KIT | KIT-Bibliothek | Impressum | Datenschutz

A Regression-Based Technique for Capacity Estimation of Lithium-Ion Batteries

Madani, Seyed Saeed 1; Soghrati, Raziye; Ziebert, Carlos ORCID iD icon 1
1 Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Karlsruher Institut für Technologie (KIT)

Abstract:

Electric vehicles (EVs) and hybrid vehicles (HEVs) are being increasingly utilized for various reasons. The main reasons for their implementation are that they consume less or do not consume fossil fuel (no carbon dioxide pollution) and do not cause sound pollution. However, this technology has some challenges, including complex and troublesome accurate state of health estimation, which is affected by different factors. According to the increase in electric and hybrid vehicles’ application, it is crucial to have a more accurate and reliable estimation of state of charge (SOC) and state of health (SOH) in different environmental conditions. This allows improving battery management system operation for optimal utilization of a battery pack in various operating conditions. This article proposes an approach to estimate battery capacity based on two parameters. First, a practical and straightforward method is introduced to assess the battery’s internal resistance, which is directly related to the battery’s remaining useful life. Second, the different least square algorithm is explored. Finally, a promising, practical, simple, accurate, and reliable technique is proposed to estimate battery capacity appropriately. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000148520
Veröffentlicht am 12.07.2022
Originalveröffentlichung
DOI: 10.3390/batteries8040031
Scopus
Zitationen: 6
Web of Science
Zitationen: 6
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2313-0105
KITopen-ID: 1000148520
HGF-Programm 38.02.02 (POF IV, LK 01) Components and Cells
Erschienen in Batteries
Verlag MDPI
Band 8
Heft 4
Seiten Art.-Nr.: 31
Vorab online veröffentlicht am 31.03.2022
Schlagwörter lithium-ion battery; capacity estimation; least squares
Nachgewiesen in Web of Science
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und WohlergehenZiel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page