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Abstract

Multi-person tracking is often solved with the tracking-by-detection paradigm, in
that a distance measure is calculated for each possible track-detection assignment.
Then, the sum of distances of all assignments has to be minimized, for which
mostly the Hungarian method is used. Wheareas it is easy to design a distance
measure that can clearly indicate the correct assignments in sequences with
sparse person distributions, the distances of some assignments can be very
similar in crowded scenes, where multiple persons share similar spatial positions
and appearances. As a consequence, wrong assignments are inescapable,
harming the tracking performance. In contrast of executing all assignments
simultaneously, no matter if they are clear or ambiguous, this work treats
ambiguous assignments with similar distances separately following a multi-
hypothesis approach, updating the hypotheses until the assignment task is clear
again. To determine which assignments are considered ambiguous, a method
that compares the entries in the distance matrix of track-detection assignments is
introduced. No further information next to the distance matrix is needed, which
makes the proposed approach applicable to any tracking-by-detection based
method. Experimental results show that the separate treatment of ambiguous
assignments can improve the tracking performance in crowds and thus is a
promising research directory.
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1 Introduction

Multi-person tracking (MPT) is the task of detecting and identifying all persons
in each frame of a video and is the basis for several applications ranging from
action classification to crowd behavior analysis.

Most of the MPT approaches in literature follow the tracking-by-detection
paradigm [2, 3, 7, 12, 14, 15, 16, 17, 18], which divides the problem into two
subtasks: detection and association. In each iteration, the generated detections
are assigned to the tracks from the previous time step on the basis of a distance
measure, whereby mostly the Hungarian method [5] is applied for minimizing the
overall costs. When designing the distance measure, different target information
can be leveraged. Especially position information [2, 3] and visual cues [7, 15, 16,
18] are used. Some works additionally consider human poses [15, 17] or relation
information w.r.t. other targets [7, 13, 18]. Designing such sophisticated distance
measures aims to achieve a high degree of distinguishability between correct
and incorrect assignments. However, there will still exist some situations, in that
the assignment task is ambiguous, no matter how good the designed distance
measure is. This holds especially true in crowded scenes, where multiple targets
share similar positions and appearances. Furthermore, inaccurate and missing
detections under heavy occlusion often prevent a clear association.

Because of the aforementioned reasons, a new association strategy is proposed,
which treats ambiguous assignments separately with a multi-hypothesis approach,
while solving the clear assignments with the Hungarian method as usual. To find
ambiguous assignments between detections and tracks (and track hypotheses), a
closer look at the distance matrix is taken. More precisely, the distances of all
possible track-detection assignments are compared and if they differ by less than
a similarity threshold, the involved tracks and detections are termed similar. If
additionally, the numbers of tracks and detections that lead to similar assignments
are different, i.e., either tracks or detections would remain unassigned, the
assignments are considered ambiguous and multiple track hypotheses are built.
These are updated in consecutive frames until the assignment task is clear again.
With this strategy, ambiguous association decisions as often occurring under
occlusion can be postponed und thus assignment errors prevented. As the
determination of ambiguous assignments builds purely upon the distance matrix,
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the proposed approach can be included in any tracking-by-detection method,
independent from how the distances are calculated.

2 Find Ambiguous Assignments

In each time step t of a tracking-by-detection based approach, detections
D(t) = {D(t)

1 , D
(t)
2 , . . . , D

(t)
N } are matched to tracks from the previous iteration

T (t−1) = {T (t−1)
1 , T

(t−1)
2 , . . . , T

(t−1)
M }. For each track Ti ∈ T (t−1) and detec-

tion Dj ∈ D(t), a distance d(Ti, Dj) is calculated and saved at the respective
position (i, j) in the distance matrix D ∈ RM×N . Hereby, various information
can be used. For example, position, appearance, or motion cues are often
considered. In contrast to the standard association, which applies the Hungarian
method on the full distance matrix D, it is argued that some detections and tracks
might lead to ambiguous assignments, that should be treated separately. After
that, the remaining clear assignments are handled by the Hungarian method.

In the following, a subset of possible assignments including track indices
I ⊂ {1, . . .M} and detection indices J ⊂ {1, . . . N} is noted as tuple of sets
A = (I,J ) = (A[1], A[2]). For example, the possible assignments A of tracks
T1, T3 and detections D2, D4 are noted as A = ({1, 3}, {2, 4}). The search
for ambiguous assignments starts with similar assignments. Assignments are
termed similar, if the respective entries in the distance matrix differ by less than
a similarity threshold ∆. For example, the possible assignments of track T1
to detection D1 and of track T1 to D2 are similar, if |D[1, 1]−D[1, 2]| < ∆
holds. If multiple detections and tracks are similar, the distance matrix D
has to be scanned several times, iteratively searching for similar detections
and tracks. The process for finding all similar assignments w.r.t. a specific
detection (D2) is shown for a toy example distance matrix in Figure 2.1.
This procedure is done for each detection leading to a tentative set of simi-
lar assignments Ãsim = {Aj}j=1...N . Then, the assignments that share track
or detection indices are merged leading to the final set of similar assign-
ments Asim. For instance, Ãsim = {({1, 2}, {3}), ({3}, {3, 4})} would turn to
Asim = {({1, 2, 3}, {3, 4})} applying the merging operation. After determin-
ing Asim = {Ak}k=1...K , it is decided for each element, whether the similar
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Find similar assignments 𝐴2 for 𝐷2 (with Δ = 0.1):

0) Initialize similar assignments at min 𝐃 : , 2

→ 𝐴2
0)
= ({2}, {2})

1) Search similar tracks (𝐃 𝑖, 2 − 0.31 < Δ)

→ 𝐴2
1)
= 2,5 , 2

2) Search similar detections

2.1) 𝐃 2, 𝑗 − 0.31 < Δ → 𝐴2
2)
= 2,5 , 2

2.2) 𝐃 5, 𝑗 − 0.36 < Δ → 𝐴2
2)
= 2,5 , 2,4,7

3) Search similar tracks

3.1) 𝐃 𝑖, 4 − 0.34 < Δ → 𝐴2
3)
= 2,5 , 2,4,7

3.2) 𝐃 𝑖, 7 − 0.42 < Δ → 𝐴2
3)
= 2,5 , 2,4,7

4) Terminate since 𝐴2 = 𝐴2
3)
= 𝐴2

2)

Figure 2.1: Process of finding similar assignments A2 for detection D2. 0) Initialization of A2 is
done at the minimum distance of tracks w.r.t. D2 which is D[2, 2] = 0.31 for track T2 leading to
A

0)
2 = ({2}, {2}). 1) Similar tracks with lower distance difference to 0.31 than ∆ are searched

which yields T5 (highlighted in red) and A
1)
2 = ({2, 5}, {2}). 2) Similar detections w.r.t. T2

and T5 are searched. D4 and D7 are added to the similar assignments A
2)
2 = ({2, 5}, {2, 4, 7}).

3) Again, similar tracks are searched, now for D4 and D7 yielding only T2 which is already
represented in A

2)
2 . Thus A

3)
2 equals A

2)
2 . 4) Since A did not change in iteration 3), the algorithm

stops, outputting A2 = A
3)
2 = ({2, 5}, {2, 4, 7}) as similar assignments for D2.

assignments Ak are considered as ambiguous or not. It is argued that, if the
number of tracks nT = |Ak[1]| and the number of detections nD = |Ak[2]| that
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lead to similar assignments Ak is identical, the situation is not ambiguous, since
each track and detection can be matched. This holds especially true for similar
assignments with only one track and one detection (nT = nD). Those assign-
ments are termed as clear, while similar assignments, for which the numbers
of tracks and detections differ (nT 6= nD), i.e., there are missing detections or
missing tracks, are termed ambiguous. Formally, the set of similar assignments
Asim is divided into a set of ambiguous assignments Aamb and a set of clear
assignments Aclr:

Aamb = {A|A ∈ Asim ∧A[1] 6= A[2]} (2.1)
Aclr = {A|A ∈ Asim ∧A[1] = A[2]} (2.2)

Note that Asim = Aamb ∪ Aclr holds. The track indices Iclr and detection
indices J clr of the clear assignments Aclr are used to generate a clear distance
matrix Dclr = D[Iclr,J clr] on which the Hungarian method is applied. In
contrast, the ambiguous assignments Aamb are treated separately with a multi-
hypothesis tracking (MHT) approach that is described in the next section.

3 Solve Ambiguous Assignments with MHT

For each group of tracks and detections that lead to ambiguous assignments,
multiple hypotheses are started and thus the assignment problem is postponed.
In consecutive iterations, the set of hypotheses is updated until the assignment
task is clear again. In the following, the procedure of building and updating the
set of track hypotheses is exemplary described for an ambiguous situation with
missing detection (FN). This situation is also depicted in Figure 3.1(a), however,
note that the full figure has not to be understood at this point.

At time step t = 1, there is only one detectionD(1)
1 but there have been two tracks

T
(0)
1 and T (0)

2 in the previous iteration. Furthermore, the detection fits nearly
equally well to both tracks (0.24− 0.18 < ∆ = 0.1) so ambiguous assignments
A = ({1, 2}, {1}) ∈ Aamb are present. Therefore, the two hypotheses H(1)

11
and H(1)

21 are built:

H
(1)
11 = [T (0)

1 , D
(1)
1 ] H

(1)
21 = [T (0)

2 , D
(1)
1 ] (3.1)
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Figure 3.1: Illustration of the three types of ambiguous assignments (∆ = 0.1) that can be handled
by the proposed multi-hypothesis approach: (a) false negatives (FN), (b) false positives (FP), and
(c) new detections which initialize new tracks. Detections and tracks are visualized with circles,
whereby propagated tracks (without assigned detection) are indicated with dashed circles and a tilde.
Hypotheses with the smallest distance that correspond to the resulting trajectories are marked in
green, blue, and orange. Hypotheses with higher distances are drawn in dashed lines. Detections
that are removed are depicted purple. Distances between detections and tracks are written near the
edges of the graph. Distances that lead to ambiguous assignments are highlighted in red, whereas
assignments with similar distances that can be clearly resolved are highlighted in pink. Note that
there is no distance (-) for propagated tracks. Furthermore, time steps are specified in superscript
and for situation (c), hypotheses with the propagated track are omitted in the second step for clarity.

In addition, two hypotheses H(1)
10 and H(1)

20 that are based on a Kalman filter
prediction step (see details about the motion model in Section 4.2) are started:

H
(1)
10 = [T (0)

1 , T̃
(1)
1 ] H

(1)
20 = [T (0)

2 , T̃
(1)
2 ] (3.2)

Note that propagated tracks are indicated with a tilde. The overall set of track
hypothesesH(1) = {H(1)

10 ,H
(1)
11 ,H

(1)
20 ,H

(1)
21 } is saved for the next time step. At

t = 2, there are two detections D(2)
1 and D(2)

2 that update the set of hypotheses
toH(2) = {H(2)

101,H
(2)
102,H

(2)
111,H

(2)
112,H

(2)
201,H

(2)
202,H

(2)
211,H

(2)
212} with:

H
(2)
101 = [T (0)

1 , T̃
(1)
1 , D

(2)
1 ]

H
(2)
111 = [T (0)

1 , D
(1)
1 , D

(2)
1 ]

H
(2)
201 = [T (0)

2 , T̃
(1)
2 , D

(2)
1 ]

H
(2)
211 = [T (0)

2 , D
(1)
1 , D

(2)
1 ]

H
(2)
102 = [T (0)

1 , T̃
(1)
1 , D

(2)
2 ]

H
(2)
112 = [T (0)

1 , D
(1)
1 , D

(2)
2 ]

H
(2)
202 = [T (0)

2 , T̃
(1)
2 , D

(2)
2 ]

H
(2)
212 = [T (0)

2 , D
(1)
1 , D

(2)
2 ]

(3.3)
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For each hypothesis H ∈ H(2), a distance d(H) has to be determined in order
to find out whether the assignment problem is still ambiguous or clear again.
The distance of a hypothesis is set to the distance between the last two entries
of the hypothesis. For instance, the distance of H(2)

111 = [T (0)
1 , D

(1)
1 , D

(2)
1 ]

is d(H(2)
111) = d(D(1)

1 , D
(2)
1 ) = 0.27. With the hypothesis distances and the

information about track and detection numbers nT and nD, respectively, within
a set of hypotheses, one of the following two requirements has to be fulfilled
that the assignment problem is considered clear again:

1. Track number and detection number are identical: nT = nD.

2. There are more detections than tracks (nD > nT ) in each iteration and
the number of detections is the same for two successive time steps:
n

(t)
D = n

(t−1)
D .

The first item corresponds to cases (a) and (b) and the second item applies for
case (c) in Figure 3.1. The three types of ambiguous assignments (false negatives,
false positives, new detections) are discussed in the following subsections.

The attentive reader may have noticed that not all distances of the eight hypotheses
in H(2) are depicted in Figure 3.1(a). As the assignment of a detection to a
track changes its motion prediction, the propagated track position differs for
two tracks that would be assigned the same detection. Thus, for example,
d(H(2)

111) 6= d(H(2)
211) holds, which is not considered in Figure 3.1(a) for clarity.

Another side note is that the overall number of hypotheses is limited to maintain
a low computational complexity when multiple time steps are involved. More
precisely, the hmax hypotheses with the lowest distances are kept in each iteration.

3.1 Missing Detections

Missing detections (FN) appear frequently in crowded scenes, where the detector
cannot recognize all targets due to occlusion. At the same time, the assignment
of the available detections can be ambiguous due to inaccuracies of the detection
boxes or the propagated track boxes. This is also the case forD(1)

1 in Figure 3.1(a)
which can be assigned either to T (0)

1 (d = 0.18) or to T (0)
2 (d = 0.24) as already
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discussed. In the next iteration, however, the assignment becomes clear as
the distance d(D(1)

1 , D
(2)
2 ) = 0.12 is significantly lower (in terms of ∆ = 0.1)

than d(D(1)
1 , D

(2)
1 ) = 0.27. Therefore, the assignment task is clear again and

the ambiguous situation can be resolved. Here, three things should be noted.
First, with the multi-hypothesis approach, an identity switch is prevented, since
detectionD(1)

1 would be erroneously assigned to T (1)
1 in the standard association.

Second, the missing detection for track T1 is bridged by track propagation with
the motion model. Third, the two hypotheses H(2)

202 and H(2)
212 are similar (pink)

but not ambiguous, as hypotheses with propagated track boxes are not considered
competing to hypotheses of the same track with a detection assigned.

3.2 Duplicate Detections

In crowded scenes, it can also happen that the detector produces duplicate
detections (FP), struggling to recognize the precise boundaries of the targets.
In the simplest case, two detections D(1)

1 and D(1)
2 fit nearly equally well to a

track T (0)
1 as in Figure 3.1(b). In the standard association, that starts new tracks

with unassigned detections, an additional duplicate track would be initialized
that could introduce further tracking errors. In contrast, the multi-hypothesis
approach postpones the decision, which detection should be assigned to the
track, until the situation is clear again. Then, the unassigned duplicate detection
(purple) can be identified and removed. Note that it would also be possible
that the propagated track box T̃ (1)

1 is the best match to D(2)
1 , namely if both

detection boxes D(1)
1 and D(1)

2 are inaccurate due to occlusion. In that case, the
propagated track T̃ (1)

1 would be used and both detections removed.

3.3 New Detections

In the previous subsection, a situation with nD > nT has been treated, where
the additional detections have been considered as FP. However, this is not the
case, when a new target is about to show for the first time, still partly occluded
by a nearby target. Fortunately, the proposed multi-hypothesis approach can
identify such situations implicitly as shown in Figure 3.1(c). Whereas the
situation is similar to case (b) in the first time step, two detections are again
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present in the second iteration. Furthermore, the assignment task is clear at
t = 2. Therefore, it is likely that the additional detections belong to a separate
target, also because FP mostly occur only in single frames. As a consequence,
the hypothesis with the smallest distance of 0.09 (green) is taken for track T (0)

1 ,
whereas D(1)

2 and D(2)
2 start a new track T (2)

new = [D(1)
2 , D

(2)
2 ] (orange). Note

that an identity switch is prevented with the multi-hypothesis approach that
postpones the assignment decision until the situation is clear again.

4 Experiments

4.1 Dataset and Evaluation Metrics

The MOT17 dataset [8] is used in the experiments, since it is one of the
most popular benchmarks for evaluating multi-target tracking performance. It
comprises a train and a test split with 7 videos each. Since the annotations
of the test split are not publicly available, the train split is divided into two
halves, enabling the evaluation of the tracker in combination with a fine-tuned
detection model, which is necessary for achieving good results. More precisely,
the images of the first part of each sequence are taken for fine-tuning the detector,
while the tracker is evaluated on the second parts of the sequences.

The tracking performance is measured in IDF1 [10], that emphasizes on identity
preservation abilities, and MOTA [1], which focuses more on detection quality.
Furthermore, the components of MOTA are reported, i.e., number of false
negatives (FN), false positives (FP), and identity switches (IDSW).

4.2 Implementation Details

As detection model for the tracking-by-detection based approach, a Faster
R-CNN [9] with FPN [6] and ResNet-50 [4] as backbone is used. The model is
first pre-trained on the CrowdHuman dataset [11] with a batch size of 16 and an
initial learning rate of 0.01 for 30 epochs, which is lowered by factor 10 after
epochs 24 and 27. Then, the model is fine-tuned on the first half of MOT17 with
an initial learning rate of 0.001 with the same schedule. For the tracking process,

161



Daniel Stadler

the generated detections are filtered with a minimum score threshold of 0.9 and
an Intersection over Union (IoU) threshold of 0.5 is applied in the non-maximum
suppression (NMS) step. The distance measure between a track T and detection
D is calculated as d(T,D) = 1− IoU(T,D). Both in the standard association
and the proposed multi-hypothesis approach for ambiguous assignments, a
maximum distance of dmax = 0.8, which corresponds to a minimum IoU of
0.2, is enforced for matching tracks and detections. Tracks are propagated with
a Kalman filter as motion model, whereby the implementation of [16] is used.
Inactive tracks and track hypotheses are maintained for a maximum number
of 40 iterations without assigned detection before termination or deletion. At
re-activation, a linear interpolation is performed to close the gap of missed
detections. For finding ambiguous assignments in the distance matrix D, a
similarity threshold ∆ = 0.1 is applied. The number of track hypotheses h is
limited to hmax = 10 to keep a low computational complexity of the approach.

4.3 Results

To get a feeling, in which situations the proposed multi-hypothesis approach
for ambiguous assignments is superior to the standard association, in that all
assignments are made with the Hungarian method, several experiments with
different settings are run. The results are summarized in Table 4.1.

MH (nD < nT ) MH (nD > nT ) IDF1 MOTA FN FP IDSW
7 7 76.1 73.2 24798 18036 600
3 7 77.8 72.6 24264 19593 597
7 3 76.9 73.6 25935 16218 591
3 3 76.8 73.1 25563 17403 615

Table 4.1: Tracking results of the proposed multi-hypothesis approach for ambiguous assignments in
comparison with the standard association (first row). MH (nD < nT ) corresponds to applying the
multi-hypothesis approach only in situations with missing detections, while in the MH (nD > nT )
variant, the approach is only applied in situations with more detections than tracks. The last row
shows results, where for all ambiguous assignments, multiple track hypotheses are built.
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(a) Baseline

(b) Proposed approach

Figure 4.1: Failure case of the proposed multi-hypothesis approach. Active tracks are drawn in
solid lines, inactive tracks or track hypotheses in dashed lines. (a) In the standard association, some
incorrect inactive tracks are propagated over the image, which is not optimal but inevitable if a
re-activation of tracks after occlusion should be possible. (b) In the multi-hypothesis approach,
the incorrect inactive tracks mistakenly lead to ambiguous assignments. The involved ambiguous
detections (marked as purple dotted boxes) increase the set of hypotheses for the incorrect inactive
tracks. As a consequence, many incorrect hypotheses emerge that can introduce tracking errors.

One can see that the multi-hypothesis approach for ambiguous assignments
with missing detections (nD < nT ) improves IDF1 by 1.7 points, however,
MOTA is reduced by 0.6 points. Qualitatively, it is observed that the approach
is vulnerable to some cases with incorrect inactive tracks as shown in Figure 4.1.
Incorrect inactive tracks always pose a risk for introducing tracking errors. The
multi-hypothesis approach increases this risk, when multiple hypotheses for
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(a) Baseline

(b) Proposed approach

Figure 4.2: Positive example of the proposed multi-hypothesis approach. (a) In the standard
association, the ID of the man with light blue shirt switches with the ID of the occluded man with
cap. The cause of the IDSW is the ambiguous detection indicated with a purple dotted box in the
lower middle frame. (b) Instead of directly assigning this ambiguous detection, multiple hypotheses
(4 in total, for both tracks one with track propagation and one with assigned detection) are built.
Later, the assignment task is clear again. Postponing the association decision prevents the IDSW.

such an incorrect inactive track are built. In future experiments, this problem
should be further investigated. It might be better to consider only active tracks
for building hypotheses. One situation, where the multi-hypothesis approach
successfully solves an ambiguous assignment problem can be found in Figure 4.2.
Whereas in the baseline association, the ambiguous detection is assigned to the
wrong track leading to an identity switch, all targets can be successfully tracked
when the assignment decision is postponed with the help of multiple hypotheses
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until the situation is clear again. Note that the example in Figure 4.2, where two
tracks are competing for one detection, is exactly as depicted in Figure 3.1(a).

Having again a look at Table 4.1, it can be seen that the multi-hypotheses approach
for situations with more detections than tracks (nD > nT ) both enhances IDF1
and MOTA by 0.8 and 0.4 points, respectively. As expected, the number of
FP can be greatly reduced, since many duplicate detections appear only in
single frames and thus are removed with the multi-hypothesis approach as in
Figure 3.1(b). Furthermore, the number of IDSW is slightly decreased.

Unfortunately, applying the multi-hypothesis approach for all types of ambiguous
assignments (last line in Table 4.1), the results cannot be further improved.
Whereas the decrease in MOTA is expected as the MH (nD > nT ) variant also
lowers MOTA, the reduction of IDF1 is surprising.

In future works, a deeper analysis has to be made to better understand the
negative impact of incorrect inactive tracks in the multi-hypothesis approach.
Furthermore, more ablative experiments could be run (on tracking parameters)
to get a deeper understanding of the proposed approach and find out other
possible error sources. Nevertheless, it has been shown, that separately treating
ambiguous assignments is a promising idea, for which the development of other
strategies, next to the proposed multi-hypothesis approach, should be explored.

5 Conclusion

In this report, a novel association technique for multi-target tracking is proposed
that treats ambiguous assignments separately with a multi-hypothesis approach.
The ambiguous assignments are determined purely based on the distance matrix
of tracks and detections and thus, the proposed method can be applied in any
tracking-by-detection based approach. The track hypotheses allow to postpone
the association decision for ambiguous assignments until the situation is clear
again, which can improve the association accuracy in ambiguous situations.
Besides showing the superiority of the proposed approach in comparison to the
standard association in some scenarios, also some weaknesses are identified and
suggestions for possible improvements in future works are made.
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