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Abstract

Learning the skill to discover causal relations and to make use of them is said
to be an essential step in human intelligence [43, 31] and potentially also in
machine intelligence [28, 38]. The domain of causal discovery tackles the
challenge of identifying causal structures from data collected from observations
or experiments by exploiting special properties of causal relations. While
current causality literature focuses on methods of probabilistic discovery using
conditional independence tests and hard and soft interventions[27, 5, 19] other
lesser known approaches are neglected [33].
In this work, we will give a short review on approaches for gaining causal
knowledge and provide a categorization of methods. Also, we will introduce the
Joint Discovery Assumption that is essential for combining different approaches
for causal discovery. Finally, we discuss the open research fields we deduce
from our categorization.
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1 Introduction

Would it not be great if artificial intelligence (AI) could understand the cause and
effects of its past actions and adapt accordingly? What sounds like a dream may
be supported by causal-understanding AI in the future. What is called causal
discovery or causal structure learning may level the path for causal reasoning
in AI. The strength of these methods lies in finding causal relationships, while
also being able to distinguish correlation from causation which is a weakness of
many current machine learning methods[38]. For us humans, we are easily able
to understand and use causal connections since infancy[22]. The step to causal
understanding was a major breakthrough in human evolution [43, 31] the same
may be true for the evolution of AI [28, 38].

Currently, such tasks are still beyond the possibilities of an AI as current
algorithms fail to keep up with human capabilities. They struggle in simple
tasks as when trying to discover the causal connection between the altitude of a
weather station above sea level and its average outdoor temperature [15]. The
actual causal connection is clear for us humans to see, because we know the
average temperature cannot influence the altitude of a weather station.
Our assumption is that future algorithms will have to combine several existing
approaches for discovery to gain the most causal structure information. In this
paper, we will give a review on such approaches to gain what we call causal
structure clues: information about the presence or absence of causal relations
in a causal graph, by considering research in various science domains. We
contribute by:

• categorizing algorithms to gain causal structure clues.

• providing a common ground for joint inference over various science
domains by the definition of the Joint Discovery Assumption.

• deriving prospects for future research.

We cover methods used by humans, but also more advanced methods based on
probabilities and spacetime which commonly challenge human understanding.
We do not investigate methods for identifying whole causal networks from the
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given structure clues as this would exceed the scope of this work.
In section 2, we give a short overview on the fundamentals on general causal
structure learning. In section 3, we introduce a fundamental assumptions for the
joint use of multiple approaches for causal discovery. The categorization itself
is explained in section 4. We provide a short analysis of future prospects based
on made categorization in section 5 and summarize our findings in section 6.

2 Basics of Causal Structure Discovery

In causal discovery, one tries to fully discover the true causal graph G∗ for a
given process under investigation. Such a graph consists of a set of variables V
depicted as nodes and a set of edges E connecting the variables. It is a common
assumption that G∗ is always a causal directed acyclic graph (DAG); causal, as
all edges in E indicate causal relations between the variables in V ; directed, as
all edges in E are only allowed to be only one-directed or absent; acyclic, as the
edges in E may not form any cycles like bi-directed relations. Cycles may only
occur in temporal considerations.
For given structure knowledge over the absence or direction of edges of G∗, a
set of equally possible DAGs can be inferred which form an equivalence class of
DAGs with respect to the provided knowledge. These equivalence classes can
be represented by Partially Directed Acyclic Graphs (PDAGS). If no existing
knowledge is present, the equivalence class contains all feasible DAGs for given
variables. For this case, the number of DAGs is described in [41]. By adding
structure knowledge to an equivalence class, one may direct or eliminate edges
and thereby restrict the equivalence class. G∗ is deemed to be fully discovered if
all possible edges between the variables of V are discovered to be either absent
or one-directed [27].
Approaches to gain such causal structure knowledge are explained in section 4
in detail.
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3 Joint Discovery Assumption

We humans naturally use multiple approaches to identify causal relationships.
This is based on the assumption that no matter which causal discovery method
is used the underlying graph is the same as long as no undetected changes have
occurred in the graph. As long as each structural clue is implied by the causal
graph the discovered causal clues cannot contradict each other unless when
essential assumptions of the discovery methods were disregarded.
As an example, if two causal discovery methods m1, m2 infer a causal relation
between the variables A and B results in two structural clues c1 and c2, then
c1 must be supported by c2 and c2 must be supported by c1 accordingly. This
means the discoveries c1 = {A→ B} and c2 = {A |= B} are not be possible
without one of the clues to be erroneous. But, for example c1 = {A→ B} and
c2 = {A 6 |= B} are two structural clues that fully support each other.
We call this Joint Discovery Assumption, since it allows the joint use of several
discovery methods. Based on this assumption, we can combine various structure
clues from data to gain the most information on the true causal graph and
we can evaluate more different types of data, since results from matching
discovery algorithms can be included in the discovery process. In addition,
computationally inexpensive methods can be used to restrict computationally
or cost intensive discovery methods. Such an application could lead to a
considerable streamlining, since previously excluded causal relationships no
longer need to be considered by the second method. Note however that not every
causal discovery method could infer every structural clue, since each comes
with its own presuppositions.

4 Approaches for Discovering Causal relations

In the following, we grouped methods by similarity in their approach of exploiting
properties of causal relations for inferring causal structure clues.
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4.1 Structure clues from expert knowledge

The easiest discovery approach for artificial intelligence to learn causal relations
is to get them taught by humans. We define such a structure clue as any
knowledge that can be used for the construction of causal graphs. This may
include knowledge over specific known edges [24], a known causal order [9], a
known partial causal order [36], a known path between variables [3] or even
knowledge over variable types [4]. We will deal with the latter in particular.
Typing assumptions [4] can only be applied if the investigated variables contain
variables of similar type, e.g. multiple diseases or multiple drugs for treatment,
and if structure knowledge over the type in relation to other variables is given,
e.g. variables of type ’disease’ may cause variables of type ’symptoms’. Such
a typification of variables has to be performed by domain experts in advance.
The general background knowledge over types can be used to limit the causal
structure search. For example the provided domain knowledge may entail that
diseases may cause symptoms, but symptoms may not cause diseases. The causal
discovery methods can then consider these general rules in their detailed search.
This example requires manual typification of the variables though investigation
in automated type classification of variables may deliver promising results [4].
Using expert knowledge in general is a comfortable way of combining prior
domain knowledge with the power of discovery algorithms. It is also an easy
way to speed up discovery by reducing the amount of edges that need to be
considered in causal structure search while leaving the actual causal discovery
task to an algorithm. Unfortunately, introducing expert knowledge comes with
the risk of introducing structure faults which can result in a wrong causal graph.

4.2 Structure clues from probabilistic inference

Since Judea Pearl published the foundations for probabilistic causal discoveries
in 1988, the domain of probabilistic discovery is flourishing. By collecting
data via observations with additional knowledge over the variable states, we
are able to recover probabilities. Depending on the type of algorithm, these are
interpreted differently. In the domain, the categorization into score-based and
constraint-based algorithms has become established [11]:

109



Josephine Rehak

Constraint-based methods make use of patterns in the retrieved probabilities to
uncover fragments of the causal structure. For one, unconditional independence
tests allow the learning of skeletons by identifying the presence, but not the
direction, of causal relations. Further on, conditional independence tests can
uncover immoralities, sometimes also called uncovered colliders or v-structures,
by making use of d-separation properties [29]. Score-based algorithms try to
find the graph with the highest fit to the data by varying edges in the graph. The
accuracy of fit is measured in a likelihood score as the Bayesian information
criterion [2] or the Aikaike information criterion [1]. A common example is the
Greedy Equivalence Search (GES) [7].
The third category forms a group of mixture methods that use both score-based
and constraint-based learning like Max-Min Hill Climbing (MMHC) [45].
All these approaches can be used to learn Markov Equivalence Classes (MEC),
equivalence classes of DAGs which are equivalent in their conditional and
unconditional independencies [46]. MECs can be represented in the form of
complete partially directed acyclic graphs (CPDAGs) [42]. For each algorithm
the resulting MECs may differ depending on found conditional independencies.
Unfortunately, MECs can still include countless DAGs, especially when investi-
gating big data [14]. Hence, the current challenge in this domain lies within
finding the structure knowledge to reduce the MEC further. For this purpose,
some publications resort to other discovery approaches to orient the remaining
edges for example by using interventions [10] (see section 4.3) or noise methods
[26] (see section 4.5). All in all, using probabilistic discovery we can discover
important elements of the true causal graph, but may not discover it completely.
This comes at the disadvantage that the discovery relies completely on the
availability of huge quantities of unbiased data. Without such large sample sets,
it is hard to gain profound results from (un)conditional independence tests [29].

4.3 Structure clues from manipulation

Another approach to discover causal relations that comes natural for humans is
by experimenting with manipulations of variables. With a chosen intervention,
a variables state or probability of occurrence is changed. This may trigger
a change in the causally dependent variables which can be measured and
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allows conclusions about causal dependencies. This builds on the fundamental
assumption that an intervention targeted on the cause may influence the effect,
but an intervention targeted at the effect may never create a change in the cause.
An essential aide for such experiments are ceteris paribus conditions where
the environmental variables can be recreated so several interventions may
be tried out. These interventions are commonly of the following two types:
Hard interventions, also called Pearlian interventions or structure interventions,
forcefully set a variable to a chosen value and thereby eliminate all influences
from other causes. They were first formalized in Judea Pearls do-calculus [30].
This calculus was proven to also fully support the popular potential outcomes
framework [34].
So called soft interventions introduce an additional variable which causally
affects the target variable and changes its probability of occurrence without
disrupting the influence of other variables [5, 19]. For both kinds, the numbers
of interventions required for the full identification of a true causal graph were
identified by [10]. Also, several methods were established to identify the effects
created by these interventions. Assuming strong ceteris paribus conditions, the
effect of structure interventions for example can be discovered and measured
by the Average Treatment Effect (ATE). It is calculated as the normalized sum
over the individual treatment effects of all individuals or samples i = 1, ..., N .
The individual treatment effect is the difference of the treated outcome variable
y1(i) and the untreated individual outcome variable y0(i).

ATE = 1
N

∑
i

(y1(i)− y0(i))

In simple scenarios, few samples of each interventional outcome may suffice to
identify the causal effect of interventions to allow structure deductions.
The ATE can also be estimated which is useful when interventions can be
observed but not preferably applied. Common methods are the difference
in difference methods [37], propensity score matching [35], and regression
discontinuity designs [16].
Additionally, interventional effects can be identified by probabilistic discovery
methods described in 4.2. Commonly, structure interventions can be identified
with unconditional independence tests as the graph skeleton is disrupted. While
soft interventions can be identified by conditional independence tests as by
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adding new causes to a variable a new v-structure is created.
All in all, discovery by manipulation is a less favored discovery approach as
interventions can be costly, unethical or even unfeasible for some variables. Also
the strong assumption of ceteris paribus conditions are a disadvantage since
some conditions are hard to reciprocate and can most often only be tackled by
averaging over larger sample sets.

4.4 Structure clues from functional modeling

This approach uncovers causal relations by remodeling how the effect emerged
from the cause as the cause needs to produce the effect.
So called functional causal models consist of a causal graph and a set of functions
that relate the variables of the graph in accordance to the graph edges. An
approach of structure discovery is to uncover the causal graph by retracing the
causal functions. For example, Linear, Non-Gaussian, Acyclic causal Models
(LiNGAM) [39] is an algorithm that uncovers a multivariate DAG structure
by computing linear functions of the variables X and a connection strength
matrix B plus additive noise ε, X = B ∗X + ε, by the use of an independent
component analysis [17, 8]. Other methods that follow a similar approach are
Additive Noise modeling, or Post Nonlinear Causal Model described in the next
subsection.
These methods do not require the faithfulness assumption, but assume causal
sufficiency: the absence of confounding variables. They also require the
assumption that the additive noise are non-Gaussian distributions of non-zero
variances, also abbreviated as non-Gaussianity assumption, because [42] has
shown that methods that use only covariance matrices have no way of inferring
the direction of the causal relation. Another fallacy of this approach is that it is
prone to spurious correlations. Those may equally result in believable functions,
but are not causally related. Hence the combination with another approach is
strongly advised.
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4.5 Structure clues from noise

To discover causal relations by the use of noise is a rather new notion. The
fundamental property of causal relationships is exploited that natural noise
found in the cause needs also to be found in the effect, but no noise of the
effect may be found in the cause. This approach came up with Additive Noise
Modeling (ANM), originally a functional discovery approach which also makes
use of the noise property to gain certainty of the relation to be causal. Other
than LiNGAM, the non-linear function Y = f(X) + ε of two variables X and
Y is reconstructed from data. First, a regression for X → Y and Y → X is
performed to approximate the relationship function f , then the residual ε is
calculated and finally, the residuals are tested for independency [25]. This method
has shown to be prone to confounding and feedback noise as both mess with
the aforementioned noise property. An extension to ANMs are Post Nonlinear
Causal Models (PNLs) [48] which also take nonlinear distortions f2 from sensor
or measurement errors into account by recovering Y = f2(f1(X) + ε).
Naturally, the approach of using the noise property relies on the presence of noise
which is not always given. Also, it requires a large sample size of observations
to reliably retrace the causal function.

4.6 Structure clues from time, space and spacetime informa-
tion

Temporal and spatial information have shown to be the most important cues for
human causal understanding [21]. For humans the temporal sequences of events
are particularly important for the discovery of causal relationships. Events
that follow a chosen event are often understood as consequences. Whereas
events that precede it are understood as causes of that event [6]. Hidden in this
understanding is the basic, well-known assumption that in time, a cause must
always precede its effect.
Another early notion of causal understanding is the spatial proximity of the
effect to its causes. In physics, this notion was called principle of locality: two
objects may only be causally connected by mechanical influences as for example
by touch. With the discovery of electromagnetic and gravitational waves this
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notion changed. By today, we know causal relations are not only bound to space
or to time but to spacetime as the travel of a causal signal is fundamentally
limited by lightspeed. More current research inspects causal relations in relation
to algebra in four-dimensional Minkowski spacetimeM of special relativity as it
can not be represented in Euclidean geometry [44]. Therein, a set of points form
a region in M . An event at point x emits two light cones: a forward lightcone
V+(x) emitted into the future, and a backward lightcone V−(x) emitted into the
past. A point y of an event caused by x has per definition to be in V+(x), while
a point of an event causing x has to be in V−(x). Any event caused by x and y
has to lie within V+(x) ∩ V+(y).
The result of an intersection of a forward and a backward cone is called a double
cone. Each double cone is causally complete, bounded, closed, and convex.
The new law of locality can be derived from it: two regions in M are causally
disjoint and thereby physically independent if they are spacewise separated [44].
As measurements of events in Minkowski spacetime tend to be imprecise,
current literature also tackles the implications of imprecise time and location
measurements and time-frame measurements [20].
The consideration of regions in Minkowski spacetime may add to the considera-
tions in causal discovery. For example, [47] created a theoretical framework for
causal image synthesis using knowledge over Minkowski spacetime.

4.7 Structure clues from forecasting and prediction

This approach assumes that if two variables are causally connected then we
should be able to predict the effect given the cause. It is closely related to
functional modeling, but differs in the fact that not the causing function is
recovered, but instead we investigate how the prediction improves, if we add or
remove knowledge over the potential cause. This approach is especially popular
in timeseries. The earliest method was Granger causality for applications in
the economy [13]. A stationary timeseries X is said to granger-cause another
stationary timeseries Y considering X when calculating the variance of the
residual of predicting Y creates a noticable change. This does not include any
definition of the predicting function itself.
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A derivative of Granger causality is Instantaneous causality [32] which defines
X and Y as instantaneously causally related if adding the valueXi for timepoint
i improves the prediction of Yi. Countless other methods have developed in this
domain like Sims causality [40] or multistep causality [23]. A common shared
weakness of these methods is a sensitivity to feedback or confounders, latent
variables that actually cause the observed variables, since these also allow to
make predictions but are not based on a direct causal relationship.

5 Future Prospects

Future causal discovery methods will be highly dependent on the availability of
data, but also on interpreting it most efficiently. Throughout the course of this
paper, we highlighted several causal approaches to gain structure knowledge from
all kinds of data to construct causal graphs on. We assume that efficient causal
discovery algorithms will have to apply several approaches as the discovery
potential of each approach is limited. With this combination of approaches,
new research questions arise: 1) As each new approach is able to reduce the
equivalence class of DAGs new types of equivalence classes come up which
are in comparison to Markov equivalence classes of probabilistic discovery
heavily underexplored. 2) New combinations of the approaches are possible
which have not been investigated yet, as for example discovery methods using
interventions to artificially introduce noise for discovery. For some combinations
of approaches, the foundation stone is laid but still require additional work, like
implementations of probabilistic algorithms that can use existing domain or
expert knowledge. 3) We see a prospect in a new kind of active causal structure
learning that can apply each approach most cost-efficiently for structure learning
to have the highest knowledge gain [12]. 4) Common applications of causal
discovery do not include technical systems, but the methods show high potential
for this domain, as experiments on machines cannot be unethical and states can
be easier intervened on and reciprocated [18].
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6 Small Overview

We introduced the Joint Discovery Assumption which allows the joint use
of multiple causal discovery methods. Also, we gave a slim overview over
various notions to gain causal structure clues, i.e. the presence or absence of
causal relations. For each approach, advantages, assumptions, and limits were
identified. For some of the methods listed, we need additional information as
temporal and or location data to make causal deductions. While in the case of
expert knowledge or additional domain knowledge, the learning process requires
human assistance.
Some approaches, as structure clues from spacetime, provide only structure
clues over the absence of edges. This shows potential to be a cheap possibility of
using additional information, while speeding up the structure search algorithms
by eliminating invalid spurious relations in advance. Finally, we made a basic
proposal for further research based on the presented approaches.
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