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Abstract
Insight generation from electrochemical experiments
augmented by data science requires broad, systematic, and
well-defined parameter variations which build upon automation,
data management, and flexible instrumentation interfaces.
Combinatorial electrochemical synthesis of interfaces and in-
terphases with liquid electrolytes by automated high-throughput
robots offers the required high reproducibility. However, auto-
mation of electrochemistry is not enough as data needs to be
collected in ways that make it machine readable and inter-
pretable. Once established this integration allows scientists and
algorithms to transfer knowledge and insights from interfaces
and interphases to systems like batteries. Herein, we present
an overview of recent innovative methods of combinatorial
electrochemistry and synthesis which have been integrated into
our platform for accelerated electrochemical storage research
(PLACES/R), targeting the entire battery research value chain.
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Introduction
Electrochemistry for energy storage or energy conver-
sion often involves finding better materials or processes
to optimize functional performance or, through well-
defined parameter variation, gain a mechanistic under-

standing of the underlying physicochemical parameters
[1]. Typically, these variations necessitate a series of
(complex), often manually performed experiments [2].
Manual experimentation is time and cost-intensive,
bears the problem of low reproducibility, and compli-
cates digitalization [3,4]. A lack of data management
also confounds integration [5] with other methods for
the generation of compositionestructureeproperty
maps [6] and data science [7] methods. Electrochem-
istry performed at greater throughput, productivity,
reproducibility, and with data management enables

transfer learning [8] linking interfacial to system prop-
erties [9]. Such scale bridging would however not just
require innovative high-throughput instrumentation
and combinatorial synthesis, but also the integration
between them. The integration of combinatorial syn-
thesis, high-throughput electrochemistry, and data sci-
ence is going to be the major driving force in establishing
materials acceleration platforms [10] for rapid discovery,
characterization, understanding and upscaling of cata-
lysts, battery materials and electrochemical energy
harvesting. In the following sections we will give brief

state of the art examples and challenges for room-
temperature liquid electrolyte electrochemistry and
discuss how we envision surmounting these into a
platform for accelerated electrochemical energy-storage
research (PLACES/R).
Terminology of combinatorial chemistry
Combinatorial materials science (CMS) emerged in the
early 2000s [2,11,12], with a broader adoption globally in
the framework of the US lead materials genome initia-
tive (MGI) [13,14], and formed the base for recent
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efforts in the European Union and Canada to build 
internationally connected materials acceleration plat-
forms (MAP) [1,5,10].

Despite the maturity of the field, there is a very liberal 
use of community jargon. We recommend using the term 
“combinatorial” whenever a large count of combinations is 
synthesized, mixed, or varied in a library [6], which 
consists of logically connected entities. Methods should 
be referred to as being “high-throughput” when they allow 
automatic measurements on “libraries.” In our opinion, 
referring to combinatorial workflows as screening should 
be avoided as the word carries the undertone of being 
superficial and of low fidelity.
Combinatorial electrochemistry
New innovative electrochemical methods developed 
within the framework of CMS and MGI include elec-
trochemical imaging and measuring techniques like 
scanning electrochemical microscopy [15] (SECM) and 
scanning droplet cells (SDC) [16] [e] [21]. To probe 
electrolyte parameters, recent advances in high-
throughput electrolyte conductivity measurements and 
optimization thereof are reported by Dave et al. [22] 
that utilize a series of valves and pumps connected to a 
viscometer and potentiostat to perform on-line con-
ductivity measurements.

Building upon the idea of a translating electrochemical 
probe from SECM, several designs of SDCs have 
emerged. Originally used in electrocatalysis [21,23,24], 
SDCs were recently reviewed for their applicability in 
battery research by Daboss et al. [15]. SDCs solve two of 
the main challenges in electrochemistry: 1) rapid as-
sembly of an electrochemical half-cell and 2) the effi-
cient use of electrode material. This is of utmost 
importance especially in high-throughput catalysis [25] 
and battery research [15] due to the scarcity of material. 
The general concept of deploying SDCs in battery 
research is that the full cell is split into the respective 
half-cells in which the materials (electrodes, electro-
lytes) are studied individually. The major benefit of this 
setup is that it allows for a rapid sequential assessment 
of interfaces and the rapid synthesis of interphases as 
schematically shown in Figure 1. Only a small area of the 
working electrode is exposed to the electrolyte 
demanding about centimeter sized electrodes. This 
allows for a combinatorial variation in the electrode (e.g. 
composition, structure, processing, morphology), the 
electrolyte (e.g. its formulation or controlled addition of 
impurities), and the electrochemical protocol. Subse-
quent to the electrochemical experiment, high-
throughput spectroscopic measurements can be 
performed to correlate electrochemical variations to 
structural ones as shown in Figure 1b.
Only a few examples exist where a no flow (NF) type
SDC has been used in non-aqueous battery research
[26]. This, in our opinion, relates mostly to the
limited choice of long-term stable and easy to fabri-
cate non-aqueous micro-reference electrodes, and the
challenge of ensuring good droplet reproducibility
with low viscosity and incompatible surface tension
materials like commonly used carbonate and fluori-

nated salt formulations in battery research. Our solu-
tion to these challenges is the simultaneous use of
PTFE knife edge [15,21,23] or O-ring FFKM seals
with active pressure control and on-contact cell filling
with post-measurement suction.

SDC-type measurements are however designed for
rapid sequential experiments leading to the fact that the
overall experimental time is determined by each indi-
vidual measurement’s duration. As experiments in bat-
tery research may last for up to months, other methods

with parallel designs are necessary. A notable example is
the use of individually addressable cells on which elec-
trodes are sputtered as demonstrated by Fleischauer
et al. [27]. This setup does however necessitate the use
of a sputtering machine and relatively advanced sub-
strate patterning. Other notable examples of combina-
torial synthesis for electrochemistry include the
deposition of combinatorial composition spread type li-
braries [28] to study not just alloying effects but also
morphology [29] and processing variations [30].
Combinatorial synthesis methods also include inkjet

[31,32] printing of ultra large libraries [33,34].
A need for lab-scale manufacturing
Linking materials discoveries at low technology readi-
ness levels (TRLs) and production engineering neces-
sitates lab-scale large batch testing of electrode,

electrolyte, and protocol variations, which to date does
not exist. Such workflows could help in the assessment
of scalability, cell-to-cell variation, and manufacturabil-
ity at an early materials discovery stage. Discoveries of
new and improved materials should anyhow be consid-
ered in the light of recent publications [35] on the
minimum number of required experiments to account
for cell-to-cell variation. As an example, even a 10%-step
variation in a ternary system (i.e. three solvents; 66
combinations) would necessitate about 594e858 cells
(9e13 repeats each [35]) to exclude potentially

misleading cell-to-cell variations. Comparing these
numbers to the largest publicly accessible datasets on
(commercial grade quality) cell testing that range from
22 to 124 (commercial) cells [35] highlights the ne-
cessity for lab scale battery production instruments, but
also demands a broader adoption of FAIR (findable,
accessible, interoperable, reusable) [4,36] publishing
standards in electrochemistry.



Figure 1

Schematic view of cell concepts and uses of scanning droplet cells (SDC) in particular (a) full cell or secondary battery consisting of two half cells with a
separator between electrodes (left side). The full-cell design is most commonly used in coin and pouch cells (right side) that are most amenable for long-
term measurements. Coin cell components are expensive, not reusable, and cumbersome to disassemble for post-mortem studies. (b) SDCs are
miniaturized half-cells that only expose small areas of the electrode material to the electrolyte. The SDC design is most amenable for post-mortem studies
by XPS, XRF, FTIR, Raman, SEM, and EDX. The image on the right shows a false color Raman image of Cu-oxides on a Cu-foil from chro-
noamperometric SDC experiments. The sequential nature of SDC experiments practically limits their individual duration up to a few hours.
Acceleration through machine learning
Combinatorial libraries are highly amenable to data sci-
ence such as machine learning (ML) once data man-
agement has been put into place. However, ML has
caught on arguably late in electrochemistry, likely due to
the only recent development of data lineage tracking
frameworks [4,37e39]. There are a multitude of

research questions that benefit from, or require the use
of, ML methods. One early deployment of ML for
combinatorial chemistry was the analysis of X-ray
diffraction data by Takeuchi et al. [40], which sparked a
great number of publications, ultimately leading to
autonomous analysis agents for phase region identifica-
tion [41]. We identify five emblematic tracks of applying
ML in combinatorial electrochemistry: 1) data curation,
2) data visualization, 3) data analysis, 4) active learning,
and 5) automated insight generation, for which we will

briefly list some examples.

Often neglected is the need for data curation, that is,
background removal, denoising, and peak identification.
Ament et al. [42] demonstrate the benefit of considering
a full dataset to infer backgrounds, which we believe
holds great potential for analyzing redox peaks in cycling
voltammetry (CV) measurements [57e60] to enhance
the downstream visualization by methods like manifold
learning [43]. Alternate methods for noise and dimen-
sionality reduction are autoencoder neural networks [44]



Figure 2

Exemplary applications of machine learning (ML) to electrochemical research questions beyond feed forward regression on OER catalysts and cyclic-
voltammetry: (a) compositional multidimensional scaling (cMDS) [1–3] to visualize compositional trends in a 6-component space, here highlighting the
content of Mn; (b) latent space representation of 25.000 computer generated CV redox curves using different parameters comparing UMAP [48] and
principal component analysis (PCA) showing the need to describe the non-linear relationships and latent space interpolation capabilities; (c) an example
of active learning on OER data [25,49]; (d) an example of ML assisted generation of insights on a OER dataset using SHAP [50] coefficients allowing for
the retrieval individual elemental influence factors.
or compositional multidimensional scaling (cMDS) [25].
The latter is a facile method to visualize compositional
spaces of more than four components [25] as demon-
strated in Figure 2a for a six elements. Other methods
such as UMAP [48], shown in Figure 2b, allow not just
for the reduction of data dimensionality for visualization
purposes but also for interpolation in the latent space
better than by traditional methods like PCA.

Most deployments of ML for data analysis fall into the
category of feed forward regression or classification algo-

rithms. Examples for early lifetime prediction were
published by Attia et al. [45]. Active learning aims at
accelerating and enhancing the outcomes of experi-
mental campaigns [49], as shown in Figure 2c. There are
examples of active learning for battery research, including
fast charging protocol optimization [46] to extend battery
lifetime and electrolyte conductivity optimization by
changing the formulation ratios [22]. Understanding of
the influence of certain materials parameters on the
functional properties has been long sought after and has
been demonstrated by Umehara et al. [47]. In that study,
a neural network predicted the photoelectrochemical
power with composition and Raman spectra as input and
independently rediscovered the monoclinic distortion in
bismuth vanadate [24] together with previously un-
identified physicochemical relationships. Emergent is

the field of uncertainty quantification [49] in ML, which
to date has not been applied to pure electrochemistry. In
Figure 2d a simple deployment of SHAP coefficients to a
dataset [49] of OER catalysts is shown, which enables a
rapid identification that Co and Ni containing catalysts



Figure 3

Conceptual arrangement of the available instrumentation of the platform for accelerated electrochemical energy storage research (PLACES/R) by
throughput and materials-interfaces-systems scale. Systems with a star are in-house developed. The lowest throughput is found in AutoBASS, where an
assembled cell may be tested for months, and the highest throughput in HITS, where spectra can be acquired within seconds. Instruments interface with
Kadi4Mat [37] and are accessible through HELAO [51]. The system allows research across the entire battery research value chain, from early materials
discovery to process optimization and manufacturing.
are better than Mn and Fe containing ones. There are
however some studies that aim at applying machine
learning to link theory and experiment in voltametric
studies [57e59], for example, to identify an electrode’s
reaction mechanism [60].
From high-throughput instruments to
laboratory interfaces
All the above-mentioned techniques in combinatorial
electrochemistry work upon the underlying principles

of research task acceleration and integration as
recently reviewed by Stein & Gregoire [5]. Only when
instrumentation such as SDCs or cell manufacturing
robots store data in formats that go beyond FAIR, that
is, including also how the data was acquired on the
hardware operational level linked to ontologies, does
an integration of electrochemistry with other tech-
niques become feasible. Our approach to the process
of integrating research tasks and ultimately labora-
tories in different locations is split in two steps: 1) the
development of frameworks to automate high-

throughput instruments and integrate ML methods
2) the development of hardware agnostic frameworks
to integrate multiple research facilities. For the first
step, we have developed HELAO [51], which can
operate the majority of the research Instruments,
including the various SDCs, in our and other (e.g.
Gregoire lab at Caltech) laboratories. With a single

middleware for high-throughput experimentation, the
overhead and time investment for integration of data
analysis, data management, and ultimately ML is
greatly reduced. Such an integration is necessary to
deploy active learning for efficient chemical
space exploration.

Going beyond high-throughput experimentation and
active learning in a single lab [51e53] and towards the
fulfillment of the materials acceleration platform (MAP)
paradigm as envisioned by BIG-MAP [1,54,55], other

modes of instrument interactions are needed. We
believe the next step for the realization of MAPs is the
decoupling of a measurement request from the under-
lying hardware, that is, only having to specify what kind
of electrochemical measurement is needed without
telling an instrument or collaborator how they should
perform it.



 

Conclusion
Towards accelerated electrochemical energy storage 
research
The development of tools and frameworks for automa-

tion of research instruments for interface and system 
studies, and for the acceleration of electrochemical data 
curation, analysis, and understanding by means of data 
science methods such as active learning, shows consid-
erable promise. With the pressing need for sustainable 
large-scale mobile and stationary energy storage systems 
in everything from smartphones, eBikes, cars, and homes, 
a more rapid transfer of materials from low to high TRL is 
necessary. In our research group, we have therefore 
ventured to build a platform for accelerated electro-
chemical energy storage research (PLACES/R) which, 
through automation of pertinent instrumentation and 
the tight integration of data science methods, seeks to 
cover the entire battery research value chain. As shown in 
Figure 3, the system consists of large glovebox filled with 
dry, oxygen-free, inert atmosphere that house a combi-

natorial reactive sputtering system for thin-film electrode 
synthesis (COSTE), and multiple SDCs that perform 
millimeter scale high-throughput battery research [15]
(MISCHBARES) on thin-films and conventional elec-
trodes. Synthesized interphases can be analyzed by a 
high-throughput spectroscopy (HITS) setup in which 
three measurement heads for Raman and FTIR are 
translated over a substrate. Operando interfacial studies 
are made possible with a near-ambient pressure XPS 
(NAP-XPS). Electrolytes can be studied independently 
of electrodes (i.e. without the influence of binders or 
geometries) by a setup for autonomous synthesis and 
analysis of battery electrolytes (ASAB) consisting of a 
syringe pump setup, a densimeter, a viscometer, and a 
broadband pulsed NMR. All these systems are employed 
in the early stages of materials discovery for batteries to 
down-select materials for upscaling in the automatic 
battery assembly system (AutoBASS) that can build 64-
coin-cell batches and the ProtoCell robot to manufac-

ture 120-pouch-cell batches. In addition to the hardware, 
all instruments can interface to the central data man-

agement platform Kadi4Mat [37] and can be operated 
through HELAO [51]. All mentioned instruments will be 
published elsewhere in due time.

Through HELAO and Kadi4Mat, we can accelerate
instruments using active learning but also construct 
datasets more rapidly as we have complete data line-
age tracking. In a roadmap towards the establishment 
of a truly integrated materials acceleration platform 
[1] we see the current  integration of ML for opti-
mizers and automatic data analysis as the first step. 
What needs to follow, is a hardware independent API 
to our laboratory enabling other human or robotic 
scientists to conduct research in our lab by only telling 
us what they want without telling us necessarily how 
we’re supposed to acquire the information. In our
opinion this serves as the foundation to address the
Nobel-Turing-Challenge [56].

We believe that the discovery, upscaling, and insight
generation of sustainable and high-performance batteries
can be greatly accelerated through the integration of
combinatorial synthesis, high-throughput electrochem-
istry, automatic battery assembly, and a centralized

orchestration framework with ML augmentation.
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