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Abstract. We analyze the eigenvalues of the Lax operator associated to the
one-dimensional cubic nonlinear defocusing Schrödinger equation. With the
help of a newly discovered unitary matrix, it reduces to the study of a uni-
tarily equivalent operator, which involves only the amplitude and the phase
velocity of the potential. For a specific kind of potentials which satisfy nonzero
boundary conditions, the eigenvalues of the Lax operator are characterized via
a family of compact operators.
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1. Introduction

We consider the following one-dimensional cubic nonlinear defocusing Schrödinger
equation (NLS)

(1) i∂tq + ∂xxq = 2|q|2q,
where q = q(t, x) : R×R 7→ C denotes the unknown wave function. By the seminal
paper by Zakharov-Shabat [13], the (NLS) can be (formally) formulated in the Lax
pair form

(2) ∂tL = PL− LP,

where L is the self-adjoint Lax operator

(3) L =

(

i∂x −iq
iq̄ −i∂x

)

,

and P is the following skewadjoint differential operator

P = i

(

2∂2x − |q|2 −q∂x − ∂xq

q̄∂x + ∂xq̄ −2∂2x + |q|2
)

.

Here the application of the operator ∂xq̄ on a function f is understood as ∂x(q̄f).
Let U(t′, t) be the unitary family generated by the skewadjoint operator P , then
by virtue of (2), one can relate the operators L(t) and L(t′) at different times by

L(t) = U∗(t′, t)L(t′)U(t′, t),

such that the spectra of the Lax operator L is formally invariant under the evolu-
tionary NLS-flow (1).

In the (classical) setting of decaying potentials:

q(x) → 0 as |x| → ∞,
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the spectral problem of the Lax operator L and the associated direct/inverse scat-
tering transform have been extensively studied in the literature, see e.g. the book
[2]. The case with the nonzero boundary condition for q at infinity:

(4) |q(x)| → 1 as |x| → ∞

has also attracted much attention, see e.g. [1, 4, 5, 6, 7, 8, 9, 14]. In the classical
framework where

q − 1 ∈ S
is a Schwartz function, Faddeev-Takhtajan [8] studied the self-adjoint operator L,
and showed that its essential spectrum is (−∞,−1] ∪ [1,∞) and there are at most
countably many simple real eigenvalues {λm} in (−1, 1). More recently, Demontis et
al. [7] studied rigorously the inverse scattering transform in the framework that q(x)
tends to eiθ± ∈ S1 as x→ ±∞ sufficiently fast in the sense that (1+x2)(q−eiθ±) ∈
L1(R±). In particular, under some stronger decay assumption

(1 + x4)(q − eiθ±) ∈ L1(R±),

they showed that there are only finitely many discrete eigenvalues which belong to
the spectral gap (−1, 1). It was shown recently in [11] that in the low-regularity
finite-energy setting

q ∈ L2
loc (R) with |q|2 − 1, ∂xq ∈ H−1(R),

the essential spectrum of the Lax operator L is (−∞,−1]∪[1,∞), and the spectrum
outside the essential spectrum consists of isolated simple eigenvalues in (−1, 1).
However, under this weak assumption, there might be eigenvalues embedded in the
essential spectrum. We mention also a recent work [3] devoted to the case of the
nonzero asymmetric boundary condition

q(x) → q±, as |x| → ∞, with |q+| 6= |q−|.

In this paper we will focus on the study of the eigenvalues of the Lax operator

L =

(

i∂x −iq
iq̄ −i∂x

)

, which is a one-dimensional Dirac operator. A specific kind of

piecewise constant potentials

q =







eiθ− x < −R,
Aeiϕ −R < x < R,

eiθ+ x > R,

has been considered in [4], and the authors there estimated the location of the dis-
crete eigenvalues inside the spectral gap (−1, 1) by considering the relation between
A and cos(ϕ). In particular, if A < 1, then there is at least one discrete eigenvalue.

Here we propose a new idea to study the operator L, where we take non-vanishing
bounded potentials q with finite phase velocity as follows

q = |q|eiϕ ∈ L∞(R;C), ∂xϕ ∈ L∞(R;R).(5)

By the following unitary matrix which we believe to be new

M =
1√
2

(

e−
1
2 i(ϕ−

π
2 ) e

1
2 i(ϕ−

π
2 )

e−
1
2 i(ϕ−

π
2 ) −e 1

2 i(ϕ−
π
2 )

)

: Hs(R;C2) → Hs(R;C2), s = 0, 1,
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we can transform the Lax operator L : H1(R;C2) 7→ L2(R;C2) to the operator

L =MLM∗ =

(

−u− i∂x
i∂x −u+

)

: H1(R;C2) 7→ L2(R;C2).

where u± = 1
2∂xϕ ± |q| are the two Riemannian invariants of the corresponding

compressible Euler equations to the hydrodynamic nonlinear Schrödinger equation
(see (8) below). In particular, the operators L and L share the same real eigenvalues
λ, and the corresponding eigenvectors ψ and Ψ are related by M as follows:

Lψ = λψ
Ψ=Mψ⇐⇒ LΨ = λΨ.

It suffices to study the eigenvalues of the operator L. We can reformulate the
eigenvalue problem of L into a single λ-nonlinear eigenvalue problem if λ+ u− 6= 0
on R:

− ∂x

( 1

λ+ u−
∂xφ

)

− (λ + u+)φ = 0,

where Ψ =

(

Ψ1

Ψ2

)

=

( 1
λ+u−

i∂xφ

φ

)

, or into the following λ-nonlinear eigenvalue

problem if λ+ u+ 6= 0 on R:

−∂x
( 1

λ+ u+
∂xφ

)

− (λ+ u−)φ = 0,

where Ψ =

(

Ψ1

Ψ2

)

=

(

φ
1

λ+u+
i∂xφ

)

. By integration by parts, one can easily show

that for any c ∈ R, u− + c (resp. u+ − c) controls the size c − λ (resp. c + λ) in
the following sense (with f (+), f (−) denoting the positive and negative parts of f
respectively):

c− λ ≤ ‖(u− + c)(+)‖L∞ or c+ λ ≤ ‖(u+ − c)(−)‖L∞ .

In particular, if u+,−u− ≥ c > 0 (i.e. |q| ≥ c + 1
2 |∂xϕ|), then there are no

eigenvalues in (−c, c) for L and L.
These arguments don’t take into account of the special boundary condition (4) at

infinity, and hence work for all non-vanishing bounded potentials q with finite phase
velocity. We believe that this new formulation L of L will give new observations
to interesting problems related to the cubic nonlinear defocusing NLS equation,
such as the semiclassical limit, dispersive shock waves, rarefactive waves, the KdV
approximation of NLS in the long wave length regime.

Organization of the paper. We study the general case of non-vanishing bounded
potentials with finite phase velocity in Section 2, by encoding the above arguments
step by step.

In Section 3 we will focus on the special case of the finite potentials q = |q|eiϕ ∈
L∞(R;C), ∂xϕ ∈ L∞(R;R), with the following nonzero boundary conditions

|q(x)| → 1 and ∂xϕ(x) → 0 as |x| → ∞,

such that one of the two Riemannian invariants is constant:

u+ =
1

2
∂xϕ+ |q| = 1 or u− =

1

2
∂xϕ− |q| = −1.

We will characterize the eigenvalues located inside the spectral gap (−1, 1).
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2. General case of non-vanishing bounded potentials with finite

phase velocity

In this section we will study the eigenvalue problem of the Lax operator (i.e.

the one-dimensional Dirac operator) L =

(

i∂x −iq
iq̄ −i∂x

)

, in the general case of

non-vanishing bounded potentials with finite phase velocity.
After transforming the eigenvalue problem of L to the eigenvalue problem of L

by the unitary matrix M in Subsection 2.1, we reformulate the eigenvalue problem
of L into λ-nonlinear eigenvalue problems in Subsection 2.2. We analyze these λ-
nonlinear eigenvalue problems to derive the estimates for the eigenvalues of L and
L in Subsection 2.3.

2.1. Unitary equivalence between L and L. It is well-known that if |q| 6= 0
never vanishes, then by use of the Madelung transform

q(t, x) =
√

ρ(t, x)eiϕ(t,x),

one can write (at least formally) the hydrodynamic formulation of (1) as follows
{

∂tρ+ 2∂x(ρv) = 0,

∂tv + ∂x(v
2) + 2∂xρ = ∂x

(

∂x(
1
2
∂xρ
ρ
) + (12

∂xρ
ρ
)2
)

,
(6)

where ρ = ρ(t, x) : R×R 7→ (0,∞) denotes the unknown density function and
v = v(t, x) = ∂xϕ(t, x) : R×R 7→ R denotes the unknown velocity function.

We introduce two real-valued functions

(7) u± =
1

2
v ±√

ρ,

which are the two Riemannian invariants for the compressible Euler equations
{

∂tρ+ 2∂x(ρv) = 0,
∂tv + ∂x(v

2) + 2∂xρ = 0.
(8)

The functions u± played an important role in the study of the semiclassical limit
from (6) (with the Planck constant ~ appearing on the right-hand side of the v-
equation) to (8) in [10], and in the study of hydrodynamic optical soliton tunneling
in [12].

By straightforward calculations, the newly found unitary matrix

(9) M =
1√
2

(

e−
1
2 i(ϕ−

π
2 ) e

1
2 i(ϕ−

π
2 )

e−
1
2 i(ϕ−

π
2 ) −e 1

2 i(ϕ−
π
2 )

)

,

transforms the Lax operator L to the following self-adjoint operator

(10) L :=

(

−u− i∂x
i∂x −u+

)

.

More precisely, we have

Lemma 2.1 (Unitary equivalence between L and L). For non-vanishing bounded
potentials q with finite phase velocity such that u± ∈ L∞(R;R), the operator L :
H1(R;C2) 7→ L2(R;C2) and the operator L : H1(R;C2) 7→ L2(R;C2) are unitarily
equivalent:

L =M∗LM.
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Proof. It follows from the straightforward calculations and the following estimates
for Ψ =Mψ:

‖Ψ‖L2 = ‖ψ‖L2, ‖Ψ‖H1 ≤ (1+‖∂xϕ‖L∞)‖ψ‖H1 , ‖ψ‖H1 ≤ (1+‖∂xϕ‖L∞)‖Ψ‖H1 .

�

2.2. Eigenvalue problem of L. We consider the following eigenvalue problem

(11) LΨ =

(

−u− i∂x
i∂x −u+

)

Ψ = λΨ, with Ψ =

(

Ψ1

Ψ2

)

.

We are going to reformulate it in different interesting cases. We notice the following
symmetry

(12) (u+, u−, λ,Ψ1,Ψ2) 7→ (−u−,−u+,−λ,−Ψ2,Ψ1)

in this spectral problem LΨ = λΨ, which corresponds to the symmetry

(q, λ, ψ1, ψ2) 7→ (q̄,−λ, ψ2, ψ1)

in the spectral problem of the Lax operator Lψ = λψ.

2.2.1. Case u± = ±1. If λ 6= 1, then the above spectral problem reads simply as
{

(λ− 1)Ψ1 = i∂xΨ2,

−∂xxΨ2 − (λ2 − 1)Ψ2 = 0,

That is, the second component Ψ2 solves the spectral problem for the free Schrödinger
operator −∂xx with the spectral parameter λ2 − 1, and the first component Ψ1 is
given by 1

λ−1 i∂xΨ2.

By a similar argument or by the symmetry property (12), if λ 6= −1, then the
above spectral problem reads as

{

−∂xxΨ1 − (λ2 − 1)Ψ1 = 0,
(λ+ 1)Ψ2 = i∂xΨ1,

where the first component Ψ1 solves the spectral problem for the free Schrödinger
operator −∂xx with the spectral parameter λ2 − 1, and the second component Ψ2

is given by 1
λ+1 i∂xΨ1.

2.2.2. Case u− = −1. If λ 6= 1, then the spectral problem (11) reads as
{

(λ − 1)Ψ1 = i∂xΨ2,

−∂xxΨ2 − (λ− 1)(λ+ u+)Ψ2 = 0,
(13)

and it suffices to consider the λ-nonlinear eigenvalue problem for Ψ2;

−∂xxφ− (λ− 1)(λ+ u+)φ = 0,

with the first component Ψ1 given by 1
λ−1 i∂xφ.

Obviously λ = 1 is not an eigenvalue of L in this case u− = −1.

2.2.3. Case u+ = 1. Similarly as above or by the symmetry property (12), if λ 6=
−1, then the spectral problem (11) reads as

{

−∂xxΨ1 − (λ+ 1)(λ+ u−)Ψ1 = 0,
(λ+ 1)Ψ2 = i∂xΨ1,

(14)

and λ = −1 is not an eigenvalue of L in this case u+ = 1.
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2.2.4. General case of u± ∈ L∞(R;R) and λ such that λ + u− 6= 0 on R. By
straightforward calculations, the spectral problem in (11) reads as

(15)

{

(λ+ u−)Ψ1 = i∂xΨ2,

−∂x
(

1
λ+u−

∂xΨ2

)

− (λ+ u+)Ψ2 = 0.

2.2.5. General case of u± ∈ L∞(R;R) and λ such that λ+u+ 6= 0 on R. As above,
(11) becomes

(16)

{

−∂x
(

1
λ+u+

∂xΨ1

)

− (λ + u−)Ψ1 = 0,

(λ + u+)Ψ2 = i∂xΨ1.

To conclude, we have

Lemma 2.2 (Reformulation of the eigenvalue problem of L). The eigenvalue prob-
lem LΨ = λΨ reads,

(1) if λ+ u− 6= 0 on R, as

(17) −∂x
( 1

λ+ u−
∂xφ

)

− (λ+ u+)φ = 0,

together with Ψ =

(

Ψ1

Ψ2

)

=

( 1
λ+u−

i∂xφ

φ

)

.

(2) if λ+ u+ 6= 0 on R, as

(18) −∂x
( 1

λ+ u+
∂xφ

)

− (λ+ u−)φ = 0,

together with Ψ =

(

Ψ1

Ψ2

)

=

(

φ
1

λ+u+
i∂xφ

)

.

2.3. Analysis of eigenvalues for L. We consider first the eigenvalues close to
±1. For notational simplicity we introduce the two real-valued functions

(19) V± = u± ∓ 1 =
1

2
v ± (

√
ρ− 1),

and we decompose V± into their positive and negative parts respectively

V± = V
(+)
± − V

(−)
± , with V

(+)
± = max{V±, 0}, V (−)

± = max{−V±, 0}.

From now on we assume that V
(−)
+ , V

(+)
− ∈ L∞(R;R), and we are going to analyze

the eigenvalues of the operator L in the two cases listed in Lemma 2.2 respectively.

2.3.1. Case 1− λ > ‖V (+)
− ‖L∞. In this case,

1− λ− V− = 1− λ− V
(+)
− + V

(−)
− > 0 on R,

and hence the eigenvalue problem LΨ = λΨ reads as (17).
We test the eigenvalue problem (17) by φ̄ to derive

∫

R

( 1

1− λ− V−
|∂xφ|2 + (1 + λ+ V+)|φ|2

)

dx = 0.

This yields

0 ≥
∫

R

(1 + λ+ V+)|φ|2 dx ≥ (1 + λ− ‖V (−)
+ ‖L∞)‖φ‖2L2 ,
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which immediately implies

1 + λ ≤ ‖V (−)
+ ‖L∞ .

2.3.2. Case 1+λ > ‖V (−)
+ ‖L∞. Similarly as above, if 1+λ > ‖V (−)

+ ‖L∞ , such that
1 + λ+ V+ > 0 on R, then we use (18) and derive

1− λ ≤ ‖V (+)
− ‖L∞ .

We conclude that if λ is an eigenvalue of L, then
1− λ > ‖(u− + 1)(+)‖L∞ ⇒ 1 + λ ≤ ‖(u+ − 1)(−)‖L∞ ,

1 + λ > ‖(u+ − 1)(−)‖L∞ ⇒ 1− λ ≤ ‖(u− + 1)(+)‖L∞ .

Notice that the above two statements are equivalent to each other, and also to the
following unconditional statement for the eigenvalues λ of L:

1− λ ≤ ‖(u− + 1)(+)‖L∞ or 1 + λ ≤ ‖(u+ − 1)(−)‖L∞

More generally, ∀c ∈ R, we can replace ±1 and u±∓1 by ±c and u±∓c respectively
in the above arguments, to derive the following result.

Theorem 2.1 (Eigenvalues of the operator L). Let u± ∈ L∞(R;R). If λ ∈ R is

an eigenvalue of the operator L =

(

−u− i∂x
i∂x −u+

)

: H1(R;C2) 7→ L2(R;C2), then λ

satisfies for all c ∈ R,

c− λ ≤ ‖(u− + c)(+)‖L∞ or c+ λ ≤ ‖(u+ − c)(−)‖L∞ .

In particular if u+,−u− ≥ c > 0, there are no eigenvalues in (−c, c) for L.
As the Lax operator L and the operator L are shown to be unitarily equivalent

in Lemma 2.1, we have the following result immediately.

Corollary 2.1 (Eigenvalues of the operator L). Suppose that the non-vanishing
bounded function q = |q|eiϕ has finite phase velocity: ∂xϕ ∈ L∞(R;R). Then the
eigenvalues λ ∈ R of the operator L : H1(R;C2) 7→ L2(R;C2) satisfy for all c ∈ R,

c− λ ≤
∥

∥

∥

(1

2
∂xϕ− |q|+ c

)(+)∥
∥

∥

L∞
or c+ λ ≤

∥

∥

∥

(1

2
∂xϕ+ |q| − c

)(−)∥
∥

∥

L∞
.

In particular, if |q| ≥ c + 1
2 |∂xϕ| pointwise for some c > 0, then there are no

eigenvalues of the operator L inside (−c, c).
Remark 2.1 (Examples of potentials). For the potential

q = |q|eiϕ, |q| − 1 ≥ 0, ϕ =

∫ x

x0

2(|q| − 1) dy ,

such that |q| = 1+ 1
2 |∂xϕ|, then there are no eigenvalues of the Lax operator L inside

(−1, 1). If we assume further decay at infinity: (1+x4)(q−eiθ±) ∈ L1(R±) for some
θ± ∈ R, the spectrum of L consists only of essential spectrum (−∞,−1] ∪ [1,∞).

It is well-known that for the potential given by the initial data of the dark soliton
solution ε tanh (ε(x−2

√
1− ε2t))+i

√
1− ε2 of the one-dimensional cubic nonlinear

defocusing Schrödinger equation satisfying nonzero boundary condition at infinity:

qε(x) := ε tanh (εx) + i
√

1− ε2, ε ∈ (0, 1),
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the spectrum of L consists of the essential spectrum (−∞,−1]∪ [1,∞) together with

a single simple discrete eigenvalue at −
√
1− ε2 = −1 + 1

2ε
2 +O(ε4). We calculate

the corresponding u± = 1
2∂xϕ± |q| as

u+ = 1− ε2 sech 2(εx) +O(ε4), u− = −1 +O(ε4), as ε→ 0.

If we take c = 1, then Corollary 2.1 implies, without any a priori knowledge about
the eigenvalue, that

1− λ ≤ |O(ε4)| or 1 + λ ≤ ε2 +O(ε4).

In next section we are going to give more characterization of the eigenvalues
when |q(x)| → 1 as |x| → ∞.

3. Special case of potentials under nonzero boundary condition

In this section we will consider the Lax operator L =

(

i∂x −iq
iq̄ −i∂x

)

with non-

vanishing bounded potentials satisfying nonzero boundary conditions at infinity:

q = |q|eiϕ ∈ L∞(R;C), ∂xϕ ∈ L∞(R;R),

|q(x)| → 1 and ∂xϕ(x) → 0 as |x| → ∞.
(20)

This implies the following assumptions on the potentials u± = 1
2∂xϕ ± |q| of the

unitarily equivalent operator L =

(

−u− i∂x
i∂x −u+

)

:

u± ∈ L∞(R;R), u±(x) → ±1 as |x| → ∞.

In this section we will study the eigenvalues of the operators L and L inside the
open interval λ ∈ (−1, 1), and we consider the following two special cases:

(1) u− = −1 such that λ+u− 6= 0, and the eigenvalue problem LΨ = λΨ reads
as

(21) −∂xxφ− (λ− 1)(λ+ u+)φ = 0, with Ψ =

(

Ψ1

Ψ2

)

=

(

1
λ−1 i∂xφ

φ

)

;

(2) u+ = 1 such that λ + u+ 6= 0, and the eigenvalue problem LΨ = λΨ reads
as

(22) −∂xxφ− (λ+ 1)(λ+ u−)φ = 0, with Ψ =

(

Ψ1

Ψ2

)

=

(

φ
1

λ+1 i∂xφ

)

.

By virtue of the symmetry between (21) and (22):

(u+, u−, λ, φ) 7→ (−u−,−u+,−λ, φ),(23)

it suffices to study the λ-nonlinear eigenvalue problem (21):

(24) −φ′′ + (1 − λ2)φ = −(1− λ)V φ,

where

(25) V := u+ − 1 ∈ L∞(R;R), with |V (x)| → 0 as |x| → ∞.



EIGENVALUES FOR THE LAX OPERATOR 9

3.1. Study of a compact operator. For analyzing the eigenvalues of the problem
(24), we first observe that the operator

(26) K : H1(R) ∋ u 7→ V · u ∈ L2(R)

is compact. For any fixed β > 0, we define the operator

(27) Kβ = (−∂2x + β)−1K : H1(R) 7→ H1(R).

It is a symmetric and compact operator, when we endow H1(R) with the inner
product

(28) 〈u, v〉β := 〈u′, v′〉L2(R) + β〈u, v〉L2(R).

Thus Kβ has an ONB of eigenfunctions and an associated eigenvalue sequence
converging to 0. We take all the negative eigenvalues

(29) {µj(β)}j∈N−
⊂ (−∞, 0),

and order them non-decreasingly

|µ1(β)| ≥ |µ2(β)| ≥ · · · > 0.

Here the set N− can be N or a finite set {1, · · · , n} or the empty set ∅.
Lemma 3.1 (Properties of the set N− and the functions µj). The following holds
true:

(i) The set N− = N
(β)
− is independent of β.

(ii) For each j ∈ N−, the function

µj : (0,∞) 7→ (−∞, 0)

is strictly increasing and continuous.

Proof. For u ∈ H1(R)\{0} and β > 0, we derive from (27) and (28) that

〈Kβu, u〉β
〈u, u〉β

=
〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

.

Poincaré’s min-max principle implies for any j ∈ N
(β)
− ,

µj(β) = min
U⊂H1(R) subspace, dim(U)=j

max
u∈U\{0}

〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

.(30)

The minimum is attained at

U = U
(β)
j := Span{ψ1(β), · · · , ψj(β)},

where ψl(β) denotes an eigenfunction ofKβ associated with µl(β), and ψ1(β), · · · , ψj(β)
are chosen 〈·, ·〉β-orthonormal.

Let β1 ∈ (0,∞) and j ∈ N
(β1)
− , such that µj(β1) < 0. Then (30) implies

〈V u, u〉L2

‖u′‖2
L2 + β1‖u‖2L2

< 0, ∀u ∈ U
(β1)
j \{0},

and thus 〈V u, u〉L2 < 0, and hence

〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

< 0, ∀β ∈ (0,∞), ∀u ∈ U
(β1)
j \{0}.(31)
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By the L2-compactness of the unit sphere in the finite-dimensional space U
(β1)
j , we

conclude that

max
u∈U

(β1)
j

\{0}

〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

= max
u∈U

(β1)
j

, ‖u‖
L2=1

〈V u, u〉L2

‖u′‖2
L2 + β

< 0,

and hence

min
U⊂H1(R) subspace, dim(U)=j

max
u∈U\{0}

〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

< 0, ∀β ∈ (0,∞).

This implies j ∈ N
(β)
− for all β ∈ (0,∞), and we have proved N

(β1)
− ⊂ N

(β)
− for all

β1, β ∈ (0,∞). The assertion (i) follows.
Let j ∈ N− and 0 < β < β1 <∞, such that

〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

<
〈V u, u〉L2

‖u′‖2
L2 + β1‖u‖2L2

< 0, ∀u ∈ U
(β1)
j \{0}.

By the above compactness argument again we deduce

max
u∈U

(β1)
j

\{0}

〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

< max
u∈U

(β1)
j

\{0}

〈V u, u〉L2

‖u′‖2
L2 + β1‖u‖2L2

= µj(β1).

This implies µj(β) < µj(β1), and hence µj : (0,∞) 7→ (−∞, 0) is strictly increasing.
Let β1 ∈ (0,∞) and we are going to show the continuity of µj at β1. We calculate

for all β ∈ [ 12β1, 2β1] and all u ∈ H1(R)\{0} that

∣

∣

∣

〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

− 〈V u, u〉L2

‖u′‖2
L2 + β1‖u‖2L2

∣

∣

∣
=

|〈V u, u〉L2| · ‖u‖2L2|β − β1|
(‖u′‖2

L2 + β‖u‖2
L2) · (‖u′‖2L2 + β1‖u‖2L2)

≤ ‖V ‖L∞|β − β1|
β · β1

≤
(2‖V ‖L∞

β1

)

|β − β1|,

which immediately implies

〈V u, u〉L2

‖u′‖2
L2 + β1‖u‖2L2

−
(2‖V ‖L∞

β1

)

|β − β1| ≤
〈V u, u〉L2

‖u′‖2
L2 + β‖u‖2

L2

≤ 〈V u, u〉L2

‖u′‖2
L2 + β1‖u‖2L2

+
(2‖V ‖L∞

β1

)

|β − β1|.

We apply the min-max principle in (30) to arrive at

µj(β1) ≤ µj(β) +
(2‖V ‖L∞

β1

)

|β − β1|,

and µj(β) ≤ µj(β1) +
(2‖V ‖L∞

β1

)

|β − β1|.

This gives

|µj(β)− µj(β1)| ≤
(2‖V ‖L∞

β1

)

|β − β1|,

which implies the continuity of µj at β1. �
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3.2. Eigenvalues inside (−1, 1). When we reformulate (24) as

Kβφ = − 1

1− λ
φ, with β = 1− λ2 > 0,

By virtue of Lemma 3.1, we define the subset of N−:

(32) N0
− := {j ∈ N− |µj(0+) < −1

2
}.

We have the following results.

Theorem 3.1 (Eigenvalues in (−1, 1) when u− = −1 and V = u+ − 1 vanishes
at infinity). Let the negative part of V : V (−)(x) = max{0,−V (x)} satisfy the
following smallness assumption

(33) ‖V (−)‖L∞(R) ≤ 1.

Then the following statements hold true:

(a) For each j ∈ N0
−, there exists a unique βj ∈ (0, 1] such that

βj = − 1

µj(βj)
(2 +

1

µj(βj)
).(34)

(b) The set of eigenvalues of the eigenvalue problem (24) in (−1, 1) is given by

(35)
{

λj |λj := 1 +
1

µj(βj)
, j ∈ N0

−

}

⊂ (−1, 1),

and the eigenspace of λj coincides with the eigenspace associated with the eigen-
value µj(βj) of the operator Kβj

.
(c) (λj)j∈N0

−
is non-increasing and

(36) 0 < λj + 1 ≤ ‖V (−)‖L∞ , ∀j ∈ N0
−.

Proof. Proof of (a). We abbreviate

αj(β) = − 1

µj(β)
∈ (0,∞), ∀j ∈ N−, β ∈ (0,∞).

By Lemma 3.1, for any j ∈ N−, αj(β) is strictly increasing and continuous. By the
definition of N0

−, we have

(37) αj(0+) = − 1

µj(0+)
< 2, ∀j ∈ N0

−.

We then search for βj ∈ (0, 1] which satisfies (34):

(38) βj = αj(βj)(2 − αj(βj)), j ∈ N0
−.

As in the proof of Lemma 3.1, let (ψj(β))j∈N−
denote an 〈·, ·〉β -orthonormal

system of eigenfunctions of Kβ associated with (µj(β))j∈N−
, such that

Kβ(ψj(β)) = µj(β)ψj(β),

or equivalently,

(39) −ψj(β)′′ + βψj(β) + αj(β)V ψj(β) = 0 on R .

Testing (39) with ψ̄j(β) gives

0 = ‖ψj(β)′‖2L2 + β‖ψj(β)‖2L2 + αj(β)〈V ψj(β), ψj(β)〉L2

≥ β‖ψj(β)‖2L2 − αj(β)‖V (−)‖L∞‖ψj(β)‖2L2 ,
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and hence

(40) β ≤ αj(β)‖V (−)‖L∞ , ∀β ∈ (0,∞), ∀j ∈ N−.

Under the assumption (33), we have

(41) β ≤ αj(β), ∀β ∈ (0,∞), ∀j ∈ N−,

and in particular

(42) 1 ≤ αj(1), ∀j ∈ N−.

We define for each j ∈ N0
− the strictly increasing and continuous function

fj : (0, 1] 7→ R, fj(β) = αj(β) − 1−
√

1− β,

such that, using (37) and (42),

fj(0+) < 0, fj(1) ≥ 0.

Thus there exists a unique zero βj ∈ (0, 1] of fj such that

(43) αj(βj) = 1 +
√

1− βj .

Hence βj satisfies (38) and thus (34).

If β̃j ∈ (0, 1] is another solution of (34) and hence of (38), then

αj(β̃j) = 1 +

√

1− β̃j , or αj(β̃j) = 1−
√

1− β̃j .

The second case αj(β̃j) = 1 −
√

1− β̃j contradicts (41). Thus βj ∈ (0, 1] is the

unique solution of (34).

Proof of (b). Let βj , j ∈ N0
− be given by (a), and λj = 1 + 1

µj(βj)
∈ (−1, 1)

such that
1− λj = αj(βj), 1− λ2j = βj ∈ (0, 1].

Then the equation (39) with β = βj shows that (24) holds for the eigenpairs
(λj , ψj(βj))j∈N0

−
.

Vice versa, let (λ, ψ) ∈ (−1, 1)× (H1(R)\{0}) denote any eigenpair of the eigen-
value problem (24). Then ψ satisfies

Kβψ = µψ, with β := 1− λ2 ∈ (0, 1], µ := − 1

1− λ
∈ (−∞,−1

2
).

Since µ < 0, there exists j ∈ N− such that

µ = µj(β), ψ = ψj(β).

Since µj : (0,∞) 7→ (−∞, 0) is strictly increasing, we have

µj(0+) ≤ µj(β) = µ < −1

2
,

and thus j ∈ N0
−. Furthermore, we have from the definitions of β, µ and µ = µj(β)

that

β = − 1

µ
(2 +

1

µ
) = − 1

µj(β)
(2 +

1

µj(β)
).

By (a), β = βj ∈ (0, 1] is the unique solution of the above equation. Consequently,

λ = 1 +
1

µj(βj)
= λj

for some j ∈ N0
−.
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Proof of (c). We now show λj ≥ λj+1 for j ∈ N0
− such that j+1 ∈ N0

−. This
is equivalent to showing µj(βj) ≤ µj+1(βj+1), and hence αj(βj) ≤ αj+1(βj+1). If
βj < βj+1, then αj(βj) ≤ αj+1(βj+1), since αj(β) is non-decreasing with respect
to j and strictly increasing with respect to β. This means, by virtue of (43),
βj ≥ βj+1, which contradicts the assumption βj < βj+1. Thus βj ≥ βj+1 and
hence αj(βj) ≤ αj+1(βj+1) holds.

Finally, the estimate (36) comes from (40) straightforward since

βj = 1− λ2j , αj(βj) = 1− λj , λj ∈ (−1, 1).

�

By virtue of the symmetry (23), we have

Corollary 3.1 (Eigenvalues in (−1, 1) in the case of non-vanishing finite potentials
q satisfying nonzero boundary conditions). Let u− = −1 or u+ = 1, and u± ∈
L∞(R;R) satisfy

u±(x) → ±1 as |x| → ∞, and ‖(u± ∓ 1)(±)‖L∞ ≤ 1.

Then the eigenvalues {λj} ⊂ (−1, 1) of the operators L and L are given by (a)-(c)
in Theorem 3.1 correspondingly.

3.3. Examples of the existence of eigenvalues of (24).

Lemma 3.2. Let R > 0. Let V ∈ L∞(R;R) such that

(44)

∫ R

−R

V (x) dx < 0 and V ≤ 0 outside [−R,R].

For any β > 0, let {µ1(β), µ2(β), · · · }j∈N−
⊂ (−∞, 0) denote the non-increasing

negative eigenvalues of the compact operator Kβ given in (27).
Then

(45) µ1(0+) = −∞.

Proof. Take φ ∈ C∞
c (R) such that φ = 1 on (−1, 1) and φ = 0 outside (−2, 2). For

n ∈ N, we denote φn(x) = φ( x
n
), x ∈ R, such that

‖φn‖2L2 = n‖φ‖2L2,

‖φ′n‖2L2 =
1

n
‖φ′‖2L2 .

Hence for n ≥ R, we derive from the assumption (44) that

〈V φn, φn〉L2(R) =

∫ R

−R

V dx +

∫

R \[−R,R]

V (x)|φ(x
n
)|2 dx ≤

∫ R

−R

V dx < 0.

Therefore for β(n) :=
1
n2 , we have

〈V φn, φn〉L2

‖φ′n‖2L2 + β(n)‖φn‖2L2

≤ −Cn,

for some constant C > 0 independent of n. Consequently, for all n ≥ R,

µ1(β(n)) = min
u∈H1(R)\{0}

〈V u, u〉L2

‖u′‖2
L2 + β(n)‖u‖2L2

≤ −Cn.

This implies (45). �
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We conclude from Theorem 3.1 and Lemma 3.2 the existence of eigenvalues of
the eigenvalue problem (24).

Corollary 3.2. If V ∈ L∞(R;R) satisfies (33) and (44), then there exists at least
one eigenvalue λ1 ∈ (−1, 1) of the eigenvalue problem (24).

The following example shows the optimality (in some sense) of the existence
result above: If −V = V (−) is small on an interval while vanishes outside the
interval, then there exists exactly one eigenvalue λ1 in (−1, 1) of the eigenvalue
problem (24).

Example. Let V (x) =

{

−ε on [0, 1],
0 otherwise,

for some ε ∈ (0, 1].

For β > 0, we look for negative eigenvalues {µj(β)}j∈N−
of the operator Kβ :

H1(R) 7→ H1(R) given in (27):

Kβu = µ(β)u, i.e. − u′′ + βu = −α(β)V u, with α(β) = − 1

µ(β)
.

We denote κ =
√
αε− β with Im [κ] ≥ 0 and k =

√
β > 0, such that the above

eigenvalue problem becomes

− u′′ = κ2u on [0, 1],

u′′ = k2u outside [0, 1].

We then search for the non-trivial solution of the following form which are contin-
uously differentiable at 0 and 1:

u =







(a+ b)ekx for x ≤ 0,
aeiκx + be−iκx for x ∈ [0, 1],
aeiκ+be−iκ

e−k e−kx for x ≥ 1.

The C1-matching conditions at 0 and 1 read then as
(

iκ− k −iκ− k

(iκ+ k)eiκ (−iκ+ k)e−iκ

)(

a

b

)

=

(

0
0

)

.

In order to have a non-trivial solution, the determinant of the matrix on the lefthand
side should vanish:

tan(κ) =
2kκ

κ2 − k2
.

This equation for κ has countably many positive solutions κj(k), j ∈ N with

κj(k)
k→0+→ (j − 1)π.

Thus

µj(β) = − 1

αj(β)
= − ε

β + κj(k)2
β→0+→

{ −∞ if j = 1,
− ε

(j−1)2π2 if j ≥ 2.

This together with ε ∈ [0, 1] implies

µj(0+) ≥ − ε

π2
≥ − 1

π2
> −1

2
, ∀j ≥ 2.

To conclude, N0
− = {1}.
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