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Abstract In this chapter, we provide insights into Palladio—a tool-supported 
approach to modelling and analysing software architectures. Palladio serves as 
a case study for the evolution of historically-grown approaches to model-based 
analysis. We report about design smells in Palladio’s metamodel and simulators 
caused by evolution and growth over several years. Design smells are structures that 
require refactoring. Decomposition is key for refactoring these design smells. We 
discuss how techniques for decomposition and purpose-oriented composition can 
help refactoring design smells in Palladio’s metamodel and simulators.

11.1 Introduction and Problem Statement

Palladio is a tool-supported approach to modelling and analysing software ar-
chitectures for various quality properties [Reu+16]. It is named after the Italian 
Renaissance architect Andrea Palladio. Initially, Palladio was focused on per-
formance and then has been extended for several quality properties, such as 
reliability [Bro+12], scalability and elasticity [Leh14], energy consumption [Sti18], 
security [TH16], confidentiality [SHR19], and maintainability [Ros+15]. With 
Palladio, costly changes to software after it has been implemented can be avoided 
by analysing the quality of a software system of a given architecture early in devel-
opment. Decisions in software design are typically made on the basis of 
experience
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or, when lacking those, by making an educated guess. The information provided
by the Palladio approach enables to choose the best-suited design alternative and to
make trade-off decisions [Hei+18].

The Palladio approach consists of three essential parts that are designed to
work hand in hand [Reu+16]. First, the Palladio Component Model (PCM) as
a domain-specific modelling language defined in the form of a metamodel is
targeted at specifying and documenting software architectural knowledge. Second,
various analysis techniques ranging from queuing network analysis to discrete-
event simulation can be applied to predict the quality of a system modelled based
on the PCM. Third, the Palladio approach is aligned with a development process
that comprises several developer roles and activities tailored to component-based
software design.

In this chapter, we focus on the evolution of the PCM and the associated
simulators. We understand the term simulator to be a software tool that implements
one or more techniques of simulative analysis for approximating the quality
properties of a system under study. We understand the term simulation to be the
execution of a stimulative technique using a simulator. Simulation is therefore an
example of automated analysis (cf. Chap. 2 of this book [Hei+21]). The PCM is an
established and widely used metamodel. The PCM and the associated simulators
provide various useful features for quality modelling and analysis of component-
based software architectures.

We use the term feature to specify what a modelling language should express and
what a simulator should analyse on a conceptual level. A feature of a metamodel
(or a modelling language in general) is an abstraction of a thing to be modelled
[HSR19]. Examples of language features in Palladio are amongst others those for
modelling the component structure, component-internal behaviour, system usage,
and performance-related annotation [SHR18]. A feature of a simulator is an
abstraction of a property to be analysed by simulation. Examples of simulator
features in Palladio are amongst others those for analysing user behaviour, system
behaviour, resource usage, and for eliciting performance-related measurements.

The PCM consists of 203 classes dispersed amongst 24 packages [HSR19]. It
is organised into five partial metamodels. Since its inception in August 2006, the
PCM has a long history of evolution. There are at least 12 documented extensions
to the PCM publicly available. However, many more extensions exist that are not
publicly available (e.g., student theses, experimental, incubation). Owing to its
historically-grown structure, the PCM exhibits some shortcomings such as package
structure erosion, uncontrolled growth of dependencies, instance incompatibility,
and incompatible extensions. The simulators for reasoning about model instances
of the PCM show similar size and complexity. For example, the original simulator
SimuCom [Bec08] consists of 231 classes in 50 packages. Due to historical
growth, also the simulators show shortcomings such as package structure erosion,
uncontrolled growth of dependencies, underdefined semantics, and incompatible
extensions.



This chapter provides insights into the evolution of Palladio to serve as a case
study for decomposition and composition of model-based analysis. We report
about design smells in the metamodel and simulators caused by evolution and
growth over several years. Design smells are structures that indicate the violation
of fundamental design principles and therefore negatively affect the quality of the
metamodel and simulators. Thus, design smells require refactoring. Decomposition
is key for refactoring design smells in Palladio’s metamodel and simulators. Due
to the rigorous quality assurance process of Palladio, most of the design smells
have already been addressed. Nevertheless, the design smells reported may provide
food for thought for others evolving historically-grown metamodels and simulators
and motivate the usage of techniques for decomposition and composition. We
discuss how techniques for decomposition and purpose-oriented composition can
help refactor design smells in the metamodel and simulators. This chapter, therefore,
illustrates concepts discussed in Chaps. 4 and 5 of this book [Hei+21].

The remainder of this chapter is structured as follows. Section 11.2 gives an
overview of Palladio’s modelling environment—the Palladio-Bench. We report
about design smells in the PCM in Sect. 11.3 and in the simulators in Sect. 11.4.
The application of techniques for decomposition and composition to resolve design
smells is described in Sect. 11.5. This chapter concludes in Sect. 11.6.

11.2 Overview of the Palladio-Bench

Before discussing design smells in the evolution of Palladio, this section gives a
detailed overview of the three essential parts of the Palladio approach [Reu+16]—
the domain-specific modelling language PCM, the various analysis techniques, and
the development process comprising several developer roles. These three parts of
the Palladio approach are implemented in the Palladio-Bench that is based on the
Eclipse integrated development environment (IDE) [Hei+18].

The PCM consists of the partial metamodels shown on the left-hand side in
Fig. 11.1 to reflect different architectural views on a software system. The several
developer roles use graphical editors provided by the Palladio-Bench [Hei+18]
to specify the partial models of the Palladio approach. The component developer
designs the software component specifications. The component repository model
is created by the component developer to design the software components and
their required and provided interfaces stored in a repository. Moreover, the com-
ponent developer specifies the components’ inner behaviour in the form of the
so-called Service Effect Specification (SEFF). A SEFF expresses internal actions
of a component’s services typically annotated with quality-specific information
depending on its context and external service calls. The software architect designs
the software architecture in the system model by assembling components from
the repository. Thus, the quality of a system can be estimated with respect to
the component assembly described in the system model. The system deployer
specifies the execution containers (i.e., servers) including their processing resources
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(i.e., CPU, hard disk, and network) in the resource environment model. For each
execution container, quality-relevant properties like processing rate of the CPU are
part of the resource environment model. Moreover, the system deployer describes
the deployment of the components to the execution containers in the allocation
model. The domain expert specifies the workload of the system in terms of user
behaviour and usage intensity in the usage model.

The Palladio-Bench offers several analysis tools for reasoning about quality
depicted on the right-hand side in Fig. 11.1. Note, although the focus of this chapter
is on simulators, we deliberately depict other tools of the Palladio-Bench in Fig. 11.1
to give a comprehensive overview. We therefore introduce the broader term analysis
tool here (cf. Chap. 2 of this book [Hei+21]). An analysis tool in the context of the
Palladio-Bench is a software tool that implements one or more analysis techniques
for approximating the quality properties of a system under study. Analysis tools
for estimating the performance of a software system are central to the Palladio-
Bench, and a wide range of tools are available. These performance tools are
highlighted in the grey box in Fig. 11.1 and differ mainly in their range of functions,
result accuracy, and analysis speed. The Palladio-Bench also offers tools for the
analysis of reliability [Bro+12] and prediction of costs [Mar+10] as well as various
extensions, e.g., for the analysis of energy consumption [Sti18], security [TH16],
confidentiality [SHR19], and maintainability [Ros+15], not depicted in the figure.

Palladio’s original simulator SimuCom [Bec08] is a discrete-event performance
simulator that estimates response times of both, system-level and component-
level services, as well as utilisation of processing resources specified in the
resource environment. The performance simulator SimuLizar [BLB13] is focused
on analysing self-adaptations in cloud computing environments, e.g., when scaling
out components by replication. EventSim [MH11] is a discrete-event performance
simulator that complements SimuCom in that it primarily addresses highly complex
models in simulation by applying event-scheduling simulation techniques. Besides
the simulators, the Palladio-Bench offers tools for transforming model instances
of the PCM to the formalisms queuing Petri net (QPN) and layered queuing
network (LQN). These are established formalisms and commonly used for software
performance prediction independent of the Palladio approach. ProtoCom [Bec08]
is a tool provided by the Palladio-Bench to create performance prototypes in the
form of Java code that mimic demands to different types of processing resources to
evaluate the system performance in a realistic environment.

The reliability analysis tool of the Palladio-Bench estimates software and
hardware failure potentials using discrete-time Markov chain (DTMC) [Bro+12].
The simple cost analysis provided by the Palladio-Bench allows to assign costs
to software components and hardware that is then used to estimate the initial and
operating costs of the system [Mar+10].

Referring to the analysis orchestration strategies introduced in Chap. 5 of this
book [Hei+21], the Palladio-Bench applies the single analysis orchestration strategy.
The aforementioned developer roles use the Palladio-Bench to create a domain-
specific model of the system to conduct quality analyses based on one of the
aforementioned analysis tools. The Palladio-Bench transforms the domain-specific



model into an analysis model specific to the given analysis tool for quality analysis.
After the analysis has been finished, the results are lifted back to the Palladio-
Bench. The Palladio-Bench in turn displays the results to the developers. There is
no interaction between the individual monolithic analysis tools.

11.3 Design Smells in the Palladio Component Model

In this section, we give examples of design smells that occurred in the PCM while
it evolved over the course of several years. These design smells serve as motivation
for the decomposition and purpose-oriented composition of the PCM to refactor the
design smells as described in the following sections.

In object-oriented design, the term design smell is commonly understood as
a structure that indicates the violation of fundamental design principles and
therefore negatively affects quality properties of the system like maintainability and
evolvability. Design smells in object-oriented design are classified as creational,
structural, and behavioural smells [GS13].

Design smells not only occur in the object-oriented design of software systems
but also in the design of metamodels. Strittmatter [Str19] investigated design smells
in metamodels and identified that many structural design smells known in object-
oriented design can also be found in metamodel design. This is reasonable as there
are many commonalities in object-oriented design and metamodel design from a
structural point of view. Both, object-oriented design and metamodel design, specify
classes and their attributes, package structures, as well as dependencies between
classes [Str19]. Creational and behavioural smells from object orientation cannot be
found in metamodels as with respect to these categories object-oriented design and
metamodel design differ [Str19].

In the following, we discuss some examples of design smells that refer to the
modularity of metamodels and explain their occurrence in the PCM to demonstrate
the need for refactoring by decomposition and purpose-oriented composition of the
PCM. We thereby focus on design smells on the level of the package structure of the
metamodel or on the level of metamodel files. A complete overview of metamodel
design smells is given in [Str19].

Language Feature Scattering The content of a metamodel is logically partitioned
by its package structure. A language feature is implemented by one or several
classes in the metamodel. Language features are hard to grasp, if they are not
adequately reflected in the package structure. If classes that constitute a language
feature are spread over multiple packages that do not share a meaningful parent,
it is defined as Language Feature Scattering [Str+16]. When a language feature
is scattered over multiple packages, it is hard to understand the purpose of such a
package without considering all other dependent packages. Consequently, this smell
hampers the comprehensibility of the metamodel. Also the maintainability of the
metamodel may be negatively affected. Language Feature Scattering occurs in the



PCM. For example, the language features for modelling the software repository,
resource interfaces, middleware infrastructure, events, performance, and reliability
(cf. [SHR18]) are all scattered over multiple packages.

Package Blob A package that contains classes of multiple language features is
defined as Package Blob design smell [Str+16]. The Package Blob smell reduces
understandability of the package as one needs to identify and understand all the
contained language features and their respective classes in order to understand the
package. Furthermore, it unnecessarily increases complexity and negatively affects
reusability of the package as it is not possible to selectively depend only on the
necessary language features. Examples for the Package Blob smell in the PCM are
data types and the abstract component-type hierarchy, which both are located in a
single package, namely the repository package.

Metamodel Monolith The Metamodel Monolith design smell is defined as a
metamodel file that implements multiple language features. This is the analogy
of the Package Blob on the level of metamodel files. The Metamodel Monolith
smell negatively affects the reusability of the metamodel file as it is not possible
to selectively depend only on the necessary language features. The complexity of
the metamodel files is unnecessarily increased, and the understandability is reduced
due to lack of modularity [Str19]. The Metamodel Monolith smell occurs in the
PCM as the entire PCM with all its packages is contained in a single metamodel
file.

11.4 Design Smells in the Simulators

In this section, design smells in the Palladio simulators are discussed. These design
smells serve as motivation for the decomposition and purpose-oriented composition
of the simulators to refactor the design smells as described in the following sections.

Stepney [Ste12] collected smells in scientific simulation. Some of these smells
refer to simulator design and can also be found in similar form in the simulators
of Palladio. Moreover, we identified additional smells in the Palladio simulators
that we could not yet find in the literature. These additional smells result from our
professional experience in using the simulators of Palladio both, in academic and
industrial projects. In the following discussion, design smells inspired by Stepney
are marked by the reference [Ste12].

Amateur Science [Ste12] The Amateur Science smell denotes simulator devel-
opment without the involvement of domain experts, e.g., because the simulator
developers assume to be familiar with a given domain, and thus making simplifying
assumptions. This smell is represented by modelling languages and simulators that
are oversimplified for the given analysis task. This may result in neglected domain
knowledge and thus negatively affect the accuracy of the simulation results. In the
simulators of Palladio, the simulation of the network resources is implemented in



a very simplistic way. The assumption was made that the impact of the network
resources on the accuracy of the simulation results would not be of significance.
However, with this assumption, we underestimated the impact of network resources
on the distortion of service response times [KBH07, Ver+07]. Especially for modern
distributed systems, network latency and throughput may have significant impact on
the overall system performance. Therefore, network resources need to be adequately
considered in simulation to achieve accurate results.

Analysis Paralysis [Ste12] Simulator developers may spend too much time
analysing and modelling the domain, trying to get everything perfect, and not
getting to the simulation. This is defined as the Analysis Paralysis smell. This
smell is represented by modelling languages and simulators that are unnecessarily
complex or detailed for the given analysis task. As a consequence, developing and
maintaining the modelling languages and simulators is more time-consuming and
error-prone than actually necessary. The PCM allows the modelling of a component-
type hierarchy to provide support for an iterative specification of components.
Components can be specified at different levels of abstraction based on the amount
of knowledge currently available for these components [Reu+16]. However, for the
goal of performance analysis, the structure of the component-type hierarchy has no
effects on the simulation. Thus, the PCM is unnecessarily detailed for the task of
performance analysis with respect to the component-type hierarchy as it is not used
for analysing the performance of the software system in the simulators of Palladio.

Everything but the Kitchen Sink [Ste12] Simulator developers may add irrele-
vant features not related to the actual analysis task to a modelling language and
simulator. This is denoted as the Everything but the Kitchen Sink smell. In contrast
to the Analysis Paralysis smell, the modelling language and simulator do not show
unnecessarily complex or detailed features but features that are not relevant to the
analysis task at all, e.g., adding a reliability-related feature to a pure performance
simulation. The Everything but the Kitchen Sink smell is represented by convoluted
and monolithic modelling languages and simulators with unclear focus and purpose
and seldom used or even unused features. As a consequence, developing and
maintaining the modelling languages and simulators is more time-consuming and
error-prone than actually necessary. The main purpose of Palladio’s simulators
is software architecture-based performance analysis. However, features like the
Accuracy Influence Analysis [Gro13] and the Sensitivity Analysis [Bro+12] are part
of SimuCom. Although these features are seldom used, each change in Palladio
(e.g., updating the Java version or changes to the PCM) potentially requires effort
to keep them functional. Moreover, the strong interconnection of these features to
other features of the simulator may result in negative side effects.

Living Flatland [Ste12] When simulator developers use a wrong level of abstrac-
tion like simulating a 2D space and then naively translating the results in a 3D
space, it is defined as the Living Flatland smell. This smell may negatively affect the
accuracy of simulation results. In Palladio, for example, a simple processor-sharing
scheduler was implemented in the simulator SimuCom, with the assumption made,



that this kind of scheduler is sufficient to approximate all kinds of CPU-scheduling
policies. This resulted in inaccurate simulation results and, as a consequence,
development overhead, because the Linux Exact Scheduler [Hap08] had to be
implemented in order to fix shortcomings caused by the initial assumption.

Underdefined Semantics The semantics of the input model of a simulator may
not exactly correspond to the semantics actually implemented in the simulator as
the simulator’s semantics is underspecified. This is denoted as the Underdefined
Semantics smell. This smell results in gaps in semantics definition of model and
simulator, and thus ad hoc definition of semantics during simulator development.
Moreover, there is a high risk that the simulation will provide faulty results due to
underdefined semantics. Furthermore, underdefined semantics can lead to semantic
shifts, rendering older models invalid as they were created with a different under-
standing of model elements in mind. This can also interfere with the reproducibility
of simulation experiments. In the early years of Palladio development, several
extensions were made to the PCM without defining a clear semantic mapping to
the simulator SimuCom. Examples are the output parameters and the fork join
actions. This led to the problem that semantics were defined in an ad hoc way
during simulator development and had to be adjusted in several iterations or are
still not well defined up to now. The interested reader is referred to Chap. 9 of this
book [Hei+21] where further discussion on the topic is given.

Excessive Events/Event Flooding A simulator utilising an unnecessarily large
number of events is defined as the Excessive Events or Event Flooding smell. The
massive creation of unnecessary events in simulation largely impacts the execution
efficiency. Therefore, simulator developers should try to minimise the number of
events to be managed in simulation. In Palladio, we discovered several shortcomings
in the realisation of the resource schedulers in SimuCom. Requests created excessive
numbers of events when running in fair-share mode in overload scenarios leading to
starvation and crashes in simulation.

Simulator Feature Scattering A simulator is logically partitioned by its compo-
nent structure. A simulator feature is implemented by one or several classes of the
simulator. Simulator features are hard to grasp, if they are not adequately reflected
in the component structure. Classes that implement a feature of a simulator may be
spread over multiple components of the simulator that do not share a meaningful
parent. This is defined as the Simulator Feature Scattering smell. When a feature
of a simulator is scattered over multiple components, it is hard to understand the
purpose of such a component without considering all other dependent components.
Consequently, this smell hampers the comprehensibility of the simulator. Also, the
maintainability of the simulator may be negatively affected. In Palladio’s simulator
SimuLizar, for example, the simulator feature to handle the language feature
Usage [SHR18] that contains amongst others the usage model is implemented in
18 classes scattered over three components.

Simulator Component Blob A simulator component that contains classes of
multiple simulator features is defined as Simulator Component Blob smell. The



Simulator Component Blob smell reduces understandability of the simulator com-
ponent as one needs to identify and understand all the contained simulator features
and their respective classes in order to understand the component. Furthermore,
it unnecessarily increases complexity and negatively affects reusability of the
simulator component as it is not possible to selectively depend only on the necessary
language features. In EventSim, for example, the different features of the simulator
like simulation of users, resources, and network are heavily interwoven in the core
simulator component [MH11].

Simulator Monolith If there is no decomposition of the simulator at all, we
denote this design smell as Simulator Monolith. The Simulator Monolith smell
negatively affects the reusability of the simulator as it is not possible to selectively
depend only on the necessary simulator features. The complexity of the simulator
is unnecessarily increased, and the understandability is reduced due to lack of
modularity. There is no example of a Simulator Monolith in the Palladio context
as all simulators are at least partially decomposed.

Global State Object and God Parameter The state of an entire simulation may
be stored in a single object. This is defined as the Global State Object smell.
A global state object is an object that encapsulates large parts of the world
model of a simulator. Thus, it is an instance of a god class [LM06]. Every entity
in the simulation has access to this object. Entities in the simulation usually
access the global state object directly to query and manipulate the global state of
the simulation similar to the blackboard pattern [Bus+96]. When extending the
simulator, developers usually add more and more fields to the global state object.
This introduces large maintainability problems when changing fields as no clear
interfaces and access restrictions exist. This design smell can be accompanied by the
God Parameter smell, a field in the global state object that can be used to manipulate
the behaviour of entities ignoring any existing encapsulation. In SimuLizar, for
example, the simulation control information is passed through the whole simulation,
if it is required or not.

Intrusive Extension A simulator may have extensions that are tightly coupled
into the code base. This is defined as the Intrusive Extensions smell. The intrusive
extensions can clutter the codebase and introduce technical debts. Furthermore,
they may cause dead code in the long term if not used anymore. In SimuCom, the
reliability extension [Bro+12] is an example of this design smell. Though being used
rarely, it could not be disabled in the generation of SimuCom code and led to several
problems and bugs.



11.5 Application of Decomposition and Composition
Techniques to Palladio

This section provides insights into the application of decomposition and com-
position techniques to Palladio. Applying these techniques enables to fix many
of the aforementioned design smells in the metamodel and simulators. First, we
discuss techniques for the decomposition and composition of the PCM. This serves
as a preparatory step for the decomposition and composition of the associated
simulators. Then, we discuss the decomposition and composition of the simulators.

11.5.1 Decomposition and Composition of the Palladio
Component Model

One way to address the aforementioned design smells in the PCM is the application
of techniques for decomposition and composition as known from object-oriented
design to metamodels in combination with a reference architecture to structure
metamodels and support the decomposition and purpose-oriented composition of
metamodels for quality modelling and analysis [HSR19].

Many commonalities in object-oriented design and metamodel design exist from
a structural point of view. Both, object-oriented design and metamodel design,
specify classes and their attributes, package structures as well as dependencies be-
tween classes, may it be for example association or inheritance [Str19]. Encouraged
by these commonalities, we transferred established concepts from object-oriented
design, such as decomposition and composition, acyclic dependencies, dependency
inversion, extension, and layering to metamodels [HSR19].

Also transferring the idea of a reference architecture to metamodels seems
reasonable. In our work, we focus on metamodels for quality modelling and analysis
of software-intensive systems in different domains like information systems, pro-
duction automation, and automotive. When comparing metamodels for modelling
and analysing different quality properties in these domains, substantial parts of the
metamodels exhibit quite similar language features [HSR19].

A Layered Reference Architecture for Metamodels

In [HSR19], we proposed a layered reference architecture for metamodels for
quality modelling and analysis of software-intensive systems to address short-
comings in the evolution of metamodels. The reference architecture leverages
reoccurring patterns in various domains. We studied different metamodels used for
quality modelling and analysis in various domains as well as their extensions and
identified that these metamodels reflect in most cases language features from distinct
categories—structure, behaviour, and quality. This observation led to the separation



of parts of a metamodel into different layers in the reference architecture. A layer is
a set of metamodel components. A metamodel component is defined as a container
of packages and classifiers that has explicit dependencies. Metamodel components
can be extended by lower-level layers and reused in different metamodels [HSR19].
The layers of the reference architecture are dedicated to structure/behaviour, quality,
and the corresponding analysis. We further separated the structure/behaviour layer
into paradigm and domain to distinguish domain-spanning fundamental concepts
from domain-specific concepts. Metamodel components are assigned to one specific
layer depending on the features they offer to the language. Based on concepts
taken from object-oriented design and detailed application guidelines of these
concepts described in [HSR19], the reference architecture supports (a) the top-
level decomposition of metamodels for quality modelling and analysis into the four
layers—paradigm, domain, quality, and analysis, (b) the decomposition of partial
metamodels assigned to one of the layers into reusable metamodel components, and
(c) the reuse of metamodel components in different contexts and thus the purpose-
oriented composition of metamodels.

In the following, we give more detailed definitions of the single layers of the
reference architecture taken from [HSR19] before we describe the application of
the reference architecture to the PCM. The paradigm (π) layer is the most basic
and most abstract layer. The foundation of the language is defined on the π layer
by specifying language features for reoccurring patterns of structure and behaviour
but without dynamic semantics. Furthermore, π does not carry any domain-specific
semantics as this layer is not intended to be used without any additional layer. The
domain (�) layer builds upon the π layer and assigns domain-specific semantics to
the abstract first-class language features of π . Therefore, the � layer builds upon
structural as well as on behavioural language features of π . The quality (�) layer
defines quality-related properties of language features located on previous layers.
The analysis layer (�) builds upon the previous layers and specifies language
features used by analyses. � comprises language features to define configuration
data, runtime state, output data, and input data that do not belong to � language
features.

The result of the application of the reference architecture to the PCM is depicted
as an excerpt in Fig. 11.2. The figure and the explaining text come from [HSR19].
We split the largest metamodel component of the original PCM into 23 smaller
components to separate features properly. The other four metamodel components
of the original PCM were already sufficiently modular. The number of classes in
the decomposed PCM grew from 203 to 229. This is because during refactoring we
split classes and created new containers for extensions. The number of references
in the decomposed PCM reduced from 198 to 174. This is because we removed
or remodelled redundant dependencies that violated the reference architecture. The
decomposed PCM populates the layers π , �, and �. The � layer is populated by
analysis-specific extensions of the PCM.

The most important metamodel components of the decomposed PCM are
depicted in Fig. 11.2. On the π layer, these are repository, composition, control
flow, and annotations. Repository specifies abstract components, interfaces, and
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Fig. 11.2 Excerpt of the decomposed PCM. ©2021 IEEE. Reprinted, with permission, from
[HSR19]

roles. Composition introduces component composition and therefore extends the
repository metamodel component.Control flow defines a structure similar to activity
diagrams. Annotations contains quality-independent annotations as an extension
of the repository metamodel component. The domain (�) layer comprises the
composition and software repository metamodel components, which extend their
counterpart from the π layer and carry additional domain-specific content. This
means the specialisation of abstract components to software components is happen-
ing in these two metamodel components. The environment metamodel component
specifies execution containers and network links between the execution contain-
ers. The resources metamodel component extends the environment metamodel
component to add hardware resource specifications to the execution containers
and the network links. The allocation metamodel component enables software
component instances (from the composition metamodel component) to be deployed
on the execution containers of the environment metamodel component. The usage
metamodel component specifies system usage profiles, which can be applied to
interfaces from the software repository metamodel component. It therefore reuses
the control flow metamodel component of π , which is also reused by the seff
metamodel component to define the control flow between component-internal
actions and component-external services. The quality (�) layer comprises the
performance metamodel component, which extends the resources extension of
the environment metamodel component by performance-relevant properties. It also
extends the seff metamodel component by resource demand specifications. The
dependencies of the reliability metamodel component are analogous. Finally, there
are two metamodel components that enable the annotation of both quality properties
in a component-based architecture by reusing the abstract definition of annotations
on the π layer.



For the purpose-oriented composition of metamodel components, different meta-
model extension mechanisms are proposed in [HSR19], which serve as composition
operators. The concept of extension is well known and established in object-oriented
design, for example, by means of stereotyping. However, EMOF on which the PCM
is based does not support an extend relation. For this reason, several ways of how to
enable the creation of extensions with EMF’s Ecore are identified and discussed
in [HSR19]. These include EMF Profiles [Lan+11] that enable the support for
stereotypes, different kinds of plain referencing in combination with the introduction
of new containers or inheritance relations, and cross-module inheritance.

The interested reader may refer to Chap. 2 for foundations of model and analysis
composition, to Chap. 4 for general discussion on compositional semantics and to
Chap. 9 of this book [Hei+21] for its application in the context of GTSMorpher.

Refactoring Metamodel Design Smells

Based on metamodel decomposition techniques and the reference architecture,
detailed guidelines for metamodel refactoring have been proposed in [HSR19].
These guidelines comprise refactorings on metaclass level as well as on metamodel
component level. In the following, we describe how the design smells in the PCM
discussed in Sect. 11.3 can be refactored.

The Language Feature Scattering smell can be refactored by decomposing
metamodel packages and locating all classifiers that implement a specific language
feature into a single metamodel package [HSR19]. Classifiers within a metamodel
package that are more closely related should be placed into their own subpackage.
Details on refactoring metaclass and packages are described in [Str19]. The
reference architecture proposed in this chapter helps to distinguish classifiers of
fundamental (abstract) language features (π), domain-specific features (�), quality-
specific features (�), and features specific to analyses (�). In the decomposed PCM
(see Fig. 11.2), all classes for representing the resources feature, for example, have
been located in a metamodel package on the � layer called resources. All classes
for implementing the performance feature and reliability feature, respectively, have
been placed into the metamodel packages performance and reliability on the � layer
and extend the resource-specific classes on the � layer.

For resolving the Package Blob smell, the metamodel package must be split so
that each package only contains classifiers of a single language feature [HSR19].
Subpackaging may be applied to further decompose metamodel packages. Details
on refactoring metaclass and packages are described in [Str19]. The refactored
metamodel packages may be located on different layers of the reference architecture
depending on the purpose they satisfy. In the decomposed PCM (see Fig. 11.2), the
repository package is split to distinguish the various features implemented in this
package. A package repository is located on the π layer to implement a domain-
independent repository feature that is further subdivided into packages to implement
features for component composition and annotation. On the � layer, the repository
package is extended by domain-specific classes to represent software components.



Representing components of other domains, like electrics/electronics or mechanics,
as extension of the domain-independent repository feature is possible on the � layer
but out of the scope of the original PCM. Extensions to represent performance and
reliability are located on the � layer.

The Metamodel Monolith smell can be refactored by splitting the metamodel
files according to their language features following the metamodel decomposition
techniques proposed in this chapter. Each metamodel file then contains a single
metamodel component. Based on the language features they provide, the metamodel
components can be composed to form a language specific to a given purpose.

11.5.2 Decomposition and Composition of the Simulators

The layered reference architecture for quality modelling and analysis introduced in
the previous section cannot only be applied to metamodels but also to simulators
working on instances of the metamodels. Simulators may be decomposed into
simulator components along the features they provide. We define a simulator
component as a container of packages and classes that has explicit interfaces to other
simulator components. The individual simulator components may be composed
to satisfy a specific purpose for which a system is to be analysed. This requires
composition operators for simulators.

Three forms of composition of analyses in general—model composition (white-
box composition), result composition (black-box composition), and analysis com-
position (grey-box composition)—have been introduced in Chap. 4 of this book
[Hei+21]. In this chapter, we give concrete examples of how to implement these
forms of composition by discussing specific composition operators for simulators
in the context of Palladio.

First attempts at composition operators for simulators in the context of Palladio
have been described in [Hei+17]. These composition operators are:

• Composition by result exchange between isolated simulators
• Composition by co-simulation
• Composition by transformation into a joint formalism
• Composition by extension of one simulator by another

Composition by result exchange between isolated simulators conforms to the
form result composition (black-box composition) in Chap. 4 of this book [Hei+21].
It is the most simple way of simulator composition. This way of composition can
only be applied if one simulator requires the results of another simulator, but there is
no interaction between the simulators required during simulation. Both simulators
are executed in isolation, and information is exchanged ex-post by inserting the
results of one simulator as input into another simulator.

Composition by co-simulation conforms to the form analysis composition (grey-
box composition) in Chap. 4 of this book [Hei+21]. It enables information exchange
during simulation. Simulators are interlinked in order to exchange information dur-



ing simulation. Co-simulation commonly requires additional efforts, for example, a
coordinator for time management, model synchronisation, and connectivity in order
to enable coherent simulation.

Composition by transformation into a joint formalism conforms to the form
model composition (white-box composition) in Chap. 4 of this book [Hei+21].
It uses model transformations for creating a homogeneous simulation model. A
characteristic of this approach is that a single formalism model is used as input
to the simulation. Commonly, general-purpose simulation formalisms like Petri
nets or queuing networks are used as the target formalism. This way of simulator
composition can only be applied if there is a joint formalism to integrate the models
of all the simulators (or if such an integrated formalism can be constructed). For
Palladio, for instance, transformations to layered queuing networks [KR08] and
queuing coloured Petri nets [MKK11] have been developed so far.

Composition by extension is another way to implement the form model com-
position (white-box composition) in Chap. 4 of this book [Hei+21]. This way of
simulator composition is about extending the metamodel and simulation routines
of one simulator by the metamodel and simulation routines of another simulator to
form an integrated and unified simulator. Composition by extension is applicable
if all the simulators build upon the same (or compatible) modelling paradigm and
simulation formalism.

In the following, we give examples of the application of the composition
operators in the context of Palladio.

IntBIIS

The approach Integrated Business IT Impact Simulation (IntBIIS) [Hei+17] is
an example of composition by extension. IntBIIS is a composition of Palladio’s
simulator EventSim [MH11] and a business process simulator by extending the
metamodel and simulation routines of Palladio by entities, scheduling policies,
and simulation routines specific to business processes. Applying composition by
extension in IntBIIS is possible as both simulators, Palladio’s EventSim and the
business process simulator, adhere to the same modelling paradigm and simulation
formalism. IntBIIS extends the usage specification of the PCM by business process
constructs. Both, the usage model and the business process model, rely on an activity
diagram like modelling paradigm. They specify a certain workload to be processed
by resources in the form of sequences of actions (possibly hierarchically nested) and
intensity of action execution. Both, Palladio’s EventSim and the business process
simulator, build upon queuing theory concepts to simulate resources processing
aforementioned workload.

An overview of the composed simulators of IntBIIS is given in Fig. 11.3. Blue
elements with a stickman symbol indicate modelling constructs and simulation rou-
tines introduced as an extension of the original EventSim simulator. The remaining
grey elements are those of the original EventSim simulator. A run of the composed
simulators starts at the topmost layer with simulating workloads that originate



Fig. 11.3 Composition by extension in IntBIIS, after [Hei+17]

from the business process model. For each workload specification, a workload
generator spawns a new business process instance in the simulation whenever a
certain inter-arrival time has been passed [Hei+17]. A business process instance is
the representation of a single enactment of the business process model [Hei+17].
Each business process instance is then simulated individually by traversing the
corresponding sequence of actions specified in the business process model (layer
2). When the traversal procedure arrives at an action, basically two cases can
be distinguished [Hei+17]: (i) the simulation encounters an actor step or (ii) it
encounters a system step (i.e., system entry call).

In case (i), a suitable resource that represents a human actor is requested (layer
5, left) in simulation. If the selected actor is already busy, the actor step is enqueued
in its waiting queue. This induces a waiting period not only for the actor step but
also for the enclosing business process instance. Based on these concepts taken
from queuing theory, we can simulate execution times of actor steps and the entire
business process instance as well as utilisation of actor resources depending on a
given workload. Simulation results can be visualised in the form of histograms and
pie charts for engineers.

In case (ii), resource demands are not issued directly by the business process
instance but emerge as the system request propagates through components (layer
3), their service effect specifications (layer 4), down to hardware resources (layer 5,
right) [Hei+17]. Similar to actor resources, hardware resources may be busy and
therefore block a request. This causes waiting time for the system step and the
enclosing business process instance. Based on these concepts taken from queuing
theory, we can simulate execution times of system steps and the entire business
process instance as well as utilisation of hardware resources depending on a given
workload. Simulation results can be visualised again in the form of histograms and
pie charts for engineers.

PCA

Composition by result exchange between isolated simulators has been applied in the
Palladio context to use Palladio simulator results in other analysis tools as a basis
to reason about additional quality properties. The Power Consumption Analyzer



(PCA) [Sti18] uses the results of Palladio’s simulator SimuLizar to forecast power
consumption of software systems. The Power Consumption metamodel proposed in
[Sti18] is used to specify consumption characteristics of servers, their components,
and connected power distribution infrastructure. The performance simulation results
of SimuLizar—utilisation of CPU and hard disk resources of servers—combined
with the characteristics specified in instances of the Power Consumption metamodel
are used to reason about the power consumption of software systems on architecture
level. The analysis in [Sti18] supports the architecture-level examination of both,
static and self-adaptive software systems. As shown in Fig. 11.4, the PCA uses
measurements from the Palladio Runtime Measurement Model that have been
produced by SimuLizar and calculates the power consumption based on its Power
State Model. A Power State Model is a stateful power model in the form of a state
machine that describes, for example, which servers are in on or off state. The results
of the PCA are then accessible in the Palladio Runtime Measurement Model and
can be used to trigger self-adaptations in SimuLizar.

OMPCM

An example of composition by co-simulation in the Palladio context is the OM-
PCM [HMR13] approach. Modelling and simulation of network communication
are limited in Palladio. This weakens not only the prediction accuracy for network-
intensive systems [KBH07, Ver+07] but also misses the opportunity to simulate
different network configurations and topologies before implementing them. Ex-
tensive network communication arises especially within distributed systems, where
software components deployed on different hardware nodes work together towards
a common goal. OMPCM integrates the OMNeT++-based network simulation
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Fig. 11.4 Composition by result exchange in PCA, after [Sti18]
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Fig. 11.5 Composition by co-simulation in OMPCM

framework INET with the Palladio architecture-level software performance pre-
diction implemented in the OMPCM-Core and ExtQueuing components to enrich
Palladio by more detailed network simulation. OMPCM applies composition by
co-simulation by having a dedicated bridge (OMPCM-Net) to manage the trans-
lation of events between the OMPCM and the INET simulators. As shown in
Fig. 11.5, the OMPCM-Net bridge component accepts events corresponding to the
IComponentCall interface. The IComponentCall interface describes the sending
and reception of requests and responses on software component level. The bridge
component then translates the component-level events to network-level events by
resolving remote software components to network nodes and requests/responses to
TCP transfers. Implementing the ITCPApp interface of the INET-Framework, the
bridge component then sends and receives network-level events to and from the
network simulation.

Refactoring Simulator Design Smells

Next, we discuss how aforementioned design smells in the simulators can be
resolved.

The Amateur Science smell can be refactored by the proposed simulator
composition techniques. The individual simulator components can be developed
independently by domain experts for the specific simulator components. The
simulator components can then be composed to satisfy a certain analysis goal. In
the Palladio context, for example, composition of OMPCM and the OMNeT++-
based network simulator INET by co-simulation [HMR13] allows for including
detailed network simulation in Palladio, while the INET network simulator has been
developed by domain experts independent of Palladio.

The smell Analysis Paralysis can be addressed by decomposing unnecessarily
complex or detailed metamodels and simulators and composing the metamodel
components and simulator components, respectively, as described in this chapter
on an appropriate level of complexity or detail.

The Everything but the Kitchen Sink smell can be addressed by decomposing
metamodels and simulators by distinguishing relevant from irrelevant features



and composing only relevant metamodel components and simulator components,
respectively, as described in this chapter.

The Living Flatland smell can be refactored by enabling the replacement and/or
composition of simulator components to consider other and/or additional levels
of abstraction in simulation. In Palladio, the simulator component responsible for
processor scheduling needs to be replaced so that a new simulator component can
provide the scheduling policies needed. Alternatively, the composition of additional
simulator components that provide the needed scheduling policies with the existing
simulator components is a solution in Palladio.

The Underdefined Semantics smell can be addressed by clearly defining the
semantics of metamodel and simulator components and by purpose-oriented com-
position of only semantically compatible simulator components to satisfy a certain
analysis goal. Compositionality of analyses and specific conditions of composition
are discussed in Chap. 4 of this book [Hei+21].

The Excessive Events/Event Flooding smell can be refactored by avoiding
unnecessary communication via events and using as little events as possible. This
can be achieved by aggregating events that happen at the same time instead of
sending each event individually. In addition, only time-dependent communication
should happen via events, and the temporal resolution can be communicated before
starting the simulation to reduce time synchronisation effort via events. Note, the
Excessive Events/Event Flooding smell can be caused by simulator composition as
each simulator component may have its own event management that needs to be
synchronised with others. This synchronisation causes large event communication
overhead. This communication overhead needs to be considered in simulator design
and avoided as described before or by using a centralised event management like in
[IEE10].

The Simulator Feature Scattering, Simulator Component Blob, and Simulator
Monolith smells can be refactored by decomposing the simulator into simulator
components along the features provided by the simulator following the decompo-
sition techniques proposed in this chapter. The composition techniques described
in this chapter enable the interaction between the different simulator components.
Adequate decomposition of simulators allows for exchanging and purpose-oriented
composition of simulator components.

The Global State Object and God Parameter smells can be resolved by decompos-
ing the simulator into simulator components and following object-oriented design
principles [Mar00] to reduce coupling between the simulator components.

The Intrusive Extension smell can be resolved by adequately decomposing the
simulator into simulator components along the features it provides. This will lead to
an extraction of intrusive simulator extensions into separate simulator components.



11.6 Conclusion and Outlook

This chapter gave insights into Palladio as a case study for evolution of a
historically-grown approach to model-based analysis. We provided an overview of
the Palladio approach and the associated tooling. We reported about design smells
in the metamodel and simulators caused by evolution and growth over several years.
We discussed how techniques for decomposition and purpose-oriented composition
can help refactoring the metamodel and simulators to avoid these design smells and
thus ease the evolution of the Palladio approach in the future.

Techniques for decomposition and composition of modelling languages and
analysis tools need to be further investigated in the future to make the concepts
discussed in this chapter applicable in a more general way. The application
of the decomposition and composition techniques for grammar-based modelling
languages would be interesting to investigate in the future. While in this chapter
the techniques for decomposition and composition have been discussed in the light
of the Palladio approach, we expect these techniques are independent of quality
modelling and analysis and can be applied to modelling languages and analysis tools
in general. Further, the dependencies between modelling languages and analysis
tools on the level of their features and components need to be investigated in the
future. Tool support is required for visualising dependencies between modelling
languages and analysis tools on feature and component level to simplify working
with and configuring large modelling languages and analysis tools.
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