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Abstract

Fine-grained classification is an interesting but challenging task due to the high
amount of data needed to achieve a high accuracy. However, the high specificity
of the classes makes it difficult to collect a large amount of samples. Thus, the
use of cross-domain learning is an interesting aspect since an abundant amount
of data exists for some domains like web images exists. In this review, the
current works of cross-domain fine-grained classification are summarized and
potential areas for future work are highlighted. Even though first works exist,
the variety of methods is still small and interesting cross-domain settings are
rarely considered. Thus, the field of cross-domain fine-grained classification
provides a large room for future research.

1 Introduction

Fine-grained image classification is a task which has gained attention in recent
years due to the application of convolutional neural networks achieving promising
results. Another reason for the gained attention is that the applications of fine-
grained classification are manifold. Gebru et al. [[12] predict the model of
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vehicles in order to visually estimate the income of regions in the US. Similar
approaches could be applied on parking areas of supermarkets to estimate the
income of customers. Usuyama et al. [30] apply fine-grained image classification
to visually identify pills in order to reduce the risk of medication errors.

Compared to regular image classification, fine-grained classification induces a
lower inter-class variance with often only small details distinguishing classes
while view and appearance of images can be highly different within classes
resulting in a high intra-class variance. Thus, it is a more difficult task than coarse-
grained image classification. Additionally, the high specificity of classes limits
the availability of images and increases the required knowledge of annotators.
Another aspect making the application of fine-grained classification difficult
is that the classes of datasets are usually very specific to a certain region and
a certain timeframe. For example, the distribution of cars differs heavily for
different regions like Europe and Asia and new car models are constantly
introduced rendering available datasets quickly outdated.

However, this can be compensated by crawling images from the web or creating
synthetic images by rendering 3D models of cars or pills. While these approaches
can create a large amount of labeled data, they often induce a large domain gap
since images from the web are usually more polished than images in real-world
applications like surveillance and synthetic images do not reach the realism of
camera images. However, domain adaptation can support the learning process to
enable the use of data from different domains than the targeted domains. Since
these image sources are also useful for normal image classification, a broad
range of literature is dedicated towards domain adaption for coarse-grained
classification as summarized by Wang and Deng [32].

However, cross-domain fine-grained classification introduces new challenges
like the small inter-class variance compared to the large inter-domain variance
which requires careful consideration during adaptation [41]. Moreover, the high
specificity of fine-grained classes brings up cross-domain scenarios which are
uncommon for regular image classification like a supervised partially zero-shot
scenario. In this case, some classes in the target domain do not have images at
all while all other classes have abundant images with annotations available in
the target domain [30]. In contrast, classic domain adaptation usually assumes
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the availability of all classes in the target domain, even though all data in the
target domain is unlabeled [9].

Since existing surveys about fine-grained classification [35}|14]] or cross-domain
classification [32]] do not consider the works combining both fields, this survey
gives an overview over the existing works about cross-domain fine-grained
classification.

The remainder of this work is structured as follows: section[2lsummarizes the
literature targeting fine-grained classification while section [3|shortly describes
existing works regarding cross-domain classification. Section[d] gives a more
detailed view on the intersection of both research areas combining cross-domain
and fine-grained classification. Section [5|summarizes the content of this work
and highlights research aspects which are interesting for future work.

2  Fine-Grained Classification

Since fine-grained classification shares many of its challenges with usual image
classification as mostly investigated on the ImageNet [6] dataset, current deep
learning models proven on ImageNet have been established as a good starting
point for fine-grained classification [31]]. However, the high intra-class variance
compared to the low inter-class variance of fine-grained classification tasks
motivate the exploration of adaptations. In this regard, multiple authors have
found ways to improve the performance of deep-learning models when they
are exposed to fine-grained classification tasks. The development branches
can be roughly categorized as part-based models, bilinear CNNs, multi-task
learning, hierarchical classification, metric learning, temporal classification and
webly-supervised approaches.

Part-based models. While localizing discriminating parts has not been widely
adopted since CNNs are used for classification, fine-grained classification is
an area where part-based classification can still be advantageous. A reason is
that the distinguishing regions might not be automatically determined during
training because of the datasets being too small for the problem at hand. Thus,
multiple authors have approached the integration of part-based classification
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schemes with CNNs to improve the accuracy [37, 8]]. Huang et al. [[15] use
a part-based model to provide an interpretation of the classification to the
user. However, hand-engineered part models suffer from being not optimal for
classification and requiring a high annotation effort. Thus, Simon and Rodner
[25] propose an unsupervised part-based model using feature map activations to
find discriminating parts.

Bilinear CNNs. Following the idea of part-based models that localization of
discriminating parts and creating features should be separated, Lin, RoyChowd-
hury, and Maji [22]] propose a two-stream architecture consisting of two CNNs
that combines the final feature maps of both networks with a bilinear module.
The bilinear module calculates the outer product of both feature vectors for each
pixel of the feature map. The expectation of the authors is that one network
locates discriminating parts while the other network extracts discriminating
features. Due to the high computational demands of the high dimensional outer
product of both feature maps, adaptations have been proposed to reduce its
dimension [[10,/19]. Yu et al. [40] extend the bilinear CNN scheme by applying
cross-layer bilinear pooling, i.e., they pool bilinear features between layers of
the network instead of only pooling bilinear features after the last layer.

Multi-task learning. In multi-task learning, an auxiliary task is additionally
solved to the main task with the auxiliary task being related to the main task.
Due to the relation, it is expected that the auxiliary task supports solving the
main task. Depending on the method, the solving of the auxiliary task might
be either limited to the training process [3]] or might also be performed during
inference [26, [23]]. To enhance the quality of fine-grained class predictions,
Sochor, Herout, and Havel [26] feed automatically extracted 3D bounding boxes
of the cars as additional information to the network in order to support the
network regularizing the perspective. Chen, Liu, and Yu [3]] propose a similar
approach by predicting the viewpoint of the image as an auxiliary task. Providing
knowledge about the viewpoint during training supports the network in coping
with the large intra-class variance due to the high variation regarding viewpoints.
Lin et al. [23|] propose an approach that fits a 3D model on the image, exploits
the localization of object parts to extract features at constant locations, and uses
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theses features to perform a classification. Due to repetitively applying this
scheme, the correct 3D model for the vehicle model is chosen from a database
resulting in a higher classification accuracy.

Hierarchical classification. Fine-grained classes are usually part of a more
complex class hierarchy. For example, while fine-grained bird classification is
commonly done on the level of species, each species is part of a certain genus
which is part of a certain family of birds. Cars are often classified on the level
of the year a certain iteration of a model was presented. However, this is part of
a hierarchy containing the model and the manufacturer. In the case of cars, a
second hierarchy can be built by assigning each model to a certain type of car
like van or sedan. Hierarchical classification can be seen as a special form of
multi-task learning since the classification of coarse-grained categories is used as
an auxiliary task to improve the accuracy of the fine-grained classification. Huo
et al. [[16] exploit these hierarchies by training multiple layers of the hierarchy in
a round-robin manner. Buzzelli and Segantin [2] train cascaded classifiers to
reduce the number of classes per classifier.

Metric learning. CNNss for classification usually apply a linear layer combined
with a softmax activation on the last feature layer to generate the output
probability distribution. During training, the backpropagation algorithm is
applied which mostly finds an adequate embedding for the final feature layer
that tends to minimize intra-class variance and maximize inter-class variance.
However, for fine-grained classification tasks, an explicit loss formulation that
increases distance between classes and decreases the distance between features
of the same class is commonly applied as alternative (using a kNN-classifier for
inference) or additional to a softmax-based classifier [[27} 18| [39]. Particularly
for a high amount of classes as common in fine-grained classification, metric
learning proved advantageous [39].

Temporal classification. Object classification is mostly performed on still
images. While a single image is usually sufficient for coarse-grained classi-
fication, the discriminating parts for fine-grained classification are often only
visible in specific perspectives. Thus, Zhu et al. [44] and Alsahafi et al. [1]]
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investigated fine-grained classification on videos. Zhu et al. [44] regard the
redundant information in videos as the main challenge and propose an approach
that combines the feature maps from multiple images and processes the feature
maps in an iterative manner. In each step, redundant information from previous
steps is suppressed while discriminating parts are attended to. Alsahafi et al. [1]
use an object detector to extract accurate crops of the vehicle for each image
and combine the per-image classification results by averaging.

Webly-supervised. The amount of samples per class is scarce for fine-grained
datasets compared to coarse-grained datasets like ImageNet [6]] due to the
specificity of classes and the difficulty of labeling. Therefore, multiple authors
use community provided image collections in the web which have labels available
like, e.g., Flickr. With the class name as query large amounts of data can be
gathered [36,7]].

Other works. Some works have investigated methods which have not yet
brought up a new branch of research or they consider aspects uncommonly
explored. Touvron et al. [28] propose a method called Grafit that enables
fine-grained classification based on a training dataset only containing coarse-
grained labels. This is achieved by combining an instance loss and a kNN loss
in order to learn a fine-grained feature embedding. Cui et al. S]] propose a
new training scheme for long-tailed class distributions with a small number
of frequent classes and a large number of rare classes. Moreover, the authors
propose a domain similarity metric to find a good dataset for pre-training a
network prior to training it on the target dataset. Zhang et al. [42] follow an
ensemble strategy by training multiple expert networks with the maximization
of the Kullback-Leibler divergence between the output probability distributions
of each classifier as additional optimization target.

3  Cross-Domain Classification

In a cross-domain classification setting, at least two domains are involved
called source and target with the evaluation being performed on data of the
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target domain. While abundant data is available for the source domain, the
availability of data in the target domain is limited in some form. Mostly the
limitation is in form of missing labels. In this case, the adaptation for the
target domain is called unsupervised domain adaptation. More settings in
the context of fine-grained classification are described in section[d] Formally,
cross-domain classification can be described with two sets of images X and
labels Y called (X, Y;) and (X, Y;) for source and target, respectively. In a
domain adaptation setting the distributions P of the image samples between
both domains differ: P(X;) # P(X;). However, the classification task is kept
the same: P(Y;|X;) = P(Y;|X}). Following the taxonomy of Wang and Deng
[32]], methods for domain adaptation can be categorized in discrepancy-based,
adversarial-based, and reconstruction-based methods.

Discrepancy-based domain adaptation. Methods based on discrepancy use a
certain criterion for fine-tuning a deep learning model to optimize it for the target
domain. One type of criteria are class criteria which base the fine-tuning process
on class labels [29]]. Pseudo labels can be generated if no labels are available
in the target domain [43]]. Methods that use a statistic criterion minimize
the distance between the statistical distributions of both domains, e.g., with
a Kullback-Leibler divergence [46]. An architectural criterion optimizes the
architecture of deep learning models to generate more domain-invariant features.
Such an architectural improvement is adaptive batch normalization [21]. A
geometric criterion is another type which has been used for aligning domains [4].

Adversarial-based domain adaptation. Adversarial approaches try to confuse
the main network regarding the domain. They can be categorized in generative
and non-generative methods. Generative methods generate a transformed input
sample that contains the same content as the source sample with an appearance
matching target samples [24]. Non-generative approaches reduce the domain
gap in the feature space. A domain classifier is added and connected to the
network via a gradient reversal layer that leads to the features being adjusted
towards values most unsuitable for domain classification [9]).
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Reconstruction-based domain adaptation. The aim of these approaches is
the reconstruction of samples from the source or target domain with the aim
to achieve a domain-invariant representation of samples. The application of a
combination of an encoder and a decoder with the decoder trying to reconstruct
the sample from the features produced by the encoder is one approach [13].
Another approach is to use adversarial networks in the form of a Cycle-GAN that
transforms a sample from one domain to the other and afterwards, reconstructs
the original sample from the transformed sample [45].

4 Cross-Domain Fine-Grained Classification

In this section, an overview of existing works regarding the intersection of
fine-grained classification and cross-domain classification is given. Cross-
domain fine-grained classification is significantly more difficult than either of the
tasks of cross-domain classification or fine-grained classification since domain
adaptation and fine-grained classification are contradictive in terms of feature
adjustment. While fine-grained classification requires the features to capture fine
details in the image to cope with the low inter-class variance, domain adaptation
is drastically changing the features in order to reduce the high inter-domain
variance [33, |41]].

The works are categorized by the domain adaptation setting type they apply, i.e.,
unsupervised, semi-supervised or supervised partially zero-shot. The different
types are visualized in Figure[d.T]and an overview of the different approaches is

given in Table

Unsupervised domain adaptation. The task of unsupervised domain adapta-
tion assumes a source domain with a large labeled dataset and a target domain
with a large unlabeled dataset while both datasets include samples for all cate-
gories. The first to explore such a setting with fine-grained categories are Gebru,
Hoffman, and Fei-Fei [11]]. The authors exploit auxiliary attributes commonly
available in fine-grained datasets by adding an additional classification head
per attribute and applying an attribute consistency loss forcing the predicted
attributes to match the main classification category, e.g., the body type like
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Authors Setting Domains

Unsupervised

Gebru et al. [[11
ebru et al. [11] Semi-supervised

Vehicles: marketing shots, GSV

Wang et al. [33] Unsupervised Vehicles: marketing shots, GSV

Vehicles: marketing shots, GSV
Retail products: studio images,
supermarket shelves, web images

Unsupervised

Wang etal. [34] Semi-supervised

Yu, Jiang, and Li [41]  Unsupervised Vehicles: marketing shots, GSV
Li et al. [20] Semi-supervised Vehicles: marketing shots, GSV
Supervised

Usuyama et al. [30] Pills: reference images, consumer images

partially zero-shot

Table 4.1: Overview of cross-domain fine-grained methods with the cross-domain setting considered
and the domains between a domain adaptation was investigated. GSV stands for Google Street View.

All classes [ Labeled Unlabeled
—_

Source domain | | [ | | |

Target domain I:l I:l
Testset L | 1] ]

Supervised
partially zero-shot

Unsupervised Semi-supervised

Figure 4.1: Types of settings in cross-domain fine-grained classification. The bars illustrate the
classes. In an unsupervised setting, a large amount of unlabeled target samples is available for all
classes. In contrast to an unsupervised setting, a part of the classes have labeled target samples
available in a semi-supervised setting. The evaluation is only performed on the part of classes which
have no labeled samples. In a supervised partially zero-shot setting, for a small part of the classes
no target samples are available at all while this part is used for evaluation.

197



Stefan Wolf

sedan or van matching the concrete model for vehicle classification. Since
the number of training samples per attribute category is higher than per main
category, attribute prediction is more stable across domains which results in a
more accurate prediction of the main category due to the attribute consistency
loss. The use of auxiliary attributes is additionally applied to a domain confusion
loss as proposed by Tzeng et al. [29]]. The approach is evaluated for vehicle
classification with an adaptation from web-scraped marketing shots to Google
Street View (GSV) images. Wang et al. [33]] propose a quite similar approach
that uses coarse-grained labels to initially train the network on an easier task that
has a higher inter-class variance and is less prone to features being deteriorated
during domain adaptation. The distribution of coarse-grained labels is extended
to the dimension of the fine-grained labels enabling a progressive adaptation
from coarse-grained to fine-grained training based on curriculum learning while
using adversarial adaptation [9]] to simultaneously adjust the features to the target
domain. The authors also evaluate their approach on the previously mentioned
vehicle classification setting with an adaptation from marketing shots to GSV
images. The approach proposed by Wang et al. [[34] also employs adversarial
domain alignment to reduce the domain gap in the feature space. Additionally, a
self-attention module is proposed that identifies class-discriminating regions
and applies a part-wise classification with a result fusion step. Additional to also
evaluating the marketing shots to GSV images adaptation scenario with vehicle
classification, the authors propose a new setting with fine-grained classification
of retail products in three domains, i.e., professional studio images, images
of supermarket shelves and web images. Yu, Jiang, and Li [41] propose a
method targeting fine-grained domain adaptation by maintaining quality of
class-separating features during the adaptation process. This is achieved by
employing domain-specific class labels with the domains being swapped after
a pre-training phase resulting in domain confusion while keeping the class-
separating characteristics of the features intact. Again, the vehicle classification
setting adaption from marketing shots to GSV images is evaluated.

Semi-supervised domain adaptation. In the setting of semi-supervised domain
adaptation, a part of the samples from the target domain are labeled. In the case
of fine-grained classification, the subsets of labeled and unlabeled samples are
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split by classes [[11]]. Gebru, Hoffman, and Fei-Fei [11]] and Wang et al. [34] also
evaluate their approaches explained above in a semi-supervised setting. While
Gebru, Hoffman, and Fei-Fei [[11] employ a cross entropy loss for the labeled
samples in the target domain, Wang et al. [34] propose a contrastive loss for
category-level alignment using the labeled target samples. Li et al. [20] propose
the integration of a residual correction block before the final classification layer
which is trained to minimize the difference between the distributions of features
of the source and target domain. The decision to incorporate the residual
correction block is based on the insight that early features are domain and task
invariant compared to late features [38]. The authors evaluate their method in a
setting adapting fine-grained vehicle classification from marketing shots to GSV
images.

Supervised partially zero-shot domain adaptation. Usuyama et al. [30]
are the first to propose a fine-grained domain adaptation setting different to
unsupervised or semi-supervised, i.e., compared to a semi-supervised scenario,
they prohibit the use of the unlabeled samples. Thus, a part of the classes
has no samples available in the target domain at all making the setting more
difficult. This scenario has a high practical importance since the high specificity
of fine-grained classes makes it difficult to collect samples for certain classes
or to ensure that a certain class is in a set of samples that has been randomly
collected. The evaluation in this scenario is done on the classes that have no
samples in the target domain. Such a setting is called supervised partially
zero-shot following Ishii, Takenouchi, and Sugiyama [17]. Usuyama et al. [30]
propose a new fine-grained dataset called ePillID containing images of pills in
two domains, i.e., reference images with a specified viewpoint and lighting and
a masked background and consumer images which have a greater intra-class
variance. The authors evaluate a baseline approach using metric learning in a
cross-domain setting.
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5 Conclusion

In this work, a review of fine-grained, cross-domain, and cross-domain fine-
grained classification was given. Cross-domain learning is particularly interest-
ing for fine-grained classification due to the specificity of fine-grained classes
making it highly difficult to collect abundant data for all classes. However, the
challenges of fine-grained classification, i.e., a high intra-class variance and
a low inter-class variance, exacerbate domain adaptation which additionally
has to cope with a high inter-domain variance. Multiple approaches have been
proposed to address these problems with traditional domain adaptation methods
like a domain confusion loss or adversarial learning as starting point. The
additional learning of auxiliary attributes or coarse-grained labels has shown
to be advantageous in cross-domain scenarios and is a promising prospect for
future research. The three distinguished settings for cross-domain fine-grained
classification have a major impact on the applicability of the approaches. Thus,
all three settings should be investigated in order to give practitioners a broad
range of available approaches to solve problems with the data at hand. Particu-
larly, the supervised partially zero-shot setting has not yet been widely explored
while in practice a guarantee that images are available for all classes in the target
domain is hard to provide because of the high specificity of fine-grained classes.
Another interesting area for future research might be the use of synthetic data to
enlarge the dataset.
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