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Abstract

Multi-person Pose Estimation is essential for several computer vision tasks
related to motion analysis and anomaly detection. The impressive and continual
progress in this field leads to application in uncooperative real-world scenarios
such as detecting anomalous and dangerous behavior from individuals or
groups within dense crowds in public places. However, reliably detecting
poses within crowds in surveillance footage remains a very challenging task,
due to diverse occlusions, illumination changes and long processing time. In
this work, we present a simple Pyramid Vision Transformer for Human Pose
Estimation achieving competitive results on the COCO Keypoints 2017 [16]
while requiring significantly less parameters and thus computation time. A
significant improvement is reported over the baselines on the more crowded
OCHuman [33], PoseTrack 2018 [2], and CrowdPose [14] datasets.

1 Introduction

Human Pose Estimation (HPE) is a computer vision task which has made impres-
sive progress over the last few years [5, 13, 8, 27, 30, 31, 15]. Applications
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include pedestrian gait recognition [26] and more generally action recogni-
tion [11]. While HPE in controlled environment delivers convincing results,
multiple challenges arise for application in real-world uncontrolled scenarios,
such as computation time for larger crowds, elevated view on persons, partial or
almost total occlusion by diverse buildings of infrastructures, other persons or
even self-occlusion [10].

In this work, we leverage the power of emerging Transformer architectures
and based a on several best practices and experiments we propose a simple yet
efficient model to reduce computation time while improving results, especially
on occluded detections.

2 Related work

Mutiple datasets for HPE have been released in the last years [16, 1, 2, 14, 33].
One the most popular, the COCO Keypoints 2017 [16], offers over 200,000
images and 250,000 poses in single images with common poses and a frontal
view. PoseTrack18 [2] features video frames with more complex real life
scenarios in controlled environments, such as sport events, and is based on the
MPII dataset [1]. Smaller datasets such as OCHuman [33] and CrowdPose [14]
specifically address (self-)occlusion with similar frontal views on single images
with two subjects for the former, and crowds in controlled environments such as
group photos or sport events for the latter.

Different topologies of the human pose are proposed with different number of
keypoints. In COCO a human pose is represented by 17 keypoints, of which
five (nose, eyes, ears) are on the head. The MPII and Posetrack18 topologies
simplify the pose by reducing the head keypoints to two and three, respectively,
i.e. Posetrack18 has three keypoints for the head: top of head, nose and neck.

Two main categories of approaches have been presented in recent years to tackle
HPE. First, bottom-up methods [5, 13, 8] detect all body parts in an image and
fuse the retrieved keypoints to create a human pose. Since these methods detect
keypoints independently from the actual person count on the image, the inference
time is independent of the amount of people present. Second, top-down methods
composed of a person detector and a pose estimator predict the bounding
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boxes and poses separately. Recently Transformer-based approaches [31, 15]
challenged the mainly CNN [27, 30] dominated field. The quality of a top-down
method is, however, highly dependent on the quality of the person detection
and the inference time increases relatively to the person count. In this work we
attempt to reduce this inference time significantly while improving the quality
of the predictions.

3 Methods

Vision Transformers have been recently applied to HPE with impressive results
and significantly less parameters [31, 15]. The work propose by Yang et al. [31]
proposed an hybrid model which relies on a shorted CNN model and a Zrans-
former head. Following this work, we propose a simple and flexible full
Transformer model, compose of three main components: a Transformer-based
backbone instead of a CNN for feature extraction, a Transformer Encoder to
model long-range relationship between feature vectors, and a head for keypoints
heatmaps prediction. The architecture is illustrated in Figure 3.1. In the reminder
of this section, we described each part.

3.1 Transformer Backbone

While hybrid architectures combining CNNs and Transformers have shown
impressive results, recent works have shown that Transformer-based backbones
improve performance on several vision tasks [28, 17] and seem more robust to
severe occlusions, perturbations, and domain shifts [18]. We argue that these
properties are beneficial to HPE and therefore, we adopt the recent Pyramid
Vision Transformer (PVT)v2 [28] designed for pixel-level dense prediction tasks
as our backbone. Following the idea of shortening the backbone from [31], we
chose to reduce the original four stages from our backbones to only two stages.
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Figure 3.1: Overview of our model architecture. For an input detection image, a shortened 2-stage
PVTv2 [28] backbone extracts feature maps, which are then flattened into fixed-size feature vectors
and added with position embeddings. Subsequently, the dependencies between feature vectors in
sequence are modeled by Transformer Encoder layers. Finally, a lightweight head is attached to
predict the keypoint heatmaps.
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3.2 Transformer Encoder

Following [31], we choose to encode the long-range relationships between the
rich features with a Transformer Encoder.

Given an input image I ∈ R3×HI ×WI , the backbone extracts the low-level
features and outputs feature maps Xf of size df ×H ×W , in this case,
(H,W ) = (HI/8,WI/8). The feature maps are then linearly embedded and
their dimension is transformed to d. The transformed feature maps are finally flat-
tened into a 1D fixed-size feature vector sequence X ∈ RL×d, whereL = H ·W .
To retain positional information, a fixed 2D position encoding Epos is added to
the sequence as proposed in recent works [21, 6, 31, 15]. To retain positional
information, a fixed 2D position encoding Epos [31, 15] is added to the sequence
(Eq. (3.1)).

Z0 = X + Epos (3.1)

Subsequently, Z0 enters the Transformer Encoder, which consists of n Trans-
former Encoder layers. Concretely, each Transformer Encoder layer comprises
a Multi-head Self-Attention (MSA) sub-layer (Eq. (3.2)) and a feed-forward net-
work (FFN) sub-layer (Eq. (3.3)). The FFN contains two linear transformations
with a ReLU non-linearity in between. Moreover, residual connection followed
by LayerNorm (LN) [3] is applied around each of the two sub-layers.

Z′
i = LN(MSA(Zi−1) + Zi−1), i = 1, . . . , n (3.2)

Zi = LN(FFN(Z′
i) + Z′

i), i = 1, . . . , n (3.3)

3.3 Regression Head

Heatmaps predictions are obtained for each keypoint by a regression head
following the output of the Encoder. For an input sequence X ∈ RL×d, the
Encoder outputs a sequence E ∈ RL×d. The output E is then reshaped back
to the shape of d×H ×W , where here (H,W ) = (HI/8,WI/8). Following
common practice [30, 25, 31, 15], the resolution of the heatmap is set to a quarter
of the input image, i.e. (H ′,W ′) = (HI/4,WI/4). Hence, a deconvolution
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layer is added for upsampling [30, 8]. Finally, for the heatmaps prediction
H ∈ RK×H′×W ′

of K different keypoints, the channel dimension of E is
reduced from d to K via 1× 1 convolution.

3.4 Model Variants

Since the Pyramid Vision Transformerv2 backbone is originally proposed in
different scales, we also use seven backbone variations for our model, as described
in Table 3.1. We follow the model naming convention in [31]. The name of our
model is composed of three parts: the prefix ”TP“, the name of the backbone,
and the number of Transformer Encoder layers. For instance a model called
“TP-P-B0-A4” is composed of a Pyramid Vision Transformerv2-B0 backbone
(abbreviated as P-B0) and a Transformer Encoder containing 4 Encoder layers.

All model variants produce 128 channels feature maps except for PVTv2-B0 with
64 channels. Following [28], the resolution of the feature map is always 1/8 of
the input image. For the Transformer Encoder of all variants, we simply follow
the setting of TransPose-R [31]. The dimension of the Transformer Encoder is
d = 256. We employ n = 4 Transformer Encoder layers in total. In each layer,
the number of heads for MSA and the number of hidden units for FFN is set to 8
and h = 1024, respectively. In the head, the upsampling is achieved via a 4× 4
deconvolution.

Model Name Backbone Transformer
Encoder Head

Backbone df Downsampling #Encoder
layers #Heads d h

#DECONV
layers

Kernel
size

TP-P-B0-A4 PVTv2-B0* 64 1/8 4 8 256 1024 1 4
TP-P-B1-A4 PVTv2-B1* 128 1/8 4 8 256 1024 1 4
TP-P-B2-A4 PVTv2-B2* 128 1/8 4 8 256 1024 1 4

TP-P-B2_Li-A4 PVTv2-B2_Li* 128 1/8 4 8 256 1024 1 4
TP-P-B3-A4 PVTv2-B3* 128 1/8 4 8 256 1024 1 4
TP-P-B4-A4 PVTv2-B4* 128 1/8 4 8 256 1024 1 4
TP-P-B5-A4 PVTv2-B5* 128 1/8 4 8 256 1024 1 4

Table 3.1: Architecture configuration details of different variants of our propose model. The star
symbol (*) indicates that the Pyramid Vision Transformerv2 backbone [28] is reduced from the
original four stages to two. df , d, and h are the dimension of feature maps, the dimension of
Transformer Encoder, and the dimension of hidden layer in FFN of Transformer Encoder layer.
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4 Evaluation

We first evaluate different variations of our models regarding architectural
choices. We then quantitatively evaluate our models on four different datasets.

4.1 Ablation Study

We perform ablation studies on the COCO [16] dataset. As in [30, 25, 31, 15],
we first extend the ground truth human bounding boxe to a fixed aspect ratio
height : width = 4 : 3. Then we crop and resize the bounding boxe from the
original image to a fixed size 256× 192. To reduce overfitting, we apply standard
data augmentation techniques, including random scale (±30%), random rotation
([−45◦, 45◦]), and flipping. We also use half body augmentation [29]. The
reduced Pyramid Vision Transformerv2 [28] backbone network is initialized
with the weights pre-trained on ImageNet-1K classification task [24].

All models are trained for 230 epochs on two NVIDIA GeForce RTX 2080
Ti GPUs using Adam [12] as optimizer and a cosine annealing learning rate
schedule from 2e− 4 to 2e− 5.

4.1.1 Number of Backbone Stages

We analyze the number of stages of Pyramid Vision Transformerv2 [28] backbone
using TP-P-B0-A4 with originally 4 stages. We reduce to 3 and 2 stages and
report the results in Table 4.1. As suggested in [31], reducing the number of
stages yields better results with fewer parameters, e.g. the model with 2 stages
backbone achieves the best AP. We also observe the similar tendency for other
variants, as shown in Figure 4.1.

4.1.2 Number of Transformer Encoder Layers

We then evaluate the influence of the number of Transformer layers in the
encoder on the performance of the model. To this aim, TP-P-B0 and TP-P-B2_Li
are used which represent models with small and medium size respectively. For
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Model Backbone #Stages AP ↑ Params (M) ↓

TP-P-B0-A4 Pyramid Vision Transformerv2-B0 [28]
2 74.2 4.74
3 74.0 6.74
4 72.6 9.79

Table 4.1: Ablation study on number of stages of Pyramid Vision Transformerv2 [28] backbone
on COCO [16] validation set with ground truth human bounding boxes. ↑/↓ indicates that the
higher/lower, the better. The best value in each column is marked in bold.

2 3 4
#Backbone stages
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Figure 4.1: Effect of number of stages of Pyramid Vision Transformerv2 [28] backbone. AP is
measured on COCO [16] validation set with ground truth human bounding boxes. Model size is
indicated by marker size. For all models, AP drops with increasing number of backbone stages.

Model #Layers AP ↑ AP0.5 ↑ AP0.75 ↑ APM ↑ APL ↑ AR ↑ Params (M) ↓

TP-P-B0
2 69.1 90.3 76.3 66.0 73.5 72.2 3.1
4 74.2 92.5 81.6 71.1 78.8 76.8 4.7
6 75.7 92.6 82.7 72.7 80.4 78.5 6.3

TP-P-B2_Li
2 75.6 92.5 82.5 72.7 80.3 78.4 4.5
4 77.1 93.5 84.8 74.2 81.7 79.8 6.0
6 77.6 93.5 84.7 74.6 82.2 80.2 7.6

Table 4.2: Ablation study on Transformer Encoder size on COCO [16] validation set with ground
truth human bounding boxes. “#Layers” refers to the number of Transformer Encoder layers. ↑/↓
indicates that the higher/lower, the better. For each model, the best value in each column is marked
in bold.
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a fair comparison, all models are trained on COCO [16] dataset using the same
configuration and strategy. Results are evaluated on the COCO validation set
with ground truth human bounding boxes and summarized in Table 4.2.

For both models the overall performance indicated by AP improves accordingly
as the number of Transformer Encoder layers increases. We observe in more
depth that the APM (AP for medium objects) and APL (AP for large objects)
benefit largely from more Transformer layers. For example, when increasing
the number of Encoder layers of TP-P-B0 from two to four, APM climbs rapidly
(+5.1).

In addition, the impact of scaling size of Transformer Encoder varies for
backbones of different sizes, as compared in Table 4.2. For TP-P-B0, whose
backbone is relatively small (0.5M), enlarging the Transformer Encoder from 2
layers to 4 layers leads to a noticeable performance improvement (+5.1AP). In
contrast, it only brings about a slight enhancement for TP-P-B2_Li which is a
larger backbone (1.8M). These results seem to concur with similar experiments
in [31], in which ResNet based models require more encoder layers than HrNet
based models. Therefore, there is a clear trade-off between backbone and
encoder layers. While the backbone is usually responsible for large part of the
inference time, increasing the number of Transformer layers in the encoder seem
to compensate to some extent in term of quality.

4.2 Quantitative Results

We further conduct extensive performance studies on four popular datasets with
different topologies and challenges, described in Table 4.2.

4.2.1 COCO

Unless otherwise specified, the models are trained using the same settings as
mentioned in Section 4.1. Similar as [30, 25, 7], we apply a two-stage top-down
paradigm. We use the same person detection result as in [30, 25], which is
generated by an off-the-shell faster-RCNN detector [23] with person detection
AP 56.4 on COCO validation set. Following the common practice [30, 25, 19,
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Dataset #Images #Labeled Person #Keypoints

COCO Keypoints 2017 [16] > 200,000 > 250,000 17
PoseTrack 2018 [2] 66,374 153,615 15
OCHuman [33] 4731 8110 17
CrowdPose [14] 20,000 80,000 14

Table 4.3: Comparison between COCO Keypoints [16], PoseTrack [2], OCHuman [33], and
CrowdPose [14] in terms of number of images, number of labeled person instances, and number of
keypoints annotation of an individual person.

Model AP ↑ AP0.5 ↑ AP0.75 ↑ APM ↑ APL ↑ AR ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 75.1 92.6 82.6 71.9 79.6 77.8 5.8 135.9
TP-H-A6 [31] 78.1 93.6 84.6 74.9 82.6 80.5 17.2 32.3
TP-P-B0-A4 74.2 92.5 81.6 71.1 78.8 76.8 4.7 126.3
TP-P-B1-A4 75.7 92.5 82.7 72.6 80.6 78.6 6.2 120.9
TP-P-B2-A4 77.2 93.5 84.8 74.1 82.0 79.8 7.8 91.0

TP-P-B2_Li-A4 77.1 93.5 84.8 74.2 81.7 79.8 6.0 88.2
TP-P-B3-A4 77.1 93.6 83.8 74.2 81.8 79.8 7.8 91.8
TP-P-B4-A4 77.7 93.5 84.7 74.6 82.3 80.3 10.2 67.4
TP-P-B5-A4 76.7 93.5 82.8 73.5 81.4 79.3 8.1 78.3

Table 4.4: Results on COCO [16] validation set with ground truth bounding boxes. The input size is
256 × 192. ↑/↓ indicates that the higher/lower, the better. The best value in each column is marked
in bold.

Model AP ↑ AP0.5 ↑ AP0.75 ↑ APM ↑ APL ↑ AR ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 72.6 89.1 79.9 68.8 79.8 78.0 5.8 135.9
TP-H-A6 [31] 75.8 90.1 82.1 71.9 82.8 80.8 17.2 32.3
TP-P-B0-A4 71.9 88.9 79.0 68.2 78.9 77.2 4.7 126.3
TP-P-B1-A4 73.6 89.6 80.3 69.9 80.6 78.7 6.2 120.9
TP-P-B2-A4 74.4 89.7 81.2 70.7 81.6 79.6 7.8 91.0

TP-P-B2_Li-A4 74.7 89.8 81.5 71.0 81.6 79.7 6.0 88.2
TP-P-B3-A4 74.8 90.0 81.5 71.0 81.8 79.9 7.8 91.8
TP-P-B4-A4 75.2 89.9 82.1 71.2 82.4 80.3 10.2 67.4
TP-P-B5-A4 74.2 89.7 80.7 70.4 81.4 79.5 8.1 78.3

Table 4.5: Results on COCO [16] validation set with detected human boxes generated by faster-
RCNN [23] detector having human AP of 56.4. The input size is 256 × 192. ↑/↓ indicates that the
higher/lower, the better. The best value in each column is marked in bold.
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Figure 4.2: Model comparison on COCO [16] validation set with ground truth bounding boxe in
aspects of model size, accuracy, and speed. � and ♦ correspond to TransPose models [31] and our
proposed models, respectively. Larger symbol indicates model with larger number of parameters.

7] to generate final heatmap prediction, we run the input image as well as its
horizontally flipped version through the network and average the results. To
alleviate error when decoding the predicted downscaled heatmaps into the final
joint coordinates in the original image, we adopt Distribution-Aware coordinate
Representation of Keypoint (DARK) [32] and its decoding strategy. Pose
rescoring strategy and OKS-based non maximal suppression (NMS) [20] are
also employed.

Finally, we visualize the position prediction and attention maps for different
keypoints in Figure 4.3, for a single person with and without occlusion. While
the non-occluded case seems straightforward, we observe that the model learns
context information, especially for the shoulders, hips, knees and ankles. In the
occluded case, the left knee and left ankle are occluded by a dog in the front.
The model is still able to predict the accurate location using the context. For
the partly occluded left knee, the model is able to pay attention to the relatively
accurate area, with the help of the symmetrical joint (right knee). For the
completely occluded left ankle, the attention focuses mainly to its nearby joints
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on the same side (left knee) and its symmetrical joint (right ankle). Based on
these spatial clues, the model predicts the possible location where the left ankle
is probably located.

pred nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l)

elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r)

(a) A single person standing without occlusion.

pred nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l)

elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r)

(b) A single person standing with occlusion.

Figure 4.3: Comparison of attention maps of the last Transformer Encoder layer between a single
person standing without occlusion and a single person standing with occlusion. In each subfigure,
the top left image is the input image annotated with the predicted pose. Pose prediction and attention
maps are generated by TP-P-B2_Li-A4.

4.2.2 OCHuman

Following the setting from [33], we first train all models on COCO as in
Section 4.1. The robustness of our models against strong occlusion is validated
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on the validation and test set of OCHuman with ground truth bounding boxes.
The TransPose [31] models are tested and compared to as a baseline. We
report the results on the validation set and test set in Table 4.6 and Table 4.7,
respectively.

Model AP ↑ AP0.5 ↑ AP0.75 ↑ APL ↑ AR ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 62.0 80.3 66.7 62 66.2 5.8 135.9
TP-H-A6 [31] 62.3 77.2 67.9 62.4 66.6 17.2 32.3
TP-P-B0-A4 60.9 81.4 66.4 60.9 65.4 4.7 126.3
TP-P-B1-A4 62.8 81.6 68.1 62.8 66.7 6.2 120.9
TP-P-B2-A4 65.0 81.9 70.4 65.0 68.8 7.8 91.0

TP-P-B2_Li-A4 64.7 81.7 70.1 64.7 68.8 6.0 88.2
TP-P-B3-A4 65.0 81.7 70.1 65.0 68.9 7.8 91.8
TP-P-B4-A4 65.9 81.8 71.4 65.9 69.5 10.2 67.4
TP-P-B5-A4 65.0 81.7 71.2 65.0 69.1 8.1 78.3

Table 4.6: Results on OCHuman [33] validation set with ground truth bounding boxes. The input
size is 256 × 192. ↑/↓ indicates that the higher/lower, the better. The best value in each column is
marked in bold.

Model AP ↑ AP0.5 ↑ AP0.75 ↑ APL ↑ AR ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 61.8 78.5 67.2 61.8 65.9 5.8 135.9
TP-H-A6 [31] 62.0 76.6 66.9 62.1 66.3 17.2 32.3
TP-P-B0-A4 61.2 80.4 67.0 61.2 65.3 4.7 126.3
TP-P-B1-A4 63.0 80.6 68.4 63.0 66.8 6.2 120.9
TP-P-B2-A4 65.0 81.7 70.4 65.0 68.9 7.8 91.0

TP-P-B2_Li-A4 65.1 81.7 70.4 65.1 69.0 6.0 88.2
TP-P-B3-A4 64.6 81.4 69.3 64.6 68.4 7.8 91.8
TP-P-B4-A4 65.2 80.4 70.3 65.2 68.8 10.2 67.4
TP-P-B5-A4 64.8 81.6 70.4 64.8 68.7 8.1 78.3

Table 4.7: Results on OCHuman [33] test set with ground truth bounding boxes. The input size is
256 × 192. ↑/↓ indicates that the higher/lower, the better. The best value in each column is marked
in bold.

As stated earlier, one of our motivation for replacing the CNN backbone with
a Transformer backbone is to improve the robustness of our model against
occlusion. This assumption is here largely proven. While our models are beaten
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by the HrNet backbone in TP-H-A6 [31] on the COCO dataset, our models
surpass it largely when conducting evaluation on the largely occluded OCHuman
dataset. The best-performing model TP-P-B4-A4 greatly outperforms TP-H-A6
on the validation set (+3.6AP) and on the test set (+3.2AP) with much fewer
parameters and twice its speed. Moreover, almost all variants of our model
achieve better performance than TP-R-A4 and TP-H-A6 on both validation
set and test set. This is mainly due to more than 30% persons in OCHuman
being under heavy occlusion (MaxIoU > 0.75), compared to less than 0.1% for
COCO [33].

4.2.3 PoseTrack18

Model Head AP ↑ Shou AP ↑ Elb AP ↑ Wri AP ↑ Hip AP ↑ Knee AP ↑ Ankl AP ↑ Total AP ↑

TP-R-A4 [31] 86.8 88.9 83.9 78.2 82.3 81.8 78.0 83.1
TP-H-A6 [31] 87.0 89.3 84.8 79.6 82.5 82.7 78.9 82.8
TP-P-B0-A4 86.5 88.4 83.0 76.8 81.0 80.6 76.9 82.2
TP-P-B1-A4 87.2 89.9 84.1 78.7 81.8 81.6 78.5 83.3
TP-P-B2-A4 86.9 89.2 85.1 80.0 82.5 82.6 79.5 83.9

TP-P-B2_Li-A4 87.5 90.6 85.6 80.5 82.1 83.3 79.7 84.3
TP-P-B3-A4 87.5 90.6 85.5 80.4 82.5 83.6 80.5 84.4
TP-P-B4-A4 88.1 90.2 85.7 81.3 82.9 84.2 81.0 85.0
TP-P-B5-A4 87.3 89.7 85.5 80.3 82.0 83.0 79.7 84.2

Table 4.8: Results on PoseTrack18 [2] validation set with ground truth bounding boxes. The input
size is 256 × 192. ↑/↓ indicates that the higher/lower, the better. The best value in each column is
marked in bold.

We further focus on the PoseTrack18 dataset [2] and its multi person pose
estimation task with a topology of 15 keypoints. To this aim, we reuse our
models pre-trained on COCO. The training setup as well as the data augmentation
are almost the same as those for COCO, described in Section 4.1. We start
with re-initializing the final layer uniformly. We train only the new final layer
with initial learning rate 1e− 4 for 30 epochs, while freezing other parts of
the model. Finally, we finetune the entire model for another 30 epochs using
a smaller starting learning rate (5e− 5). The cosine annealing learning rate
scheduler is involved in both steps. For testing we adopt the person detection
results provided by mmpose [9], which are generated by a Cascade R-CNN
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(X-101-64x4d-FPN) [4] human detector. Other testing configurations remain
the same as for COCO [16]. We report the results on the validation set with
ground truth bounding boxes in Table 4.8 and report not only AP but also APs
of different keypoints. Most of our models surpass the baseline models, due to
main AP gain from the wrists and knees, which are more volatile joints at the
far ends, often subjects to occlusions.

4.2.4 CrowdPose

Model AP AP0.5 ↑ AP0.75 ↑ AR ↑ APE ↑ APM ↑ APH ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 69.8 83.7 75.7 78.8 79.7 71.2 56.4 5.8 135.9
TP-H-A6 [31] 71.3 83.6 76.5 80.3 80.5 72.7 58.3 17.2 32.3
TP-P-B0-A4 68.2 83.1 73.7 77.5 78.4 69.5 54.2 4.7 126.3
TP-P-B1-A4 70.3 83.6 75.8 79.5 80.0 71.8 56.7 6.2 120.9
TP-P-B2-A4 71.7 83.8 76.9 80.8 81.3 73.2 58.0 7.8 91.0

TP-P-B2_Li-A4 71.7 83.7 76.9 81.0 81.3 73.3 58.3 6.0 88.2
TP-P-B3-A4 71.8 83.7 76.9 81.0 81.3 73.4 58.2 7.8 91.8
TP-P-B4-A4 72.7 84.2 77.6 82.1 81.8 74.3 59.2 10.2 67.4
TP-P-B5-A4 71.4 83.6 76.7 80.6 81.0 73.0 57.6 8.1 78.3

Table 4.9: Results on CrowdPose [14] test set with detected human boxes generated by YOLOv3
[22] detector. The input size is 256 × 192. ↑/↓ indicates that the higher/lower, the better. The best
value in each column is marked in bold. E, M, and H of AP stand for crowding levels easy, medium,
and hard, as defined in [14].

For the CrowdPose dataset [14], we use the same two-stage finetuning strategy as
for PoseTrack18 (see Section 4.2.3). All models are evaluated on CrowdPose test
set with detected human bounding boxes generated by a YOLOv3 detector. Our
results are reported in Table 4.9. We also report the results on three crowding
levels, i.e., uncrowded (easy), medium crowded, and extremely crowded (hard),
as defined in [14]. Almost all of our proposed models surpass the baselines, with
the exception of two. Our best-performing model TP-P-B4-A4, outperforms
TP-H-A6 by a large margin of +1.4 AP with significantly fewer parameters and
more than twice its speed. The strongest difference comes from APE (+1.3AP)
and APM (+1.6AP) while APH is also moderately improved (+0.9AP). The
results demonstrate that our models are able to handle not only simple daily but
also crowded cases, probably due to better performance in occluded cases.
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5 Conclusion

We engineer a full Transformer-based model for top-down HPE. The recipe
is simple, flexible and can be applied with several variations: a reduced
Transformer-based backbone without convolutions for feature extraction, a
Transformer Encoder to model long-range relationship between feature vectors,
and a simple head for keypoint heatmap estimation. Our results show that our
model performs competitively and even outperforms the much heavier baseline on
three out of four datasets, with heavy occlusions and higher levels of crowdedness.
Future works should focus on difficult occlusions for which multiple person
are visible in a detected bounding boxe often leading to predictions of the right
keypoint belonging to the wrong person.
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