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Abstract

This work is concerned with synthetic microstructure models of polycrystalline materials. Once a representation of the
microstructure is generated, the individual grains need to be furnished with suitable crystal orientations, matching a specific
crystal orientation distribution. We introduce a novel method for this task, which permits to prescribe the orientations based
on tensorial Fourier coefficients. This compact representation gives rise to the texture coefficient optimization for prescribing
orientations method, enabling the determination of representative orientations for digital polycrystalline microstructures. We
compare the proposed method to established and dedicated algorithms in terms of the linear elastic as well as the non-linear

plastic behavior of a polycrystalline material.

Keywords Polycrystalline microstructures -
Crystallographic texture

1 Introduction

Understanding the mechanical fatigue behavior of compo-
nents made from polycrystalline materials requires either
substantial experimental effort [1] or suitable analytical [2]
and numerical methods [3,4]. To reduce the experimental
effort and to ensure accurate as well as reliable results, it
is imperative to use models which take into account the
influence of the underlying microstructure onto the fatigue
behavior [3,5].

For components with polycrystalline microstructures,
models based on crystal plasticity (CP) [6] provide powerful
tools to link the underlying microstructure to the macro-
scopic material properties. Starting from computational cells,
see Bargmann et al. [7] for a recent overview, equipped
with suitable boundary conditions and singe crystal material
models, predictive models for the lifetime of polycrystalline
microstructures can be constructed. Examples include, but
are not limited to, investigating various loading conditions
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[8,9], the influence of inclusions [9,10] or different atmo-
spheres [11] and microstructural short crack growth [12].

Utilizing micromechanical CP methods requires an accu-
rate representation of the microstructure. Albeit it appears
to be the most natural approach, solely relying on experi-
mental image data poses quite a few challenges. 3D imaging
techniques for polycrystalline materials, e.g., serial section-
ing [13,14] are available, but these techniques are still quite
time and cost intensive. Additionally, there is ongoing dis-
cussion regarding the error introduced when computing on
non-periodic images [15,16].

Instead, using synthetic representative volume elements
(RVE) [15,17] provide a way to generate periodic compu-
tational cells within a reasonable amount of time. However,
using these RVEs comes with the challenge of accurately
reproducing the investigated microstructure, or at least the
important characteristics of it. In case of polycrystalline
materials, this problem may be divided into two tasks: match-
ing the microstructure morphology and assigning suitable
crystallographic orientations to the crystallites.

For the former problem, powerful so-called microstruc-
ture generators are available. A popular framework for
creating RVEs for polycrystalline microstructures are tes-
sellations, i.e., subdivisions of the considered computational
into non-overlapping domains, which represent individ-
ual crystallites and whose union covers the entire cell.
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These tessellations can be tuned to match experimental
data, like grain size and aspect ratio distributions [18]. For
instance, based on an innovative reformulation as a convex
optimization problem, Bourne et al. [19] proposed an algo-
rithm to generate Laguerre tessellations matching prescribed
grain volume fractions, which runs only a few minutes on a
standard desktop computer. Using modern convex optimiza-
tion solvers, Kuhn et al. [20] further reduced the required
computation time and showed the capabilities of such an
approach to reproduce a given grain size distribution. How-
ever, using these methods, it is not straightforward to match
other geometric properties of polycrystalline microstruc-
tures, e.g., aspect ratios. Methods based on the Random
Sequential Addition (RSA) algorithm provide a way to iter-
atively match aspect ratio distributions [21-23], with the
drawback of increased computational cost.

For fixed grain morphology, the next step consists of
assigning crystallographic orientations to the obtained grain
representations. For polycrystalline microstructures, this is
often treated as a post-processing step (in contrast, for
example, to the RVE generation of short fiber reinforced
composites [24]). There exist a variety of methods [18,
21,25], basically following two different approaches. The
first approach discretizes the one-point correlation function,
describing the orientation state within the polycrystal, i.e., the
crystallite orientation distribution function (CODF) [26,27].
Subsequently, orientations are selected based on their respec-
tive CODF values, i.e., an orientation with a high value
is more likely to be selected than one with a low value
[26,28]. Modern microstructure generators employ varieties
of this discretization technique. For instance, the work of
Groeber and Jackson [21] uses a discretization in combi-
nation with an iterative binning algorithm [29] to match
the prescribed orientation state. Roters et al. [25] sample
the discretized distribution function using a combination of
deterministic and stochastic procedures [30]. In recent pub-
lications, these methods were further improved, either by
iteratively adjusting the parameters [31,32] of the generator
or by improving the discretization of the CODF [23,33]. A
different approach is based on matching special cases of the
CODF, e.g., uniform or aligned distributions. For instance,
Quey et al. [34] proposed a dedicated algorithm to gen-
erate uniformly distributed orientations. It is also possible
to approximate the CODF by a superposition of different
so-called texture components [35-37]. By modeling these
components [38] individually, it is possible to sample these
orientations and assign them to cells [39].

However, these methods suffer from the drawback that
they either need the CODF or a (possibly large) data set
which serves as an accurate representation of the CODF. In
this work, we propose a method based on condensing the
information carried by the CODF via the coefficients of a
tensorial series expansion [40,41]. As these tensorial coeffi-
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cients are easy to compute from experimental data, directly
linked to the bounds of mechanical properties [42,43] and
easily applied in microstructural sensitive design [44,45],
we prefer them to an approach involving spherical harmon-
ics [46,47]. Moreover, Bohlke [48] introduced a method for
estimating the crystallite orientation distribution function for
a finite number of given texture coefficients and Junk et
al. [49] analyzed this approach in the context of maximum
entropy moment problems. Bohlke [50] derived a hierarchy
of evolution equations for the texture coefficients under the
Taylor-Voigt assumption of vanishing strain fluctuations on
the microscale. Motivated by these observations, we propose
to use a limited set of tensorial texture coefficients as the
input of a microstructure generator, with the goal to obtain
crystallographic orientations for each crystallite matching the
prescribed texture coefficients. We follow a two-step pro-
cedure. First, the orientations are sampled randomly. In a
second step, these orientations are corrected in terms of a
gradient-based optimization technique, which ensures that
the resulting texture coefficients match the prescribed ones
up to a given tolerance.

To introduce the Texture coefficient Optimization for
Prescribing orientations (TOP) method, we briefly revisit
the used material model and the notation of rotations in
Secs. 2.1 and 2.2, respectively. In Sec. 2.3, we outline the
problem formulation and the solution scheme. We investi-
gate the capabilities of the proposed method, by comparing
it to state-of-the-art algorithms in Sec. 3.

2 Background on modeling and optimization
2.1 Crystal plasticity model

As studying the cyclic fatigue behavior in polycrystals serves
as our primary motivation, we consider a small-strain crystal
plasticity model with kinematic hardening as presented by
Kuhn et al. [51], which we briefly summarize. The total strain
tensor ¢ is additively decomposed into an elastic ¢, and a
plastic ¢, contribution

e==¢ +¢p. 2.1

The stress o is related to the elastic strain by Hooke’s law

0=C:e,=C: (e —¢p), 2.2)
where C denotes the fourth order stiffness tensor.

Single crystal plasticity assumes that plastic deformation
is the result of dislocation movement, the latter taking place
on the corresponding crystallographic slip systems. We con-
sider volume-preserving slip mechanisms, i.e., conservative
glide. An arbitrary slip system « is characterized by two
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orthogonal vectors, the slip direction m* and the slip plane
normal n®. Activating slip system « requires the resolved
shear stress

% =0 -M* with M* = (ma ®n* +n” ®m“) 2.3)

| =

to exceed a critical value . The flow rule arises by super-
posing the crystallographic slip rates on the individual slip
systems

Ng
Ep= )y M, (2.4)
a=1

involving the plastic slip rate y of slip system «. As we
consider cyclic loading scenarios, we use a model for the
plastic slip rate y, which captures typical cyclic phenomena,
such as the Bauschinger effect [52] and ratcheting [53]. More
precisely, for the study at hand, we use the flow rule proposed
by Hutchinson [54]

m

) (2.5)

. . TC{ _ Xa
P = posgn(r® — Xf) |[——L2

23
augmented by a backstress term X}’ following Cailletaud
[55]. To describe the evolution of the backstresses &} in
terms of the slip rate, we use the Ohno-Wang kinematic hard-
ening model [56]

o M
So o ’Xb‘ a | a
Xy =Ay B X, \y

A3 , (2.6)

which extends Chaboche’s formulation [57]. For a more
sophisticated approach based on a backstress tensor, we refer
to Harder [58] and the references therein.

2.2 Representing the texture

Describing the deformation behavior of a polycrystal, i.e., an
agglomerate of crystals, by crystal plasticity requires taking
the distinct orientation of each crystallite into account. For
instance the stiffness tensor C in Hooke’s law (2.2) depends
on the crystal orientation. To describe the orientations in a
polycrystalline material, for each crystallite we use a proper
orthogonal tensor

3
0=> g ®e, 2.7)
i=1

where (ey, e2,e3) and (g1, g2, g3) represent the fixed
orthonormal basis of the sample and the crystallite, respec-
tively. Thus, the orientation of a crystallite is encoded by the

rotation from the crystal coordinate system into the sample
coordinate system. All orientation tensors Q are elements
of the group of proper rotations in three dimensions, i.e.,
Q € SO(3). In the following, we use the expressions rota-
tion and orientation interchangeably.

For a given polycrystal, the orientation may be succinctly
described in terms of the crystallite orientation distribution
function (CODF) f, aprobability distributionon SO (3) w.r.t.
the Haar Measure d Q (normalized to unity). More precisely,
the CODF f is non-negative,

f(@) =0V QeS0@3), (2.8)

and normalized

/ f(Q)do =1. (2.9)
SO@3)

For a (measurable) subset S € SO(3) of orientations, the
expression . 5 f(Q)dQ computes the probability to find
orientations contained in the set S. Due to the invariance
properties of the Haar measure [59], the invariance property

f f(Q)dQ=/ f(QQ0ndQ (2.10)
50(3) 50(3)

holds for all Qg € SO (3). Moreover, the CODF reflects the
underlying symmetries of the crystals forming the aggregate,
i.e.,

£(0) = f(QHS) vV HC € §€ € 503, 2.11)
where S¢ denotes the (discrete) symmetry group of the crys-
tals, as the orientation states Q and Q HC correspond to the
same physical orientation state of the crystallite. As a result
of a forming process, the sample itself may possess a cer-

tain symmetry, encoded by a symmetry group S5. This is
reflected by the CODF in terms of the condition

Q) =fH’Q) ¥V HeS$*C500), (2.12)
where S¥ denotes the symmetry group of the sample. For the
sake of readability, we will only consider the case of cubic
crystals and triclinic sample symmetry in the following [60,
Ch. 3]. Our approach permits a straightforward extension to
the general case with arbitrary crystal and sample symme-
tries, see Zheng and Fu [61,62]. If the CODF is not uniform,
i.e., f(Q) # 1 for some Q € SO(3), then the material will
be said to possess a crystallographic texture.

Working with the full CODF is oftentimes impractical. Guidi
et al. [40] proposed a way to condense the encoded informa-
tion. More precisely, any square integrable function f may
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be expressed in terms of a tensorial Fourier series [40,41]

F@ =1+ Vi Fi,(0),

i=1

(2.13)

involving the tensorial Fourier, or texture, coefficients V’
and the tensor functions ]F/ [48 63]. The subscript i denotes
the number of linear 1ndependent harmonic cubic tensors
of rank «. Harmonic tensors, denoted by a prime (-)’, are
completely symmetric and traceless, i.e., the relations

(2.14)

Z Aukl =0

reduce the number of degrees of freedom to 2 4 1 [48].
The tensor functions ]an”(Q) in equation (2.13) arise by
rotating suitable reference tensors T/< i) [40]

/ / /
Aijkl = Ajikl = Ajilk =

Flo) (@) = OxTg,. 2.15)
where
O+T =Tjj_p(Qe;) ® (Qe)) ® ... (Qep) (2.16)

denotes the Rayleigh product, i.e., the rotation of a tensor
by Q. Without loss of generality and following Bohlke et al.
[64] and Dyck and Bohlke [65], we normalize the Frobenius
norm of the reference tensors to

HTQW 2.17)

‘=2a+1

instead of ”']I‘/ H = 1 (as done by Guidi et al. [40]). Inter-
preting the texture coefficients V/ «;) 35 @ convex combination
of normalized reference tensors of single crystal states [63],
we compute the tensorial texture coefficients in the case of
discrete (experimental) orientation data as [S0]

K

Z Ck Qk*T?%’)’

k=1

Vg (@1, 0k) = (2.18)

2a; + 1

where ¢y denotes the volume fraction of orientation Qy
among K orientations. From Eqgs. (2.17) and (2.18) it fol-
lows that the Frobenius norm of all texture coefficients V/(a,-)
lies within the interval [0, 1]. Bohlke et al. [43,50] use the
norm to measure the degree of anisotropy. For a completely
uniform CODF, all texture coefficients vanish, whereas for
the case of single crystals the norm of all texture coefficients
is equal to one.

As we seek a compact representation of the CODF in the
following, we will restrict to the texture coefficients up to
rank six. As the cubic reference tensor of rank two is zero
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and, because of the cubic crystal symmetry, odd-rank refer-
ence tensors up to a rank of eight vanish [40], we focus on
the texture coefficients of rank four and six. For a precise
overview and thorough discussion of texture coefficients in
a more general context, the reader is referred to the work of
Fernandez and Bohlke [63].

2.3 Texture coefficient optimization for prescribing
orientations (TOP)

To create digital representations of polycrystalline micro-
structures, it is not sufficient to solely match the grain mor-
phology. In addition, we have to take the orientation state, i.e.,
the CODF, into account [66]. Many tools either rely on sim-
ple model CODFs [18,34], need (possibly vast) experimental
data [21] or at least a representation of the complete CODF
[30] to generate orientations for digital microstructures. In
this section, we propose a method to generate orientations
based on tensorial texture coefficients. For a given unit cell,
subdivided into individual grains, our goal is to prescribe the
orientation per grain in such a way that the resulting tex-
ture coefficients V’m) of the unit cell match the prescribed

ones V(a) up to a given tolerance tol, thus approximating
the underlying CODF. To this end, we formulate our objec-
tive function as the difference in independent components
between the current and the desired texture coefficients

®max

WQe) = |

7/
Vig

(2.19)

where Qg = (Q1, ..., Qk) is a vector of orientations (one
for each of the K cells) and ay.x denotes the maximum rank
of the considered texture coefficients.

Starting from arandomly initialized set of orientations, we
seek to minimize the objective function £(Q¢). The objec-
tive function £ is continuously differentiable, and it is natural
to use gradient-based optimization techniques. Indeed, the
objective function £ is actually a polynomial in the compo-
nents of the individual grain orientations Q. In particular,
the function Z is infinitely often differentiable.

The simplest conceivable approach proceeds via gradi-
ent descent, i.e., following the direction of steepest descent.
Please keep in mind that the objective function ¢ is defined
(2.19) on the K -fold product of SO (3). The space of special
orthogonal tensors SO (3) forms a non-linear subset of the
space of second-order tensors. In particular, a simple explicit
Euler discretization of gradient descent does not work, as
the next trial point does not necessarily lead to vector whose
components satisfy the constraints of SO (3) [67,68]. This is
illustrated in Fig. 1(a). On a curved space with Riemannian
metric, the natural extension of straight lines are so-called
geodesics, which emanate from a point in a specific (tan-
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(a) Linear gradient step

(b) Geodesic gradient step

Fig. 1 Gradient descent on a linear space vs. descent along a geodesic (dashed line) on the manifold SO (3)

gent) direction by parallel translation. On a (compact, matrix)
Lie group with its natural Riemannian metric (the Killing
form), following the geodesics may be computed in terms
of the matrix exponential. In case of SO (3), this reduces to
Rodrigues’ formula

sin(0) 1 — cos(0)

02

I (),
(2.20)

exp (J(») = Id + J (@) +

describing a rotation around an axis u# by an angle 6 and
where we set w = 0 u as well as

0 —w3 wp
Jo)=| w3 0 —w (2.21)
—w W] 0

The gradient descent scheme, with a fixed step size 1 >
0, works as follows. Suppose the i-th iterate 0 =
(Q},..., Q%) isgiven (i =0, 1,...). Then, we investigate
the function

£i(@) = £(Qfexp (J(@1)) . ..., Qkexp (J(wk))), (222)

where » = (w1, ..., wg) € R, Computing V¢;(0) €
R3K by the chain rule, gradient descent proceeds via

0! = (Qilexp J(=t V6O, -y

Olexp (J (1 [V 0)1x)) ) (2.23)

3 Computational investigations
3.1 Setup

In the following sections, we wish to provide insights into the
performance of the proposed TOP method. As a first step, we

consider linear elastic material behavior, i.e., we investigate
the effective stiffness. Secondly, we study cyclic stress-strain
hystereses.

To create the morphology of the microstructures under
investigation, we use the algorithm described in Kuhn et
al. [20] to generate digital polycrystalline microstructures
with prescribed volume fractions. For the morphology we
consider two cases, a unique and log-normal grain size distri-
bution (GSD). The former means that all grains have the same
volume, i.e., V, = 1/G, where G denotes the total number of
grains in the volume element. Restricting to a unique grain
size permits us to study the influence of the individual grain
orientations exclusively. Due to their frequent occurrence in
experiments [69], we also investigate microstructures with an
equivalent diameter following a log-normal grain size distri-
bution with mean equal to unity and a standard deviation of
0.15, see Kuhn et al. [20].

For a fixed morphology, we furnish the grains with orien-
tations, where we investigate three different CODFs, namely
auniform, one with a slight texture and one with an increased
texture. For the former, we compare the accuracy of TOP and
the algorithm proposed by Quey et al. [18,34], integrated
into the polycrystal generation software Neper. In addition,
we include a random orientation sampling (realized using
the scipy implementation for sampling the Haar distribution
[70]) as a benchmark. For the textured CODFs, we compare
the TOP method to random sampling from discrete orienta-
tion measurements, which is a common practice [71,72]. For
the textured CODFs and a log-normal GSD, we additionally
consider the Texture Discretization Technique (TDT) algo-
rithm proposed by Melchior and Delannay [27], which, in a
first step, samples orientations using the method proposed
by Téth and Van Houtte [26]. In a subsequent clustering
step, a binary look-up table is computed by evaluating the
misorientation of each pair of sampled orientations. If this
misorientation is below a chosen threshold value, the corre-
sponding entry in the look-up table is set to 1 otherwise to 0.
To assign orientations to grains, each grain is associated with
a number of so-called elementary volumes according to their
size, which is used to find orientations in the look-up table
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with at least this number of orientations having low misorien-
tation. The corresponding crystallographic grain orientation
is then the average of orientations with low misorientation to
each other. The parameters, i.e., the number of elementary
volumes per grain and the threshold value for the misorien-
tation, have to be chosen judiciously. The TOP method is
implemented in Python with Cython extension following the
optimization procedure outlined in Sec. 2.3. Unless other-
wise specified, we use a tolerance of tol = 1078 to solve the
optimization problem and consider texture coefficients up to
rank six.

The material model described in Sec. 2.1 is implemented
in a user-material-subroutine (UMAT). The coefficients of
the elastic stiffness tensor are taken from the literature
[73,74], whereas the critical resolved shear stress, assumed
to be identical for all slip systems, and the parameters of
the kinematic hardening model were fitted to experimental
stress-strain hystereses of the steel C45 using Bayesian opti-
mization [51]. The complete set of used model parameters is
summarized in Table 1.

To efficiently compute the effective stiffness as well as the
macroscopic stress-strain hystereses, we use the FFT-based
solver FeelMath [75-77]. For the stiffness computations
we rely on the conjugate gradient method [78,79], whereas
for the non-linear problem we use a Newton-CG method
[80,81]. For both problems we use the Moulinec-Suquet dis-
cretization [82,83]. For a perspective of solution schemes
and discretizations, we refer to the recent review article by
Schneider [84]. By default, we carry out the computations on
periodic microstructures, discretized by 643 voxels. Please
note that we apply periodic boundary conditions to compute
the stiffness and hystereses.

3.2 Linear elastic stiffness

In this section, we study the effect of different orientation-
sampling techniques on the effective stiffness of polycrys-
talline microstructures. In order to minimize the influence of
the underlying microstructure morphology, we use a fixed
grain microstructure for each realization and all orientation
sampling methods. This is illustrated in Fig. 2, where we
show the results of different sampling techniques for a fixed
grain structure with grains of identical volume.

3.2.1 Uniform CODF

We start with the case of a unique grain-size and a uni-
form orientation distribution, corresponding to mechanically
isotropic behavior [86—88]. For the results to be representa-
tive, it is necessary to determine the number of grains which
ensure an isotropic effective material response, see for exam-
ple Kanit et al. [15] and Yang et al. [17]. In this spirit,
we investigate microstructures with an increasing number
of grains and study their effective stiffness.

As discussed in Sec. 2.2, for a uniform CODF, all texture
coefficients vanish, i.e.,

3.1)

holds for all considered texture coefficients. To quantify the
anisotropy of the stiffness tensor we compare to the best
approximation by an isotropic tensor (see Eq. (3.5)), i.e.,
we project the computed stiffness tensor onto the space of
isotropic tensors of fourth order. For a detailed discussion

Table 1 Parameters used for the

crystal plasticity model [73,74] Cubic stiffness (in Voigt notation)

Flow rule

Ohno-Wang model parameters

Lattice type
Slip systems

Cy1 =231.4GPa Ciy = 134.7 GPa Cy4 = 116.4 GPa
Yo = 0.001s~! m = 100

M=38 7. = 81.4 GPa

A = 6910.0 MPa B = 6734.0

BCC

{110}(111)

(a) Top (b) Neper

[111)

001 011)

(C) Random orientations

Fig. 2 Furnishing a grain microstructure with 128 grains of identical volume with orientations sampled by three different methods. The colors

correspond to the inverse-pole-figure color key in 010 direction [85]
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see the work by Federov [89] and Arts [90]. We compute the
mean stiffness

_ 1 Y
Ce = NZCG,n

n=1

(3.2)

of N = 10 realizations and extract the Lamé constants via

1 } _
PP — 3 (C6.44+ Ci.55 4 Ca 66) (3.3)
1 i} _
22PP — G (Cea2+Cq,13+ Cg.23
+C.21+ Cs31 +Cs.32). (3.4)

where Cg, ij denotes the i j-th entry of the stiffness tensor in
Voigt notation [91].

Using the best isotropic approximation C$© (142PP, )2PP)
based on the extracted Lamé constants, we introduce the
isotropy error §'*° via

Hciso (Mapp’ kapp) _ @G H

[l

8% (Cg,1,...,Con) = . (3.5)

measuring the degree of anisotropy present in the computed
stiffness.

For an increasing number of grains G € {32, 64, 96, 128,
256, 384,512,768, 1024, 1536}, we show the resulting
isotropy error for the three different orientation sampling
methods in Fig. 3(a). We observe a decreasing isotropy error
for all methods with an increasing number of considered
grains. All methods decrease the isotropy error at a simi-
lar rate. However, they differ in the initial error level. For
instance, all sampling techniques reach a low isotropy error
for 1536 grains, namely 0.251%, 0.041% and 0.027% for

random sampling, the Neper and TOP method, respectively.
To reach a mean error below 1%, the microstructure has to
consist of more than 64 grains if the orientations are sampled
randomly or generated by Neper. For all investigated grain
counts, the TOP method produces the lowest isotropy error.
Neper starts with a substantially higher error (by roughly one
order of magnitude) at low grain counts and reaches a sim-
ilar performance to TOP for more than 300 grains. For the
naive random sampling, the isotropy error has a quite large
offset to the more involved algorithms. In addition to eval-
uating the degree of isotropy, we investigate the deviation
from the effective, infinite-volume stiffness. As our ground
truth, we consider the mean of ten apparent stiffnesses, each
computed using volume elements consisting of 10 000 grains
and discretized by 1283 voxels (see Fig. 4a). The orienta-
tions are sampled using the TOP method. The mean stiffness
and the 95% confidence intervals, computed via Student’s
t-distribution [92], are given in Table 2. The isotropy error
of the mean stiffness is 81° = 0.012%. We define the total
error §'° as the mean relative error between the stiffness of
each realization and the one given in Table 2, i.e.,

N
5t = % 3 [e-Cen] (3.6)
n=1

ICIl

For the total error, shown in Fig. 3(b), we make similar obser-
vations as for the isotropy error. All of the methods decrease
the total error at a similar rate, but differ initially. For the case
of orientations generated by Neper, the error for 32 grains is
8t = 1.17% and therefore roughly twice as large compared
to the TOP method with §'°* = 0.521%. To reach a similar
error with randomly sampled orientations about 768 grains
have to be considered. Random sampling leads to a mean
error of 0.677% for 1536 grains. The errors produced by the

—— Neper — TOP — Random

T TTTT T T

Lol

5% in %
5%t in %

0.1

T T T
Lol

1 1

0.1F

I I

100 1,000
number of grains

(a) Isotropy error

100 1,000

number of grains

(b) Total error

Fig.3 Isotropy and total error for effective stiffnesses computed from microstructures with uniform orientations and unique grain size distribution
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(a) Microstructure with 10000 grains

1]

[001] [o11]

(b) Microstructure with 1024 grains

Fig.4 One realization of microstructures with 10 000 and 1024 grains with TOP based orientations. The color corresponds to the ipf color key in

100 direction

Table2 Mean and 95%
confidence intervals in GPa for 276.9 +£0.07
the stiffness in Voigt’snotation —

computed by averaging ten
realizations of microstructures
with 10000 grains and
uniformly distributed TOP
orientations _ _

112.0 £ 0.08
276.9 £ 0.07

112.0 £ 0.09 0.0 £0.10 0.0 £ 0.08 0.0 £0.08
112.0 +0.06 0.0 £0.08 0.0 £ 0.05 0.0 £0.08
276.9 +0.10 0.0 £0.07 0.0 £ 0.05 0.0 £0.05
— 82.5+0.15 0.0 + 0.06 0.0 £0.08
- — 82.5 £ 0.06 0.0 £0.07
— — - 82.5+0.11

Neper and TOP method are similar to each other with 0.073%
and 0.078%, respectively.

To understand the similar rates of error decrease more
thoroughly, it is helpful to decompose the total error §'
into two contributions [15]. The first part is the random
error and quantifies the inaccuracy associated with working
on a reduced representation of the ground truth. The sec-
ond contribution quantifies artificial long-range correlations
introduced by working on periodic microstructures [15,16].
We attribute the visible offset in Figs. 3 and 6 to the random
error, as we use the same geometric representations for each
orientation sampling method. Thus, a smaller random error
is achieved by the TOP method and further reduction of the
total error 8! is attributed to increasing the cell-size, i.e.,
increasing the number of grains.

Up to this point, our investigations were based on a
polycrystal with a unique GSD, i.e., a unique grain size.
However, to account for the influence of the grain size on the
mechanical response, it may often be necessary, and there-
fore desirable, to match more realistic grain size distributions
when generating synthetic polycrystalline microstructures.
Thus, we turn to polycrystals with a log-normal GSD, as
typically observed in real-world samples [69], with a mean
equivalent diameter equal to unity and a standard deviation
of 0.15. Figure 5 shows an example of a microstructure con-
sisting of 128 grains, equipped with orientations from the
three different sampling techniques. The isotropy as well
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as the total error for different sampling methods are shown
in Fig. 6. For the log-normal GSD, we register a notable
decrease in accuracy for the Neper sampling method com-
pared to the unique grain size. Considering the case of 32
grains, the isotropy error and total error increase from 1.22%
and 1.17% to 1.62% and 2.19%, respectively. This loss of
accuracy persists, even for larger grain counts, e.g., for 1536
grains the total error for the unique and log-normal GSD are
0.07% and 0.37%, respectively. For randomly sampling the
Haar distribution, the influence of a log-normal grain size
distribution is smaller. For instance the biggest difference in
the isotropy error is 1.23% and 1.60% for the unique and log-
normal GSD and 32 grains, respectively. The proposed TOP
method takes the volume fraction of each grain into account
in an explicit way when optimizing the orientations. This
results in strikingly similar error levels for both the unique
and the log-normal case. Whereas the total error values real-
ized by microstructures with 32 grains differ slightly for the
unique and log-normal case, the resulting isotropy error is
81° = 0.16% for both GSDs. We investigate the influence of
the maximum rank of the texture coefficients considered in
our optimization scheme in the case of a uniform orientation
distribution. For this purpose, we consider the case of ten
microstructures consisting of 1024 grains, see Fig. 4(b) for
an example of one realization. We study two different cases:
Using solely the texture coefficient of rank four to optimize
the orientations and considering the coefficients of rank four
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Fig.5 Polycrystalline microstructure realizations with 128 grains following a log-normal grain size distribution and orientations generated by three
different methods. The colors correspond to the ipf color key in 010 direction
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and six. For these two cases, the isotropy and total error are
shown in Fig. 7 for different values of the tolerance tol used in
the optimization procedure. Both errors show a decrease up to
a value of tol = 10~°, after which the resulting errors do not
change. Interestingly, considering only the texture coefficient
of rank 4 appears to be beneficial. As all total errors are below
0.1% and all isotropy errors even below 0.03%, using texture
coefficients of rank four and solving the problem up to a
tolerance of tol = 107° is sufficient for the case of a uniform
orientation distribution when considering 1024 grains and
solely the macroscopic stiffness is of interest.

3.2.2 Textured CODF

To further investigate the capabilities of the TOP method, we
turn to a non-uniform CODE i.e., a fextured polycrystal. The
prescribed CODF was generated by MTex [38], taken from
the MTex documentation [93], see Fig. 8 for the correspond-
ing pole figures. As MTex allows the sampling of CODFs,
we draw 50 000 samples at random for computing the texture
coefficients, assuming the same weight for each sample.

As a ground truth we define the mean stiffness of ten real-
izations, each with 10000 grains. The resulting stiffness for
TOP orientations is given, with its respective 95% confidence
intervals, in Table 3. The isotropy error of this stiffness com-
putes to 8%° = 5.54%, i.e., a slight anisotropy appears. For
this texture, we investigate the approximation quality of the
stiffness for a varying number of grains, each with identical
volume. The total error for randomly sampling from the gen-

(0o01) (110)

0.6

Fig.8 Pole figures of the (generated) textured CODF [93]

erated orientations and using texture coefficients is shown
in Fig. 9(a). Randomly sampling the generated orientations
gives a total error of §'°* = 4.47% for 32 grains and reaches
an error below 1% for 936 orientations. The mean total error
achieved by the TOP method of §'° = 0.51% for 32 grains
actually lies below the error value achieved by randomly sam-
pling 1536 orientations. For the latter number of grains, TOP
achieves an error §'°' = 0.07%. This difference is attributed
to the notable offset between the random sampling and TOP
method, as both decrease 5! with the same rate.

Let us consider the case of a log-normal grain size distri-
bution. For the TDT algorithm we assign eight elementary
volumes to the smallest grain and increase the number of
elementary volumes for each grain according to its size. We
set the threshold misorientation value to 5°. In Fig. 9(b),
we provide the total error §' for ten realizations with a
varying number of grains. For the case of randomly sam-
pling from given orientations, we observe a slight increase in
the error value induced by the underlying log-normal grain
size distribution. For instance, for a microstructures with 32
grains, the mean error is 8" = 3.12% and §*' = 3.74%
for the unique and log-normal GSD, respectively. This effect
decreases when a larger number of grains is considered, as
the effect of a single, large grain with specific orientation on
the overall response decreases. In contrast, the TOP method
is not adversely affected. Indeed, during optimization, the
volume fraction is explicitly taken into account when com-
puting the texture coefficients, see equation (2.18). Using
the TDT algorithm results in a lower total error than random

(111)

Table3 Mean and 95%
confidence intervals in GPa for 269.7 £ 0.07
the stiffness in Voigt notation —

computed by averaging ten
realizations of microstructures
with 10000 grains and TOP
orientations for a synthetic - -
CODF _ _

117.1 £ 0.06
268.6 = 0.08

113.9 £ 0.05 0.0 £0.07 —2.6=£0.11 0.1 £0.07
115.0 £ 0.06 0.1 £0.08 —0.1 £0.06 —0.1£0.05
271.9 £0.07 —0.1£0.09 2.7 £ 0.06 0.0 £0.07
— 85.8 £0.14 0.0 £0.10 —0.1£0.08
— — 84.6 £ 0.16 0.0 £0.05
— — — 88.1 £0.16
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Fig. 9 Total error §' of the effective stiffness computed for microstructures with a unique and log-normal grain size distribution and a synthetic

CODF

sampling for all grain numbers considered. For instance, for
a 64-grain microstructure, the total error is §'°°* = 3.75% and
8 = 2.77% for random sampling and the TDT, respec-
tively. For both algorithms the error decreases with a similar
rate as for the proposed TOP algorithm, whereas they both
result in higher total errors than using TOP.

3.2.3 Highly textured CODF

In practical applications, e.g., cold rolled steel, the intensities
in the pole figure may reach values as high as ten. To investi-
gate this scenario, we next consider a case with an increased
texture in the CODF. We rely on synthetically generating a
CODF using MTex [38] and show the resulting pole figures
in Fig. 10.

For the ground truth we proceed in the same way as for
the slightly textured CODF, using ten microstructures with

(001)
X

Fig. 10 Pole figures of the (generated) CODF with increased texture [93]

10000 grains of equal volume, equipped with orientations
from the TOP method to compute the mean stiffness. For this
case, the mean and the 95% confidence intervals are given in
Table 4. The isotropy error is §'© = 18.78% which is more
than three times the error of the slightly textured case, i.e.,
810 = 5.54%.

First, we investigate the case of a unique grain size dis-
tribution and show the resulting total error in Fig. 11(a). For
TOP and random sampling, the error decreases with a similar
rate, which is consistent with our observations in the slightly
textured case. For TOP as well as for random sampling the
total error is slightly lower than for the previously investi-
gated CODF, e.g., for 32 grains the total error is §*°' = 3.62%
and 8 = 0.40% for random sampling and TOP, respec-
tively. This holds for higher grain numbers as well. Indeed,
for 1536-grain microstructures, randomly sampling orienta-
tion data leads to a total error of §'* = 0.53%, whereas

(111)

)
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Table4 Mean and 95%

confidence intervals in GPa for 257.1 £0.06 115.4 £0.07 128.3 £0.04 0.0 £ 0.06 —0.0+0.03 —0.2+0.03
the stiffness in Voigt notation - 260.6 £+ 0.07 124.8 £ 0.04 0.0 + 0.04 0.0 £ 0.03 0.2 +£0.05
computed by averaging ten - - 24764005  —0.0 4 0.05 00+004  —0.0+0.04
realizations of microstructures 6
with 10000 grains and TOP - - - 98.4 £ 0.09 —0.1+£0.0 0.0 £0.10
orientations for the synthetic - - - - 103.7 £ 0.09 —0.0£0.07
CODF with increased texture — — — — _ 85.6 + 0.17
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Fig. 11 Total error 8% of the effective stiffness computed for microstructures with a unique and log-normal grain size distribution and a highly

textured CODF

using orientations generated by TOP results in an error of
8 = 0.06%. However, the relative difference between the
total errors for the two CODFs is lower for random sampling
than for TOP.

For the case of a log-normal GSD, compared to micro-
structures with grains of equal volume, the total error
increases for both methods. For microstructures with 64
grains equipped with orientations randomly sampled from
experimental data, the total error is §'°! 2.82% and
8 = 3.11% for a uniform and log-normal GSD, respec-
tively. This observation holds for the TOP method as well,
e.g., using 64 grains leads to an error increase from §* =
0.40% for a unique GSD to §'* = 0.45% if the grain sizes
follow a log-normal distribution. For the TDT algorithm and
a grain count below 768, we set the number of elementary
volumes for the smallest grain to eight. To account for the
increased grain count, we increase the number of elemen-
tary volumes to twelve for 1024 and 1536 grains in the
microstructure, whereas we retain the threshold of 5° for the
misorientation computations. For our choice of parameters
and grain numbers up to 256, we observe that the resulting
error is close to random sampling. For instance, the total error
obtained using a 256-grain microstructure is §'' = 0.94%
and 8 = 1.37% for orientations from random sampling
and the TDT algorithm, respectively. When increasing the
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grain count, there seems to be a limiting accuracy that the
TDT algorithm can reach. Indeed, the total error does not
decrease below 1%. The source of this phenomenon needs
to be investigated more thoroughly, and is beyond the scope
of this work.

3.3 Cyclic stress-strain hystereses

We expand our investigation into the elasto-plastic regime,
focusing on the effect of the orientation sampling method on
the cyclic stress-strain hystereses of the material. As bound-
ary condition, we use a macroscopic strain which follows a
triangular path with an amplitude of ¢, = 0.7% and a cycle
time of four seconds. To ensure a stabilized cyclic stress-
strain hystereses, we compute two cycles in total and use the
last one as our quantity of interest [74].

Because of the increased computational cost, we restrict
the investigations to grain counts

G € {32,064, 128,256, 512, 1024}

and use five realizations per number of grains, i.e., N = 5.
We use the material parameters specified in Table 1.
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3.3.1 Uniform CODF

For the uniformly distributed orientations, we asses the
isotropy of the results. For this purpose, and a single real-
ization, we compute three load cases to obtain the cyclic
stress-strain hystereses in three different directions, i.e.,
XX-, YY- and ZZ-direction. For a perfectly isotropic
response, the stress values would coincide for every con-
sidered direction. Thus, to measure the deviation from this
isotropic result, we use the average stress values
_ 1

o5 = g(UXX,s +oyy,s +0zz;) (3.7)
of all directions at each time step s as our reference. Then,
for each realization n, we compute the sum of the squared
relative differences between the stresses in every direction
and the mean of all directions weighted by the number of
stress values S, i.e.,

) () e (22 ) G
g Ty

Eq. (3.8) measures the mean relative deviation in all direc-
tions from the mean stress value (3.7). The quantity §hY>is°
extends the isotropy error defined for the stiffness, see equa-
tion (3.5), where the ideal isotropic case corresponds to the
mean stress values in all directions. We compute the mean
error of all realizations N = 5 by

| N
hys,iso
N 2o
1

n=

N
hys,iso 1 OXX,s
o ‘J NG
s

s=1

ahys,iso (39)

to get confidence in our results. We use the microstructures
from Sec. 3.2 with orientations prescribed by Neper, TOP
and random sampling.

For an increasing number of grains, we show the error
8hysis0 in Fig. 12(a). Neper and TOP behave similar to
each other, both lying below the error values achieved by

random sampling. For example, the mean errors obtained
from microstructures with 32 grains are S5 = 5.63%,
shysiso — 5 979 and §"Y$1%© = 1.10% for random sampling,
Neper and TOP, respectively. For an increasing number of
grains in the microstructure and randomly sampled orien-
tations, the error decreases more slowly than for the other
methods. Also, random sampling results in the highest mean
error value of 8M%1%© = 4.49% for 1024 grains. We observe
a steeper decrease in 8"Y5° for an increasing number of
grains for Neper and TOP, both lying close to each other. For
example, microstructures with 64 grains produce an error of
shysiso — 1.19% and M5 = 1.40% for TOP and Neper
orientations, respectively. For 1024 grains, the error levels
are 8MYS150 = 0.27% and §"Y$S° = 0.16% for Neper and
TOP orientations, respectively.

In Sect. 3.2, Fig. 7(a), we observed that taking a higher tex-
ture coefficient than rank four into account does not increase
the degree of isotropy of the effective stiffness matrix sig-
nificantly. Facing non-linear plastic behavior, we revisit the
influence of higher order coefficients onto the macroscopic
mechanical response. In Fig. 12(b), we show the isotropy
error §"Y$15° for different texture ranks and a varying number
of grains. The curves show similar behavior for a small num-
ber of grains (up to about 256), with a comparable error of
810-hys — 1.69% when considering solely rank four texture
coefficients and 8" = 1.10% when additionally opti-
mizing rank six texture coefficients and using 32 grains. The
difference becomes more pronounced for a larger number of
grains, as the error obtained by optimizing the fourth rank
coefficients is 815°hY$ = 0.36%, whereas accounting for the
tensor of rank 6 reduces the error to 85N = 0.18% for
512 grains. Following the procedure in Sec. 3.2, in addi-
tion to investigating the degree of isotropy, we would like
to assess the ability to reproduce the effective mechanical
response with a minimum number of grains. In the case of
non-linear mechanical behavior, we define our ground truth
as the stress-strain hystereses computed for five realizations
of a microstructure with 10000 grains, discretized by 1283

Fig. 12 Hysteresis isotropy 10
error, equation (3.8) for a F
varying number of grains G [

T TTT
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voxels. From these five realizations, we compute the mean
stress-strain curve as

1 N
8'r,s = N Zlar,s,n, (3.10)

where o, 5 , denotes the macroscopic stress value in direction
r ata given time step s and N refers to the number of realiza-
tions, i.e., N = 5. For the considered loading directions, the
resulting stress-strain hystereses are shown in Fig. 13. We
observe that the individual curves lie on top of each other,
i.e., there is no anisotropy present. For each number of grains
G and each realization, we compute the root of the mean
squared relative error in each direction as

where r refers to the loading direction, i.e., r € {XX, YY,
ZZ} in our case. Then, we compute the mean error over all
considered directions

hys,gt 1 al 1 X hys,gt
shys, :NZEZ‘S“ , (3.12)
n=1 r=1

where R denotes the number of considered directions, i.e.,
R = 3in this case. Comparing "> for different orientation
sampling methods in Fig. 14, we observe similar trends as for
the isotropy error 8%, For all methods, the error decreases
with an increasing number of grains in the microstructure.
For a small number of grains, the error resulting from TOP
orientations is smallest with 858" = 1.80% and §M>& =
0.78% for 32 and 256 grains, respectively. The error from
using Neper orientations is higher, with "Y€ = 3.93% and

N 2
5;‘Yj’gt _ | 2 : (G”’" _ 1) (3.11) shysgt = 0.82%. Randomly sampling the Haar distribution
s - ~ ’ ° .
S =1 \ Osr results in an error of 9.00% and 2.15% for the same number
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Fig. 13 Comparison of mean macroscopic stress-strain hystereses in different loading directions computed using five microstructures with 10 000
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of grains. The error for all three methods and 1024 grains
are 0.43%, 0.44% and 1.18% for TOP, Neper and random
orientations, respectively.

The error 8M5& for taking only the texture coefficient of
rank four into account, is shown in Fig. 14(b) together with
the previously discussed results for considering texture coef-
ficients with rank four and six. We observe that the error
when accounting solely for rank four texture coefficients
is higher than the error produced when considering higher
ranks. The difference is less pronounced than for §PYsis°,
To extend our studies to a non-unique grain size distribution,
we use microstructures with a log-normal grain size distri-
bution. We fix the mean and standard deviation to mean = 1
and stdev = 0.15, respectively. To reduce the computational
effort and because Neper and TOP provided the most promis-
ing results, we only consider orientations generated by Neper
and TOP in the following.

Figure 15(a) shows 8™ for an increasing number of
grains G. For every number of grains, the TOP methods pro-
vides a smaller error compared to Neper. For instance, using
32 grains, the error for TOP and Neperis 8"Y%1%° = 3.72% and
shysiso — 12 02%, respectively. The influence of the under-
lying GSD manifests. Indeed, for both cases, the values are
larger than for the unique grain size distribution.

Similar to the uniform GSD, the hystereses error closely
follows the trend observed fo the isotropy error, see
Fig. 15(b).

3.3.2 Textured CODF

For the case with mild anisotropy, we consider the synthetic
CODF described in Sec. 3.2. We compute the stress-strain
hystereses using five microstructures consisting of 10000
grains discretized by 128 voxels, see Fig. 4(a). In accor-

dance with the case of a uniform orientation distribution,
we use the mean stress values of these five realizations as
our ground truth. The resulting stress-strain hystereses are
shown in Fig. 16 for all three considered loading directions.
We observe a slight anisotropy in Y'Y -direction, whereas the
stress-strain curves in X X- and ZZ-direction coincide. We
show the total error to the mean stress values, i.e., Eq. (3.12),
in Fig. 17(a) for the TOP method as well as for randomly
sampling from given orientations.

Using random orientation sampling produces a larger error
for all grain numbers considered. Especially for a small num-
ber of grains, the TOP method results in a visibly smaller
error than for random sampling the experimental data. For 32
grains, the hysteresis total error 8" © is 3.60% and 1.28%
for random sampling and TOP, respectively. For random sam-
pling, the error reduces to 0.76% for 1024 grains, which is
close to the value achieved by TOP, with shys.et — 0.52%.
We observe similar behavior for the case of a log-normal
grain size distribution with mean = 1 and stdev = 0.15 in
Fig. 17(b). The error for 32 grains increases for both kinds of
orientation sampling methods, namely to 3.84% and 1.41%
for random and TOP sampling, respectively. For both the
unique and log-normal case, similar errors of 0.85% and
0.44% are achieved for randomly sampling experimental ori-
entations and using 1024 grains. Interestingly, the error for
a log-normal GSD is actually smaller than for the unique
GSD. For instance using the TOP method and 512 grains,
we observe an error of §"Y2' = 0.66% and §"Y*2' = 0.49%
for the unique and log-normal distributions, respectively.

For the TDT algorithm, we observe a lower error than for
random sampling when an intermediate number of grains
is considered, i.e., for grain counts of 64, 128 and 256.
For instance, the error for a microstructure consisting of 64
grains equipped with orientations of the TDT algorithm is
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Fig. 17 8M%2 for varying number of grains G with a slightly textured CODF

shysgt = 2.23% and §"Y58 = 2.22% for 128 grains. With
64 and 128 grains, the random sampling leads to an error
of 80828\ = 3.849% and §"Y%&' = 2.80%, respectively. For a
larger number of grains, above 256, the error computed for
the TDT algorithm exceeds the error of the randomly sam-
pled orientations from given data. For 1024 grains, the error
for random sampling is §"5&' = 0.85% and §™*8' = 1.00%
for the TDT algorithm. All of the observed error values are
above the errors obtained by TOP, e.g., using 32 grains, the
error for the TOP method is 8" = 1.42% whereas the
TDT algorithm and random sampling lead to an error of
shyset = 4.37% and §M58' = 3.84%, respectively.

3.3.3 Highly textured CODF
Last but not least, we consider the GSD outlined in Sec. 3.2

with an increased degree of anisotropy. Similar to the case of
a slight anisotropy, we compute the stress-strain hystereses
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for five microstructures consisting of 10000 grains and a
discretization of 1283 voxels. As our ground truth we use the
mean stress of these five realizations.

For microstructures with grains having a unique grain size
distribution and orientations from TOP or randomly sam-
pling experimental data, we show the total error in Fig. 18(a).
We observe that, for all grain counts considered, using the
TOP method results in lower error values compared to ran-
domly sampling from given orientation data. For instance,
using microstructures with 32 grains leads to a total error of
shys&t = 7.54% and §"YS&' = 17.44% for TOP and random
sampling, respectively. Thus, we observe an increase in the
total error in comparison to the slightly textured CODF for
both sampling methods and all microstructures. Indeed, for a
1024-grain microstructure equipped with orientations from
TOP, the error increases from 8" = 1.42% for the slightly
textured case to 8M%2! = 5.24% for the case of higher texture.
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This observation holds for randomly selecting orientations
from given orientation data, e.g., for a microstructure con-
sisting of 256 grains the error for the highly textured CODF is
8hys-2t = 10.1% whereas it is $"Y2' = 1.82% for the slightly
textured case.

Figure 18(b) shows the total error for the case of a log-
normal GSD equipped with orientations from TOP, TDT
and random sampling. We make similar observations to the
slightly textured CODF, i.e., an increase in the total error
compared to the results for the unique GSD. For instance,
a 64-grain microstructure with TOP orientations leads to an
increase in the total error from M2 = 5.36% for a unique
GSD to §M%2' = 9.62% for a log-normal GSD. Comparing
the same microstructures equipped with orientations from
randomly sampled orientation data, the error increases from
shyset = 13.2% to 8M5&' = 16.3% for a unique and a log-
normal GSD, respectively. For lower grain counts, i.e., below
256, using the TDT algorithm results in similar error val-
ues as randomly sampling orientation data. An exception is
the 32-grain microstructure, for which the total error value
8hys.2t = 11.7% is close to the value obtained using TOP, i.e.,
shys:gt — 8.02%. For higher grain counts, i.e., above 256, the
TDT algorithm does not decrease the total error but instead
we observe an increase in the error values obtained, in line
with observations made investigating the performance for the
linear elastic properties in Sec. 3.

4 Conclusion

In this work, we proposed to use the coefficients of a tensorial
Fourier expansion of the crystallite orientation distribution
function [40] to equip digital polycrystalline microstructures
with crystallographic orientations for micromechanical sim-

ulations. Our proposed method is based on minimizing the
difference between the current and the prescribed tensorial
Fourier, or texture, coefficients and uses a gradient descent
scheme on the Lie group SO (3).

We compared the proposed texture optimization for
prescribing orientations (TOP) method to different state-
of-the-art methods, e.g., implemented in the sophisticated
microstructure generation tool Neper [34]. In a first step, we
investigated the homogenized stiffnesses of polycrystals for
the case of a uniform and two textured crystallite orientation
distribution functions (CODF). Subsequently, we extended
our studies to the non-linear case, where we investigated the
macroscopic cyclic stress-strain hystereses of the microstruc-
tures. For both, the linear elastic and the non-linear plastic
case, we considered a unique as well as a log-normal grain
size distribution (GSD). By introducing suitable error mea-
sures we investigated and compared the performance of the
proposed method.

In the isotropic, linear elastic case, TOP provided better
results compared to the Neper method and random sampling
of orientations. Using TOP, an isotropic effective stiffness
could already be achieved for small grain numbers. Owing
to the fact that the volume fraction of each individual grain
is explicitly accounted for, the advantage becomes more
pronounced when dealing with microstructures having a log-
normal grain size distribution. Additionally, with TOP it is
possible to reproduce the linear-elastic behavior of polycrys-
tals with aunique GSD and a textured CODF more accurately
and efficiently than via a random sampling from experimen-
tal orientation data. This holds as well for the case of a
log-normal grain size distribution. Comparing to the Tex-
ture Discretization Technique (TDT) algorithm proposed by
Melchior and Delannay [27], which also considers grain size
during orientation assignment, the TOP method performed
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better for both CODFs considered. Our intensive numerical
studies revealed that the performance of the TDT algorithm,
in our setting, critically depends on the choice of parameters,
i.e., the misorientation value and the number of elementary
volumes per grain.

For the non-linear plastic behavior, the results of the Neper
method were very similar to the ones provided by TOP, show-
ing the capabilities of the dedicated algorithm. Although the
effect was less pronounced than for the case of linear-elastic
behavior, we observed that a underlying log-normal GSD
results in a decreased performance for the Neper method.
TOP, on the other hand, was able to produce similar results
as for the unique GSD. In addition, microstructures with ori-
entations provided by the TOP method allow to accurately
compute the effective, non-linear behavior of polycrystals
with an underlying texture. For both textured CODFs con-
sidered in this work, the defined error measures were lower
compared to randomly sampling orientation data. The errors
for a log-normal GSD obtained by TOP were below the
ones obtained with random sampling or the algorithm of
Melchior and Delannay [27], even for a small number of
grains. Investigating a highly textured CODF and physically
non-linear visco-plastic behavior, we observed higher error
values compared to the slightly textured CODF for all algo-
rithms considered. This contrasts with the linear elastic case
where we observed a smaller error for the highly textured
CODF. However, using orientations generated by the TOP
method leads to significantly smaller errors than using the
other two algorithms. Concerning the maximum number of
texture coefficients which should be taken into consideration,
we observed that, for the linear elastic case, a low tolerance
and only the texture coefficient of rank four a sufficient. For
the non-linear behavior, we observed that accounting for the
texture coefficient of rank six is beneficial.

As the computational effort of micromechanical studies
is mainly dominated by computing the effective behavior we
omitted a comparison of the computational performance of
TOP to the other methods.

To conclude, we showed that extracting relevant data
from the CODF in terms of tensorial texture coefficients
leads to the most flexible and performing method for gen-
erating crystallite orientations for digital representations of
polycrystalline microstructures. As orientation assignment is
typically treated as a post-processing step in microstructure
generation, it is possible to couple the proposed algorithm
with well-established microstructure generators [21-23].
With this modular structure, it is possible to use TOP for
generating polycrystalline representations for a variety of
applications [94,95]. As an additional benefit, for generat-
ing orientations, the TOP method requires only nine (or 22
variables, depending on the highest texture coefficient rank
considered) to be stored, contrasting with methods that rely
on the entire experimental database. Because of this low num-
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ber of parameters, it is possible to fuel data driven methods
[96,97]. Additionally, as experimental data is always afflicted
with some degree of measurement uncertainty, investigat-
ing the influence of the texture on the overall macroscopic
response might be an interesting topic, i.e., via uncertainty
quantification [98,99].
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