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Abstract—Recent publications show a rise of ambipolar tran-
sistor technology research and associated implementations of
multi-function logic cells in these technologies. Special properties
of these technologies enable implementations of Universal Logic
Modules (ULMs) using few transistors, which draws renewed
interest to use such ULMs as basic logic blocks for FPGA ar-
chitectures. Unlike N -input Lookup Tables (LUTs), most ULMs
only implement a fixed subset of the possible Boolean functions.

In this work, we first adapt the Verilog-to-Routing (VTR)
8.0 toolflow to target such reduced-function ULM primitives.
We then modify VTR’s flagship 40nm architecture to use an
ULM primitive instead of LUTs, modeling the double-gate carbon
nanotube FET 8-function logic gate CNT-DR8F published by Liu
et al. Using VTR’s extensive benchmark framework, we analyze
effects caused by the limited set of function offered by these
primitives. To counter some of the observed effects, we present
various clustered architectures, where multiple ULM cells are
combined in a logic block. We conclude with an analysis of
various parameters which affect performance of the different
implementations.

Index Terms—Reconfigurable logic, CNTFETs, Design tools

I. INTRODUCTION

With the increasing effort required for further shrinking
CMOS processes, it is likely that Moore’s Law cannot be kept
up by downscaling of conventional MOSFETs [1]. A different
approach to increase logic density in digital integrated circuits,
which departs from increasing transistor count per area, is to
extend the functionality of a single transistor and then reduce
the transistor count per logic function.

Higher expressiveness on device level, due to switching
either an electron (NMOS) or hole current (PMOS), can
be enabled by ambipolar transistors: These transistors are
capable of conducting electron and hole current in the same
device, often by introduction of additional gates to program the
polarity (p- or n-type). Whereas in CMOS circuits, the polarity
is predefined in the design phase and established during
processing for each transistor, this determination can now
be postponed to runtime. The additional degree of freedom
which comes with the selectable polarity can be exploited
to reconfigure the transistor dynamically during runtime or
statically with a fixed voltage.
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These Reconfigurable Field Effect Transistors (RFETs)
break with the practice of chemically doped p-n junctions and
current modulation by channel inversion. Schottky junctions
adjacent to the channel are electrostatically influenced (doped)
instead, to conduct either electrons or holes, and therefore
determine the polarity of the device. Different approaches
for implementations of RFETs have been published, featuring
silicon nanowires [2], carbon nanotubes [3], 2D materials [4]
and planar structures [5].

To the best of our knowledge, research on Reconfigurable
Field Effect Transistors (RFETs) is focused mainly on device
level and logic cells with low transistor count like NAND,
NOR, XOR and composed functions like AOI (AND-OR-
INV) or OAI. [6] shows how a circuit incorporating three-
independent-gate RFETs can represent different basic logic
functions like NAND or NOR depending on a program signal.
The device reconfigurability enables the reconfiguration of
entire cells regarding their logic function. While in an ASIC,
reconfigurable cells can be used to save chip area e.g. in non
simultaneously executing logic paths, an ideal application for
RFETs seems to be FPGAs, as they provide highly homo-
geneous, but individually reconfigurable structures. Complex
manufacturing processes have so far prevented large scale
adaption of RFET technologies. Although newer technologies
focus on a simpler manufacturing process [5], these processes
are still in a pre-industrial research phase, which limits the
size of manufacturable circuits. Because of this, we will focus
on the system level aspects affecting the FPGA design, rather
than on exact area and timing results.

II. RELATED WORK

There have been two mostly independent discussions of
ULMs in different fields in literature: The first discussion
of ULMs took place in the Field Programmable Gate Array
(FPGA) architecture community, when it was not yet clear
whether commercial FPGAs would settle on LUT based or
fixed function, ULM based architectures. Early research in
this regard was carried out by Chen and Hurst [7]. They
introduce the notion of ULM.2 cells, which can implement
all functions of 2 input variables, observing that there are
only six basic realizations of such a cell. They also introduce
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and discuss circuit implementations of the cell. These early
discussions where not focused on usage of the cells in FPGAs,
which was addressed over ten years later by Thakur and Wong
[8]. Takur and Wong note that due to the interconnect in
FPGAs, it is not necessary to use ULM.m modules, which
implement all functions of m inputs. They propose that
ULMs for FPGAs only have to provide one function per
equivalence class instead to still allow for all functions to
be implementable. Additionally, they describe an approach
to derive implementations of ULM.m and “almost ULM.m”
and show that a larger set of available functions leads to
better area results. This stream of work on ULM.m modules
culminated in Zilic’s and Vranesic’s work describing 3-input
LUT replacements with 3 configuration bits and 4-input LUT
replacements with 13 configuration bits [9]. Zilic and Vranesic
also provide a generic methodology to design such cells. After
this peak, some publications extended the ULM design to
modules with more input variables, see e.g. Hutter in [10].
In general, however, work on ULMs calmed down since then,
as FPGAs research focused on LUT technology.

Another, independent stream of ULM research has arisen
in the transistor technology community: Unlike the previously
described works, these works do not focus on generic design of
ULMs. Instead, they are motivated by specific features of the
ambipolar transistor technologies and the opportunities those
offer for the design of RFET based reconfigurable logic gates.
RFET reconfigurable gates can be realized with fewer tran-
sistors than their equivalent cells in standard Complementary
Metal–Oxide–Semiconductor (CMOS) technology, but unlike
CMOS based designs, it is not readily possible to choose the
set of functions implemented by such a reconfigurable RFET
cell: The set of functions is directly tied to the topology of the
cell. Examples of publications on such cells include Liu et al.’s
work on Doublegate Carbon Nanotube Field Effect Transistor
(DG-CNTFET) cells [11], which will be used to build on in
this publication. In later work, Jabeur et al. extended the 2-
input function generator to be a true ULM.2, implementing
all 16 possible functions [12], showing a 2x improvement in
time-delay and power consumption compared to 2 input LUTs.
Whereas these publications have not addressed use of the cells
in FPGAs, Park et al.’s work focuses on this application [13].
They also show the arguably largest benefit of using RFET
based reconfigurable cells: The configuration memory can be
realized as charge storage on the transistors making up the
reconfigurable cell. In that case, there is no need for external
configuration storage for the logic elements.

Whereas the first set of publications focused on complete
ULMs, RFET based reconfigurable cells are not complete.
The focus of these earlier publications therefore lay mostly
on the design of efficient ULM function generators, whereas
this publication takes a certain implementation as dictated by
available RFET implementations, and analyzes efficient use
of these in the FPGA architecture. The second set of cited
publications does largely not consider use of the reconfigurable
cells in FPGAs and is primarily focused on the design of
the reconfigurable cell itself. Park et al. do describe the

TABLE I
CNT-DR8F CELL FUNCTION SET. ADAPTED FROM [11].

VbA VbB VbC Y Name

+V +V +V A+B ulm nor2
+V +V -V A+B ulm or2
-V -V +V A ·B ulm and2
-V -V -V A ·B ulm nand2
+V -V +V AB ulm and2n
+V -V -V A+B ulm or2n
-V +V +V AB ulm and2n
-V +V -V B +A ulm or2n

application of the cell in FPGAs, but they do not provide
information on the FPGA system architecture and associated
effects of the cells on system level. This publication therefore
brings RFET based ULMs into modern FPGA architectures:
We take an existing RFET reconfigurable cell and uses it to
replace the LUTs in an FPGA architecture which includes
clustered logic elements, the Versatile Place and Route (VPR)
40 nm reference architecture. We describe how the state-of-
the-art academic Verilog-to-Routing (VTR) tool flow has been
adapted to allow synthesis of hardware description code to
such ULM based FPGAs. In addition, we provide information
on how to quantify the expressiveness of such an FPGA
architecture, describe how various parameters influence it and
compare the results to the LUT based reference architecture.

III. DESIGNING A MODERN ULM-BASED LOGIC CELL

In order to design a FPGA architecture which properly
maps to the opportunities offered by ambipolar transistor
technology, we reviewed existing ambipolar technology based
reconfigurable cells. We chose the CNT-DR8F cell presented
by Liu et al. in [11] as a base for our work: As a two-input,
eight-function cell, it offers more choices for the mapping and
packing algorithms compared to very simple, e.g. two-function
base cells. At the same time, unlike some larger proposed
cells, this cell doe not provide the complete function set of
two variables: A cell which allows to represent all possible
functions of N input variable can be treated as a LUT in
most of the EDA tool flow. It is therefore not as restrictive
as using a cell with a reduced function set. As it is often not
easily possible to influence the realized function set in RFET
cells, it is important to evaluate the EDA tool flow and the
architecture with regards to a real ambipolar base cell, taking
into account restrictions which may arise because of the cells
used. The CNT-DR8F cell offers the function set shown in
Table I, which also lists the names of the functions as used
in the EDA tools and FPGA architecture. The function pairs
(AB, AB) and (A + B, A + B) have been combined into
single ulm and2n and ulm or2n functions.

Whereas Table I also shows the configuration values to
obtain a certain output function, for the following discussions,
the exact (VbA, VbB, VbC) combination used is not relevant.
If the physical view (which considers the voltages) is mapped
to a logical view (which only considers configuration bits of



Fig. 1. Top Level FPGA Architecture. Dotted: IO blocks; white: Configurable
logic blocks; diagonal: Memory blocks; grid: Multiplier blocks. Multiplier
and memory blocks repeat every 8th column. Wire length of the global
interconnect is 4.

SRAM cells), the combination determines essentially only the
bitstream encoding used. A relevant point is that such a cell
requires three configurable inputs of two input values each, so
the configuration storage for such an element can be kept in
three SRAM cells. To make full use of ambipolar technology
benefits, some technologies allow to store the configuration
as charges of the respective configuration gates [13]. In this
case, logic and memory are combined and the extra transistors
for configuration memory storage are not necessary. The total
transistor count for the 8 function cell, including configuration
storage, then reduces to seven transistors [11].

As the CNT-DR8F is a basic cell of only two inputs, it has
less expressiveness than the LUT-6 often used in FPGA archi-
tectures as logic elements. Using it directly as a configurable
logic block in the FPGA grid (see Fig. 1) leads to excessive
global routing. Such routing leads to increased wire delay,
negatively affecting the critical path and severely limiting
the maximum frequency achievable for user designs in the
FPGA architecture. It may also lead to routing congestion, and
considering that the interconnect in modern FPGAs already
makes up most of the total area, using higher interconnect
channel widths is not an option.

Regarding the global interconnect, the architecture we eval-
uate is identical to the reference architecture. As the Config-
urable Logic Block (CLB) replacement is designed targeting a
similar expressiveness as the reference architecture CLB, the
global interconnect is not directly affected and can be kept
unchanged. Other factors such as cell area, however do have an
effect on the interconnect, especially considering the important
share of interconnect area on the total FPGA area. Further
investigation requires a more detailed analysis of logic cell
and interconnect area in the target RFET technology, which is
deferred to later work.
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Fig. 2. Basic Structure of the ULM Based Logic Elements and Logic Cluster.

mem32K 40nm reference architecture, the 6-input cell struc-
ture shown in Fig. 2a has been derived. The cell combines
5 ULM base cells in a tree-like structure, providing three
outputs. The outputs are not independent and can only be used
in parallel if a intermediate output is required. Analysis of the
packed netlist will show whether such situations occur often
enough in the netlists of real applications to be beneficial. The
maximum depth of the cell is three ULM cells deep, but it is
not a fully populated tree. Depths of one ULM or two ULMs
(full tree) are available at the other outputs.

Such a cell does not allow to implement all possible input
functions on an FPGA: As an example, the case where an IO
input is directly connected to a register cannot be represented
in this architecture, as all signals have to be routed through
a complex logic block before being fed into a register. LUT
based architectures are not affected by this problem, as they
always allow to implement the identity function, a simple
passthrough. To make the ULM based architecture universal,
a passthrough mode has to ben added to the ULM element,
as will be explained and analyzed in further sections.

As the expressiveness of this cell is still limited, and to be
consistent with the VPR reference architecture (which uses 10
6-input LUTs in a logic cluster), the ULM based Fracturable
Logic Element (FLE) cell has also been embedded in a cluster,
as shown in Fig. 2b. In the same way as in the reference
architecture, the inputs of the cluster are connected to the
inputs of the FLEs using a full crossbar. Furthermore, also
as in the reference architecture, the outputs of the cell are
fed back into the crossbar. This allows to route connections
between multiple of these cells locally, without using global
interconnect. In order to design a logic element with similar
expressiveness than the reference architecture (i.e. same device
width / height of the FPGA device for benchmark circuits and
and same global interconnect usage), the exact amount and
type of FLEs in a complex cluster will be determined in the
following sections.



IV. EDA TOOLFLOW AND METHODOLOGY

Evaluation and benchmarking of the different architecture
variants was performed using the VTR toolkit in its most
recent release, version 8.0 [14]. As the VTR tool suite has been
designed originally for LUT based FPGAs, various changes
are necessary to use it with fixed function logic cells. The
primary change is the adaption of the technology mapping
step, which is performed in the ABC tool and guided by a
synthesis script. The VTR tool flow provides such a synthesis
script to map the user designs to LUTs. This script was
adapted to perform a standard cell mapping, using a custom
genlib technology file specifying the different ULM modes
as individual gates. As a slight complication, VTR sometimes
performs multiple iterations of reading, optimizing and writing
the mapped netlist. This is supported by ABC when using
LUTs as the target technology, as the representation of logic
in unmapped netlists happens to be the same as for LUTs. For
standard cell synthesis, this is not the case and care must be
taken to perform initial ABC steps using LUT mapping, only
switching to standard cell mapping in the final iteration.

The mapped netlist generated by ABC in standard cell
synthesis mode cannot be directly used in the pack and place
phase of VPR: The generated Berkeley Logic Interchange
Format (BLIF) file uses .gate directives, which are not sup-
ported in VPR. Therefore a small custom script is used to
transform the .gate directives to .subckt directives, which are
supported by VPR. These directives are usually used to specify
black boxes and more complex predefined blocks in the FPGA
architecture, such as Digital Signal Processing (DSP) blocks
or similar. As the VPR packer was designed to be flexible, it
is used here as a quick way to pack the ULMs into the FLEs.
The drawback of this simple approach is largely extended
tool runtime, as an unusually large amount of cells has to be
processed by the packer and as many logic functions cannot
be legally packed onto some ULMs in a FLEs due to routing
restrictions.

V. STATISTICS TO GUIDE CELL ARCHITECTURE DESIGN

The actual benchmarking of the architecture is performed on
VTR’s benchmark set, whereas for evaluation of intermediate
architecture results, only a reduced set of benchmarks is used
due to the tool runtime issue mentioned above. To evaluate the
results and guide architecture design, the statistics offered by
VPR are useful, but not sufficient: These statistics are mostly
centered on the top-level view of the FPGA architecture,
including the FPGA dimensions in blocks of the top level grid,
the block type which dominates the device size, channel width
and congestion for global routing, and similar data points. The
main conclusion that can be drawn from these measurements is
whether the objective of performing similarly to a LUT based
architecture, with respect to the global architecture, has been
fulfilled. For this, a comparison between the VTR reference
architecture and the same architecture with the LUT based
logic block replaced by ULM logic clusters, will be carried
out.

To actually design a replacement logic cell which integrates
well with the global architecture and does not require changes
of this global architecture, re-evaluating these global aspects is
of limited use. Bottlenecks such as reduced logic expressive-
ness because of too few logic elements in a cluster, because
of restricted local routing or because of underutilized logic
elements can not be deduced from these top-level statistics. To
remedy this, a custom tool for analysis and statistics collection
for the logic cluster blocks has been designed. By parsing
VPR’s structured, packed netlist output, it is possible to gain
interesting information about the sub-blocks in the hierarchy.
Quantities analyzed include the utilization of input and output
ports of the logic clusters, the utilization of the available FLE
cells in a cluster, utilization of inputs and outputs of the FLE
cells, ULM configurations used in the FLE cells and similar.
Statistics are generated for aggregated quantities, such as the
average and median number of inputs used, and similar values.
To make informed decisions on the architecture, histograms
are generated in addition. As an example, those can be used
to gauge how likely all outputs, all inputs or all Flip-Flops
(FFs) in a FLE are used at the same time. In addition to
aggregated statistics, statistics for individual outputs and cells
are generated. This allows to answer questions such as how
often a specific output or cell has been used.

Changing certain parameters in the FLE element can largely
affect the the expressiveness of the cell, which can be detected
and measured in various ways. We derived the following
quantities to describe these results:

1) Total FPGA size: The width and height of the FPGA
in complex blocks. This measurement is only relevant
if the logic blocks (LUT- or ULM-Cluster) determine
the device size. Both points can be determined from the
statistics file generated by VPR.

2) Percentage of FLEs used in logic clusters: This mea-
surement gives an overview of how well device logic
resources are utilized and allows to draw indirect con-
clusions on congestion issues of the global and local
interconnect. Non-fully utilized FLEs (if the device size
limiting resource are logic cells), hints that the cells
cannot be connected accordingly. This may be caused
by congestion on global or local interconnects, as well
as by not enough available inputs or outputs.

3) Logic cluster input and output utilization: A high utiliza-
tion of inputs or outputs at little FLE utilization suggests
that excessive amounts of signals have to be routed using
the global interconnect. Improving connectivity of the
local interconnect can unburden the global interconnect
and allow for better FLE utilization.

4) FF utilization: The amount of FFs which are actually
used. This measurement is particularly sensitive to the
set of benchmarks used. If the ULM based logic cluster
is designed to have the same expressiveness as a LUT
based cluster, we also expect to see the same amount of
FFs in such a cluster as in the reference architecture.

In addition to those quantities which mainly guide logic
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Fig. 3. Logic Cluster Utilization for Simple FLE Consisting of One ULM.

cluster design, the following quantities were used to gain
insights for FLE design:

1) FLE input usage and distribution: Information about the
average number of inputs used can suggest whether a
FLE with more or less inputs may lead to a better
utilization of ULM cells. A low number of used inputs
suggests that the input circuits do not map well to the
ULM topology, wheras a low number of distinct inputs
suggests that some ULM inputs may be combined into a
single input, to reduce size of the logic cluster crossbar.
The distribution of inputs can also be used to gain certain
insights: It allows to draw conclusions which part of the
fracturable logic is most often used.

2) ULM usage and distribution: This is another measure-
ment to determine which part of the fracturable logic is
most used. It further provides direct feedback whether
the FLE cell successfully matches the input logic func-
tions, or whether the topology of ULMs does not allow
nets to be mapped efficiently.

3) FLE output usage and distribution: This is the primary
way to determine whether a FLE design is working
efficiently. A low number in the average amount of used
outputs suggests that the cell can not drive multiple out-
puts at the same time, likely caused by the cell topology.
A low utilization of a certain, specific output can hint
that this sub-part of the FLE topology is not frequently
used and that the output may be removed from the
architecture without reduction of expressiveness.
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Fig. 4. Utilization of Fracturable 6-Input ULM.

VI. LOGIC ARCHITECTURE PARAMETERS

1) Number of Logic Inputs: Fig. 3 shows the FLE uti-
lization and input and output utilization for a very simple,
naı̈ve FLE which consists of only one ULM. This FLE is
instantiated ten times in the cluster, according to Fig. 2b. The
results motivate the need for a more complex cell, as it makes
use of only 9.64 inputs and 3.5 outputs in average at a ULM
utilization of 96.1 %. On the other hand’s side, it increases the
amount of complex logic blocks used in the benchmarks by
241.4 % compared to the reference architecture. As expected,
because of fewer utilized inputs and outputs, the minimum
channel width is also reduced to 77.0 %.

2) Fracturable Cells: As an initial improvement, the com-
bined cell in Fig. 2a is presented: Like the 6-LUT building
block in the reference architecture, it can take up to six
different inputs. This decision has been made to initially have
similar consequences for the local interconnect in the logic
cluster as in the reference architecture, especially with regards
to the input crossbar. In addition, the cells have been arranged
in a way to allow the system to be fracturable: If ULM 4
in the tree is configured to pass through its right-hand input,
the 6-input FLE decomposes into a two-input and a four-
input logic element. Similarly, the cell can be decomposed
into three two-input logic elements by further putting ULM 3
into bypass mode, forwarding only its right input. In addition,
multiple outputs can be derived from all six inputs, if the
outputs are related and their combinational logic functions
can be mapped to the topology shown in Fig. 2a. Results
for these adjustments can be seen in Fig. 4. It can be seen
that only one output is heavily used. Nevertheless, a fraction
of the functions mapped to this output actually was two-input
functions, which forced other ULM cells into bypass mode and
essentially implemented simple functions in overly complex
cells. We assume that the main problem here lies within our
simple technology mapping and packing approach: The simple
mapping by the synthesis tool onto ULMs and the combination
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of multiple such mapped functions into more complex logic
blocks in the packing stage, prevents the synthesis tool from
transforming functions to explicitly match those larger cells,
consisting of multiple ULMs. In addition, modeling FLEs as a
simple set of ULMs requires quite some effort in the packing
stage, which will result in increased tool runtime.

We conclude that fracturable cells require a slightly more
sophisticated approach in the EDA tools to be used effectively.
Instead of modeling the base primitives for technology map-
ping, a more exhaustive technology library needs to be derived
to reproduce every complex N-input logic function which can
be represented by the complex cluster cells. Mapping to more
complex functions makes less use of the local and global
interconnect than mapping to multiple, simple functions. This
should be reflected in the generated library to incentivize the
synthesis tool to use the larger cells. An initial approach to
realize this in readily available EDA tools may be to adjust
the area of these virtual cells accordingly. For packing, the
complex cells then are simply described as different config-
urations, depending on the number of inputs required. As an
example, the cell mentioned above, which can be configured
as 6-input, 2-input and 4-input or three times 2-input, may be
represented using three different configurations. The task of
the packing tool is then reduced to its original task, as it does
not have to map multiple cells into one larger cluster. For our
evaluation using the simple EDA tool approach, we decided
to remove the additional outputs, as shown in Fig. 5a.

3) Cluster-Internal Cells: In order to reduce utilization
of the global interconnect, logic clusters usually provide a
local interconnect with direct feedback paths from the logic
output to the logic input. If an output is fed back in the local
interconnect, unless it is also required as an input for another
logic function, it is not routed on the global interconnect. This
means that larger utilization of the local interconnect will lead
to less utilization of the logic cluster outputs. In order to avoid
wasting resources, there are two possible solutions: One is to
reduce the number of outputs. This however has consequences

for the global interconnect and the overall FPGA architecture.
As we want to keep close to the reference architecture, we
decided to keep the same number of outputs in a logic cluster.
The alternative we chose to influence output utilization is the
introduction of internal-only cells: The output of these cells
are only connected via the local interconnect to other logic
cells’ inputs in the same cluster, but not to outputs of the logic
cluster and therefore not to the global interconnect. The logic
cluster architecture including these internal cells is shown in
Fig. 2b.

For internal cells, questions regarding number of inputs, the
amount of basic ULMs chained and the overall topology of the
Logic Element (LE) arise in the same way they do for the non-
internal cells. If internal cells do not contain FFs, they need to
be part of a deeper logic function. In this case, the depth of the
internal cell itself should be reduced to make sure that total
depth of one internal-only cell chained with one non-internal-
only cell is not too large, which would prevent mapping of
logic functions. If FFs are used in internal cells, the internal
cells can be used to terminate a combinational net. The output
must however still be mapped to a non-internal cell and if
the FF in a cell is optional and bypassed, the considerations
regarding path depth still hold.

These considerations and analysis of the experimental
benchmark statistics suggest that simple logic cells consisting
of one ULM and one FF that can be bypassed, are effective.
In the final architecture, we implemented 5 of these logic
elements and 15 FLEs. This adds up to 20 outputs in total,
which matches the logic cluster output count. We therefore
exposed the outputs of all cells and do not use internal-only
cells.

4) Additional Cell Modes: Apart from the functional modes
of Table I which are provided by the ambipolar base cell,
the Electronic Design Automation (EDA) tools used require
certain other, artificial modes: The ABC tool for synthesis
expects a buffer cell, an inverter cell and constant zero and
one generator cells. The buffer cell is unnecessary (or implicit)
in an FPGA architecture and can simply be removed from
the netlist. The inverter cell can be represented in the CNT-
DR8F cell, when both inputs are connected to the same input
variable and a configuration such as ulm nor2 is chosen.
Connecting inputs in this way is possible for those ULM
cells which are directly connected to the input crossbar, i.e.
simple logic element cells and the first level of cells in the
FLEs. For other ULMs, an inverter mode can not be realized
without additional hardware. As mentioned earlier, a more
sophisticated representation of the logic cluster in the synthesis
tools should allow these to better fit logic functions to the cells.
This also reduces use of the inverter mode, which should be
largely absorbed into complex modes with inverted inputs.

For constant inputs, LUT based FPGA architectures can
simply adjust the lookup tables to adjust for the constant
inputs. An ULM based architecture on the other hand’s side,
actually has to provide these constant values as possible inputs
to the logic cells. The constant zero and one generator cells
have therefore been implemented as two additional inputs to
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Fig. 6. Utilization of FF in Logic Cluster.

the logic cluster input crossbar, as shown in Fig. 2b. This
avoids having to actually route these constant nets, avoiding
increasing congestion on the interconnects, while still creating
minimal resource usage in a logic cluster.

5) Cell Bypass Mode: In some cases, ULMs need a bypass
mode which simply forwards one of the inputs to the output.
This mode is functionally equivalent to the buffer mode which
is required by synthesis tools, but actually removed from the
netlist before packing. The main difference is the reason such
a mode is required: Whereas the buffer mode is required
because of limitations of EDA tools not adapted completely
to an ULM workflow, the bypass mode is actually required to
increase flexibility of the fracturable logic cells: As mentioned
before, to realize simple two-input functions in the proposed
FLE, some ULMs need to be bypassed. In the same ways
as inverter cells, bypass modes can be implemented with
no overhead if both inputs of the bypassed ULM can be
connected to the same input. This is again the case for the
ULMs directly connected to the input crossbar, as the ULMs
can be configured in ulm and2 mode to forward its input
to its output. For other ULMs, additional multiplexers are
required to either bypass the cell, or connect both inputs to
the same value. Connecting the inputs has the benefit of the
bypassed ULM still serving as an electrical buffer and has
been implemented in Fig. 5b. This approach has the drawback
of requiring additional transistors for the multiplexers, as well
as an additional bit of configuration storage.

6) FF Usage: As there are more FLEs in our ULM based
logic cluster than in the reference architecture LUT cluster,
it can be questioned whether each FLE should contain one
optional FF. Gathering the FF usage statistics from the VPR
benchmarks shown in Fig. 6 suggests that only 12.2 % of
the FFs in FLEs and 9.2 % of the FFs in internal-only logic
elements are used. Adjustments to the architecture and further
benchmark statistics suggest that a total of 10 FFs per logic
cluster enables almost complete utilization of all FFs. At the
same time, it does not increase the total FPGA area, an effect
that would occur if there are too few FF in a logic cluster.
To reduce the amount of FFs in the cluster to 10, we use 5
simple logic elements with FFs, 5 FLEs with FFs and 10 FLEs
without FFs for the final architecture.

VII. ULM LOGIC CLUSTER CELL RESULTS

For the final architecture, all parameters were tuned as
previously explained: The logic cluster has 40 inputs that
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Fig. 7. Utilization Statistics for Proposed Logic Cluster.

feed an input crossbar. It combines 5 simple, two-input logic
elements with one FF each, 5 FLEs with one FF each and
10 FLE without FF. Each of the previously mentioned cells
provides one output of the 20 outputs of the logic cluster and
there are no internal-only cells. The FLE consists of the ULM
topology of Fig. 5a. Fig. 7a and Fig. 7b show the input and
output utilization of the logic cluster averaged over the VPR
benchmarks. It can be seen that the architecture uses up to
32 inputs, which is the maximum channel width in the routed
design. Fig. 7c and Fig. 7d show the utilization of FLE and
simple LE in the benchmarks set. As expected, utilization is
close to 100 %. Fig. 7e shows the utilization of FLE inputs.
It can be seen that sometimes more complex functions are
mapped to the FLE, making use of more inputs, sometimes
simpler functions are mapped. Because of this, not all inputs
are always fully utilized. As there is only one output per cell,
the outputs are always fully utilized.

This publication does not include timing related results
for the FPGA architecture, as a reliable comparison requires
timing characterization of all components in the target tech-
nology. For the CNTFET technology, not all required data
is available, but transferring the results to our own custom



od
in

ab
c

pa
ck

pl
ac
e

ro
ut
e1

ro
ut
e2

0

1,000

2,000

3,000

10

839

47 146

2,081

408

704

2,396

230

3,075

46

T
im

e
(s
)

LUT ULM

(a) EDA Tool Runtime, Averaged Over Circuits.

ar
m

co
re

bgm

blo
b

m
er

ge

bou
ndto

p

ch
in

tr
in

sic
s

diff
eq

1

diff
eq

2

LU
8P

EEng

LU
32

PEEng

LU
64

PEEng

m
cm

l

m
kD

el
ay

W
or

ke
r3

2B

m
kP

kt
M

er
ge

m
kS

M
Adap

te
r4

B

or
12

00

ra
yg

en
to

p
sh

a

st
er

eo
vi

sio
n0

st
er

eo
vi

sio
n1

st
er

eo
vi

sio
n2

st
er

eo
vi

sio
n3

0

1

2

3
·104

B
lo
ck
s
in

F
P
G
A

LUT ULM

(b) FPGA Device Size in Various Circuits.

Fig. 8. Comparison of Routed Circuit Results to LUT Reference Architecture
Results.

technology [5] will enable this analysis in the future. Timing
delay also influences FPGA size due timing driven routing
algorithms. Because of this, timing driven routing and packing
was disabled in VPR.

Fig. 8a shows the average tool runtime compared to the
runtime in the LUT based FPGA case. As can be seen, runtime
is mostly similar, except for the packing phase, which is
100 % more expensive in the ULM approach presented. The
slight increase in the routing phase can be explained by the
in average slightly larger circuits. Fig. 8b shows the FPGA
sizes for the circuits in the VPR benchmark set. The ULM
based device is less than 10 % larger in number of blocks in
most cases. For the LU*PEEng and for the mcml circuits, the
ULM based FPGA can however be up to 50 % larger, which
suggests that further adjustments may be necessary. We found
this difference to be acceptable, but it can be further reduced
by including more FLEs in the logic cluster.

VIII. CONCLUSION

We first presented a simple EDA workflow to support syn-
thesis and mapping for ULM based FPGA architectures. Then
we introduced a statistics gathering process and important
variables which can be measured to evaluate performance
of the ULM FPGA architecture and the EDA workflow. We
continued by describing how various parameters of the ULM
FPGA architecture affect its performance and derived one
architecture which provides similar expressiveness than the
VPR 40nm reference. In the last section, we then presented
a performance evaluation using the statistic variables derived
earlier and compared results to the VPR reference architecture.

The presented logic cluster fits within the existing VPR
reference FPGA architecture and can efficiently implement
the VPR benchmark circuits. Whereas a 6-LUT requires 126
transistors for the multiplexer network and 64 bits of SRAM
storage, a single ULM requires 7 transistors and 3 bits of
storage. Due to the limited expressiveness of the two-input
ULMs used, multiple ULM need to be combined in the FLE.
This results in an amount of 35 transistors and 15 bits of
memory per FLE in the ULM case, where approximately two
FLEs are necessary to reach the expressiveness of a LUT-6.
The input crossbar is larger than in the reference architecture,
as more FLE are needed for the same expressiveness. This
effect can be countered by partial depopulation of the crossbar
switches, where further research is necessary to determine
the most effective way of depopulation. That considered, the
use of ULM cells by itself does not largely reduce FPGA
size, reinforcing the decision of commercial FPGA vendors
to use LUTs instead of other function generator cells. The
main profits of the ULM based architecture can be reaped,
when external configuration storage is replaced by on-gate
charge storage as shown by Park et al. in [13]. In that case,
configuration storage for ULMs is embedded in a logic-in-
memory style and does not require additional area. Whereas
the CNT technology used for the CNT-DR8F implementation
in [11] has not seen widespread adaption, the device design is
transferable to other ambipolar technologies. We intend intend
to transfer the cell design to recent planar RFETs [5], [15],
which will enable a simpler manufacturing process.

Further work on system level may analyze which set of
complex functions is most beneficial in a FLE and reduce the
set of available configurations. In that case, the configuration
writing circuit required to configure the FLE can be reduced.
As discussed, a more complex technology mapping approach
may be implemented to allow the EDA tools to more effi-
ciently map logic to the available complex cells. As the focus
of this publication was on the FPGA architecture itself, this
research is left for further work.
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