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A B S T R A C T   

With the increasing threat of wildfires globally, improving the availability of accurate, spatially explicit fuel type 
information is critical for fire behavior predictions that can support management decisions to mitigate fire 
hazards. Since mapping surface fuel types using airborne or spaceborne sensors relies on ground truth data from 
laborious field assessments, here we propose a novel proximate sensing-based approach for classifying surface 
fuel types from in-forest RGB photographs using convolutional neural networks (CNNs). We test different con
figurations of deep learning models that integrate photographs of the forest stand and the forest floor as well as 
time series of multispectral satellite data from Sentinel-2 using long short-term memory (LSTM), and compare 
their performance in classifying understory and litter fuel types of Central European forests. We also investigate 
how ensemble approaches based on majority voting can help to improve classification results. We found that 
understory fuel types were classified with highest accuracy after cross-validation (0.78) using a combination of 
horizontal stand photos and forest floor photos. This accuracy was further improved by post-classification de
cision fusion of model predictions on multiple photographs of a forest stand and by considering the model’s 
confidence in its predictions (0.85). Litter fuel type classification based on forest photographs resulted in lower 
overall accuracy (0.60), but using model ensemble predictions on both photographs and Sentinel-2 time series 
significantly improved the results (0.72). We found that the accuracy of our models was mostly limited by 
naturally smooth transitions between the defined fuel type classes and the co-occurrence of multiple fuel types in 
a photograph. This study shows that deep learning methods can provide an efficient means to assess fuel types 
from GNSS-located photos of forest stands as a basis for generating and validating fuel type and finally fire risk 
maps. The necessary data can be readily collected by forest managers or citizen scientists.   

1. Introduction 

Forests of Central Europe are becoming increasingly vulnerable to 
wildland fires as a consequence of global warming (de Rigo et al., 2017; 
Forzieri et al., 2021). Higher temperatures, more frequent and intense 
droughts in combination with other abiotic and biotic stressors affect the 
health of temperate forests and increase vegetation flammability (Millar 
and Stephenson, 2015; Spinoni et al., 2018; IPCC, 2019). In the drought 
years 2018 and 2019, several Central European countries reported a 
higher number of fires and a few exceptionally large burnt areas 
compared to the 10-year average from 2008 to 2017 (European Com
mission, 2021), indicating a link between extreme droughts and 
enhanced wildfire activity. This is in accordance with future projections 
of climate-driven wildfire activity that predict higher fire probabilities 

in highly productive, previously flammability-limited regions due to 
longer fire weather seasons (Jolly et al., 2015; Abatzoglou et al., 2019). 
Model simulations suggest a lengthening of mid-latitude and boreal fire 
season by up to three months by the end of the 21st century (Veira et al., 
2016), leading to an expansion of fire-prone regions in Europe. Wildfires 
can pose a serious threat to environment and society, in addition to 
causing major damage to timber volume and loss of carbon stocks, if 
adaptation measures are not taken (Seidl et al., 2014; Khabarov et al., 
2016). As fire behavior is strongly determined by fuel characteristics, 
suitable management practices to reduce forest fire hazard require 
spatially explicit information about forest fuel availability, composition 
and structure (Keane, 2013). 

The complex arrangement of fuels in a forest is often vertically 
stratified into canopy, surface and ground fuels. Surface fuels by 
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definition comprise all biomass within two meters above the ground 
surface: senesced leaves, needles and other nonwoody discarded plant 
material (litter), fine and coarse woody debris from trees and shrubs 
(twigs, branches and logs), vascular plant biomass (grasses, herbs, forbs, 
shrubs and young trees) as well as lichens and mosses. These fuel 
components are each characterized by a specific particle size and shape, 
mineral and heat content, and are arranged with a certain compactness 
and continuity, thus showing distinct combustion properties (Coun
tryman, 1964; Chuvieco et al., 2003). Fuel composition and structure 
strongly vary across spatio-temporal scales due to different environ
mental conditions and management practices. For simplification, it is 
common among practitioners to summarize the fuel properties relevant 
for fire hazard estimation of a forest stand as “fuel types”, which are 
usually determined by the dominant fuel component in an area (Keane, 
2015). A fuel type is assumed to “exhibit characteristic fire behavior 
under defined burning conditions” (Merrill and Alexander, 1987), as 
manifested by ease of ignition, rate of spread, fireline intensity and fuel 
consumption (Varner et al., 2015). Commonly distinguished are i) her
baceous fuel types that form loosely packed fuelbeds that are easy to 
ignite and foster rapid fire spread, ii) shrub fuel types with diverse size 
and distribution of fuel particles which can burn at high intensities 
depending on species composition and compactness, iii) litter fuel types 
that dry quickly and ignite easily, but burn at low intensities and iv) 
woody fuel types dominated by dead woody fuel particles with different 
rates of drying depending on particle size, that can foster intense surface 
fires (Sandberg et al., 2001; Keane, 2015). The detailed numerical 
description of the physical properties of a fuel type is referred to as “fuel 
model” (Andrews and Queen, 2001) and is often used as a set of inputs to 
fire behavior models (Finney, 2006; Andrews, 2014) to help forest 
managers predict potential fire behavior and decide for effective fuel 
management options. 

Accurate spatial information on surface fuels is fundamental for 
appropriate forest and fire management strategies, but mapping surface 
fuel types remains a difficult task. Traditional mapping methods based 
on recordings of fuel situations in the field are very time consuming and 
costly; nevertheless, such field surveys are still required as primary 
source of data and as ground reference for fuel type maps produced 
using other datasets, including those collected by remote sensing 
(Arroyo et al., 2008). Recording fuel types can be aided by the use of 
photographs of representative fuel types that can be matched by the 
observer in the field to the forest stand situation encountered to facili
tate classification (Keane, 2015). Extensive photo series have been 
developed for fuelbeds across the USA (Vihnanek et al., 2009; Wright 
et al., 2010), and also in other countries (Ottmar et al., 2004; Morfin- 
Rios et al., 2008). These even allow to estimate fuel component load
ings, but the technique is prone to assignment errors and limited 
repeatability across observers has been reported (Sikkink and Keane, 
2008; Keane, 2015). Fuel type maps are often generated using other land 
classifications such as vegetation maps by assigning fuel types to existing 
map categories (McKenzie et al., 2007); however, fuels are not always 
related to vegetation categories and map resolutions can be much 
coarser than the scale of fuel variation (Keane, 2015). Remote sensing 
methods offer another means to create fuel type maps across large areas: 
multispectral and hyperspectral data from passive sensors like Landsat 
TM, ASTER, AVIRIS and Hyperion have been extensively used in clas
sification approaches (Riaño et al., 2002; Jia et al., 2006; Lasaponara 
and Lanorte, 2007; Keramitsoglou et al., 2008), many of them again 
relying on associations with vegetation categories. In terms of mapping 
surface fuel types, the main drawback of passive optical sensors is their 
incapability to penetrate the forest canopy. Active sensors like LiDAR 
systems partly overcome the problem and have been successfully used to 
extract information about vertical fuel structure (Riaño, 2003; Erdody 
and Moskal, 2010; Botequim et al., 2019), often in combined approaches 
with multispectral data (Mutlu et al., 2008; García et al., 2011; Chirici 
et al., 2013; Domingo et al., 2020). However, acquisition costs still limit 
the availability of LiDAR data across large areas. Moreover, LiDAR data 

hardly provide information about the type of fuel encountered beneath 
the tree crown, which is yet essential to fire behavior predictions. 

Field photographs obtained within forest stands capture the relevant 
information about surface fuel types and are often used by fuel re
searchers as ancillary information to determine ground truth and vali
date fuel type maps (Mutlu et al., 2008; García et al., 2011; Alonso- 
Benito et al., 2016; Botequim et al., 2019). However, visual interpreta
tion of photos carried out by humans is time-consuming and subjective, 
whereas automated interpretation of images by deep neural networks 
can significantly reduce the time required for this task and also increase 
the repeatability of the interpretation. Such deep learning-based models 
allow to operationalize expert knowledge and make this knowledge 
available to interested parties as for example demonstrated in several 
projects providing deep learning models in applications to automatically 
identify plants and animals, e.g., Pl@ntNet or BirdNET (Goëau et al., 
2013; Kahl et al., 2021). 

In this study, we apply convolutional neural networks (CNNs), a class 
of deep learning models that are particularly suited for analyzing image 
data. CNNs process images through multiple layers of convolutional 
filters, thereby extracting contextual 2D spatial features of varying levels 
of abstraction, allowing the models to effectively learn features relevant 
to a specific task in an end-to-end training directly from the data. They 
have been applied with great success in computer vision tasks such as 
image classification (Sladojevic et al., 2016; Krizhevsky et al., 2017), 
object detection (Tompson et al; Chen et al., 2014), and semantic seg
mentation (Long et al., 2015; Chen et al., 2018), but have only recently 
been explored in ecology and vegetation science (see reviews by Christin 
et al., 2019; Kattenborn et al., 2021). Vegetation properties such as 
species information and plant traits have been successfully extracted 
from plant photographs (Wäldchen and Mäder, 2018; Schiller et al., 
2021), while highly accurate vegetation mapping has been achieved on 
different types of remote sensing data (Langford et al., 2019; Guirado 
et al., 2020; Schiefer et al., 2020). Most studies applying CNNs to field 
photographs are found in agriculture, e.g., for identification of crop 
types (Ringland et al., 2019; Wang et al., 2020) or the detection of weed 
infestations (Gao et al., 2020), as well as in land use or land cover 
classifications (Xu et al., 2017; Cao et al., 2018), while rather few studies 
from the field of forest ecology exist: these have attempted, for example, 
to detect the regrowth of woody vegetation (Bayr and Puschmann, 
2019), classify tree species and estimate stock volume by segmentation 
(Liu et al., 2019), monitor plant phenology stages (Correia et al., 2020) 
or estimate defoliation of forest trees from ground-level images (Kälin 
et al., 2019). Despite the increasing use of deep learning models in 
ecological research, few studies currently aim to understand the 
behavior of a network and, thus, increase the interpretability and 
trustworthiness of the predictions; although this would also help to 
better evaluate the potential and limitations of deep learning models for 
these applications. Moreover, it has rarely been assessed how ground- 
based imagery can be coupled with remote sensing data to harness 
multiple data sources to make more reliable predictions for a task. In the 
context of fuel research in forest ecosystems, the ubiquitous availability 
of multispectral satellite data with high spatiotemporal resolution pro
vided by the Sentinel-2 satellites provides an excellent opportunity to 
test whether time series of Sentinel-2 data can complement field-level 
information derived from forest photographs to predict surface fuel 
types in Central European forests. Since multi-temporal satellite data 
have proven useful to classify tree species and crops based on their 
different phenological cycles using varieties of recurrent neural net
works (RNN) such as Long Short-Term Memory (LSTM) (Zhong et al., 
2019; Campos-Taberner et al., 2020; Xi et al., 2021), they also hold the 
potential to differentiate between fuel types, which are influenced by 
dominating tree species and stand density. In this work, we present a 
new approach for classifying surface fuel types using RGB imagery from 
within a forest stand in combination with Sentinel-2 time series in a deep 
learning framework. We specifically address the following research 
questions: 
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i. How accurately can we classify surface fuel types from different 
types of within stand forest photographs using CNNs?  

ii. Does the integration of Sentinel-2 satellite time series with LSTM 
improve classification results and does it have the potential to be 
used as a stand-alone methodology?  

iii. Do ensemble approaches help to improve the results?  
iv. Which image regions of forest photographs and which spectral 

and temporal features from Sentinel-2 time series are important 
for classifying surface fuel types? 

2. Methods 

2.1. Study area 

We collected surface fuel data from 278 plots in temperate forests in 
Germany from May to October in 2020 and 2021, focusing on two main 
study areas. One is located in south-western Germany, encompassing 
lowland pine-dominated (Pinus sylvestris) mixed forests on sandy soils of 
the upper Rhine plain (Fig. 1-1), submontane mixed forests with beech 
(Fagus sylvatica), oak (Quercus petraea) and douglas fir (Pseudotsuga 
menziesii) in the hilly landscape of the Kraichgau (Fig. 1-2), submontane 
beech, spruce (Picea abies) and silver fir (Abies alba) forests in the 
northern Black Forest (Fig. 1-3), and dry submontane pine forests on 
sandstones of the Palatine Forest (Fig. 1-4). The other study area is 
located in the state of Brandenburg in north-eastern Germany and 
consists of lowland pine forests on very dry sandy soils (Fig. 1-5), which 
are the most fire-affected forest sites in Germany. We thus covered the 
six main overstory tree species in Central Europe, but also included less 
frequently occurring Larix decidua, Quercus rubra, Carpinus betulus and 
Robinia pseudoacacia stands. We attempted to cover different age classes 
and stand structures, ranging from very young stands consisting only of 
regenerated trees with heights of less than 5 m, to stands with larger 
trees and closed canopies, to old stands with low tree density and more 
open canopies. 

2.2. Field measurements 

We recorded overstory tree species and cover, understory tree/shrub 
cover and average height, herb cover and height, moss and litter cover 

on 278 circular plots with a radius of 7.5 m (176.6 m2). We also recorded 
the litter type and the presence of fine woody fuels. In 179 of the plots, 
we sampled all surface fuel components (seedlings, shrubs, herbaceous 
species, dead woody fuels, litter) following an established protocol of 
the USDA Forest Service (Woodall and Monleon, 2008), to later calcu
late fuel loadings for each component. Details of the sampling procedure 
and data preparation can be found in the supplementary material. 
Before sampling, we systematically photographed all plots. Twelve 
horizontal photos were taken from a circle with 10 m radius, facing the 
center of the plot, with a spacing of 30◦ between the photos. We also 
photographed the transects along which dead woody fuels were 
measured (see supplementary material), from four directions at 90◦ to 
each other, obtaining 12 forest floor photos per plot. 

2.3. Fuel type classification 

Unsupervised k-means clustering was performed on the fuel loading 
data to identify the most important clusters in the data. The data were 
then presented along with the photographs to two fuel experts, who 
related fuel and species information to effects on fire behavior. The final 
fuel type classification and respective thresholds to separate between 
classes were based on field data and expert opinion. Understory and 
litter type were considered most decisive to fire behavior and were thus 
used as sub-classification systems to constitute a fuel type. 

Seven understory fuel types with expected different effects on fire 
behavior were identified (Fig. 2): 1) Broadleaved tree or shrub under
story (hereafter referred to as shrub-broadleaf) mainly encountered as 
regeneration of Fagus sylvatica, Carpinus betulus and Prunus serotina, with 
large leaves that have high surface area-to-volume (SAV) ratio and water 
content, and the largest share of biomass allocated in stem and coarse 
branch wood. 2) Needle-leaved trees in the understory (shrub-needle) 
from regeneration of Abies alba, Picea abies, Pseudotsuga menziesii or 
Pinus sylvestris, that have leaves with smaller SAV ratio, higher lignin 
and terpenoid content (Perry et al., 1987; Scott and Binkley, 1997; 
Bohlmann and Keeling, 2008) and generally more biomass allocated in 
fine plant parts. 3) Herbaceous nongrassy species (forb) with high water 
content (we also included low-growing Rubus fruticosus agg. in this group 
due to its high moisture), which have a lower fire hazard than 4) grass 
species (grass) such as Brachypodium sylvaticum or Deschampsia flexuosa, 

Fig. 1. Study areas for fuel type sampling in south-western and north-eastern Germany: 1) upper Rhine valley 2) Kraichgau 3) northern Black Forest 4) Palatine 
Forest 5) Brandenburg. 
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especially after curing of the latter at the end of the season, 5) dwarf 
shrubs (dwarf shrub), in particular Calluna vulgaris and Vaccinium myr
tillus, which can burn well even when green and 6) thick, continuous 
moss layers (moss) of species such as Polytrichium formosum or Pleuro
zium schreberi that can dry to very low moisture contents and provide 
significant fuel loadings. Cover of at least 50 % (within 2 m above the 
ground) of the respective understory type was considered necessary to 
achieve significant loading and continuity that would impact fire spread 
and was therefore chosen as threshold for the class assignment. If none 
of the aforementioned understory types was present with sufficient 
cover, the plots were assigned to the 7) litter (litter) fuel complex. 

The litter fuel types relevant to fire behavior were distinguished 
based on leaf morphology of the litter, assuming that its relation with the 
compactness of the litter layer strongly influences the availability of 
oxygen in the combustion process. We therefore distinguished between 
broadleaf (bl), short-needle (sn) and long-needle (ln) litter (Fig. 3). We 
also assumed that the different chemical composition, especially of 
broadleaf and coniferous litter (Philpot, 1970; Scott and Binkley, 1997), 
affects the combustion properties. As mixtures between these litter types 
are very common in Central European forests, we also included the 
mixed classes broadleaf-short-needle (bl-sn) and broadleaf-long-needle 

(bl-ln), assuming altered combustion properties compared to stands 
with pure litter types. In our study areas, we rarely encountered a mix of 
long-needle and short-needle litter and therefore assigned these plots to 
the dominating litter type. We found very high loads of fine woody 
debris in some short-needle stands, which could strongly alter the in
tensity of a fire, and therefore defined a separate litter type (sn-fwd). A 
simplified litter classification with only four different litter types, ach
ieved by combining the classes bl-ln with bl-sn and sn with sn-fwd, was 
also tested. Table 1 provides an overview of the fuel type classifications 
and the number of plots surveyed for each class. 

2.4. Image data preprocessing 

Our dataset consisted of 3336 horizontal forest stand photos (12 per 
plot) and the same amount of forest floor photos, each 4000 × 3000 
pixels in size. Single missing or damaged photos were replaced by 
duplicating a randomly selected photo from the same plot to ensure 
equal sample size for each plot. Horizontal photos were resized to 512 ×
512 pixels before feeding them into the model and pixel values were 
normalized to the interval (0, 1) to allow faster convergence of the 
model. During model training, on-the-fly data augmentation was 

Fig. 2. Different understory fuel types. From top left to bottom right: Two examples of shrub-broadleaf (a-b), two examples of shrub-needle (c-d), then one example 
each of forb (e), grass(f), dwarf-shrub (g), moss(h) and litter(i). 

Fig. 3. Examples of forest floor mosaics for a) broadleaf (bl), b) short-needle (sn), c) long-needle (ln) and d) short-needle fine woody debris (sn-fwd) litter.  
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performed, i.e. slight transformations were applied to the photos to in
crease the variation in the dataset during each epoch of training. These 
transformations included small image rotations, horizontal and vertical 
shifts, random horizontal flips and brightness changes within a range of 
values that was previously identified to produce realistic results. Forest 
floor photos were processed differently to avoid a loss of details when 
resizing the images to smaller sizes processible by the model: We 
randomly cropped 9 small image patches (224 × 224 pixels) from the 
forest floor photos and reassembled them to a 3 × 3 mosaic with a size of 
672 × 672 pixels. Strong illumination variations within an image due to 
shadow effects were reduced by applying contrast limited adaptive 
histogram equalization (CLAHE) (Pizer et al., 1987) to each image 
before cropping. Similar to the horizontal photos, pixel values of the 
mosaics were normalized to the interval (0, 1). During training, forest 

Fig. 4. Architecture of the CNN model based on VGG-16 for the classification into litter and understory fuel types. The model accepts either horizontal or forest floor 
photos as inputs. These are processed through five blocks of convolutional layers with increasing number of filters, while their resolution is decreased through 
pooling operations. The last fully-connected layer in the classifier model consists of 6 neurons in litter classification and 7 neurons in understory classification which 
give the probability values for a photo belonging to the respective classes. 

Fig. 5. Architecture of the LSTM model (left) and structure of a LSTM cell (right). The LSTM model accepts the 11 time series (features) derived from Sentinel-2 
images, with 72 time steps in each series. The time series data is processed through 3 bidirectional LSTM layers, each of which contains a LSTM cell as repeating 
module that passes the (filtered) information from each time step in forward and backward direction and outputs a vector of length 100 (hidden state vector). Based 
on this output, the time series are assigned to different understory and litter fuel types. 

Table 1 
Overview of the recorded plots in each fuel type classification.  

understory 
fuel type 

no. 
ofplots 

litter 
fuel 
type 

no. 
ofplots 

simplified 
litter 
fuel type 

no. 
ofplots 

shrub-broadleaf 39 bl 73 bl 73 
shrub-needle 33 bl-ln 45 ln 44 
forb 34 bl-sn 37 sn 79 
grass 32 ln 44 mixed 82 
moss 28 sn 61   
dwarf-shrub 19 sn-fwd 18   
litter 93      
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floor mosaics were randomly rotated by 90◦ degrees, but received no 
further transformations. 

2.5. Satellite data preprocessing 

We constructed time series of multispectral Sentinel-2 satellite data 
from the Level-2A surface reflectance product using Google Colab as 
Python interface to Google Earth Engine (GEE). Therefore, we selected 
all available scenes with less than 70 % cloud cover above our study 
areas in the 3-year period from July 2018 to June 2021. We used the 
Sentinel-2 cloud probability product and near-infrared reflectance to 
mask out cloud and cloud shadow pixels in the individual scenes. We 
then extracted pixel reflectance from 10 spectral bands with 10 to 20 m 
spatial resolution (visible, red-edge, near-infrared, shortwave-infrared 
bands) at our field plot locations. In addition to the spectral bands, we 
calculated the normalized difference vegetation index (NDVI) as an in
dicator of photosynthetic activity / vegetation greenness for each 
observation. To obtain a time series dataset equal in size to our photo 
dataset (3336 samples, 12 per plot) and increase the variability among 
time series of one plot, we binned the Sentinel-2 observations into 14- 
day intervals and randomly selected one observation from each 14- 
day interval to construct 12 slightly different time series for each of 
the 11 features per plot, with 72 time steps in each feature. Due to the 
cloud masking procedure, we obtained varying amounts of valid data 
points in the time series depending on the plot location. We linearly 
interpolated missing observations and smoothed the time series using a 
Savitzky-Golay filter (Savitzky and Golay, 1964). The final input to the 
LSTM model was a 72 × 11 matrix (time steps × features) for each 
sample. 

2.6. CNN architecture 

We tested different CNN architectures typically used for image 
classification tasks, including VGG, Inception and EfficientNet. We ach
ieved the best results using VGG-16 (Simonyan and Zisserman, 2015) 
with weights pre-trained on the ImageNet dataset as backbone. VGG-16 
uses 5 blocks of consecutive 2D convolutions with a filter size of 3 × 3 
and Rectified Linear Unit (ReLU) activation. Each block is followed by a 
max-pooling layer with stride 2 that reduces the resolution of the layers, 
allowing the transition from lower-level to higher-level image feature 
extraction. To reduce the number of trainable parameters in the model, 
we froze the layers in the first two convolutional blocks, i.e. their 
weights were not updated during training, so that low-level image fea
tures such as edge detectors were directly adopted from the pre-trained 
model. The convolutional layers deeper in the model were retrained on 
our dataset to allow the model to learn the higher-level concepts specific 
to our problem. The outputs from the VGG-16 backbone were then 
summarized in a global average-pooling layer and processed through a 
classifier model consisting of two fully connected layers and a final 
classifier with softmax activation, computing the class probabilities for 
the litter and understory fuel types, respectively. To limit overfitting and 
improve the model’s ability to generalize, a 50 % dropout layer and L2 
weight regularization with the regularization rate set to 0.01 were used. 
A multi-input model was constructed using two VGG-16 branches, which 
were concatenated before the final classifier model, to process hori
zontal and forest floor photos in parallel. A summary of the architecture 
of the CNN model is provided in Fig. 4. 

2.7. LSTM architecture 

We used a long short-term memory network (LSTM) to classify litter 
and understory fuel types based on the time series extracted from 
Sentinel-2 acquisitions. LSTM can learn long-term dependencies in se
quences of data without suffering from the vanishing gradient problem 
that can occur when training normal recurrent neural networks (RNN) 
(Hochreiter and Schmidhuber, 1997). This is achieved by enforcing a 

constant error flow through the network by regulating the information 
flow through LSTM units called cells. The memory content of a cell (cell 
state c) is controlled and protected by three sigmoid gate units (σ): the 
forget, input and output gates. The forget gate takes the output of the 
previous cell (ht-1) and the current input (xt) and decides which part of 
the memory content of the cell (ct-1) will be thrown away. The input gate 
similarly uses the inflowing information to decide which parts of the 
memory will be updated, and a tanh layer gives weights to the respective 
values to be added to the current state. The new cell state (ct) is then 
passed through another tanh layer (to scale the values between − 1 and 
1) and finally through the output gate, which decides what part of the 
cell state will be passed on to other cells (output values ht). In this way 
the cells effectively discriminate between currently useful and irrelevant 
memory contents while ensuring constant error backpropagation to 
bridge even extended time intervals. As an extension of normal LSTMs, 
bidirectional LSTMs look at a time series from both forward and back
ward directions, allowing them to learn temporal dependencies using 
information from past and future time steps (Schuster and Paliwal, 
1997). We used three bidirectional LSTM layers with 100 hidden units 
and 20 % dropout each to process the time series of the 10 spectral bands 
and NDVI from Sentinel-2, followed by a fully-connected layer and a 
final softmax layer to compute the class probabilities for the desired 
outputs. A summary of the architecture of the LSTM model is provided in 
Fig. 5. 

2.8. Model training 

The dataset was split into a training/validation set and an indepen
dent test set using stratified 10-fold cross validation. The test set thus 
contained 336 samples (photos / time series) from plots that the model 
had never seen during training, and it had the same distribution of 
classes as the full dataset. The training/validation set was split in a ratio 
of 80/20, resulting in 2400 samples for training and 600 for validation. 
Litter and understory fuel types were converted to one-hot encoded 
target variables before being fed into the network. The network was 
trained for a maximum of 50 epochs with a batch size of 32, i.e. 32 
samples of the training dataset were shown to the network before the 
parameters were updated, while the entire training dataset was shown to 
the network a maximum of 50 times. To account for the imbalanced 
distribution of classes in our dataset, class weights were calculated by 
inversely relating occurrences per class to the total number of samples 
and used in training to weight up underrepresented classes. We tested 
five different combinations of input data with our models (Table 2): 2 
CNNs were trained with only horizontal forest photos or only forest floor 
photos, respectively. Another CNN was trained with both horizontal and 
forest floor photos in two parallel VGG-16 branches. The LSTM model 
was trained with the Sentinel-2 time series, and a combined CNN-LSTM 
model was trained with all three data sources simultaneously in three 
parallel branches. The individual branches of the multi-input models 
were concatenated before the final classifier to arrive at a single joint 
prediction. For the CNN models and the multi-input models, we used the 
robust Adam optimizer with a learning rate of 0.0001 as optimization 
algorithm. The LSTM was optimized using RMSprop with a learning rate 
of 0.0001 and momentum set to 0.8, as determined by a hyperparameter 
grid search. The loss function to be minimized was categorical cross- 
entropy for all outputs. The learning rate was reduced during training 
when validation loss stopped improving for two epochs and training was 
stopped early if the loss did not improve for four epochs. 

Model development and training were implemented in Python 
version 3.8 (van Rossum and Drake, 2009) using the Keras library 
(Chollet, 2015) as interface to the TensorFlow backend. For model 
training, we used 4 NVIDIA Tesla V100 GPUs provided by the bwU
niCluster 2.0 within the Baden-Württemberg High Performance 
Computing (bwHPC) framework. 
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2.9. Model evaluation 

Model performance was evaluated by calculating overall accuracy 
(1) and class-wise precision (2), recall (3) and f1-score (4) (harmonic 
mean of precision and recall) as well as Cohen’s kappa (5) for pre
dictions on the independent test sets that were generated using stratified 
10-fold cross validation. All photos in the test set were considered as 
independent samples in these calculations. Confusion matrices were 
computed to gain further insights into which classes are difficult to 
separate using the models. Class prediction probabilities output by the 
final softmax layer of the best-performing model were examined for 
their informative value about the confidence of the model predictions. 
Python libraries Pandas (McKinney, 2010) and Scikit-learn (Pedregosa 
et al., 2011) were used for all computations. 

accuracy=
truepositives+ truenegatives

truepositives+ truenegatives+ falsepositives+ falsenegatives
(1)  

precision =
truepositives

truepositives + falsepositives
(2)  

recall =
truepositives

truepositives + falsenegatives
(3)  

f 1 − score = 2 ×
precision × recall
precision + recall

(4)  

Cohen’skappa =
observedagreement − expectedagreement

1 − expectedagreement
(5)  

2.10. Ensemble approaches to improve classification results 

Due to our data structure with 12 different photos acquired from one 
plot (forest stand), we had the opportunity to test the effect of decision 
fusion methods to improve final classification results. Two different 
approaches based on majority voting were tested: First, we aggregated 
the predictions from the same model on multiple photographs of the 
same forest stand and determined the final class label based on the most 
frequently predicted class. When two classes appeared to have the same 
number of votes, the final class was randomly chosen from the two. We 
additionally tested the effect of considering only the most certain model 
predictions by setting a threshold for the minimum required probability 
of the predicted class (tested values were 80 % and 90 %). Second, we 
aggregated the predictions from the single-input models that used the 
three different available data sources forest floor photos, horizontal 
photos and Sentinel-2 time series individually. Final class assignment 
was similarly based on majority voting from the ensemble of model 
predictions, and prediction probabilities were taken into account as 
described above. 

2.11. Assessment of model explainability 

2.11.1. Feature importance via random permutation in LSTM model 
We assessed the relative importance of different spectral bands and 

different acquisition times to the classification of understory and litter 
fuel types by using feature permutations: We randomly permuted the 
reflectance values of one band across all samples in the test set, applied 
the trained LSTM model to the modified data and recorded the change in 
accuracy compared to the baseline performance of the model on the 
unperturbed test set. Likewise, we permuted the reflectance values of all 
bands from each acquisition month across all samples in the test set and 
recorded the change in classification accuracy. Hence, the importance of 
each feature (band or month) was calculated as the decrease in classi
fication accuracy of model predictions when the feature was permuted, 
normalized with respect to the most important feature. 

2.11.2. Importance of image regions via Grad-CAM in CNN model 
We used Gradient-weighted Class Activation Mapping (Grad-CAM) 

(Selvaraju et al., 2017) to visualize the image regions that were 
important for the classification decision of the CNN model. Grad-CAM 
computes the gradient of the score (raw output before the softmax) for 
any class with respect to the activations of the feature maps produced by 
a convolutional layer to derive the weight for each feature map. A 
weighted combination of feature maps is computed and followed by a 
ReLU operation to emphasize only pixels that have a positive influence 
on the class of interest. The output is a coarse localization map, which is 
upsampled to the resolution of the input image to highlight the pixels 
that were important for the class decision. We computed Grad-CAM 
heatmaps for randomly selected, correctly predicted images of each 
class based on the activations of the last two convolutional layers of our 
model. 

3. Results 

3.1. Model training 

All models converged within 50 epochs of training or earlier for both 
outputs (Fig. 6 and Fig. 7). Multi-input models and the LSTM model 
generally showed slower convergence compared to the single-input CNN 
models. Except for the LSTM model, slight overfitting to the training 
data was observed for all models especially in litter classification and 
when using forest floor photos, despite the regularization techniques 
applied. When classifying understory, a single CNN-model trained on 
horizontal photos got stuck in a local minimum at an early epoch and 
remained at near-zero accuracy throughout training. Training and 
validation loss stabilized for all models after about 20 epochs. 

3.2. Accuracy assessment 

Average classification accuracy differed only marginally among the 
models using different input data, except for a lower understory classi
fication accuracy (0.41) of the LSTM model using Sentinel-2 data only 
(Fig. 8). Highest accuracy for understory classification was achieved 
using the combined CNN model with horizontal and forest floor photos 
as input (OA = 0.78, f1-score = 0.76). 

For the full litter classification with 6 litter types, different input data 
yielded very similar results, but the models using multiple data sources 

Table 2 
Overview of the 5 model configurations tested.  

input forest floor 
photos 

horizontal forest 
photos 

Sentinel-2 time 
series 

forest floor photos, 
horizontal photos 

forest floor photos, 
horizontal photos and 
Sentinel-2 time series 

model architecture single-input 
CNN 

single-input CNN LSTM multi-input CNN with two VGG- 
16 branches 

multi-input CNN-LSTM model with two VGG-16 
branches and one LSTM branch 

output litter fuel type: 
simplified litter fuel type: 
understory fuel type: 

bl, bl-ln, bl-sn,n, sn, sn-fwd 
bl,ln, mixed, sn 
dwarf-shrub, grass, forb, litter,moss,shrub-broadleaf, shrub-needle  
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had lower variance compared to the single-input models (Fig. 8). 
Highest accuracy was obtained using forest floor photos (OA = 0.60, f1- 
score = 0.55). Simplifying the litter classification to only four different 
classes resulted in increased overall accuracy. Highest accuracy was 
achieved using the combination of horizontal and forest floor photos 
(OA = 0.70, f1-score = 0.70). In contrast to the understory classification, 
the LSTM based on Sentinel-2 data performed only slightly worse than 
the CNN models in litter classification, yet with high variability espe
cially for the simplified litter fuel types (Fig. 8). Integrating Sentinel-2 

data with the forest photos into a multi-input model improved overall 
classification accuracy only marginally for both understory and litter 
fuel types. 

Confusion matrices (Fig. 9) show that pure litter types bl, ln and sn 
were highly distinguishable based on either forest photos or Sentinel-2 
time series, whereas mixed litter classes were difficult to separate 
from each other and the pure litter types included in the mixtures. Class- 
wise precision, recall and f1-scores can be found in Table S1 in the 
supplementary material. In understory classification, dwarf-shrub was 

Fig. 6. Averaged evolvement of training and validation accuracy and loss across 10 cross-validation runs for litter classification models.  

Fig. 7. Averaged evolvement of training and validation accuracy and loss across 10 cross-validation runs for understory classification models. The curves for the CNN 
trained on horizontal photos are strongly distorted by a model stuck in a local minimum during training. 

Fig. 8. Test accuracy (left) and f1-score (right) after cross-validation for different input data for original (6 classes) and simplified litter fuel types (4 classes), and 
understory fuel types (7 classes). 
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Fig. 9. Confusion matrices for litter classification (left column: 6 classes, middle column: 4 classes) and understory classification (right column). The matrices were 
averaged across all 10 cross-validation folds and normalized so that each row (true classes) sums to 100 for easier comparison across the imbalanced dataset. Note 
that training of a CNN on horizontal photos in one fold did not succeed and the model predicted all instances into the moss class. 
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classified correctly in almost all predictions based on forest photos. The 
other understory types were also identified well based on forest photos 
and in combination with Sentinel-2 time series, with a few confusions 
between grass and forb and between the classes shrub-needle, moss and 
litter. 

3.3. Assessment of prediction probabilities 

Correctly classified photos generally received a higher class assign
ment probability score than misclassified photos, indicating the model’s 
confidence for a correct class prediction (Fig. 10). Mean prediction 
probability was 95 % for correct understory predictions, whereas 
incorrect predictions had a mean probability of 80 %. Class-wise pre
diction probabilities were partly in line with the results from accuracy 
assessment, showing that classes with high f1-scores such as dwarf-shrub 
were more confidently predicted (99 % for true labels) than classes that 
were confused more frequently such as forb (93 % for true labels). For 
the classification of litter fuel types, prediction probabilities were 
generally lower, with an average of 88 % for correct and 79 % for 
incorrect predictions. Probability distributions in litter classification 

highlight the model’s uncertainty with respect to mixed litter types and 
sn-fwd, suggesting difficulties in finding appropriate decision boundaries 
for the class assignment. 

3.4. Effect of ensemble approaches on classification results 

Post-classification aggregation procedures provided a means to 
improve final classification results. While understory classification 
improved up to an accuracy of 0.85 (baseline 0.78), litter classification 
improved up to an accuracy of 0.72 (baseline 0.60). Our analysis showed 
that understory fuel type classification was best improved using ma
jority voting from multiple photographs of the same stand and addi
tionally using only the most certain predictions (Fig. 11). Ensemble 
predictions based on the predictions from three single-input models (2 
CNNs and LSTM) failed to improve classification results in case of un
derstory (Table 3) when uncertain predictions were not omitted, due to 
the low accuracy of the Sentinel-2 predictions. In contrast, the ensemble 
prediction of litter types (Table 3) clearly outperformed the prediction 
resulting from majority voting based on multiple photographs (Fig. 11). 

Fig. 10. Violin plots showing the distribution of prediction probabilities for understory fuel types (left) and litter fuel types (right) from the multi-input CNN trained 
on horizontal and forest floor photos. Blue: true predictions, orange: false predictions. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 11. Average classification accuracy depending on different numbers of photos used to determine class assignment for a forest stand by majority voting for 
understory fuel types (left) and litter fuel types (right, original classification with 6 litter types). 
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3.5. Feature importance in LSTM model 

Time series of Sentinel-2′s shortwave infrared band (SWIR, B11) 
were most important in litter classification, followed by a narrow near 
infrared band (narrow NIR, B8A) and the second SWIR band (B12) 
(Fig. 12). Patterns changed for the simplified litter classes, where the 
blue band (B2), NDVI and SWIR (B11) were most important. Little 
importance in litter classification was given to the red band (B4), 
vegetation red edge bands (B5-7) and NIR band (B8). Understory clas
sification relied on vegetation red edge (B8A), SWIR bands and NDVI. 

Summer acquisitions were more important in all classification tasks 
than winter acquisitions. Litter classification strongly relied on the 
months July and August, while the most important dates for understory 
classification were slightly earlier in the year, in May and June. 

3.6. Importance of image regions in CNN model 

In many cases, the most salient image regions in understory classi
fication coincide with the occurrence of (or parts of) the particular un
derstory fuel type in the image, especially in forest floor photos (Fig. 13 
a)). Color and texture appear to be important for the distinction of 
relevant from irrelevant image content (see for example dwarf shrub, 
forb, litter). However, sometimes only small regions are highlighted even 
though the fuel type covers large parts of the image (Fig. 13 b), for 
example grass, forb, shrub-broadleaf), or even the fuel type is not high
lighted at all, but another image feature is (e.g., grass blade instead of 
moss). In most horizontal photos of dwarf-shrub, grass and litter fuel types 
(Fig. 13 c)), the bottom parts of the image are correctly identified as the 
relevant regions the model has to look for. The salient image regions in 
photos of forb fuel types seem to follow no clear patterns, while for moss 
either forest floor regions or stems are highlighted. In case of shrub- 
broadleaf and shrub-needle, mostly foreground image features such as 
branches and leaves seem to be relevant. For litter and shrub-needle, 

however, also stems in the image background can be a decisive feature 
(note the clear demarcation from the forest floor or foreground 
vegetation). 

4. Discussion 

4.1. Potential of forest photographs to classify surface fuel types 

Our results showed that forest photographs are suitable to classify 
litter fuel types with moderate overall accuracy (60 %) and understory 
fuel types with fairly high accuracy (78 %) using CNNs. The small dif
ferences in performance using horizontal stand photos compared to 
forest floor photos indicate that both can be used for surface fuel type 
classification, depending on which of the two is available; and 
combining both can stabilize results and improve accuracy in case of 
understory fuel type classifications. 

4.1.1. Litter fuel types 
The good discrimination between the three basic types of short- 

needle, long-needle and broadleaf litter by our models show that 
CNNs are able to extract the necessary information that is relevant to 
estimate surface fire spread for the included forest types based on 
photographs. However, our results revealed that it is difficult to 
correctly identify mixtures of different litter types: The challenge lies in 
the almost continuous transition from litter accumulations consisting of 
only one type of litter to few mixed-in leaves of, e.g., broadleaf litter, to 
more balanced mixtures between different litter types, where all com
ponents are assumed to have an effect on fire behavior. Leaves of 
broadleaf litter in particular have a disproportionate influence on the 
appearance of a photograph compared to their actual abundance, 
leading to misclassifications also by human observers. This explains the 
frequent confusions of mixed types bl-ln and bl-sn with bl. However, the 
influence of mixtures of different litter types on the combustion process, 
and thus the level of detail required for litter characterization, remains 
to be investigated. 

Learning critical features for litter discrimination, particularly from 
forest floor photos, is difficult also when the litter layer itself is not 
visible due to continuous understory vegetation. Although there are 
some relationships of litter types with understory vegetation, e.g., a 
continuous moss or herbaceous layer is rarely encountered underneath 
broadleaved trees in our target region Central Europe, we cannot be sure 
whether a model learns these patterns. It can be argued that in such 
cases litter is also less relevant for fire behavior than the understory fuel 
type; however, there are situations where both are important, for 
example a pine forest with grass understory will burn more intense than 
an oak forest with grass understory due to the greater heat release from 

Fig. 12. Normalized relative feature importances calculated from decreases in overall classification accuracy when reflectance values of a Sentinel-2 band (left) or 
acquisition month (right) were randomly permuted. 

Table 3 
Average classification accuracy for model ensemble predictions with and 
without filtering based on prediction probability.   

understory  litter   

overall 
accuracy 

no. of 
predicted 
instances 

overall 
accuracy 

no. of 
predicted 
instances 

all predictions 0.72 3336 0.65 3336 
predictions > 80 

% probability 
0.78 3175 0.70 2897 

predictions > 90 
% probability 

0.81 2982 0.72 2530  
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Fig. 13. Most salient image regions (colored in red) in the last convolutional layers of the CNN models for understory fuel type classification. Columns a) and b) show 
forest floor photos in the original (left) and overlaid with a Grad-CAM heatmap (right); column c) shows horizontal photos overlaid with a Grad-CAM heatmap. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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long-needle pine litter (Hough, 1969). Nevertheless, litter classification 
based on forest floor photos is expected to improve when excluding 
photos where the litter layer itself is not visible, whereas correct clas
sifications based on horizontal photos may be still possible based on 
indirect relationships, e.g., to stems and crown morphologies of different 
tree species. 

4.1.2. Understory fuel types 
Understory fuel types were easier to distinguish based on forest 

photographs than litter fuel types. One reason for this might be that 
understory can be readily identified in an image and can have a unique 
appearance, such as in the case of dwarf-shrub. Since dwarf-shrub is the 
potentially most fire-prone understory fuel type included in this study 
(severe fires can occur in Calluna vulgaris habitats, e.g., Davies et al., 
2010), its reliable detection by the CNN allows for the successful iden
tification of high-risk forest areas. Fires can also spread rapidly through 
cured grass fuel types; here a better discrimination from the moister forb 
fuel types would be required, which is likely to be feasible with more 
training data. In other cases correct class attribution was more difficult 
because different understory fuel types appeared within the same 
photograph, e.g., moss and shrub-needle. This type of missclassification 
also occured in the study by Xu et al. (2017), where a single land cover 
label was used for each photo. In the context of our study, the “confu
sion” of classes by the model merely reflects real-world conditions, if 
both fuel types contribute significantly to the fuel complex, and raises 
the question of whether a separation is actually meaningful in this case; 
or whether classification by presence/absence for different fuel types is 
more appropriate. However, a meaningful threshold for the minimum 
abundance of a fuel type to be effective in the context of fire behavior 
needs to be defined. Area-based thresholds like a minimum cover as in 
our study are commonly used in fuel type classifications (e.g., Arroyo 
et al., 2008), but these may be easier to detect from an aerial than a 
horizontal perspective. This is where photo interpretation (CNN-based 
or by humans) reaches its limits: multiple branches in the foreground of 
an image or a photograph taken from a path where there is sufficient 
light for understory vegetation to grow, will result in the visual 
impression of high understory cover, but this is not necessarily repre
sentative of the forest stand behind. Therefore, standardized re
quirements for photo acquisitions are needed to ensure 
representativeness. Avoiding acquisitions close to occluding objects, 
however, can also result in subjective and potentially biased sampling. 
Until other well-established means are available to assess in-forest un
derstory vegetation from a more nadir perspective, variation in the 
“footprint” of a photograph with understory density and height needs to 
be taken into account. One way to overcome this problem in the future 
may be under-canopy drone acquisitions, which have recently been 
introduced (Kuželka and Surový, 2018; Krisanski et al., 2020). 

4.1.3. Comparison with other studies 
We found no studies that have used forest photographs in a similar 

task before. Several studies have used CNNs to classify road view images 
in an agricultural context. For example, Ringland et al. (2019) charac
terized food production along roads in Thailand by using Google Street 
View (GSV) panoramas and achieved an overall accuracy of 83.3 % for 
seven different plant species. Yan and Ryu (2021) similarly employed 
GSV imagery to generate ground truth data for crop type mapping in the 
Central Valley in California, with an accuracy of 92 % for seven different 
crop types. Both studies used a considerably larger dataset than ours, 
with >2,000 images per class in the first study, and 500 to 1,000 images 
per class in the second study. Xu et al. (2017) used CNN-based feature 
extraction from 30,000 geo-tagged field photos in a multinomial logistic 
regression model to classify 19 land cover types, and achieved an ac
curacy of 48.4 % for top-1 prediction and 76.3 % for top-3 prediction 
(true class matches one of the three most probable predicted classes). 
Few studies focused on categorization problems using ground-taken 
imagery in a more ecological context. Habitat classification is one of 

such tasks and has been addressed by extracting visual features and 
contextual information from ground photographs, feeding them into a 
random forest classifier and adding information about geographical 
closeness of the geo-referenced images (Torres and Qiu, 2016). Reported 
accuracy metrics range from f1-scores of about 0.2 for heathland to 0.7 
for woodland and scrub habitats. Understory density has been estimated 
from understory images by distinguishing between vegetation-covered 
and background pixels using logistic regression on spectral variables 
(Campbell et al., 2018) or CNN-based segmentation (Abrams et al., 
2019). However, these studies require that an artificial background is 
used during data collection to separate understory from background 
areas in the photographs. 

Although the aforementioned studies differ substantially from our 
work in terms of research context, specific aims and employed learning 
algorithms, we assume that model results strongly rely on the dataset 
size available for the task, on data cleaning procedures and on the 
human effort involved in the correct annotation of the training data. The 
highly complex and heterogeneous data from natural environments 
further complicate the correct interpretation of images, even for human 
surveyors. Reducing this complexity by categorizing data allows more 
effective characterization and comparison, but class boundaries need to 
be set artificially and yet often remain fuzzy, making it difficult to 
clearly identify and separate classes. We consider this the most impor
tant limitation of our approach and it has remained largely unexplored 
how CNNs deal with such complexity outside of simple object recogni
tion. We will discuss this further in chapter 4.4.2. 

4.2. Effect of integrating Sentinel-2 time series and utility as stand-alone 
methodology 

Our results indicate that Sentinel-2 time series alone are of limited 
use for surface fuel type classifications: While they were similarly useful 
as forest photographs for classifying litter fuel types, they were of little 
value for distinguishing understory fuel types. Integrating them with the 
forest photographs in a multi-input model did not notably improve 
classification results for both litter and understory. 

4.2.1. Litter fuel types 
Sentinel-2 predictions of litter fuel types rely on the spectral reflec

tance of the pixel(s) covering the field plots, which is dominated by 
overstory tree species (see also chapter 4.4.1). While tree species clas
sification has been performed with good accuracies on multi-temporal 
Sentinel-2 data (Persson et al., 2018; Grabska et al., 2019), our study 
showed that predicting litter fuel types based on tree species information 
alone is difficult: small understory trees and shrubs can contribute 
significantly to the litter layer, and especially broadleaf litter from 
neighboring stands can be blown into a stand. Data that was recorded 
during field work showed that litter fuel types cannot be perfectly pre
dicted based on the basal areas of the tree species present using a 
random forest classifier (OA = 0.68). This may explain why the litter 
fuel type classifications from Sentinel-2 time series achieved only 
moderate accuracy (OA = 0.59). 

4.2.2. Understory fuel types 
Understory characterization, especially species classification, based 

on remote sensing data is a challenging task, as shown by the few at
tempts that have been made so far (Hall et al., 2000; Korpela et al., 2008; 
Landry et al., 2020). The fact that Sentinel-2 time series are insufficient 
to distinguish understory fuel types is due to multiple reasons: first, the 
same fuel type may occur in the understory (e.g., litter or grass) under 
completely different tree species in the overstory; and even in case of 
open stands, the spectral signal from the understory is superimposed by 
overstory reflectance, resulting in a complex mixture of reflectance 
values contributing to the final pixel reflectance (Kobayashi et al., 2018; 
Singh and Gray, 2020). Second, it is not clear whether the spectral signal 
from small understory trees, e.g., regeneration of beech, differs 
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significantly from a closed-canopy of mature beech trees, which could 
explain confusions between shrub-broadleaf and litter understory fuel 
types. In such cases, integrating information on vertical forest structure 
derived from active remote sensing systems such as LiDAR would help to 
distinguish between overstory and understory vegetation. Including 
Sentinel-2 data can lead to small improvements in case of understory 
fuel types such as moss that are related with a certain type of overstory 
(mostly coniferous); yet effects are too small to justify the additional 
effort. 

4.3. Improving classification results by ensemble approaches 

Ensemble approaches helped notably to improve base model pre
dictions. Our results showed that a forest stand can be characterized 
more reliably using multiple photographs from different perspectives 
and additionally using only the most certain predictions. 

Our findings also showed that aggregating the predictions of several 
single-input models is more useful than using a multi-input model from 
the start, if all inputs have similar predictive power, such as in the case of 
litter classification. This could also be due to the greater difficulty in 
finding optimal hyperparameters for a complex model with multiple 
inputs, e.g., with respect to the best optimization algorithm, which may 
be different for the CNN and the LSTM branch of a model. In this sense it 
is recommended to optimize the smaller and less computationally 
demanding single-input models and then aggregate their predictions. 
However, there is still room for experimentation with different fusion 
schemes, as the increasing availability of multiple, heterogeneous 
datasets with different scales and dimensions for a given task has 
recently driven advances in deep multimodal learning (see review by 
Bayoudh et al., 2021). 

Using prediction probabilities as additional filter criterion further 
improves the results from decision fusion approaches, but always needs 
to be weighed against the associated discarding of data. At the same 
time, it can be worth to have a closer look at the more ‘unsure’ pre
dictions: often the prediction probabilities contain much additional in
formation, such as when a forest stand is actually better represented by a 
mixture of different fuel types than by a single one (Fig. 14). In any case, 
providing the prediction probabilities along with the predictions helps 
in assessing the reliability of the prediction. 

4.4. Assessment of model explainability 

4.4.1. Feature importance in LSTM model 
Our results on variable importance of Sentinel-2 bands for classifying 

litter fuel types in the LSTM model (SWIR, blue band, see Figure S1 in 
supplementary material and NDVI) are consistent with previous studies 
that have classified tree species using multi-temporal Sentinel-2 data: 
Immitzer et al. (2016) similarly identified the SWIR band (related to leaf 
water content) and the blue band (absorbed by chlorophyll) as the two 
most important bands for tree species mapping in Germany, while the 
study of Persson et al. (2018) also ranked the red edge bands very high 
for tree species classification in Sweden. The latter were found to be 

insignificant in our study, which could be related to the high correlation 
between these bands. Grabska et al. (2019) confirmed the importance of 
SWIR bands, red-edge bands, blue and red bands for the discrimination 
of tree species in the Polish Carpathians, while Ottosen et al. (2020) 
found that similar features (blue, green, red-edge, SWIR bands) were 
also most suited to map tree cover in Europe based on Sentinel-2 images, 
indicating that these bands are generally useful for mapping and 
differentiating canopy characteristics. Understory discrimination in our 
study relied somewhat more on NIR and SWIR bands, but a detailed 
discussion is omitted due to the rather low accuracy of the classification. 
The aforementioned studies mostly agreed that late spring and early 
summer acquisitions were most helpful for tree species discrimination, 
while our study revealed that midsummer acquisitions were more suit
able for litter fuel type classifications; potentially due to fully developed 
tree canopies at this time of the year. Understory, however, is better 
identified earlier in the year, when phenological variations of the un
dergrowth may be more pronounced and better sensed through a less 
dense canopy. The choice of spectral variables in this study was guided 
by the aforementioned studies that attempted to map tree species and 
tree cover. However, other spectral indices have been found to be more 
sensitive to vegetation structure, such as the tasseled cap indices 
(especially the wetness feature) or the Normalized Difference Moisture 
Index (NDMI) (Cohen and Spies, 1992; Jin and Sader, 2005). Therefore, 
we trained another LSTM model on Sentinel-2 time series, adding tas
seled cap wetness, tasseled cap greenness and NDMI, but did not observe 
any improvement in classification results (see Figure S2 in supplemen
tary material). 

4.4.2. Importance of image regions in CNN model 
Due to the great heterogeneity of the input data in this study, it is 

challenging to assess what information from an image the CNN uses for 
its classification decision. Although it seems that the model generally 
responds to the parts of a photograph that also appear relevant to a 
human observer, there are still many cases where an (for the human 
observer) irrelevant image region drives the model towards the correct 
class decision. The concepts the model learns may be entirely different 
from what we expect in the first place; for example, we cannot be sure 
whether the decision for a moss or litter fuel type in a horizontal photo is 
actually driven by the texture and color of these two types, or whether 
the model is responding to coarse deadwood on the forest floor that is 
barely visible in photos of other understory fuel types. Since Grad-CAM 
heatmaps as well as other feature attribution algorithms are specific to 
the input image, displayed material will always reflect only a (poten
tially human-biased) minimal portion of the data, making it difficult to 
find generalizable rules. Visualizing the features the model responds to 
by generating synthetic images that maximize the activations of a 
particular convolutional filter reveals that the model mainly learns 
small-scale geometric features, even in late convolutional layers 
(Figure S3 in supplementary material). Although one might suspect that 
some of them resemble the shapes of leaves, small twigs or the texture of 
moss; such interpretations should be taken with caution (Kattenborn 
et al., 2021). Filter activations showed that maximally activated filters 

Fig. 14. Predicted probabilities in understory fuel type classification based on horizontal photos. a)grass 0.59, shrub-broadleaf 0.23 and forb 0.18. b) litter 0.63 and 
shrub-needle 0.34. c) litter0.44, moss0.56. 
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are very similar for photos of different fuel types, since all contain plant 
parts, but in slightly different compositions. 

4.5. Outlook 

We have taken a first step towards the application of deep learning 
methods to classify surface fuel types for fire behavior and fire risk 
assessment from forest photographs and satellite time series. As with all 
deep learning problems, the availability of labeled training data is a 
bottleneck. To improve the capabilities of the model and to apply it to a 
larger geographical area, the dataset should be further expanded using 
(crowd-sourced) photos annotated by trained individuals. In our study, 
we identified the most common surface fuel types in temperate forests of 
Central Europe; however, the targeted fuel type classification scheme 
could be arbitrarily detailed, provided a large enough data set. For the 
validation of fuel type maps across larger areas, the challenge will be to 
obtain sufficient imagery also from remote locations and ensure quality 
in terms of geolocation accuracy. Incorporating point cloud data from 
ALS, TLS or drones, if available, could further improve or even refine 
fuel type classification, and also forest inventory data or biophysical 
factors could be included. The model itself could be improved by 
leveraging a more efficient architecture that requires less parameters, 
which would speed up training and inference times. Testing alternative 
approaches such as segmentation of, for example, understory vegetation 
on forest photographs is laborious, but could help the model to learn the 
relevant features and not be distracted by artifacts. Another exciting 
area of research would be to explore whether it is also possible to move 
away from classifications and retrieve quantitative information such as 
estimates of fuel loadings from a photograph. In addition, many other 
interesting use cases for forest photos are conceivable, just to mention 
forest health and biodiversity assessments, which have been already 
examined from photographs using other methodical approaches (e.g., 
Gyllin and Grahn, 2015; Murray et al., 2018). 

In terms of practical applications, GNSS-located photos of forest 
stands obtained by local forest managers or through citizen science can 
be used not only to validate and improve fuel type maps, but also to 
provide forest practitioners and firefighters with immediate information 
about potential fire behavior at their location, for example via a cloud- 
based smartphone application: The extracted fuel type information 
could be used to approximate the available burnable biomass and to 
derive relevant physical properties that determine the combustion pro
cess in order to calculate fire behavior in a forest stand, e.g., under 
different moisture scenarios. Knowledge from fire experts could also be 
incorporated to help practitioners decide, for example, whether under
story vegetation needs to be removed to reduce fire hazard in critical 
areas, or to understand the extent to which moist green vegetation can 
even serve as fire barrier. This would greatly advance knowledge ex
change on fuel-related forest fire risk, particularly in temperate forests of 
Central Europe, which have been poorly studied in this regard to date. 

5. Conclusions 

In this work, we investigated the usefulness of deep neural networks 
(CNNs and LSTM) to classify surface fuel types of Central European 
forests based on within-stand photographs and Sentinel-2 time series. 
Our results demonstrated that understory fuel types can be classified 
with good accuracy from a combination of horizontal stand photos and 
forest floor photos using CNNs. Litter fuel types were classified with 
moderate accuracy from both types of photographs. The main limitation 
of the approach was the occurrence of multiple fuel types within the 
same photograph, leading to confusions especially in litter classification. 
Our study further showed that Sentinel-2 time series alone are 

insufficient for understory classification, but that they have potential for 
litter fuel type classifications both as additional predictor in ensemble 
approaches and as stand-alone methodology when photographs of a 
forest stand are not available. The decisive spectral features were 
reflectance differences associated with canopy characteristics, man
ifested primarily in NDVI, SWIR and blue bands during summer. From a 
practical perspective, our research showed that a forest stand can be 
better characterized the more photos are available, especially concern
ing understory fuel types. For litter fuel types, it has proven useful to 
make predictions on multiple types of data separately, i.e., photographs 
and satellite time series, and combine the predictions of all models by 
majority voting. Class prediction probabilities were found to be a useful 
filter criterion for the most reliable predictions and provided insights 
into the complexity of fuel type composition in a forest stand. While our 
study has demonstrated that artificial intelligence can help with classi
fication problems in complex natural environments, it has also shown 
that the model’s capabilities are limited by fuzzy class boundaries, as 
humans are; and although influential image regions in CNNs often 
contain features that appear relevant to the observer (i.e. the respective 
fuel), we are unable to fully comprehend the model’s decisions. Trans
lating the task into a regression problem to quantify individual fuel 
components could help deal with natural gradients, but would also 
require extensive collection of reference data. Nonetheless, results from 
this study indicate that automatic processing of within-stand photo
graphs by CNNs has the potential to facilitate validation of fuel type 
maps and provide forest practitioners with the information needed to 
mitigate fire hazard. We hope that our work can contribute to opening a 
new field of research for deep learning-based applications to charac
terize forest fuels for fire behavior and risk assessment in light of the 
increasing threat of wildfires, even in temperate forests, under a 
changing climate. 
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de Rigo, D., Libertà, G., Durrant, T.H., Vivancos, T.A., San-Miguel-Ayanz, J., 2017. Forest 
fire danger extremes in Europe under climate change: variability and uncertainty. 
Diss., Publications Office of the European Union. 

Domingo, D., de La Riva, J., Lamelas, M.T., García-Martín, A., Ibarra, P., Echeverría, M., 
Hoffrén, R., 2020. Fuel Type Classification Using Airborne Laser Scanning and 
Sentinel 2 Data in Mediterranean Forest Affected by Wildfires. Remote Sensing 12 
(21), 3660. 

Erdody, T.L., Moskal, L.M., 2010. Fusion of LiDAR and imagery for estimating forest 
canopy fuels. Remote Sens. Environ. 114 (4), 725–737. 

European Commission, 2021. EFFIS Statistics, https://effis.jrc.ec.europa.eu/apps/effis. 
statistics.portal/. (Accessed 27 October, 2021). 

Finney, M.A., 2006. An Overview of FlamMap Fire Modeling Capabilities. In: Andrews, P. 
L., Butler, B.W. (Eds.), Fuels Management - How to Measure Success: Conference 
Proceedings, U.S. Department of Agriculture, Forest Service, Rocky Mountain 
Research Station, pp. 213–220. 

Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L., Hartmann, H., Beck, P. 
S.A., Camps-Valls, G., Chirici, G., Mauri, A., Cescatti, A., 2021. Emergent 

vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12 
(1), 1081. 

Gao, J., French, A.P., Pound, M.P., He, Y., Pridmore, T.P., Pieters, J.G., 2020. Deep 
convolutional neural networks for image-based Convolvulus sepium detection in 
sugar beet fields. Plant methods 16, 29. 

García, M., Riaño, D., Chuvieco, E., Salas, J., Danson, F.M., 2011. Multispectral and 
LiDAR data fusion for fuel type mapping using Support Vector Machine and decision 
rules. Remote Sens. Environ. 115 (6), 1369–1379. 
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