-VIIb)" and "variation change (ST-VIIf)" [11], "stuck-at fault" [29], "stuck fault"
[48]

Power "temporary change (ST-VIIb)" and "variation change (ST-VIIf)" [11]
Anomaly type (3) Energy "level shift (ST-VIIc)" [11]

Power "local additive (ST-IVe)" [11], "outlier fault" [29], "SHORT fault" [38], "spike fault" [48]
Anomaly type (4) Energy "level shift (ST-VIIc)" [11]

Power "local additive (ST-IVe)" [11], "outlier fault" [29], "SHORT fault" [38], "spike fault" [48]

C PARAMETERS
Table 3: Summary of the values determined from the 50 one-year power time series of the selected smart meters for the offset 𝑘 ,
number, minimum length, maximum length, 𝑟𝑚𝑖𝑛 , and 𝑟𝑚𝑎𝑥 as presented in Table 4. These values can be used as parameters to
generate synthetic anomalies of the four modeled types for power time series. Note that anomalies of types (3) and (4) always
have a length of one and that these types comprise two cases.

Type 1 Type 2 Type 3 Type 4
𝑘 # Min Max # Min Max # 𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥 # 𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥

[177, 431796] [5, 18] 3 [3, 4465] [0, 15] [2, 1731] [2, 7434] [0, 2] 0.61
-

1.62
- [0, 4] 1.15

11.01
8.1
13
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Table 4: Overview of the number, minimum length, maximum length, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , and 𝑘 used as parameters to generate synthetic
anomalies for the evaluated 50 one-year power time series from the selected smartmeters using the t-SNE and the discriminative
method. Note that anomalies of types (3) and (4) always have a length of one and that these types comprise two cases.

Time Type 1 Type 2 Type 3 Type 4
series 𝑘 # Min Max # Min Max # 𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥 # 𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥

1 35787 8 3 96 3 2 3 0 - - 1 1.15 8.1
2 5730 7 3 96 3 2 3 1 0.61 1.62 1 1.15 8.1
3 17649 8 3 96 14 2 27 2 - - 4 11.01 13
4 48127 7 3 96 3 2 3 1 0.61 1.62 1 1.15 8.1
5 68477 9 3 96 15 2 27 2 - - 3 11.01 13
6 80207 8 3 96 0 - - 0 - - 0 1.15 8.1
7 25239 7 3 96 3 2 3 1 0.61 1.62 1 1.15 8.1
8 731 9 3 96 13 2 27 2 - - 2 11.01 13
9 14104 7 3 96 3 2 48 1 0.61 1.62 1 1.15 8.1
10 49387 9 3 96 7 2 27 0 - - 0 - -
11 29056 7 3 96 3 2 48 1 0.61 1.62 1 1.15 8.1
12 49172 7 3 96 3 2 48 1 0.61 1.62 2 1.15 8.1
13 6393 8 3 96 7 2 48 1 0.61 1.62 1 1.15 8.1
14 25862 9 3 96 5 3 48 1 0.61 1.62 1 1.15 8.1
15 62272 7 3 96 4 2 5 1 0.61 1.62 2 1.15 8.1
16 6764 7 3 96 4 2 6 1 0.61 1.62 2 1.15 8.1
17 71565 7 3 96 4 2 5 1 0.61 1.62 1 1.15 8.1
18 39421 7 3 96 2 3 16 1 0.61 1.62 2 11.01 13
19 8020 7 3 96 2 3 16 1 - - 1 1.15 8.1
20 34042 7 3 96 2 3 16 1 - - 1 1.15 8.1
21 168614 7 3 96 3 3 16 1 - - 2 11.01 13
22 23011 7 3 96 2 3 16 1 0.61 1.62 1 1.15 8.1
23 2653 7 3 96 2 3 16 1 - - 1 11.01 13
24 75229 7 3 96 0 - - 0 - - 1 11.01 13
25 17937 7 3 96 2 3 16 1 - - 1 1.15 8.1
26 46301 7 3 96 2 3 16 1 0.61 1.62 1 1.15 8.1
27 28114 12 3 6 0 - - 0 - - 1 1.15 8.1
28 58016 5 3 9 2 10 17 0 - - 3 11.01 13
29 37605 5 3 9 1 17 17 0 - - 1 1.15 8.1
30 509 18 3 9 1 17 17 0 - - 0 - -
31 177 16 3 9 1 17 17 0 - - 1 1.15 8.1
32 89750 5 3 9 1 17 17 0 - - 1 1.15 8.1
33 51978 5 3 9 1 17 17 0 - - 1 1.15 8.1
34 165403 6 3 96 2 44 48 0 - - 0 - -
35 161244 5 3 9 2 17 48 0 - - 2 11.01 13
36 431796 7 3 9 2 17 48 0 - - 0 - -
37 222477 5 3 9 3 17 48 0 - - 1 1.15 8.1
38 52017 5 3 9 2 10 17 0 - - 2 11.01 13
39 7001 5 3 9 2 7 17 0 - - 2 1.15 8.1
40 11188 5 3 9 2 10 17 0 - - 2 11.01 13
41 31823 6 3 96 5 17 48 0 - - 0 - -
42 102079 6 3 96 1 17 17 0 - - 2 11.01 13
43 18806 5 3 9 2 2 17 0 - - 1 11.01 13
44 90338 5 3 9 1 17 17 0 - - 1 1.15 8.1
45 42124 5 3 9 1 17 17 0 - - 1 1.15 8.1
46 17234 6 3 96 2 44 48 0 - - 1 1.15 8.1
47 198393 5 3 9 0 - - 0 - - 1 11.01 13
48 32838 6 3 9 4 8 17 0 - - 1 11.01 13
49 8159 7 3 9 3 8 17 0 - - 1 1.15 8.1
50 26747 6 3 9 5 8 48 0 - - 0 - -
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Table 5: Overview of the number, minimum length, maximum length, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , and 𝑘 used as parameters to generate synthetic
anomalies for the evaluated 50 one-year power time series from the selected smart meters regarding the training of the
evaluated supervised anomaly detection methods. Note that anomalies of types (3) and (4) always have a length of one and that
these types comprise two cases.

Time Type 1 Type 2 Type 3 Type 4
series 𝑘 # Min Max # Min Max # 𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥 # 𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥

1 0 16 3 96 6 2 3 0 - - 2 1.15 8.1
2 0 14 3 96 6 2 3 2 0.61 1.62 2 1.15 8.1
3 0 16 3 96 28 2 27 4 - - 8 11.01 13
4 0 14 3 96 6 2 3 2 0.61 1.62 2 1.15 8.1
5 0 18 3 96 30 2 27 4 - - 6 11.01 13
6 0 16 3 96 0 - - 0 - - 0 - -
7 0 14 3 96 6 2 3 2 0.61 1.62 2 1.15 8.1
8 0 18 3 96 26 2 27 4 - - 4 11.01 13
9 0 14 3 96 6 2 48 2 0.61 1.62 2 1.15 8.1
10 0 18 3 96 14 2 27 0 - - 0 - -
11 0 14 3 96 6 2 48 2 0.61 1.62 2 1.15 8.1
12 0 14 3 96 6 2 48 2 0.61 1.62 4 1.15 8.1
13 0 16 3 96 14 2 48 2 0.61 1.62 2 1.15 8.1
14 0 18 3 96 10 3 48 2 0.61 1.62 2 1.15 8.1
15 0 14 3 96 8 2 5 2 0.61 1.62 4 1.15 8.1
16 0 14 3 96 8 2 6 2 0.61 1.62 4 1.15 8.1
17 0 14 3 96 8 2 5 2 0.61 1.62 2 1.15 8.1
18 0 14 3 96 4 3 16 2 0.61 1.62 4 11.01 13
19 0 14 3 96 4 3 16 2 - - 2 1.15 8.1
20 0 14 3 96 4 3 16 2 - - 2 1.15 8.1
21 0 14 3 96 6 3 16 2 - - 4 11.01 13
22 0 14 3 96 4 3 16 2 0.61 1.62 2 1.15 8.1
23 0 14 3 96 4 3 16 2 - - 2 11.01 13
24 0 14 3 96 0 - - 0 - - 2 11.01 13
25 0 14 3 96 4 3 16 2 - - 2 1.15 8.1
26 0 14 3 96 4 3 16 2 0.61 1.62 2 1.15 8.1
27 0 24 3 6 0 - - 0 - - 2 1.15 8.1
28 0 10 3 9 4 10 17 0 - - 6 11.01 13
29 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
30 0 36 3 9 2 17 17 0 - - 0 - -
31 0 32 3 9 2 17 17 0 - - 2 1.15 8.1
32 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
33 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
34 0 12 3 96 4 44 48 0 - - 0 1.15 8.1
35 0 10 3 9 4 17 48 0 - - 4 11.01 13
36 0 14 3 9 4 17 48 0 - - 0 - -
37 0 10 3 9 6 17 48 0 - - 2 1.15 8.1
38 0 10 3 9 4 10 17 0 - - 4 11.01 13
39 0 10 3 9 4 7 17 0 - - 4 1.15 8.1
40 0 10 3 9 4 10 17 0 - - 4 11.01 13
41 0 12 3 96 10 17 48 0 - - 0 - -
42 0 12 3 96 2 17 17 0 - - 4 11.01 13
43 0 10 3 9 4 2 17 0 - - 2 11.01 13
44 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
45 0 10 3 9 2 17 17 0 - - 2 1.15 8.1
46 0 12 3 96 4 44 48 0 - - 2 1.15 8.1
47 0 10 3 9 0 - - 0 - - 2 11.01 13
48 0 12 3 9 8 8 17 0 - - 2 11.01 13
49 0 14 3 9 6 8 17 0 - - 2 1.15 8.1
50 0 12 3 9 10 8 48 0 - - 0 - -
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