
Anthony Britto1,a

aChair of Energy Economics, Karlsruhe Institute of Technology, Germany

1. Letter

Dear Prof. Seongjoo Song,

This letter concerns the article ppcor: An R Package for a fast calculation to semi-partial correlation coefficients by Prof. Seongho Kim, which appears in the November 2015 issue of Communications for Statistical Applications and Methods Kim (2015). I believe that there is a discrepancy which merits a detailed discussion between the t-statistic of the semi-partial correlation coefficient proposed by Prof. Kim, and the one proposed by Cohen et al. (2002).

Equation (2.8) in Prof. Kim’s article lists the t-statistics of the partial and semi-partial correlation coefficients respectively as

$$ t_{ij|S} = r_{ij|S} \sqrt{\frac{n - 2 - g}{1 - r_{ij|S}^2}}, $$ \hspace{1cm} (1.1)

$$ t_{i(j|S)} = r_{i(j|S)} \sqrt{\frac{n - 2 - g}{1 - r_{i(j|S)}^2}}, $$ \hspace{1cm} (1.2)

where $r_{ij|S}$ (resp. $r_{i(j|S)}$) is the partial (resp. semi-partial) correlation coefficient of the random variables x_i and x_j with g covariates. Each of these variables are in the vector of random variables $X = (x_1, x_2, \ldots, x_n)^T$; X_S subsequently denotes the random sub-vector of X that results from deleting x_i and x_j.

An immediate consequence of the above formulae, which are identical as functions of $r_{ij|S}$ and $r_{i(j|S)}$, is that since $r_{ij|S} \neq r_{i(j|S)}$ in general, the respective t-statistics will also not agree: $t_{ij|S} \neq t_{i(j|S)}$ (We have $r_{ij|S} = r_{i(j|S)}$ only in the trivial case where each of the g covariates has zero correlation with x_i; cf. equations (2.1) and (2.2) in Kim (2015)). However, Cohen et al. (2002) argue that since the partial and semi-partial correlation coefficients are different scalings of the same statistical

1 Chair of Energy Economics, Karlsruhe Institute of Technology, Hertzstr. 16 Building 06.33, Karlsruhe 76187, Germany.
E-mail: anthony.britto@kit.edu
phenomenon, they must yield an identical \(t \)-statistic. In fact, they claim further that the \(t \)-statistic of the partial and semi-partial correlation must also equal the one yielded by the \(\beta_i \) resulting from a multiple linear regression of \(x_i \) on \(x_j \) together with the other \(g \) covariates.

Their argument is as follows. Consider the case of a random variable \(y \) regressed on two predictors \(x_1 \) and \(x_2 \), where all variables have been standardised; the three effect sizes in the previous paragraph for the predictor \(x_1 \) for instance are then given by

\[
\begin{align*}
\beta_1 &= \frac{r_{y_1} - r_{y_2} r_{12}}{1 - r_{12}^2}, \\
r_{x_12} &= \frac{r_{y_1} - r_{y_2} r_{12}}{\sqrt{1 - r_{12}^2} \sqrt{1 - r_{21}^2}}, \\
r_{x_1|2} &= \frac{r_{y_1} - r_{y_2} r_{12}}{\sqrt{1 - r_{21}^2}}.
\end{align*}
\]

Since these effects differ only with regard to their denominators, “none can equal zero unless the others are also zero, so it is also not surprising that they must yield the same \(t \) value \(t \)-statistic for the statistical significance of their departure from zero” (Cohen et al., 2002).

The respective formulae for the \(t \)-statistics of these quantities are again found in Cohen et al. (2002) and elsewhere in the literature, for instance in the review article by Aloe and Thompson (2013). I reproduce here the formulae for the partial and semi-partial correlations (the formula for the \(t \)-statistic of the \(\beta_i \) is presented in the appendix), reverting now to the setup and notation of Prof. Kim above:

\[
\begin{align*}
t_{ij|S} &= r_{ij|S} \frac{\text{df}}{\sqrt{1 - r_{ij|S}^2}}, \\
t_{i(j|S)} &= r_{i(j|S)} \frac{\text{df}}{1 - R_{ij|S}^2},
\end{align*}
\]

where \(\text{df} \) is the degrees of freedom, and \(R_{ij|S}^2 \) the coefficient of determination of the linear model where \(x_i \) is regressed on \(x_j \) and other covariates,

\[
\tilde{x}_i = \beta_j \tilde{x}_j + \sum_{k \in X_g} \beta_k \tilde{x}_k
\]

for \(X_g \subset X \) the set of \(g \) covariates. The tilde indicates that the variables have been standardised; since this means that the intercept vanishes, we have

\[
\text{df} = n - g - 2.
\]

Comparing equations (1.6) and (1.7) with equations (1.1) and (1.2), we see that the sole difference to Prof. Kim’s article is in equation (1.2), namely, that \(r_{i(j|S)}^2 \) would need to be replaced with \(R_{ij|S}^2 \).
Table A.1: Description of variables in Duncan’s dataset

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>income</td>
<td>Percentage of occupational incumbents in the 1950 US Census who earned $3,500 or more per year (about $36,000 in 2017 US dollars).</td>
</tr>
<tr>
<td>education</td>
<td>Percentage of occupational incumbents in 1950 who were high school graduates.</td>
</tr>
<tr>
<td>prestige</td>
<td>Percentage of respondents in a social survey who rated the occupation as “good” or better in prestige.</td>
</tr>
</tbody>
</table>

A trivial consequence of this, but one worth noting, is that such a change would automatically simplify equation (2.9) in Prof. Kim’s article: since $t_{ij|S} = t_{i|j(S)}$, the partial and semi-partial correlation coefficients would then have identical p-values:

$$p_{ij|S} = 2\Phi\left(-\left|t_{ij|S}\right|, \text{df}\right) = 2\Phi\left(-\left|t_{i|j(S)}\right|, \text{df}\right) = p_{i|j(S)}; \quad (1.10)$$

where $\Phi(\cdot)$ is the cumulative density function of a Student’s t distribution with degrees of freedom df as in equation (1.9) above.

I present an example calculation within the framework of Cohen et al. (2002) in the appendix, demonstrating that their formulae do in fact work as claimed. I extend my gratitude to Prof. Kim for his R package, and look forward to a productive discussion on this discrepancy.

Sincerely,
Anthony Britto

Appendix: Example calculation: Duncan’s occupational prestige data

I demonstrate here that the formulae of Cohen et al. (2002) work as claimed; I employ a standard, freely-available data set, Duncan’s Occupational Prestige Data, available in the carData package in R Fox et al (2020). The data quantifies the prestige and other characteristics of 45 U.S. occupations in 1950; descriptions of the three columns used in the analysis are found in Table A.1.

The correlation matrix of the three variables is computed as follows:

<table>
<thead>
<tr>
<th></th>
<th>income</th>
<th>education</th>
<th>prestige</th>
</tr>
</thead>
<tbody>
<tr>
<td>income</td>
<td>1.0000</td>
<td>0.7245</td>
<td>0.8378</td>
</tr>
<tr>
<td>education</td>
<td>0.7245</td>
<td>1.0000</td>
<td>0.8519</td>
</tr>
<tr>
<td>prestige</td>
<td>0.8378</td>
<td>0.8519</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

From this matrix, it is possible to directly compute the β’s and the partial and semi-partial correlations using equations (1.3) through (1.5) above, where I set income to be the y variable and education and prestige to be x_1 and x_2 respectively (see table below).

The t-statistics of the partial and semi-partial correlations can then be computed from equations (1.6) and (1.7); for equation (1.7), we need the coefficient of determination of the model where y is regressed on x_1 and x_2. Using the method of least squares, this is found to be $R^2_y = 0.7023$ (df = 45 - 2 = 43). As claimed by Cohen et al. (2002), the t-statistics of the partial and semi-partial
correlation coefficients agree; for the variable prestige for instance, we see that
\[
 t_{2(1)} = r_{2(1)} \sqrt{\frac{df}{1 - r^2_{2(1)}}} = 0.6111 \sqrt{\frac{43}{1 - 0.6111^2}} = 5.0625
\]
\[
 \approx 0.4212 \sqrt{\frac{43}{1 - 0.7023}} = r_{2(1)} \sqrt{\frac{df}{1 - R^2_y}} = t_{2(1)}.
\]
(A.1)

This should be contrasted with what occurs if the Prof. Kim’s expression, equation (1.2), is employed:
\[
 t_{2(1)} = r_{i(j)} \sqrt{\frac{n - 2 - g}{1 - r^2_{i(j)}}} = 0.4212 \sqrt{\frac{43}{1 - 0.4212}} = 3.6304.
\]
(A.2)

Finally, for the \(t\)-statistic of the \(\beta_i\) we have the usual formula
\[
 t(\beta_i) = \frac{\beta_i}{\text{s.e.}(\beta_i)},
\]
(A.3)

where \(\text{s.e.}(\beta_i)\) is the standard error of the estimate Cohen et al. (2002).
\[
 \text{s.e.}(\beta_i) = \sqrt{\frac{1 - R^2_y}{df(1 - R^2_{i(j)})}}.
\]
(A.4)

Here, \(R^2_y\) is as above, and \(R^2_{i(j)}\) is the coefficient of determination of the model where the \(i\)th predictor is regressed on all other predictors. In the case of a model with just two predictors, \(R^2_{i(j)} = r^2_{ij}\), and the standard errors of the coefficients are identical: 0.1589 in this case. Hence, from equations A.3, and then 1.10, I finally arrive at the following coefficient table, which neatly summarises that these effect sizes exist on different scales, but nevertheless share their statistical significance.

| | \(\beta_i\) | \(r_{y_i|j}\) | \(r_{y_i|j}\) | \(t\)-stat. | \(p\)-value |
|--------|-------------|--------------|--------------|-------------|------------|
| education | 0.0393 | 0.0377 | 0.0206 | 0.2473 | 0.8058 |
| prestige | 0.8043 | 0.6111 | 0.4212 | 5.0625 | 0.0000 |

References

