

Incineration of PTFE to evaluate the release of PFAS

IT3/HWC

West Palm Beach 2022 Krasimir Aleksandrov¹, Hans-Joachim Gehrmann¹, Manuela Hauser¹, Hartmut Mätzing¹, Daniel Pigeon², Dieter Stapf¹, Manuela Wexler¹

¹ Karlsruhe Institute of Technology (KIT) / Institute for Technical Chemistry (ITC)
² W.L. Gore & Associates, Inc., Elkton, MD 21901, USA

www.kit.edu

Background

Since the beginning of its Detox campaign in 2011, Greenpeace has been calling on the clothing industry to eliminate all hazardous chemicals from its supply chain by 2020, highlighting per- and polyfluorinated chemicals (PFCs) as one of the priority hazardous chemical groups to eliminate. PFCs are used in many industrial processes and consumer products, and are well known for their use by the outdoor apparel industry in waterproof and water-repellent finishes.

IT3/HWC

West Palm

Beach

2022

PFCs are environmentally hazardous substances, which are persistent in the environment.¹ Studies show that some PFCs can accumulate in living organisms such as the livers of polar bears in the Arctic and are also detected in human blood.² Animal studies provide evidence that some PFCs cause harm to reproduction, promote the growth of tumours and affect the hormone system.³

Source: <u>https://www.greenpeace.org/international/publication/7150/pfc-revolution-in-outdoor-sector</u>, download 24.03.2022

Greenpeace's Detox My Fashion campaign, launched in 2011, challenged the textile industry to remove all hazardous chemicals from their supply chain, highlighting PFCs as one of the priority hazardous chemical groups to eliminate. In 2015, the Detox Outdoor campaign put the spotlight on the outdoor apparel sector, well known for using PFCs in making waterproof membranes and water-repellent coatings. Hundreds of thousands of outdoor enthusiasts from around the world joined the campaign to demand PFC-free gear.

In 2017 Gore Fabrics pledged to eliminate PFCs of Environmental Concern from its general outdoor weatherproofing laminates by the end of 2020 and from its specialized weatherproofing laminates by the end of 2023, exploring both fluorinated and non-fluorinated solutions. Today's announcement means that the first products using the completely PFC-free membrane will be on the market in 2022.

Source: https://www.greenpeace.org/international/press-release/49771/gore-fabrics-announces-major-transition-in-its-product-technologygreenpeace-response/ download 24.03.2022

Aim of the project

- Incineration of PTFE under standard municipal waste conditions
- Investigation of possible generation of PFAS
- Validation of almost full transformation of PTFE to Fluorine (HF) and trace species in very low concentrations using BAT

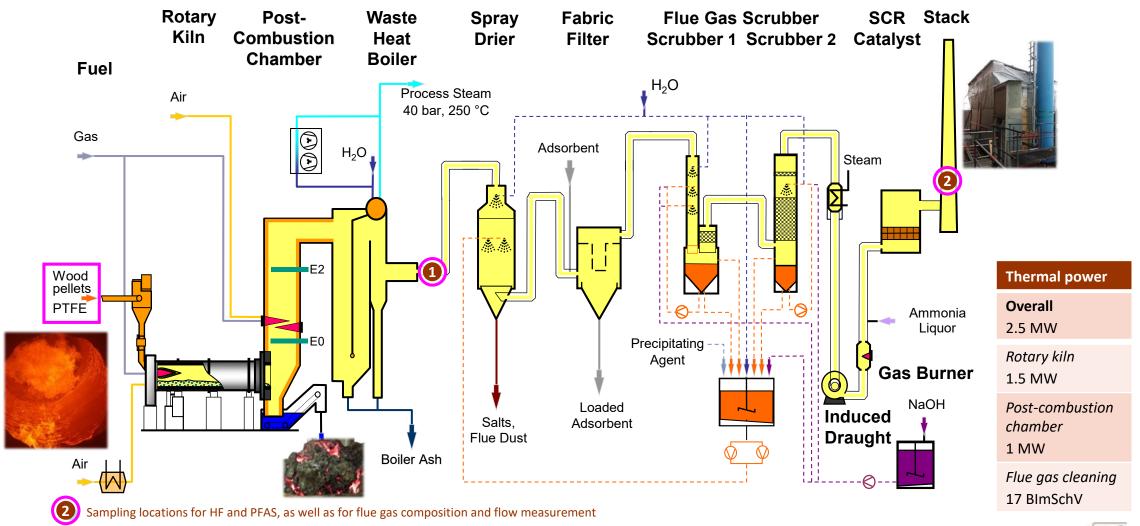
PFAS of scope

Abbreviation	CAS Number	Abbreviation	Quantitation limit [µg/m³]
Perfluorobutanoic acid	375-22-4	PFBA [PFC C4]	6.0
Perfluoropentanoic acid	2706-90-3	PFPeA [PFC C5]	0.3
Perfluorohexanoic acid	307-24-4	PFHxA [PFC C6]	0.3
Perfluoroheptanoic acid	375-85-9	PFHpA [PFC C7]	0.3
Perfluorooctanoic acid	335-67-1	PFOA [PFC C8]	0.3
Perfluorononanoic acid	375-95-1	PFNA [PFC C9]	0.3
Perfluorodecanoic acid	335-76-2	PFDA [PFC C10]	0.3
Perfluoroundecanoic acid	2058-94-8	PFUdA [PFC C11]	0.3
Perfluorododecanoic acid	307-55-1	PFDoA [PFC C12]	0.3
Perfluorotridecanoic acid	72629-94-8	PFTrDA [PFC C13]	0.3
Perfluorotetradecanoic acid	376-06-7	PFTeDA [PFC C14]	0.3
Perfluorobutanesulfonic acid	375-73-5	PFBS [PFS C4]	0.3
Perfluorohexanesulfonic acid	355-46-4	PFHxS [PFS C6]	0.3
Perfluoroheptanesulfonic acid	375-92-8	PFHpS [PFS C7]	0.3
Perfluorooctanesulfonic acid	1763-23-1	PFOS [PFS C8]	0.3
Perfluordecanesulfonic acid	335-77-3	PFDS [PFS C10]	0.3
Perfluorooctanesulfonamide	754-91-6	PFOSA	0.3
N-Methyl- Perfluorooctanesulfonamide	31506-32-8	N-Me-FOSA	0.3
N-Ethyl- Perfluorooctanesulfonamide	4151-50-2	N-Et-FOSA	0.3
N-Methyl-Perfluorooctane- sulfon amidoethanol	24448-09-7	N-Me-FOSE alcohol	0.3
N-Ethyl-Perfluorooctane- sulfonamidoethanol	1691-99-2	N-Et-FOSE alcohol	0.3
1H,1H,2H,2H-Perfluoro- octanesulphonic acid	27619-97-2	1H, 1H, 2H, 2H- PFOS	0.3
2H,2H,3H,3H-Perfluoro- undecanoic acid	34598-33-9	4HPFUnA	0.3
Perfluoro-3-7-dimethyl octane carboxylate	-	PF-3,7-DMOA	0.3
7H-Dodecafluoro heptane carboxylate	-	HPFHpA	6.0
2H,2H-Perfluoro decan carboxylate	-	H2PFDA	0.3
1H,1H,2H,2H-Perfluorohexan-1-ol	2043-47-2	4:2 FTOH	24
1H,1H,2H,2H-Perflourooctan-1-ol	647-42-7	6:2 FTOH	24
1H,1H,2H,2H-Perflourodecan-1-ol	678-39-7	8:2 FTOH	24
1H,1H,2H,2H-Perflourododecan-1-ol	865-86-1	10:2 FTOH	24
Trifluoroacetic acid	76-05-1	TFA	0.4

P er- and Poly-F luorinatedA lkyl

S ubstances

IT3/HWC


West Palm Beach 2022

May 5th 2022 K. Aleksandrov - Incineration of PTFE to evaluate the release of PFAS

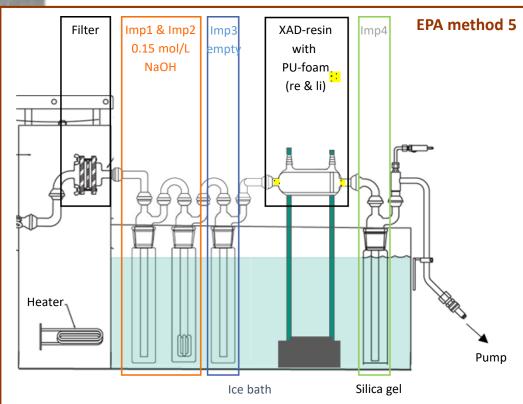
Incineration plant BRENDA

IT3/HWC

West Palm

Beach

2022



Analytical equipment

IT3/HWC

West Palm Beach 2022 PTFE – containing seals & hoses →
substitution by rubber, PE & PA
→ "PTFE-noise" elimination

- ✓ Fly ash sampling → VDI 2470
- HF analytics (from condensate) \rightarrow IC \rightarrow FM-Lab KIT (internal)

od 5 Project preparation

- ✓ 2017 & 2018 → 3 analytics validation campaigns with varying concentrations of chosen species
- ✓ Lab analytics → spike-experiments
 → C8 recovery rate between 70% & 110%
- Isokinetic sampling. Shift every minute across the duct cross section. Duration 60 min.
- ✓ Retrofitting of 3 Labs at ITC → *"one-way-road"* mode of operation
- ✓ Lab staff \rightarrow 9 people

Analytics solid compounds

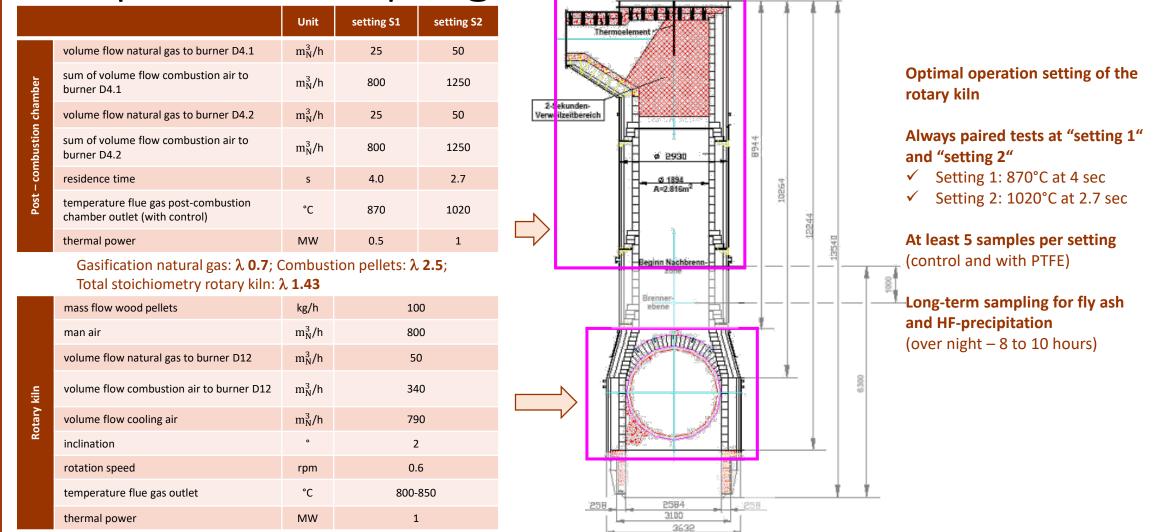
IT3/HWC

West Palm Beach 2022

	Statistics total fluorine o	f wood pellets					
0.018							
0.017		_					
0.016		as delivered	average [wt%]				
0.015							
0.014		– H ₂ O	7.6				
0.013		Ash (550°C)	0.3				
0.012			-				
0.011		C	47.0				
K.0.01 0.009 800.0		H	5.7				
0.009							
≥ 0.008 0.007		0	39.2				
0.006		total F	<0.001				
0.005							
0.004		LHV [MJ/kg]	17.4				
0.003							
0.002	below the limit of detection	helow the l	below the limit of detection				
0.001							
0							
sample sample?	10102 1.0802 2.0802 1.0902 2.0902 1.1002 2.1002 1.1 5ample sample s	Inde 2.1102 - 3.1102 1.1202	2:1202 1.1302 2.1302				

Wood pellets analysis

- **Blended** samples \checkmark
- **Eurofins** (external) \checkmark

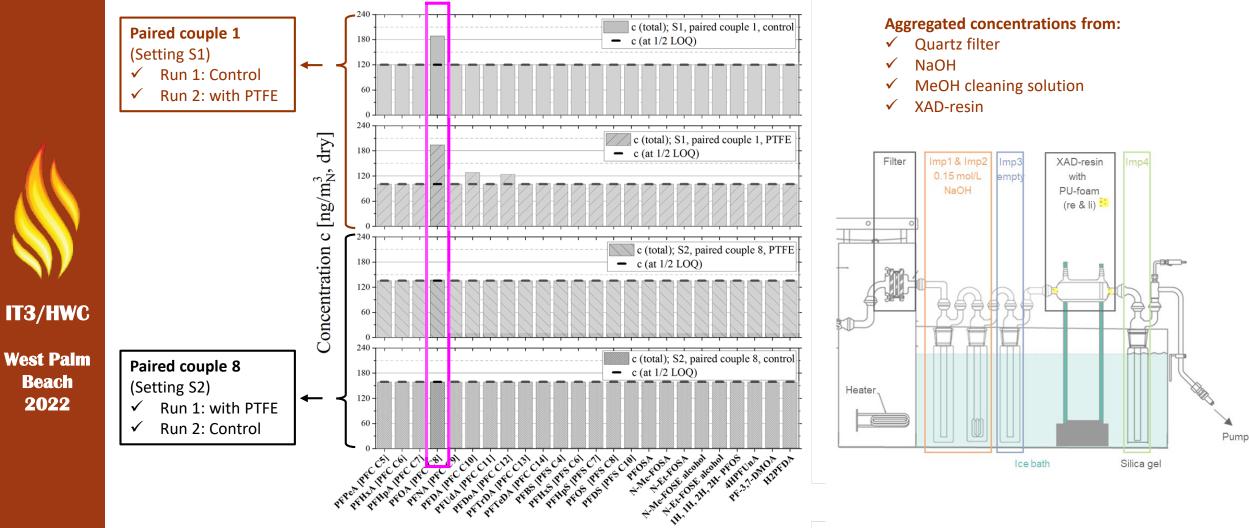

- F-content filter samples \rightarrow IC after high frequency pyrohydrolic separation \rightarrow H. C. Stark (3rd party lab)
- \checkmark Total Carbon (TC) filter samples → LUBW, Karlsruhe (3rd party lab)

 \checkmark

Experimental program

IT3/HWC

West Palm


Beach

2022

Combustion and Particle Technology

Results - evaluation

Results (PFC-C8)

Setting	Paired couple	Туре	$\begin{array}{c} \textbf{Concentration} \\ [ng/m_N^3 \ dry] \end{array}$	Difference (PTFE-Control) [ng/m _N ³ dry]	t-value	p-value
S1	1	Control	189	5	-0.624	0.564
		PTFE	194			
	2	PTFE	179	10		
		Control	169			
	3	PTFE	302	70		
	5	Control	232			
	4	Control	270	84		
	4	PTFE	354			
4 sec	5	Control	723	-539		
870°C	5	PTFE	184			
6 7 8 9 10	6	Control	258	-70	-0.905	0.407
	U	PTFE	189			
	7	PTFE	644	487		
	/	Control	157			
	o	PTFE	137	-22		
	õ	Control	159			
	0	Control	2743	-2600		
	9	PTFE	143			
	10	PTFE	175	32		
	10	Control	143			
2.7 sec	11	Control	413	-272		
1020°C		PTFE	141			

Working hypothesis

If p > 0.05 the differences between experiments without and with PTFE do <u>**not**</u> depend from each other

Statistics

✓ Average value differences

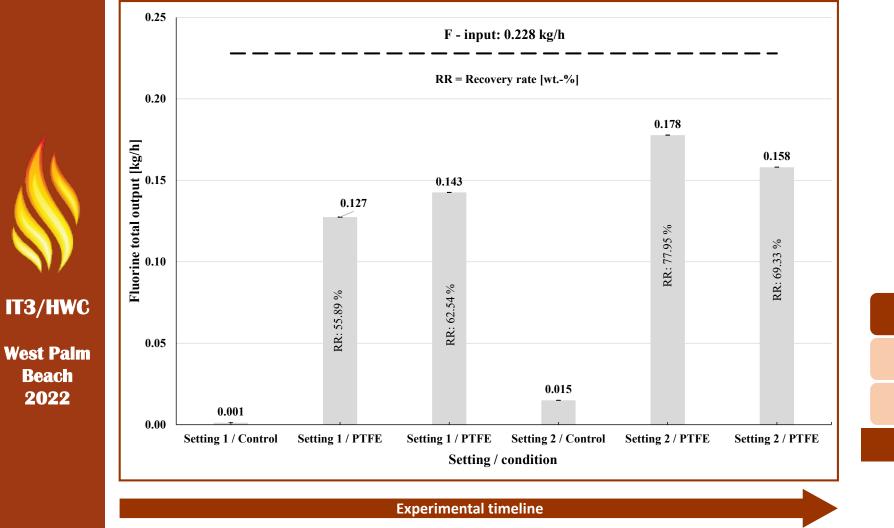
$$\bar{x} = \frac{1}{n} \cdot \sum x_i$$

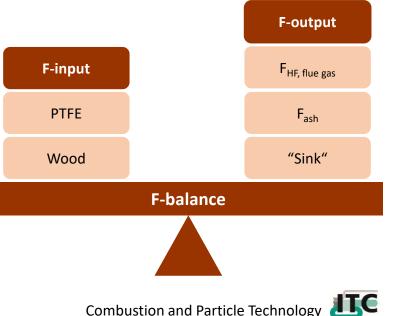
✓ Standard deviation:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$$

$$\checkmark \quad t - value:$$
$$t = \sqrt{n} \cdot \frac{\overline{x}}{s}$$

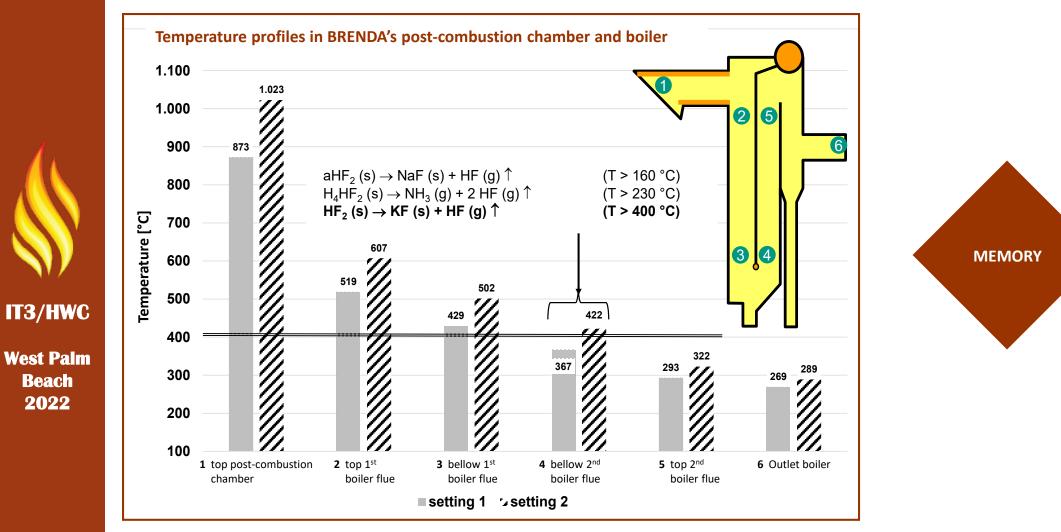
The **p-value** is obtained from the **t-value** by the means of a statistical distribution




IT3/HWC

West Palm Beach 2022

Results (Fluorine – balancing)



Beach

2022

Results (Fluorine – balancing)

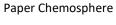
Beach 2022

Summary / Outlook

By the incineration of PTFE under operation mode in compliance with the German federal law – 17 BImSchV, the flue gas after the boiler was analyzed for 31 PFAS:

- Thus only **11 PFAS** could be quantified *
- For none of these 11 PFAS statistically significant concentration differences for the case either with and without PTFE could be established
- That's why it is assumed that waste incineration is no source of PFAS \checkmark

IT3/HWC


West Palm Beach 2022

In progress: Development of a sampling method for volatile PFAS from flue gases in cooperation with BAM (Project UBA, Start: summer 2022)

Gore-Homepage

Sources

Making of

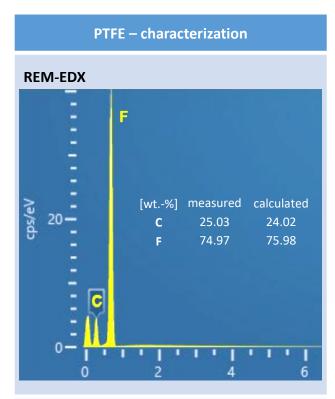
The End

P

West Palm Beach 2022

Back up

Questions for discussion


Question 1: How did you generate/ calculate the Fluorine balance?

Question 2: The Fluorine recovery rates are rather low. How can you explain this?

West Palm Beach 2022

IT3/HWC

Back up

Weber & Leucht GmbH (external)

IT3/HWC

West Palm

Beach

2022