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Abstract

Due to the progress of digitization in the medical sector digital consent becomes
more and more common. While digital consent itself has a huge number of
benefits for the researcher it can impose a lot of questions for the individual
giving it. One of those questions is what impact the consent to sharing data with
a research project has on the individual’s privacy. The Consent Privacy Impact
Quantification (CPIQ) provides a quantification to help the user making a consent
decision based on the potential data sharing risk and his individual acceptance
preferences for a research project. While this quantification provides a good first
estimation it has some limitations especially in the method the re-identification
risk is calculated for a member of a dataset. This paper presents a method using
the Maximum Entropy principle. This principle provides a way to measure the
maximum unbiased distribution using limited background knowledge, which is
provided by epidemiological data. This distribution can then be used to see how
much higher the re-identification risk based on a sensitive attribute is compared
to the uniform distribution. In addition, the first promising results of the method
will be shown based on an experimental setting.
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1 Introduction

Through the ongoing digitization medical research has potential access to an
enormous amount of data. The recently soft-launched German "Elektronische
Patientenakte" (ePA) also offers functionality of a research platform. While
the main purpose is to provide a safe and secure storage for health data that
is created during medical treatment, such data could potentially be useful for
medical research. Having access to the digital treatment records of millions of
people could lead to huge benefits, such as Big Data analysis of medical data.
Analyzing large scale data is one of the most promising techniques to improve
future treatment and make huge progress in medical care. Besides the obvious
benefits there remain open questions regarding the privacy of the processed data.
The European General Data Protection Regulation (GDPR) considers medical
data to be highly sensitive which is prohibited to process by default. But there
are several exceptions where one is the explicit consent of the affected person.
Currently, this is the usual way to use data of a patient in medical research.
Through the digitization the paper-based consent is more and more replaced and
first digital consent systems are coming close to productive use [2, 3, 4]. On the
one hand digital consent makes giving consent easier but it does not necessarily
make the actual decision easier. In fact, many parties or research projects to grant
access can make the decision even harder. Additionally, every consent made
for medical data should be an informed consent. While the definition of what
an informed consent is remains a research topic on its own, there are systems
needed that support patients when making consent decisions. Such a system is
the Consent Privacy Impact Quantification (CPIQ) [1]. CPIQ provides a way to
measure different properties of a research project and considers the potentially
shared data to support the affected patient with their a consent decision. CPIQ
considers many different properties but lacks an actual quantification of the
shared data of an individual in regard to the database where it is shared to.
Such a look can make a huge difference in terms of privacy because unique and
striking data can make re-identification a lot easier. Unfortunately, such things
are often only noticed after the data is added. This could be too late to protect
the privacy and it is too late to avoid a risky sharing decision. In this paper we
will use the Maximum Entropy principle to provide a conservative estimation of
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the actual privacy risk of the data release. Therefore, we use epidemiological
observations that are used as constraint for the Maximum Entropy methods. It
is shown that using such methods can provide an accurate estimation how likely
the re-identification of an individual is in a dataset. The remainder of this paper
is structured as follows: Section 2 looks on related work of this topic. Section 3
introduces theoretical preliminaries that are needed to understand CPIQ and the
method itself. Section 4 then describes our extension of CPIQ. Section 5 looks
at our experiments. With this discussion the paper will be concluded and an
outlook on future work will be provided.

2 Related Work

There is a multitude of papers that contribute to the topic of quantification of
medical data in terms of privacy in various ways. Veeningen et al. describe a
formal model for pseudonymization [14]. They use an exemplary digital health
infrastructure where different data is shared across various sites. Each party
is allowed to have different parts of data of an individual. The paper presents
a so-called coalition graph which shows which party can combine which data
to gain all data of a patient. This graph can be used to compare different data
protection concepts. In contrast to this report Veeningen’s approach focuses
on pseudonymization architecture. While the idea for the formal model is very
interesting this report considers the patient’s view on its data and what impact
on individual privacy data sharing has. The authors of "Quantifying the costs
and benefits of privacy-preserving health data publishing" introduce a cost
model for personal health records [9]. The approach tries to measure the cost of
privacy and utility by comparing the cost of anonymization with the costs of
a potential data breach. With the provided formulas a detailed comparison is
possible but this approach is not suitable to measure individual data. Wan et al.
look at a game theoretic approach to measure re-identification risks [15]. The
authors try to weigh the factor between the monetary value of health data and the
potential fine for a violation of privacy rules. They use different properties like
generalization strategies for the data and their costs to create their model. An
attacker is described that attempts re-identification when the benefit outweighs
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the costs. The paper concludes that it is possible to find something like zero risk
if there is no incentive to attempt an attack. A game theoretical approach is not
compatible with the main idea of CPIQ which is to measure an individual risk
and provide decision support when sharing personal health data. Additionally,
our attacker tries to re-identify regardless of the costs to express that individual
risk of re-identification. Another work by Wang et al. presents methods to
measure the privacy level of a dataset [16]. Their method evaluates the privacy
impact of data with quantitative and qualitative factors. The factors will be
assessed using hierarchical decision making with the help of expert knowledge
to rate data sensitivity. The result is then combined into a so-called privacy
score. In contrast to our work the need for expert knowledge can be a high
obstacle in terms of real-world execution. A paper that is closer to our approach
is "Privacy-MaxEnt" by Du et al. [5]. The authors consider a scenario where
quasi-identifiers are bucketized with sensitive attributes. An example is gender
and age as quasi-identifiers and diseases as sensitive data. The main principle
would be that the probability that a sensitive attribute belongs to the individual
is distributed equally. It is shown that this is not the case for certain sensitive
attributes (e.g., gender specific diseases). This background knowledge is then
modeled by using Maximum Entropy to show the probability given the sensitives
attributes. While the paper discusses a sophisticated approach it lacks a real
use case. It also makes no decision on what background knowledge should be
used to model the constraints. In our work we use the core idea of the paper
and extend our CPIQ technology with concrete examples. None of the here
presented approaches describe a complete quantification that can support the
decision of an individual to share its personal health data.

3 Preliminaries

In this section the preliminaries needed for MaxEnt CPIQ are described. We first
introduce some common privacy preserving techniques which are used in CPIQ
and explain the motivation to mitigate re-identification attacks. MaxEnt CPIQ
uses Maximum Entropy to provide a more accurate privacy impact quantification.
The concept of Maximum Entropy will be also explained in this section. Finally,
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the formal consent model needed for CPIQ is introduced and CPIQ itself is
explained.

3.1 Privacy Preserving Technologies

The motivation behind the consent privacy impact quantification of CPIQ is to
provide the affected person with an estimation of what risk comes with sharing
its medical data. Even if the data is anonymized or pseudonymized before it is
given to a third party there is still the risk of re-identification with background
knowledge. Obvious examples are a large data set where only one person
has a very rare disease. Such cases can be easily identified. However, there
are several more sophisticated re-identification approaches that were shown in
several studies and go beyond purely academic examples [12, 11]. Considering
personal health data as highly sensitive data it should be clear that measures are
needed to mitigate this risk. Therefore, different privacy preserving technologies
exist. Besides technologies like homomorphic encryption, which is used in
more and more cases, or statistical guarantees like differential privacy (DP)
more traditional approaches rely on suppressing or generalizing quasi-identifiers.
One of them is k-anonymity which requires that in a dataset there needs to be at
least k − 1 other individuals with the same quasi-identifiers [13]. This helps to
reduce re-identification based on background knowledge about quasi-identifiers
which could be de-facto public knowledge. To reach this goal suppression,
where quasi-identifiers are removed, or generalization, where quasi-identifiers
are grouped into more general categories, is used to form equivalence classes.
One weakness of k-anonymity is that it does not consider the sensitive attribute
itself. This is where l-diversity comes into place [10]. l-diversity requires that
at least l − 1 distinct sensitive attributes exist in each equivalence class. This
mitigates the risk for cases where re-identification would be trivial. For example,
k-anonymity would allow equivalence classes where everyone has the same
sensitive attribute. This would be a privacy leak itself.
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3.2 Maximum Entropy

The principle of maximum entropy follows the idea to define a maximum
unbiased distribution given some constraints, which would be the distribution
with the largest entropy. This information theory concept itself was introduced
in 1957 by Jaynes [7, 8]. What is called constraints above can also be described
as testable information. This information gives a mathematical statement of
the probability distribution. A testable information can be that the sum of two
event probabilities p1 and p2 is smaller than 0.5. Depending on the definition of
Maximum Entropy there always is the universal constraint that the sum of all
event probabilities is 1. Given those constraints equations can be formed under
that the distribution fulfills the constraints and maximizes entropy. To solve the
equations the so-called Lagrange multipliers can be used. Those mathematical
details can be found in the original publication and are not looked at in this
paper.

3.3 Formal Consent Model

The foundation for CPIQ is the formal consent model which was introduced in
the original publication. The formal model defines the properties required to
describe consent for secondary usage (e.g., research). The model is based on the
technical consent model of the German ePA and is combined with properties out
of the research consent template of the German "Medizin Informatik Initiative"
which is widely accepted by data regulation authorities. Table 3.1 gives an
overview of the properties. It consists of the subject S who can be a patient or a
legal guardian. The researcher is referenced as the authorized party AP . Every
declaration of consent is required to have a timespan TS = (TSStart, TSEnd)
during it is valid. The consent then is defined through policies which also
contain which documents or categories R are shared. A full policy consists
out of P = [(AP , TS, R, A)] where A is the action allowed on the resources.
For secondary usage this is limited to a read action. The next properties are
focused on the concrete research project. The purpose PU of a project is
considered as well as potential personal or social benefits PBE and SBE
which are listed in BE. Furthermore, the degree of anonymization DAD and
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Identifier Explanation

S = Patient | Legal Guardian Subject
AP = [Researcher] Authorized Party
TSStart = Date Starting Date
TSEnd = Date End Date
TS = (TSStart, TSEnd) Timespan
R = [Document | Category] Resource
A = Read (r) Action
P = [(AP , TS, R, A)] Policies

PU = [Purpose] | Broad Consent Research purpose
PBE = [Personal Benefit]* Personal Benefit
SBE = [Social Benefit]* Social Benefit
BE = [PBE | SBE]* Benefit
DAD = (k-Anonymity, l-Diversity) Degree of anonymization for D
PS = Low | Medium | High Processing security
D = (PS, DAD) Data processing
DAP UB = (k-Anonymity, l-Diversity) Degree of anonymization for P
I = (false | true) Information
PUB = ((false | true), DAP UB) Publication
T = (I , PUB) Transparency
RI = (PU , BE, D, T ) Research information

Table 3.1: Identifiers for the formal consent model
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the processing security PS are part of the data processing D = (PS,DAD) of
a project. Another factor is transparency T which consists out of information
value I and the publication value PUB which states if there is a publication
and if yes what kind of anonymization DAP UB is used. This is then listed in
the research information RI = (PU,BE,D, T ).

3.4 Consent Privacy Impact Quantification (CPIQ)

Based on the formal consent model mentioned in Section 3.3 CPIQ provides
a consent privacy impact quantification that consists out of two main parts:
acceptance and risk of a consent decision. The idea is that CPIQ calculates
a score (in most times from 0-100) which indicates the higher it is the more
the acceptance factors (AF) outweigh the potential risks. For the acceptance
factors we refer to the original publication. They consist of the user-weighted
formal model properties of purpose, personal and social benefits, information,
publication, and trust.

The risk will be explained in more detail because this is where our model
extension comes into place. At first, we assume an attacker that has access to
all publicly available data of a patient. The attacker’s goal is to gain knowl-
edge about a potential sensitive attribute of an individual. This goal can be
reached through a classical re-identification attempt. To quantify this risk two
main attack points are identified. The first is the attack on the stored private
data of the research project. For this the risk probability of a data breach
DLP also needs to be considered. The second way is to try re-identification
on the data that are part of the published data of a project. This depends
on the publication factor probalitity PF . In both cases the re-identification
itself will be measured through the sensitive attribute exposure probability
SAEP . The assumption for CPIQ is that every project uses a certain degree
of l-diversity as privacy preserving technology. So SAEP = Min(1, |R|

l )
with |R| as number of resources an individual has in the dataset. We also
assume that a patient can have more than one sensitive attribute in the dataset,
so this "row" in a dataset is mapped to the same set of quasi-identifiers and
will weaken the l-diversity property. This leads to |R|

l as probability. If
there are more properties than ensured through l-diversity re-identification is
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obvious and therefore the probability is one. This combined with the two
attack vectors results in the re-identification probability due to data leakage
RPD = P (DamageData leakage) = DLP ∗ SAEPDP and re-identification prob-
ability due to publication RPP = P (DamagePublication) = PF ∗ SAEPP UB .
CPIQ also considers the location of processing as a risk factor and requires that
all processing locations have a regulation with similar standards as GDPR which
is defined by the GNF factor. The Total Re-Identification Risk Probability
TRRP = P (DamageTotal) = 1− ((1−RPD) ∗ (1−RPP ) ∗ (1−GNF ))
is the result of this. Combined with the acceptance factors the CPIQ score will
be calculated with the following equation:

CPIQ = AF ∗ (L2 ∗ (1− 1
s

)) + (1− TRRP ) ∗ (L2 ∗ (1 + 1
s

))

with s ≥ 1 as weighting factor between risk and acceptance and L as maximum
value.

4 Using Maximum Entropy with CPIQ

After we introduced the preliminaries, this section will point out why the
extension with Maximum Entropy should be done and how it can be implemented.
In addition, we show some experiments with the new approach.

4.1 Model extension

Section 3.4 described the factors used to calculate the risk for CPIQ. One
assumption made is that l-diversity is used as privacy preserving technology.
This is used for SAEP which is one of the main factors. While this assumption
can be made it is not clear that this always can be implemented in practice. While
anonymization and pseudonymization technologies are a common practice in
medical research, it does not seem too realistic that every research project uses a
suitable degree of l-diversity or that l-diversity can be applied in a good way.
This could lead to the case that CPIQ does not give a very accurate consent
evaluation. The goal for the extension was to consider more the uniqueness of
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Figure 4.1: MaxEnt CPIQ Workflow

a sensitive attribute of an individual. While l-diversity provides a method for
this on a database level it does not consider the background knowledge of a
potential attacker. It also requires the assumption that every sensitive attribute
is uniformly distributed. Especially with medical data this is not the case. There
are certain diseases that are more common than others. In addition, different
factors like age or gender can heavily affect the frequency of a disease. An
obvious but good example for this is breast cancer, which occurs in female and
male persons. However, breast cancer is very rare for males so that a database
with different cancer types from individuals with both genders could lead to
an easier linking of the sensitive attributes to the individuals. We found that
Maximum Entropy suits best to include such information. This also deals with
the facts that no background knowledge can be complete. For this the Maximum
Entropy principle provides the best non-biased estimation given the currently
available information.

To replace SAEP with l-diversity an individual p = ({qi1, ..., qin}, sa) is
introduced. The individual wants to give its sensitive attribute sa with its
quasi-identifiers to a dataset D, which already includes other patients with
sensitive data. We also introduce a background knowledge source BK which
uses publicly available medical information like disease incidence per gender,
age, region, and more epidemiological data to provide background knowledge
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constraints bkCi. Figure 4.1 shows the workflow for Maximum Entropy CPIQ.
The individual p provides its data to be combined before sharing with the
dataset D of the research project. It remains to be noted that it is an open
question where this combination and processing happens. One option would
be to do it locally at the patient’s device or at a trusted third party. This
combined data set D′ will be then used to calculate the SAEP . Therefore,
epidemiological data for the given sensitive attributes and quasi-identifiers will
be requested from BK. In our case this data is the incidence for the given
diseases per gender and per region. This incidence is then used as constraints for
a Maximum Entropy distribution. To calculate the risk the difference between
the uniformly distributed re-identification risk of all individuals is compared
with the constrained Maximum Entropy distribution re-identification risk. This
factor is then divided by a custom threshold. This risk threshold defines the
factor of how much higher the risk can be tolerated compared to uniformed
distribution. The minimum of the received value or 1 will be returned as SAEP
value and the rest of the CPIQ process can continue as described.

Definition 4.1.1 (MaxEnt CPIQ). Let UD be the uniform distribution of D.
uR is the share of any individual in the distribution (uR = 1/n) where n is
the number of individuals in the dataset. CD is the constrained distribution of
D. This is calculated by using the given constraints for D with the Maximum
Entropy principle. cRi is the constrained distribution of a given individual pi.
The personal risk factor is then pRFi = cRi/uR. Let ⊥ be the risk threshold.
The weighted risk ratio is then rri = min(1, pRFi/ ⊥). rri is a value between
0 and 100% so that 1 (100%) is the maximum.

4.2 Experiments

To show the feasibility of the extension some experiments were done. Some
exemplary scenarios with small sample datasets were created to show the
approach in a comprehensible way. For this the technique was implemented in
Python1. Maximum Entropy was implemented by using the Python Package

1 https://www.python.org
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ICD10 C* C00-C14 C15 C16 C18-C21 C22 C50 ...

Male Overall 17.2 9.0 14.8 51.5 9.4 0.7 ...
Female Overall 6.9 2.2 7.5 35.1 3.6 109.2 ...

Table 4.1: Exemplary excerpt of incidence data for different cancer types as ICD-10 Codes per
gender

maxentropy2. The scenario is a database with of several individuals that have
different types of cancer. For the background knowledge data on cancer we
used the population wide cancer incidence provided by the German Center
for Disease Control the Robert Koch Institut [6]. Table 4.1 shows an excerpt
of the aggregated data. The actual data set also includes age specific and
region-specific incidences. For this scenario we only differentiated by a higher
risk age for breast cancer (ICD-10 code C50; higher risk with age older than
60) and the lower risk age. Since in our dataset every person has a disease
and the incidence is a population wide metric, we also calculated a total share
depending on the incidence and the complete data set. The labels in the dataset
have the format: (qi1, sa, qi2) where qi1 is the gender, qi2 is the age and sa is
the ICD-10 code for the type of cancer. As risk threshold ⊥= 3 is used.

4.2.1 Scenario 1: Adding a lower risk person

Figure 4.2 shows the constrained distribution of the scenario dataset D before
the additional subject is inserted. The male person with breast cancer (C50) has
a very low risk to be relinked to its sensitive attribute which is obvious because
it is rare for males. In addition, the individual with prostate cancer (C61) has
a very high risk since this is one of the most common cancer types for males.
Furthermore, this disease does not exist for females because of biological reasons.
Next a new subject wants to share its data. The data is from a female with breast
cancer in the lower risk age range p1 = (”Female”, ”50”, 40). Figure 4.3(a)

2 https://github.com/PythonCharmers/maxentropy
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Figure 4.2: Scenario Dataset D before insertion with constrained distribution

(a) Uniform distribution (b) Constrained distributed

Figure 4.3: Scenario 1 Dataset D′ after insertion of p1
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shows the dataset with the inserted data and an assumed uniform distribution.
This is needed to calculate the difference between the constrained distribution
that can be seen in Figure 4.3(b). The constrained distribution shows that the
re-identification is higher than with the uniform distribution but only slightly.
The weighted risk ratio for SAEP is 0.32, which can be considered as lower
risk.

4.2.2 Scenario 2: Adding a higher risk person

The starting situation is the same as in Scenario 1. This time a higher risk
for breast cancer person p2 = (”Female”, ”50”, 70) is added. Figure 4.4(a)

(a) Uniform distribution (b) Constrained distributed

Figure 4.4: Scenario 2 Dataset D′ after insertion of p2

shows the uniform distribution and Figure 4.4(b) the constrained distribution.
The risk is much higher than for the low-risk person. In fact, this has now the
second highest risk which can also be seen in the SAEP risk ratio which is the
maximum with 1.
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4.2.3 Scenario 3: Adding three higher risk persons

In contrast to Scenario 2 it needs to be looked at what happens when risk is
more evenly distributed. Therefore, three higher risk persons are added. Figure

(a) Uniform distribution (b) Constrained distributed

Figure 4.5: Scenario 3 Dataset D′ after insertion of three higher risk persons

4.5(a) and 4.5(b) show that the data sharing for the individual higher risk person
has now a smaller risk than before. The individual risk ratio for one of the three
persons is 0, 33 which is a bit higher than in Scenario 1 but much smaller than
in the second experiment.

5 Discussion

The experiments in Section 4.2 showed a proof of our concept. However, the
experiment was done with a small sample size and is no complete proof for the
principle. Nevertheless, Maximum Entropy provides a good way to include
background knowledge. Publicly available data like the cancer registry data
can be included easily as constraints for a re-identification metric. While more
traditional metrics like k-anonymity or l-diversity provide a concrete way for
the data owner to improve the privacy impact of a dataset those values remain
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vague for the affected person. In addition, not every dataset can implement
any value for k or l. Furthermore, the generalization or suppression to receive
several specific sized equivalence classes is no trivial task. From this point of
view the Maximum Entropy model has fewer requirements depending on the
data structure. Instead, it requires a specific form of data input for the model.
Any database should be able to be mapped to the format of quasi-identifiers and
the sensitive attribute which should be measured for uniqueness in the dataset.
Public databases to form constraints out of epidemiological data should be also
widely available. On the other hand, there are open questions where to process
the evaluation. Expecting the individual to let the data process by a third party
could easily require the same level of trust as it would to give the consent and
share the data with the researcher. Another idea would be to provide the current
dataset D to the potential participant to do the CPIQ evaluation. This could be
unacceptable for research institutes for privacy reasons or even for intellectual
property reasons. A trusted third party by the potential participant and the
researchers would solve this but it would require high standards to gain this trust.
While there were no user studies, we think that our risk calculation is more
natural by using a metric that considers how much higher the risk depending on
the quasi-identifier and epidemiological background knowledge for a sensitive
attribute is compared to if every sensitive attribute is distributed equally in
the population. As our experiments show there can be a hen egg problem
with smaller datasets or rare diseases. While adding one individual that has a
high risk for breast cancer would lead to bad CPIQ recommendation from the
risk side it would be better if there were three persons with the same sensitive
attribute. This imposes the questions where the additional persons should come
from and if it is ok to assume that there are some privacy risk friendly persons
that share their data regardless of the CPIQ score. The same applies to small
datasets. Another thing that should be noted is that our experiments are limited.
There is no complete comparison against the l-diversity version of SAEP or an
evaluation with real world data.
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6 Conclusion and Outlook

This technical report presents an extension to the risk model of the consent
privacy impact quantification CPIQ. The original form of CPIQ uses l-diversity
to measure the individual privacy risk for a patient that wants to share his data.
This imposes many issues and may be an impracticable requirement. Therefore
a method that does not impose any requirements on the data structure or certain
anonymization methods was needed. The Maximum Entropy principle is a
promising method for this. It can be used to measure a maximum unbiased
distribution based on limited background knowledge. As source for background
knowledge epidemiological data which is publicly available for the potential
disease as sensitive attribute is suggested. With this the Maximum Entropy
principle can be used to measure the difference between a uniform distribution
and the constrained distribution. This difference can then be used as weighted
risk ratio which replaces l-diversity in the CPIQ method. An experimental
evaluation is presented, and the results are discussed. While this paper does not
provide a complete analysis of this extension the first results look very promising,
and the Maximum Entropy extension seems to be a feasible method with less
requirements than the original method.

As described before this paper does not provide a full analysis of our suggested
extensions. For future work a complete evaluation against l-diversity is needed.
It is important to measure the difference between l-diverse tables and their
results in SAEP and when the Maximum Entropy principle is used on this
data. A limitation would be that not every assumption that was made for the
original form of CPIQ can also be made for the extension. This also needs to
be analyzed in depth. Furthermore, a real-world dataset evaluation would be
very interesting. Our experiments only used a very limited and small sample
data set. It would be interesting to obtain a real-world data set from for example
a hospital or a cancer registry and measure the constrained distribution in this
dataset. This could also be used to analyze the acceptance of such a method.
Finally, the question for an optimal distribution and size of a dataset should be
looked at. Our experiments showed that the size of a dataset and the distribution
of it has a large influence on the risk estimation. While this is a question itself
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the here introduced method can be used to recommend optimal datasets that
have a high acceptance for the potential data donors.
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