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ABSTRACT

We report on the effective and back stresses evolution of a CoCrFeMnNi high-entropy alloy (HEA) by
partitioning its cyclic hysteresis loops. It was found that the cyclic stress response of the HEA pre-
dominantly originates from the back stress evolution. Back stress also increases significantly with
increasing strain amplitude and reducing grain size. However, the change of effective stress is rather
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insignificant with altering cycle number, strain amplitude and grain size. This indicates that the effec-
tive stress is determined mainly by the lattice friction. Further comparisons to an austenitic steel and
a medium-entropy alloy identified the origins of their peculiar cyclic strength.
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The effective stress and back stress upon cycling a HEA are assessed, both of which are higher than
a conventional FCC steel, contributing to the HEA's higher cyclic strength.

1. Introduction

Recently, considerable efforts have been put into under-
standing the low-cycle fatigue (LCF) behavior and
microstructural evolution of high-entropy alloys (HEAs)
[1-5]. For instance, the equiatomic face-centered cubic
(FCC) CoCrFeMnNi HEA was reported to show higher
lattice friction [6], comparable or even higher LCF resis-
tance [1,7] compared to conventional FCC alloys. How-
ever, limited attention has been paid for interpreting the

origin of HEASs’ cyclic stress response and the types of
obstacles to dislocation motion.

It is widely accepted that the total flow stress can be
divided into two components, namely, effective stress and
back stress [8-11]. The understanding of these stresses’
evolution is essential to describe materials’ constitutive
behavior, such as dislocation slip behavior [10,12]. In
detail, effective stress is required locally for a mobile
dislocation to overcome short-range obstacles, such as
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lattice friction and dislocations forest [11,13,14]. Back
stress refers to long-range resistance stress from grain
boundaries and dislocation substructures [14-16] and is
often related to Bauschinger effect.

Many attempts have been made to determine the effec-
tive and back stresses of different conventional FCC
materials [12,17-25] by different tests. Taking FCC 316
steel as an example, upon cycling, the effective stress
remains constant during most of its fatigue life; and the
back stress mainly defines its cyclic stress response [19].
For HEAs, in the only study using tension-compression
tests rather than fully reversed fatigue tests, Bouaziz et al.
[11] attributed high back stresses of CoCrFeMnNi HEA
to the low probability of cross-slip. It is also essential to
elucidate effective and back stresses evolution upon cyclic
loading the HEA, which is anticipated to be unique from
the results obtained in tension-compression tests [11].

Furthermore, our previous study [4] has suggested
that CoCrFeMnNi shows higher cyclic strength than con-
ventional 316L steel and manifests a transition from
planar-slip to cross-slip (with increasing cycle number
and strain amplitude). It is therefore of interest to clar-
ify the origin of the HEA’s higher cyclic strength and
correlate it to the dislocation behavior. Likewise, the
CoCrFeMnNi and its superior subset CoCrNi medium-
entropy alloy (MEA) have been reported to exhibit dif-
ferent cyclic strength [2], with their effective and back
stresses contribution yet to be compared.

Therefore, this work aims to provide fresh insights into
the effective and back stresses evolution upon cycling the
CoCrFeMnNi HEA (with emphasis on the influences of
cycle number, strain amplitude and grain size), and fur-
ther to compare them with a 316L steel as well as with
CoCrNi MEA.

2, Experimental details

The investigated equiatomic CoCrFeMnNi was synthesized
by arc melting followed by drop-casting, homogeniza-
tion, and rotary-swaging. Cylindrical LCF specimens
(with a gauge diameter of 2mm and gauge length of
7.6mm) were machined out from the rotary-swaged
material. Prior to LCF tests, the specimens were recrys-
tallized by annealing for 1h at 800°C and 1000°C,
respectively, to obtain different grain sizes of the alloy
[~6+£3um and ~50430um, referred to as fine-
grained (FG) and coarse-grained (CG), respectively,
hereafter]. Detailed microstructures of FG and CG mate-
rials can be found in Ref. [4].

Cyclic pull-to-push LCF tests were carried out in air
at RT with an extensometer of 7mm gauge length. All
tests were conducted under a nominal strain rate of
3x1073s7! using a symmetrical triangular waveform

(i.e. strain ratio R of —1) at different strain amplitudes
(0.3%, 0.5% and 0.7%). To separate the contributions of
effective and back stresses to the total flow stress, the hys-
teresis loops were analyzed using the Cottrell method (see
Fig. A1) [14,15]. Notably, due to the current number of
data points (i.e. 160) per half hysteresis loop, the calcu-
lated effective stress and back stresses have a scatter of
~ (410) MPa.

3. Results and discussion
3.1. Evolution with cycle number

Figure 1 presents the typical tensile peak, effective,
and back stresses evolution with the number of cycles
for the FG CoCrFeMnNi sample tested at a strain
amplitude of 0.5%. As evident, the effective stress
increases marginally at initial cycles and then remains
in a near -steady state before failure (Figure 1). How-
ever, the back stress evolution almost replicates the
general trend of the tensile peak stress, ie. an ini-
tial increase (cyclic hardening) followed by a decrease
(cyclic softening) and near-steady state until failure
(Figure 1). Notably, the above trend of effective and
back stresses is also applicable for other strain ampli-
tudes (0.3% and 0.7%, see Figure 2) and CG material
(Figure 3).

The above stresses evolution with cycle number can be
linked to the previously reported dislocation structures at
different stages that were revealed by transmission elec-
tron microscope (TEM) investigations [4]. In specific,
with increasing cycle number (or stage), the dislocation
structures have been reported to change from initial pile-
up and tangles, to weak-defined wall/cell-like substruc-
tures, and finally to their well-defined versions [see insets
(a—c) in Figure 1] [4].

Accordingly, for the effective stress, its initial marginal
increase is related to the increased density of dislocation
forest (i.e. in the form of tangles, see Figure 1(a) [4]).
Afterwards, the nearly stabilized effective stress can be
ascribed to the insignificant change in dislocation density
during the near-steady stage.

For the back stress, at the initial hardening stage, the
significant increase is linked to the dislocation pile-up
against grain boundaries (see Figure 1(a) [4]). More-
over, at the initial stage, the increase in back stress is
more pronounced than that in effective stress, indicat-
ing that dislocations pile-up is more prevalent than tan-
gles. Thereafter, at the softening stage, the decrease in
back stress can be ascribed to dislocations rearrangement
into their weak-defined low-energy substructures (i.e.
walls and cells separated by channels, e.g. see Figure 1(b)
[4]). It is well accepted that the total back stress during
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Figure 1. Typical tensile peak, effective and back stresses evolution with the number of cycles for a fine-grained (FG) CoCrFeMnNi spec-
imen tested at RT and strain amplitude of 0.5%. The insets (a—c) are TEM micrographs acquired from specimens tested upto (a) 20, (b)
500, and (c) end-life cycles, representing cyclic hardening, softening and near-steady stages, respectively [4].
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Figure 2. Tensile peak, effective and back stresses evolution with the number of cycles for FG CoCrFeMnNi specimens tested at RT and
strain amplitude of 0.3%, 0.5%, and 0.7%.
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Figure 3. Tensile peak, effective and back stresses variation with the number of cycles for (a) fine-grained (FG) and (b) coarse-grained
(CG) CoCrFeMnNi specimens tested at 0.5% strain amplitude.
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straining polycrystals results from two incompatibility
levels, i.e. intergranular (X inter) and intragranular (X intra)
components [24]. On one hand, these substructures’
formation reduces the xinter against grain boundaries.
Specifically, their formation involves massive disloca-
tions wavy/cross-slip induced annihilation, which lowers
the number of dislocations in the pile-up; and thereby,
reduces the yinter. On the other hand, their formation
increases the ) intra>» due to dislocations piling up against
walls and cells [26]. Taken together, the decrease in total
back stress at this stage implies that the reduced xinter
outweighs the increased yintra. Afterwards, at the near-
steady stage, the change in back stresses is insignificant,
which can be related to the inconsequential change in
the configuration of dislocations, e.g. see Figure 1(b,c)
[4]. This also suggests that a near-equilibrated status of
the competition (between the increase of xintra and the
decrease of xinter) is achieved. Therefore, in totality, the
back stress evolution is correlated well with the disloca-
tion structures evolution (i.e. from pile-up to low-energy
substructures).

Overall, upon cycling CoCrFeMnNi, the change of
cyclic stress (including hardening and softening) is
mainly controlled by the back stress, which is irrespec-
tive of the applied strain amplitude. This observation is
in general similar to that reported for FCC 316 steels
[19,21-23].

3.2. Evolution with strain amplitude and grain size

Figure 2 shows the typical tensile peak, effective and
back stresses evolution for FG CoCrFeMnNi specimens
acquired a strain amplitude of 0.3%, 0.5%, and 0.7%.
Clearly, with increasing applied strain amplitude, the
back stress increases strikingly. However, despite the scat-
ter that exists per cycle and strain amplitude, the increase
in effective stress is insignificant.

Additionally, the percentage of back stress to stress
amplitude was calculated from both FG and CG CoCr-
FeMnNi specimens at the saturated (e.g. half-life) cycles
(see Table 1). As evident, the back stress represents
a sizable portion of the stress amplitude (~40% to
60%), signifying the material’s high kinematic harden-
ing ability. Besides, the ratio of back stress increases
with the strain amplitude (Table 1). This indicates that
the strain hardening mostly originates from higher back
stress.

To clarify the effect of grain size, Figure 3 shows
the calculated stresses evolution of (a) FG and (b) CG
CoCrFeMnNi tested at 0.5% strain amplitude. Appar-
ently, by decreasing grain size, the increase of back stress
is more significant than that of effective stress. For exam-
ple, at strain amplitude 0.5% and half-life, with reducing

Table 1. The percentage of back stress to the stress amplitude at
saturated (e.g. half-life) cycles of FG and CG CoCrFeMnNi speci-
mens tested at different strain amplitudes.

Strain amplitude

Grain size 0.3% 0.5% 0.7%
FG 50.7% 58.8% 61.2%
CG 42.9% 49.9% 54.3%

grain size from CG to FG range, the saturated effec-
tive stress remains nearly constant (~ 160 MPa); whereas
the saturated back stress increases by ~ 70 MPa (Figure
3(a,b)). This result indicates that the higher grain bound-
ary strengthening for FG CoCrFeMnNi contributes to its
higher back stress, in comparison to the CG version. This
is in line with the previous findings reported for nickel
and 316L steel; i.e., in comparison to effective stress, back
stress is more dependent on the grain size [18,27].

Taken together, increasing strain amplitude and
reducing grain size both lead to an increase in back stress.
The as-expected significant increase in back stress herein
can also be attributed to massive dislocations pile-up
against grain boundaries and substructures, similar to
that discussed in Section 3.1.

Meanwhile, the unexpected slight increase in effec-
tive stress (as a function of strain amplitude and/or
cycle number) suggests that the effective stress for
CoCrFeMnNi is determined more by lattice friction
rather than forest hardening upon cycling. Similarly, the
insignificant increase of effective stress was addressed
in previous reports [22,23,28]. Further more, Hong and
Laird [12,29] proposed that in copper alloys, the elas-
tic interaction between dislocations and solute atoms
is dominantly responsible for the evolution of effective
stress.

Interestingly, upon tension-compression tests [11], the
increase of effective stress is shown to be rather signif-
icant with increasing strain levels. For example, effective
stress is estimated (by us from the testsin [11]) to increase
from ~127 to ~ 161 MPa with increasing strain from
3% to 14%. This significant increase in effective stress
for tension-compression tests could be ascribed to the
increased cross slip probability and dislocations forest
upon increasing strain levels.

3.3. In comparison to an austenitic steel

The above-presented effective and back stresses evolu-
tion with cycle number, strain amplitude and grain size
for the FCC CoCrFeMnNi HEA is in general consistent
with that of conventional austenitic steels [19-22]. This
reflects that there are no new cyclic deformation mech-
anisms for the presently investigated HEA compared to
austenitic steels.
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Figure 4. Tensile peak, effective and back stresses evolution with the normalized number of cycles (N/N¢) for (a) CoCrFeMnNi and (b)
316L steel [20] specimens tested at 0.7% strain amplitude and RT. Note that the CoCrFeMnNi and 316L steel have similar coarse grain

(CG) size and insignificant texture.

Nevertheless, in comparison to similar grain-sized
316L austenitic steel, CoCrFeMnNi has been reported to
show higher cyclic strength [4]. To further elucidate the
origin of its higher cyclic strength, the effective and back
stresses of the CG CoCrFeMnNi were compared to that
of the CG 316L steel [20], see Figure 4.

Evidently, compared to 316L steel, CoCrFeMnNi
exhibits both higher effective and back stresses under
the same applied strain amplitude (0.7%). For example,
the saturated effective and back stresses are ~ 50 MPa
and ~20 MPa higher than that of the 316L steel. This
indicates that, compared to 316L steel, the higher cyclic
strength of CoCrFeMnNi arises from both higher lat-
tice friction (or solid solution strengthening) and grain
boundary strengthening, with the former one being the
main contributor.

It is also of interest to note that deformation twins
have been reported to occur in CG CoCrFeMnNi [4] and
316L steel [30] (both with a minor fraction). Deformation
twins, having ¥3 grain boundaries, formation in a minor
fraction could result in a slight increase of back stress for
both materials.
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3.4. In comparison to CoCrNi medium-entropy alloy

Though the above analysis is based on the LCF data for
CoCrFeMnNj, it should be also applicable to a broader
range of FCC HEAs and their MEA subsets. To verify
this, the effective and back stresses evolution of fine-
grained CoCrNi MEA tested at 0.7% strain amplitude
were estimated and are shown in Figure 5(a).

As expected, similar to the CoCrFeMnNj, the tensile
peak stress response of the CoCrNi MEA is also mainly
dictated by the evolution of back stress upon LCF loading.
It is well known that the strain-controlled LCF behavior
is generally believed to be determined by the ductility of
a material [31]. Therefore, the above stresses evolution is
considered to also apply to other types of HEAs with high
ductility, such as ductile body-centered cubic HEAs [32],
in addition to FCC HEAs. Nevertheless, further efforts
are needed for verification.

As a comparison, Figure 5(b) presents the stresses of
FG CoCrFeMnNi tested at 0.7% strain amplitude. Like-
wise, the CoCrNi alloy shows both higher effective and
back stresses than CoCrFeMnNi. For example, the satu-
rated effective and back stresses of CoCrNi are ~ 40 MPa

(b) 700 .
CoCrFeMnNi RT £=0.7%
600} FG
5500 [ Tensile peak stress
S 400t
g 300+ Back stress
® 200+ Effective stress
100+
0 L L L L
10° 10' 102 10°
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Figure 5. Tensile peak, effective and back stresses variation with the number of cycles for (a) CoCrNi and (b) CoCrFeMnNi specimens
tested at 0.7% strain amplitude. Note that the CoCrNi and CoCrFeMnNi have similar fine grain (FG) size and insignificant texture.
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and ~ 80 MPa higher than that of the CoCrFeMnNi. This
suggests that the higher cyclic strength of CoCrNi results
from the larger effective stress and even larger back stress
than CoCrFeMnNi.

The higher effective stress in CoCrNi is ascribed to
its larger solid solution hardening due to larger shear
modulus, most likely coming from the high Cr content
(higher mean atomic displacement) and the large volu-
metric mismatch among Cr (as the largest atom size and
shear modulus in the system), Ni and Co (both com-
parably small) [33,34]. Whereas, the higher back stress
is related to its higher grain boundary strengthening,
which suggests higher Hall-Petch constant k of CoCrNi
in comparison to CoCrFeMnNi.

For CoCrFeMnNj, the k value is well-accepted to be
494 MPa,/pum [35]. However, for CoCrNi, there exists a
large discrepancy regarding the k value, which is reported
tobe 265 MPa,/jum [34] and 815 MPa,/um [36], respec-
tively. The possible reasons for this discrepancy have been
proposed to lie in their different preparation routes, grain
size distribution, and impurity contamination levels [36].
Here, by using the same CoCrNi material to Ref. [36],
the obtained higher back stress of CoCrNi suggests its
larger k constant, as compared to CoCrFeMnNi. Hence,
our finding supports the rationale reported in Ref. [36].
In addition, since the back stress exhibits a Hall-Petch
type relation [18,27], the higher k value of a material can
be taken as an indication of its higher back stress.

4. Summary

The key findings are summarized as below:

e At all investigated strain amplitudes, the cyclic stress
response is dictated by the evolution of back stress,
which is correlated well with dislocation structures
transition (i.e. from pile-up to low-energy substruc-
tures).

e Unlike the remarkable increase of effective stress
reported for tension-compression tests, effective stress
does not change significantly with altering cycle num-
ber, strain amplitude and grain size upon cyclic load-
ing. This suggests that effective stress is determined
more by lattice friction than dislocation forest upon
cycling.

e Besides, back stress increases significantly with
increasing strain amplitude and reducing grain size.
This indicates that both cyclic strain hardening and
grain boundary hardening mostly derive from back
stress.

e Compared toa316L steel, CoCrFeMnNi HEA exhibits
both higher effective stress and back stress, suggesting

both higher solid solution strengthening and grain
boundary strengthening in HEAs.

e The above analyses are also applicable for a wide
range of HEAs and their MEA subsets (e.g. CoCrNi).
In comparison to CoCrFeMnNi, the higher cyclic
strength of CoCrNi stems from both higher effective
stress and back stress.

Thus, this work provides the origin of the cyclic
strength of a HEA and identifies the types of obstacles
to dislocation motion upon cycling. Further quantitative
analyses of the effective and back stresses are envisaged
as future work.
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Figure A1. Schematic figure showing Cottrell’s method of calculating effective stress (o'¢) and back stress (o',). Here, oo is measured as
the offset yield strength corresponding to an offset plastic strain (Ae) of 0.1%.
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