
Porting Sparse Linear Algebra to Intel GPUs

Yuhsiang M. Tsai1�[0000−0001−5229−3739], Terry Cojean1[0000−0002−1560−921X],
and Hartwig Anzt1,2[0000−0003−2177−952X]

1 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2 University of Tennessee, 37996 TN, USA

{yu-hsiang.tsai, terry.cojean, hartwig.anzt}@kit.edu

Abstract. With discrete Intel GPUs entering the high performance
computing landscape, there is an urgent need for production-ready soft-
ware stacks for these platforms. In this paper, we report how we prepare
the Ginkgo math library for Intel GPUs by developing a kernel backed
based on the DPC++ programming environment. We discuss concep-
tual differences to the CUDA and HIP programming models and de-
scribe workflows for simplified code conversion. We benchmark advanced
sparse linear algebra routines utilizing the converted kernels to assess the
efficiency of the DPC++ backend in the hardware-specific performance
bounds. We compare the performance of basic building blocks against
routines providing the same functionality that ship with Intel’s oneMKL
vendor library.

Keywords: oneAPI · Intel GPUs · Ginkgo · Math library · SpMV

1 Introduction

In the past, Intel GPUs were primarily available as an integrated component
of Intel consumer-grade CPU architectures. With the announcement that the
Aurora Supercomputer will be composed of general purpose Intel CPUs com-
plemented by discrete Intel GPUs, it becomes clear that Intel has committed
to enter the arena of discrete high performance GPUs. Compared to integrated
GPUs, discrete GPUs are usually not exclusively intended to accelerate graphics,
but they are designed to also deliver computational power that can be used, e.g.,
for scientific computations. To enable the programmers to use Intel GPUs, Intel
has teamed up with partners from academia and industry to create the oneAPI
ecosystem, a platform for C++ developers to develop code in the DPC++ lan-
guage, based on the SYCL language, that can be executed on any Intel device,
including CPUs, GPUs, and FPGAs. As application scientists are in need of high
performance math functionality for Intel GPUs, we develop a DPC++ backend
for the Ginkgo open source math library that enables to run both basic linear
algebra building blocks and complex algorithms like iterative Krylov solvers on
Intel’s GPUs. Up to our knowledge, we are the first to present the functionality
and performance of an open source math library on Intel discrete GPUs.



2 Y. M. Tsai et al.

In this paper, we describe the process of preparing Ginkgo for Intel’s GPUs
by first providing an overview of the Ginkgo library design in Section 2 and intro-
ducing the oneAPI ecosystem and the DPC++ programming model in Section 3.
The core of the paper is Section 4, where we discuss some differences between the
CUDA/HIP programming environment and the oneAPI environment, detail how
we reflect these particularities in the development of the DPC++ backend, and
report how we developed a small framework for converting CUDA kernel code
to DPC++ equivalents. In Section 5, we evaluate the performance of Ginkgo
on different Intel GPU generations: we initially benchmark both the Intel gen-
eration 9 and 12 GPUs in terms of feasible bandwidth and peak performance
to derive a roofline model, then evaluate the performance of Ginkgo’s SpMV
kernels (also in comparison to Intel’s oneMKL library), and finally assess the
performance of Ginkgo’s Krylov solvers. We conclude with a summary of the
porting effort and performance evaluation in Section 6.

Library	Infrastructure
Algorithm	Implementations
• Iterative	Solvers
• Preconditioners
• …

Core

OpenMP kernels	
• SpMV
• Solver	kernels
• Precond kernels
• …

OpenMP
Reference	kernels	
• SpMV
• Solver	kernels
• Precond kernels
• …

Reference
CUDA	GPU	kernels
• SpMV
• Solver	kernels
• Precond kernels
• …

CUDA
DPC++	kernels
• SpMV
• Solver	kernels
• Precond kernels
• …

DPC++

Library	core	contains	architecture-
agnostic	algorithm	implementation;

Runtime	polymorphism	 selects	the	right	kernel	
depending	 on	the	target	architecture;

Architecture-specific	kernels	execute	the
algorithm	on	target	architecture;

Reference	kernels	are	
sequential	 kernels	to	check	
correctness	of	algorithm	
design	and	optimized	kernels;

Optimized	architecture-specific	kernels;

HIP	GPU	kernels
• SpMV
• Solver	kernels
• Precond kernels
• …

HIP

Fig. 1: The Ginkgo library design overview.

2 Ginkgo design

Ginkgo [1] is a GPU-focused cross-platform math library focusing on sparse
linear algebra. The library design is guided by combining ecosystem extensi-
bility with heavy, architecture-specific kernel optimization using the platform-
native languages CUDA (NVIDIA GPUs), HIP (AMD GPUs), or OpenMP (In-
tel/AMD/ARM multicore) [2]. The software development cycle ensures production-
quality code by featuring unit testing, automated configuration and installation,
Doxygen code documentation, as well as continuous integration and continuous
benchmarking framework. Ginkgo provides a comprehensive set of sparse BLAS
operations, iterative solvers including many Krylov methods, standard and ad-
vanced preconditioning techniques, and cutting-edge mixed precision methods.

A high-level overview of Ginkgo’s software architecture is visualized in Fig-
ure 1. The library design collects all classes and generic algorithm skeletons in



Porting Sparse Linear Algebra to Intel GPUs 3

the “core” library which, however, is useless without the driver kernels available
in the “omp”, “cuda”, “hip”, and “reference” backends. We note that “refer-
ence” contains sequential CPU kernels used to validate the correctness of the
algorithms and as the reference implementation for the unit tests realized using
the googletest framework. We note that the “cuda” and “hip” backends are very
similar in kernel design, so we have “shared” kernels that are identical for the
NVIDIA and AMD GPUs up to kernel configuration parameters [6]. Extending
Ginkgo’s scope to support Intel GPUs via the DPC++ language, we add the
“dpcpp” backend containing corresponding kernels in DPC++.

3 The oneAPI Programming Ecosystem

oneAPI3 is an open and free programming ecosystem that aims at providing
portability across a wide range of hardware platforms from different architecture
generations and vendors. The oneAPI software stack is structured with the new
DPC++ programming language at its core, accompanied by several libraries to
ease parallel application programming.

DPC++ is a community-driven (open-source) language based on the ISO
C++ and Khronos’ SYCL standards. The concept of DPC++ is to enhance the
SYCL [4] ecosystem with several additions that aim at improving the perfor-
mance on modern hardware, improving usability, and simplifying the porting
of classical CUDA code to the DPC++ language. Two relevant features origi-
nally introduced by the DPC++ ecosystem now also integrated into the SYCL
standard are4: 1) a new subgroup concept that can be used inside kernels. This
concept is equivalent to CUDA warps (or SIMD on CPUs) and allows optimized
routines such as subgroup-based shuffles. In the Ginkgo library, we make exten-
sive use of this capability to boost performance. 2) a new Unified Shared Memory
(USM) model which provides new malloc host and malloc device operations
to allocate memory which can either be accessed both by host or device or respec-
tively accessed by a device only. Additionally, the new SYCL queue extensions
facilitates the porting of CUDA code as well as memory control. Indeed, in pure
SYCL, memory copies are entirely asynchronous and hidden from the user, since
the SYCL programming model is based on tasking with automatic discovery of
task dependencies.

Another important aspect of oneAPI and DPC++ is that they adopt plat-
form portability as the central design concept. Already the fact that DPC++
is based on SYCL (which leverages the OpenCL’s runtime and SPIRV’s inter-
mediate kernel representation) provides portability to a variety of hardware. On
top of this, DPC++ develops a plugin API that allows to develop new back-
ends and switch dynamically between them5. Currently, DPC++ supports the
standard OpenCL backend, a new Level Zero backend which is the backend of

3 https://spec.oneApi.com/versions/latest/index.html
4 These extensions are now part of the SYCL 2020 Specification: https://www.

khronos.org/news/press/khronos-releases-sycl-2020-final-specification
5 https://intel.github.io/llvm-docs/PluginInterface.html

https://spec.oneApi.com/versions/latest/index.html
https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://intel.github.io/llvm-docs/PluginInterface.html


4 Y. M. Tsai et al.

choice for Intel hardware6, and an experimental CUDA backend for targeting
CUDA-enabled GPUs. As our goal is to provide high performance sparse linear
algebra functionality on Intel GPUs, we focus on the Intel Level Zero backend
of DPC++.

4 Porting to the DPC++ ecosystem

Though porting Ginkgo to a new hardware ecosystem requires acknowledging
the hardware-specific characteristics, the Ginkgo design exposed in Section 2
induces a general porting workflow: 1) As a first step, core library infrastructure
needs to be ported manually. This includes the Ginkgo Executor which allows
transparent and automatic memory management as well as the execution of ker-
nels on different devices. Another example of manual porting in this preparatory
step is the cooperative group and other shared kernel helper interfaces used for
writing portable kernels and simplify advanced operations. 2) A set of scripts can
be used to generate non-working definitions of all kernels for the new backend.
The completion of this step creates a compilable backend for the new hardware
ecosystem. 3) For an initial kernel implementation, we rely whenever possible on
existing tools to facilitate the automatic porting of kernel implementations from
one language to the target language, doing only manual fixes when appropriate.
The successful completion of this step provides a working backend. 4) Finally,
we analyze and validate the observed performance for the ported kernels. Often,
simple kernels already provide competitive performance, but advanced kernels
require either manual tuning or algorithmic adaptation to reach the hardware
limits.

In this section, we concentrate on step 3) of this workflow and parts of step
1). These steps which we detail now are the more library agnostic aspect of the
porting workflow and our lessons learned can be of practical use to other libraries.
In addition, step 4) is a more complex effort and some portions of the library
have been tuned, such as the Ginkgo SpMV kernels, and their performance will
be showcased in Section 5. To facilitate the porting in step 3), we can rely on
the Intel “DPC++ Compatibility Tool” (DPCT), which converts CUDA code
into compilable DPC++ code. DPCT is not expected to automatically gener-
ate a DPC++ “production-ready” executable code, but “ready-to-compilation”
and it requires the developer’s attention and effort in fixing conversion issues
and tuning it to reach performance goals. However, with oneAPI still being in
its early stages, DPCT still has some flaws and failures, and we develop a cus-
tomized porting workflow using the DPC++ Compatibility Tool at its core, but
embedding it into a framework that weakens some DPCT prerequisites and pre-
vents incorrect code conversion. In general, DPCT requires not only knowledge
of the functionality of a to-be-converted kernel, but also knowledge of the com-
plete library and its design. This requirement is hard to fulfill in practice, as for
complex libraries, the dependency analysis may exceed the DPCT capabilities.
Additionally, many libraries do not aim at converting all code to DPC++, but

6 https://spec.oneApi.com/level-zero/latest/core/INTRO.html

https://spec.oneApi.com/level-zero/latest/core/INTRO.html


Porting Sparse Linear Algebra to Intel GPUs 5

Fig. 2: Summary of the workflow used to port the cooperative groups function-
ality and isolating effort such that we get the correct converted DPC++ codes.

only a subset to enable the dedicated execution of specific kernels on DPC++-
enabled accelerators. Thus, we employ a strategy where we first isolate kernels
we want to convert and then re-integrate them into the library.

Isolated Kernel Modification. DPCT converts all files related to the tar-
get file containing any CUDA code that are in the target (sub)folders. To prevent
DPCT from converting files that we do not want to be converted, we have to
artificially restrict the conversion to the target files. We achieve this by copying
the target files into a temporary folder and considering the rest of the Ginkgo
software as a system library. After the successful conversion of the target file, we
copy the file back to the correct destination in the new DPC++ submodule. By
isolating the target files, we indeed avoid additional changes and unexpected er-
rors, but we also lose the DPCT ability to transform CUDA kernel indexing into
the DPC++ nd item<3> equivalent. As a workaround, we copy simple headers
to the working directory containing the thread id computation helper functions
of the CUDA code such that DPCT can recognize them and transform them
into the DPC++ equivalent. For those complicated kernels, DPCT fails in the
kernel conversion, and we need a fake interface that enables DPCT to apply the
code conversion for nd item<3>.

Fake Interface - Workaround for cooperative groups. While DPC++
provides a subgroup interface featuring shuffle operations, this interface is dif-
ferent from CUDA’s cooperative group design as it requires the subgroup size
as a function attribute and does not allow for different subgroup sizes in the
same global group. As Ginkgo implementations aim at executing close to the



6 Y. M. Tsai et al.

hardware-induced limits, we make heavy use of cooperative group operations.
Based on the DPC++ subgroup interface, we implement our own DPC++ coop-
erative group interface. Specifically, to remove the need for an additional function
attribute, we add the item ct1 function argument into the group constructor. As
the remaining function arguments are identical to the CUDA cooperative group
function arguments, we therewith achieve a high level of interface similarity. This
workflow resolves the porting not only for the cooperative group functionality
but also other custom kernels replacing the automated DPCPP conversion.

A notable difference to CUDA is that DPC++ does not support subgroup
vote functions like “ballot”, or other group mask operations yet. To emulate
this functionality, we need to use a subgroup reduction provided by oneAPI to
emulate these vote functions in a subgroup setting. This lack of native support
may affect the performance of kernels relying on these subgroup operations.
We visualize in Figure 2 the workflow we use to port code making use of the
cooperative group functionality via four steps:

1. Origin: We prepare an alias to the cooperative group function such that
DPCT does not catch the keyword. We create this alias in a fake cooperative
group header we only use during the porting process.

2. Adding Interface: As explained previously, we isolate the files to prevent
DPCT from changing other files. We also add the simple interface includ-
ing threadIdx.x and make use of the alias function. For the conversion
to succeed, it is required to return the same type as the original CUDA
type, which we need to extract from the CUDA cooperative group function
this thread block.

3. DPCT: Apply DPCT on the previously prepared files. Adding threadIdx.x

indexing to the function allows DPCT to generate the nd item<3> indexing.
4. Recovering: During this step, we change the related cooperative group func-

tions and headers to the actual DPC++ equivalent. We implement a com-
plete header file that ports all the cooperative group functionality to DPC++.

In Figure 3, the final result of the porting workflow on a toy example with
cooperative groups. For the small example code in Figure 3a, if we do not iso-
late the code, DPCT will throw an error like Figure 3b once encountering the
cooperative group keyword. A manual implementation of the cooperative group
equivalent kernel is shown in Figure 3c. Our porting workflow generates the
code shown in Figure 3d, which is almost identical to the original CUDA code
Figure 3a.

Pushing for backend similarity. To simplify the maintenance of the
platform-portable Ginkgo library, our customized porting workflow uses some
abstraction to make the DPC++ code in this first version look more similar
to CUDA/HIP code. We note that this design choice is reflecting that Ginkgo
was originally designed as a GPU-centric sparse linear algebra library using
the CUDA programming language and CUDA design patterns for implementing
GPU kernels and that the developers of Ginkgo are currently used to design-
ing GPU kernels in CUDA. However, this may not be preferred by developers
used to programming in task-based languages, and it may also narrow down the



Porting Sparse Linear Algebra to Intel GPUs 7

(a) CUDA cooperative group example (b) DPCT conversion reports an error

(c) Manual DPC++ subgroup
implementation. The main difference

from CUDA are in orange

(d) The result converted by our
porting script

Fig. 3: The cooperative group example

tasking power of the SYCL language. We may thus decide at a later point to
move closer to the SYCL programming style, which is possible given Ginkgo’s
strict decoupling between algorithms and hardware backends. For now, we aim
for a high level of code similarity by not only adding the customized cooperative
group interface previously discussed, but also adding a dim3 implementation
layer for DPC++ kernel launches that uses the same parameters and parameter
order as CUDA and HIP. We simply reverse the dim3 in the interface layer.

One fundamental difference remaining between the CUDA or HIP ecosystems
and DPC++ is that the latter handles the static and dynamic memory allocation
in the main component. CUDA and HIP handle the allocation of static shared
memory inside the kernel and the allocation of dynamic shared memory in the
kernel launch parameters. Another difference is the kernel invocation syntax since
DPC++ relies on a hierarchy of calls first to a queue, then a parallel instanti-
ation. For consistency, we add another layer that abstracts the combination of
DPC++ memory allocation and DPC++ kernel invocation away from the user.
This enables a similar interface for CUDA, HIP, and DPC++ kernels for the
main component, and shared memory allocations can be perceived as a kernel
feature, see Figure 4. In Figure 4, the right purple block (additional layer call)
has the same structure as the left gray block (cuda kernel call). The enhanced
porting script not only handles the kernel conversion but also the addition of
the intermediate layer.



8 Y. M. Tsai et al.

Fig. 4: Hierarchical view of usual CUDA (left) and DPC++ (right) kernel call
and parameters. Wrapping the hardware-specific kernels into an intermediate
layer enables consistency in the kernel invocation across all backends.

5 Performance Assessment of Ginkgo’s DPC++ Backend

Experiment setup. In this paper, we consider two Intel GPUs: the generation
9 (Gen9) integrated GPU UHD Graphics P630 with a theoretical bandwidth of
41.6 GB/s and the generation 12 Intel® Iris® Xe Max discrete GPU (Gen12)7

which features 96 execution units and a theoretical bandwidth of 68 GB/s. To
better assess the performance of either GPUs, we include in our analysis the
performance we can achieve in bandwidth tests, performance tests, and sparse
linear algebra kernels. We note that the Gen12 architecture lacks native support
for IEEE 754 double precision arithmetic, and can only emulate double precision
arithmetic with significantly lower performance. Given that native support for
double precision arithmetic is expected for future Intel GPUs and using the dou-
ble precision emulation would artificially degrade the performance results while
not providing insight whether Ginkgo’s algorithms are suitable for Intel GPUs,
we use single precision arithmetic in all performance evaluation on the Gen12
architecture8. The DPC++ version we use in all experiments is Intel oneAPI
DPC++ Compiler 2021.1 (2020.10.0.1113). All experiments were conducted on
hardware that is part of the Intel DevCloud.

Bandwidth tests and experimental performance roofline. Initially,
we evaluate the two GPUs in terms of architecture-specific performance bounds.
For that purpose, we use the BabelStream [3] benchmark to evaluate the peak
bandwidth, and the mixbench [5] benchmark to evaluate the arithmetic perfor-
mance. In the upper part of Figure 5, we visualize the bandwidth we achieve
for different memory-intense operations. On both architectures, the Dot ker-
nel requiring a global synchronization achieves lower bandwidth than the other
kernels. We furthermore note that the Gen12 architecture achieves for large
array sizes about 58 GB/s and the Gen9 achieves 37 GB/s. The experimental

7 https://ark.intel.com/content/www/us/en/ark/products/211013/

intel-iris-xe-max-graphics-96-eu.html
8 Ginkgo is designed to compile for IEEE 754 double precision, single precision, double

precision complex, and single precision complex arithmetic.

https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-graphics-96-eu.html
https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-graphics-96-eu.html


Porting Sparse Linear Algebra to Intel GPUs 9

Fig. 5: Top: Bandwidth analysis on the Intel Gen9 (left) and the Gen12 (right)
GPUs using double and single precision values, respectively. Bottom: Experi-
mental performance roofline for the Gen9 (left) and Gen12 (right) GPUs.

roofline visualized in the lower part of Figure 5 reveals that the Gen9 architec-
ture achieves about 105 GFLOP/s, 430 GFLOP/s, and 810 GFLOP/s for IEEE
double precision, single precision, and half precision arithmetic, respectively.
The Gen12 architecture does not provide native support for IEEE double pre-
cision, and the double precision emulation achieves only 8 GFLOP/s. On the
other hand, the Gen12 architecture achieves 2.2 TFLOP/s and 4.0 TFLOP/s
for single precision and half precision floating point operations.

Fig. 6: SpMV kernel performance for Ginkgo and Intel’s oneMKL library on
Gen9 (left) and Gen12 (right) using double and single precision, respectively.



10 Y. M. Tsai et al.

Fig. 7: Performance evaluation of Ginkgo’s Krylov solvers on Intel’s Gen9 (left)
and Gen12 (right) GPUs.

SpMV performance analysis. An important routine in sparse linear alge-
bra is the Sparse Matrix Vector product (SpMV). This kernel reflects how a
discretized linear operator acts on a vector, and therewith plays the central role
in the iterative solution of linear problems and eigenvalue problems. We consider
two sparse matrix formats: 1) the “COOrdinate format” (COO) that stores all
nonzero entries of the matrix along with their column- and row-indices, and the
“Compressed Sparse Row” (CSR) format that further reduces the memory foot-
print of the COO format by replacing the row-indices with pointers to the first
element in each row of a row-sorted COO matrix. We focus on these popular
matrix formats not only because of their widespread use, but also because Intel’s
oneMKL library provides an optimized CSR-SpMV routine for Intel GPUs.

In Figure 6, we visualize the performance of the CSR and COO SpMV
kernels of the Ginkgo library along with the performance of the CSR SpMV
kernel from the oneAPI library. Each dot represents the performance achieved
for one of the test matrices of the Suite Sparse Matrix Collection. Ginkgo’s
CSR reaches up to 4 GFlop/s for several problems using double precision arith-
metic, oneMKL CSR up to 3 GFlop/s similarly to Ginkgo’s COO format.
For Gen12, Ginkgo’s CSR reaches up to 14 GFlop/s, oneMKL 13 GFlop/s
and Ginkgo’s COO 10 GFlop/s. These results highlight that Ginkgo’s for-
mats CSR and COO are at least competitive with the oneMKL CSR on both
Gen9 and Gen129. The achieved performance in terms of percentage of peak
bandwidth are exposed in Figure 8.

Krylov solver performance analysis. We now turn to advanced numerical
algorithms typical to scientific simulation codes. The Krylov solvers we consider –
CG, BiCGSTAB, CGS, FCG, and GMRES – are all iterative methods popular for
solving large sparse linear systems. They all have the SpMV kernel as the central
building block, and we use Ginkgo’s COO SpMV kernel and test matrices from
the Suite Sparse Matrix Collection that are orthogonal in their characteristics
and origin. We run the solver experiment for 1,000 solver iterations after a warm-
up phase. In Figure 7, we visualize the performance of the Krylov solvers on the

9 At the point of writing, oneMKL does not provide a COO implementation and CSR
can only operate on shared memory on the Gen12 architecture.



Porting Sparse Linear Algebra to Intel GPUs 11

AMD RadeonVII GPU NVIDIA V100 GPU

Intel Gen9 GPU Intel Gen12 GPU

Fig. 8: SpMV performance relative to the hardware bounds on various GPUs.

Gen9 architecture (left) and Gen12 architecture (right). On the Gen9, the
performance varies between 1.5 GFLOP/s and 2.5 GFLOP/s. We notice that
the performance differences in-between the solvers are quite small compared
to the performance differences for the distinct problems. Running Ginkgo’s
Krylov solvers in single precision on the Gen12 architecture, we achieve between
5 GFLOP/s and 9 GFLOP/s for the distinct systems. We note that all Krylov
solvers based on short recurrences (BiCGSTAB, CG, CGS, FCG) are very similar
in terms of performance, while GMRES usually achieves lower performance. This
highlights that the kernels of GMRES require specific tuning.

Platform portability. Finally, we evaluate the hardware efficiency of the
Ginkgo DPC++ backend compared to the other backends. For that, we focus
on the relative performance the functionality achieves on GPUs from AMD,
NVIDIA, and Intel, taking the theoretical performance limits reported in the
GPU specifications as the baseline. This approach reflects the aspect that the
GPUs differ significantly in their performance characteristics, and that Intel’s
oneAPI ecosystem and GPU architectures are still under active development and
have not yet reached the maturity level of other GPU computing ecosystems. At
the same time, reporting the performance relative to the theoretical limits allows
us to both quantify the suitability of Ginkgo’s algorithms and to estimate the
performance we can expect for Ginkgo’s functionality when scaling up the GPU
performance. In Figure 8 we report the relative performance of different SpMV
kernels on AMD Radeon VII (“hip” backend), NVIDIA V100 (“cuda” backend),
and Intel Gen9 and Gen12 GPUs (both “dpcpp” backend). As expected, the
achieved bandwidth heavily depends on the SpMV kernel and the characteristics



12 Y. M. Tsai et al.

of the test matrix. Overall, the performance figures indicate that the SpMV
kernels achieve about 90% of peak bandwidth on V100 and Gen12, and about
60-70% of peak bandwidth on RadeonVII and Gen9. On all hardware, Ginkgo’s
SpMV kernels are competitive to the vendor libraries, indicating the validity of
the library design and demonstrating good performance portability.

6 Summary and Outlook

We have prepared the Ginkgo open source math library for Intel GPUs by
developing a DPC++ backend. We presented strategies that are practical to ac-
commodate the design differences between CUDA/HIP and the oneAPI ecosys-
tem. We also evaluated the efficiency of Ginkgo’s functionality in terms of
translating hardware performance into algorithm performance and comparing
basic building blocks against equivalent kernels shipping with Intel’s oneMKL
library. In this performance evaluation, we demonstrated that Ginkgo’s kernels
are competitive to Intel’s oneMKL library, and that Ginkgo’s advanced math
functionality is readily available to run on Intel GPUs. While the oneAPI ecosys-
tem itself aims for providing portability to GPUs from other vendors, we have
acknowledge that this is currently not possible, and we thus have to postpone
the evaluation of Ginkgo’s DPC++ backend on AMD and NVIDIA platforms.

References

1. Anzt, H., Cojean, T., Chen, Y.C., Flegar, G., Göbel, F., Grützmacher, T.,
Nayak, P., Ribizel, T., Tsai, Y.H.: Ginkgo: A high performance numerical lin-
ear algebra library. Journal of Open Source Software 5(52), 2260 (2020).
https://doi.org/10.21105/joss.02260, https://doi.org/10.21105/joss.02260

2. Cojean, T., Tsai, Y.H.M., Anzt, H.: Ginkgo – a math library designed for platform
portability (2020)

3. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: Evaluating attainable
memory bandwidth of parallel programming models via babelstream. International
Journal of Computational Science and Engineering 17, 247–262 (2017)

4. Keryell, R., Reyes, R., Howes, L.: Khronos sycl for opencl: A tutorial.
In: Proceedings of the 3rd International Workshop on OpenCL. IWOCL
’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2791321.2791345, https://doi.org/10.1145/2791321.

2791345

5. Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for gpu
kernel performance estimation using micro-benchmarks and hardware met-
ric profiling. Journal of Parallel and Distributed Computing 107, 37 – 56
(2017). https://doi.org/https://doi.org/10.1016/j.jpdc.2017.04.002, http://www.

sciencedirect.com/science/article/pii/S0743731517301247

6. Tsai, Y.M., Cojean, T., Ribizel, T., Anzt, H.: Preparing ginkgo for amd gpus – a tes-
timonial on porting cuda code to hip. Euro-Par 2020: Parallel Processing Workshops
12480, 109 – 121 (2020)

https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260
https://doi.org/10.1145/2791321.2791345
https://doi.org/10.1145/2791321.2791345
https://doi.org/10.1145/2791321.2791345
https://doi.org/https://doi.org/10.1016/j.jpdc.2017.04.002
http://www.sciencedirect.com/science/article/pii/S0743731517301247
http://www.sciencedirect.com/science/article/pii/S0743731517301247

	Porting Sparse Linear Algebra to Intel GPUs

