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A B S T R A C T

We provide evidence of a strong effect of the underlying stock’s illiquidity on option returns. 
Conditional on end-user demand, illiquidity premiums are negative and decrease in stock 
illiquidity for options where end users are net buyers, while premiums are positive and tend to 
increase otherwise. Our results cannot be explained by common risk factors and cross-sectional 
differences in stock volatility or option spreads and are robust to different illiquidity measures 
and data periods. The observed pattern is consistent with an intermediary hedging cost channel 
and the magnitudes of our illiquidity premiums are in line with reasonable transaction costs.   
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1. Introduction

There is growing evidence that intermediaries play an important role in determining asset prices, particularly in option markets,
where trading is dominated by specialized intermediaries, the market makers (He and Krishnamurthy, 2013; He et al., 2017). Because 
market makers hedge their risky options positions (Engle and Neri, 2010), cross-sectional differences in hedging costs and risks should 
be mirrored in corresponding premiums and thus the cross-section of expected option returns (Christoffersen et al., 2018). A better 
understanding of these premiums is pivotal for our understanding of the functioning of options markets and their capacity to serve risk 
allocation. 

Stock illiquidity crucially affects the hedging costs and risks of market makers and should therefore lead to premiums in option 
returns. In this paper, we investigate the detailed pattern of these premiums. Surprisingly, very little is known about the connection 
between stock illiquidity and option returns and the sparse empirical literature shows conflicting evidence. Results in Cao and Han 
(2013), Karakaya (2014), and Cao et al. (2022) suggest that delta-hedged option returns decrease with stock illiquidity, however, 
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3 See Cao and Han (2013), Table 6, and the discussion of the results on pages 241 and 242.  
4 Cao et al. (2022) report similar results. 

Christoffersen et al. (2018) report a positive relation. We offer a potential explanation for this conflicting evidence. By now, it is 
broadly accepted that the signs of premiums in option markets depend on the sign of the net demand the market maker faces: if end 
users are net sellers and dealers have to maintain a net long position in an option series, there are price discounts and higher expected 
option returns as a compensation for costs and risks to be taken and vice versa.1 We therefore conjecture that, once we condition on 
end-user demand, expected option returns increase in stock illiquidity for option series in which end users are net sellers, while for 
series characterized by end users being net buyers, there is a negative relation between stock illiquidity and expected returns. We 
empirically investigate this hypothesis by analyzing the cross-section of option returns. Consistent with the above predictions, we find 
that delta-hedged option returns increase with stock illiquidity if proxies indicate end users being net short in options. If there is an 
indication for end users being net long, option returns decrease with stock illiquidity. To our knowledge, we are the first to uncover this 
relation between stock illiquidity and option returns by conditioning on end-user net demand, highlighting both the importance of 
stock illiquidity for the price setting of options and the crucial role of conditioning on end-user net demand for a better identification of 
the determinants of the cross-section of expected option returns. 

Naturally, conditioning would be superfluous if equity option markets were exclusively characterized by end users being net sellers 
(buyers). However, empirical evidence on net demand by Ni et al. (2008), Goyenko (2015), Muravyev (2016), and Christoffersen et al. 
(2018) suggests that we find both net long and net short positions of market makers, depending on the particular option series. Note 
that such demand effects are not simply temporary dislocations but they may well lead to asset pricing phenomena that persist even 
until the option matures. This property of options markets makes conditioning necessary to effectively disclose the actual relation 
between stock illiquidity and returns. Indeed, it is this approach that allows us to identify a strong effect of the underlying stock’s 
illiquidity on option returns. 

Our empirical investigation proceeds in three steps. First, we investigate whether there is a compensation for stock illiquidi-
ty—conditional on end-user demand—in option excess returns. We use trading strategies with delta-hedged call options, delta-hedged 
put options, and straddles to obtain option excess returns. Second, we investigate different explanations for the observed patterns of 
option returns and stock illiquidity. A first test investigates whether option returns can be explained by standard risk factors suggested 
in the literature, and a second test checks to what extent cross-sectional differences in stock volatility or the bid–ask spreads of options 
can explain our results. A final test uses a simulation study to assess whether the magnitude of our empirical findings is consistent with 
market makers accounting for transaction costs in the underlying stocks and being net long in options on some underlyings and net 
short in options on other underlyings. In the third and final step of our analysis, we perform different robustness checks with respect to 
the chosen illiquidity measure and the data period. 

Our work contributes to the literature investigating how stock illiquidity affects option markets. A first important question is 
whether stock illiquidity has just an impact on options’ illiquidity or also affects their mid prices. As we document a strong relation 
between stock illiquidity and option returns, we provide evidence that hedging costs influence not only options’ bid and ask prices (and 
therefore the bid–ask spread as shown by Engle and Neri (2010), Goyenko et al. (2015), and Christoffersen et al. (2018)) but also the 
mid prices of options. A basic economic rationale for the latter point is the following: If stock illiquidity is the only market friction and a 
(representative) market maker for stock options already has a long position in options, an end user’s sell order leads to additional 
hedging costs, affecting the option’s bid price. If it were a buy order, however, the market maker could hedge the new demand without 
additional costs just by reducing inventory, and the ask price would be the reference price in a frictionless market. If the market maker 
has a short position initially, the situation is reversed. The ask price would be affected by the additional hedging costs but the bid price 
would be the reference price in a frictionless market. Therefore, hedging costs due to stock illiquidity lead to different mid prices, 
depending on whether the market maker is initially long or short in options. According to this line of reasoning, delta-hedging costs 
show up exclusively in option spreads only if the market maker position is close to zero. In all other cases, there should always be an 
effect on mid prices and thus expected option returns.2 

A second important question is how stock illiquidity affects the cross-section of expected option returns. To our knowledge, only 
very few other papers provide empirical evidence on this question. Cao and Han (2013) study the impact of systematic and idio-
syncratic volatility on the cross-section of option returns and show that options on high idiosyncratic volatility stocks have lower 
returns than options on low idiosyncratic volatility stocks. They have in mind a setting where speculative investors buy options on 
stocks with high idiosyncratic volatility. These speculative investors, demanding liquidity in the option market, are willing to pay a 
premium, while the market makers who are net short find it costly to provide these options and charge a higher price. In one of their 
robustness tests, Cao and Han (2013) also provide evidence on the relation between stock illiquidity and option returns.3 In multi-
variate Fama-MacBeth regressions,4 they find a significant negative coefficient for stock illiquidity and conclude that “delta-hedged 

1 Demand-based option pricing theory and empirical evidence by Bollen and Whaley (2004), Gârleanu et al. (2009), Muravyev (2016), and 
Fournier and Jacobs (2020) shows that demand indeed influences index and equity option prices and returns in this way. See also Deuskar et al. 
(2011) for an empirical analysis of OTC interest rate options.  

2 A formal analysis of the effects of a market makers’ inventory on the mid price of a financial asset is provided by Hendershott and Menkveld 
(2014). In a dynamic model of inventory control, they show that the mid price can be above or below the unobserved efficient price, depending on 
whether the market maker’s equilibrium inventories are negative or positive. In their setting, inventory risk cannot be hedged at all, whereas in the 
options market hedging is possible but costly.  
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where F0
t is the reference price in a frictionless market, d the end-user net demand, γ > 0 is the market maker’s risk aversion, σ2

F is the 
variance of the option price at time t + 1, σSF is the corresponding covariance between stock price and option price, and Δ is the 
option’s delta. HC are the hedging costs per unit and Rf denotes the gross return of a risk-free asset. 

Equation (1) shows that the sign of the difference between the equilibrium option price Ft and the reference price F0
t in a frictionless 

market is identical to the sign of end-user net demand d. Therefore, the sign of d can be inferred from the sign of the option’s 
expensiveness Ft F0

t , suggesting that proxies for option expensiveness are tied to the conditioning information we need in our 
investigation. Moreover, it can be shown that expected option returns increase with stock illiquidity (HC) for option series in which end 
users are net sellers and option expensiveness is negative, while for series characterized by net buyers and positive expensiveness, 
expected option returns decrease with stock illiquidity. 

Similar conclusions can be drawn in other settings. In his classical model of option hedging with transaction costs, Leland (1985) 
introduces a discrete-time hedging strategy that considers expected transaction costs in the underlying stock. He derives the following 
modification (σ2

m) of the Black-Scholes variance (σ2) for hedging and pricing, where k represents the hedging costs due to stock illi
quidity and δt is the length of the discrete time interval9 

5 See Cao and Han (2013), p. 242.  
6 See Karakaya (2014), Table 9, Panel H. Note that Karakaya’s actual analysis uses sold options.  
7 See Christoffersen et al. (2018), Table 7.  
8 See Christoffersen et al. (2018), Table 8.  
9 See Leland (1985, p. 1289). In the original paper, Leland considers the replication of one call option (i.e., end-user net demand is positive and 

the market maker has a short position). For a generalization with general option positions leading to equation (2) see Hoggard et al. (1994). 

option returns are more negative when the underlying stock is less liquid …“.5 Karakaya (2014) provides an extensive study on the 
relation between option returns and a variety of different stock and options characteristics. In an analysis based on single sorting and 
decile portfolios formed with respect to stock illiquidity, he finds a negative relation between stock illiquidity and the returns of long 
positions in options,6 which is consistent with the results by Cao and Han (2013). However, Karakaya (2014) finds no clear evidence 
whether this relation is explained by common risk factors. Christoffersen et al. (2018) investigate how option illiquidity affects 
delta-hedged option returns and document highly significant positive premiums for buying illiquid options. In some of their analyses, 
they also provide evidence on the relation between stock illiquidity and option returns. Based on single sorting, they find a positive 
relation between stock illiquidity and option returns.7 This positive relation is confirmed in multivariate Fama-MacBeth regressions.8 A 
potential reason for the conflicting evidence in previous research—and the starting point of our paper—is that the relation between 
stock illiquidity and option returns depends on the sign of the net demand of end users. If this net demand varies a lot both over time 
and in the cross-section between different option series, then looking at average effects might lead to different results, depending on 
the specific data period and the specific coverage of options in the cross-section that a particular study uses. 

More broadly, our study belongs to the group of studies that provide evidence for a strong connection between market frictions and 
the cross-section of expected option returns, complementing previous results on such a connection. Choy and Wei (2020) find pre-
miums for options’ illiquidity risk. Frazzini and Pedersen (2022) advocate the role of embedded leverage in alleviating investors’ 
leverage constraints. They provide evidence that intermediaries who meet investors’ demand for equity options with higher embedded 
leverage are compensated for their higher risk. Similarly, Byun and Kim (2016) show that options providing exposure to lottery-like 
stocks trade at a premium. Hitzemann et al. (2021) find empirical evidence for a margin premium in the cross-section of option returns. 
They explain their findings using a model of funding-constrained derivatives dealers that require compensation for satisfying end-user 
option demand. 

The remainder of the paper is organized as follows. In Section 2, we provide background on the empirical design and the data used 
in our empirical study. In Section 3, we present our main results on the relation between option returns and the underlying stock’s 
illiquidity. In Section 4, we investigate different explanations for the observed patterns. In Section 5, we discuss robustness analyses 
and we conclude in Section 6. 

2. Empirical design, data set, and data processing

2.1. Motivation for empirical design

End-user option demand is a crucial moderating variable for the relation between stock illiquidity and option returns. Unfortunately, 
demand is not observable. Theory, however, can provide insight on the linkages between demand and option prices and guide the 
empirical design to investigate our research questions. Following Gârleanu et al. (2009), Hitzemann et al. (2021) develop a stylized 
model of a representative market maker who is facing unhedgeable risks, margin requirements both for the option and the underlying, 
and funding restrictions. A modified version of their model allows us to characterize the equilibrium relation between hedging costs 
arising from stock illiquidity, end-user demand, and option prices. In particular, assume that instead of margin requirements and funding 
restrictions the market maker has to bear hedging costs when hedging her options. Then the time t equilibrium option price Ft equals: 
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In equation (2), Vss denotes the gamma of the end users’ options positions. The sign of gamma equals the sign of the end-user net 
demand that the market maker (hedger) is facing. Therefore, hedging costs raise the variance σ2

m when end-used net demand is positive 
and lower the variance otherwise. If we interpret σ2

m σ2 as a measure of option expensiveness, the sign of this expensiveness measure 
is again tied to the sign of demand (i.e., the conditioning information we need in our empirical analysis). 

In summary, these considerations show that regardless of the specific design, the models above predict a direct link between end- 
user demand and option expensiveness. Our empirical design exploits this relation and uses a price-based measure that infers the sign 
of end-user demand from the relative expensiveness of an option on a particular date. 

2.2. Data sources and filters 

Our primary data source is the OptionMetrics Ivy DB database. This database contains information on all exchange-listed individual 
equity options in the United States, including daily closing bid and ask quotes, trading volumes, open interest, options’ Greeks (delta, 
gamma, vega), and implied volatility. The delta and implied volatility we use are calculated by OptionMetrics’ proprietary algorithms 
that account for discrete dividend payments and the early exercise of American options.10 The database also contains the closing 
prices, trading volumes, and information on dividend payments, stock splits, and total return calculations for the options’ underlying 
stocks. Our Ivy DB database sample period is from January 1996 to August 2015. 

We use similar filters as in previous studies (Goyal and Saretto, 2009; Cao and Han, 2013; Karakaya, 2014) to minimize the impact 
of recording errors. We drop all observations where the option bid price is zero and the bid price is higher than the ask price. In 
addition, we eliminate options with a bid–ask spread smaller than the minimum tick size. We remove observations with zero open 
interest and require a non-missing delta and implied volatility to keep the observation in the sample. Options with an ex-dividend date 
during the holding period are excluded. We also eliminate option observations that violate obvious no arbitrage conditions, such as S ≥

C ≥ max(S Ke− rT ,0) for call price C, underlying stock price S, strike K, risk-free rate r, and time to maturity T. 

2.3. Return calculations 

Our analysis builds on the formation of portfolios, following Goyal and Saretto (2009). To concentrate on option-specific effects and 
reduce (or eliminate) the impact of stock price risk on options’ returns, we use two kinds of portfolios. The first kind contains either 
delta-hedged call or put options. The second, which does not rely on model-dependent deltas, consists of straddles. The formation of 
portfolios of delta-hedged options and straddles is based on information available on the first trading day (usually a Monday) after the 
expiration day of the month.11 We consider only options that mature the next month and restrict our sample to at-the-money (ATM) 
options with moneyness (defined as the ratio of the strike price to the stock price) between 0.975 and 1.025 on the day of portfolio 
formation. Throughout the sample period, we have 153,381 delta-hedged call observations, 142,267 delta-hedged put observations, 
and 135,149 straddle pairs of calls and puts. To avoid microstructure biases, we follow Goyal and Saretto (2009) and start trading the 
trading day (usually a Tuesday) after the day on which we select the portfolios and hold the option until maturity. This implies that the 
option payoffs and the returns of stock positions used for delta hedging are based on the last closing stock prices prior to expiration. 

2.3.1. Delta-hedged option returns 
We calculate the returns of initially delta-hedged call and put options portfolios that buy one option contract and sell delta shares of 

the underlying stock, with the net investment earning the risk-free rate (obtained from Kenneth French’s data library). Following Cao 
and Han (2013), we calculate the return of the delta-hedged call as the excess dollar return of the delta-hedged option scaled by the 
absolute value of the securities involved. The return of a delta-hedged call is calculated as follows: 
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)
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) , (3)  

where Ct+τ and St+τ are the mid prices of the call and the underlying stock, respectively, at time t+ τ, ΔC,t is the option’s delta, and Ct 
and St are the mid prices of the call and the underlying stock, respectively, at t, the trading initiation date (the trading day after the 
portfolio formation date). The return calculation for delta-hedged puts is the same as in equation (3), except that the call option price 
and call delta are replaced by the price and delta of the put. 

2.3.2. Straddle returns 
Straddles are formed as a combination of one call and one put on the same underlying with closest strike prices and identical 

maturity. Although we restrict our sample to options with moneyness between 0.975 and 1.025 and then choose the call and put closest 

10 We refer the reader to the Ivy DB reference manual for further details.  
11 Before February 2015, all options expire on the Saturday following the third Friday of the month. Thereafter, they expire at the close of business 

of the expiration month’s third Friday. 
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2.4. Measuring stock illiquidity 

Our main measure of underlying stock illiquidity is the average of the daily Amihud (2002) illiquidity measures over the month 
preceding the portfolio formation date. Goyenko et al. (2009) show that the Amihud measure is the best low-frequency market impact 
measure and also a good proxy for effective and realized bid–ask spreads. We also use three stock spread estimates based on average 
spreads from CRSP, Roll’s (1984) measure, and Corwin and Schultz’s (2012) measure in our robustness checks, as well as the stock’s 
trading volume and market capitalization. Details on the illiquidity measure calculatiosn are in Appendix A. 

2.5. Measuring end-user demand 

Our main proxy for net end-user option demand is option expensiveness, measured as the difference between the option’s implied 
volatility (IV) and a benchmark estimate of volatility from historical stock return data (HV). Based on theoretical considerations, as 
discussed in Subsection 2.1 and shown empirically by Bollen and Whaley (2004), Gârleanu et al. (2009), and Fournier and Jacobs 
(2020), there is a positive relation between demand and expensiveness. The more expensive an option, the higher the net end-user 
options demand (for long positions in options). When implementing our expensiveness measure for the delta-hedged call and put 
strategies, the implied volatility estimate is the implied volatility of the call and put options, respectively, on the portfolio formation 
date (t - 1). The historical volatility is, following Goyal and Saretto (2009), the standard deviation of daily stock returns using the 12 
months preceding portfolio formation, unless stated otherwise. For the straddles (call long and put long), we use the sum of the implied 
volatilities of the respective put and call options on the stock as our IV measure and two times the historical volatility as our benchmark 
volatility HV. 

As an alternative proxy of end-user net demand, we use a measure of order imbalance obtained from public order imbalance data 
from the International Securities Exchange (ISE). Starting in May 2005 and ending in August 2015, the data contains daily end-user 
buy and sell orders that were executed on the ISE. We calculate the order imbalances for each option series as the sum of the end-user 
buys minus the end-user sells from the initiation of series trading, at date i, until the portfolio formation date at t - 1. We then aggregate 
the option series order imbalances at the stock level. Following Chordia and Subrahmanyam (2004) and Muravyev (2016), we scale 
this net demand measure by the total number of trades to eliminate the impact of total trading activity. The order imbalance for the 
underlying stock at the portfolio formation date t - 1 is: 
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where N is the set of calls and puts for the stock at date t - 1, which we include in our option return calculations. 
Table 1 presents descriptive statistics for the option returns, illiquidity measures, and demand proxies. Delta-hedged call and put 

returns are broadly consistent with previous studies (e.g., Cao and Han, 2013) and show negative mean and median returns. With 
respect to our illiquidity and demand measures, patterns are also similar to what has been reported in previous work for the Amihud- 
(Cao and Han, 2013), the Roll- and high/low spread measures (Corwin and Schultz, 2012), the CRSP spread measure (Chung and 
Zhang, 2014), and the expensiveness measure (Goyal and Saretto, 2009). 

3. Main results

We examine the relation between option returns and stock illiquidity, conditional on end-user net demand. Every month, on the
portfolio formation date, we first sort stocks into quintiles based on their Amihud illiquidity measure; then the stocks in each illiquidity 
quintile are sorted into quintiles based on the demand proxy IV–HV. For every month throughout the observation period, we calculate 
the mean (equally weighted) monthly option portfolio returns for each combination of stock illiquidity quintiles and demand quintiles, 
with options being held until the last trading day prior to expiration. Table 2 reports the time series averages of these monthly means. 
For each demand quintile, we also calculate the returns of long–short portfolios that buy options on the most illiquid stocks (5-high 
quintile) and sell options on the least illiquid stocks (1-low quintile). The average returns of these portfolios are shown in the 5–1 row. 
In addition, for each illiquidity quintile, we consider long–short portfolios that buy options with the lowest end-used demand (5-low 
quintile) and sell options with the highest demand (1-high quintile). The corresponding average returns are presented in the 5–1 
column. The last two columns of Table 2 show the time series averages of the mean and standard deviation of option returns within the 
illiquidity quintiles. The delta-hedged call and put returns in Panels A and В as well as the straddle returns in Panel C are calculated as 
described in Subsection 2.3. 

If stock illiquidity affects the option returns, we expect the return distribution to change with illiquidity. If market makers were only 
buyers of individual equity options, the mean option return should increase with illiquidity and, if market makers were only sellers, the 
mean return should decrease. For both delta-hedged calls and puts, we indeed find decreasing option returns for the quintile with the 

to being ATM for each month and each underlying, there could be a slight difference between the call and put strikes. The straddle 
returns are calculated as follows: 



highest end-user demand and at least a tendency of increasing option returns for the quintile with the lowest end-user demand. For 
straddles, the pattern is also similar, while the magnitudes of returns are substantially higher. Overall, the results in Table 2 give a first 
indication that stock illiquidity influences option returns negatively for high (positive) end-user demand and positively for low 
(negative) end-user demand. 

For comparison, we also present the usual procedure in the literature, a simple univariate sort (penultimate column in all three 
panels of Table 2), which does not account for different signs of end-user demand. Here, it turns out that the mean option returns in the 
stock illiquidity quintiles have a tendency to decline with stock illiquidity for calls, puts, and straddles. However, the relation is 
generally not monotonous and essentially results from the relatively low (high) returns of the highest illiquidity quintile. By contrast, 
the standard deviation (last column in all three panels of Table 2) smoothly increases for all three options strategies, which is in line 
with the idea of stock illiquidity being important for option returns but working in opposite directions depending on whether demand 
is positive or negative. 

If the return-illiquidity relation indeed depends on the sign of end-user demand, there is a straightforward strategy to disclose the 
relation between option returns and stock illiquidity: if end users are on the long side of the market (high demand, expensive options), 
option returns should decrease with stock illiquidity, while they are supposed to increase otherwise. Thus, buying cheap options 
(lowest demand quintile) and shorting the corresponding expensive ones (highest demand quintile) should lead to positive long-short 
returns that monotonously increase in illiquidity (5–1 columns). 

For all three return measures (delta-hedged calls, delta-hedged puts, straddles), we can clearly confirm this prediction. Moreover, 
the return differences between the options in the highest and the lowest illiquidity quintile are highly significant in all cases. For the 
cases of straddles, for example, the average monthly return difference is 9.6%.12 

To obtain a deeper understanding of the illiquidity effect on option returns, we refine the sorting on our illiquidity measure. For 
Fig. 1, we repeat our analysis from Table 2 but sort the options every month into deciles instead of quintiles on the stock illiquidity 
measure.13 Again, according to our hypothesis, the long-short returns of our demand-sorted portfolios should monotonously increase 
in illiquidity. For comparison, we also consider the simple average returns along the illiquidity deciles that do not account for dif
ferences in expensiveness. The lower plots in Fig. 1 show these values for calls and straddles. The overall negative relation between 

Variable Mean Median Std.dev. 10th percentile 90th percentile 

Panel A: Option returns 

Delta-hedged calls − 0.1% − 1.3% 9.0% − 8.2% 9.0% 
Delta-hedged puts − 0.2% − 1.3% 8.0% − 7.7% 8.1% 
Straddles − 0.3% − 18.2% 82.6% − 85.9% 106.5% 

Panel B: Illiquidity measures 

Ln(Amihud) − 7.50 − 7.58 1.80 − 9.71 − 5.16 
Roll (incl. zeros) 1.2% 0.7% 3.6% 0.0% 3.1% 
Corwin-Schultz 0.8% 0.7% 0.5% 0.3% 1.4% 
CRSP spread 0.3% 0.1% 0.5% 0.0% 0.7% 
Dollar trading volume/106 92.42 27.79 296.58 3.12 204.41 
Size (Dollar Market cap./109) 12.14 3.17 30.91 0.50 27.09 

Panel C: Demand measures 

Call IV–HV − 2.0% − 1.0% 14.3% − 15.9% 10.9% 
Put IV–HV − 1.0% − 0.4% 14.5% − 14.6% 12.0% 
OrdImb − 0.18 − 0.17 0.53 − 0.97 0.55  

12 Two equivalent strategies lead to such a return: conditional on high demand, one can take a long position in options referring to the least illiquid 
stocks and a short position in options referring to the most illiquid ones. Additionally, conditional on low demand, the strategy is reversed, i.e., one buys 
options referring to the most illiquid stocks and sells those referring to the least illiquid ones. For straddles, the high-demand part of the strategy yields an 
average monthly return of 5.9%, while the low-demand part amounts to 3.7%. Taken together, the average monthly return is thus 9.6%. This conditional 
strategy corresponds exactly to a long–short strategy that takes a long position in the 5–1 demand-sorted options portfolio referring to the most illiquid 
stocks and a short position in the 5–1 demand-sorted options portfolio referring to the most liquid stocks (with average monthly return of 16.5% on the 
long position and 6.9% on the short position, thus overall 9.6%).  
13 To retain a sufficiently large number of options within our double-sorted portfolios, we limit our analysis to demand tertiles and display the 

returns on the 3–1 portfolios. 

Table 1 
Summary statistics. This table shows summary statistics for the sample between January 1996 and August 2015, which includes 153,381 delta- 
hedged call returns, 142,267 delta-hedged put returns, and 135,149 pairs of call and put options for the straddle returns. Panel A shows the 
mean, median, standard deviation, and the 10th and 90th percentile of the delta-hedged call, delta-hedged put, and straddle returns. Panel B shows 
statistics on our illiquidity measures for the underlying stocks of the 135,149 observations where pairs of call and put options were available. We use 
Amihud’s (2002) illiquidity measure, the Roll (1984), Corwin and Schultz (2012) and average CRSP spread estimates, the dollar trading volume, and 
the market capitalization. Panel C shows statistics on our end-user demand proxies. The implied volatility minus the historical volatility (IV–HV) is 
reported for the sets of call and put observations and the option order imbalance aggregated on stock level is reported for the observations where pairs 
of call and put options were available. The data period for option order imbalance is May 2005 to August 2015.  



option returns and illiquidity mirrors some findings of Cao and Han (2013) and Karakaya (2014), who report that returns to buying 
delta-hedged options decrease with higher underlying stock illiquidity. However, this negative relation is almost completely driven by 
the highest illiquidity decile, while there is no clear pattern along the remaining deciles. By contrast, a clear pattern emerges once we 
take the demand dimension into account. Consistent with our hypothesis, the upper plots reveal a clear positive trend with stock 
illiquidity for the 3–1 portfolios. In summary, Fig. 1 illustrates the main contribution of the paper: By long–short trading strategies that 
condition on end-user demand, we have uncovered a clear connection between stock illiquidity and option returns. 

Note that even for the lowest illiquidity decile, the returns of the 3–1 portfolios are still positive, with a return of 0.56% per month 
and a t-statistic of 2.87 for the delta-hedged calls and a straddle return of 3.72% with a t-statistic of 1.91. Such a positive return is 
unlikely to be explained by hedging costs due to stock illiquidity alone, because we would then expect the return of the 3–1 portfolio to 
vanish for very liquid underlyings. However, other market frictions and market incompleteness, for example, caused by jumps or 
stochastic volatility, could still prevent perfect hedging. 

4. Potential explanations for the main results

4.1. Option returns and risk factors

So far, we have established an empirical pattern that relates option returns to the underlying’s illiquidity. We now look at different 
potential explanations. A first idea is that the returns of options portfolios are exposed to common risk factors besides stock illiquidity. 
After controlling for these risks, illiquidity effects might no longer exist. We therefore check whether the pattern of increasing excess 

Panel A: Delta-hedged call returns   

End-user demand proxy (IV–HV)  mean sd 

1-high 2 3 4 5-low 5–1 t-stat. all 

Stock illiquidity 1-low − 0.4% − 0.2% − 0.1% 0.1% 0.3% 0.7% 2.87 − 0.1% 6.3% 
2 − 0.5% − 0.3% − 0.1% 0.0% 0.6% 1.1% 4.29 − 0.1% 7.1% 
3 − 0.8% − 0.1% 0.0% 0.3% 0.6% 1.4% 5.50 0.0% 8.3% 
4 − 1.1% − 0.2% 0.0% 0.2% 0.8% 1.9% 6.17 − 0.1% 9.3% 

5-high − 1.7% − 0.7% − 0.5% − 0.3% 0.6% 2.3% 7.56 − 0.5% 10.4%  

5–1 − 1.3% − 0.5% − 0.4% − 0.4% 0.3% 1.6%  − 0.4% 4.1%  
t-stat. − 4.28 − 2.72 − 2.12 − 1.60 1.16 4.32  − 3.08 20.97 

Panel B: Delta-hedged put returns   

End-user demand proxy (IV–HV)  mean sd 

1-high 2 3 4 5-low 5–1 t-stat. all 

Stock illiquidity 1-low − 0.6% − 0.3% − 0.1% − 0.1% 0.1% 0.7% 3.75 − 0.2% 5.7% 
2 − 0.5% − 0.4% − 0.2% 0.0% 0.2% 0.7% 3.41 − 0.2% 6.4% 
3 − 0.7% − 0.3% − 0.2% − 0.1% 0.3% 1.0% 4.96 − 0.2% 7.3% 
4 − 1.4% − 0.4% − 0.2% 0.0% 0.5% 1.9% 6.65 − 0.3% 8.2% 

5-high − 2.1% − 0.9% − 0.8% − 0.4% 0.3% 2.4% 9.22 − 0.8% 9.3%  

5–1 − 1.5% − 0.6% − 0.7% − 0.3% 0.2% 1.7%  − 0.6% 3.6%  
t-stat. − 7.57 − 3.39 − 4.03 − 1.68 0.80 6.46  − 5.12 19.85 

Panel C: Straddle returns   

End-user demand proxy (IV–HV) mean sd 

1-high 2 3 4 5-low 5–1 t-stat. all 

Stock illiquidity 1-low − 4.1% − 1.0% 0.5% − 0.7% 2.8% 6.9% 3.22 − 0.5% 74.5% 
2 − 4.5% − 4.4% 1.0% 0.6% 2.6% 7.1% 3.72 − 0.9% 74.7% 
3 − 5.8% 0.5% − 1.6% 0.6% 4.7% 10.5% 5.05 − 0.3% 76.3% 
4 − 7.4% − 1.3% − 0.4% 1.9% 7.4% 14.8% 6.73 0.0% 79.2% 

5-high − 10.0% − 4.4% − 5.2% − 1.3% 6.5% 16.5% 8.03 − 2.9% 80.5%  

5–1 − 5.9% − 3.4% − 5.7% − 0.6% 3.7% 9.6%  − 2.4% 6.0%  
t-stat. − 3.27 − 1.66 − 2.81 − 0.25 1.75 3.55  − 1.87 4.12  

Table 2 
Average monthly post-formation returns of two-way sorted portfolios. The sample between January 1996 and August 2015 includes 153,381 
delta-hedged call returns, 142,267 delta-hedged put returns, and 135,149 pairs of call and put options for the straddle returns. Each month, option 
observations are first sorted into quintiles based on Amihud’s illiquidity measure. Within these quintiles, options are sorted into quintiles based on the 
difference between the implied and historical volatility. This table shows the average monthly returns of the portfolios for the different categories. The 
portfolio returns use an equal weighting of the option returns in a category. For the return calculation, the average of the closing bid and ask quotes is 
the reference beginning price. The terminal payoff of the options depends on the stock price and the strike price of the option. The hedge ratio for the 
delta-hedged options is determined from the implied volatility at trading initiation. Associated t-statistics are corrected for autocorrelation following 
Newey and West (1987).  



returns of 5–1 demand-sorted portfolios (low end-user demand minus high end-user demand) with greater illiquidity of the un
derlyings can be explained by common risk factors. We run a time series regression of the returns from the 5–1 demand-sorted 
portfolios within the lowest and highest illiquidity quintiles and the difference between these portfolios (5–1 high illiquidity minus 
5–1 low illiquidity) on several risk control variables. 

Especially due to imperfections in our delta hedge for the monthly holding period, the returns could be related to known patterns in 
the cross-section of stock returns. We control for this potential explanation by including the three factors of Fama and French (1993) 
and Carhart’s (1997) momentum factor in a time series regression.14 We also check whether the observed illiquidity effects are related 
to different variance risk premiums of individual stocks. The returns of our options portfolios should then be correlated with the market 
variance risk premium.15 Therefore, we control for variance risk premiums following Cao and Han (2013). For market variance risk, 
we include the excess returns of the Coval and Shumway (2001) zero-beta Standard & Poor’s (S&P) 500 straddle. We also include the 
value-weighted average return of (available) zero-beta straddles on the S&P 500 component stocks minus the risk-free rate. Driessen 
et al. (2009) show that the returns of an index straddle can be decomposed into the returns of index component straddles and a 
correlation risk trading strategy. Thus, inclusion of the index straddle and the average of its component straddles can be interpreted as 
a control for a correlation risk premium. Schürhoff and Ziegler (2011) use the component straddle factor as a proxy for the common 
idiosyncratic volatility risk premium in their empirical work. Details on our risk factor calculations can be found in Appendix B. 

Table 3 shows the regression alphas of the 5–1 demand strategies within the low illiquidity quintiles and the high illiquidity 
quintiles together with the differences between these alphas. Overall, the alphas of the portfolios are all significant and very close to 
the average raw returns reported in Table 2. The differences for the alphas of the high and low illiquidity delta-hedged call, delta- 
hedged put, and straddle portfolios are 1.4%, 1.8%, and 9.3%, respectively. We conclude that the higher absolute option returns 
we find for the portfolios with more illiquid underlyings cannot be explained by common risk factors. 

4.2. Option returns, individual volatility, and option spreads 

Another explanation for our observed pattern could be that more illiquid stocks tend to be more volatile. This positive correlation 
between stock illiquidity and stock volatility might be reflected in our option returns.16 To check this possibility, we repeat our main 
analysis but control for historical volatilities. Panel A of Table 4 shows the results from a controlled portfolio sort. Each month, we sort 
all options into conditional quintile portfolios according to historical volatility, the Amihud illiquidity measure, and the end-user 
demand proxy. The resulting 125 portfolios are then averaged along the historical volatility quintiles, such that we obtain 25 
illiquidity/end-user demand portfolios with similar historical volatility. The resulting option return patterns in Panel A of Table 4 are 
qualitatively the same as in Table 2. The returns of delta-hedged calls, delta-hedged puts, and straddles tend to increase with illiquidity 
if end-user demand is low and clearly decrease with illiquidity if end-user demand is high. The conditional long–short returns 
monotonously increase in illiquidity (5–1 columns) and the return differences between the options in the highest and the lowest 

Fig. 1. Average monthly post-formation returns of delta-hedged calls and straddles for Amihud deciles. The 3–1 return is calculated as for 
Table 2, but with a decile sorting on the Amihud measure and a second sorting on IV–HV into three portfolios. The average return for the Amihud 
decile is the equally-weighted return of all delta-hedged calls or straddles in the decile. 

14 Goyal and Saretto (2009), Schürhoff and Ziegler (2011), Cao and Han (2013), Buraschi et al. (2014), Christoffersen et al. (2018), and Frazzini 
and Pedersen (2022) also include these four factors as control variables for option returns.  
15 Bollerslev et al. (2009) present a general equilibrium model of the market variance risk premium.  
16 Hu and Jacobs (2020) investigate the relation between option returns and the volatility level of the underlying. With static delta-hedges, similar 

to the ones deployed in this study, the volatility level is an important determinant of option returns. 



illiquidity quintile are highly significant in all three cases. So, we conclude that cross-sectional differences in stock volatility cannot 
explain the effect of stock illiquidity on option returns. 

An alternative explanation for our findings might be the higher bid–ask spreads of options associated with less liquid stocks 
(Christoffersen et al., 2018). Panel B of Table 4 presents the results from another controlled portfolio sort, but now we control for the 
options’ illiquidity, i.e., we form 125 portfolios sorted on the (average) relative option spread, the Amihud illiquidity measure, and the 
end-user demand proxy. We next average the 125 portfolios along the relative bid-ask spread quintiles leaving us with 25 
illiquidity/end-user demand portfolios with roughly the same average bid-ask spreads. Again, the corresponding long–short returns 
increase with greater illiquidity and the return differences between the highest and the lowest illiquidity portfolios are positive in all 
cases and highly significant except for the straddle case. For the latter, the significance is roughly at the 10% level. Thus, when holding 
option spreads constant, we still find a clear relation between stock illiquidity and option returns. This evidence implies that options’ 
bid–ask spreads do not already reflect the role of stock illiquidity as a determinant of option returns. 

Portfolio sorts are a flexible and transparent method to analyze dependencies without relying on any restrictive parametric 

Delta-hedged calls Delta-hedged puts  

5–1 low ill.  5–1 high ill.  5–1 high ill.- 5–1 low ill. 5–1 low ill.  5–1 high ill.  5–1 high ill.- 5–1 low ill. 

Alpha 0.8%  2.3%  1.4% 0.7%  2.5%  1.8%  
(3.18)  (7.79)  (4.15) (3.69)  (9.64)  (6.83)  

Straddles   

5–1 low ill.  5–1 high ill.  5–1 high ill.- 5–1 low ill.  

Alpha 7.4%  16.7%  9.3%   
(3.51)  (8.64)  (3.64)   

Table 4 
Average monthly post-formation returns of three-way sorted portfolios. The sample between January 1996 and August 2015 includes 153,381 
delta-hedged call returns, 142,267 delta-hedged put returns, and 135,149 pairs of call and put options for the straddle returns. Each month, option 
observations are sorted on three variables. For Panel A (Panel B), option observations are first sorted into quintiles based on the individual historical 
volatility (option spread). Within these quintiles, option observations are sorted into quintiles based on the Amihud illiquidity measure. Within the 
first and second sort quintiles, options are sorted into quintiles based on the difference between the implied and historical volatility. This table reports 
the average of the 25 second and third sort portfolios along the 5 volatility (option spread) categories. The portfolio returns use an equal weighting of 
the option returns in a category. For the return calculation, the average of the closing bid and ask quotes is the reference beginning price. The terminal 
payoff of the options depends on the stock price and the strike price of the option. The hedge ratio for the delta-hedged options is determined from the 
implied volatility at trading initiation. Associated t-statistics are corrected for autocorrelation following Newey and West (1987).  

Panel A: Hist. Volatility     

Delta-hedged calls Delta-hedged puts Straddles   

5–1 t-stat. 5–1 t-stat. 5–1 t-stat. 

Stock illiquidity 1-low 0.5% 2.83 0.5% 3.02 5.0% 2.59 
2 0.7% 3.64 0.9% 4.91 5.3% 2.70 
3 1.1% 5.15 1.2% 7.35 8.6% 4.20 
4 1.4% 4.96 1.6% 6.90 13.5% 6.44 

5-high 2.1% 8.37 1.8% 7.85 13.7% 6.26  

5–1 1.6%  1.3%  8.7%   
t-stat. 5.03  4.47  3.73  

Panel B: Option Spread     

Delta-hedged calls Delta-hedged puts Straddles   

5–1 t-stat. 5–1 t-stat. 5–1 t-stat. 

Stock illiquidity 1-low 0.8% 4.58 0.8% 4.59 7.8% 4.27 
2 0.9% 4.65 0.8% 5.09 7.5% 4.09 
3 1.6% 5.37 1.3% 5.71 14.0% 5.96 
4 1.6% 5.52 1.7% 8.32 11.0% 5.60 

5-high 2.0% 7.91 1.8% 7.28 11.5% 7.08  

5–1 1.2%  1.0%  3.7%   
t-stat. 4.21  4.26  1.63   

Table 3 
Risk-adjusted post-formation returns. This table presents the alphas and t-statistics of a time series regression of the portfolio returns on the Fama 
and French (1993) factors (MKT-Rf, SMB, HML), the Carhart (1997) momentum factor (MOM), the Coval and Shumway (2001) excess zero-beta S&P 
500 straddle factor (ZB–STR–Index), and the value-weighted average of the zero-beta straddles of the S&P 500 components (ZB–STR–Stocks). The 5–1 
portfolios from the highest and lowest illiquidity quintiles are constructed as in Table 2. The t-statistics for the alphas in brackets are calculated with 
Newey and West (1987) standard errors.   



Straddle Delta-hedged calls Delta-hedged puts 

Illiq. * (− 1 if IVHV high; 1 if IVHV low) 0.008 0.001 0.002 
(2.86) (2.68) (5.13) 

Option spread − 0.078 − 0.019 − 0.039  
(-0.89) (-1.05) (-2.06) 

Volatility − 0.039 − 0.010 − 0.012  
(-1.31) (-2.63) (-3.61) 

IVHV high − 0.021 0.000 0.001  
(-0.86) (-0.05) (0.33) 

IVHV low 0.051 0.009 0.007  
(1.52) (2.62) (2.60)  

specifications. However, sorts come to their limits when several control variables are considered simultaneously. Therefore, we check 
whether cross-sectional differences in stock volatility and option’s illiquidity jointly explain the documented effect of stock illiquidity 
on option returns via Fama-MacBeth regressions. Because equation (1) shows that the sign of end-user demand is crucial for the 
relation between stock illiquidity and option returns, we check whether an option is in the first IV–HV quintile (highest end-user 
demand) or in the fifths IV–HV quintile (lowest end-user demand) interacts with the stock illiquidity measure. Specifically, we 
define a variable that takes a value of 1 if IV–HV is in the first quintile and takes a value of 1 if it is in the fifth quintile. This variable is 
multiplied with the illiquidity measure to capture the interaction effect. Our hypothesis is that the interaction term loads with a 
positive coefficient. In addition to the interaction term, the Fama-MacBeth regressions contain the demand variables themselves 
(dummy variables IVHV high and IVHV low), as well as the option spread and the stock volatility. 

Table 5 reports the results of the Fama-MacBeth regressions. There are significant negative return effects of higher stock volatility 
and positive effects of low demand for delta-hedged calls and delta-hedged puts. Moreover, higher option spreads significantly reduce 
option returns for delta-hedged puts. Most importantly, there is still an interaction effect with stock illiquidity that has the expected 
positive sign: illiquidity leads to higher option returns for low end-user demand as compared to high end-user demand on average. The 
null hypothesis that the interaction term’s coefficient is zero is rejected in all three cases, i.e. for delta-hedged calls, puts, and straddles, 
with t-statistics ranging from 2.68 to 5.13. 

Overall, both portfolio sorts and Fama-MacBeth regressions indicate that neither cross-sectional differences in stock volatility nor 
option’s illiquidity can explain the documented effect of stock illiquidity on option returns. Still, our empirical evidence on the relation 
between stock illiquidity and option returns is consistent with an intermediary hedging cost channel. 

Further alternative explanations for the option return patterns are uncertainty risk, informed trading, and behavioral biases. 
Buraschi et al. (2014) suggest an argument that is based on the role of priced disagreement risk, but the returns from disagreement risk 
strategies are very small compared to the option returns we find. Similarly, stocks with higher illiquidity are more likely to be stocks 
with more private information being available. Since Easley et al. (1998) and Pan and Poteshman (2006) show evidence of informed 
trading in the options market too, one could argue that our option returns stem from asymmetric information. Theoretical models with 
competitive risk-neutral market makers consider asymmetric information to be a determinant of bid–ask spreads (Copeland and Galai, 
1983; Glosten and Milgrom, 1985; Easley and O’Hara, 1987). However, in such a setting, private information does not lead to excess 
returns of market makers unless market makers charge an information risk premium in the sense of Easley et al. (2002). In addition, 
Christoffersen et al. (2018) empirically show that private information is a strong determinant of option bid–ask spreads but not of 
average option returns. Given this evidence and the results of Buraschi et al. (2014), we do not control for disagreement risk and 
private information. 

Goyal and Saretto (2009) hypothesize that the returns to their IV–HV strategies could be caused by investors becoming excessively 
optimistic (pessimistic) about the future riskiness of a stock after large positive (negative) returns. Similarly, An et al. (2014) show that 
realized excess stock returns help to predict changes in implied volatility. Their findings are consistent with investors’ speculative 
demand for options and intermediaries hedging constraints. Therefore, their findings are complementary to our main result, that 
higher stock illiquidity is associated with wider fluctuations of option returns around reference values expected in perfect market 
environments. 

4.3. Option returns, option demand, and the impact of transaction costs 

In principle, the relation between stock illiquidity and option returns observed in the data is consistent with a demand-based option 
pricing theory and varying signs of end users’ net positions across individual equity options. We provide further evidence on this 
explanation in this subsection. 

Table 5 
Fama-MacBeth regression of monthly post-formation returns. The sample between January 1996 and August 2015 includes 153,381 delta- 
hedged call returns, 142,267 delta-hedged put returns, and 135,149 pairs of call and put options for the straddle returns. This table reports the 
average coefficients from monthly Fama-MacBeth regressions of the post formation returns (straddles, delta-hedged calls, or delta hedged puts) on: 
Illiq. * ( 1 if IVHV high; 1 if IVHV low), which is the stock illiquidity measure multiplied with 1 or 1 if the option is in the high or low IV–HV quantile 
of the respective month; IVHV high, which is one if the option is in the high IV–HV quantile, else zero; IVHV low, which is one if the option is in the low 
IV–HV quantile, else zero; Option spread, the quoted closing option spread; Volatility, the yearly historical volatility of the option’s underlying. Newey 
and West (1987) t-statistics are given in parentheses. The regressions exclude observations which are not in the first or fifth IV–HV quantile. Stock 
illiquidity is measured in monthly quintiles of the Amihud measure.   



We use the order imbalance measure (OrdImb) from equation (5), as obtained from the ISE data set, to study the relation between
our expensiveness measure and order imbalance. As a first indication, we calculate the average cross-sectional correlation between 
IV–HV and OrdImb, where IV is the average of the implied volatilities of calls and puts. The correlation coefficient is 7.08%, and the 
hypothesis of zero correlation is clearly rejected with a t-statistic of 9.81. To dig deeper into the relation between expensiveness and 
order imbalance, option observations are sorted into quantiles based on IV–HV each month. For these quantile portfolios, we calculate 
the measure Avg(OrdImb), which is the monthly average OrdImb, and the measure %OrdImb+, which is the monthly percentage of 
observations where OrdImb is positive (end user buys > end user sells). The results in Table 6 show that Avg(OrdImb) declines 
monotonously with declining expensiveness and the differences in Avg(OrdImb) within the low and the high expensiveness quintile are 
significantly negative. This relation holds for calls, puts, as well as straddles. The negative average Avg(OrdImb) for all call, put, and 
straddle portfolios is in line with the empirical observation in Christoffersen et al. (2018) of market makers being on average net long in 
options on individual stocks. Moreover, the average percentage of observations with a positive order imbalance (%OrdImb+) is highest 
for the high expensiveness quintile (around 40%) and declines monotonously with declining expensiveness to less than 30%. Again, 
this relation holds for calls, puts, and straddles. Thus, in line with Gârleanu et al. (2009), a higher fraction of positive (negative) 
end-user demand for an option leads to more expensive (cheaper) option prices. 

A natural next step is to use the ISE dataset and also perform the sorts from Section 3 by conditioning on OrdImb instead of option 
expensiveness. It should be noted that this approach is subject to some limitations, and the nature of the available customer buy and 
sell volumes data does not allow the same analysis to be performed for a variety of reasons. First, the dataset is available only from 
2005 and covers only a fraction of the options in our sample, leading to a shorter time series and smaller cross-section relative to our 
main analysis. Second, the open-close data available to us refers to the ISE, but ISE transactions represent only a subset of the total 
volume of trade in listed options, while option trading is organized in a national market with multiple exchanges participating. So, 
even for options within our smaller cross-section, we would actually need to source data from different data vendors to get a full 
picture. Note that the ISE market share is around 30% in 2005 (beginning of the ISE data) and declines to only around 10% in 2015 
(Andersen et al., 2021). Third, the fragmentary nature of buy and sell volumes data requires an aggregation by stock or moneyness 
categories (see Muravyev, 2016; Christoffersen et al., 2018), such that we cannot assign a value for OrdImb to each individual option. 
This point is critical to our analysis as different options on the same stock may differ in their direction of end-user demand, such that 
the resulting positive and negative premia might wash out due to the aggregation. Finally, the computation of OrdImb depends on 
specific assumptions on the market structure, i.e., which groups of traders are categorized as option dealers and which are assumed to 
be end-users. 

We nevertheless conduct portfolio double sorts based on OrdImb and illiquidity variables, assigning to each option the average 
OrdImb as aggregated on the underlying stock level. Due to the much smaller sample size than in our full sample, we use tertile sorts 
instead of quintiles. We first sort on the Amihud illiquidity measure for all the panels in Table 7. We use a second sort based on OrdImb 
and, for comparison, we also report the baseline second sort based on IV–HV for the ISE sample. Despite the described limitations, using 
order imbalance as an alternative proxy for demand leads to the same qualitative pattern as found in Section 3. Returns of the long–short 
(3–1) portfolios increase with stock illiquidity in all our three cases. Note that for both proxies (the option expensiveness measure and the 
alternative proxy of end-user demand), the returns show much weaker results than for the full sample. Besides the smaller sample size, 
this is also likely due to a sample selection effect because stocks are disproportionally liquid in the ISE sample. A more homogenous 
sample with respect to stock illiquidity makes it unfortunately more difficult to identify cross-sectional differences. 

The question remains as to whether stock illiquidity can be a viable explanation for the empirical patterns. It would require that 
realistic illiquidity costs of market makers be compatible with the observed magnitudes of the return effects. Moreover, we would also 
like to rule out that the observed return effects just reflect potential illiquidity premiums in the underlying stocks, affecting our options 
portfolios via hedging errors. 

We investigate these issues by conducting a simulation study. Our analysis is based on Leland’s (1985) option pricing approach 
with discrete-time replication and transaction costs that provide estimates of the upper bound for the price impact of the illiquidity of 
the underlying.17 We simulate the prices of the call options according to this model under realistic assumptions for transaction costs, 
hedging frequency, market maker positions, and underlying dynamics. The details of these simulations are described in Appendix C. 
Finally, we calculate the delta-hedged option returns and perform the same sorting procedure that led to Table 2, this time using the 
simulated data. 

Table 8 shows the results for the simulated data, which correspond to the results in Panel A of Table 2. The results are very similar to 
those obtained for the market data. The returns on the long–short (5–1) strategy are much higher in the high transaction cost category 
than in the low transaction cost category and the magnitudes of the average delta-hedged return differences between the quintiles are 
similar to those observed in the empirical data. The penultimate column shows that the differences between the mean returns are 
relatively small across the transaction cost groups, thus the effect of transaction costs cannot be seen from the unconditional inter
action of underlying transaction costs and option returns. By contrast, the standard deviation of option returns, as shows in the last 
column, clearly grows with transaction costs. This is the same pattern as for the market data in Section 3.18 

We now use our simulated data to check whether they lead to a similar pattern as the market data in Fig. 1. Fig. 2 shows the results. 

17 Alternative pricing models are presented by Boyle and Vorst (1992) and Cetin et al. (2006). The latter model also considers the market impact 
costs that depend on the trade size, which would likely lead to even greater effects.  
18 Only the magnitude of the standard deviations is smaller, since our simulation does not account for the cross-sectional variation in true 

volatility. 



It depicts both the empirical average monthly delta-hedged returns of the 3–1 long–short strategies and the corresponding ones 
resulting from the simulation. We see that the patterns are indeed very similar and even the magnitudes of the simulated delta-hedged 
call returns come close to the average empirical returns. 

We conclude that our empirical results for option returns under the double sorting with respect to the stock illiquidity measure and 
IV–HV can be reproduced by a simple simulation with realistic transaction cost assumptions. 

Delta-hedged calls Delta-hedged puts Straddles   

Avg(OrdImb) %OrdImb+ Avg(OrdImb) %OrdImb+ Avg(OrdImb) %OrdImb+

IV-HV 1-high − 10.7% 40.1% − 10.9% 39.8% − 10.6% 40.2% 
2 − 15.5% 35.4% − 15.9% 35.4% − 15.6% 35.4% 
3 − 18.6% 32.6% − 18.4% 32.5% − 18.5% 32.5% 
4 − 21.3% 31.0% − 20.5% 31.5% − 20.4% 31.6% 

5-low − 23.6% 27.9% − 23.0% 28.4% − 23.2% 28.1%  

5–1 − 12.9% − 12.1% − 12.1% − 11.4% − 12.6% − 12.0%  
t-stat. − 13.2 − 13.1 − 12.5 − 12.0 − 13.2 − 12.6  

Table 7 
Average monthly post-formation returns of two-way sorted portfolios for alternative demand proxies (OrdImb and IV–HV). The sample 
between May 2005 and August 2015 includes 70,530 delta-hedged call returns, 69,539 delta-hedged put returns, and 68,872 pairs of call and put 
options for the straddle returns. Each month, option observations are first sorted into tertiles based on the Amihud illiquidity measure. Within these 
tertiles, options are sorted into tertiles based on the order imbalance (OrdImb) and the difference between the implied and historical volatility 
(IV–HV). This table shows the average monthly returns of the portfolios for the different categories. The portfolio returns use an equal weighting of the 
returns of all delta-hedged options and straddles falling in the category. For the return calculation, the average of the closing bid and ask quotes is the 
reference beginning price. The terminal payoff of the options depends on the stock price and the strike price of the option. The hedge ratio for the 
delta-hedged options is determined from the implied volatility at trading initiation. Associated t-statistics are corrected for autocorrelation following 
Newey and West (1987).  

Panel A: Delta-hedged call returns   

End-user demand proxy (OrdImb) 

3–1 t-stat.

End-user demand proxy (IV–HV) 

3–1 t-stat. 1-high 2 3-low 1-high 2 3-low 

St. Illiq. 1-low − 0.1% 0.0% − 0.1% 0.0% 0.71 St. Illiq. 1-low − 0.3% 0.0% 0.0% 0.3% 2.98 
2 0.0% 0.2% 0.1% 0.1% 1.23 2 − 0.1% 0.2% 0.2% 0.3% 2.18 

3-high − 0.1% 0.1% 0.2% 0.3% 1.42 3-high − 0.3% 0.1% 0.5% 0.8% 3.96  

3–1 0.0% 0.1% 0.3% 0.3%   3–1 0.0% 0.1% 0.5% 0.5%   
t-stat. 0.19 0.77 1.60 1.22   t-stat. 0.03 0.21 2.62 2.48  

Panel B: Delta-hedged put returns   

End-user demand proxy (OrdImb) 

3–1 t-stat.

End-user demand proxy (IV–HV) 

3–1 t-stat. 1-high 2 3-low 1-high 2 3-low 

St. Illiq. 1-low − 0.1% − 0.1% − 0.2% − 0.1% − 0.66 St. Illiq. 1-low − 0.3% 0.0% − 0.1% 0.2% 2.21  
2 − 0.2% 0.0% 0.0% 0.2% 1.50  2 − 0.3% 0.1% 0.0% 0.3% 2.55  

3-high − 0.4% − 0.2% 0.0% 0.4% 1.74  3-high − 0.5% − 0.3% 0.1% 0.6% 3.46  

3–1 − 0.3% − 0.1% 0.2% 0.5%   3–1 − 0.2% − 0.3% 0.2% 0.4%   
t-stat. − 1.73 − 0.70 0.87 1.95   t-stat. − 1.10 − 1.96 1.29 2.13  

Panel C: Straddle returns   

End-user demand proxy (OrdImb)     End-user demand proxy (IV–HV)     

1-high 2 3-low 3–1 t-stat. 1-high 2 3-low 3–1 t-stat. 

St. Illiq. 1-low 0.3% 0.6% − 1.2% − 1.5% − 1.14 St. Illiq. 1-low − 3.2% 2.1% 0.8% 4.0% 2.47 
2 − 0.4% 1.6% 1.6% 2.0% 1.38 2 − 0.6% 1.7% 1.9% 2.5% 1.39 

3-high − 1.0% 0.4% 2.3% 3.3% 1.85 3-high − 1.4% − 0.8% 3.9% 5.3% 3.15  

3–1 − 1.3% − 0.2% 3.5% 4.8%   3–1 1.8% − 2.9% 3.1% 1.3%   
t-stat. − 0.72 − 0.12 2.09 2.16   t-stat. 0.96 − 1.54 1.90 0.56   

Table 6 
Relation between OrdImb and IV–HV. The sample between May 2005 and August 2015 includes 70,530 calls, 69,539 puts, and 68,872 pairs of call 
and put options for the straddles with available OrdImb. Each month, option observations are sorted into quantiles based on IV–HV. For these quantile 
portfolios, this table reports the averages of Avg(OrdImb), which is the monthly average OrdImb, and %OrdImb+, which is the monthly percentage of 
observations where OrdImb is positive (end user buys > end user sells). Associated t-statistics are corrected for autocorrelation following Newey and 
West (1987).    



5. Robustness checks

Finally, we address some additional robustness issues. A first issue is the measurement of end-user demand. We start by examining
whether the results depend on the specific method to estimate historical volatility when calculating our demand proxy IV–HV. A 
second issue is the measurement of illiquidity, thus we examine the robustness with respect to alternative illiquidity measures in 
Subsection 5.1. A third robustness issue refers to the sample period considered. In Subsection 5.2, we investigate this point. Finally, in a 
fourth robustness check in Subsection 5.3, we examine whether the results change when moving from a monthly to a daily holding 
period. 

5.1. Alternative volatility and illiquidity measures 

As alternative historical volatility measures to calculate IV–HV, we use a GARCH(1,1) estimate for the option’s lifetime volatility 
and the standard deviation of daily stock returns using the six and 24 most recent months.19 With respect to the measurement of 
illiquidity, we replace Amihud’s illiquidity measure with alternative measures: the log market capitalization of the underlying stock, 
the dollar trading volume of the underlying, and Roll’s (1984) and Corwin’s and Schultz’s (2012) bid–ask spread estimates and the 
average bid-ask spread from the CRSP database. We repeat the analysis for Table 3, but with the alternative measures and give the 
results in Table 9. The differences of the alphas from the 5–1 strategy in the highest illiquidity quintile compared to the 5–1 strategy in 
the lowest illiquidity quintile are positive across all alternative illiquidity and volatility measures and significant at the 5% level in 23 

Delta-hedged call returns     

End-user demand proxy (IV–HV) mean sd   

1-high 2 3 4 5-low 5–1 all 

Transaction costs 1-low − 0.2% − 0.1% 0.0% 0.1% 0.2% 0.4% 0.0% 0.3% 
2 − 0.6% − 0.5% 0.0% 0.6% 0.6% 1.2% 0.0% 0.6% 
3 − 0.8% − 0.8% 0.1% 1.0% 1.0% 1.8% 0.1% 0.9% 
4 − 1.1% − 1.1% 0.1% 1.3% 1.3% 2.4% 0.1% 1.2% 

5-high − 1.3% − 1.3% 0.2% 1.7% 1.7% 3.0% 0.2% 1.5%  

5–1 − 1.1% − 1.2% 0.2% 1.6% 1.5% 2.6% 0.2% 1.2%  

Fig. 2. Average empirical and simulated delta-hedged call returns. The 3–1 empirical returns are calculated as for Table 2, but with a decile 
sorting on the Amihud measure and a three-quantile second sort on IV–HV. The 3–1 simulated returns are calculated as for Table 7, but with a tertile 
sorting on IV–HV. Proportional transaction cost assumptions are k/2 = 0.05%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35%, 0.4%, 0.45%, and 0.5%. 

19 Details on the GARCH(1,1) estimation process are in Appendix D. 

Table 8 
Average expected delta-hedged call returns of two-way sorted portfolios, historical volatility estimated from simulated data, and implied 
volatility from Leland’s adjustment. For the simulation, we use 1,000 options for every combination of transaction costs (k/2 = 0.1%, 0.2%, 0.3%, 
0.4%, or 0.5%) and market maker position (long or short). Within the transaction cost groups k, every option is assigned to a quintile based on the 
difference between implied and historical volatility (IV–HV). The implied volatility is the one resulting from Leland’s adjustment. The historical 
volatility is measured from one year of simulated daily returns (with σ = 40%) for every option. The table reports the average delta-hedged returns for 
the combinations of transaction cost and IV–HV quintiles. We assume that the risk-premium increases with transaction costs. The risk premiums 
(above the risk-free rate of 5%) are 0%, 5%, 10%, 15%, and 20% from the lowest to the highest transaction cost category.  



out of 24 cases. Therefore, these findings are in line with the results and conclusions from Table 3. 

5.2. Alternative sample periods 

Until 1999, options were often listed only on one exchange, which governed all interactions between market participants. In 
October 1999, the SEC ordered the option exchanges to develop a plan to electronically link the various market centers. Battalio et al. 
(2004) show that option market efficiency improved during this period when the equity option market evolved toward a national 
market system. The final implementation of the SEC’s options exchange linkage plan and more stringent quoting and disclosure rules 
became effective in April 2003. We therefore check whether our results are driven by market inefficiencies before these structural 
changes took place and exclude the period before May 2003 from our analysis. In a next step, we also exclude the period during the 
financial crisis to ensure that the market turmoil in this period does not drive our results. 

The portfolio construction and return calculation for Table 10 are the same as for Table 2. The first column returns correspond to 

Panel A: Alternative volatility estimates  

Delta-hedged calls Delta-hedged puts  

5–1 low ill. 5–1 high ill. 5–1 high ill.- 5–1 low ill. 5–1 low ill. 5–1 high ill. 5–1 high ill.- 5–1 low ill. 
GARCH(1,1) 0.3% 1.2% 0.9% 0.3% 1.2% 0.8%  

(1.35) (4.12) (2.47) (1.61) (5.01) (2.65) 
6-month 0.7% 2.1% 1.5% 0.6% 2.1% 1.5%  

(2.52) (7.65) (4.01) (2.84) (7.44) (4.72) 
2-year 0.7% 2.0% 1.3% 0.7% 2.0% 1.4%  

(2.98) (6.72) (4.17) (3.48) (7.54) (5.44)  

Straddles   

5–1 low ill. 5–1 high ill. 5–1 high ill.- 5–1 low ill.  
GARCH(1,1) 2.7% 8.3% 5.6%   

(1.29) (4.26) (2.25)  
6-month 5.9% 14.9% 8.9%   

(2.36) (8.05) (3.15)  
2-year 6.6% 13.1% 6.6%   

(3.19) (7.06) (2.50)  

Panel B: Alternative illiquidity measures  

Delta-hedged calls Delta-hedged puts  

5–1 low ill. 5–1 high ill. 5–1 high ill.- 5–1 low ill. 5–1 low ill. 5–1 high ill. 5–1 high ill.- 5–1 low ill. 
ln(Size) 0.9% 2.1% 1.1% 0.8% 2.5% 1.6%  

(4.46) (6.85) (3.29) (4.99) (8.65) (5.72) 
Dollar Volume 1.0% 2.3% 1.3% 0.9% 2.3% 1.5%  

(3.25) (9.31) (3.70) (3.91) (9.22) (5.34) 
Roll 0.9% 2.8% 1.9% 1.0% 2.5% 1.5%  

(3.67) (6.51) (4.01) (4.71) (6.94) (4.04) 
Corwin–Schultz 1.1% 2.5% 1.4% 0.9% 2.4% 1.6%  

(5.38) (7.73) (3.99) (4.39) (8.03) (4.64) 
CRSP Spread 1.2% 2.5% 1.3% 0.7% 2.1% 1.4%  

(3.56) (10.45) (3.42) (3.11) (9.59) (4.67)  

Straddles   

5–1 low ill. 5–1 high ill. 5–1 high ill.- 5–1 low ill.  
ln(Size) 9.5% 15.7% 6.2%   

(4.44) (8.31) (2.35)  
Dollar Volume 8.6% 16.7% 8.2%   

(4.42) (8.25) (3.41)  
Roll 11.7% 19.2% 7.5%   

(4.65) (8.20) (2.44)  
Corwin–Schultz 11.5% 16.3% 4.8%   

(4.44) (9.94) (1.70)  
CRSP Spread 9.0% 16.6% 7.6%   

(4.49) (8.63) (3.55)   

Table 9 
Risk-adjusted post-formation returns with alternative volatility measures and stock illiquidity measures. This table presents the alphas (t- 
statistics) of a time-series regression of the portfolio returns on the Fama and French (1993) factors, the Carhart (1997) momentum factor, the Coval 
and Shumway (2001) excess zero-beta S&P 500 straddle factor, and the value-weighted average of the zero-beta straddles of the S&P 500 compo-
nents. The 5–1 portfolios from the highest and lowest illiquidity quintiles are constructed as in Table 3, but in the regression for Panel A, the HV 
measure is replaced with alternative volatility estimates and in the regression for Panel B, alternative illiquidity measures are used instead of the 
Amihud measure. We use the same HV measure for Panel B as in Table 3. The t-statistics for the coefficients in brackets are calculated with Newey and 
West (1987) standard errors.  



the 5–1 column returns in Table 2. We then exclude observations before the option market structure changes up to May 2003 and give 
the results in the second column. Next, we additionally exclude the financial crisis from June 2007 to December 2009 and give the 
results in the third column. 

The difference in the portfolio returns between the highest and lowest illiquidity quantiles for the period May 2003 to August 2015 
is similar to the difference for the complete sample period and generally statistically significant. Interestingly, the overall performance 
of the trading strategy that conditions on end-user demand is worse in all illiquidity quantiles if we exclude the period before the 
market reforms. The market seems to have become more efficient, while the link between stock illiquidity and option returns has 
remained stable. 

5.3. Daily holding period 

So far, we have used a monthly holding period for the options portfolios and start trading one day after the end-user demand proxies 
are observed (portfolio formation date). While this approach is interesting from an investment perspective, it may cause undesirable 
noise for two reasons. First, during the one-month holding period, option moneyness could change drastically and the returns of delta- 
hedged calls, puts, and straddles could be exposed to substantial underlying stock price risk. Second, from the portfolio formation date 
until trading initiation, market makers’ inventories could change signs and we would not correctly classify end-user demand any more 
after such a change had taken place. We therefore repeated our main analysis for Table 2 for a one-day holding period. The results are 
available upon request and show the same patterns as for the monthly holding period. Again, in the high demand columns, returns 
decrease in stock illiquidity while they increase in the low demand columns. This pattern holds for all three strategies and is even more 
pronounced than for the monthly holding period. So overall, the results point to a highly significant, robust relation between option 
returns and stock illiquidity once we condition on the expensiveness of options. 

6. Conclusion

This paper examines the relation between option returns and stock illiquidity. It is the first to present empirical evidence that the
underlying stock’s illiquidity is strongly related to option returns. We show in a cross-sectional analysis that the returns of delta-hedged 
calls, delta-hedged puts, and straddles increase with illiquidity if end-user demand is low and decrease with illiquidity if end-user 
demand is high. 

Jan. 1996 -Aug. 2015 May 2003 - Aug. 2015 May 2003–Aug. 2015 excl. Jun. 2007–Dec. 2009 

Panel A: Delta-hedged call returns (5–1) 

Stock illiquidity 1-low 0.7% 0.3% 0.3% 
2 1.0% 0.5% 0.6% 
3 1.4% 0.7% 0.9% 
4 1.9% 0.9% 0.8% 

5-high 2.3% 1.5% 1.6%  

5–1 1.6% 1.2% 1.3%  
t-stat 4.32 4.43 4.17 

Panel B: Delta-hedged put returns (5–1) 

Stock illiquidity 1-low 0.7% 0.3% 0.4% 
2 0.7% 0.4% 0.4% 
3 1.0% 0.5% 0.7% 
4 1.9% 1.0% 1.1% 

5-high 2.4% 1.6% 1.5%  

5–1 1.7% 1.3% 1.1%  
t-stat 6.46 5.15 3.80 

Panel C: Straddle returns (5–1) 

Stock illiquidity 1-low 6.9% 3.4% 3.6% 
2 7.1% 4.7% 4.5% 
3 10.5% 5.9% 5.8% 
4 14.8% 9.3% 7.2% 

5-high 16.5% 12.4% 11.8%  

5–1 9.6% 9.0% 8.2%  
t-stat. 3.55 3.24 2.48  

Table 10 
Post-formation returns for alternative sample periods. The sample between January 1996 and August 2015 includes 153,381 delta-hedged call 
returns, 142,267 delta-hedged put returns, and 135,149 pairs of call and put options for the straddle returns. The sample between May 2003 and 
August 2015 excludes the period before the SEC’s options exchange linkage plan became effective. In addition, the sample for the last column ex-
cludes the financial crisis between June 2007 and December 2009. The 5–1 portfolios within the stock illiquidity quintiles are constructed as for 
Table 2. Associated t-statistics are corrected for autocorrelation following Newey and West (1987).    



Our findings are in line with intermediaries considering different option hedging costs depending on stock illiquidity and being net
long in options on some stocks and short in options on others. A simulation study shows that if an intermediary is equally likely to be 
long or short in options on one underlying and accounts for realistic hedging costs when setting options prices, the resulting option 
returns are strikingly similar to those observed in our empirical data. 

We find no evidence that the returns of the analyzed option strategies can be explained by common risk factors. In particular, we 
find no explanatory power for proxies of the market variance risk premium and a correlation risk premium. Cross-sectional differences 
in stock volatility and option spread are also unable to explain the observed patterns of option returns. However, our results still leave 
room for alternative explanations based on market frictions or market incompleteness for two reasons. First, parts of the excess option 
returns (alpha) are unexplained by illiquidity. Second, stock illiquidity may well be correlated with other characteristics, like 
embedded options leverage or stock price jumps, and may therefore partly capture the corresponding effects on option returns. 

Appendix A. Illiquidity Measure Calculations 

Amihud measure: Following Cao and Han (2013), we calculate Amihud’s (2002) illiquidity measure for the month preceding the 
trading initiation date t as: 

ILLIQi,t
1/

mi,t

∑t 1

d t mi,t

⃒
⃒Ri,d

⃒
⃒

VOLDi,d
,

where mi,t is the number of trading days from last month’s trading initiation date until t - 1 with available return and volume data for 
stock i. The absolute daily total return 

⃒
⃒Ri,d

⃒
⃒ for stock i on day d is divided by the dollar trading volume VOLDi,d, which we calculate by 

multiplying the closing price for stock i on day d with the trading volume on that date. 
Roll measure: Roll (1984) introduced an estimator of bid–ask spreads based on the serial covariance of price changes. While changes 

of the fundamental stock value are assumed to be serially uncorrelated, closing prices are either bid or ask prices, which introduces 
negative serial correlation. We calculate the Roll spreads spR

i,t as: 

spR
i,t 2 Covi,t

√
,

where Covi,t is the covariance of the daily returns of the close prices for stock i in the month preceding the trading initiation date t. This 
is an estimate of the relative bid–ask spread. For the descriptive statistics in Table 1, we set all observations with positive covariance 
equal to zero. To allow for a unique categorization in quintiles, we drop observations with positive covariance values for the analyses 
for Table 9. 

Corwin–Schultz measure: Corwin and Schultz (2012) show that bid–ask spreads can be estimated from daily high and low prices. 
Since daily high (low) prices are almost always buy (sell) trades, the ratio of these prices reflects the fundamental stock volatility and 
its bid–ask spread. The suggested bid–ask spread estimator uses the fact that the fundamental volatility increases proportionally with 
the length of the observation interval while the bid–ask spread does not. For every overlapping two-day period d, d+ 1 within the 
month preceding the trading initiation date t, we calculate: 
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where Hi,t
d and Li,t

d are the high and low prices, respectively, for stock i on day d and Hi,t
d,d+1 and Li,t

d,d+1 are, respectively, the high and low 
prices in the two-day period. The bid–ask spread estimate for the two-day period can then be calculated as: 
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The estimate of the relative spread for stock i on the trading initiation date t is the average of the two-day spread estimates for the 
preceding month. We set negative two-day spread estimates to zero before we calculate the average. 

CRSP spread: We calculate the average bid-ask spread from daily CRSP data for the month preceding the trading initiation date t as: 

CRSP Spreadi,t
1/

mi,t

∑t 1

d t mi,t

Askd Bidd

(Askd + Bidd)/2
,

where mi,t is the number of trading days from last month’s trading initiation date until t – 1. Following Chung and Zhang (2014), we 
exclude all daily spreads that are greater than 50% of the quote midpoint, to reduce the effect of data errors and outliers. 

Size and trading volume: We also use the underlying’s market capitalization and trading volume as illiquidity measures. We calculate 



Ft,t+τ
∏N

d 1
(1+ fd),

where N is the number of trading days between t and t + τ and fd is the daily factor return of the MKT Rf , SMB, HML, and MOM 
portfolios. 

Zero-beta straddles: We use index and index component straddle returns to control for market volatility risk and common individual 
stock variance risk. We form zero-beta straddles similar to those of Coval and Shumway (2001). The zero-beta straddles are constructed 
the same day we initiate our trading strategy with one ATM call and one ATM put on the underlying. Call returns rC,i,t and put returns 
rP,i,t, referring to the underlying stock or index i, are calculated with the option payoffs at t + τ and the option mid prices at t as the 
reference beginning price. These returns are then weighted so that the portfolio beta equals zero, leading to the zero-beta straddle 
return rzb,i,t . 

Appendix C. Simulation of Transaction Cost Effects 

Our simulation study uses call option prices according to Leland’s (1985) model. Leland uses a Black–Scholes setting with pro
portional transaction costs for the underlying and derives the following modification of the variance used in the Black–Scholes model: 

σ2
m σ2

(

1+
k
σ

2
πδt

√

sign(VSS)

)

,

where k (Sbid Sask)/Smid denotes the round-trip transaction costs for trading in the underlying, σ is the Black–Scholes volatility, and 
δt is the time interval between two hedging revisions. The sign function on the gamma (sign(VSS)) of the end-user’s option position 
leads to higher volatility (price) when the market maker has to hedge a short option position and decreases the volatility (price) when 
the market maker has a long position. The higher (lower) option prices for short (long) positions can be thought of as compensation for 
the market maker to cover the additional hedging costs due to transaction costs.20 Leland shows that this modified variance results in 
an upper (lower) bound of the option price from a discrete-time replication strategy with proportional transaction costs. 

Leland’s (1985) approach has the important feature that the standard deviation of the hedging profit and loss (P&L) is close to the 
standard error of a discrete-time Black–Scholes hedging strategy without transaction costs. If the market maker adjusts the volatility 
and therefore the price of the option with Leland’s adjustment and uses Leland’s delta for hedging, the resulting P&L distribution is, 
ceteris paribus, close to the P&L distribution in a frictionless market with the usual Black–Scholes pricing and hedging at the same 
frequency. Using Leland’s adjustment for pricing and hedging accounts for transaction costs but does not change the resulting risks of 
the hedged option position. This enables us to interpret the effect of transaction costs independently of the effects described by 
Gârleanu et al. (2009). While their work concentrates on the price effects of unhedgeable risks, the Leland adjustment can be seen as 
the incremental price change due to transaction costs. 

In our simulation, we consider a market maker who manages options on several underlyings and accounts for transaction costs by 
using Leland’s (1985) adjustment. We simulate 10,000 underlyings following uncorrelated geometric Brownian motions with a 
volatility σ of 40%.21 For every underlying, there is one ATM call option with a strike of 100 and a time to maturity of one month. The 
risk-free rate r is 5%. The market maker is long in 50% of the call options and short in the other 50%. When the market maker is trading 
the underlying, there are transaction costs k/2 that are proportional to the stock price (relative half-spread). The transaction costs are 
either 0.1%, 0.2%, 0.3%, 0.4%, or 0.5%, all with equal proportion across stocks.22 To capture potential illiquidity premiums of the 
underlying stocks, we consider drift rates that increase with transaction costs, taking values of 5%, 10%, 15%, 20%, and 25%, 

20 In this setting, the half spread would also be equal to Amihud’s measure for a trading volume of one.  
21 The average implied volatility in our delta-hedged call sample of Table 1 is 41%.  
22 Bessembinder (2003) reports large, medium, and small New York Stock Exchange stocks’ average quoted half bid–ask spreads, which are equal 

to 0.2%, 0.5%, and 0.8%, respectively. 

the log of market capitalization (size), where market capitalization is the number of shares outstanding times the underlying closing 
price the day preceding the trading initiation date. A stock’s dollar trading volume is the number of shares traded on all U.S. exchanges 
the day preceding the trading initiation date multiplied by the closing prices. Shares outstanding, trading volumes, and the closing 
prices are from the OptionMetrics database. 

Appendix B. Risk Factor Calculations 

Fama–French and Carhart factors: Since the returns of delta-hedged calls and straddles could still be exposed to stock price risk, we 
consider the Fama and French (1993) and Carhart (1997) factors as potential explanatory variables. These factors are calculated from 
the daily factor returns from Kenneth French’s website. Since our monthly holding period starts at the beginning of the fourth week of 
the month and ends at the end of the third week, we do not use standard monthly returns. Instead, we compound the factor returns over 
the holding period from the trading initiation date until the trading day prior to expiration, at which point we also calculate the option 
payoffs. We calculate the factor return for one month as: 
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To obtain our results, we first sort options on their underlying liquidity costs into five groups, each consisting of 2,000 option 
observations. Within these groups, we sort the options again into quintiles based on their IV–HV values, where the historical volatilities 
are estimates based on one year of simulated daily return data with a true return volatility of 40%. Given the number of 400 obser
vations in each portfolio, the required expectation is very well approximated by the mean value. For the results shown in Fig. 2, we use 
a sorting that is based on deciles with respect to illiquidity and on tertiles with respect to IV–HV. 

Appendix D. GARCH calculations 

If available, we use five years of daily return data for the estimation of the GARCH(1,1) parameters. We drop a stock from the 
GARCH estimation if less than one month of return data are available, if five consecutive trading days have no return data, or if more 
than 10% of the returns are zero. We employ a maximum likelihood estimation for the GARCH(1,1) equation on the portfolio for
mation date t - 1: 

σ2
i,t 1,d ωi,t 1 + αi,t 1u2

i,t 1,d 1 + βi,t 1σ2
i,t 1,d 1,

where ωi,t− 1, is the product of the parameter γi,t− 1 and the long-term variance Vi,t− 1 for stock i, σ2
i,t− 1,d− 1 is the estimated variance for 

stock i on day d within the estimation period, and u2
i,t− 1,d− 1 is the squared stock return of the previous trading day. The weights γi,t− 1, 

αi,t− 1, and βi,t− 1 have to satisfy γi,t− 1 + αi,t− 1 + βi,t− 1 1. Once ωi,t− 1, αi,t− 1, and βi,t− 1 are estimated, the long-term variance Vi,t− 1 can be 
deduced from this condition. Hull and White (1987) have suggested using the average variance rate during the life of the option when 
volatility is stochastic but uncorrelated with the asset price. We use the GARCH(1,1) model to forecast the volatility on the days 
between trading initiation t until maturity t+ τ. The average of these forecasts equals: 

σ(t + τ)2
i 252

(

Vi,t 1 +
1 eτ · ln(αi,t 1+βi,t 1)

ln
(
αi,t 1 + βi,t 1

)
τ

[
σ2

i,t 1,t 1 Vi,t 1

]
)

,

assuming 252 trading days per year. 
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