KIT | KIT-Bibliothek | Impressum | Datenschutz

A Review on Deep Learning Approaches for Spectral Imaging

Fischer, Benedikt 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Deep learning algorithms have revolutionized the computer vision field in the last decade. They can reduce tedious feature engineering and have opened new possibilities of automated visual inspection. With deep learning techniques, the availability of large amounts of qualitative labeled data became more important than ever. The main share of computer vision research focuses on RGB images. With the advances in sensor technologies multi- and hyperspectral cameras have become more cost effective and accessible in recent years, allowing this imaging technology to be applied to new fields of application. This article gives an overview of approaches to apply deep learning techniques to multi- or hyperspectral data. Several state-of-the-art methods will be reviewed and problems and difficulties will be discussed. An overview of a selection of available datasets is presented. To give a broad and diverse insight, research from different fields of application are considered, namely the remote sensing domain, the agricultural domain and the food industry.


Verlagsausgabe §
DOI: 10.5445/IR/1000148325
Veröffentlicht am 07.07.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-7315-1171-7
ISSN: 1863-6489
KITopen-ID: 1000148325
Erschienen in Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory
Veranstaltung Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory (2021), Karlsruhe, Deutschland, 02.07.2021 – 06.07.2021
Verlag Karlsruher Institut für Technologie (KIT)
Seiten 69-85
Serie Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe ; 54
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page