Conceptualization of a Trust Dashboard for
Distributed Usage Control Systems

Paul Georg Wagner

Vision and Fusion Laboratory
Institute for Anthropomatics
Karlsruhe Institute of Technology (KIT), Germany
paul.wagner @kit.edu

Abstract

Achieving data protection and privacy in modern data processing systems is
a prominent topic of academic research today. The goal of retaining compre-
hensive informational sovereignty requires new and innovative solutions, both
technological and methodological in nature. Distributed usage control is a
popular technology that can give data providers the ability to actively govern
the usage of their personal information even in remote systems. However, the
architecture of distributed usage control systems is rather complex and often
highly dynamic. This makes the assessment of the system’s soundness and
trustworthiness difficult, especially for untrained laypersons.

In this work we present the concept of a trust dashboard for distributed usage
control systems that are backed by trusted computing technologies. The trust
dashboard is intended to give users a visual intuition about the current state of
the usage control system and its trustworthiness. We achieve this by using a
formal model to describe relevant trust dependencies and the actually conducted
remote attestations between usage control components, as well as a-priori trust
levels for system operators. Based on this we propose a visualization concept
that illustrates the current system state and estimates the overall trustworthiness

169

Paul Georg Wagner

of the system. Ultimately the trust dashboard aids system operators in the
assessment of dynamic and distributed usage control architectures.

1 Introduction

Data privacy is one of the major IT-security challenges of our time. Since we
live in a world of ubiquitous data acquisition, keeping track of our personal
information is an important even though arduous task. This is especially true
when personal data are being distributed in highly interconnected and decen-
tralized systems. In the past years, the notion of data sovereignty has become
prominent in academic research. While no universally accepted definition of
(data) sovereignty exists today, it seems clear that retaining ownership of shared
information plays an essential role [|5]. Hence on our way to data sovereignty,
we need to give individuals the possibility to not just track, but control their own
private information wherever it may be stored and evaluated.

One technology that can aid in this task is usage control. Usage control allows
the specification of access rights and obligations that are continuously enforced
on a data set throughout its life cycle [9]]. Introduced by Park and Sandhu [[10]
almost two decades ago, a few usage control variants have been developed since
then. For one, distributed usage control [11] allows the enforcement of usage
rules even across system and domain boundaries. This is achieved by operating
several independent usage control components in every participating domain.
These components then work together over the network to disseminate all usage
rules and enforce them simultaneously on all domain systems. Since distributed
usage control components have to safeguard critical data and enforce usage
rules even on potentially hostile systems, securing them against manipulation
and attacks is by no means a trivial task. Most often the integrity of usage
control components is protected using trusted computing hardware such as
Trusted Platform Modules (TPMs). Trusted computing technologies can provide
hardware-backed security guarantees that prevent even system owners such as
malicious data receivers from tampering with critical parts of the usage control
system. With the development of more powerful usage control models, the
resulting policy languages and system implementations became increasingly

170

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

complicated. Especially in distributed scenarios with many participants, a
multitude of usage control components are required for a reliable enforcement
of all usage rules. All of this makes it very hard for data owners or even system
administrators to decide if the current configuration of a usage control system is
safe and if all usage control components are in an acceptable state.

In this work we explore the possibility of using a trust dashboard to aid system
owners in the evaluation of distributed usage control systems. This dashboard
is intended to give the users a visual intuition about the current state of the
usage control system and its trustworthiness. The remainder of this paper is
structured as follows. In section [2] we give a brief introduction of distributed
usage control systems and describe how they can be protected with trusted
computing technologies. Afterwards in section [3|we present a suitable model
capable of expressing trust in distributed usage control systems. Based on this
model, in section] we then define goals and requirements for a trust dashboard
and propose a concept for visualizing various states of the usage control system
in an intuitive way. We conclude this paper in section [5| with an outlook on
future work on this research question.

2 Related Work

To prepare for the description of our trust dashboard, we first give a brief intro-
duction of distributed usage control systems and show how trusted computing
technologies are typically used to protect them against malicious tampering.

2.1 Distributed Usage Control

Usage control (UC) was first proposed in 2002 as a generalization of traditional
access control methods [10]]. A formal usage control model has been published
in 2004 by Park and Sandhu [9]. In general, usage control allows for continuous
authorization of data accesses even if the data are already in use. This is in
contrast to classical access control schemes, where authorization decisions are
made only at the time of the initial data access. Furthermore, usage control
supports the declaration of obligations that need to be fulfilled before, during or

171

Paul Georg Wagner

after a certain data usage. This is not covered by classical access control either.
Ultimately usage control methods can help to describe and enforce complex
data usage strategies, such as limiting the number of views or the time of access
to sensitive information.

Based on the original usage control model by Park and Sandhu [9], several
model variants and formalizations have been developed since [9} |11} |18}/7,|8|6]
One of the most influential improvements is distributed usage control (DUC).
Developed by Pretschner et al. [11]] in 2006, distributed usage control deals with
the enforcement of usage rules even across system and domain boundaries. It
allows data providers to specify usage policies in a domain-specific language
[4], which are then distributed alongside the sensitive information to any remote
data receivers. One way of implementing distributed usage control systems is
to rely on a derivative of the XACML reference architecture [[13[]. Originally
developed for attribute-based access control, the XACML components can be
canonically extended to implement usage control policies. Figure [2.1shows a
distributed usage control system based on XACML components.

PMP
PIP
Information
4
Events Actions

PEP [« PDP PXP

Decision 'y
Policies
Deployment
PRP PAP

Figure 2.1: Distributed usage control components.

At the heart of any distributed usage control system is the policy enforcement
point (PEP). PEPs are usually implemented close to data processing applications
and are capable of continuously examining and influencing data accesses. Based

172

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

on this examination, PEPs broadcast notifications of data usage requests into
the usage control system. These notifications are then received and processed
by a suitable policy decision point (PDP). PDPs create usage control decisions
by evaluating the received notifications against the set of active usage control
policies. In addition to the classical binary access decision of allow versus
deny, the PDP can also rule that the data usage described by the event should
be modified prior to its execution. In the end the PEP receives the decision
from its PDP and enforces it on the data processing application.

To aid the PDP in creating correct usage control decisions, two more usage
control components are required. The policy information point (PIP) can
be queried by the PDP for subject and object attributes, as well as generic
information such as database entries or environmental properties. The policy
execution point (PXP) is responsible for executing obligations demanded prior to
a data usage, for example the incrementation of an access counter. Obligations
are invoked by the PDP and have to be executed successfully before the PDP
publishes a positive decision. By utilizing PIP and PXP capabilities, complex
and expressive usage control policies can be specified and enforced.

Furthermore there are three auxiliary components involved in the usage control
enforcement process. The policy administration point (PAP) provides data
owners and system administrators an interface to specify and manage usage
control policies for their respective data sets. The policy retrieval point (PRP) is
used by PDPs to retrieve policies from remote usage control systems, e.g. if data
accesses to external resources are requested. Finally, the policy management
point (PMP) controls the distributed usage control system, aids in the lookup
of usage control components and facilitates establishing connections between
them. In the end it is the collaboration of all components that ensures proper
usage control enforcement. Even though the original XACML architecture was
intended to specify logical instead of physical system components, in the case
of distributed usage control these components are running as dedicated services
on different computer systems.

173

Paul Georg Wagner

2.2 Trusted Computing

Distributed usage control systems allow data providers to restrict access to
critical information even after it has been released. However, this only works
under the assumption that the participating usage control components are all
working correctly. Especially if multiple usage control systems operated by
different stakeholders are involved, this assumption is not necessarily sound.
For example, remote data receivers may be motivated to tamper with their own
usage control components to bypass the enforcement of transmitted policies.
Because of this, technical measures have to be taken to prevent malicious system
operators from tampering with distributed usage control components.

The proposed solution to this problem is making use of trusted computing
technologies [3, |2]]. Trusted computing allows to protect running software from
external influences and verify their integrity by means of hardware-based access
control. Among the most widespread trusted computing technologies today
are Trusted Platform Modules (TPMs). Usually TPMs consist of a dedicated
hardware chip that has been manufactured according to a specification developed
by the Trusted Computing Group (TCG) [14]. Many modern desktop and
server motherboards already include a TPM hardware chip soldered onto the
PCB. Even if no physical TPM is available, software TPMs can be included
in the device firmware [|12]]. However, these firmware modules obviously do
not provide the same level of security as their hardware-based counterparts.
In general, TPMs are designed to create and hold several cryptographic keys
in hardware, which can then be used to encrypt and sign critical information
in a secure environment. The private parts of the cryptographic keys stored
in the TPM hardware are protected against external influence and cannot be
extracted in plain text. Furthermore, TPMs offer remote attestation functionality.
Remote attestation allows external verifiers to uniquely identify a TPM-equipped
computer system and attest to the current state of its software stack. To achieve
this, the TPM is used to store unforgeable fingerprints of the current hardware
and software configuration in a special set of registers. Then a remote verifier
can probe the measured system for proof of its current system state. This is
usually done via a cryptographic protocol [[17]], which establishes a secure
channel to the system under test and transmits a so-called guote. The quote is a

174

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

data structure containing the current system fingerprints and is cryptographically
signed by the TPM. The verifier then validates the correctness of the signature
and cross-checks the attested fingerprints inside the quote with a set of expected
values. If everything validates correctly, the verifier is convinced that the attested
fingerprints are correct and the remote system indeed runs a correctly configured
and unmodified software stack.

TPM-based remote attestation allows data providers to verify the integrity of
remote usage control components before trusting them with enforcing usage rules
on their critical data. However, some drawbacks of using TPMs for this purpose
have been discovered as well, which can be mitigated by using more powerful
trusted computing technologies such as Intel SGX [16]. In any case, conducting
remote attestations remains the fundamental instrument of establishing trust in
distributed usage control systems.

3 Modeling Trust in Usage Control Systems

In order to estimate the trustworthiness of distributed usage control systems,
we first require a suitable model. This model should describe existing trust
dependencies between usage control components as well as the individually
conducted remote attestations at any point in time. For this we partially rely on a
model that has been published as part of our previous work [15]]. However, for the
purpose of defining a trust dashboard we have to extend this base model with the
possibility to distinguish different levels of trust and express the trustworthiness
of system operators. In the remainder of this section we briefly present the
relevant parts from the original publication [[15] and then extend the base model
to meet our requirements.

3.1 Base Model

As described in section[2.T] the basis of a distributed usage control architecture
is formed by a set of usage control modules M (e.g. PEP, PDP, ...). Furthermore,
we define a set of usage control functions F' (e.g. deploy, evaluate, ...). The
basic semantic of distributed usage control systems is then specified via a trust

175

Paul Georg Wagner

dependency graph T = (M, Er,lr). The edges ET C M x M of this graph
describe the trust relationships between the different types of usage control
components. More concretely, an edge (u,v) € Er means that usage control
component u requires an honest component v to perform its task correctly.
Finally, the mapping l7 : B — F assigns a human-readable label to each trust
dependency, depending on which usage control function is responsible for the
dependency. Figure[3.T|shows the trust dependency graph for the XACML-based
distributed usage control system presented in section

notify .
evaluate notify
PIP <«

A
evaluate
execute subscribe \ 4
PXP PDP] PEP
notify
4 A unsubscribe

deploy revoke retrieve

deploy A4 store
E—— PMP
revoke N delete

activate revoke

h 4
PAP

Figure 3.1: Trust dependency graph [[15].

From the trust dependency graph, an instance graph I = (V;, Ey, 1, typer)
can be derived. This graph contains concrete instances V; of usage control
components that are being executed, as well as the appropriate trust dependencies
E; and label mappings {; from the trust dependency graph. Finally, the mapping
typer : Vi — M assigns a module type to each concrete component instance.

176

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

While the trust dependency graph describes the logical architecture of the usage
control system, the instance graph describes a concrete realization of it.

Furthermore, we partition the vertices of the instance graph into disjunctive
sets called attestation containers, denoted by C' C V7. An attestation container
describes a set of usage control modules that can be jointly attested. Which
module instances form an attestation container depends on the used attestation
technology and the system architecture (c.f. section2.2)). The set of all attestation
containers is denoted by C C P(V7) \ (). For convenience purposes, we define a
function ¢y : V7 — C that maps a given component to its attestation container.
Figure [3.2] shows an example of an instance graph with attestation containers.

Attestation Container A Attestation Container B
PXP1 PIP2 4—
A A
notify
execute evaluate
v deploy deploy execule
PDP1 PMP1 | | PXP2 «—» PDP2
Yy revoke revoke Yy
. notify notify .
subscribe unsubscribe unsubscribe subscribe
A\ 4 A
PEP1 PEP2

Figure 3.2: Instance graph with attestation containers.

Finally, for each component instance v € V; we can define the attestation
schedule att, : N* x C — {—1,0, 1}. The attestation schedule describes the
remote attestations that the component v conducts at a certain point in time, and
if they are successful (1), not attempted (0) or not successful (—1). For more
details as well as some examples of the base model we refer the reader to the
original publication [15]].

177

Paul Georg Wagner

3.2 Extended Model

To use this model as basis for a trust dashboard, we first extend it with the concept
of operators. Operators are running usage control components in their own
infrastructure and are participating in the distributed usage control system. They
can be seen as the administrators responsible for managing the usage control
components of their company, or even conceptually as the entire organization
itself. Operators can act both as data provider and data receiver, respectively
releasing or collecting sensitive information as well as associated usage control
policies. We denote the set of operators with O. For each attestation container
C € C we then identify a single operator O € O that is responsible for all
usage control components running in the attestation container C. We describe
this with the operator mapping o : C — O. While each attestation container
is managed by exactly one operator, a single operator can be responsible for
multiple attestation containers at once.

Furthermore, we want to associate a certain level of trust with each operator,
and subsequently with the usage control components they are running. For
this we define four different trust levels full, marginal, untrustworthy and
unknown. This categorization is inspired by the trust level definition of PGP [1].
We denote the set of trust levels with 7. Finally, we can assign each operator a
trust level with the mapping ¢ : © — T. This mapping will be customizable by
the user of the trust dashboard and serve as basis for including subjective trust
assessments into the estimations provided by the dashboard.

4 Conceptualizing a Trust Dashboard

In this section we propose a concept for a trust dashboard that helps users to gain
insight into the current state of a distributed usage control system by means of
an intuitive visual representation. This dashboard is mainly intended to be used
by direct participants of the distributed usage control system, such as system
operators and/or data providers. The trust dashboard is supposed to assist them
in deciding if the distributed system components can be deemed trustworthy,
before issuing critical usage control policies or releasing sensitive data.

178

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

4.1 Goals and Requirements

To present our proposed trust dashboard, we first define the two main design
goals of the dashboard and derive appropriate requirements for each of them.

Goal 1: Visualizing the system state. The first main goal of our trust
dashboard is to give the user an intuitive overview of the current usage control
system state. For this, we need to show the user what usage control components
are currently running and what dependencies exist between them. Furthermore,
we need to illustrate what remote attestations have already been conducted and
point out what parts of the trust dependencies have been covered as a result.
Ultimately we identify three requirements to achieve this goal.

(Req. 1) Show the user the set of active distributed usage control components,
both local and remote (i.e. operated by other participants).

(Req. 2) Show the user the required trust dependencies between the active
usage control components.

(Req. 3) Highlight to the user any discrepancies between the required trust
dependencies and the actually conducted remote attestations.

Goal 2: Visualizing the system trustworthiness. The first goal only aims at
expressing the current state of the distributed usage control system in an intuitive
way. However, for the trust dashboard this objective alone is not sufficient. We
also have to give the user feedback about the resulting trustworthiness of the
usage control system in its current state. More concretely, we need to allow
the user to specify their subjective estimation of the trustworthiness of certain
system operators. Obviously this is highly dependent on the application context,
e.g. if a remote system operator is a competitor of the trust dashboard user.
Based on this we can then offer some estimates about the trustworthiness of the
system overall. In the end goal 2 yields two more requirements to be considered.

(Req. 4) Allow the user to specify their a-priori level of trust in the operators
of remote usage control systems.

179

Paul Georg Wagner

(Req. 5) Show the user a qualitative estimation of the overall trustworthiness
of the usage control system, based on the current attestation schedule
and the a-priori trust levels specified by the user.

The remainder of this section shows how we achieve the identified goals and
requirements in our proposed dashboard. Finally we illustrate the resulting
visual representations of the different trust dashboard states in a small example.

4.2 Goal 1: Visualizing the System State

In order to conceptualize a trust dashboard for distributed usage control, we
translate the model from section [3]into a simple visualization of the current
system state. Starting with an instance graph I = (V, Ey, 15, typer), as a
first step the currently active usage control components V; are displayed as
boxes, labeled with the respective module names derived from the mapping
typer. Similarly, the set of operators O is represented by a number of larger,
unfilled boxes around the usage control components. Which components are
displayed in which operator boxes is determined by the operator mapping
o : C — O, depending on the attestation container that the component in
question resides in. Together, this satisfies requirement 1. Furthermore, the
trust dependency edges E between usage control components are visualized
with directed arrows connecting the component boxes in the direction of the
trust dependency (requirement 2). The states of the trust dependency edges
are derived from the current attestation schedules att, : N* x C — {—1,0,1}
for each usage control component v € V; and visualized using different colors
for the arrows (requirement 3). Depending on the current time step ¢ and the
attestation schedules, we distinguish four different states that a trust dependency
edge can be in.

Recently verified dependency. A trust dependency edge (u,v) € Ej is
recently verified at time ¢, if there is a successful attestation between u and v
not older than ¢, and no failed attestation has occurred since. The time interval ¢
is a previously defined constant that represents how long a component should
be fully trusted after a successful attestation. We mark recently verified trust

180

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

dependencies with a green arrow in the trust dashboard. In the formal model,
this concept is expressed as equation[4.T]

Jts > (t—1t) : atty (ts,cr (v) =1
color(t,u,v) = green <= 4.1
APty >t atty (ty,cr (v) = —1

Formerly verified dependency. A trust dependency edge (u,v) € Ej is
formerly verified at time ¢, if there is a successful attestation between u and v
older than ¢, and neither a failed nor a successful attestation has occurred since.
We mark formerly verified trust dependencies with a yellow arrow in the trust
dashboard. In the formal model, this concept is expressed as equation [4.2]

Jts < (t—1) : atty (ts,cr (v)) =
color(t, u,v) = yellow <= N N 4.2)
AVE> tg: atty (1 (v)) =0

Unverified dependency. A trust dependency edge (u,v) € E; is unverified
at time ¢, if there are no attestations between u and v so far. We mark unverified
trust dependencies with a black arrow in the trust dashboard. In the formal
model, this concept is expressed as equation 4.3

color(t,u,v) = black <= Vt < t : att,, (f, cr (v)) =0 4.3)

Invalidated dependency. A trust dependency edge (u,v) € Ej is invalidated
at time ¢, if there is a failed attestation between v and v and no successful
attestation has occurred since. We mark invalidated trust dependencies with a
red arrow in the trust dashboard. In the formal model, this concept is expressed

as equation .4}
Ity <t:atty (tr,cr (v) = -1

color(t, u,v) = red <=
ANPts >ty o atty (ts,cr (v) =1

(4.4)

4.3 Goal 2: Visualizing the System Trustworthiness

Based on the visualization of the current system state, an estimation for its
overall trustworthiness should be given. This is done in two steps. First, the trust

181

Paul Georg Wagner

dashboard users define their subjective level of trust in the various operators of
usage control components (requirement 4). Similar to before, this is visualized
by coloring the operator boxes depending on the assigned level of trust. As
described in section[3.2] we distinguish four different trust levels 7. We associate
the trust level full with the color green, trust level marginal with the color
yellow, trust level untrustworthy with the color red and trust level unknown
with the color black. In terms of the formal model, this step is defining the
operator trust mapping t : O — T.

Afterwards the trust levels in individual usage control components have to be
derived. This is done based on the current state of the trust dependency edges as
described in the previous section. For the sake of consistency we use the same
trust level categorization for the usage control components as for the operators.
Furthermore, the component boxes in the trust dashboard are colored in the
same manner as the trust dependency edges and the operator boxes.

Fully trusted component. A usage control component v € V7 is fully trusted
at time ¢ if there is at least one recently verified and no invalid trust dependency
to v. We mark fully trusted components with a green box in the trust dashboard.
In the formal model, this concept is expressed as equation {.5]

Ju € V; : color (¢, u,v) = green
color(t,v) = green < 4.5)
A Bu € Vi : color(t,u,v) = red

Marginally trusted component. A usage control component v € V7 is
marginally trusted at time ¢ if there is at least one formerly verified trust
dependency to v, but no recently verified or invalid ones. We mark marginally
trusted components with a yellow box in the trust dashboard. In the formal
model, this concept is expressed as equation .6}

Ju € Vi : color(t, u, v) = yellow
color(t,v) = yellow <= AVu € V; : (color(t,u,v) = yellow (4.6)
V color (¢, u, v) = black)

182

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

Untrusted component. A usage control component v € V7 is untrusted at
time ¢ if there is at least one invalid trust dependency to v. We mark untrusted
components with a red box in the trust dashboard. In the formal model, this
concept is expressed as equation @

color(t,v) = red <= Ju € Vj : color(t, u,v) = red .7

Component with unknown trust level. A usage control component v € V;
has an unknown trust level at time ¢ if there are only unverified trust dependencies
to v. We mark components of unknown trust level with a black box in the trust
dashboard. In the formal model, this concept is expressed as equation [4.8]

color(t,v) = black <= Vu € V1 : color(t, u, v) = black (4.8)

Once the operator trust mapping and the trust level of individual components
is defined, an overall trust estimation should be derived from it (requirement
5). For simplicity we use a qualitative estimation with three trust levels that are
each visualized with a distinct icon in the trust dashboard.

Trusted overall system state. A distributed usage control system with instance
graph [is in a trusted state at time ¢ if all usage control components of I are
either fully trusted, or belong to a system operator that is fully trusted by the trust
dashboard user. Broadly speaking, this means that the usage control system has
verified all doubtful components with a recently conducted remote attestation. In
the trust dashboard, this overall system state is visualized by a green checkmark
next to the trust graph. In the formal model, it is expressed as equation [4.9]

Vv € Vi : color(t,v) = green
state(t) = trusted <= 4.9)
Vit(o(er (v))) =full

Ambiguous overall system state. A distributed usage control system with
instance graph I is in an ambiguous state at time ¢ if it is not trusted, but no
untrusted components exist in I either. This means that not every potentially
dangerous usage control component has been cryptographically verified, but

183

Paul Georg Wagner

there is no evidence for malicious behavior. In the trust dashboard, this overall
system state is visualized by a yellow questionmark next to the trust graph. In
the formal model, it is expressed as equation .10}

state(t) # trusted
state(t) = ambiguous <= (4.10)
AYv € Vi : color(¢,v) # red

Untrusted overall system state. A distributed usage control system with
instance graph [is in an untrusted state at time ¢ if there is at least one untrusted
component in I. This means that at least one usage control component has
failed the verification via a remote attestation, and hence we have to assume
malicious interference in the usage control system. In the trust dashboard, this
overall system state is visualized by a red crossmark next to the trust graph. In
the formal model, it is expressed as equation .11}

state(t) = untrusted <= Jv € Vr : color(t,v) = red 4.11)

4.4 Trust Dashboard Examples

To illustrate the nature of the resulting visualization, in figure .| we give a few
simple examples of the trust dashboard for all three system states. For this we
assume there to be two operators Alice and Bob, each managing several usage
control components. In our examples we show the trust dashboard from the
point of view of operator Alice, so we assume her to always be a fully trusted
operator. As described in section[d.3] this is indicated by a green operator box
around her components.

The first example in figure .1(a)|shows the dashboard layout in a trusted overall
system state. This is despite operator Bob being untrusted in this example, as
indicated by the red operator box around his components. Since all of Bob’s
components have at least one recently verified incoming dependency (green
arrows), they are all classified as fully trusted and marked with green boxes (see
eq. [4.3). As aresult, all components of the system are either fully trusted or
belong to a fully trusted operator. With eq. [4.9]follows that the overall system
state is trusted. In the second example in figure #.1(b)] Bob’s PRP only has a

184

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

Operator Alice

PIP

() o
Ea (el

Trusted overall system state .

(a) Trusted system state.

Operator Alice Operator Bob

PIP ——4\
/ PDP
)
f 1 1 \E=]

PAP PXP

Ambiguous overall system state @

(b) Ambiguous system state.

Operator Alice Operator Bob

PIP ——-—\
PDP

/ I
PAtP ’/

Untrusted overall system state .

(c) Untrusted system state.

Figure 4.1: Examples of the trust dashboard visualization in the three system states.

185

Paul Georg Wagner

formally verified dependency (yellow arrow), most likely because the previously
conducted attestation timed out. Because of this, Bob’s PRP is left as only
marginally trusted (see eq. £.6) and the overall system state results to ambiguous,
as described in eq. [4.10] The last example in figure[4.1(c)| shows an invalidated
dependency between Alice’s PIP and Bob’s PIP (red arrow). This invalidation is
due to a failed remote attestation between both PIPs, which results in Bob’s PIP
being classified as untrusted (see eq. and marked with a red box. Because
of this deterioration in trust, according to eq. [4.11|now the entire system has to
be seen as untrustworthy as well.

5 Conclusion

In this work we presented the concept of a trust dashboard for distributed usage
control systems that are backed by trusted computing technologies. Based
on a formal model describing generic usage control systems and the relevant
trust dependencies, we proposed a visualization concept that (i) illustrates
the current system state and (ii) estimates the overall trustworthiness of the
system. To achieve the first goal, we classified the trust dependencies between
distributed usage control components based on the recency and outcome of
conducted remote attestations. By combining the current system state with
a-priori trust levels for system operators, we then provided the dashboard user
with a qualitative estimation of the overall system trustworthiness. Ultimately
our approach contributes a tool to help usage control system operators in the
assessment of dynamic and distributed system architectures.

In the future we plan to implement our concept as a web-based application
and deploy it to real-world usage control systems. Based on this, user studies
can be conducted to evaluate the benefits of the trust dashboard in real-world
scenarios. Furthermore we are aware of some issues that remain unaddressed
with our approach. So far the specific trusted computing technologies protecting
the usage control components are not being considered in either the formal
model or the trust dashboard concept. However, since different technologies
yield different benefits and drawbacks, clearly there are opportunities to refine
and improve both the visualization of the current system state, as well as the

186

Conceptualization of a Trust Dashboard for Distributed Usage Control Systems

resulting trust estimation. In addition, the current trust estimation method
is based on a simple qualitative heuristic. To obtain better trust estimation
results, a more sophisticated approach based on probabilistic estimations can
be undertaken. This would result in a quantitative (albeit still subjective) trust
estimation methodology.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Alfarez Abdul-Rahman. “The pgp trust model”. In: EDI-Forum: the
Journal of Electronic Commerce. Vol. 10. 3. 1997, pp. 27-31.

Masoom Alam et al. “Model-based behavioral attestation”. In: Pro-
ceedings of the 13th ACM symposium on Access control models and
technologies. 2008, pp. 175-184.

Agreiter Berthold et al. “A technical architecture for enforcing usage
control requirements in service-oriented architectures”. In: Proceedings
of the 2007 ACM workshop on Secure web services. 2007, pp. 18-25.

Manuel Hilty et al. “A policy language for distributed usage control”. In:
European Symposium on Research in Computer Security. Springer. 2007,
pp. 531-546.

Patrik Hummel et al. “Data sovereignty: A review”. In: Big Data &
Society 8.1 (2021), p. 2053951720982012.

Radha Jagadeesan et al. “Timed constraint programming: a declarative
approach to usage control”. In: Proceedings of the 7th ACM SIGPLAN
international conference on Principles and practice of declarative pro-
gramming. 2005, pp. 164-175.

Helge Janicke, Antonio Cau, and Hussein Zedan. “A note on the formali-
sation of UCON”. In: Proceedings of the 12th ACM symposium on Access
control models and technologies. 2007, pp. 163-168.

Fabio Martinelli and Paolo Mori. “A Model for Usage Control in GRID
systems”. In: 2007 Third International Conference on Security and
Privacy in Communications Networks and the Workshops-SecureComm
2007. IEEE. 2007, pp. 169-175.

187

Paul Georg Wagner

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

188

Jaehong Park and Ravi Sandhu. “The UCON ABC usage control model”.
In: ACM Transactions on Information and System Security (TISSEC) 7.1
(2004), pp. 128-174.

Jaehong Park and Ravi Sandhu. “Towards usage control models: beyond
traditional access control”. In: Proceedings of the seventh ACM symposium
on Access control models and technologies. 2002, pp. 57-64.

Alexander Pretschner, Manuel Hilty, and David Basin. “Distributed usage
control”. In: Communications of the ACM 49.9 (2006), pp. 39-44.

Himanshu Raj et al. “ftpm: A software-only implementation of a { TPM}
chip”. In: 25th {USENIX} Security Symposium ({USENIX} Security 16).
2016, pp. 841-856.

OASIS Standard. extensible access control markup language (xacml)
version 3.0. 2013.

TCG Specification Architecture Overview. Specification Revision 1.4.
https://trustedcomputinggroup.org/wp-content/uploads/
TCG_1_4_Architecture_Overview.pdf. Accessed: 2021-11-16.

Paul Georg Wagner. “Towards a Formal Model for Quantifying Trust in
Distributed Usage Control Systems”. In: Proceedings of the 2019 Joint
Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision
and Fusion Laboratory. 2019, p. 113.

Paul Georg Wagner, Pascal Birnstill, and Jiirgen Beyerer. “Distributed
usage control enforcement through trusted platform modules and sgx
enclaves”. In: Proceedings of the 23nd ACM on Symposium on Access
Control Models and Technologies. 2018, pp. 85-91.

Paul Georg Wagner, Pascal Birnstill, and Jiirgen Beyerer. “Establishing
Secure Communication Channels Using Remote Attestation with TPM
2.0”. In: International Workshop on Security and Trust Management.
Springer. 2020, pp. 73-89.

Xinwen Zhang. Formal model and analysis of usage control. George
Mason University, 2006.

https://trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf

