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A B S T R A C T

In the forthcoming years, precise measurements at the LHC and its high-luminosity
upgrade will scrutinise the inner workings of the Standard Model of particle physics to
an unprecedented level. Among the most ambitious goals of this physics program is the
determination of the W-boson mass with the astounding precision of O(0.01%). Such a
precision would match the precision achieved in electroweak fits and will allow for a
powerful test of the SM at the quantum level.

The recent shift of focus from direct searches for New Physics to precision studies at the
LHC is the consequence of the fact that clear evidence of physics beyond the Standard
Model is so far absent. We note, however, that precision studies at the LHC are made
possible by a remarkable progress on the theory side, culminating in the fully-differential
description of a vast number of phenomenologically relevant processes with NNLO QCD

accuracy. Two main obstacles in such computations that need to be addressed are the
complicated structure of two-loop multi-scale scattering amplitudes and the appearance
of infrared singularities.

This thesis consists of two parts. In the first part, we discuss the recently proposed
nested soft-collinear subtraction scheme [1] which allows for a modular, analytic and
local way of handling infrared singularities at NNLO [2–4]. We analytically compute
a number of single- and double-unresolved integrated subtraction terms that arise in
the process of regulating real-emission contributions. More specifically, we compute
integrated triple-collinear subtraction terms for all possible partonic splittings, both
initial- and final-state [5]. We also obtain integrated double-soft subtraction terms that
arise in the context of colour-singlet decays to massive partons [6]. These results improve
the efficiency and numerical stability of practical computations and contribute towards
establishing a NNLO QCD subtraction formula for arbitrary hard scattering processes at
hadron colliders.

In the second part of this thesis, we make use of the nested soft-collinear subtraction
scheme to describe mixed QCD-EW corrections to on-shell vector-boson production at the
LHC at a fully-differential level. We first obtain mixed QCD-QED corrections to on-shell
Z-boson production by abelianising the corresponding NNLO QCD calculation [7]. We
then extend these results by including mixed QCD-weak corrections into theoretical
description of this process [8]. In the case of W-boson production [9], we focus on
simplifications that arise in the regularisation of double-real contributions. We study
phenomenological impact of these corrections for a number of observables studied in Z-
and W-boson production processes and specifically discuss their implications for the
W-boson mass measurement at the LHC [10].
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1I N T R O D U C T I O N

The discovery of the Higgs boson in 2012 [11, 12] at the Large Hadron Collider (LHC)
formally completed the experimental confirmation of the Standard Model (SM) of particle
physics [13–24], a quantum field theory that encodes our current understanding of Nature
at the most fundamental level. While the SM successfully describes many observables
and phenomena, it fails to provide an explanation of several observations outside collider
physics such as dark matter, dark energy and matter-antimatter asymmetry.

In recent years, focus of the physics program at the LHC has shifted to precision
studies of various SM processes. In the absence of direct detection of new particles at the
LHC, such studies can be used for improved extraction of many important SM parameters
including particle masses, coupling constants, and parton distribution functions (PDFs).
Furthermore, comparing precise measurements to precise predictions might lead either
to hints towards New Physics or to refined exclusion limits on BSM models.

The prime example of a precision measurement at the LHC is the experimentally chal-
lenging determination of the W-boson mass: only recently has the ATLAS collaboration
published the result of the first-ever LHC measurement MW = 80370± 19 MeV [25].1

It is expected that the uncertainty of the W-boson mass measurement at the LHC can
be reduced to O(10)MeV [28]. If this uncertainty goal is met in a direct measure-
ment, it would match the precision of electroweak fits where the most recent result is
MW = 80358± 8 MeV [29, 30]. It would therefore provide a strong consistency check of
the SM or, in case of a discrepancy, hint towards possible contributions of BSM physics.

Strengthening the precision physics research program at the LHC requires not only
an impeccable understanding of experimental systematics, but also reliable theoretical
description of physical observables. It is well-known that perturbative description of
hadronic cross sections at large momentum transfer is possible within the collinear
factorisation framework [31, 32]

dσhad
pp→X = ∑

i,j

∫ 1

0
dxi dxj fi(xi) f j(xj)dσij

[
1 +O

(
(ΛQCD/Q)n)] . (1.1)

In Eq. (1.1), xi (xj) denotes the fraction of a proton momentum carried by a parton i (j),
fi,j are corresponding PDFs, and dσij is the partonic cross section of the hard process
i j → X. The partonic cross section depends on the (large) momentum transfer Q and
on the factorisation and renormalization scales µF,R. Whereas partonic cross-sections
are well-defined perturbative objects, PDFs cannot be calculated ab initio and have to be

1 LEP and Tevatron determined MW with an uncertainty of 33 MeV [26] and 16 MeV [27], respectively.
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2 introduction

determined experimentally. Non-perturbative effects in Eq. (1.1) are power suppressed2

and small, since ΛQCD/Q ∼ 0.3 GeV/30 GeV ∼ O(1%).3 Hadronic cross sections with
small momenta transfers are studied in the context of resummations and parton showers.

Reliable fixed-order predictions for LHC physics require both a good understanding of
PDFs and a precise description of hard, short-range physics; the latter is accomplished
using perturbation theory. Calculations of perturbative expansions of partonic cross
sections dσij require two distinct contributions:

• virtual corrections to (multi-scale) amplitudes, which have intricate analytic proper-
ties. Appearing loop integrals exhibit two types of singularities: ultraviolet (UV)
singularities, which are re-absorbed into physical parameters by renormalization,
and infrared (IR) singularities;

• real-emission corrections, which feature IR singularities in unresolved regions of
the phase space where emitted parton(s) become soft and/or collinear to other
partons.

The appearance of IR divergences in real and virtual contributions, as well as their
cancellation in infrared-safe observables, is a well-studied subject [33–35]. 4

structure of this thesis

The first part (I) of this thesis is dedicated to the nested soft-collinear subtrac-
tion scheme [1–4], and, in particular, to the analytic computation of some of its
most intricate building blocks. We begin by discussing the reason for the appear-
ance of infrared singularities and their treatment within the nested soft-collinear
subtraction scheme (NSS) in Chapter 2. During the regularisation procedure, vari-
ous subtraction terms emerge. In Chapter 3, we outline methods for the analytic
computation of these subtraction terms. We begin by computing integrated single-
unresolved subtraction terms by means of direct integration. Then, we present
computations of integrated double-unresolved subtraction terms. Computational
methods discussed in Chapter 3 have been originally developed to compute inte-
grated massless double-soft subtraction contribution [36, 37]. Here, we extend these
methods and present computation of massive double-soft subtraction terms [6] and
the complete set of initial- and final-state integrated triple-collinear [5] subtraction
terms.

In the second part (II) of this thesis, we present initial-state mixed QCD-EW cor-
rections to the production of single on-shell vector bosons at the LHC at a fully-
differential level. In particular, we describe:

2 The precise value of the exponent n in Eq. (1.1) depends on the specific processes under consideration.
3 The value of Q for a specific event is, for example, set by the transverse momentum of QCD jets.
4 Additional collinear divergences in initial-state radiation are re-absorbed into the renormalization of PDFs.
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– computation of mixed QCD-QED corrections to on-shell Z-boson production
at the LHC [7], which can be obtained by applying an abelianization proce-
dure [38] to the existing implementation of NNLO QCD corrections to this
process [2]. Furthermore, we compute mixed QCD-EW corrections to the same
process [8], by additionally including one-loop weak and two-loop QCD-weak
corrections;

– computation of mixed QCD-EW corrections to on-shell W-boson production at
the LHC [9]. Here, we discuss how to build a subtraction scheme for all double-
real contributions, whose IR structure is simpler than the one in the NNLO

QCD case. In the course of the regularisation procedure we make use of the
integrated subtraction terms that were obtained in Chapter 2. We also present
spinor-helicity expressions for double-real matrix elements and several master
integrals required for the two-loop QCD-EW on-shell W-boson form factor.

We use these fully-differential results to study the impact of QCD-EW corrections to
various observables relevant for Z- and W-boson production at the LHC. Finally,
we provide an estimate of the impact of these corrections on the W-boson mass
measurement at the LHC [10].





Part I

T H E N E S T E D S O F T- C O L L I N E A R S U B T R A C T I O N S C H E M E

The first part of this thesis is devoted to the nested soft-collinear subtraction
scheme and its building blocks. We begin with a description of the regulari-
sation procedure in Chapter 2. We compute various integrated subtraction
terms in Chapter 3. While NLO-like subtraction terms are obtained by straight-
forward parametric integration, genuine NNLO-like subtraction terms that
arise in the double-soft and in the triple-collinear limits, are considerably
more involved. We explain how to compute these phase-space integrals using
reverse unitarity [39] as a starting point.





2N E S T E D S O F T- C O L L I N E A R S U B T R A C T I O N S

In this Chapter, we discuss how IR singularities appear in fixed-order computations, why
they present an important technical challenge, and, finally, how they are regularised in
the nested soft-collinear subtraction scheme (NSS) [1–4]. We begin by considering generic
partonic cross section dσij in Eq. (1.1) in a perturbative expansion in the strong coupling
constant αs and write

dσij = dσlo
ij + αs dσnlo

ij + α2
s dσnnlo

ij +O
(
α3

s
)

. (2.1)

Here, labels “lo”, “nlo” and “nnlo” denote leading order (LO), next-to-leading order (NLO)
and next-to-next-to-leading order (NNLO) in Quantum Chromodynamics perturbation
theory.

leading order For ease of notation, we assume a process i j → X whose LO

contribution starts at tree-level and does not involve powers of αs. In such a case, the LO

partonic cross section can be written as

dσlo
ij =

1
2s

∫
dΦX (2π)4 δ

(
pi + pj − pX

)
|Atree (i, j; X)|2F (pX) , (2.2)

where |Atree (i, j; X)|2 is the squared tree-level amplitude of the process i j→ X, summed
and averaged over spins and colors. In Eq. (2.2), dσlo

ij is fully-differential in the sense
that integration over final-state phase space dΦX is constrained by the measurement
function F (pX), which refers to an IR-safe but otherwise arbitrary observable. The
integral in Eq. (2.2) is regular across the whole phase space and can be readily computed
numerically.

higher-order corrections We write higher-order corrections in Eq. (2.1) as

dσnlo
ij = dσV + dσR + dσpdf,nlo , (2.3)

dσnnlo
ij = dσVV + dσVR + dσRR + dσpdf,nnlo , (2.4)

where dσV denotes UV-renormalized virtual (loop) corrections, dσR refers to real cor-
rections and σpdf are contributions that arise from collinear renormalisation of PDFs. As
already discussed in the Introduction, virtual and real contributions to cross sections
are not infrared-finite separately. In fact, IR singularities on the r. h. s. of Eq. (2.3) and
Eq. (2.4) cancel only upon combining both types of corrections [33–35].

7



8 nested soft-collinear subtractions

However, they appear in a very different way in real and virtual contributions. When
loop integrals are computed in d = 4− 2ϵ dimensions in dimensional regularisation [40–
42], IR singularities manifest themselves as explicit and universal 1/ϵ poles [43–46]. For
example, one-loop QCD corrections to the scattering amplitude of n massless partons can
be written as1

A1l
n =

eϵγE

2 Γ (1− ϵ)

n

∑
i,j ̸=i

[
1
ϵ2 +

γi

T2
i ϵ

]
T iT j

(
µ2e−iλijπ

2(pi ·pj)

)ϵ

Atree
n +A1l,fin

n . (2.5)

We observe that the 1/ϵ2 and 1/ϵ poles of A1l
n in Eq. (2.5) are proportional to the

tree-level amplitude Atree, while A1l,fin
n is finite.

In real corrections, on the other hand, IR singularities are implicit: they only arise
upon integration over unresolved regions of the phase space of final-state particles. As
an illustration, consider a diagram where a gluon with momentum k is emitted by a
massless particle with momentum p + k. The amplitude reads

k

p

∼ 1
(p + k)2 ∼

1
(p·k) ∼

1
EpEk(1− cos θpk)

.

This contribution is finite for generic values of the gluon energy Ek and the angle θpk
between three-momenta p and k, but it becomes singular when either Ek or θpk vanishes.
Divergence of the first type is called “soft”, divergence of the second type is called
“collinear”.

infrared regularisation The goal of any regularisation scheme for real-emission
contributions is to extract and regulate all IR singularities in a fully-differential cross
sections without integrating over resolved regions of final-state phase spaces. This is
only possible since i) unresolved emissions have no impact on IR-safe observables and ii)
real-emission matrix elements factorize into universal functions and lower-multiplicity
matrix elements that do not depend on unresolved momenta in the soft and collinear
limits.

Regularization schemes are prescriptions that allow one to re-arrange unresolved
contributions to real-emission cross sections in such a way that processes with a certain
number of resolved partons become separately IR finite. Then, one can write the cross
sections in Eq. (2.3) and Eq. (2.4) as

dσnlo
ij = dσnlo

X + dσnlo
X+1 , (2.6)

dσnnlo
ij = dσnnlo

X + dσnnlo
X+1 + dσnnlo

X+2 , (2.7)

1 Here, T i are color generators and the phase λij depends on whether partons i and j are incoming or
outgoing, see Ref. [45].



nested soft-collinear subtractions 9

where contributions X + m (m = 0, 1, 2) have exactly m resolved partons in the final
state and are individually finite. IR regularisation methods employ either slicing [47] or
subtraction [48] techniques, that we review in what follows.

slicing methods Slicing methods regulate divergences globally at the level of phase-
space integrals. One divides the radiative phase space into resolved and unresolved
regions by introducing a slicing variable τ ∈ [0, 1] and splitting the cross section into
resolved τ ∈ [δ, 1] and unresolved τ ∈ [0, δ] regions, where δ is taken to be small. In
the resolved region the computation at a certain perturbative order in QCD requires
corrections of one order lower to the X + jet process. Matrix elements in unresolved
regions factorize so that phase-space integration can be performed and IR singularities
can be exposed as 1/ϵ poles and logarithms of δ. While the former cancel when virtual
and PDF renormalisation contributions are included, logarithms of δ cancel against the
integrated resolved contribution. As a toy example, consider the parametric integral

Iex =
∫ 1

0
dx x−1+nϵ f (x) , (2.8)

where f (x) is a function that is regular in the entire integration domain. We note that
the integral in Eq. (2.8) is singular at the endpoint x → 0. To regularise it, we split the
integration region and write

Iex =
∫ δ

0
dx x−1+nϵ f (x) +

∫ 1

δ
dx x−1+nϵ f (x) . (2.9)

The first integral can be expanded in δ≪ 1, whereas the second integral is regular. We
find

Iex =

(
1

nϵ
+ ln(δ)

)
f (0) +

∫ 1

δ

dx
x

f (x) +O(δ, ϵ) . (2.10)

We note that we have extracted the 1/ϵ singularity, which is independent of δ, and that
the logarithmic dependence on δ cancels in the final result, i. e. after the integration over
x in the second term in Eq. (2.10) is performed. Moreover, this cancellation involves
numerical integration over the resolved region that may lead to numerical problems in
realistic applications [49, 50].

subtraction methods Subtraction methods regulate divergences locally, at the
level of real-emission integrands, by subtracting and adding back a suitable approximant
of the matrix element squared. This procedure yields regulated contributions and
subtraction terms with lower final-state multiplicity. Regulated contributions can be
evaluated numerically in d = 4 dimensions. Subtraction terms, on the other hand, give
rise to 1/ϵ poles, which cancel against 1/ϵ poles in virtual contributions and in PDF

renormalisation.
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We consider the toy example in Eq. (2.8) to illustrate these points. To compute Iex, we
subtract the behaviour of the integrand at the endpoint x → 0 and write

Iex =
∫ 1

0

dx
x1−nϵ

[ f (x)− f (0) + f (0)] =
∫ 1

0
dx

f (x)− f (0)
x

+
f (0)
nϵ

+O(ϵ) . (2.11)

By construction, the first term on the r. h. s. of Eq. (2.11) is finite and could be Taylor-
expanded in ϵ before integrating over x. The second term, on the other hand, could be
integrated independently of the function f , yielding an explicit 1/ϵ pole.

state of the art IR singularities in NLO calculations can be handled with various
subtraction schemes, including Frixione-Kunszt-Signer [51, 52], Catani-Seymour [53,
54], and Nagy-Soper [55–59] ones.2 This understanding, combined with advances in
one-loop computations [60–62], enabled automation of NLO computations for arbitrary
processes [63–68].

NNLO QCD calculations can be performed using qT- [69–76] and N-jettiness [77–80]
slicing. Furthermore, subtraction schemes such as antenna subtraction [81–93], geometric
subtraction [94], the STRIPPER framework [95–100], local analytic sector subtraction [101–
103], and the CoLoRFull method [104–115] have been proposed. Another useful approach
is the projection-to-Born method [116–118].3 These developments, together with advances
in two-loop computations, have resulted in an impressive number of predictions at NNLO

QCD, see Ref. [120] for a recent review.

towards an optimal subtraction scheme In spite of the fact that a large
number of subtraction schemes has been developed and the impressive number of
predictions that these schemes enabled, it is fair to say, that an optimal subtraction scheme
is yet to be found. While the implementation of slicing schemes might be relatively
straightforward, they suffer from large numerical cancellations between “resolved” and
“unresolved” contributions [49, 50]. Subtraction methods, on the other hand, regulate
divergences point-wise in phase space and for this reason are more stable numerically.

Nevertheless, subtraction schemes are complex constructions that could benefit from
further optimization. In fact, we believe that an “optimal” subtraction scheme should
fulfill the following criteria:

• in order to ensure a numerically efficient scheme, the regularisation should be local
and minimal;

• integrated subtraction terms should be known analytically;

• cancellation of poles should be demonstrated analytically for an arbitrary hard
processes;

2 For earlier computations of NLO QCD corrections using slicing, see for example Refs. [43, 48].
3 Very recently, this method was used to obtain fully-differential predictions at N3LO [119].
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• the scheme should be modular, to allow for the implementation of new processes
with minimal effort;

• the scheme schould be physically transparent.

It is fair to say that none of the schemes that were proposed so far meets all these
requirements, which means that further work on improving subtraction schemes is
necessary.

In the following, we introduce the recently proposed nested soft-collinear subtrac-
tion scheme [1–4], an extension of the original sector-improved residue subtraction-
scheme [95, 96], which attempts to fulfill the criteria listed above. The scheme is based
on the observation that QCD color coherence ensures that soft and collinear singularities
are not entangled at the level of gauge-invariant matrix elements. This allows for a
minimal and iterative subtraction starting from soft singularities and followed by collinear
subtraction, which is applied to soft-subtracted cross sections.

In what follows, we will only discuss double-real corrections, since they represent the
most involved case. The discussion of single-real corrections and virtual contributions
can be found in Refs. [1–4].

layout of the chapter The remainder of this Chapter is organized as follows.
After establishing notations in Sec. 2.1, we explain how to regulate soft singularities
that arise when computing NNLO QCD corrections within the NSS in Sec. 2.2. There,
we also point out simplifications that arise when mixed NNLO QCD-EW corrections are
considered. The simplified construction will be used in Part II of this thesis to describe
mixed QCD-EW corrections to W-boson hadroproduction at a fully-differential level. In
Sec. 2.3, we consider soft-regulated contributions and explain how to regulate their
collinear singularities. Again, we discuss simplifications that arise when mixed QCD-EW

corrections are computed. In Sec. 2.4, we consider the process qq̄ → Zgg and provide
an overview of the subtraction procedure. We conclude the Chapter by discussing the
most intricate, double-soft and triple-collinear subtraction terms in Sec. 2.5 and Sec. 2.6,
respectively.

2.1 notations

In order to introduce the nested soft-collinear subtraction scheme, we consider pro-
duction of a final state X in collisions of two partons with momenta p1 and p2. We
study double-real corrections that appear due to the partonic process f1(p1) + f2(p2)→
X + f4(k4) + f5(k5), where f1,2 are the incoming partons and f4,5 are the massless partons
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that can become unresolved.4 We write the contribution of the double-real emission
process to the differential cross section as

2s · dσRR
X+ f4+ f5

=
∫
[dk4][dk5] FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)

=
〈
[dk4][dk5] FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
,

(2.12)

where s = s12 denotes the partonic center-of-mass energy squared. Throughout this
thesis, we denote kinematic invariants for massless particles with the symbol sij. Then,

sij = 2(qi ·qj) = 2EiEj(1− ninj) = 2EiEj(1− cos θij) = 2EiEjρij = 4EiEjηij , (2.13)

where q ∈ {p, k} and θij is the relative angle between partons i and j. The quantity FLM

that was introduced in Eq. (2.12), is defined as follows

FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)
= N ∑

col,pol
|Atree(p1, p2, pX; k4, k5)|2F (pX, k4, k5)

× (2π)d δd(p1 + p2 − pX − k4 − k5)
dd−1 pX

(2π)d−12EX
.

(2.14)

Note that the function FLM includes the matrix element squared, the energy-momentum
conserving δ-function, the phase-space factor of final state X and the measurement func-
tion F of an arbitrary IR-safe observable. It also includes all required (d−dimensional)
initial-state color- and helicity-averaging factors and final-state symmetry factors, de-
noted by N . However, it does not contain the phase-space volume elements for the
potentially unresolved partons f4 and f5. These phase-space volumes appear explicitly
in Eq. (2.12); they read

[dki] =
dd−1ki

(2π)d−12Ei
θ( Emax − Ei) , i = 4, 5 . (2.15)

We note that we introduced an energy cut-off Emax in Eq. (2.15), which should be chosen
large enough so that it does not alter the value of the integral in Eq. (2.12).5 The need for
this cut-off parameter will become clear later when the double-soft limit of Eq. (2.12) is
discussed. For now, we note that this cut-off is not Lorentz-invariant but it does leave
rotational invariance intact.

double-real subtraction procedure Below, we will explain how to re-arrange
the double-real cross section in Eq. (2.12) in order to arrive at the following form

dσRR = dσRR
X+2 + dσRR

X+1(ϵ) + dσRR
X (ϵ) . (2.16)

4 We use the term “parton” to describe gluons, quarks, and photons in order to incorporate both NNLO QCD

and mixed NNLO QCD-EW real-emission corrections.
5 More precisely, Emax should be greater then or equal to the maximal energy that partons f4,5 can have

according to energy-momentum conservation.
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Quantities dσRR
X+h in Eq. (2.16) denote contributions with h = 0, 1, 2 resolved partons in

addition to the final state X. The first term, dσRR
X+2 comprises fully-regulated contributions

that can be integrated numerically in d = 4. The second and third terms, dσRR
X+1 and

dσRR
X , denote single- and double-unresolved subtraction terms, respectively. Integration of

these contributions over the unresolved phase space of one or two partons is independent
of the measurement function F and yields explicit poles in ϵ. The poles of subtraction
terms6 cancel, once real, virtual, and PDF renormalisation contributions to the IR finite
cross section in Eq. (2.7) are combined. We aim at computing integrated subtraction
terms analytically, since doing so has two advantages. First, analytic cancellation of
poles establishes confidence in the subtraction procedure. Second, it makes numerical
evaluation of the finite remainder more efficient.

The desired representation of the double-real cross section, displayed in Eq. (2.16),
can be found by introducing appropriate subtraction terms for the unresolved kinematic
configurations, associated with the integration over [dk4][dk5] in Eq. (2.12). The precise
singularity structure depends on the partonic configuration f1 + f2 → X + f4 + f5. In
general, singularities can arise when radiated partons f4,5 become soft and/or collinear
to other partons. Explicitly, particles f4,5 can become collinear to each other, to partons
f1,2 or to particles appearing in the unspecified final state X. Moreover, these limits can
be approached in several ways, rendering the construction of the subtraction procedure
a rather non-trivial task.

Within the NSS, soft and collinear singularities are subtracted iteratively and indepen-
dently of each other. We stress that subtractions in the NSS are defined at the level of
gauge-invariant on-shell scattering amplitudes FLM (cf. Eq. (2.14)). For these quantities,
QCD color coherence ensures that soft and collinear singularities are not entangled [121].
We shortly discuss the absence of soft-collinear limits in Appendix B.4. We note that
factorization of tree-level matrix elements squared in double-unresolved limits has been
understood a long time [122, 123]. In Sec. 2.2 and Sec. 2.3, we discuss the regularisation
of soft and collinear singularities, respectively.

To write subtraction terms in a transparent way, we will work under the assumption
that final-state particles which can become unresolved are always labeled as f4,5. In what
follows, we will shortly explain how to distinguish the potentially unresolved partons
f4,5 from partons in the “hard ” final state X.

damping factors So far, we have assumed that we can clearly separate the “re-
solved” final state X from partons f4,5, which can become unresolved. This is for example
the case for NNLO QCD corrections to color-singlet production, where X denotes all color-
neutral particles.7 However, there are many processes for which this distinction becomes

6 We note that single-unresolved terms dσRR
X+1 contribute to the pole structure starting from 1/ϵ2, while

double-unresolved Born-like terms dσRR
X start at 1/ϵ4.

7 Here, the final state X ∈ {Z, W, H, ZZ, WW, γγ, . . . } does not contain any particles that are indistinguishable
from the quarks and gluons that are emitted in real-emission contributions.
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more complicated. For example, this is the case in double-real corrections to hadronic
Higgs-boson decays that were discussed in the context of the NSS in Ref. [3]. To explain
how the separation can be achieved, we consider the partonic channel H → gggg and
write [3]

2m2
H · dΓRR

H→gggg =
〈
[dk4][dk5] FLM

(
1g, 2g, H; 4g, 5g

)〉
. (2.17)

Here, mH denotes the mass of the Higgs boson. We introduce a partion of unity, and
write

1 =
(k1 + k2 + k4 + k5)2

m2
H

=
1

m2
H

4

∑
i ̸=j=1

sij , (2.18)

where ki is the four-momentum of gluon i and sij = 2(ki ·k j),cf. Eq. (2.13). We insert the
relation Eq. (2.18) into Eq. (2.17) and find

〈
[dk4][dk5] FLM

(
1g, 2g, H; 4g, 5g

)〉

= 12×
〈
[dk4][dk5]

s12

m2
H

FLM
(
1g, 2g, H; 4g, 5g

)〉
,

(2.19)

where the combinatorial factor 12 arises from exploiting the symmetry of the matrix
element squared and the phase space under gluon re-labeling. The damping factor
s12/m2

H in Eq. (2.19) ensures that no singularities arise when gluons g(k1), g(k2) become
soft and/or collinear to each other. This means that these gluons can be identified as
part of the hard final-state X, while gluons g(k4), g(k5) are the ones that can become
unresolved. We note that damping factors only influence the phase-space of hard particles
X and we will not explicitly display them in subtraction formulas below. However, they
will become important in the computation of subtraction terms that arise in the triple-
collinear emission off external particles in the final-state.

2.2 soft regularisation

Soft singularities in double-real corrections f1 + f2 → X + f4 + f5 arise whenever the
energy of a photon, a gluon, or a quark-antiquark pair vanishes. Single-soft singularities
arise in processes with at least one gluon (photon) with vanishing energy Eg → 0
(Eγ → 0). Processes in which the emitted partons are a gluon-gluon, a quark-antiquark
or a gluon-photon pair, i. e. { f4, f5} ∈ {gg, qq̄, gγ}, exhibit a double-soft singularity. In the
case of soft gg or qq̄ emission, the double-soft singularity arises in a correlated fashion
when the energies of these partons vanish at a comparable rate, E4 ∼ E5 → 0.8 The case
of emission of a soft gluon-photon pair, on the other hand, is somewhat simpler. Here,

8 Here, “correlated” means that singularities arise from terms in matrix elements that behave as ∼ 1/(E4 + E5)
in the E4 → 0, E5 → 0 limit.
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the uncorrelated double-soft singularity arises in the limit Eγ → 0, Eg → 0.9 Furthermore,
these partonic channels exhibit an (additional) single-soft singularity whenever the
energy of a gluon or a photon vanishes. We discuss each of these cases in Sec. 2.2.1
and Sec. 2.2.2, respectively. Then, in Sec. 2.2.3, we discuss soft regularisation of partonic
channels that only feature single-soft singularities.

2.2.1 Correlated double-soft singularities

In case of correlated singularities of soft emissions of gg or qq̄ pairs it is convenient to
introduce energy ordering E5 < E4.10 We define a modified phase space

˜[dk4][dk5] = [dk4][dk5] θ(E4 − E5) , (2.20)

and a symmetrized matrix element

←→
FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)

= FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)
+ FLM

(
1 f1 , 2 f2 , X; 4 f5 , 5 f4

)
,

(2.21)

and find
〈
[dk4][dk5] FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
=
〈

˜[dk4][dk5]
←→
FLM

(
. . . ; 4 f4 , 5 f5

)〉
. (2.22)

We denote the (correlated) double-soft limit by an operator SS, insert the identity 1 =

(I− SS) + SS into Eq. (2.12), and obtain
〈

˜[dk4][dk5]
←→
FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

=
〈

˜[dk4][dk5] (I− SS)
←→
FLM

(
. . . ; 4 f4 , 5 f5

)〉
+
〈

˜[dk4][dk5] SS
←→
FLM

(
. . . ; 4 f4 , 5 f5

)〉
.

(2.23)

The first term on the r. h. s. of Eq. (2.23) is regular in the double-soft limit; we discuss how
remaining singularities can be extracted from this term right after Eq. (2.30). The second
term in Eq. (2.23) is the so-called double-soft subtraction term. It enters the double-real
cross section in Eq. (2.16) through the double-unresolved, Born-like contribution dσRR

X (ϵ).
We defer a detailed discussion of the double-soft subtraction term to Sec. 2.5.

We now define the double-soft operator SS that appears in Eq. (2.23). The double-
soft limit removes momenta k4,5 from the momentum-conserving δ-function and the
measurement function F so that

SS FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)
= N ∑

col,pol
SS|Atree(p1, p2, pX; k4, k5)|2

×F (pX) (2π)d δd(p1 + p2 − pX)
dd−1 pX

(2π)d−12EX
.

(2.24)

9 We note that we use the term “uncorrelated”, since in this case the singularities behave as ∼ 1/Eg/Eγ.
10 The energy ordering will simplify the single-soft regularisation, see Eq. (2.30).



16 nested soft-collinear subtractions

We define action of the operator SS on the matrix element squared in such a way that it
extracts the most singular behaviour of the matrix element in the double-soft limit. To
this end, we consider the scaling E4 ∼ E5 ∼ λ and define

SS|Atree({p}; k4, k5)|2 = lim
λ→0

λ4|Atree({p}; λk4, λk5)|2 . (2.25)

In the following, we will discuss the emission of a soft gluon pair and the emission of a
soft quark-antiquark pair separately.

Gluon-pair emission

The double-soft function that describes emission of two gluons with momenta k4 and k5

for an amplitude with n hard emitters reads [123]

SS|Atree
gg ({p}; k4, k5)|2 = g4

s,b

{
1
2

n

∑
i,j,k,l=1

Sij(k4)Skl(k5)|A{(ij),(kl)}({p})|2

− CA

n

∑
i,j=1
Sij(k4, k5)|A(ij)({p})|2

}
. (2.26)

Here the set {p} denotes the momenta of the emitters and gs,b is the bare strong
coupling. Colour correlations in Eq. (2.26) are encoded in the Born-like matrix elements
A{(ij),(kl)}({p}) and A(ij)({p}), see Eq. (B.12) for details. The first term on the right-hand
side of Eq. (2.26) is the abelian contribution. It is simply a product of single-eikonal
factors, given by

Sij(k) =
(pi · pj)

(pi · k)(pj · k)
. (2.27)

The second, non-abelian contribution is proportional to the colour factor CA. It is given
by the function Sij(k4, k5), which reads [96, 123]

Sij(k4, k5) = S0
ij(k4, k5) +

[
m2

i Sm
ij (k4, k5) + m2

jSm
ji (k4, k5)

]
. (2.28)

In Eq. (2.28) both functions S0
ij(k1, k2) and Sm

ij (k1, k2) implicitly depend on the masses of
the emitters, mi,j. These functions can be found in Eqs. (B.13)-(B.14).

Quark-antiquark pair emission

The double-soft limit of the matrix element squared that describes the emission of a
quark-antiquark pair reads

SS|Atree
qq̄ ({p}; k4, k5)|2 = g4

s,b TF

n

∑
i,j=1
Iij(k4, k5)|A(ij)({p})|2 , (2.29)

where TF = 1/2 and the function Iij(k1, k2) is given in Appendix B.2.
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Remaining single-soft divergence

To complete the soft regularisation, we have to consider the double-soft regulated term
on the r. h. s. of Eq. (2.23). It reads

〈
˜[dk4][dk5] (I− SS)

←→
FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
. (2.30)

In the case of gg emission, this term has an additional single-soft divergence, which
arises when the energy of gluon g(k5) vanishes, E5 → 0. We emphasize at this point that
the energy ordering in Eq. (2.22) prevents a similar soft singularity of gluon g(k4). To
regulate the single-soft behaviour, we insert the identity I = (I−S5) + S5 into Eq. (2.30)
and find

〈
˜[dk4][dk5] (I− SS)

←→
FLM

(
1 f1 , 2 f2 , X; 4g, 5g

)〉

=
〈

˜[dk4][dk5] (I− SS) (I−S5)
←→
FLM

(
. . . ; 4g, 5g

)〉

+
〈

˜[dk4][dk5] (I− SS) S5
←→
FLM

(
. . . ; 4g, 5g

)〉
.

(2.31)

The operator S5 is defined in analogy to SS, i. e. it removes k5 from the momentum-
conserving δ-function and the measurement function. It also extracts the most singular
behaviour of the matrix element squared in the limit E5 → 0. Explicitly,

S5|Atree
g ({p}; k5)|2 = − g2

s,b

n

∑
i,j=1
Sij(k5)|A(ij)({p})|2 , (2.32)

where Sij is given in Eq. (2.27). We find that gluon g(k5) decouples from the hard process
up to color correlations.

The first term on the r. h. s. of Eq. (2.31) is regular in all soft limits but still contains
collinear divergences. We discuss collinear regularisation of these divergences in Sec. 2.3.
The second term on the r. h. s. of Eq. (2.31) is the double-soft regulated, single-soft
subtraction term. Schematically, we can write this contribution as

〈
˜[dk4][dk5] (I− SS) S5

←→
FLM

(
1 f1 , 2 f2 , X; 4g, 5g

)〉

∼
〈
[dk4] (I−S4)

←→
FLM

(
1 f1 , 2 f2 , X; 4g

)
×
∫
[dk5]Eik({p}, k5) θ(E4 − E5)

〉
,

(2.33)

where we have used that SSS5 = S4S5 and omitted possible color correlations.11 The single
soft subtraction term in Eq. (2.33) still exhibits collinear singularities when gluon g(k4)

becomes collinear to any of the hard partons. However, these singularities can be easily
extracted in an NLO-like manner, see e. g. Refs. [1–4, 124]. The resulting terms contribute
to the double-real cross section in Eq. (2.16) through the double-unresolved, Born-
like contribution dσRR

X (ϵ) (collinear g(k4)) and through single-unresolved contribution
dσRR

X+1(ϵ)(resolved g(k4)).

11 In particular, we write “Eik({p}, k5)” instead of “Sij(k5)”.
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2.2.2 Uncorrelated double-soft singularities

In the following Section we discuss the construction of subtraction terms for the emis-
sion of a gluon and a photon. We consider the partonic process u(p1) + d̄(p2) →
W+(pW) + g(k4) + γ(k5), which contributes to mixed QCD-EW corrections to W-boson
hadroproduction [9] discussed in Part II of this thesis. We denote the differential cross
section as

2s · dσRR
Wgγ =

〈
[dk4][dk5] FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉
, (2.34)

following the notation introduced in Eq. (2.12). As already mentioned, the double-soft
emission of a gluon-photon pair is uncorrelated; this means that instead of an entangled
double-soft limit, only products of single-soft limits appear. Therefore, we can construct
a simpler subtraction prescription than what was done in Sec. 2.2.1. To this end, we
isolate all soft singularities by inserting the identity I =

[
(I − Sg) + Sg

]
× [(I − Sγ) + Sγ]

into Eq. (2.34) and find
〈
[dk4][dk5] FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

=
〈
[dk4][dk5]SγSg FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

+
〈
[dk4][dk5]

[ (
I−Sg

)
Sγ + (I−Sγ) Sg

]
FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

+
〈
[dk4][dk5] (I−Sγ)

(
I−Sg

)
FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉
,

(2.35)

where Sg (Sγ) denotes the soft gluon(photon) limit. Similarly to operator S5, which is
defined in Eq. (2.32), operators Sg,γ extract the leading singular behaviour of the matrix
element squared in the limit k4,5 → 0 and remove k4,5 from the momentum-conserving
δ-function.

We begin our analysis of the various term in Eq. (2.35) by considering the soft-gluon
limit. It reads

Sg FLM
(
1u, 2d̄, W+; 4g, 5γ

)
= 2g2

s CF S12(k4) FLM
(
1u, 2d̄, W+; 5γ

)
, (2.36)

where Sij is defined in Eq. (2.27), CF = (N2
c − 1)/(2Nc) is the SU(Nc) Casimir invariant

and Nc = 3 is the number of colors.
The soft-photon limit, on the other hand, is more involved due to the fact that the

W boson carries electric charge. In diagrams that contribute to this limit, the photon is
emitted from an external on-shell particle. The three relevant diagrams are

g4γ5
u1

d̄2

W+

γ5

+
W+

γ5

g4
u1

d̄2

+
W+

u1

d̄2

g4
γ5

γ5

, (2.37)
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where the grey circle illustrates that the gluon is emitted from either the internal u or d
quark. We extract the leading 1/E5 behaviour of the amplitude and obtain

SγARR
u1d̄2→W+g4γ5

= e

[
Qu

pµ
1

(p1·k5)
−Qd

pµ
2

(p2·k5)
−QW

pµ
W

(pW ·k5)

]
ε∗µ(k5)AR

u1d̄2→W+g4
. (2.38)

In Eq. (2.38), pW = p1 + p2 − k4 is the momentum of the W boson and Qu, Qd, and
QW = Qu − Qd are the electric charges of up and down quarks, and the W boson,
respectively. Upon squaring the expression in Eq. (2.38) and averaging over polarisations
of the photon, we obtain

Sγ FLM
(
1u, 2d̄, W+; 4g, 5γ

)
= e2 Eikγ(p1, p2, pW , k5) FLM

(
1u, 2d̄, W+; 4g

)
, (2.39)

where

Eikγ(p1, p2, pW , k5) =

{
2QuQd S12(k5)−Q2

W SWW(k5)

+ 2QW
[
QuS1W(k5)−QdSW2(k5)

]}
.

(2.40)

We note that the soft-gluon limit in Eq. (2.36) is independent of the photon four-
momentum k5. The soft-photon limit in Eq. (2.39), on the other hand, depends on
pW and, therefore, on the gluon four-momentum k4 because of momentum conservation.

We are now in position to discuss the various terms on the r. h. s. of Eq. (2.35). The
first term is the uncorrelated double-soft contribution, where both the gluon and the
photon are soft. It reads

〈
[dk4][dk5]SγSg FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

=
∫
[dk5]

[
e2 Eikγ(p1, p2, p1 + p2, k5)

]
×
∫
[dk4]

[
2g2

s CF S12(k4)
]

×
〈

FLM
(
1u, 2d̄, W+

)〉
.

(2.41)

In writing Eq. (2.41), we have used the fact that in the double-soft limit the soft-photon
eikonal factor Eikγ(. . . ) does not depend on the momentum of the soft gluon, i. e. we
set pW = p1 + p2. Since both integrals in this formula exhibit poles starting at 1/ϵ2, they
have to be computed to O

(
ϵ2) to obtain finite contributions. We note that the integral

over the soft-gluon eikonal function S12 can be calculated in a straightforward way. In
fact, we find [9]

2g2
s CF

∫
[dk4] S12(k4) = [αs]

2CF (2 Emax)
−2ϵ

ϵ2
Γ2 (1− ϵ)

Γ (1− 2ϵ)
, (2.42)

where [αs] is defined in Eq. (B.1). We will discuss the computation of the soft-photon
integral in Sec. 3.1.2.
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The second and the third term on the r. h. s. of Eq. (2.35) describe cases where the
gluon is soft-regulated and the photon is soft (∼

(
I−Sg

)
Sγ), and vice versa. We obtain

〈
[dk4][dk5]

(
I−Sg

)
Sγ FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

=

〈 (
I−Sg

) ∫
[dk5]

[
e2 Eikγ(p1, p2, pW , k5)

]
FLM

(
1u, 2d̄, W+; 4g

)〉
,

(2.43)

and
〈
[dk4][dk5] (I−Sγ) Sg FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

=

[∫
[dk4]2g2

s CF S12(k4)

]
×
〈
(I−Sγ) FLM

(
1u, 2d̄, W+; 5γ

)〉
,

(2.44)

respectively. We note that the soft-photon contribution in Eq. (2.43) is regulated in the
soft-gluon limit but exhibits singularities when the gluon in the hard matrix element
FLM

(
1u, 2d̄, W+; 4g

)
becomes collinear to one of the initial-state quarks. While the regu-

larisation of these collinear divergences is NLO-like and for this reason straightforward,12

it requires us to compute the soft-photon integral in Eq. (2.43) in case of a collinear gluon
to higher orders in ϵ; we will present this computation in Sec. 3.1.2. Similarly, the matrix
element FLM(1u, 2d̄, W+; 5γ) in Eq. (2.44) exhibits collinear singularities caused by the
photon. These contribution multiply higher order ϵ-contributions of the integrated soft-
gluon eikonal function Eq. (2.42). Finally, we note that the fourth term on the r. h. s. of
Eq. (2.35) is regular in both soft limits.

2.2.3 Processes with a single-soft singularity

For the sake of completeness, we also consider partonic processes with f4,5 = qg, which
only exhibit a single-soft but no double-soft divergence.13 We write the corresponding
contribution as

〈
[dk4][dk5] FLM

(
1 f1 , 2 f2 , X; 4q, 5g

)〉
. (2.45)

Note that we did not introduce any energy ordering. Analogously to the extraction of
the single-soft divergence in Eq. (2.31), we insert the identity I = (I−S5) + S5 and find

〈
[dk4][dk5] FLM

(
1 f1 , 2 f2 , X; 4q, 5g

)〉

=
〈
[dk4][dk5] (I−S5) FLM

(
1 f1 , 2 f2 , X; 4q, 5g

)〉

+
〈
[dk4][dk5]S5 FLM

(
1 f1 , 2 f2 , X; 4q, 5g

)〉
.

(2.46)

The first term on the r. h. s. of Eq. (2.46) is soft-regulated. The second term is a single-soft
subtraction term, which can be treated following the discussion below Eq. (2.31).

12 We will discuss this aspect in Sec. 4.2.2.
13 An example is the process q g→ Zqg, which contributes to double-real NNLO QCD corrections to pp→ Z.
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2.3 collinear regularisation

In the previous Section, we have sketched how to extract and regulate soft singularities
appearing in double-real contributions. In this Section, we consider soft-regulated
contributions, which we write as

〈
[dk4][dk5] Ôsoft FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
, (2.47)

where Ôsoft denotes an appropriate combination of soft operators that regulates all soft
singularities present in FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)
. More explicitly, Ôsoft = (I− SS) (I−S5)

or Ôsoft = (I−S4) (I−S5) in case of correlated or uncorrelated double-soft singularities,
respectively. In cases which only exhibit single-soft divergences, Ôsoft = (I−S5).

In the following, we proceed with the extraction and regularisation of remaining
collinear singularities. We emphasize again that this iterative formalism only works for
gauge-invariant matrix elements whose soft and collinear singularities are disentangled
thanks to color coherence. Hence, the collinear singularity structure and its regularisation
do not depend on the energy parameterization, which is why we do not have to differ
between the “standard” and the energy-ordered formulation on the l. h. s. and the
r. h. s. of Eq. (2.22), respectively.

Collinear singularities in Eq. (2.47) occur, whenever partons f4,5 become collinear
partons f1,2 in the initial state, to massless partons in the “hard” final-state X, or to each
other. It can be shown that they factorize on external legs in physical gauges [123, 125].14

However, the collinear limits can be approached in different ways, and it is beneficial to
partition the phase space in order to uniquely identify how they are approached in a
particular kinematic configuration.

2.3.1 Collinear partitioning

In general, there are two types of collinear singularities, since emitted partons f4,5 can
become collinear to different external partons, or to the same parton. To separate these
cases, we follow the FKS approach [51, 52] and introduce energy-independent partition
functions. We write

1 = ∑
(i,j)∈DC p

ω
i4,j5
DC + ∑

i∈T C p

ωi4,o5
T C , i ̸= j , (2.48)

where DC p (T C p) denotes the set of so-called double-colllinear (triple-collinear) parti-
tions. Weights are constructed to dampen the singular behaviour of matrix elements
squared so that products ω

ij,kl
DC/T C × FLM only contain well-defined subsets of collinear

limits.

14 In the physical (light-cone) gauge, a special case of axial gauge, the gluon propagator is proportional to
“−gµν + (nµ pν + nν pµ)/(n·p)”.
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Double-collinear partitions ω
i4,j5
DC are constructed in such a way that partons f4,5 can

only become collinear to external partons i and j, respectively; they dampen all but one
collinear limit per emitted parton f4,5. In particular, we require that double-collinear
partition functions satisfy the following conditions

C4k ω
i4,j5
DC FLM →




∼ 1/η4k , k = i ,

O
(
η0

4k

)
, else .

C5k ω
i4,j5
DC FLM →




∼ 1/η5k , k = j ,

O
(
η0

5k

)
, else .

(2.49)

Here, i ̸= j and the operator C4k (C5k) implies that the collinear limit η4k → 0 (η5k → 0)
should be taken.15 Thanks to the conditions in Eq. (2.49), singularities can only appear
when three-momenta k4,5 become collinear to the direction of different hard particles and,
hence, no overlapping singularities occur.

Triple-collinear partitions ωi4,i5
T C , on the other hand, select cases where singularities

occur when partons f4,5 become collinear to the same external parton i. They allow for
singular configurations k4 ∥ pi, k5 ∥ pi, and k4 ∥ k5, which can be approached in various
ways. We require that

C4j ωi4,i5
T C FLM →




∼ 1/ηj4 , j = i ∨ j = 5 ,

O
(

η0
j4

)
, else .

C5j ωi4,i5
T C FLM →




∼ 1/ηj5 , j = i ∨ j = 4 ,

O
(

η0
j4

)
, else .

.

(2.50)

We insert the partition of unity in Eq. (2.48) into the soft-regulated contribution in
Eq. (2.47) and find

〈
[dk4][dk5] Ôsoft FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

= ∑
(i,j)∈DC p

〈
[dk4][dk5] Ôsoft ω

i4,j5
DC FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

+ ∑
i∈T C p

〈
[dk4][dk5] Ôsoft ωi4,i5

T C FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
.

(2.51)

We note that since partition functions are chosen to be energy-independent, they com-
mute with the soft limits. Apart from the well-defined damping behaviour as explained
above, the precise form of the partition functions ω

ij,kl
DC/T C is not important for the follow-

ing discussion. We note that explicit constructions can be found in Refs. [1–4]. Here, we
proceed by discussing contributions from double- and triple-collinear partition functions
in Eq. (2.51) in Sec. 2.3.2 and Sec. 2.3.3, respectively.

15 Angular variables ηij where introduced in Eq. (2.13).
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2.3.2 Double-collinear partitions

A subtraction prescription for terms proportional to double-collinear partitions ω
i4,j5
DC is

straightforward thanks to the absence of overlapping singularities. We use the identity
I = [ (I−C4i) + C4i]

[ (
I−C5j

)
+ C5j

]
and write

〈
[dk4][dk5] Ôsoft ω

i4,j5
DC FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
=

〈
(I−C4i)

(
I−C5j

)
[dk4][dk5] Ôsoft ω

i4,j5
DC FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

+
〈[

C4i + C5j
]
[dk4][dk5] Ôsoft ω

i4,j5
DC FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

−
〈[

C4iC5j
]
[dk4][dk5] Ôsoft FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
.

(2.52)

When writing Eq. (2.52) we have used

C4iC5j ω
i4,j5
DC = 1 . (2.53)

This identity holds because, thanks to definitions in Eq. (2.49) and Eq. (2.50), ω
i4,j5
DC is

the only partition that yields a non-vanishing contribution in the C4iC5j limit and since
partitions need to add up to one (cf. Eq. (2.48)) in all kinematic configurations.

The first term on the r. h. s. of Eq. (2.52) is fully regulated and can be integrated
numerically in d = 4 dimensions. It enters the double-real cross section in Eq. (2.16)
through the fully-resolved contribution dσRR

X+2. The two terms in the second line on the
r. h. s. of Eq. (2.52) are soft-regulated single-unresolved. The term proportional to C4i
requires a NLO-like regularisation of the remaining collinear singularities of parton f5,
and vice versa.16 After this additional step, these subtraction terms contribute to dσRR

X+1
and dσRR

X in Eq. (2.16). The term in the third line on the r. h. s. of Eq. (2.52) is the so-called
soft-regulated double-unresolved double-collinear subtraction term, which contributes
to dσRR

X in Eq. (2.16). As will become clear later in Example 2, this term admits a
factorization formula, in which the momenta of k4,5 are not correlated. We conclude that
the analytic computation of all these integrated subtraction terms is essentially NLO-like;
we refer to Refs. [1–4] for further discussion.

All contributions to Eq. (2.52) are described by two different limits: the single-
unresolved double-collinear limit C4i (C5j), and the double-unresolved double-collinear
limit C4iC5j. At this point, a comment on the double-collinear operators Cab is in order
to unambiguously define Eq. (2.52). Operators Cab are defined in such a way that they act
on every function that appears to their right. This includes the partition weight ω

i4,j5
DC ,

the function FLM and the phase-space measure [dk4][dk5]. The precise prescription for
operator C4i, for example, is given as follows [2–4]:

i) extract the leading ∼ 1/η4i behaviour of the term ω
i4,j5
DC [dk4][dk5] FLM and enforce

the η4i → 0 limit in the remaining expression;

16 Neither particle f4,5 can cause a soft singularity at this point.
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ii) replace pi → z · pi, where the precise definition of energy-fraction z is dependent
on whether the hard parton i is in the initial or in the final state.

We explain how these limits act on the phase-space element [dk4][dk5] in Appendix B.5.1.
As an illustration, in Example 1 and Example 2, we present single- and double-unresolved
double-collinear limits of some matrix elements squared, respectively.

Example 1 (Single-unresolved double-collinear factorization)

We consider the double-real correction q(p1)q̄(p2)→ Z g(k4)g(k5) to color-singlet production
in the limit where gluon g(k4) is collinear to quark q(p1) and find

C41 FLM
(
1q, 2q̄, Z; 4g, 5g

)
= g2

s,b
Pqq(z4)

(p1·k4)
× FLM

(
z4 · 1q, 2q̄, Z; 5g

)

z
. (2.54)

Here, z4 = (E1 − E4)/E1 and the splitting function

Pqq(z) = CF

[
1 + z2

1− z
− ϵ(1− z)

]
, (2.55)

describes the collinear splitting q → q∗ + g. We note that Eqs. (2.54)-(2.55) are derived in
Appendix B.3.

Example 2 (Double-unresolved double-collinear factorization)

The double-unresolved double-collinear limit for color singlet decay Z → q(pa)q̄(pb)g(k4)g(k5)

reads

C4aC5b FLM
(
aq, bq̄, Z; 4g, 5g

)
=

g4
s,b

Pqq(z4)Pqq(z5)

(pa ·k4) (pb ·k5)
× FLM

(
1/z4 · aq, 1/z5 · bq̄, Z

)
.

(2.56)

In this case, energy fractions of collinear splittings off final-state quarks are defined as

z4 =
Ea

Ea + E4
, z5 =

Eb

Eb + E5
. (2.57)

We note that momenta k4,5 are not entangled in this double-unresolved limit, i. e. it is NLO-like.
As a consequence, it is straightforward to integrate this subtraction term over the unresolved
phase-space. The double-unresolved double-collinear limit in Eq. (2.56) can be derived following
the steps described in Appendix B.3.

2.3.3 Triple-collinear partitions

As defined in Eq. (2.50), triple-collinear partitions ωi4,i5
T C allow for singularities that arise

in the limit where both partons f4 and f5 become collinear to the same external parton
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i. This includes the triple-collinear singularity k4 ∥ k5 ∥ pi, which is extracted by a
triple-collinear operator CCi. The triple-collinear limit is approached by η4i → 0, η5i → 0
with η4i ∼ η5i ∼ η45. Furthermore, overlapping double-collinear singularities can arise in
the limits k4 ∥ pi, k5 ∥ pi, or k4 ∥ k5. In what follows, we show that these singularities
can be disentangled by introducing sector functions that divide the phase space into
non-overlapping regions.17 First, we consider the general case, where all three double-
collinear singularities are present. Then, we turn to the special case of gγ-emission for
which the limit k4 ∥ k5 is not singular.

Triple-collinear sectors in the general case

In order to discuss the most general structure of singularities arising in contributions
proportional to triple-collinear partion functions, we consider the emission of a gluon
pair ( f4 f5 = gg). In physical gauges, only three diagrams shown in Fig. 2.1 contribute to
the singularities that are allowed by ωi4,i5

T C . In addition to the triple-collinear singularity
in the limit k4 ∥ k5 ∥ pi, diagrams Fig. 2.1 (a), (b), and (c) have singularities in the limits
k4 ∥ pi, k5 ∥ pi, and k4 ∥ k5, respectively. To isolate these overlapping singularities, we
divide the phase space into four sectors θk, such that in each of these sectors the three
angles ηi4, ηi5, and η45 have a well-defined hierarchy. We write

1 = ∑
k∈{a,b,c,d}

θk , (2.58)

where

θa = θ(ηi4/2− ηi5) , (2.59)

θb = θ(ηi5 − ηi4/2)× θ(ηi4 − ηi5) , (2.60)

θc = θ(ηi5/2− ηi4) , (2.61)

θd = θ(ηi4 − ηi5/2)× θ(ηi5 − ηi4) . (2.62)

The four different phase-space regions are visualized in Fig. 2.2. Besides the triple-
collinear singularity, each sector θk features a divergence in one double-collinear limit.
We denote double-collinear operators that extract these limits in each sector k by Ck and
write

Ca = C5i , Cb = C45 , Cc = C4i , Cd = C45 . (2.63)

17 We note that overlapping singularities can also be disentangled by introducing additional damping
factors [101, 102].
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k5 k4

pi

(a)

k4 k5

pi

(b)

pi

k4

k5

(c)

Figure 2.1: Diagrams that contribute to the singularity structure in the triple-collinear partition
contribution in case of gg emission off a quark with momentum pi.

ηi4 = ηi5

a)

b)

d)c)

η
i4
=

0

ηi5 = 0

Figure 2.2: Visualization of the four sectors defined in Eqs. (2.59)-(2.62). Black lines correspond
to double-collinear singularities, the triple-collinear singularity is at the origin.
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Triple-collinear sectors in the case of gγ emission

As mentioned above, simplifications arise in the case of gγ-emission. The two diagrams
that contribute to collinear singularities in the triple-collinear partition are shown in
Fig. 2.3, where, as in Sec. 2.2.2, gluon and photon carry momenta k4 and k5, respectively.18

While both diagrams in Fig. 2.3 contribute to the triple collinear singularity, diagrams (a)
and (b) have distinct double-collinear divergences in the limits k4 ∥ pi (collinear gluon)
and k5 ∥ pi (collinear photon), respectively. However, there is no singular behaviour in
the k4 ∥ k5 limit, and it is therefore sufficient to introduce only two sectors. Following
Ref. [9] we define

1 = ∑
k∈{A,B}

θk , (2.64)

where

θA = θ(η5i − η4i) , (2.65)

θB = θ(η4i − η5i) , (2.66)

and

CA = C4i , CB = C5i . (2.67)

k5 k4

pi

(a)

k4 k5

pi

(b)

Figure 2.3: Diagrams that contribute to the triple-collinear partition in case of the q∗ →
g(k4)γ(k5)q(pi) splitting.

Regularisation

We are now in position to regulate collinear singularities that appear in the terms in
Eq. (2.51) that are proportional to triple-collinear partitions ωi4,i5

T C . For both definitions of

18 Again, this statement holds in physical gauges where collinear singularities factorize on external legs.
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sectors (θa..d and θA,B) discussed above, we insert partitions of unity (cf. Eq. (2.58) and
Eq. (2.64)) and write

〈
[dk4][dk5] Ôsoft ωi4,i5

T C FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
=

∑
k

〈
θk[dk4][dk5] Ôsoft ωi4,i5

T C FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
.

(2.68)

Since each sector features only two overlapping collinear singularities, writing a subtrac-
tion formula is straightforward. We begin with extracting the double-collinear singularity
by inserting the identity

(
I−Ck)+ Ck for each sector θk in Eq. (2.68). We obtain

∑
k

〈
θk[dk4][dk5] Ôsoft ωi4,i5

T C FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
=

∑
k

{〈
θkCk[dk4][dk5] Ôsoft ωi4,i5

T C FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

+
〈

θk
(

I−Ck
)
[dk4][dk5] Ôsoft ωi4,i5

T C FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉}
,

(2.69)

where operators Ck were defined in Eq. (2.63) and Eq. (2.67). We define double-collinear
operators in Eq. (2.69) in the same way as in the case of double-collinear partition,
cf. Eq. (2.52). In the limit a ∥ b, these operators extract the leading behaviour in 1/ηab
from the matrix element squared and take the ηab → 0 limit everywhere else. In particular,
they also act on the phase-space element [dk4][dk5]. We define the double-collinear limit
of the phase space in Sec. B.5. Factorization of matrix elements squared in the single-
collinear limit was illustrated in Example 1.

The first term on the r. h. s. of Eq. (2.69) is proportional to θkCk. We call it soft-regulated
single-unresolved; it contains one unregulated collinear divergence that is particular to
sector k.19 The remaining collinear singularities are NLO-like and we do not discuss them
further.

The second term on the r. h. s. of Eq. (2.69) is regular in the double-collinear limits;
its only remaining singularity is the triple-collinear one. We insert the identity I =

(I− CCi) + CCi and obtain

∑
k

〈
θk
(

I−Ck
)
[dk4][dk5] Ôsoft ωi4,i5

T C FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
=

∑
k

{〈
θk
(

I−Ck
)
[dk4][dk5] Ôsoft (I− CCi) ωi4,i5

T C FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

+
〈

θk
(

I−Ck
)
[dk4][dk5] Ôsoft CCi FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉}
,

(2.70)

19 For example in sector k = b, this term describes the emission of a gluon g(k45) with momentum k4 + k5,
which can become collinear to parton i. Or, as a second example, the term with sector k = A describes the
case where γ(k5) is still resolved and causes a singularity in the limit k5 ∥ pi.
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where we have used that CCi ωi4,i5
T C = 1. This relation holds in analogy to Eq. (2.53), since

ωi4,i5
T C is the only non-vanishing partition in the CCi limit.
We note that operators CCi, in variance to double-collinear operators, do not act on the

phase-space measure; this is why they appear to the right of [dk4][dk5] in Eq. (2.70). How-
ever, they still act on matrix elements squared and momentum-conserving δ-functions,
producing triple-collinear splitting functions Pfi f4 f5 [123] and reduced matrix elements
squared. Furthermore, it was shown in Refs. [2, 3] how to deal with spin-correlations in
initial-state and final-state triple-collinear limits by averaging over azimuthal angles. For
this reason, we only consider spin-averaged splitting functions in what follows.

In order to unambiguously define Eq. (2.70), it remains to specify the “genuine” triple-
collinear limit CCi and its “strongly-ordered” counterpart Ck CCi. To do so, we consider
the most involved case of double-gluon emission in three different scenarios. First, we
illustrate the triple-collinear limit CCi for initial- and final-state emissions in Example 3

and Example 4, respectively. Then, we consider an example of strongly-ordered triple-
collinear emission off a final state particle in Example 5. For the detailed derivation of
these formulas, we refer the reader to Ref. [123].

Example 3 (Triple-collinear initial-state radiation)

As an example of triple-collinear splitting in an initial state, we consider emission of partons
f4,5 collinear to parton f1 and find

CC1 FLM
(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)
= g4

s

(
2

s145

)2

×

Pf1 f4 f5(−s14,−s15, s45, z1, z4, z5) FLM

(
E1 − E4 − E5

E1
· 1 f , 2 f2 , X

)
.

(2.71)

Here s145 = −s14 − s15 + s45 and energy fractions z1,3,4 are given by

z1 = (E1 − E4 − E5)/E1 , z4,5 = (E4 + E5 − E1)/E4,5 , (2.72)

such that the Born-like matrix element only depends on variable z1. We note that the spin-
averaged splitting function Pf1 f4 f5 [123] describes triple-collinear splittings f → f1 f4 f5; the
minus signs in its arguments in Eq. (2.71) reflect the fact that we crossed parton f1 into the
initial state.
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Example 4 (Triple-collinear final-state radiation)

We consider emission of partons f4,5 collinear to parton fa in the decay X → fa fb + f4 f5 and
find

CCa FLM
(
a fa , b fb , X; 4 f4 , 5 f5

)
= g4

s

(
2

sa45

)2

× Pf1 f4 f5(sa4, sa5, s45, za, z4, z5) FLM

(
Ea + E4 + E5

Ea
· a f , b fb , X

)
,

(2.73)

where sa45 = sa4 + sa5 + s45 and za,4,5 = (Ea + E4 + E5)/Ea,4,5.

Example 5 (Strongly-ordered triple-collinear final-state radiation)

We consider the strongly-ordered triple-collinear limit k4 ∥ p1 and k4 ∥ k5 ∥ p1 in the decay
Z → q(p1)q̄(p2) + g(k4)g(k5) and find

C41 CC1 FLM
(
1q, 2q̄, Z; 4g, 5g

)
=

g4
s

Pqq(z) Pqq(z̄)
(p1·k4) (p1·k5)

FLM

(
E1 + E4 + E5

E1
· 1q, 2q̄, Z

)
.

(2.74)

We note that in Eq. (2.74), z = E1/(E1 + E4) and z̄ = (E4 + E1)/(E1 + E4 + E5), and that
momenta k4,5 appear in an uncorrelated fashion.

We now return to the discussion of Eq. (2.70). The first term there is fully regulated
and can be integrated numerically in d = 4 dimensions. It enters the double-real cross
section in Eq. (2.16) through the fully-resolved contribution dσRR

X+2. Regularisation of
triple-collinear singularities marks the end of the nested regularisation procedure. We
will summarize the required soft- and collinear subtractions in Sec. 2.4.

The second term on the r. h. s. of Eq. (2.70) is the so-called soft-regulated, triple-
collinear subtraction term, which will be discussed in Sec. 2.6. It contributes to the
double-real cross section in Eq. (2.16) through the double-unresolved contribution dσRR

X .
For now, we note that this subtraction term has been computed analytically in Ref. [5]
for all possible partonic configurations for both initial- and final-state emissions.

2.4 regulated gluon-emission contribution in Z -boson production

In what follows, we will summarize the results of the soft- and collinear subtraction
procedure described in Sec. 2.2 and Sec. 2.3. To do so, we consider the emission of two
gluons in color singlet (Z-boson) production, q(p1) q̄(p2) → Z + g(k4)g(k5). We note
that we choose this particular process because it possesses the most general structure of
IR singularities.
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Using the notation introduced in Eq. (2.12), we write the fully-differential cross section
as

2s · dσRR
Zgg =

〈
˜[dk4][dk5]

←→
FLM

(
1q, 2q̄, Z; 4g, 5g

)〉
. (2.75)

We follow the discussion in Sec. 2.2.1 to regulate and extract double- and single-soft
singularities. In particular we adopted the energy-ordered notation of Eq. (2.20) and
Eq. (2.21) in Eq. (2.75). Using the fact that the corresponding matrix element squared is
symmetric under the exchange of two gluons g(k4)↔ g(k5), we write

〈
˜[dk4][dk5]

←→
FLM

(
1q, 2q̄, Z; 4g, 5g

)〉
= 2

〈
˜[dk4][dk5] FLM

(
1q, 2q̄, Z; 4g, 5g

)〉
. (2.76)

Collinear singularities in Eq. (2.76) are disentangled using partition functions as in-
troduced in Eq. (2.48). For the case at hand, we need two double-collinear partitions
DC p = {(1, 2), (2, 1)} and two triple-collinear partitions T C p = {1, 2}. We write

1 = ω14,25
DC + ω24,15

DC + ω14,15
T C + ω24,25

T C . (2.77)

In partition ω14,25
DC

(
ω24,15
DC

)
, a singularity arises when gluon g(k4) becomes collinear to

quark q(p1) and gluon g(k5) becomes collinear to antiquark q̄(p2) (and vice versa). In
partition ω14,15

T C
(

ω24,25
T C

)
a singularity develops when gluons become collinear to quark

q(p1)
(
antiquark q̄(p2)

)
and to each other. Partitions are constructed in such a way that

they supress all singularities except the ones that we mentioned explicitly. Collinear
singularities in contributions stemming from triple-collinear partitions are disentangled
by introducing the four sectors as defined in Eqs. (2.58)-(2.62).

Finally, we write the complete double-real cross section as
〈

˜[dk4][dk5] FLM
(
1q, 2q̄, Z; 4g, 5g

)〉
= (2.78)

〈
˜[dk4][dk5] SS FLM

(
1q, 2q̄, Z; 4g, 5g

)〉
(2.79)

+
〈

˜[dk4][dk5] (I− SS) S5 FLM
(
1q, 2q̄, Z; 4g, 5g

)〉
(2.80)

+ ∑
i,j=1,2

i ̸=j

〈[
C4i + C5j

] ˜[dk4][dk5] (I− SS) (I−S5) ω
i4,j5
DC FLM

(
1q, 2q̄, Z; 4g, 5g

)〉
(2.81)

+ ∑
i=1,2

∑
k=a..d

〈
θkCk ˜[dk4][dk5] (I− SS) (I−S5) ωi4,i5

T C FLM
(
1q, 2q̄, Z; 4g, 5g

)〉
(2.82)

− ∑
i,j=1,2

i ̸=j

〈
C4iC5j

˜[dk4][dk5] (I− SS) (I−S5) FLM
(
1q, 2q̄, Z; 4g, 5g

)〉
(2.83)

+ ∑
i=1,2

∑
k=a..d

〈
θk
(

I−Ck
)

˜[dk4][dk5] (I− SS) (I−S5) CCi FLM
(
1q, 2q̄, Z; 4g, 5g

)〉
(2.84)
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+ ∑
i,j=1,2

i ̸=j

〈
Ô(i,j)

NNLO
˜[dk4][dk5] FLM

(
1q, 2q̄, Z; 4g, 5g

)〉
(2.85)

+ ∑
i=1,2

∑
k=a..d

〈
Ôi,k

NNLO
˜[dk4][dk5] FLM

(
1q, 2q̄, Z; 4g, 5g

)〉
. (2.86)

The operators in Eqs. (2.79)-(2.86) are defined to extract leading singularities; we have
discussed them in the preceding sections. They are summarized one more time in
Table 2.1.

The contributions in Eq. (2.79), Eq. (2.83) and Eq. (2.84) denote the double-soft, double-
collinear and triple-collinear subtraction terms, respectively. These double-unresolved
contributions enter the double-real cross section in Eq. (2.16) through the Born-like term
dσRR

X (ϵ). Contributions in Eq. (2.80), Eq. (2.81) and Eq. (2.82) are of the single-unresolved
type. Each of these terms requires regularisation of the remaining NLO-like singularities
caused by the respective resolved gluon, resulting in contributions to dσRR

X+1(ϵ) and
dσRR

X (ϵ) in Eq. (2.16). Contributions in Eq. (2.85) and Eq. (2.86) are fully-regulated; the
two operators that appear in these equations are defined as

Ô(i,j)
NNLO = (I−C4i)

(
I−C5j

)
(I− SS) (I−S5) ω

i4,j5
DC , (2.87)

Ôi,k
NNLO = θk

(
I−Ck

)
(I− CCi) (I− SS) (I−S5) ωi4,i5

T C . (2.88)

We will continue with the discussion of the double-soft and the triple-collinear subtrac-
tion terms in Sec. 2.5 and Sec. 2.6, respectively.

name symbol limit acts on phase-space

double-soft SS E4 → 0 , E5 → 0 , E4 ∼ E5 no

single-soft Si Ei → 0 no

triple-collinear CCi η4i → 0 , η5i → 0 , η4i ∼ η5i ∼ η45 no

double-collinear Cij
(
Ck) ηij → 0 yes

Table 2.1: Summary of operators in the nested soft-collinear subtraction scheme.

2.5 double-soft subtraction term

The double-soft subtraction term in Eq. (2.23) enters the double-real cross section in
Eq. (2.16) through the Born-like contribution dσRR

X (ϵ). We summarize the above discus-
sion by writing

〈
˜[dk4][dk5] SS FLM

(
. . . ; 4 f4 , 5 f5

)〉

∼
〈

FLM
(
1 f1 , 2 f2 , X

)
×
∫

˜[dk4][dk5]Eik({p}, k4, k5)

〉
,

(2.89)
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where we have omitted possible color-correlations between eikonal soft functions and
the Born-like process.20 We emphasize again that soft momenta k4,5 decouple from the
energy-momentum conservation, the measurement function and the matrix element
squared. This allows us to obtain the double-soft subtraction term in a universal and
process-independent manner by computing required double-soft integrals once and for all.

More specifically, we conclude that the double-soft subtraction term for an arbitrary
process within the nested soft-collinear subtraction scheme can be constructed from the
following three phase-space integrals

Gij =
∫
[dk] Sij(k) , (2.90)

GG ij =
∫
[dk4][dk5] θ(E5 < E4) Sij(k4, k5) , (2.91)

QQ̄ij =
∫
[dk4][dk5] θ(E5 < E4) Iij(k4, k5) . (2.92)

In Eqs. (2.90)-(2.92), indices i, j refer to the dependence of the soft integrals on two
hard momenta pi and pj, respectively. Thanks to the properties of the integrands Sij(k),
Sij(k4, k5), and Iij(k4, k5), cf. Eq. (2.27), Eq. (2.28), and Eq. (B.15), the three quantities Gij,
GG ij, and QQ̄ij are symmetric under i ↔ j exchange. Furthermore, the integrands are
invariant under a re-scaling of hard momenta pi,j → λi,j pi,j.21 Hence, Gij, GG ij, and QQ̄ij
do not depend on the energies of hard emitters. Finally, we note that integrals over dE4

and dE5 in Eqs. (2.90)-(2.92) have decoupled from the energy-momentum conservation;
therefore they are only restricted since we introduced the cut-off parameter Emax in
Eq. (2.15).

The above discussion is valid for arbitrary processes. However, the functions Gij, GG ij
and QQ̄ij in Eqs. (2.90)-(2.92) show important differences for massive and massless
partons. One can distinguish three cases: 1) both emitters are massless; 2) both emitters
are massive; and 3) one emitter is massive and the other is massless. On top of that,
masses of the two emitters can also differ. We discuss the different kinematic cases in
what follows.

2.5.1 Massless case

In case the emitters are massless, p2
i = p2

j = 0, we can parameterize hard momenta as
follows

pi,j = Ei,j ×
(

1

ni,j

)
. (2.93)

20 In particular, we write “Eik({p}, k4, k5)” instead of fucntions Sij(k4)Skl(k5), Sij(k4, k5), or Iij(k1, k2) that
appear in Eq. (2.26) and Eq. (2.29).

21 For this counting to be valid, on has to consider that m2
i,j = p2

i,j → λ2
i,jm

2
i,j.
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Functions Gij, GG ij and QQ̄ij in Eqs. (2.90)-(2.92) depend on the relative angle cos θij =

ni · nj between hard partons i and j, but, as discussed above, not on their energies.
All phase-space integrals that are required in this case were computed analytically in
Refs. [36, 37] and we present these results in Appendix C.1.

The double-soft subtraction term for massless emitters has been essential to demon-
strate analytic cancellation of ϵ poles in color-singlet prodution [2], color-singlet decay [3]
and deep-inelastic scattering [4]. Assuming that ϵ poles cancel with other contributions
to cross sections, we schematically write the finite remainder in Eq. (2.89) as

〈
FLM

(
1 f1 , 2 f2 , X

)
×
∫

˜[dk4][dk5]Eik({p}, k4, k5)

〉

−→∑
i,j

〈
FLM

(
1 f1 , 2 f2 , X

)
ij ×DS(cos θij)

〉
.

(2.94)

In writing this equation, we denote the color-correlations of the Born-level matrix element
by “ FLM

(
1 f1 , 2 f2 , X

)
ij”. From Eq. (2.94) it is evident that contributions to a physical cross

section that involves an arbitrary number of massless colored partons at the Born level
can be computed in a very efficient way. Indeed, according to Eq. (2.94) it suffices to
generate Born-like events, weighted by the easy-to-evaluate function DS(cos θij) that
can be constructed from results in Appendix C.1.

2.5.2 Massive case

In the case of massive emitters, p2
i,j = m2

i,j, we can parameterize hard momenta as

pi,j =
mi,j√

1− β2
i,j

×
(

1

βi,jni,j

)
, (2.95)

where βi,j and ni,j denote velocity and direction of flight of partons i and j, respectively.
In this parametrization, the aforementioned independence of energies translates into an
independence of masses mi,j. Integrals in Eqs. (2.90)-(2.92) are then functions of velocities
βi, β j and the relative angle cos θij.

In this thesis, we discuss the analytic computation of Gij, GG ij and QQ̄ij in the case
where both emitters have the same mass (mi = mj) and are back-to-back (cos θij =

0) [6]. The computation of Gij is NLO-like and rather straightforward; we present it in
Sec. 3.1.1. On the other hand, the functions GG ij and QQ̄ij are genuinely NNLO-like,
their computation is presented in Sec. 3.2.2. The results fully characterize the integrated
double-soft subtraction term to describe the decay process of a colour singlet into
two massive fermions, e. g. H → bb̄. Furthermore, they are important ingredients to
describe more complex processes such as heavy-quark pair production within the nested
soft-collinear subtraction scheme.
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2.5.3 Massive-massless case

In the case where one emitter (e. g. parton i) is massive and the other is massless, integrals
in Eqs. (2.90)-(2.92) are functions of cos θij and βi. For example, such integrals would be
required to describe single-top or heavy-quark pair production within the NSS. We plan
to address this case in the future.

2.6 triple-collinear subtraction term

In the following Section, we discuss the triple-collinear subtraction term that was defined
in Eq. (2.70); it is convenient to split it into the difference of two contributions

ITC = ∑
k

〈
θk
(

I−Ck
)
[dk4][dk5] Ôsoft CCi FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

=
〈
[dk4][dk5] Ôsoft CCi FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉

−∑
k

〈
θk Ck[dk4][dk5] Ôsoft CCi FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
.

(2.96)

The term in the first line on the r. h. s. of Eq. (2.96),

Igen
TC =

〈
[dk4][dk5] Ôsoft CCi FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
, (2.97)

is of “genuine” triple-collinear nature and independent of how sectors are defined. Terms
in the second line on the r. h. s. of Eq. (2.96),

Is.o.
TC = ∑

k

〈
θk Ck[dk4][dk5] Ôsoft CCi FLM

(
1 f1 , 2 f2 , X; 4 f4 , 5 f5

)〉
, (2.98)

on the other hand, are proportional to double-collinear operators Ck. These so-called
strongly-ordered contributions depend on how sectors are defined.

The factorization formulas for the matrix element squared in the triple-collinear limit
CCi for initial- and final-state splittings are given in Eq. (2.71) and Eq. (2.73), respectively.
We use them to write the subtraction terms in Eqs. (2.97)-(2.98) as22

Igen
TC = 4g4

〈
[dk4][dk5] Ôsoft

Pfi , f4, f5(±si4,±si5, s45,±Ei, E4, E5)

s2
i45

× FLM

(∓Ei − E4 − E5

∓Ei
· (pi) f , ..

)〉
, (2.99)

Is.o.
TC = 4g4 ∑

k

〈
θkCk[dk4][dk5] Ôsoft

Pfi , f4, f5(±si4,±si5, s45,±Ei, E4, E5)

s2
i45

22 The sign convention for incoming (outgoing) partons fi is −” (“+”) in the argument of Pfi , f4, f5 and “+Ei”
(“−Ei”) in the argument of FLM.
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× FLM

(∓Ei − E4 − E5

∓Ei
· (pi) f , ..

)〉
, (2.100)

where g4 = g4
s in case of NNLO QCD corrections and g4 = g2

s e2 in case of mixed QCD-EW

corrections. We note that it was shown in Refs. [2, 3] that we only have to consider
spin-averaged splitting functions in Eq. (2.99) and Eq. (2.100). Furthermore, we note that
the appearance of the propagator 1/si45 in Eq. (2.99) emphasises the double-unresolved
nature of this subtraction term, complicating the phase-space integration. In the strongly-
ordered limit in Eq. (2.100), this propagator factorizes into a product of two-particle
kinematic invariants, as can be seen, for example, in Example 5.

In what follows, we will discuss genuine and strongly-ordered triple-collinear sub-
traction terms in Sec. 2.6.1 and Sec. 2.6.2, respectively. We will provide a summary of all
triple-collinear subtraction terms by listing required splitting functions that have to be
considered in Sec. 2.6.3.

2.6.1 Genuine triple-collinear subtraction terms

We begin with the discussion of the genuine triple-collinear term Igen
TC in Eq. (2.99),

Igen
TC = 4g4

〈
[dk4][dk5] Ôsoft

Pfi , f4, f5(±si4,±si5, s45,±Ei, E4, E5)

s2
i45

× FLM

(∓Ei − E4 − E5

∓Ei
· (pi) f , ..

)〉
. (2.101)

We note that, in variance to double-collinear operators Ck, the triple-collinear operator
CCi does not act on the phase-space measure, leaving the unresolved phase space intact.
This implies that taking this limit does not modify the scalar products sij (or sijk) that
appear in Eq. (2.101). With this definition, the triple-collinear limit is independent of the
precise phase-space parameterization. This was not the case in the original formulation
of the nested soft-collinear subtraction scheme [1], where operator CCi was defined to
act on the phase-space measure, and integrated triple-collinear subtraction terms were
obtained numerically. In fact, the original prescription was changed precisely to facilitate
the analytic integration of the triple-collinear subtraction terms [5].

In the new formulation, the triple-collinear subtraction term in Eq. (2.101) has to be
integrated over the full, unresolved phase space.23 We separate integration over energies
and angles and write

Igen
TC =

∫
dE4 dE5 (E4E5)

1−2ϵΦE(E4, E5) Ôsoft T ±(Ei, E4, E5)

×
〈

FLM

(∓Ei − E4 − E5

∓Ei
· (pi) f , ..

)〉
,

(2.102)

23 We note that the phase-space is constrained by the Emax cut-off in Eq. (2.15) and might be energy-ordered.
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where the operator Ôsoft and the energy constraint function ΦE depend on whether the
soft singularity structure of the partonic process warrants energy ordering. In writing
Eq. (2.102) we have defined the angular integral

T ±(Ei, E4, E5) = 4g4
∫

dΩ(d−1)
45

Pfi , f4, f5(±si4,±si5, s45,±Ei, E4, E5)

s2
i45

, (2.103)

with dΩ(d−1)
45 = dΩ(d−1)

4 dΩ(d−1)
5 . We note that, thanks to the new definition of CCi, the

integrand in Eq. (2.103) is a rotationally invariant function in d− 1 spatial dimensions.
It follows from Eq. (2.102) that the hard matrix element squared depends only on

the sum of energies E4 + E5. It is therefore possible to integrate over directions n4,5 in
Eq. (2.103) and over ratio of energies E4/E5 in Eq. (2.102) in a universal manner. In fact, we
will explain in Sec. 3.2.3 how angular integrals T ± in Eq. (2.103) can be obtained using
methods of multi-loop calculations, and how resulting expressions can be integrated
over energies.

In order to facilitate integration over energies in Eq. (2.102), we need to introduce
convenient parameterizations. Below, we shortly explain how this can be done so that
the following two requirements are met: i) the factorization of FLM is ensured, and ii)
the regularisation of soft singularities becomes explicit. To this end, we consider the
cases of initial-state splittings fi → f ∗ f4 f5 with and without energy ordering, as well as
final-state splittings f ∗ → fi f4 f5.

Parameterization for initial-state splittings with energy-ordering

The case of initial-state splittings that requires energy-ordering, e. g. g → g∗ + gg or
q → q∗ + gg was discussed in Ref. [1] and we briefly summarize it here. The domain
of integration over energies in Eq. (2.102) is defined by the function ΦE. In the energy-
ordered case, it reads

ΦE = θ( Emax − E4) θ(E4 − E5) . (2.104)

The operator Ôsoft that regulates all soft-singularities reads

Ôsoft = (I− SS) (I−S5) = I − S5 − SS + SSS5 . (2.105)

Altogether, we find the triple-collinear subtraction term

I ISR
TC =

∫ Emax

0
dE4

∫ E4

0
dE5 (E4E5)

1−2ϵ [I − S5 − SS + SSS5] T −(Ei, E4, E5)

×
〈

FLM

(
Ei − E4 − E5

Ei
· (pi) f , ..

)〉
,

(2.106)

where the function T −(Ei, E4, E5) is defined in Eq. (2.103). In order to decouple the
matrix element squared in the term in Eq. (2.106) that is proportional to the identity
operator I from remaining integrations over energies, we apply the change of variables

E4 = Ei(1− z)(1− r/2) , E5 = Ei(1− z)r/2 , r ∈ [0, 1] , z ∈ [ zmin, 1] , (2.107)
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where

zmin = 1− Emax/Ei

1− r/2
> 1− Emax/Ei . (2.108)

Indeed, in this parameterization the matrix element squared reads

FLM

(
Ei − E4 − E5

Ei
· (pi) f , ..

)
= FLM

(
z · (pi) f , ..

)
, (2.109)

and has decoupled from the integration over r. Since the matrix element squared in
Eq. (2.109) vanishes for z < zmin due to energy conservation [1], we can extend integra-
tion over z by replacing zmin with zero. This allows us to write the hard contribution to
Eq. (2.106) as

I ISR
TC

∣∣∣∣
I
=

E4−4ϵ
i
2

∫ 1

0
dz (1− z)3−4ϵ

∫ 1

0
dr
[(

1− r
2

) r
2

]1−2ϵ

× T −
(

Ei, Ei(1− z)
(

1− r
2

)
, Ei(1− z)

r
2

) 〈
FLM

(
z · (pi) f , ..

)〉
.

(2.110)

We now turn to the discussion of the contribution proportional to the single-soft
operator S5 in Eq. (2.106). We note that the parameterization in Eq. (2.107) is not suited
to describe this limit, which requires us to take E5 → 0 at fixed E4. In order to describe the
single-soft contribution to the triple-collinear subtraction term, we choose the following
parameterization

E4 = Ei(1− z) , E5 = Ei(1− z)r , r ∈ [0, 1] , z ∈ [ zmin, 1] . (2.111)

The single-soft limit requires us to extract the leading 1/r behavior in the r → 0 limit.
Upon doing this, we find

I ISR
TC

∣∣∣∣
S5

= E4−4ϵ
i

∫ 1

0
dz(1− z)3−4ϵ

∫ 1

0

dr
r1+2ϵ

×
[

lim
r→0

r2T −(Ei, Ei(1− z), Ei(1− z)r)
] 〈

FLM

(
z · (pi) f , ..

)〉
.

(2.112)

We note that when writing Eq. (2.112), we have again replaced zmin with zero, and that
the product r2 · T (. . . ) is regular at r = 0. Furthermore, we note that the single-soft
contribution in Eq. (2.112) can be integrated over r, rendering the respective ϵ pole
explicit.

The parameterization in Eq. (2.111) is also suitable for the discussion of the double-soft
limit, since z→ 1 sends both E4,5 → 0 while the ratio E4/E5 is kept fixed. Accordingly,
we write the remaining two contributions to Eq. (2.106) as

I ISR
TC

∣∣∣∣
SS
= E4−4ϵ

i

∫ 1

zmin

dz
(1− z)1+4ϵ

∫ 1

0
dr r1−2ϵ
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×
[

lim
z→1

(1− z)4T −(Ei, Ei(1− z), Ei(1− z)r)
] 〈

FLM

(
(pi) f , ..

)〉
, (2.113)

I ISR
TC

∣∣∣∣
SSS5

= E4−4ϵ
i

∫ 1

zmin

dz
(1− z)1+4ϵ

∫ 1

0

dr
r1+2ϵ

×
[

lim
r→0

lim
z→1

(1− z)4r2T −(Ei, Ei(1− z), Ei(1− z)r)
] 〈

FLM

(
(pi) f , ..

)〉
. (2.114)

Here, we had to keep zmin; the reason for this is that energies E4,5 decouple from the
energy conservation in FLM in the double-soft limit, so that the region z ∈ [0, zmin] is not
automatically cut off in Eqs. (2.113)-(2.114). We note that the double-soft contribution in
Eq. (2.113) can be explicitly integrated over z, while the strongly-ordered contribution in
Eq. (2.114) can be integrated over both r and z.

Upon adding the contributions Eq. (2.110) and Eqs. (2.112)-(2.114) and carrying out
integrations over r and z where possible, we arrive at the following result

I ISR
TC = E−4ϵ

i

∫ 1

0
dz
[

Rδ δ(1− z) +
R+

[(1− z)1+4ϵ]+
+ Rreg(z)

]

×
〈

FLM

(
z · (pi) f , ..

)

z

〉
.

(2.115)

The definition of the so-called plus prescription [. . . ]+, used in the above formula, is
given in Eq. (B.4). The three functions Rδ,+, reg in Eq. (2.115) read

Rδ =
( Emax/Ei)

−4ϵ − 1
4ϵ

A3 −
∫ 1

0

dr
r1+2ϵ

[
(1 + r)4ϵ − 1

]

4ϵ
F(r) ,

R+ =A1(1) + A2(1) ,

Rreg(z) =
A1(z) + A2(z)− A1(1)− A2(1)

(1− z)1+4ϵ
,

(2.116)
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where

A1(z) =
z(1− z)4

2−2ϵ

∫ 1

0

dr
r1+2ϵ

(
1− r

2

)−1−2ϵ
(I − L̂r)

×
[ ( r

2

)2 (
1− r

2

)2
E4

i T −
(

Ei, Ei(1− z)
(

1− r
2

)
, Ei(1− z)

r
2

) ]
,

A2(z) =
z(1− z)4

2ϵ

[
1− Γ2(1− 2ϵ)

Γ(1− 4ϵ)

]

× L̂r

[
E4

i r2 T −(Ei, Ei(1− z), Ei(1− z)r)
]

,

A3 =
∫ 1

0

dr
r1+2ϵ

L̂1−z(I − L̂r)

×
[

E4
i (1− z)4r2 T −(Ei, Ei(1− z), Ei(1− z)r)

]
,

F(r) = L̂1−z

[
E4

i (1− z)4r2 T −(Ei, Ei(1− z), Ei(1− z)r)
]

,

(2.117)

and

L̂x g(. . . , x, . . . ) = lim
x→0

g(. . . , x, . . . ) . (2.118)

We postpone the computation of the three quantities Rδ,+, reg in Eq. (2.116) until Sec. 3.2.3.

Parameterization for initial-state splittings without energy-ordering

Some partonic processes are free of double-soft or soft singularities in general. The
former is the case for the f4,5 = qg final state,24 whereas the latter is the case for the
f4,5 = qq′ final state. In these cases, we do not introduce any energy ordering. Then, the
integration in Eq. (2.102) is constrained by

ΦE = θ( Emax − E4) θ( Emax − E5) , (2.119)

and the operator Ôsoft that regulates the (potential) single-soft singularity reads

Ôsoft = I − S5 . (2.120)

To describe the hard contribution proportional to the identity operator I, we choose the
parameterization

E4 = Ei(1− z)(1− r) , E5 = Ei(1− z)r , (2.121)

24 We note that the regularization of single-soft singularities was discussed in Sec. 2.2.3. In particular, we
assign momentum k5 (k4) to the particle that can (cannot) become soft.
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where z, r ∈ [0, 1]. For the single-soft contribution, proportional to S5, we employ the
parameterization in Eq. (2.111). Following steps similar to the ones in the previous
section, we obtain

I ISR
TC = E−4ϵ

i

∫ 1

0
dz R̃reg(z)

〈
FLM

(
z · (pi) f , ..

)

z

〉
. (2.122)

In writing Eq. (2.122), we have defined

R̃reg(z) = z(1− z)3−4ϵ
[
Ã1(z) + Ã2(z)

]
, (2.123)

where

Ã1(z) =
∫ 1

0

dr
r1+2ϵ

(1− r)1−2ϵ

× (1− L̂r)

[
r2E4

i T −(Ei, Ei(1− z)(1− r), Ei(1− z)r)

]
,

Ã2(z) =
1
2ϵ

[(
Emax

Ei

)−2ϵ

(1− z)2ϵ − (1− 2ϵ)

(1− 4ϵ)

Γ2 (1− 2ϵ)

Γ (1− 4ϵ)

]

× L̂r

[
r2E4

1 T −(Ei, Ei(1− z), Ei(1− z)r)
]

.

(2.124)

The computation of the quantity R̃reg(z) in Eq. (2.123) is described in Sec. 3.2.3.

Parameterization for final-state splittings

Up to now, we have focused on triple-collinear splittings in initial-state radiation as
discussed in Refs. [1, 2]. In what follows, we focus on final-state triple-collinear splittings.
The corresponding subtraction terms were discussed in Refs. [3, 126]. We begin with the
subtraction term for the final-state emission, cf. Eq. (2.102), and write

IFSR
TC =

∫
dE4 dE5 (E4E5)

1−2ϵ θ(E4 − E5) θ( Emax − E4) (I− SS) (I−S5)

× S(Ei) T +(Ei, E4, E5)

〈
dd−1 pi

(2π)d−12Ei
FLM

(
Ei + E4 + E5

Ei
· (pi) f , ..

)〉
.

(2.125)

We note that T + in Eq. (2.125) was defined in Eq. (2.103) and that we have restored
the dependence on the damping factor S(Ei), which was mentioned in Sec. 2.1 after
Eq. (2.17). Furthermore, in Eq. (2.125) we have included the final-state phase-space
volume in order to emphasize that it can be part of a re-definition of energies.

The function FLM in Eq. (2.125) that describes the hard process depends on the total
energy of the final-state particles E = Ei + E4 + E5. We parametrize energies accordingly,
and write

E4 = E x1, E5 = E x1x2, Ei = E (1− x1 − x1x2) . (2.126)
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In this parameterization the hard matrix element becomes independent of x1,2 and we
find

FLM

(
Ei + E4 + E5

Ei
· (pi) f , ..

)
= FLM

(
E · (ni) f , ..

)
, (2.127)

where the four-vector ni = (1, ni) denotes the direction-of-flight of hard parton i. Hence,
the subtraction term in Eq. (2.125) is simply a number that depends on ϵ.

We note that the double-soft (single-soft) limit corresponds to the x1 → 0 (x2 → 0)
limit in this parameterization, while the energy ordering E5 < E4 implies x2 < 1. We
employ the parametrization in Eq. (2.125) and obtain25

IFSR
TC = E−4ϵ

∫ 1

0

dx1

x1+4ϵ
1

dx2

x1+2ϵ
2

θ( Emax/E− x1) θ(1− x1 − x1x2)

×
(
I− L̂x1

) (
I− L̂x2

)
(1− x1 − x1x2)

n−2ϵ

×
[

E4x4
1x2

2T +(E (1− x1 − x1x2), E x1, E x1x2)
]

.

(2.128)

In Eq. (2.128), the function θ(1− x1 − x1x2) enforces positivity of the hard-parton energy
Ei > 0 and we have assumed that the damping factor S is homogeneous in Ei. More
specifically, we find

dE4 dE5 dEi S(Ei) (EiE4E5)
1−2ϵ = dEE1−2ϵ

× E4−4ϵ dx1 dx2x3−4ϵ
1 x1−2ϵ

2 (1− x1 − x1x2)
n−2ϵ ,

(2.129)

where we assumed that the damping factors has the form S(Ei) = En−1
i × S(1). It will

become clear in Sec. 3.2.3 that the factor (1− x1 − x1x2)n−2ϵ in Eq. (2.128) does not
complicate the actual integration over x1,2.

The Emax dependence in Eq. (2.128) arises from the cut-off θ( Emax/E− x1) = θE.
However, this cut-off is only relevant for terms in the double-soft limit L̂x1 . For other
terms, the condition θ(1− x1 − x1x2) provides a stronger bound on the integration
variables. This allows us to split the integrand as follows

θE (I− L̂x1

) (
I− L̂x2

)
=
[ (

I− L̂x2

)
− θE L̂x1

(
I− L̂x2

)]

=
[ (

I− L̂x1

) (
I− L̂x2

)]
− (θE − 1) L̂x1

(
I− L̂x2

)
.

(2.130)

25 We do not show the Born-like factor ⟨ FLM⟩ because it is immaterial for the x1,2 integration.
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We insert the identity in Eq. (2.130) into the subtraction term in Eq. (2.128), integrate the
double-soft contribution over x1, and find

IFSR
TC = E−4ϵ

{ ∫ 1

0

dx1

x1+4ϵ
1

dx2

x1+2ϵ
2

(
I− L̂x1

) (
I− L̂x2

)
θ(1− x1 − x1x2)

× (1− x1 − x1x2)
n−2ϵ

[
E4x4

1x2
2T +(E (1− x1 − x1x2), E x1, E x1x2)

]

− ( Emax/E)−4ϵ − 1
−4ϵ

1∫

0

dx2

x1+2ϵ
2

L̂x1

(
I− L̂x2

)

×
[

E4x4
1x2

2T +(E (1− x1 − x1x2), E x1, E x1x2)
] }

.

(2.131)

We will discuss the analytical computation of the integral in Eq. (2.131) in Sec. 3.2.3.

2.6.2 Strongly-ordered triple-collinear subtraction terms

It remains to discuss strongly-ordered triple-collinear contributions in Eq. (2.100). Again,
we separate integration over energies and angles and write

Is.o.
TC =

∫
dE4 dE5 (E4E5)

1−2ϵΦE(E4, E5) Ôsoft T ±s.o.(Ei, E4, E5)

×
〈

FLM

(∓Ei − E4 − E5

∓Ei
· (pi) f , ..

)〉
.

(2.132)

In Eq. (2.132), we have defined the strongly-ordered angular integral

T ±s.o.(Ei, E4, E5) = 4g4 ∑
k

∫
θkCk dΩ(d−1)

45
Pfi , f4, f5(±si4,±si5, s45,±Ei, E4, E5)

s2
i45

. (2.133)

We note that we parameterize the integral over energies in Eq. (2.132) following the
same steps as in Sec. 2.6.1. In variance with the genuine triple-collinear contribution,
the strongly-ordered angular integral in Eq. (2.133) depends on the angular phase-space
parameterization. This is the case, since operators θkCk act on - and constrain - the
angular part of the unresolved phase space. However, once the double-collinear limit is
taken, all resulting terms have a NLO-like structure, cf. Eq. (2.74), and are simple enough
to allow for a straightforward integration in terms of gamma functions. We will explain
how to compute such integrals in Sec. 3.1.3.

2.6.3 Overview of the required partonic splittings

We have discussed three variants of energy parameterizations for both initial-state and
final-state emissions that apply to genuine and strongly-ordered contributions to the
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triple-collinear subtraction terms. These parameterizations were chosen to ensure that
integration of triple-collinear splitting functions decouples from the matrix element
squared to an extent possible. Furthermore, we explained how to make integrations over
energy-like variables finite. In summary, we can write the triple-collinear subtraction
term in Eq. (2.96) as follows

ITC =
∫

dE4 dE5 (E4E5)
1−2ϵΦE(E4, E5) Ôsoft

[
T ±(Ei, E4, E5)− T ±s.o.(Ei, E4, E5)

]

×
〈

FLM

(∓Ei − E4 − E5

∓Ei
· (pi) f , ..

)〉
. (2.134)

The splitting functions Pfi f4 f5 that have to be considered in order to describe all possible
initial-state and final-state splittings are listed in Table 2.2 and Table 2.3, respectively.
There, we also specify the type of energy parameterization that was used for initial-state
splittings and the power n that was defined in the context of final-state splittings in
Eq. (2.128).

We will explain how to obtain (strongly-ordered) angular integrals T ± (T ±s.o.), as
well as the respective energy integrals in Sec. 3.2.3 (Sec. 3.1.3). As will become clear in
Sec. 3.1.3, NLO-like integrals can be obtained in a straightforward way by parametric
integration, irrespective of the energy parameterization or the specific definition of
sectors.
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Splitting EO Pabc Name in supplementary material

q→ ggq∗ ✓ 1/2
(

Pg4g5q1 + 4↔ 5
)

ISR[z,1]

g→ ggg∗ ✓ 1/2
(

Pg1g4g5 + 4↔ 5
)

ISR[z,2]

q→ q̄′q′q∗ ✓ Pq̄′4q′5q1
+ 4↔ 5 ISR[z,3]

q→ qq′q̄′∗ ✓ Pq̄′1q′4q5
+ 4↔ 5 ISR[z,4]

q→ q̄qq∗ ✓ Pid
q̄4q5q1

+ 4↔ 5 ISR[z,5]

q→ qqq̄∗ ✓ 1/2
(

Pid
q̄1q4q5

+ 4↔ 5
)

ISR[z,6]

g→ qq̄g∗ ✓ Pg1q4 q̄5 + 4↔ 5 ISR[z,7]

q→ qgg∗ X Pg5q1 q̄4 ISR[z,8]

g→ qgq∗ X Pg1g5q4 ISR[z,9]

Table 2.2: List of all required splittings in the case of initial-state radiation. In the first column we
define the partons that take part in the splitting. In the second column, we indicate
whether the energy-ordered parametrization in Eq. (2.115) or the parameterization in
Eq. (2.122) is used. In the third column, we identify the corresponding triple-collinear
splitting functions of Ref. [123] that have to be used in Eq. (2.103). Energy-ordered
contributions are symmetrized in f4 ↔ f5 according to Eq. (2.21). We include an
additional symmetry factor where required by the formulation of the subtraction
scheme. Finally, the last column provides the name of the corresponding expression in
the Mathematica readable supplementary material of Ref. [5].

Splitting Pabc n Name in supplementary material

q∗ → ggq 1/2
(

Pg4g5q1 + 4↔ 5
)

1 FSR[1]

q∗ → q̄′q′q Pq̄′4q′5q1
+ 4↔ 5 1 FSR[2]

q∗ → q̄qq Pid
q̄4q1q5

+ 4↔ 5 1 FSR[3]

g∗ → gqq̄ Pg1q4 q̄5 + Pg4q1 q̄5 + Pg5q1 q̄4 2 FSR[4]

g∗ → ggg Pg1g4g5 2 FSR[5]

Table 2.3: List of all required splittings in the case of final-state radiation. In the first column
we define the partonic splitting. In the second column, we identify the corresponding
triple-collinear splitting functions of Ref. [123] that have to be used in Eq. (2.103). We
include an additional symmetry factor where required. The third column denotes the
power n as defined in Eq. (2.128). Finally, the last column provides the name of the
corresponding expression in the supplementary material of Ref. [5].
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In this Chapter, we present analytic computations of the integrated subtraction terms
that emerged in the course of the regularisation procedure with the nested soft-collinear
subtraction scheme, as described in Chapter 2. Although subtraction terms can be
integrated numerically, deriving analytic formulas for them is advantageous for two
reasons. First, they allow for an analytic cancellation of IR poles, a welcome cross-check
of the correctness of the subtraction procedure. Second, use of analytic expressions
instead of multidimensional numerical integration, makes calculations of physical cross
sections both more efficient and numerically stable.

layout of the chapter This Chapter is organized as follows. First, we consider
NLO-like subtraction terms in Sec. 3.1. This includes computation of single-soft integrals
in Sec. 3.1.1 and Sec. 3.1.2, as well as strongly-ordered triple-collinear subtraction terms in
Sec. 3.1.3. As will become clear in Sec. 3.1, all NLO-like integrals that we have to consider
can be obtained in a closed form in terms of gamma functions and hypergeometric
functions for arbitrary ϵ. We manipulate these special functions using their properties
listed in Appendix A. Their ϵ-expansion can be obtained with the help of HypExp [127,
128].

We then turn to genuinely NNLO-like subtraction terms in Sec. 3.2. As already dis-
cussed, these contributions arise from regulating double-soft and triple-collinear singu-
larities. We begin by outlining the computational strategy for the required phase-space
integrals in Sec. 3.2.1. We then explain how to obtain analytic results for the double-
soft phase-space integrals GG ij and QQ̄ij (cf. Eq. (2.91) and Eq. (2.92)) in Sec. 3.2.2. In
Sec. 3.2.3 we proceed with the calculation of triple-collinear integrals (cf. Eq. (2.99)) that
are required to describe all possible partonic splittings in initial and final states.

3.1 nlo-like subtraction terms

In this Section, we present computations of NLO-like integrated subtraction terms that
were introduced earlier in Chapter 2.

3.1.1 Soft subtraction term for massive back-to-back emitters

We begin with the computation of the quantity Gij as defined in Eq. (2.90) for two
massive emitters. We denote their momenta by p2

A = p2
B = m2; they are assumed to be

47
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back-to-back. Since the function Gij is symmetric under the exchange i ↔ j, we only
need to compute GAB and GAA. The first integral reads

GAB =
∫
[dk]

(pA ·pB)

(pA ·k)(pB ·k)

=
(1 + β2)

2

∫ Emax

0

dE
E1+2ϵ

∫ dΩ(d−1)
k

(1− βn · nk)(1 + βn · nk)
,

(3.1)

where we have parameterised the gluon four momentum as k = E(1, nk) and pA,B as
pA,B = EA,B(1,±βn). In order to simplify the angular integration, we choose the reference
frame where n = ez. We find (1± βn · nk) = (1± β cos θ). Introducing η = (1− cos θ)/2
and changing integration variables from θ to η, we obtain

GAB = − (1 + β2) E−2ϵ
maxΩ(d−2)

4ϵ

∫ 1

0
dη

(
[4η(1− η)]−ϵ

[1− β(1− 2η)]
+

[4η(1− η)]−ϵ

[1 + β(1− 2η)]

)
. (3.2)

The integral in Eq. (3.2) can be written as a sum of hypergeometric functions. We find

GAB = − (1 + β2) E−2ϵ
max Ω(d−1)

8ϵ
×





2F1

[
{1, 1− ϵ}, {2− 2ϵ}; −2β

1−β

]

1− β
+

2F1

[
{1, 1− ϵ}, {2− 2ϵ}; 2β

1+β

]

1 + β



 .

(3.3)

Following similar steps, we compute the self-correlated emission integral GAA. The result
reads

GAA =
∫
[dk]

m2

(pA ·k)2

= − E−2ϵ
max Ω(d−1)

4ϵ
×
{

1− 2ϵ

(
2F1

[
{1,

1
2
}, {3

2
− ϵ}; β2

]
− 1
)}

.
(3.4)

We apply the quadratic transformation of hypergeometric functions given in Eq. (A.9) to
the result in Eq. (3.3), and write GAA,GAB as

GAA = − E−2ϵ
max Ω(d−1)

4ϵ
×
{

1− 2ϵ

(
2F1

[
{1,

1
2
}, {3

2
− ϵ}; β2

]
− 1
)}

, (3.5)

GAB = − (1 + β2) E−2ϵ
max Ω(d−1)

4ϵ
× 2F1

[
{1,

1
2
}, {3

2
− ϵ}; β2

]
. (3.6)

We note that the hypergeometric function 2F1
[
{1, 1/2}, {3/2− ϵ}; β2], which appears

in Eqs. (3.5)-(3.6) has half-integer parameters. Its expansion in powers of ϵ therefore
yields classical polylogarithms with arguments that involve square roots of β. In order
to find a simpler expansion, we first rewrite the hypergeometric function using the
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quadratic transformation in Eq. (A.10) and then apply the linear transformation in
Eq. (A.7). We find

2F1

[
{1, 1/2}, {3

2
− ϵ}; β2

]
=

1− 2ϵ

2ϵβ

(
2β

1 + β

)2ϵ

×
{(

1− β

1 + β

)−ϵ Γ (1− 2ϵ) Γ (1 + ϵ)

Γ (1− ϵ)
− 2F1

[
{ϵ, 2ϵ}, {1 + ϵ}; 1− β

1 + β

]}
.

(3.7)

The expansion of the hypergeometric function in Eq. (3.7) is free of square roots. It can
be easily obtained with HypExp; the result reads

2F1

[
{ϵ, 2ϵ}, {1 + ϵ}; 1− β

1 + β

]

= 1 + 2ϵ2 Li2

(
1− β

1 + β

)
+ ϵ3

[
4ζ3 +

2π2

3
ln
(

2β

1 + β

)
− 2 ln

(
1− β

1 + β

)
ln2
(

2β

1 + β

)

− 4 ln
(

2β

1 + β

)
Li2

(
1− β

1 + β

)
− 2 Li3

(
1− β

1 + β

)
− 4 Li3

(
2β

1 + β

) ]
+O

(
ϵ4
)

. (3.8)

We note that soft integrals shown in Eq. (3.3) and Eq. (3.4) were obtained earlier in the
literature [67, 129].

3.1.2 Soft-photon subtraction terms for W boson production

As we have mentioned earlier, we will compute mixed QCD-EW corrections to W-boson
hadroproduction in Part II of this thesis. In the following, we consider phase-space
integrals that are required to describe soft-photon contributions to these corrections. In
particular, we need to integrate the soft-photon eikonal function, shown in Eq. (2.39),
over the unresolved phase space of the photon. More specifically, we require the integral

e2
∫
[dpγ]Eikγ(p1, p2, pW , pγ) , (3.9)

where the soft-photon eikonal function Eikγ(p1, p2, pW , pγ) is defined in Eq. (2.40) and
pW = p1 + p2 − pg. As was already pointed out in Sec. 2.2.2, we need the integral in
Eq. (3.9) in three cases where the gluon is 1) resolved, 2) collinear to one of the incoming
quarks, or 3) soft.

resolved gluon In case of a resolved gluon, it is sufficient to compute the integral
in Eq. (3.9) in an ϵ expansion including finite terms. The result can be found in Ref. [67].
It reads

e2
∫
[dpγ]Eikγ(p1, p2, pW , pγ) = [α](2 Emax)

−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)
Jγ(1, 2, W) , (3.10)



50 integrated subtraction terms

where [α] is given in Eq. (B.2) and

Jγ(1, 2, W) =
Q2

1 + Q2
2

ϵ2

+
QW

ϵ

(
QW − 2Q1 ln

(
κ1W√
1− β2

)
+ 2Q2 ln

(
κ2W√
1− β2

))

−Q2
W

[
1
β

ln
1− β

1 + β
− 1

2
ln2 1− β

1 + β

]

− 2QW

2

∑
i=1

Qi(−1)i ln
(

κiW

1− β

)
ln
(

κiW

1 + β

)

− 2QW

2

∑
i=1

Qi(−1)i
[

Li2

(
1− κiW

1− β

)
+ Li2

(
1− κiW

1 + β

)]
+O(ϵ) .

(3.11)

In Eq. (3.11) the electric charges of the two colliding quarks in the process q1(p1)q̄(p2)→
W± are denoted as Q1,2, such that the charge of the W boson is QW = Q1 −Q2. We also

note that β =
√

1−M2
W/E2

W and κiW = (pi pW)/(EiEW).

unresolved gluon In case of a soft or collinear gluon, we need to evaluate the
integral in Eq. (3.9) to higher orders in the ϵ-expansion in order to obtain all finite
contributions to the cross section in Eq. (2.35). It is technically convenient to first take
the respective limit of the integrand in Eq. (3.9) and then integrate over the unresolved
phase space of the photon. The relevant limits of the soft-photon eikonal function are

SgEikγ(p1, p2, pW , pγ) = Eikγ(p1, p2, p1 + p2, pγ) , (3.12)

Cg1Eikγ(p1, p2, pW , pγ) = Eikγ(p1, p2, (E1 − Eg)/E1 · p1 + p2, pγ) , (3.13)

Cg2Eikγ(p1, p2, pW , pγ) = Eikγ(p1, p2, p1 + (E2 − Eg)/E2 · p2, pγ) . (3.14)

It is straightforward to see that these three cases can be accommodated by computing
the integral in Eq. (3.9) with the constraint pW = p1 + p2 in a reference frame that is
boosted along the collision axis p1 ∼ p2 ∼ ez relative to the partonic center-of-mass
frame. We denote such an expression by

e2
∫
[dpγ]Eikγ(p1, p2, pW , pγ)

∣∣∣∣
pW=p1+p2

= ∑
(α,β)∈E

Iγ,(α,β)
boost , (3.15)

where the set of emitters reads

E = {(1, 2), (1, W), (W, 2), (W, W)} . (3.16)

We write the individual contributions to Eq. (3.15) as

Iγ,(1,2)
boost = 2e2Q1Q2

∫
[dk] (p1·p2)

(p1·k)(p2·k)
= 4Q1Q2Ĩγ(1, 1) , (3.17)
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Iγ,(1,W)
boost = 2e2QW Q1

∫
[dk] (p1·p12)

(p1·k)(p12·k)
= 2QW Q1(1− βE)Ĩγ(1, βE) , (3.18)

Iγ,(W,2)
boost = −2e2QW Q2

∫
[dk] (p12·p2)

(p12·k)(p2·k)
= −2QW Q2(1 + βE)Ĩγ(βE, 1) , (3.19)

Iγ,(W,W)
boost = −e2Q2

W

∫
[dk] (p12·p12)

(p12·k)(p12·k)
= −Q2

W(1− β2
E)Ĩγ(βE, βE) , (3.20)

where p12 = p1 + p2. Furthermore, we have defined

βE =
E1 − E2

E1 + E2
, (3.21)

and introduced a new integral

Ĩγ(β1, β2) = [α](2 Emax)
−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

∫ dΩ(d−1)
k

(1− β1n · nk)(1 + β2n · nk)
. (3.22)

The angular integral in Eq. (3.22) can be computed following steps described in Sec. 3.1.1.
We obtain

e2
∫
[dpγ]Eikγ(p1, p2, pW , pγ)

∣∣∣∣
pW=p1+p2

= [α](2 Emax)
−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)
J̃γ(E1, E2) ,

(3.23)

where the function J̃γ(E1, E2) reads

J̃γ(E1, E2) =
Q2

1 + Q2
2

ϵ2 +
Q2

W
ϵ(1− 2ϵ)

+
QW

ϵ2

{
Q1

[(
E1

E2

)ϵ

− 1
]
−Q2

[(
E2

E1

)ϵ

− 1
]}

+
QW

ϵ2

{
Q1

(
E1

E2

)ϵ [
2F1

[
{−ϵ,−2ϵ}, {1− 2ϵ}; 1− E2

E1

]
− 1
]

−Q2

(
E2

E1

)ϵ [
2F1

[
{−ϵ,−2ϵ}, {1− 2ϵ}; 1− E1

E2

]
− 1
]}

+
Q2

W
ϵ(1− 2ϵ)

(
E2

E1

)ϵ [
2F1

[
{−2ϵ, 1− ϵ}, {2− 2ϵ}; 1− E1

E2

]
− 1
]

.

(3.24)

We note that the ϵ-expansion of this result is straightforward and can be obtained with
HypExp.
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3.1.3 Strongly-ordered triple-collinear subtraction terms

In the following, we explain how to analytically calculate soft-regulated and strongly-
ordered triple-collinear subtraction terms, Is.o.

TC , which were defined in Eq. (2.100). Fol-
lowing the notation introduced in Sec. 2.6.2, they can be written as

Is.o.
TC =

∫
dE4 dE5 (E4E5)

1−2ϵΦE(E4, E5) Ôsoft T ±s.o.(Ei, E4, E5)

×
〈

FLM

(∓Ei − E4 − E5

∓Ei
· (pi) f , ..

)〉
,

(3.25)

where

T ±s.o.(Ei, E4, E5) = 4g4 ∑
k

∫
θkCk dΩ(d−1)

45
Pfi , f4, f5(±si4,±si5, s45,±Ei, E4, E5)

s2
i45

. (3.26)

We note, that the limit Ck acts on both the measure dΩ(d−1)
45 and the splitting function

Pfi , f4, f5 . This produces a NLO-like integrand,1 making the integration particularly straight-
forward. The goal is to compute all strongly-ordered subtraction terms that contribute
to all possible splittings listed in Table 2.2 and Table 2.3. To do so, we have implemented
the following procedure in Mathematica:

• parameterise the angular phase space in each sector (cf. Eq. (2.58)) in Eq. (3.26) in
terms of variables x3, x4, and λ as suggested in Ref. [95];2

• parameterise energies in Eq. (3.26) as described in Sec. 2.6;

• take the strongly-ordered limit Ck in Eq. (3.26). In the {x3 , x4 , λ}-parametrization
this limit corresponds to extracting the leading 1/x4 behaviour of the integrand at
fixed x3, λ;

• integrate over x3 and λ; the result is expressed in terms of gamma functions that
depend on ϵ.

Following these steps, we obtain all relevant strongly-ordered integrals in Eq. (3.26)
in a straightforward manner. We have also used this setup in Ref. [9] to compute the
strongly-ordered contribution for gγ-emission for mixed QCD-EW corrections to W boson
production, employing simplified sector definitions discussed in Eq. (2.64). We note that
we explain how to perform the remaining integrations over energies in Sec. 3.2.3.

1 As can be seen in Example 5, momenta k4,5 are decorrelated in the strongly-ordered limit.
2 All relevant formulas can be found in Appendix B.5.2 of this thesis and in Appendix B of Ref. [1].
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3.2 genuinely double-unresolved subtraction terms

While the NLO-like subtraction terms that we considered in the previous Section could
be directly integrated in a closed form for arbitrary ϵ, this approach becomes unfeasible
in case of NNLO-like subtraction terms. Indeed, it turns out that it is beneficial to use the
idea of reverse unitarity [39] in order to make required phase-space integrals amenable to
methods of multi-loop calculations such as integration-by-parts (IBP) relations [130, 131]
and the method of differential equations [132–136].

This Section is organized as follows. In Sec. 3.2.1, we explain how genuinely double-
unresolved integrals can be computed. We then describe specific details pertinent to the
calculation of integrated double-soft and triple-collinear subtraction terms in Sec. 3.2.2
and Sec. 3.2.3, respectively.

3.2.1 Double-unresolved subtraction terms and reverse unitarity

It is interesting to realize, that both double-soft and triple-collinear subtraction terms
can be obtained following one and the same procedure [5, 6, 36, 37]. Indeed, it is
straightforward to see3 that these subtraction terms can be written in a similiar way,
namely

Idu =
∫
[dk4][dk5] K({p}, k4, k5)⊗ FLM({p}, E4, E5) . (3.27)

Here, integrand K describes either double-soft gluon or double-soft quark emission, or
the triple-collinear emission of partons f4, f5 off the parton fr. Therefore, depending on
the type of contribution that we are interested in, the function K may read4

K ∈
{
Sij(k4, k5) , Iij(k4, k5) , Pfr , f4, f5(±sr4,±sr5, s45,±Er, E4, E5)/s2

r45
}

. (3.28)

As can be seen in Eq. (3.28), K is a function of one (or two) external momenta pr
(
{pi, pj}

)
,

light-like momenta k4,5 and energies E4,5 carried by unresolved partons. We note that the
energy-dependence of the Born-like matrix element FLM({p}, E4, E5) on E4,5 in Eq. (3.27)
only occurs for the triple-collinear subtraction term. Double-soft subtraction terms, on
the other hand, exhibit color correlations, which we denoted with the symbol “⊗” in
Eq. (3.27).

The energy integration that has to be carried out in Eq. (3.27) is constrained by
the cut-off Emax, cf. Eq. (2.15), and possibly by an energy-ordering condition E5 <

3 Cf. Eq. (2.91), Eq. (2.92) and Eq. (2.99).
4 The sign convention in the argument of Pfr , f4, f5 is “−” for incoming and “+” for outgoing partons fr.
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E4, cf. Eq. (2.20).5 Switching from integrations over energies E4,5 to integrations over
dimensionless variables x = {x4, x5}, we write Idu as

Idu =
∫ 1

0
dx g(x)× FLM

(
{p}, x′

) ∫
dΩ(d−1)

45 K({p}, n4, n5, x) , (3.29)

where dΩ(d−1)
45 = dΩ(d−1)

4 dΩ(d−1)
5 . In Eq. (3.29), x′ ⊆ x denotes a subset of x and the

function g(x) collects both the Jacobian of the transformation and possible constraints
on the phase space.

We note that the function K in Eq. (3.28) is rotationally invariant in d − 1 spatial
dimensions. We can use this fact, together with reverse unitarity [39] to establish a
connection between the angular integrals in Eq. (3.29) and loop integrals. To this end, we
first express angular integration through an integration over loop-momenta, constrained
by additional δ-functions. We find

dΩ(d−1)
i = 2 ddki δ+

(
k2

i
)

δ((ki ·N)− xi) x−1+2ϵ
i , i = 4, 5 , (3.30)

where N = (1, 0). We then write [137]

− (2πi) δ
(
q2 −m2) = lim

σ→0

[
1

q2 −m2 + iσ
− 1

q2 −m2 − iσ

]
≡ 1

[q2 −m2]c
, (3.31)

to identify δ-functions with cut propagators. We use Eq. (3.30) and Eq. (3.31) and write
the integral in Eq. (3.29) as

Idu =
∫ 1

0
dx g(x)(x4x5)

−1+2ϵ FLM
(
{p}, x′

)
× G({p}, x4, x5) , (3.32)

where

G({p}, x4, x5) =
∫ ddk4 ddk5K({p}, k4, k5, x)[

k2
4

]
c

[
k2

5

]
c [(k4·N)− x4]c [(k5·N)− x5]c

. (3.33)

Our goal is to calculate the integral over k4,5 that appears in Eq. (3.33) as a function
of x. To explain how this is done, we will introduce two commonly-used techniques:
integration-by-parts relations and the method of differential equations. We will then
show how to apply these methods to compute cut loop integrals in Eq. (3.33).

Integration-by-parts relations

Dimensionally regularized loop integrals are not independent. In fact, many relations
between such integrals can be found using integration-by-parts (IBP) and Lorentz invari-
ance (LI) identities. Scalar integrals at L-loops with E independent external momenta can
be conveniently classified into classes that we refer to as topologies. We write integrals as

ITα⃗
(
sij
)
=
∫ L

∏
l=1

ddkl

N

∏
n=1

D−αn
n , α⃗ ∈ ZN . (3.34)

5 Not all partonic configurations that contribute to triple-collinear subtraction terms require energy ordering.
However, whether or not the phase space is energy-ordered is not important for the following discussion.
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We note that the set of N = L(L + 1)/2 + L · E linearly independent propagators
1/Dn defines the topology T , where each Dn is a linear function of scalar products
build from external momenta {p1, .., pE} and loop momenta {k1, .., kL}. As indicated in
Eq. (3.34), integrals ITα⃗

(
sij
)

are functions of all scalar invariants sij = 2(pi ·pj) that can be
constructed from external momenta. Requiring that these integrals do not change under
an infinitesimal Lorentz transformation yields the Lorentz invariance identity [136]

E

∑
e=1

[
pµ

i
∂

∂pν
i
− pν

i
∂

∂pµ
i

]
ITα⃗
(
sij
)
= 0 . (3.35)

Contracting Eq. (3.35) with all possible anti-symmetric combinations of external mo-
menta yields E(E− 1)/2 independent equations. Furthermore, dimensionally regulated
integrals are invariant under shifts of the loop momenta. This implies that [130, 131]

∫ L

∏
l=1

ddkl
∂

∂kµ
i

[
qµ I ′

]
= 0 , q ∈ {k1, .., kL, p1, . . . , pE} , (3.36)

where

I ′ =
N

∏
n=1

D−αn
n , (3.37)

is an integrand of the same form as in Eq. (3.34). The identity in Eq. (3.36) yields
L(L + E) independent equations. Acting with derivatives w. r. t. pµ,ν

i and kµ
i in Eq. (3.35)

and Eq. (3.36) produces integrals that can be expressed through the same topology as
the seed integral. Hence, these identities provide linear relations between integrals with
different indices α in the same topology T .6

One way to make use of IBP and LI identities is to generate a large system of linear
equations and to assign a “weight” as a measure of complexity to all integrals that appear
in it [139]. Generation of linear relations and a subsequent reduction that expresses all
“complicated” integrals in terms of a small set of so-called master integrals (MIs) has been
automated in a large number of publicly-available computer programs [140–146]. We
note that sets of master integrals were proven to be finite in Ref. [147]. Furthermore, we
note that another approach [148, 149] implements an heuristic search to find reduction
rules for generic integrals of a given topology, see also Ref. [150].

Method of differential equations

Besides the fact, that the IBP technique allows us to algebraically reduce the number of
loop integrals that need to be computed, it also serves as a starting point for the so-called
differential equation method [132–136]. To introduce this method, we consider the vector
of master integrals I and differentiate it w. r. t. any of the kinematic invariants denoted by

6 In fact, it was shown that LI identities are not independent from IBP identities [138].
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s ∈ {sij}. Using IBP relations, the result of the differentiation can be expressed through
the same set of master integrals I. This allows us to obtain a closed set of first-order
linear differential equations

∂

∂s
I = M̂s({sij}, ϵ)× I , s ∈ {sij} . (3.38)

The entries of the matrix M̂ are rational functions of kinematic invariants and regular-
isation parameter ϵ. Using the fact that integrals have a definite mass dimension, we
introduce dimensionless variables Y .7 Repeating the above argument for all variables
y ∈ Y , we write

dI = ∑
y∈Y

M̂y(Y , ϵ)× I dy . (3.39)

In practical applications, one is usually interested in computing master integrals as an
expansion in the dimensional parameter ϵ. We can write

I (Y , ϵ) =
nmax

∑
n=0

ϵn I(n) (Y) , (3.40)

where we have chosen a normalization such that all integrals start at ϵ0 and nmax denotes
the highest power of ϵ that is required in a computation. With the ansatz in Eq. (3.40),
we can write the differential equation (DEQ) in Eq. (3.39) as

nmax

∑
n=0

ϵn dI(n) =
nmax

∑
n=0

ϵn ∑
y∈Y

M̂y(Y , ϵ)× I(n) dy . (3.41)

If matrices M̂y(Y , ϵ) are strictly lower triangular in the ϵ→ 0 limit, the DEQ in Eq. (3.41)
decouples as an expansion in ϵ. Then, solutions can be found by simply integrating the
r. h. s. of Eq. (3.41) order by order in ϵ. Particular simplifications arise, if the differential
equations are brought into the so-called ϵ-homogeneous or canonical form [151]. There,
the DEQ takes the form

dJ = ϵ dÂy(Y) J , (3.42)

where J denotes master integrals in the canonical basis. The matrix dÂy(Y) in Eq. (3.42)
can be written in the so-called “dlog” form

dÂy(Y , ϵ) =
N

∑
k=0

âk dln(Rk) , (3.43)

where matrices âk contain rational numbers, and functions Rk(Y) constitute the so-called
alphabet. Solutions to a DEQ that admits the form in Eq. (3.42) can be written as Chen

7 We note that this step also reduces the total number of variables by one.
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iterated integrals [152]. These solutions are said to have uniform weight, which basically
means that powers of ϵ coincide with the number of integrations. If the functions Rk are
linear,8 the matrix dÂy(Y , ϵ) has only simple poles. It reads

dÂy(Y , ϵ) = ϵ× ∑
y∈Y

∑̃
k

âk̃ dy
y− yk̃

, (3.44)

where the sum over k̃ only runs over the y-dependent part of the alphabet. In this case,
the ϵ-expansion of the DEQ in Eq. (3.41) simplifies considerably. Order-by order in ϵ, we
find

dJ(n) = ∑
y∈Y

∑̃
k

âk̃ J(n−1) dy
y− yk̃

, n ≥ 0 . (3.45)

Equivalently, we can write Eq. (3.45) as

∂

∂y
J(n) = ∑̃

k

âk̃ J(n−1) dy
y− yk̃

, y ∈ Y , n ≥ 0 . (3.46)

Solutions to Eq. (3.46) can be expressed through a special class of iterated integrals, the
so-called Goncharov polylogarithms (GPLs) [154, 155] which we review in Appendix A.5.
We note that there are examples, where solutions to Eq. (3.42) can be written in terms of
GPLs even in the case of a non-rationalizable alphabet [156]. However, this is not the case
in general [157].

Finding a canonical basis J such that Ây has the from of Eq. (3.42) is usually a
complicated task. A recent proposal, for example, is to construct the basis J by starting
with integrands with an ansatz for the numerator and adjusting it to reach a dlog form9

for the maximal residue [158].10 Such integrals are conjectured to evaluate to functions
of uniform weight and thus obey canonical differential equations.

Another approach is to find the canonical basis from the DEQ itself. The idea is to start
with some basis of master integrals I and construct a transformation

I = T̂(Y , ϵ)J , (3.47)

where the entries of the transformation matrix T̂(Y , ϵ) are rational functions in y ∈ Y
and ϵ. For a suitable T̂, the new basis J is canonical and the DEQ reads

∂

∂y
J = ϵÂy J , Ây = T̂−1

[
M̂y(Y , ϵ)− ∂

∂y

]
T̂ . (3.48)

8 There are algorithmic approaches to rationalize square roots appearing in algebraic Rk, e. g. in Ref. [153].
9 An integrand is said to have “dlog” form if it locally behaves as dx/x for x ≈ 0 in every integration variable

x [158].
10 Another implementation of the calculation of multivariate residues can be found in Ref. [159].
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Depending on details of the DEQ in basis I, there are various ways to construct the
transformation T̂ in Eq. (3.47) such that Eq. (3.48) is canonical [160–163]. An algorithmic
solution applicable to single-variable problems has been proposed in Refs. [164, 165]
and implemented in various computer programs [166–168]. Another approach, which
is suitable for multi-scale problems, was proposed in Ref. [169] and implemented as a
Mathematica package [170]. In this case, an ansatz for the transformation in Eq. (3.47) is
made and constrained to fulfill Eq. (3.48).

Application to double-unresolved integrals

We note that both IBP reductions and the DEQ method can be used to compute cut loop
integrals as in Eq. (3.33). This is the case because derivatives w. r. t. momenta or kinematic
invariants are independent of the ±iσ prescription in Eq. (3.31). Hence, we can interpret
δ-functions as propagators while applying these methods. In intermediate stages of such
computations, one might encounter integrals for which a cut propagator is either absent
or appears in its numerator. Such integrals do not contribute to the discontinuity, since
they vanish in the σ → 0 limit of Eq. (3.31). Cut propagators in the denominator that
are raised to a power higher than one can not be replaced by δ-functions11 and we will
avoid them when choosing a basis of master integrals.

We will discuss the computation in case of double-soft and triple-collinear subtraction
terms in Sec. 3.2.2 and Sec. 3.2.3, respectively. There, we will employ IBP relations to
express G({p}, x4, x5) in Eq. (3.33) through a small set of master integrals. We will
then use differential equations to compute these master integrals, and subsequently
G({p}, x4, x5), as a function of {x4, x5} and kinematic invariants in both cases. As we
will see, it will be possible to write G({p}, x4, x5) in a convenient way, which will allow
for a straightforward integration over parameters {x4, x5} in Eq. (3.32) that do not appear
in the Born-like matrix element FLM({p}, x′).

3.2.2 Integrated double-soft subtraction terms

In the following, we compute double-soft subtraction terms GG ij and QQ̄ij defined in
Eq. (2.91) and Eq. (2.92), respectively. As discussed in Sec. 2.5 and Sec. 3.1.1, we are
interested in the case where both emitters are massive and their momenta are back-to-
back. We denote momenta of hard particles as pA,B, such that p2

A = p2
B = m2. Thanks to

the i↔ j symmetry, we only need to compute GGAA,GGAB,QQ̄AA, and QQ̄AB.
We begin with the observation that both integrands, Sij(k4, k5) and Iij(k4, k5), are

homogeneous under the scaling k4 ∼ k5 ∼ λ. We use this fact and parameterize energies
of unresolved partons as

E4 = Emax · x , E5 = Emax · x · z . (3.49)

11 In fact we can identify such expressions with derivatives of δ-functions, i. e. [x]−n
c = δ(n−1)(x) where n ≥ 1.
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Integration over x factorizes and yields

GG ij = −
E−4ϵ

max
16ϵ

∫ 1

0
dz z1−2ϵ

∫
dΩ(d−1)

45 Sij(n4, z · n5) , (3.50)

QQ̄ij = −
E−4ϵ

max
16ϵ

∫ 1

0
dz z1−2ϵ

∫
dΩ(d−1)

45 Iij(n4, z · n5) , (3.51)

where ni = (1, ni). Both integrals in Eq. (3.50) and Eq. (3.51) are of the form displayed in
Eq. (3.29), and we compute them following the discussion in Sec. 3.2.1.12

It is important to realize that the case of gluon emission exhibits a singularity in the
so-called strongly-ordered limit, where the gluon with momentum k5 is much softer
than the gluon with momentum k4.13 Such a behavior translates into a logarithmic z = 0
endpoint singularity in the integral in Eq. (3.50). We regulate and extract the divergent
part of the integrand by defining

Ss.o.
ij (n4, n5) = z−2 lim

z→0

[
z2Sij(n4, z · n5)

]
. (3.52)

Following the discussion in Sec. 3.2.1, we define cut loop integrals14

EGGij (z, β, ϵ) =
∫ ddk4 ddk5 Sij (k4, k5)

[k2
4]c[k

2
5]c[k4 · pAB − 2E2]c[k5 · pAB − 2E2z]c

,

EGG,s.o.
ij (z, β, ϵ) =

∫ ddk4 ddk5 Ss.o.
ij (k4, k5)

[k2
4]c[k

2
5]c[k4 · pAB − 2E2]c[k5 · pAB − 2E2z]c

,

EQQ̄ij (z, β, ϵ) =
∫ ddk4 ddk5 Iij (k4, k5)

[k2
4]c[k

2
5]c[k4 · pAB − 2E2]c[k5 · pAB − 2E2z]c

,

(3.53)

where the momentum pAB is defined as

pA + pB = pAB = E(1, β) + E(1,−β) = (2E, 0) . (3.54)

We use Eq. (3.53), Eq. (3.50) and Eq. (3.51) and write

GG ij = −
1
ϵ

(
Emax

E

)−4ϵ [ ∫ 1

0
dz
(
EGGij (z, β, ϵ)− EGG,s.o.

ij (z, β, ϵ)
)

+
∫ 1

0
dz EGG,s.o.

ij (z, β, ϵ)

]
, (3.55)

QQ̄ij = −
1
ϵ

(
Emax

E

)−4ϵ ∫ 1

0
dz EQQ̄ij (z, β, ϵ) . (3.56)

12 We note that in the double-soft limit, the Born-level matrix element FLM does not depend on the energies
of unresolved partons.

13 Thanks to the energy ordering, the opposite is not possible.
14 We note that the energy-fraction z plays the role of an internal mass.
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We note that when writing Eq. (3.55), we have subtracted and added back the z→ 0 limit
of the integrand. Furthermore, we note that it is beneficial to perform this subtraction at
the level of the full integrand and not, for example, at the level of individual integrals.
This way, we fully account for gauge properties of QCD amplitudes and hence, no
unphysical singularities can appear.

While the first term in Eq. (3.55) can be expanded in ϵ prior to integration over z,
in the second term, EGG,s.o.

ij (z, β, ϵ) is a homogeneous function of z and therefore can
be trivially integrated. We note that the quark-pair contribution in Eq. (3.56) does not
exhibit the strongly ordered singularity, so no endpoint subtraction is required.

IBP reduction

Following the computational setup outlined in Sec. 3.2.1, we apply the IBP method to the
integrands of Eq. (3.55) and Eq. (3.56). We express all integrals in terms of topologies
Ta1,a2,a3

Ta1,a2,a3(α1, α2, α3) =
(
E2)−d+4+

3
∑

i=1
αi
∫ ddk4 ddk5

Dcut Dα1
a1 Dα2

a2 Dα3
a3

≡
〈 3

∏
i=1

1
Dαi

ai

〉
, (3.57)

where we choose a convenient normalisation to render integrals dimensionless. The first
four inverse cut propagators in each topology read

Dcut = [k2
4]c [k

2
5]c [k4 · pAB − 2E2]c [k5 · pAB − 2E2z]c . (3.58)

The three inverse ordinary propagators Dai define topologies Ta1,a2,a3 ; they are drawn
from the set

D1,...,7 = {(pA ·k4), (pB ·k4), (pA ·k5), (pB ·k5), (k4·k5), (pA ·k12), (pB ·k12)} . (3.59)

Inverse propagators in Eq. (3.59) fulfill a number of linear relations; they read

D1 + D3 = D6 , D2 + D4 = D7 ,

D1 + D2 = 2E2 , D3 + D4 = 2E2 z ,
(3.60)

where the last two relations follow from cut constraints. We use these relations to obtain
a partial fraction decomposition of Eq. (3.53), so that the result can be expressed through
the topologies in Eq. (3.57). We derive and solve IBP relations with Reduze2 [144] and
express integrals in Eq. (3.53) through thirteen master integrals I(z, β, ϵ) grouped into
five topologies. The first MI is the phase-space volume

I1 =

〈
1
〉

= z1−2ϵ

(
Ω(d−1)

)2

16
, (3.61)

where Ω(d) is defined in Eq. (B.3) and the notation ⟨. . . ⟩ is introduced in Eq. (3.57). The
remaining twelve MI can be found in Eq. (C.5) in Appendix C.2.1.
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Differential equations

As explained in Sec. 3.2.1, it is practical to compute MI using differential equations. We
derive a closed system of first order partial differential equations for master integrals I
as functions of β and z, which we cast into a canonical form by changing the basis of MI

I = T̂can J . (3.62)

We find a suitable transformation by using both the program CANONICA [170] and the
program Libra [168].15 Since Libra is designed for single-variable problems, we apply it
sequentially by first transforming the DEQ in z and then the one in β, while making sure
that the second step does not spoil the ϵ-homogeneous form reached in the first step.
We present the transformation matrix T̂can in Eq. (C.6). The DEQ in the canonical basis J
can be written as

∂x J = ϵ M̂x J , x ∈ {z, β} , (3.63)

where matrices M̂z,β feature only simple poles

M̂x = ∑
xi∈Ax

m̂xi

x− xi
, (3.64)

with coefficients m̂xi being rational numbers. When writing Eq. (3.64), we have defined
two alphabets

Az =

{
0, −1,

−2
1± β

, − (1± β)

2
, −1− β

1 + β
, −1 + β

1− β

}
, (3.65)

Aβ =

{
0, ±1, ±(1 + 2z), ±1 + z

1− z
, ±2 + z

z

}
. (3.66)

We note that the differential equations are given in Appendix C.2.2.
As discussed in Sec. 3.2.1, solutions to fuchsian differential equations in ϵ-homogeneous

form, as in Eqs. (3.63)-(3.64), can be obtained by recursively integrating their right-hand-
side. However, eventually, we will also need to integrate over the energy fraction z, as
can be seen in Eq. (3.55) and Eq. (3.56). This integration dramatically simplifies if we
write master integrals J in such a way that z appears only as an argument of GPLs. To
satisfy this condition, at each order in ϵ, we proceed in the following way: First, we
integrate the DEQ w. r. t. variable z such that

Jn (z, β) = ∑
zi∈Az

∫ m̂zi dz
z− zi

Jn−1 (z, β) + Jn
0 (β) . (3.67)

15 We thank Roman Lee for providing access to the Libra package prior to publication.
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In order to compute the function Jn
0 (β), we insert the solution in Eq. (3.67) into the DEQ

in β in Eqs. (3.63)-(3.64) and find

∂

∂β
Jn

0 (β) = ∑
βi∈Aβ

m̂βi dβ

β− βi
Jn−1 (z, β)− ∂

∂β ∑
zi∈Az

∫ m̂zi dz
z− zi

Jn−1 (z, β) . (3.68)

We then verify analytically that the r. h. s. of Eq. (3.68) is independent of z. Denoting the
β-dependent remnant of the DEQ in Eq. (3.68) by tilde, we write

Jn
0 (β) = ∑

βi∈Ãβ

∫ m̃βi dβ

β− βi
J̃

n−1
(β) + Cn , (3.69)

where Cn are constants of integration and Ãβ = {0,−1,+1} is the z-independent part of
the alphabet Aβ in Eq. (3.66). The integrals in Eq. (3.67) and Eq. (3.69) can be expressed
in terms of G({⃗z0}; z) and G({β⃗0}; β), respectively, where letters in z⃗0 stem from the full
alphabet Az and letters in β⃗0 stem from the constant alphabet Ãβ. We will explain how
to obtain the remaining constants Cn in what follows.

Boundary conditions

In the previous paragraph, we explained how to obtain master integrals

Jn = Jn (z, β) + Cn (3.70)

up to a vector of integration constants Cn. These constants can be obtained by considering
the relation

C = T̂−1
can · I − J (z, β) , (3.71)

in a suitable limit. We note that the transformation matrix T̂can in Eq. (3.71) was intro-
duced in Eq. (3.62), and have defined

C = ∑
n

ϵnCn , J (z, β) = ∑
n

ϵn Jn (z, β) . (3.72)

For our purposes, it turns out that the threshold limit β→ 0 is particularly convenient to
determine boundary constants. This is the case, since in the limit β→ 0, the dependencies
of integrands on the direction of hard momenta disappear. For example, we find that

pA · (k1 + k2) = E2[(1 + z)− βn(n1 + zn2)]
β→0−−→ E2(1 + z) . (3.73)

We also find that the master integrals I, cf. Eq. (C.5), have a constant limit as β goes to
zero

lim
β→0

I(z, β, ϵ) = F(z, ϵ) +O(β) . (3.74)
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Moreover, all but the first entry of the inverse transformation matrix T̂−1
can in Eq. (3.71)

are suppressed by powers of β, so that

lim
β→0

T̂−1
can =




1/z 0 · · · 0

0 0 · · · 0
...

...
. . .

0 0 0




+O(β) . (3.75)

This implies, that Eq. (3.71) simplifies to

C =

(
I1

z
, 0, . . . , 0

)
− lim

β→0
J (z, β) +O(β) , (3.76)

in the limit β→ 0. Hence, we only need the phase-space volume I1, cf. Eq. (3.61), to fix
all constants C. We note that we have checked the solutions for master integrals in the
I-basis for several values of β and z by comparing them to numerical integration with
Mathematica.16

Integration over z

Having computed all required master integrals, we can express the integrands EXXij (z, β, ϵ)

in Eq. (3.55) and Eq. (3.56) through rational functions of z, β and GPLs G({⃗z0}; z) and
G({β⃗0}; β). As discussed earlier, z only appears in the argument of GPLs, i. e. the letters
in β⃗0 are independent of z. This representation allows us to carry out the final z integration
in Eq. (3.55) and Eq. (3.56) using the recursive definition of GPLs in Eq. (A.14). We note,
that the antiderivative contains spurious 1/zn poles at the lower endpoint z = 0. Those
poles cancel upon expanding all GPLs with PolyLogTools [171]. We use a private imple-
mentation of the so-called super-shuffle identities [172], cf. Appendix A.5, Example 7, to
translate the results into a fibration basis, where only GPLs of argument β appear.

Results

Having carried out the final integration over z, we are ready to present results for
integrated double-soft subtraction terms (cf. Eq. (2.91) and Eq. (2.92)) for massive back-
to-back emitters. We write

GG ij =
E−4ϵ

max
16

(
Ω(d−1)

)2
× f gg

ij (β, ϵ) ,

QQ̄ij =
E−4ϵ

max
16

(
Ω(d−1)

)2
× f qq̄

ij (β, ϵ) ,
(3.77)

where Ω(d) is defined in Eq. (B.3) and ij ∈ {AA, AB}. We note that, thanks to the strongly-
ordered singularity, functions f gg

AA and f gg
AB, that describe soft gluon-pair emission, feature

16 We thank Arnd Behring for providing help with this.
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1/ϵ3 poles. Functions f qq̄
AA that describe the emission of a soft quark-antiquark pair, on

the other hand, only start at 1/ϵ2.17 Our results for the four functions f gg,qq̄
ij (β, ϵ) can be

found in the ancillary file provided with Ref. [6].18 The results are expressed through GPLs

of β of up to weight four, with integer letters drawn from the alphabet A = {0,±1,±3}.
We note that these expressions are manifestly real in the physical region β ∈ [0, 1]. We
present the pole-structure of the functions f gg

ij and f qq̄
ij , as well as their threshold β→ 0

expansion and their high-energy β→ 1 expansion in Appendix C.2.3.

3.2.3 Integrated triple-collinear subtraction terms

In the following section, we analytically compute integrated triple-collinear subtraction
terms, which were defined in Eq. (2.96). We note that in Sec. 3.1.3 we already described
how to obtain strongly-ordered angular integrals T ±s.o., defined in Eq. (2.133). To obtain
complete results for triple-collinear subtraction terms, we 1) compute genuine triple-
collinear angular integrals T ± defined in Eq. (2.103) and 2) perform the remaining
integrations over energies in Eq. (2.134).

Angular integration

In the following, we explain how to compute angular integrals T ± defined in Eq. (2.103).
They read

T ±(Ei, E4, E5) = 4g4
∫

dΩ(d−1)
45

Pfi , f4, f5(±si4,±si5, s45,±Ei, E4, E5)

s2
i45

. (3.78)

In this formula, the integrand is rotationally invariant in d − 1 dimensions and we
have to integrate over the full solid angle dΩ(d−1)

45 of particles f4,5. In particular, angular
integration is not constrained to the collinear region, thanks to the new definition of
operator CCi as explained in Sec. 2.3.3. Hence, these integrals have the form of Eq. (3.29)
and we can proceed as discussed in Sec. 3.2.1 in order to compute T ± as a function of
energies.

We re-introduce integration over four-momenta k4,5 and write

T ±(Ei, E4, E5) =
∫ ddk4 ddk5 δ

(
k2

4

)
δ
(
k2

5
)

δ
(
k0

4 − E4
)

δ
(
k0

5 − E5
)

Pfi f4 f5

(E4E5)1−2ϵ s2
i45

, (3.79)

where for brevity we do not show arguments for Pfi f4 f5 . We re-write partonic energies k0
i

through scalar products

δ
(
k0

i − Ei
)
= δ((N·ki)− Ei) , (3.80)

17 Matrix elements describing the emission of a quark-antiquark pair are not singular in the limit where one
quark is softer than the other.

18 We note that these results were checked numerically for several values of β using adapted numerical
routines from Ref. [173].
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where the auxiliary vector N reads N = (1, 0). We replace δ-functions by cut propagators
and obtain

T ±(Ei, E4, E5) = (E4E5)
−1+2ϵ

∫ ddk4 ddk5 Pfi f5 f5

D1D2D3D4 s2
i45

. (3.81)

The first four propagators in Eq. (3.81) are the cut ones; they read

D1 = k2
4 , D2 = k2

5 , D3 = (N·k4)− E4 , D4 = (N·k5)− E5 . (3.82)

All integrals that contribute to Eq. (3.81) belong to the following class of integrals

Ia5,a6,a7,a8(Ei, E4, E5) = (E4E5)
−1+2ϵ

∫ ddk4 ddk5

D1D2D3D4Da5
5 Da6

6 Da7
7 Da8

8
. (3.83)

The ordinary inverse propagators D5,...,8 in Eq. (3.83) read

D5 = (pi + k4)
2 , D6 = (pi + k5)

2 , D7 = (k4 + k5)
2 , D8 = (pi + k4 + k5)

2 . (3.84)

We use Reduze2 [144] to express all integrals that appear in Eq. (3.83) through four
master integrals I, for which we choose the basis

I =

{
I0,0,0,0, I0,0,0,1, I−1,0,0,2, I0,−1,0,2

}
. (3.85)

In particular, in the integrals in Eq. (3.85), all cut propagators are raised to first power.
To derive differential equations, it is convenient to introduce two dimensionless

variables ω4,5 = E4,5/Ei. This allows us to factor the overall mass dimension

Ia5,a6,a7,a8(Ei, E4, E5) = E2d−6−2(a5+a6+a7+a8)
i Īa5,a6,a7,a8(ω4, ω5) , (3.86)

and study the dependence of the integrals Ī on ω4,5. To proceed further, we note that the
phase-space MI Ī1 is straightforward to compute; it reads

Ī0,0,0,0 =
(ω4ω5)1−2ϵ

16

[
Ω(d−1)

]2
. (3.87)

With the help of Reduze2, we derive a set of differential equations in ω4,5 for integrals Ī.
As discussed in Sec. 3.2.1, it is beneficial to choose a basis of MI J̄ that makes differential
equations canonical. Original integrals Ī and canonical integrals are related by a linear
transformation

Ī = T̂can J̄ . (3.88)

To find this transformation, we applied the algorithmic approach of Ref. [164] sequentially
in both variables ω4,5. The resulting transformation matrix is given in Eq. (C.46).
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In this new basis, differential equations take the form

d J̄ =
ϵ

20 ∑
i=4,5

dM̂ωi(ω4, ω5, ϵ) J̄ , (3.89)

where the matrices dM̂ωi read

dM̂ωi = ∑
rj∈Aωi

m̂
rj
ωi dln(rj) , (3.90)

and the two alphabets are defined as follows

Aωi = {ωi, ωi − 1, ω4 + ω5, ω4 + ω5 − 1} . (3.91)

We note that the coefficient matrices m̂
rj
ωi in Eq. (3.90) can be found in Eq. (C.47) and

Eq. (C.48).
As we have argued in Sec. 3.2.1, it is straightforward to write solutions to such

differential equations in terms of GPLs. However, to fully determine master integrals J̄,
we need to compute boundary constants in a suitable limit. To this end, we consider the
limit ω4 ∼ ω5 ∼ ω → 0 of the inverse of Eq. (3.88),

lim
ω4∼ω5→0

J̄ = lim
ω4∼ω5→0

[
T̂−1

can Ī
]

. (3.92)

We denote master integrals in this limit by19

Īlim
= lim

ω4∼ω5→0
Ī , (3.93)

and observe that

Īlim
−1,0,0,2 = Īlim

0,−1,0,2 =
1
2
× Īlim

0,0,0,1 . (3.94)

It follows that, apart from phase-space Ī0,0,0,0, we need one additional boundary constant,
Ī0,0,0,1 in the ω → 0 limit. We find

Īlim
0,0,0,1 = Īlim

0,0,0,0 ω−1 × Ib.c. +O
(
ω0) , (3.95)

where

Ib.c. =
∫ dΩ(d−1)

45[
Ω(d−1)

]2
1

[ηi4 + ηi5]
. (3.96)

19 We note that the limit ω4 ∼ ω5 → 0 of T̂−1
can is such that we only need the leading contribution of each

master integral.
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We explain how to compute this integral in Appendix C.3.2, the result reads

Ib.c. =
4−ϵ(1− 2ϵ)2

ϵ(1− 4ϵ)

Γ4 (1− 2ϵ) Γ (1 + ϵ)

Γ (1− 4ϵ) Γ3 (1− ϵ)

− (1− 2ϵ)

ϵ
3F2 [{1, 1− ϵ, 2ϵ}, {2(1− ϵ), 1 + ϵ};−1] .

(3.97)

This allows us to fix boundary conditions for J̄ in the limit ω4 = ω5 = ω → 0 using

lim
ω4∼ω5→0

J̄ =

[
lim

ω4∼ω5→0
T̂−1

can

]
Īlim
0,0,0,0

(
1,
Ib.c.

ω
,
Ib.c.

2ω
,
Ib.c.

2ω

)
+O

(
ω0) . (3.98)

We are now in position to compute T ± in Eq. (3.81) for any splitting f ∗ → fi f4 f5

( fi → f ∗ f4 f5) and any energy parameterization in a few simple steps:

• first, we express the angular integral T −(+), which describes emission off the initial
state (final state), through master integrals J and rational coefficients that depend
on r, z (x1,2);

• second, we perform the change of variables {ω4,5} → {r, z} ({ω4,5} → {x1,2}) in
canonical differential equations in Eq. (3.89) and boundary conditions in Eq. (3.98);

• third, we compute J by integrating differential equations order-by-order in ϵ in
terms of GPLs. At each order, we solve the differential equation in r (x2) first, so
that this variable only appears in arguments of GPLs;

• finally, we fix boundary conditions using Eq. (3.98).

We note that we have checked analytic results for master integrals for a few values of
energy variables using Mellin-Barnes methods. Numerical Mellin-Barnes integrations
were performed with the help of the Mathematica package MB.m [174].

Energy integration

In the previous section, we have computed T ± for all energy parameterizations that
we discussed in Sec. 2.6. The ϵ-expansion of this quantitiy starts at 1/ϵ2. However, the
1ϵ2-pole has to cancel when the difference with the strongly-ordered counterpart T ±s.o. in
Eq. (2.134) is computed. This cancellation provides a welcome consistency check of our
calculations.

initial-state radiation In case of initial-state radiation, we have to consider the
various splittings in two different energy parameterizations as summarised in Table 2.2.
In each case, integrals over r, which enter the quantities Rδ, R+, Rreg(z), and R̃reg(z)
defined in Eq. (2.116) and Eq. (2.123), consist of GPLs in which r only appears in the
argument. This feature allows us to carry out the final integration over r using the
recursive definition of GPLs in Eq. (A.14).



68 integrated subtraction terms

final-state radiation In case of final-state radiation, we have to consider the
various splittings shown in Table 2.3 in the x1,2-parameterization. We split the integral in
Eq. (2.131) as follows

∫ 1

0
dx1

∫ 1

0
dx2 θ(1− x1 − x1x2)

=
∫ 1/2

0
dx1

∫ 1

0
dx2 +

∫ 1

1/2
dx1

∫ (1−x1)/x1

0
dx2 ,

(3.99)

and express its integrand through GPLs where x2 only appears in the argument. Then, the
x2 integration is straightforward; the result is expressed in terms of GPLs, which contain
constants and rational functions of x1 in both the letters and the arguments. We map
these GPLs onto a fibration basis, where x1 only appears in the argument and all letters
are constant, using a Mathematica implementation of the “super-shuffle” procedure
that we explain in Appendix A.5. After this step, the remaining integration over x1 is
straightforward, the result can be expressed through GPLs of weight four with rational
letters and arguments. Finally, we evaluate these expressions with GiNaC [175, 176] and
use the PSLQ algorithm [177, 178] to express them through linear combinations of a few
transcendental20 and rational numbers.

Results

The complete list of analytic results for triple-collinear subtraction terms can be found in
the supplementary material of Ref. [5], see also Table 2.2 and Table 2.3. We note that all
results have been checked numerically. We present some exmamples for initial-state and
final-state integrated triple-collinear subtraction terms in Appendix C.3.3.

20 Appearing transcendental numbers are π, ln (2), Li4(1/2), and ζ3.



Part II

M I X E D Q C D - E W C O R R E C T I O N S T O V E C T O R B O S O N
P R O D U C T I O N

In the second part of this thesis, we present the computation of mixed QCD-EW

NNLO corrections to on-shell Z- and W-boson production at the LHC. We be-
gin by describing technical details of these computations in Chapter 4. In the
case of Z-boson production, QCD-QED corrections are obtained by abelianising
NNLO QCD calculations. Additionally, calculation of mixed QCD-EW correc-
tions requires inclusion of one-loop weak and two-loop QCD-weak corrections.
In the case of W-boson production, we discuss computation of previously
unknown two-loop contributions, as well as details of the regularisation of
IR singularities employing the nested soft-collinear subtraction scheme. In
Chapter 5, we study how these corrections affect inclusive and fiducial cross
sections and kinematic distributions of Z- and W-boson production at the
LHC. We also estimate the impact of QCD-EW initial-initial corrections on the
W-boson mass extraction at the LHC.





4V E C T O R B O S O N P R O D U C T I O N AT T H E L H C

After early experimental indications of the neutral-current interaction [179], the discovery
of EW gauge bosons W± and Z [180–183] played an important role in establishing the
validity of the Standard Model. Since then, the infamous Drell-Yan (DY) process [184]
pp→ γ∗/Z∗ → ll̄ (pp→W∗ → lν̄l) has become a standard candle at the LHC [185–189]:
its large cross section and clean signature make it useful for luminosity monitoring [190–
192] and detector calibration [193]. Besides that, the DY process is used in measurements
of the weak mixing angle [193, 194], the determination of PDFs [195–198] and for searches
of New physics at high energies [199].

measuring the W -boson mass at the lhc One of the ultimate goals of precision
electroweak physics at the LHC is the direct measurement of the mass of the W-boson with
a precision of O(10)MeV [28], an astonishing relative uncertainty of O

(
10−2) percent!

If achieved, such a precision would challenge the precision of MW that is reached in
EW fits, where the most recent result is MW = 80358± 8MeV [29, 30]. A comparison of
direct and indirect determinations of MW will allow for a strong consistency check of
the SM.

Since energies of initial partons are not fixed at hadron colliders and produced
neutrinos escape undetected, it is in fact impossible to fully reconstruct the W-boson
mass in a single event. The way out is to consider observables that are sensitive to MW .
One example of such an observable is the so-called transverse mass1

M⊥W =
√

2p⊥ℓ p⊥miss(1− cos ∆ϕ) ≤ MW , (4.1)

where p⊥ℓ(miss) is the absolute value of the momentum of the charged lepton (neutrino)

transverse to the beam axis ez and ∆ϕ = ∢
(

p⊥ℓ , p⊥miss
)

is the opening angle between
leptons in the transverse plane.2 Since for stable W bosons, the transverse mass is always
smaller than the W-boson mass, M⊥W ≤ MW , the kinematic distribution in the transverse
mass features a sharp edge which can be used to determine MW . We note that, although
the edge at M⊥W = MW is shifted due to the finite width of the W boson and detector
effects [200], additional initial-state or final-state radiation plays only a minor role for
this observable.

The second useful observable is the transverse momentum of the lepton p⊥ℓ , which
exhibits a Jacobian peak at p⊥ℓ = MW/2. In contrast to the transverse-mass distribution,

1 We adapt the definition of Ref. [25] for massless leptons ℓ, ν.
2 The so-called transverse “missing” momentum p⊥miss that is carried by the neutrino is inferred using

momentum conservation in the transverse plane.
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the transverse-momentum distribution is strongly affected by additional QCD and QED

radiation in the initial and final state. In fact, it is impossible to predict the p⊥ℓ spectrum
with the required O

(
10−2) precision, since state-of-the-art fixed-order predictions in the

framework of collinear factorization typically only reach a precision of O(1%), even
when augmented with parton showers and resummation.

To circumvent this problem, in the experimental analyses in Ref. [25] well-understood
Z-boson samples were used to describe the p⊥ℓ distribution in W-boson production. This
procedure relies on – and is rather sensitive to – the theoretical modelling of differences
between Z- and W-boson production. These differences originate, for example, in the
flavor of initial-state partons implying uncertainties from PDFs [201–203],3 massive quark
effects [205, 206], or the fact that the contribution g g→ Z g does not exist in the W-boson
case.

Another difference are fixed-order NLO electroweak and mixed QCD-EW corrections,
which need to be accounted for in order to enable extraction of the W-boson mass with
O(10)MeV precision.

In what follows, we will give a brief overview of the theoretical predictions for the
(on-shell) DY process. In Sec. 4.1 and Sec. 4.2, we discuss computation of mixed QCD-EW

corrections to on-shell Z- and W-boson production [7–9]. Finally, in Chapter 5 we present
inclusive and differential cross sections at the QCD-EW NNLO level and assess the impact
of these corrections on the extraction of the W-boson mass from the p⊥ℓ distribution [10].

theoretical predictions for drell-yan process Corrections to the inclusive
DY cross section were computed with NLO (NNLO) QCD accuracy fourty (thirty) years
ago [207–210]. Recently, a further step in the quest for high-precision description of the
DY process has been accomplished with the computation of N3LO QCD corrections [211,
212].4 Distributions for arbitrary IR safe observables for dilepton production are available
through NNLO QCD [71, 80, 215–221] and NLO EW [222–231].

Given the relative magnitude of strong and electroweak coupling constants, the
availability of N3LO QCD computations, and the demanding precision physics programme
at the LHC, it becomes important to know mixed QCD-EW O(αsα) corrections as well.5

Required two-loop master integrals were computed in Ref. [232]; the complete double-
virtual amplitude for pp → ℓℓ was obtained in Ref. [156]. Only very recently, these
results where combined with real-emission contributions in Ref. [233] to describe QCD-
EW corrections to the DY process pp→ ℓℓ.

In the absence of a full calculation, various approximations have been used to estimate
differential QCD-EW corrections. For example, in Ref. [234], NNLO QCD and NLO EW

corrections have been combined additively, a leading-logarithmic approximation was
presented in Ref. [235], including matching to QCD parton showers and multiple photon

3 A recent study showed how these uncertainties can be halfed using LHCb data [204].
4 Threshold effects at N3LO were studied in Refs. [213, 214].
5 We note that numerically α3

s ∼ αsα so one would expect both contributions to be of a comparable magnitude.
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emission. More recently, QCD-QED corrections have been computed for the process
pp → Z∗ → νν̄ [236].6 Differential predictions at order O(n f αsαEW) for both neutral-
and charged current DY have been obtained in Ref. [237].7 Some of the off-shell effects
for the process pp → W(∗) → ℓν were also covered in the computation in Ref. [238],
where double-virtual corrections were obtained by reweighing the on-shell form factor
computed in Ref. [9].

theoretical predictions for on-shell gauge boson production Despite
the fact, that the generic DY process pp → ℓℓ(ℓν̄) is the target of many experimental
analyses, the theoretical description of the production of an on-shell vector boson yields
significant simplifications while being accurate enough for many purposes and various
observables. In fact, in the limit where the intermediate vector boson becomes on-shell,
real and virtual contributions that connect incoming partons and outgoing leptons are
suppressed by the ratio of the boson’s width to its mass ΓV/MV [239], and, for this
reason, can be neglected. It is therefore possible to divide mixed QCD-EW corrections
into initial-initial and initial-final corrections

dσ

∣∣∣∣∣
O(αsα)

=

∣∣∣∣∣
αs ⊗ α

∣∣∣∣∣

2

+

∣∣∣∣∣
αsα ⊗

∣∣∣∣∣

2

. (4.2)

The first term on the r. h. s. of Eq. (4.2) denotes NLO-like initial-final contributions
that arise from NLO QCD corrections to the production and NLO EW corrections to
the decay stage of the process. The second term denotes genuine NNLO initial-initial
contributions that were, in fact, unknown up to now. Initial-final contributions were
argued to be numerically dominant in Ref. [240]. Furthermore, O(ΓV/MV)-suppressed
soft-photon contributions were computed in this work and found to be negligible.
Subsequently, initial-final contributions, as well as corrections to the decay that originate
from renormalization, were studied in Ref. [241].

Initial-initial mixed QCD-QED corrections to the inclusive cross section of on-shell Z-
boson production were studied in [38], where results were obtained by “abelianizing” the
well-known NNLO QCD results of Ref. [208]. Surprisingly, in the setup of Ref. [38], these
corrections turn out to be only about a factor of ∼ 3.5 smaller than NNLO QCD corrections.
We note that we will address this observation again in Sec. 5.1, where we compare our
findings to the results of Ref. [38]. QCD-QED corrections are a gauge-invariant subset of
mixed QCD-EW corrections, which where studied in Refs. [242–244].

6 We note that since this particular final state is color- and electrically neutral, corrections only affect the
production vertex.

7 We note that in the approximation, where only n f -enhanced contributions are considered, double-real
contributions vanish by color conservation and the subtraction procedure is NLO-like. Analogously, no
genuine vertex corrections can occur in this approximation.
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this work As mentioned in the beginning of this Chapter, it is commonly believed
that mixed QCD-EW corrections are important for a precise measurement of the W-boson
mass at the LHC. Because of that, we have computed all missing QCD-EW initial-initial
corrections to on-shell vector-boson production cross sections. In Ref. [7], we studied
QCD-QED initial-initial corrections at the fully-differential level for the first time. This
computation is interesting for three reasons. First, the rather modest suppression of
the results in Ref. [38] w. r. t. NNLO QCD mentioned above makes it worthwhile to
extend these studies to exclusive observables. Second, understanding the IR structure
of mixed corrections to pp → Z allows us to add QCD-EW corrections to this process
in a straightforward way and is an important step towards the more involved case of
pp→W±. Finally, it allows us to quantitatively compare our results to corresponding
initial-final corrections of Ref. [241]. In Ref. [8], we added additional real-virtual and
double-virtual QCD-weak corrections and obtained the full set of QCD-EW corrections to
Z-boson production. We computed initial-initial QCD-EW corrections to on-shell W-boson
production at the fully-differential level in Ref. [9].

layout of the chapter In the remainder of this Chapter, we present technical
aspects of the computations of mixed QCD-EW corrections to vector boson production
at the LHC. In Sec. 4.1, we describe calculation of QCD-QED corrections to Z-boson pro-
duction, which were obtained in Ref. [7] by applying an “abelianization” procedure [38]
to NNLO QCD corrections computed with the nested soft-collinear subtraction scheme
in Refs. [1, 2]. We also explain how to include required QCD-weak corrections in order
to obtain the full set of QCD-EW corrections [8]. In Sec. 4.2, we present mixed QCD-EW

corrections to W-boson production that were originally computed in Ref. [9]. Since W
bosons are electrically charged, the IR singularity structure of mixed QCD-EW corrections
is different from the structure of NNLO QCD corrections. We discuss how to accommodate
these differences in the construction of subtraction terms for double-real contributions
in the framework of nested soft-collinear subtractions. We note that we discuss the
computation of master integrals for the previously unknown two-loop qq̄′ → W form
factor and present required double-real matrix elements in spinor-helicity formalism in
Appendix D.

4.1 mixed qcd-ew corrections to Z -boson production

4.1.1 Preliminary remarks

In the following Section, we discuss technical aspects of the computation of QCD-EW

corrections to the on-shell Z-boson production in hadron collisions at the fully-differential
level. Initial-final corrections, corresponding to the first term on the r. h. s. of Eq. (4.2),
are NLO-like O(αs) and O(α) corrections to production and decay stages, respectively.
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We deal with the IR singularities that appear in these contributions using the well-known
FKS scheme [51, 52].

Genuine NNLO initial-initial corrections, on the other hand, are more complicated.
They require the following ingredients:

• tree-level partonic processes qq̄ → Zgγ, qq̄ → Zqq̄, qq → Zqq, qg → Zqγ, qγ →
Zqg, gγ→ Zqq̄;

• one-loop EW corrections to partonic processes qq̄→ Zg and qg→ Zq;

• one-loop QCD corrections to partonic processes qq̄→ Zγ and qγ→ Zq;

• two-loop QCD-EW corrections to partonic processes qq̄→ Z.

Phase-space integration over unresolved regions of final-state particles causes soft and
collinear singularities. They need to be regulated, extracted, and properly cancelled
against explicit 1/ϵ-poles from loop integrals at a fully-differential level. It is convenient
to divide the contributions mentioned above into two gauge-invariant subsets: QED and
weak contributions. Out of these two, only mixed QCD-QED corrections have NNLO-like IR

singularities: these are very similar to QCD corrections. In fact, it was observed in Ref. [38]
that these contributions can be obtained by a set of replacement rules for various color
factors.8 Once QED corrections are understood, weak corrections are obtained by adding
renormalized one-loop weak and two-loop QCD-weak contributions. Up to NLO-like QCD

IR singularities, these corrections are IR finite, since, by definition, they include virtual
exchanges of massive gauge bosons.

4.1.2 QED corrections to Z-boson production

Following the abelianisation procedure of Ref. [38], we obtain initial-initial QCD-QED

corrections at a fully differential level by modifying QCD color factors C2
F, CFCA, and

CFTR, which appear in the corresponding NNLO QCD calculation [1, 2]. These color
factors arise, when in calculations of spin and helicity averaged matrix elements squared,
the following color traces are evaluated9

∼ CACF , ∼ CACF , ∼ CFTR , (4.3)

∼ C2
F , ∼ CF (CF − CA/2) . (4.4)

8 In essence, replacement rules follow from the change of color factors under the exchange of gluons with
photons.

9 In this notation, we do not show the Z boson and we do not distinguish between virtual and real particles.
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As an example, we consider the interference of a particular two-loop NNLO QCD diagram
with the tree-level diagram and find

−→ . (4.5)

An example of a double-real interference term at NNLO QCD is

−→ . (4.6)

It is straightforward to see, that all contributions in Eq. (4.3) vanish if one gluon
is replaced by a photon: for the first two diagrams, this happens because there is no
gluon-photon coupling; the last diagram vanishes since it becomes proportional to
Tr(TaTb)Tr(TaTb) → Tr(Ta)Tr(Ta) = 0. Accordingly, we have to remove color factors
CA → 0 and TR → 0. Diagrams in Eq. (4.4), on the other hand, do not vanish. In fact,
they yield

Tr(TaTaTbTb)→ nex Tr(TaTa)e2
q = nex CFQ2

q ,

Tr(TaTbTaTb)→ nex Tr(TaTa)e2
q = nex CFQ2

q ,
(4.7)

where nex denotes the number of indistinguishable gluons that can be exchanged with
a photon and Qq is the electric charge of the quark. In what follows, we discuss how
color factors have to be changed in case of quark-quark, quark-gluon and gluon-gluon
initiated contributions, respectively.

quark-initiated processes Quark-initiated contributions in NNLO QCD are tree-
level processes qq̄→ Zgg, qq̄→ Zqq̄, and qiqj → Zqiqj, as well as one-loop corrections
to qq̄ → Zg and two-loop corrections to qq̄ → Z. For these processes, any of the two
gluons can be replaced with a photon (nex = 2) and up to two independent color traces
appear. We note that a special case arises only in the situation qq̄→ Zg(k4)g(k5), where
both gluons appear in the final state. Upon replacing either gluon, these contributions
are mapped onto two distinct contributions in the QCD-QED case, qq̄→ Zg(k4)γ(k5) and
qq̄→ Zγ(k4)g(k5). Naively, one might think that nex = 1 in Eq. (4.7) and that the correct
replacement rule should be C2

F → CFe2
q.

However, the extra factor of two accounts for the symmetry factor 1/2! that is present
in the gg, but not in the gγ case. We conclude that the replacement rules for quark-
initated partonic channels are

C2
F → 2CFe2

q , CA → 0 , TR → 0 . (4.8)
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quark-gluon initiated processes Quark-initiated contributions in NNLO QCD

are the tree-level processes qg → Zqg and the one-loop QCD correction to qg → Zq.
For these cases we can replace only one gluon with a photon. This can either be an
initial-state gluon, in which case we obtain the tree-level contribution qγ→ Zqg and the
one-loop QCD contribution qγ → Zq, or the final-state gluon, in which case we obtain
qg → Zqγ. Finally, we can also replace the virtual gluon with a photon. In this case,
we obtain the one-loop QED contribution to qg→ Zq. All these changes amount to the
replacement

C2
F → CFe2

q , CA → 0 . (4.9)

We note that we also have to replace the averaging factor over color charges when an
initial-state gluon is replaced by a photon.

gluon-gluon initiated processes The gluon-induced process receives only
tree-level contributions gg → Zqq̄. In this case, we replace one of the two initial-state
gluons with a photon and obtain the two processes gγ → Zqq̄ and γg → Zqq̄. The
replacement rules in this case read

C2
F → CFe2

q , CA → 0 . (4.10)

We note that also in this case we have to change the averaging factor over the color of
the initial-state gluon.

Applying these rules to the calculation of on-shell Z-boson production through NNLO

QCD in Ref. [2], we obtain a fully-differential description of initial-initial QCD-QED

corrections. This includes regulated double- and single-real contributions, integrated
subtraction terms, and finite remainders of virtual corrections, and allows us to compute
arbitrary IR safe observables to on-shell Z-boson production. We discuss phenomenolog-
ical implications of these corrections in Chapter 5.

checks We note that we have checked this calculation in the following way. We
followed the procedure described above to abelianise the analytic NNLO QCD corrections
to inclusive Z-boson production [208] and compared these results to that of Ref. [38].
We then used the fully-differential setup described above to compute the inclusive cross
section and found agreement with the analytic results presented in Ref. [38] within the
numerical precision.

4.1.3 Weak corrections to Z-boson production

Having discussed computation of initial-initial QCD-QED corrections in Sec. 4.1.2, we now
turn to weak corrections and summarize briefly what was done in Ref. [8]. There, two-
loop QCD-weak corrections to the qq̄→ Z vertex10 were re-computed, confirming results

10 We note that we disregard top-quark contributions.
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presented earlier in Ref. [245].11 One-loop weak corrections to the partonic processes
qq̄→ Zg and qg→ Zq were obtained using the OpenLoops package [247–251].

We note, that we will study phenomenological impact of QED and weak corrections
in Chapter 5. Before that, we discuss calculation of mixed QCD-EW corrections to the
production of electrically charged W bosons in the next section.

4.2 mixed qcd-ew corrections to W -boson production

4.2.1 Preliminary remarks

The computation of mixed QCD-EW initial-initial corrections to W-boson production was
presented in Ref. [9]. It is considerably more involved than the Z-boson case. In fact,
since the W boson carries electric charge, the IR behaviour of matrix elements changes,
as compared to the case of Z-boson production. For this reason, QCD-QED corrections to
W-boson production cannot be obtained by abelianising NNLO QCD corrections to this
process and a new calculation is required.12

To fully describe initial-initial O(αsα) corrections to on-shell W-boson production,
the following double-real, real-virtual and double-virtual matrix elements have to be
computed13

• qq̄′-channel:

– tree-level contributions qq̄′ →W + g + γ and qq̄′ →W + q + q̄;

– one-loop QCD contribution qq̄′ →W + γ;

– one-loop EW contribution qq̄′ →W + g;

– two-loop QCD-EW contribution qq̄′ →W;

• qq-channel with the tree-level contribution qq→W + qq′;

• qq′-channel with the tree-level contribution qq′ →W + qq;

• qg-channel:

– tree-level contribution qg→W + q′ + γ;

– one-loop EW contribution qg→W + q′;

• qγ-channel:

– tree-level contribution qγ→W + q′ + g;

– one-loop QCD contribution qγ→W + q′;

11 The renormalized form-factor was obtained using results in Ref. [246].
12 We note that it was demonstrated in Ref. [238] how to obtain a valid subtraction scheme by abelianising

QCD corrections to heavy-quark production.
13 Further contributions from PDF renormalization are not displayed here, they can be found in Ref. [9].
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• gγ-channel with the tree-level contribution gγ→W + qq̄′.

For the sake of brevity, from now on we will restrict ourselves to the case of W+

production.14 We denote up- and down-type quarks by u and d and assume that the
CKM matrix is an identity matrix, VCKM = 13x3.

double-virtual corrections The two-loop QCD-EW form factor ud̄→W+ was
computed in Ref. [9]. In this thesis, we describe the computation of ten previously
unknown master integrals in Appendix D.1.

real-virtual corrections We note that finite one-loop EW and QCD remainders
are obtained in Ref. [9] numerically with the OpenLoops package. Furthermore, we note
that one-loop QCD corrections to qq̄′ →W+ + γ and qg→W+ + q′+ γ require particular
care since the photon couples to the W boson. The required subtraction terms can be
extracted from the results in Sec. 3.1.2. Details can be found in Ref. [9].

double-real corrections All double-real corrections listed above can be ex-
pressed through two types of tree-level amplitudes: they contain the W-boson and either
four quarks or two quarks and a photon and a gluon. We present these quantities in
Appendix D.2. In the following Section, we explain how to properly regulate and extract
all soft and collinear singularities. In particular, we comment on the modifications to the
nested soft-collinear subtraction scheme that were made to simplify this calculation.15

4.2.2 Regularisation of infrared singularities in double-real corrections

In this section, we discuss the regularisation of IR singularities in double-real contri-
butions. In particular, we show how to regulate and extract IR divergences for each of
the partonic channels listed in the beginning of Sec. 4.2 using the nested soft-collinear
subtraction scheme. We follow the procedure that was presented in Sec. 2.2 and Sec. 2.3
and iteratively subtract soft and collinear singularities. In contrast to previous computa-
tions [1, 2], we work in a reference frame in which the initial-state partons f1,2 are back-to
back but carry arbitrary energies E1,2, demonstrating the flexibility of the subtraction
scheme. We begin by discussing processes with quarks in the initial state, and then turn
to quark-gluon (-photon) and gluon-photon initiated processes, respectively.

Quark-initiated processes

quark emission We start with processes that have quarks both in the initial and in
the final state. We consider two representative examples for quark emission, u d̄→W q q̄
and u d → W+ d d, where qq̄ denotes a generic light quark-antiquark pair. In case

14 Results for the case of W− production can be obtained by changing charges and PDFs appropriately.
15 We note that several aspects have already been touched upon in Part I of this thesis.
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of mixed QCD-EW corrections, only interference terms with a continuous quark line
contribute. All other terms vanish since the are proportional to ∼ Tr(Ta) = 0.16 It follows
that qq̄ is either uū or dd̄.

An example for an interference term with a continuous quark line for the case
u d̄→W+ u ū is

|Aud̄→W+uū|2
∣∣∣∣
O(αsα)

⊃
W

u1

d̄2

u4

ū5

g

×




W

u1

d̄2

ū5

u4

γ, Z




†

. (4.11)

We note that the case of dd̄-emission can be obtained from Eq. (4.11) by replacing the
s-channel splitting g→ uū with the splitting g→ dd̄ in the left diagram and by moving
the t-channel boson exchange to the lower line in the right diagram.

The left diagram in Eq. (4.11) could, in principle, cause a double-soft singularity
in the limit k4,5 → 0, a double-collinear singularity in the limit k4 ∥ k5 and a triple-
collinear singularity when k4 ∥ k5 ∥ p1. However, the photon contribution in the right
diagram in Eq. (4.11) only develops collinear singularities when k4 ∥ p1 and when
k4 ∥ k5 ∥ p1.17 Hence, the interference term shown in Eq. (4.11) is only singular in
the triple-collinear limit k4 ∥ k5 ∥ p1. In fact, it is straightforward to check that all
double-real contributions with two quarks both in the initial and in the final state stem
from s-channel and t-channel interferences, like the one in Eq. (4.11), and exhibit only
triple-collinear singularities.

For the process u d→W+ d d, an example for an interference with a continuous quark
line is

|Au d→W+dd|2
∣∣∣∣
O(αsα)

⊃ W

u1

d2 d5

d4
g

×




W

u1

d2 d5

d4
γ, Z




†

. (4.12)

For the same reasons discussed below Eq. (4.11), the contribution shown in Eq. (4.12) is
only singular in the triple-collinear limit k4 ∥ k5 ∥ p2.

Adopting the notation of Sec. 2.1, we write

dσRR
ud̄→W+qq̄ =

〈
[dk4][dk5] FLM

(
1u, 2d̄, W+; 4q, 5q̄

)〉
, (4.13)

16 See also Appendix D.2. Equivalently, this observation corresponds to taking TR → 0 in the Z-boson case,
see Eq. (4.3) and the discussion below that equation.

17 We note that the contribution with a Z-boson is finite.
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dσRR
ud→W+dd =

〈
[dk4][dk5] FLM

(
1u, 2d, W+; 4d, 5d

)〉
, (4.14)

where we note that the rather simple singularity structure, which has in fact no over-
lapping limits, does not require us to introduce partition functions or sectors. Hence,
in case of qq̄ emission, cf. Eq. (4.13), we can extract all divergences by inserting the
following partition of unity I = (I− CC1 − CC2) + CC1 + CC2 into Eq. (4.13). We note that
the triple-collinear limit k4 ∥ k5 ∥ p1 is relevant for qq̄ = uū, whereas k4 ∥ k5 ∥ p2 is
relevant for the contribution qq̄ = dd̄. The process in Eq. (4.14), on the other hand, has
only one triple-collinear singularity so it suffices to insert I = (I− CC2) + CC2. We obtain

dσRR
ud̄→W+qq̄ =

〈
[dk4][dk5] (I− CC1 − CC2) FLM

(
1u, 2d̄, W+; 4q, 5q̄

)〉
(4.15)

+
〈
[dk4][dk5] [CC1 + CC2] FLM

(
1u, 2d̄, W+; 4q, 5q̄

)〉
, (4.16)

and

dσRR
ud→W+dd =

〈
[dk4][dk5] (I− CC2) FLM

(
1u, 2d, W+; 4d, 5d

)〉
(4.17)

+
〈
[dk4][dk5] CC2 FLM

(
1u, 2d, W+; 4d, 5d

)〉
, (4.18)

respectively.
Finally, we note that the required genuine triple-collinear subtraction terms in Eq. (4.16)

and Eq. (4.18) are independent of the phase-space parametrization. This is the case since
triple-collinear operators CCi are defined in a way that they only act on matrix elements
squared and momentum-conserving δ-functions and not on the unresolved phase-space,
cf. Sec. 2.3.3. We obtain results for subtraction terms in case of triple-collinear splittings
u → uūu∗, d → dd̄d∗ and d → ddd̄∗ at O(αsα) by abelianising the NNLO QCD result for
the splitting q→ q̄qq∗ and q→ qqq̄∗ computed in Ref. [5].18

emission of a photon and a gluon We now turn to the other quark-initiated
double-real correction, which is the emission of a gluon-photon pair ud̄→W+ g γ. We
write the corresponding fully-differential cross section as

2s · dσRR
ud̄→Wgγ

=
〈
[dk4][dk5] FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉
. (4.19)

As we have discussed in Chapter 2, the singularity structure in the case of gγ-emission
is simpler than the gg case in NNLO QCD. Indeed,

• as we have discussed in Sec. 2.2.2, the double-soft limit SgSγ is uncorrelated,
meaning that the matrix element factorizes into a product of NLO-like eikonal
functions. However, we need to account for the fact that the charged W-boson
appears as a massive radiator in the soft-photon eikonal function. We presented
analytic results for the integrated soft-photon subtraction term for a resolved, a
soft, and a collinear gluon in Sec. 3.1.2;19

18 See also Table 2.2.
19 We note that the integrated subtraction term for a soft gluon is trivial to obtain, see Eq. (2.42).
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• in Sec. 2.3.3 we noticed the absence of a singularity in the limit where the photon
and the gluon become collinear to each other. We have used this fact to divide the
phase space into two (instead of four) sectors, see Eq. (2.64) and the discussion
around it.

With theses simplifications in mind, we write the double-real cross section in Eq. (4.19)
as

〈
[dk4][dk5] FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

=
〈
[dk4][dk5]SγSg FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

+
〈
[dk4][dk5]

[ (
I−Sg

)
Sγ + (I−Sγ) Sg

]
FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

+
〈
[dk4][dk5] (I−Sγ)

(
I−Sg

)
FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉
.

(4.20)

We note that we have derived results for the integrated soft-gluon and soft-photon
subtraction terms in Eq. (2.42) and Sec. 3.1.2, respectively. In particular, we have found
that the soft-gluon integral is independent of the photon momentum, while the soft-
photon integral was computed for three distinct cases that involve resolved, soft, or
collinear gluons. With these results, we can compute the double-soft and single-soft
subtraction terms in Eq. (4.20).

We begin with the double-soft contribution to Eq. (4.20) and obtain

〈
[dk4][dk5]SγSg FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉
= [α][αs]

[
(2 Emax)

−2ϵ Γ2 (1− ϵ)

Γ (1− 2ϵ)

]2

× 2CF

ϵ2

〈
J̃γ(E1, E2) FLM

(
1u, 2d̄, W+

)〉
. (4.21)

The function J̃γ(E1, E2) can be found in Eq. (3.24).
As we explained in Sec. 2.2.2, single-soft contributions in which either the gluon or

the photon is soft, exhibit singularities when the remaining resolved emission becomes
collinear to one of the initial-state quarks. However, these singularities can be dealt with
in a straightforward NLO-like manner. Indeed, for the soft-gluon emission we insert the
partition of unity I =

(
I−Cγ1 −Cγ2

)
+ Cγ1 + Cγ2 and write20

〈
[dk4][dk5] (I−Sγ) Sg FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

= [αs](2 Emax)
−2ϵ 2CF Γ2 (1− ϵ)

ϵ2 Γ (1− 2ϵ)
×
{ 〈

Ôγ
NLO[dk5] FLM

(
1u, 2d̄, W+; 5γ

)〉

+
〈
(I−Sγ)

[
Cγ1 + Cγ2

]
[dk5] FLM

(
1u, 2d̄, W+; 5γ

)〉 }
.

(4.22)

In Eq. (4.22), the first term on the r. h. s. denotes the fully-regulated contribution with a
resolved photon, proportional to

Ôγ
NLO = (I−Sγ)

(
I−Cγ1 −Cγ2

)
. (4.23)

20 Again, we note that the soft-gluon eikonal function is independent of the photon momentum.
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Terms in the last line of Eq. (4.22) are subtraction terms for collinear singularities caused
by the photon. We focus on the term proportional to Cγ1 and consider collinear and
soft-collinear limits. We find

Cγ1 FLM
(
1u, 2d̄, W+; 5γ

)
=

e2Q2
u

E2
5ρ51
× (1− z)P̄qq(z)

FLM(z · 1u, 2d̄, W+)

z
, (4.24)

SγCγ1 FLM
(
1u, 2d̄, W+; 5γ

)
=

e2Q2
u

E2
5ρ51
× 2 FLM

(
1u, 2d̄, W+

)
, (4.25)

where E5 = (1− z)E1 and

P̄qq(z) =
[

1 + z2

1− z
− ϵ(1− z)

]
, (4.26)

is the conventional splitting function given in Eq. (2.55) without color factor CF. We
integrate over angle ρ51 and obtain

〈
(I−Sγ)Cγ1[dk5] FLM

(
1u, 2d̄, W+; 5γ

)〉

=− [α] Γ2 (1− ϵ)

ϵ Γ (1− 2ϵ)
Q2

u(2E1)
−2ϵ

[ ∫ 1

0
dz

P̄qq(z)
(1− z)2ϵ

〈
FLM(z · 1u, 2d̄, W+)

z

〉

− 2
∫ 1

zmin

dz(1− z)−1−2ϵ
〈

FLM
(
1u, 2d̄, W+

)〉 ]

=− [α] Γ2 (1− ϵ)

ϵ Γ (1− 2ϵ)
Q2

u(2E1)
−2ϵ

∫ 1

0
dz
[

P̄qq(z)
(1− z)2ϵ

+
1
ϵ

δ(1− z)e−2ϵL1

]

×
〈

FLM(z · 1u, 2d̄, W+)

z

〉
,

(4.27)

where Li = Emax/Ei. The term proportional to Cγ2 in Eq. (4.22) can be computed in a
similar way; we obtain

〈
[dk4][dk5] (I−Sγ) Sg FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

=[αs](2 Emax)
−2ϵ 2CF Γ2 (1− ϵ)

ϵ2 Γ (1− 2ϵ)

{ 〈
Ôγ

NLO[dk5] FLM
(
1u, 2d̄, W+; 5γ

)〉

− [α] Γ2 (1− ϵ)

ϵ Γ (1− 2ϵ)

∫ 1

0
dz
[

Q2
u PNLO

qq (z, L1) (2E1)
−2ϵ

〈
FLM(z · 1u, 2d̄)

z

〉

+ Q2
d PNLO

qq (z, L2) (2E2)
−2ϵ

〈
FLM(1u, z · 2d̄)

z

〉 ]}
,

(4.28)

for the whole expression Eq. (4.22). We note that in Eq. (4.28) we have used Jγ(1, 2, W)

as given in Eq. (3.11) and that we abbreviated

PNLO
qq (z, L) = (1− z)−2ϵ

[
1 + z2

1− z
− ϵ(1− z)

]
+

1
ϵ

δ(1− z) e−2ϵL . (4.29)
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For the soft-photon contribution to Eq. (4.20), we find
〈
[dk4][dk5]

(
I−Sg

)
Sγ FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

= [α](2 Emax)
−2ϵ Γ2 (1− ϵ)

Γ (1− 2ϵ)
×
{ 〈

Ôg
NLO[dk4]Jγ(1, 2, W) FLM

(
1u, 2d̄, W+; 4g

)〉

− [αs]CF Γ2 (1− ϵ)

ϵ Γ (1− 2ϵ)

∫ 1

0
dz
[

PNLO
qq (z, L1) (2E1)

−2ϵ J̃γ(z · E1, E2)

×
〈

FLM(z · 1u, 2d̄)

z

〉
+ PNLO

qq (z, L2) (2E2)
−2ϵ J̃γ(E1, z · E2)

×
〈

FLM(1u, z · 2d̄)

z

〉 ]}
,

(4.30)

where

Ôg
NLO =

(
I−Sg

) (
I−Cg1 −Cg2

)
. (4.31)

We note that the collinear subtraction terms in Eq. (4.30) are more involved than in
the soft-gluon case, since the soft-photon eikonal function has a residual dependence
on the gluon momentum k4. We have shown in Sec. 3.1.2 how to integrate the soft-
photon eikonal function in case of a unresolved gluon. In particular, we found that
Cg1 Jγ(1, 2, W) = J̃γ(z · E1, E2) and Cg2 Jγ(1, 2, W) = J̃γ(E1, z · E2), where z = (E1,2 −
E4)/E1,2 and J̃γ(E1, E2) is given in Eq. (3.24).

In the following, we regulate remaining collinear singularities in the soft-regulated
term in Eq. (4.20)

〈
[dk4][dk5] (I−Sγ)

(
I−Sg

)
FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉
, (4.32)

following the discussion in Sec. 2.3 and making use of the fact that there is no double-
collinear k4 ∥ k5 singularity. In particular, we introduce partition functions

1 = ω14,25
DC + ω24,15

DC + ω14,15
T C + ω24,25

T C , (4.33)

where we define double-collinear partitions

ω14,25
DC =

ρ15ρ24

4
, ω24,15

DC =
ρ14ρ25

4
, (4.34)

and triple-collinear partitions

ω14,15
T C =

ρ24ρ25

4
, ω24,25

T C =
ρ14ρ15

4
. (4.35)

Furthermore, we employ definitions of sectors as in Eq. (2.64). We then write the soft-
regulated contribution in Eq. (4.32) as21

〈
[dk4][dk5] (I−Sγ)

(
I−Sg

)
FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉

=
4

∑
n=1

〈
Ξqq̄

n [dk4][dk5] (I−Sγ)
(
I−Sg

)
FLM

(
1u, 2d̄, W+; 4g, 5γ

)〉
,

(4.36)

21 We recall that double-collinear operators Cij act on the phase space [dk4][dk5], whereas triple-collinear
operators CCi do not.
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where operators Ξqq̄
n read22

Ξqq̄
1 = ∑

i,j=1,2
i ̸=j

(I−C4i)
(
I−C5j

)
ω

i4,j5
DC + ∑

i=1,2
∑

k=A,B

(
I−Ck

)
(I− CCi) ωi4,i5

T C , (4.37)

Ξqq̄
2 = ∑

i=1,2
∑

k=A,B

(
I−Ck

)
CCi , (4.38)

Ξqq̄
3 = − ∑

i,j=1,2
i ̸=j

C4iC5j , (4.39)

Ξqq̄
4 = ∑

i,j=1,2
i ̸=j

[
C4i + C5j

]
ω

i4,j5
DC + ∑

i=1,2
∑

k=A,B
θkCk ωi4,i5

T C . (4.40)

We note that the term proportional to operator (I−Sγ)
(
I−Sg

)
Ξqq̄

1 in Eq. (4.36) describes
the fully-regulated contribution, which is computed numerically in d = 4 dimensions.
The operator Ξqq̄

2 in Eq. (4.38) describes the triple-collinear contribution. We find
〈 (

I−Sg
)
(I−Sγ)Ξqq̄

2 FLM
(
1u, 2d̄, W, 4g, 5γ;

)〉

= − 2[α][αs]CF

∫ 1

0
dz Ptrc

qq (z)
[

Q2
u(2E1)

−4ϵ

〈
FLM(z · 1u, 2d̄, W+)

z

〉

+ Q2
d(2E2)

−4ϵ

〈
FLM(1u, z · 2d̄, W+)

z

〉 ]
.

(4.41)

We compute the the strongly-ordered and the genuine contributions to the triple-collinear
subtraction term in Eq. (4.41) following the discussion in Sec. 3.1.3 and Sec. 3.2.3,
respectively. We note that in contrast to the triple-collinear subtraction terms obtained
in the context of NNLO QCD computations [5], we have to take the abelian limit CA → 0
and consider modified sectors k = A, B. We obtain

Ptrc
qq (z) =

1
ϵ

[
3
2
(1− z) + z ln(z) +

3 + z2

4(1− z)
ln2(z)

]

+

(
11
2
− 6 ln(1− z)

)
(1− z)− 2π2z

3
− z

2
ln2(z)

− (19 + 9z2)

12(1− z)
ln3(z) + 4z Li2(z)

−
(

z +
π2(5 + 3z2)

3(1− z)
+

2(1 + z2)

1− z
Li2(z)

)
ln(z)

+
2(5 + 3z2)

1− z
(Li3(z)− ζ3) .

(4.42)

22 We note that we can neglect partition functions ω
ij,kl
DC/T C in double-unresolved contributions n = 2, 3, since

they become unity in these limits.
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The remaining contributions Ξqq̄
3,4 describe NLO-like unresolved collinear subtraction

terms. In particular, Ξqq̄
3 in Eq. (4.39) describes the double-unresolved contribution that

originates from the double-collinear partitions, where both the gluon and the photon
are collinear to different initial-state quarks. Operator Ξqq̄

4 in Eq. (4.40) describes all
contributions in which either the gluon or the photon is collinear. The computation of
these integrated subtraction terms is NLO-like and can be found in Ref. [9].

Quark-gluon and quark-photon initiated processes

In the following, we turn to the regularisation of IR singularities in the quark-gluon
initiated process. In particular, we consider the double-real correction gd̄→ W+ūγ, the
respective cross section reads

2s · dσRR
gd̄→Wūγ

=
〈
[dk4][dk5] FLM

(
1g, 2d̄, W+; 4ū, 5γ

)〉
. (4.43)

We begin with the regularisation of the soft singularity caused by the photon and write
〈
[dk4][dk5] FLM

(
1g, 2d̄, W+; 4ū, 5γ

)〉

=
〈
[dk4][dk5]Sγ FLM

(
1g, 2d̄, W+; 4ū, 5γ

)〉

+
〈
[dk4][dk5] (I−Sγ) FLM

(
1g, 2d̄, W+; 4ū, 5γ

)〉
.

(4.44)

The single-soft contribution can be obtained following the same steps as in the case of
gγ-emission. We arrive at

〈
[dk4][dk5]Sγ FLM

(
1g, 2d̄, W+; 4ū, 5γ

)〉

=[α](2 Emax)
−2ϵ Γ2 (1− ϵ)

Γ (1− 2ϵ)

{ 〈
Ôū

NLO Jγ(2, 4, W)[dk4] FLM
(
1g, 2d̄, W+; 4ū,

)〉
(4.45)

− [αs]TR Γ2 (1− ϵ) (2E1)
−2ϵ

ϵ Γ (1− 2ϵ)

∫ 1

0
dz PNLO

qg (z) J̃γ(z · E1, E2)

〈
FLM(z · 1u, 2d̄)

z

〉}
,

where Ôū
NLO = (I−C51), the splitting function PNLO

qg (z) can be found in Eq. (D.43) and
Jγ(2, 4, W) is given in Eq. (D.41).

We now analyse collinear singularities of the soft-regulated contribution proportional
to ⟨[dk4][dk5] (I−Sγ) FLM

(
1g, 2d̄, W+; 4ū, 5γ

)
⟩ in Eq. (4.44). Double-collinear divergences

can arise when the final-state quark ū(k4) becomes collinear to the gluon, and when the
final state photon γ(k5) becomes collinear either to ū(k4) or to d̄(p2). A triple collinear
singularity arises in the limit k4 ∥ k5 ∥ p1. We follow the same steps as in the case of
gγ-emission and write

〈
[dk4][dk5] (I−Sγ) FLM

(
1g, 2d̄, W+; 4ū, 5γ

)〉

=
4

∑
n=1

〈
Ξgq

n [dk4][dk5] (I−Sγ) FLM
(
1g, 2d̄, W+; 4ū, 5γ

)〉
,

(4.46)
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where23

Ξgq
1 = (I−C41) (I−C52) ω25

DC + ∑
k=a,b,c,d

(
I−Ck

)
(I− CC1) ω45

T C , (4.47)

Ξgq
2 = ∑

k=a,b,c,d

(
I−Ck

)
CC1 , (4.48)

Ξgq
3 = −C41C52 , (4.49)

Ξgq
4 = [C41 + C52] ω25

DC + ∑
k=a,b,c,d

θkCk ω45
T C , (4.50)

and

ω25
DC =

ρ45

ρ24 + ρ45
, ω45

T C =
ρ24

ρ24 + ρ45
. (4.51)

We note that due to the presence of the k4 ∥ k5 singularity, we have used the four sectors
k = a..d that appear in NNLO QCD computations, cf. Eq. (2.58), to disentangle strongly-
ordered limits in the triple-collinear contribution. Although, strictly speaking, sector
k = a is redundant, since there is no singularity when initial-state gluon and final-state
photon become collinear in the limit k5 ∥ k1, we include k = a in Eqs. (4.47)-(4.50) but
note that Ca FLM

(
1g, 2d̄, W+; 4ū, 5γ

)
= 0.

The operators Ξgq
1,...,4 in Eqs. (4.47)-(4.50) are defined similarly to those in case of

gγ emission, given in Eqs. (4.37)-(4.40). Contribution (I−Sγ)Ξgq
1 in Eq. (4.46) is fully

regulated, we compute it numerically in d = 4 dimensions. We note that the triple-
collinear contribution Ξgq

2 in Eq. (4.48) is obtained by abelianising the NNLO QCD result
for the splitting g→ qgq∗ computed in Ref. [5].24 The remaining contributions Ξgq

3 and
Ξgq

4 in Eq. (4.49) and Eq. (4.50) involve double-unresolved double-collinear limits, as
well as single-unresolved collinear subtraction terms. A discussion of these NLO-like
contributions can be found in Ref. [9].

Finally, we note that the contribution of the quark-photon initiated partonic channel
γd̄→W+ūg can be computed along the lines discussed above. It turns out that results
for this channel can be found by a straightforward abelianisation of the contribution of
the process gd̄→W+ūγ, where additionally, one has to set QW to zero.

Gluon-photon initiated processes

The last remaining double-real contribution refers to the partonic process gγ→ W+ūd.
We write the differential cross section in the standard way

2s · dσRR
gγ→Wūd =

〈
[dk4][dk5] FLM

(
1g, 2γ, W+; 4ū, 5d

)〉
. (4.52)

23 As before, partition functions ω
ij
DC/T C in double-unresolved contributions Ξgq

2 and Ξgq
3 are equal to one.

24 See also Table 2.2.
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This contribution has no soft or triple-collinear singularities, it only exhibits double-
collinear singularities when the final-state (anti-)quark becomes collinear to either the
photon or the gluon in the initial state. These collinear divergences are not entangled;
for example when ū(k4) becomes collinear to g(p1), the remaining quark d(k5) can only
become collinear to γ(p2). Hence, there is no need to split the phase space with partition
functions or sectors. We write

〈
[dk4][dk5] FLM

(
1g, 2γ, W+; 4ū, 5d

)〉

=
〈
Ôgγ

NNLO[dk4][dk5] FLM
(
1g, 2γ, W+; 4ū, 5d

)〉

+
〈
[C41 + C42 + C51 + C52] [dk4][dk5] FLM

(
1g, 2γ, W+; 4ū, 5d

)〉

−
〈
[C41C52 + C42C51] [dk4][dk5] FLM

(
1g, 2γ, W+; 4ū, 5d

)〉
,

(4.53)

where the fully-regulated contribution is proportional to

Ôgγ
NNLO = I − C41 − C42 − C51 − C52 + C41C52 + C42C51 . (4.54)

We note that all single- and double-unresolved subtraction terms in Eq. (4.53) are NLO-
like and can be obtained by abelianising the NNLO QCD calculations for the gg-channel
in Refs. [1, 2]. Results can be found in Ref. [9].

4.2.3 Summary

To obtain complete a description of mixed QCD-EW corrections to W-boson production,
we have to combine different building blocks discussed in Sec. 4.2.1. To this end, we
implemented all one- and two-loop finite remainders, contributions from the renormal-
ization of PDFs, as well as double-real matrix elements, presented in Appendix D.2, and
finite remainders of the integrated subtraction terms that we discussed in Sec. 4.2.2, in a
Fortran computer code [9]. This code can be used to compute mixed QCD-EW corrections
to arbitrary IR safe observables in the process pp→W± + X.

Our results pass several checks. First, we note that we achieve an analytic cancel-
lation of all IR poles. Second, the double-real matrix elements squared presented in
Appendix D.2 have been checked to be regularised by the formulas in Sec. 4.2.2. Third,
the same matrix elements have been used to compute the cross section of the process
pp → W + γ + jet, which then was compared to MADGRAPH [252] results for different
partonic channels. Fourth, we have considered the limit of equal up- and down quark
charges Qu = Qd ⇔ QW = 0 in several unresolved contributions and compared results
with the results for Z-boson production in Ref. [8]. This approach is particularly useful
to check modified partition functions and phase-space sectors described in the previous
section.

In the next Chapter, we will study phenomenological impact of mixed QCD-EW correc-
tions to Z- and W-boson hadroproduction. In particular, we will assess the impact of
these corrections on the extraction of the W-boson mass at the LHC.
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In this Chapter, we discuss numerical results for the production of on-shell Z- and W
bosons at the LHC focusing on NNLO QCD-EW corrections. We present inclusive cross
sections and kinematic distributions of a few selected observables in Sec. 5.1. The main
focus of this Chapter, however, is to study how mixed corrections affect lepton transverse-
momenta distributions in Z and W production that are used to determine the W-boson
mass at the LHC. In Sec. 5.2, we describe a simple but transparent model, which allows
us to investigate this question.

5.1 inclusive cross-sections and kinematic distributions

In this section, we present numerical results for Z- and W-boson production at the LHC.
Originally, these results have been presented in Refs. [7–9]. We begin by describing the
numerical setup of our calculations.

5.1.1 The setup

The computational setup for both cases is as follows. We consider the LHC with a center-
of-mass collision energy of 13 TeV. The strong coupling constant is renormalized in the
MS scheme; for electroweak corrections we employ the Gµ input-parameter and on-shell
renormalization schemes. We set µF = µR ≡ µ in all numerical computations. We use

GF = 1.16639× 10−5 GeV−2 MZ = 91.1876 GeV , MW = 80.398 GeV ,

Mt = 173.2 GeV , MH = 125 GeV , (5.1)

as input parameters in the Gµ scheme, from which we derive the weak mixing angle

sin2 θW = 1− M2
W

M2
Z
≈ 0.222646 , (5.2)

and the fine-structure constant

α =

√
2GF M2

W
π

(
1− M2

W
M2

Z

)
≈ 1/132.338 . (5.3)

We note that the Gµ input scheme is particularly suited for describing processes involving
W and Z bosons, since it re-absorbs contributions to the on-shell renormalization of the
weak mixing angle [253], resulting in numerically small EW corrections.

89
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We use the NNLO NNPDF3.1luxQED [254–256] PDFs with five active flavors for all
numerical computations. The value of the strong coupling constant, as provided by this
PDF set, is αs(MZ) = 0.118.

As we discussed in Chapter 4, we compute corrections to Z- and W-boson produc-
tion in the narrow-width approximation, where the square of the propagator of an
intermediate vector boson is replaced by a δ-function

1
(Q2 −M2

V)
2 + M2

VΓ2
V
→ π

MVΓV
δ(Q2 −M2

V) . (5.4)

We then incorporate perturbative corrections to the width of the vector boson ΓV , by
writing the hadronic cross section, cf. Eq. (1.1), as follows

dσpp→V→ℓℓ(ℓν̄) =
dσpp→V dΓV→ℓℓ(ℓν̄)

ΓV
= BrV→ℓℓ(ℓν̄) × dσpp→V ×

dΓV→ℓℓ(ℓν̄)

ΓV→ℓℓ(ℓν̄)

. (5.5)

We treat branching fractions BrV→ℓℓ(ℓν̄) as experimental input parameters1 and expand
all other quantities in αs and α.

Since we work with massless leptons, we need to define an IR-safe observable by
combining collinear leptons and photons into lepton “jets”, similar to QCD jets. To this
end, we choose a simplified version of the standard recipe [257] and define Rℓγ =√
(yℓ − yγ)2 + (φℓ − φγ)2 where yℓ,γ and φℓ,γ are the rapidities and azimuthal angles of

leptons and photons, respectively. We choose to recombine particles for which Rℓγ <

Rmin = 0.1 [257].
We find it convenient to normalize results relative to cross sections computed through

NLO QCD. Hence, we define relative corrections for inclusive cross sections and on a
differential bin-by-bin level as

∆i =
σi

σLO + σQCD
NLO

, d∆i =
dσi

dσLO + dσQCD
NLO

, (5.6)

where σi denotes the different contributions that appear on the r. h. s. of the following
equation

σ = σLO + σQCD
NLO + σEW

NLO + σQCD-QCD
NNLO + σQCD-EW

NNLO +O
(
α3

s , α3) . (5.7)

We note that in case of Z-boson production, we split EW corrections into QED and
weak corrections. In what follows, we present numerical results for Z- and W-boson
production separately.

1 In particular, we do not consider perturbative corrections to branching fractions.
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5.1.2 Z-boson production

QED corrections

We begin with the discussion of QED corrections to Z-boson production at the LHC.
We use the numerical setup descibed in Sec. 5.1.1 and choose µ = MZ. We obtain the
following results for inclusive cross sections

∆QED
NLO = 3.2 · 10−3 , ∆QCD-QCD

NNLO = −6.4 · 10−3 , σQCD-QED
NNLO = 2.9 · 10−4 . (5.8)

We note that the inclusive cross sections in Eq. (5.8) only describe corrections to the
production stage of the process, pp→ Z. As can be seen form Eq. (5.5), corrections to the
decay stage of the process cancel in inclusive cross sections since the factor dΓZ→ℓℓ/ΓZ→ℓℓ

always integrates to one. The results in Eq. (5.8) follow the expected hierarchy based
on the relative magnitude of strong and electroweak coupling constants. In particular,
QCD-QED corrections are factors of ten and twenty smaller than QED and NNLO QCD

corrections, respectively.
We note that the results presented here differ from the ones obtained in Ref. [38],

where QCD-QED corrections were found to only be a factor ∼ 3.5 smaller than NNLO QCD

ones. However, this difference is due to a different setup, since the authors of Ref. [38]
used only four active flavors u, d, c, and s as initial-state quarks. We note that we confirm
their results if we use the same input and that the strong sensitivity to input parameters
is a peculiar consequence of a large cancellation between qq̄- and qg-initiated channels.

In order to study fiducial cross section, we employ the following set of standard
kinematic selection conditions

p⊥ℓ1
> 24 GeV , p⊥ℓ2

> 16 GeV , |yℓi | < 2.4 , 50 GeV < mℓℓ < 120 GeV , (5.9)

where p⊥ℓ1(2)
denotes the transverse momentum of the harder (softer) lepton jet and mℓℓ is

the invariant mass of the lepton system.
Furthermore, we split QED corrections to the cross section in Eq. (5.5) into three

categories: corrections to the production dσpp→Z (P), corrections to the decay dΓZ→ℓℓ

(D), and corrections to the leptonic width ΓZ→ℓℓ (W). We find

∆QED
NLO = (3.0 · 10−3)P − (7.2 · 10−3)D − (1.6 · 10−3)W ,

∆QCD-QCD
NNLO = − (1.2 · 10−2)P⊗P ,

∆QCD-QED
NNLO = − (1.5 · 10−4)P⊗P − (4.9 · 10−3)P⊗D − (0.3 · 10−3)P⊗W .

(5.10)

We note that, as in the inclusive case, fiducial corrections to the production stage in
Eq. (5.10) are consistent with expectations based on relative sizes of couplings. Compared
to the inclusive case, shown in Eq. (5.8), NNLO QCD corrections to fiducial cross sections
are a factor of two larger, while QCD-QED corrections are a factor of two smaller.
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channel ∆QCD-QED
NNLO

∣∣
P⊗P · 104

qq̄ 5.60

qq 0.13

qg + gq -7.01

qγ + γq -0.32

γg 0.06

total -1.54

Table 5.1: QCD-QED initial-initial contributions ∆QCD-QED
NNLO

∣∣
P⊗P, see Eq. (5.10), split into different

partonic channels.

To understand the reason behind that, it is interesting to split mixed QCD-QED correc-
tions to the production stage pp→ Z into the different partonic channels, see Table 5.1.
The results there show almost an order of magnitude cancellation between qq̄- and qg-
initiated contributions.2 Another interesting observation from Table 5.1 is, that despite
the fact that photon-induced channels are rather small, they contribute significantly to
the total result because of this cancellation. Interestingly, the contribution of photon-
induced channels is larger than that of the qq-initiated process. We conclude that these
exotic channels cannot be neglected when mixed corrections are computed.

Electroweak corrections

We now turn to the discussion of QCD-EW corrections to Z-boson production. We employ
the numerical setup described in Sec. 5.1.1, set µ = MZ/2 and obtain results for (NNLO)
QCD, EW and QCD-EW corrections given in Table 5.2. We note that the second column in
Table 5.2 shows inclusive results, the third column shows results where we imposed the
fiducial cuts displayed in Eq. (5.9), and the forth column shows fiducial results where
only corrections to the production stage pp→ Z are considered.

We begin with the discussion of inclusive results, where we observe that NLO-weak
corrections in fact exceed NLO-QED ones, and that there is a cancellation between the
two, resulting in mixed QCD-EW corrections at the level of one per mille.

We also note that the NNLO QCD corrections in this case are a factor of two larger
and have changed sign w. r. t. those shown in Eq. (5.8), which can be traced back to
the different scale choice and further underlines the sensitivity of these corrections to
chosen input parameters. In fact, scale uncertainties in the theoretical description of
Z-boson production are dominated by NNLO QCD corrections, while QCD-EW corrections
play a negligible role. However, scale uncertainties reduce substantially once N3LO QCD

corrections are considered [211].

2 We note that a similar cancellation affects NNLO QCD corrections.
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We now turn to the fiducial cross sections, shown in the third column in Table 5.2,
which we compute applying the cuts in Eq. (5.9). Similarly to what we observed for QED

corrections in the previous section, we find that NNLO QCD corrections change rather
strongly w. r. t. inclusive results. They become a factor of two smaller due to an increased
cancellation of qq̄ and qg channels for the scale choice µ = MZ/2. We also observe that
(QCD-)QED corrections are strongly affected by the kinematic constraints and even flip
sign. In total, fiducial QCD-EW corrections may even exceed NNLO QCD ones.

If we consider fiducial corrections to the production stage pp → Z, we obtain the
results shown in the fourth column in Table 5.2. Apart from the relative sizes of NLO EW

and mixed QCD-EW corrections, numerical results are consistent with expectations based
on the relative magnitude of coupling constants.

correction inclusive fiducial fiducial (production)

∆QED
NLO +2.3× 10−3 −5.3× 10−3 +2.2× 10−3

∆weak
NLO −5.5× 10−3 −5.0× 10−3 −5.0× 10−3

∆EW
NLO −3.2× 10−3 −1.0× 10−2 −2.8× 10−3

∆QCD−QCD
NNLO +1.3× 10−2 +5.8× 10−3 +5.8× 10−3

∆QCD−QED
NNLO +5.5× 10−4 −5.9× 10−3 +1.4× 10−4

∆QCD−weak
NNLO −1.6× 10−3 −2.1× 10−3 −2.1× 10−3

∆QCD−EW
NNLO −1.1× 10−3 −8.0× 10−3 −2.0× 10−3

Table 5.2: Corrections to the cross section of pp→ Z → ℓℓ.

Kinematic distributions

In the following, we turn to the presentation of kinematic distributions. In Fig. 5.1,
we present QCD-weak, QCD-QED and combined QCD-EW corrections to the rapidity and
transverse momentum distribution of the dilepton system in the upper and lower panes,
respectively. In the left panes, we show corrections to the full process pp → Z → ℓℓ,
while right panes only include corrections to the production stage. For reference, we also
show NNLO QCD corrections which we divide by a factor of 10.

We observe that, while mixed corrections are in general quite small, their relative
importance w. r. t. NNLO QCD corrections depends on the observable and the kinematic
region. For example, mixed corrections exceed NNLO QCD corrections for central rapidi-
ties

∣∣yℓℓ
∣∣ < 1.2 while the situation is the opposite at large rapidities

∣∣yℓℓ
∣∣ > 1.2. We note

that kinematic edges at
∣∣yℓℓ

∣∣ = 1.2 appear because the selection criteria in Eq. (5.9) do
not allow for Born-level contributions outside this region. As can be seen in Fig. 5.1,
mixed corrections to the production stage of the Z boson (right plots) are smaller than
initial-final ones (left plots), as expected [240], and are rather flat.
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In Fig. 5.2, we present corrections to distributions of the transverse momentum of the
harder lepton and the Collins-Soper angle θ∗. The angle θ∗ is defined as [258]

cos θ∗ =
sgn(pz

ℓℓ
)(P+

ℓ
P−
ℓ
− P−ℓ P+

ℓ
)

√
m2

ℓℓ

(
m2

ℓℓ
+ (p⊥

ℓℓ
)2
) , (5.11)

where P±i = Ei ± pz
i , m2

ℓℓ
= (pℓ + pℓ)

2 is the invariant mass of the di-lepton system, and
p⊥
ℓℓ

is its transverse momentum. All quantities in Eq. (5.11) are measured in the laboratory
frame. The Collins-Soper angle is used to define the forward-backward asymmetry [193]

AFB =
F− B
F + B

, (5.12)

where

F =
∫ 1

0

dσ

dcos θ∗
dcos θ∗ , B =

∫ 0

−1

dσ

dcos θ∗
dcos θ∗ . (5.13)

The definition of θ∗ in Eq. (5.11) minimizes the impact of QCD corrections to AFB and, for
vanishing transverse momentum p⊥

ℓ,ℓ
= 0, coincides with the angle between the lepton

and the incoming proton in the di-lepton rest-frame [259].
We observe in the left panes in Fig. 5.2 that mixed corrections to production and

decay are sizable for these observables and may play a dominant role depending on the
kinematic region. Mixed corrections to the production stage only, on the other hand,
give contributions only at the per mille level. This concludes our discussion of numerical
results for Z-boson production, we turn to the case of W-boson production in the next
section.
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Figure 5.1: Mixed QCD-EW corrections to distributions of the dilepton rapidity and transverse
momentum in Z-boson production.
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Figure 5.2: Mixed QCD-EW corrections to distributions of the transverse momentum of the harder
lepton and the Collins-Soper angle in Z-boson production.
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5.1.3 W-boson production

In the following, we briefly discuss numerical results for initial-initial mixed QCD-EW

corrections to W+-boson production at the LHC. In contrast to the Z-boson case, we only
consider initial corrections to the production stage pp → W+. We use the numerical
setup described in Sec. 5.1.1 and choose the central scale µ = MW/2. Furthermore, we
apply the following kinematic constraints

p⊥
ℓ
> 15 GeV , p⊥ν > 15 GeV , |yℓi | < 2.4 . (5.14)

Using these cuts, we obtain corrections to the fiducial cross section for the process
pp → W shown in Table 5.3. We observe that NLO EW corrections are tiny, and that
mixed QCD-EW corrections actually exceed them.

We now turn to mixed corrections to differential distributions of the rapidity and the
transverse momentum of the charged lepton ℓ, and of the transverse momentum and the
transverse mass of the ℓν system. These distributions are shown in the upper and lower
panes in Fig. 5.3, respectively.3 For each of the four distributions, we show the size of
NLO QCD corrections in the upper part of the plots. Following Eq. (5.6), we use NLO QCD

corrections as a baseline, and show initial-initial QCD-EW corrections, as well as initial
NLO-EW relative to them in lower panes. Again, we observe small NLO EW corrections
such that mixed corrections become comparable or, as in case of the yℓ distribution,
dominant. Furthermore, we note that both types of corrections have, in contrast to the
Z-boson case, quite different shapes.

Discussion of mixed corrections to W-boson production conclude our presentation of
numerical results. In summary, we have observed that mixed QCD-EW corrections are
small as expected, of the order of a few per mille. However, these feeble effects may
impact the very precise W-boson mass extraction at the LHC. We address this question
in the next Section.

3 We note that the Jacobian peaks at p⊥ℓ = MW /2 and M⊥W = MW , mentioned in the beginning of Chapter 4,
are clearly visible there.
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σ[pb] channel µ = MW µ = MW/2 µ = MW/4

σLO 6007.6 5195.0 4325.9

σQCD
NLO

qq̄′ 1455.2 1126.7 839.2

qg + gq -946.4 10.3 943.0

total 508.8 1137.0 1782.2

σEW
NLO

qq̄′ -2.2 -5.2 -6.7

qγ + γq 4.2 4.2 4.04

total 2.1 -1.0 -2.6

σQCD−EW
NNLO

qq̄′ + qq′ -1.0 -1.2 -1.0

qg + gq -1.4 -1.2 -2.1

qγ + γq 0.06 0.03 -0.04

gγ + γg -0.12 0.04 0.30

total -2.4 -2.3 -2.8

Table 5.3: Corrections to the fiducial cross section of pp→W+→ ℓν with cuts defined in Eq. (5.14).
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Figure 5.3: Mixed QCD-EW corrections to kinematic distributions of rapidity and transverse
momentum of the charged lepton ℓ, as well as transverse momentum and transverse
mass of the ℓν system in W+-boson production.
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5.2 implications for the W -boson mass measurement

The impact of mixed QCD-EW corrections on the W-boson mass measurement at the
LHC has been studied quite extensively in the past. While the effect of initial-final
contributions, which arise from NLO QCD corrections to the production and NLO EW

corrections to the decay stage of the process, was studied in Ref. [241], initial-initial
corrections were not available so far. Various approximations of these corrections were
computed in Refs. [235, 260]. An extensive review of many theoretical approaches
relevant for the W-boson mass extraction from LHC data can be found in Ref. [261].

In the following, we describe how we use the fully-differential description of mixed
initial-initial QCD-EW corrections to Z- and W-boson production at the LHC [7–9] to
estimate the impact of these contributions on the measurement of MW from p⊥ℓ distribu-
tions [10]. As already mentioned in the beginning of Chapter 4, experimental analyses
similar to that of the ATLAS collaboration in Ref. [25], extract the W-boson mass by
performing template fits to the transverse-momentum distribution of the lepton. The
correctness of the template is ensured by making use of similarities between Z- and
W-boson production at the LHC and the very precisely known Z-boson mass. We incor-
porate the main features of this approach and construct a simple, physically transparent
model that allows us to estimate the impact of initial-initial QCD-EW effects. We describe
our setup in Sec. 5.2.1 and present results in Sec. 5.2.2.

5.2.1 Setup

Instead of utilizing the actual lepton transverse-momentum distribution itself, we con-
sider its first moment, the normalized average transverse momentum

〈
p⊥ℓ,V

〉
. More

precisely, for an observable O, we define

⟨O⟩ =
∫

dσV ×O∫
dσV

, (5.15)

and study the quantity

〈
p⊥ℓ,V

〉
=

∫ dσV
dp⊥ℓ,V
× p⊥ℓ,V dp⊥ℓ,V∫

dσV
. (5.16)

In Eqs. (5.15)-(5.16), dσV denotes the fully-differential cross section of the process
pp→ V → ℓℓ(ℓν), where V = Z, W indicates the vector boson that decays into the
lepton pair.

In order to understand how the average transverse-momentum of the lepton, given
in Eq. (5.16), is correlated with the mass of the respective vector boson, we compute it
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at LO. At parton level, the normalized differential cross section for the production of an
on-shell vector boson and the subsequent decay into leptons reads

1
σ̂0

dσ̂f1 f2→V→ℓℓ(ℓν)

dp⊥ℓ,V
=

6κ

MV

1− 2κ2
√

1− 4κ2
, (5.17)

where κ = p⊥ℓ,V/MV and σ̂0 denotes the inclusive partonic cross section at LO. We note
that the formula in Eq. (5.17) illustrates the Jacobian peak at p⊥ℓ,V = MV/2 mentioned in
the beginning of Chapter 4.

We are interested to find out how kinematic cuts p⊥ℓ,V > p⊥cut influence the average
transverse momentum. We define

〈
p⊥ℓ,V θ

(
p⊥ℓ,V − p⊥cut

)〉
= MV × f (r) , r =

p⊥cut
MV

, (5.18)

where the function f quantifies the dependence on the imposed transverse-momentum
cut p⊥cut and 0 ≤ r ≤ 1/2. To compute it, we need to convolute the parton-level cross
section in Eq. (5.17) with PDFs and integrate over the transverse momentum of the
lepton as defined in Eq. (5.16). It is straightforward to see that for the Born-level
process pp → V → ℓℓ(ℓν) the transverse momentum of the lepton does not depend
on momentum fractions x1,2, cf. Eq. (1.1). Hence the dependence on PDFs in Eq. (5.16)
cancels out and a compact, analytic expression for the fraction f LO(r) is obtained; we
find

f LO(r) =


3r(5− 8r2)

32(1− r2)
+

15ArcSin
(√

1− 4r2
)

64(1− r2)
√

1− 4r2


 . (5.19)

This result fully quantifies the dependence of the normalized lepton transverse-momentum
average on the cut constraint p⊥cut at the LHC at leading order in perturbation theory.
We note that f LO(r) in Eq. (5.19) is a slowly changing, monotone function, which varies
between the inclusive value f LO(0) = 15π/128 ≈ 0.368 and f LO(1/2) = 0.5.

Using the average transverse-momentum of leptons in Z- and W-boson production,
we define the following observable for the W-boson mass [10]

Mmeas
W =

〈
p⊥ℓ,W

〉meas

〈
p⊥ℓ,Z

〉meas MZ Cth , (5.20)

where the theoretical correction factor

Cth =
MW

MZ

〈
p⊥ℓ,Z

〉th

〈
p⊥ℓ,W

〉th , (5.21)
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accounts for calculable differences in the Z- and W-boson distributions.
We use the definitions in Eqs. (5.20)-(5.21) to estimate how a refined theoretical model-

ing of Cth shifts the extracted W-boson mass. To this end, we write [10]

δMmeas
W

Mmeas
W

=
δCth

Cth
=

δ
〈

p⊥ℓ,Z

〉th

〈
p⊥ℓ,Z

〉th −
δ
〈

p⊥ℓ,W

〉th

〈
p⊥ℓ,W

〉th , (5.22)

where δX denotes the change of quantity X due to changes in the theoretical framework.
The r. h. s. of Eq. (5.22) clearly shows that shifts in the extracted W-boson mass originate
from effects that affect Z- and W-boson production differently.

In what follows, we study how initial-initial mixed QCD-EW corrections affect the
quantities in Eq. (5.22). To do so, we compare the value of Cth computed including mixed
QCD-EW corrections, as well as initial NLO QCD and initial NLO EW corrections, against a
“baseline” value for Cth computed without mixed corrections. More specifically, we write
quantities in Eq. (5.22) as

〈
p⊥ℓ,V

〉th
=

Fbase

(
p⊥ℓ,V , V

)

Fbase(1, V)
, (5.23)

δ
〈

p⊥ℓ,V

〉th
=

Fmixed

(
p⊥ℓ,V , V

)

Fmixed(1, V)
−

Fbase

(
p⊥ℓ,V , V

)

Fbase(1, V)
, (5.24)

where

Fbase(O, V) = F(0, 0,O, V) + F(0, 1,O, V) + F(1, 0,O, V) ,

Fmixed(O, V) = Fbase(O, V) + F(1, 1,O, V) ,
(5.25)

with

F(i, j,O, V) = αi
sα

j
∫

dσ
i,j
V ×O . (5.26)

We will also study the impact that NLO EW corrections have; to estimate it, we compare
Cth computed including corrections through NLO EW to the baseline, where only NLO

QCD corrections are considered. More specifically, in this case we define

F̃base(O, V) = F(0, 0,O, V) + F(1, 0,O, V) ,

FNLO-EW(O, V) = F̃base(O, V) + F(0, 1,O, V) ,
(5.27)

and use these quantities instead of Fbase,mixed in Eqs. (5.23)-(5.24).

5.2.2 Results

In what follows, we use the model described in the preceding Section, as well as the
numerical setup as discussed in Sec. 5.1.1, to study shifts in the extracted W-boson mass.
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For definiteness, we will focus on the case of W+-boson production. That is, we consider
the processes pp → Z → ℓℓ and pp → W+ → ℓν, where ℓ(ℓ) denotes the charged,
massless (anti-)lepton and ν the neutrino.

inclusive level We begin by estimating shifts of the extracted W-boson mass when
no kinematic cuts are applied. To estimate uncertainties, we compute all quantities in
Eq. (5.22) performing a three-point scale variation µ = µF = µR = {MV/4, MV/2, MV},
where V = Z, W as appropriate. We find that mixed corrections cause a shift

(δMW)mixed = 7± 2 MeV . (5.28)

We repeat the same analysis to study the shift caused by NLO EW corrections using
Eq. (5.27), and find (δMW)NLO-EW = 1 MeV. It follows that the impact of mixed QCD-EW

corrections actually exceeds the impact of NLO EW on the measurement of MW in our
setup.

To appreciate that the result in Eq. (5.28) entails enormous cancellations between
QCD-EW effects in Z- and W-boson production, we only consider the second term on
the r. h. s. of Eq. (5.22), δ

〈
p⊥ℓ,W

〉
/
〈

p⊥ℓ,W

〉
, and set δ

〈
p⊥ℓ,Z

〉
/
〈

p⊥ℓ,Z

〉
to zero. In fact, we

find that both mixed QCD-EW and NLO EW corrections cause rather large shifts of the
order 54 MeV and −31 MeV, respectively. We note that, since the impact of mixed
QCD-EW corrections on the extracted W-boson mass is greater than the one from NLO

EW corrections, we conclude that the transverse-momentum distributions for Z- and
W-boson production are stronger correlated in the NLO EW case, leading to a slightly
larger cancellation between the two terms in Eq. (5.22).

atlas cuts Using the fully-differential setup that we described in Chapter 4, we re-
peat the above analysis employing cuts used in Ref. [25]. In case of W+-boson production,
we require the transverse-momentum of the lepton and the neutrino to exceed 30 GeV.
Furthermore, we require a minimal transverse mass M⊥W > 60 GeV and a charged lepton
in the central rapidity region

∣∣yℓ
∣∣ < 2.4. In case of Z-boson production, we require each

of the charged leptons to be harder than 25 GeV and to have rapidities
∣∣∣yℓ,ℓ

∣∣∣ < 2.4. We
obtain4

(δMW)mixed = −17± 2 MeV . (5.29)

In this case, NLO EW corrections cause a shift of O(3)MeV.
We note that the selection criteria of Ref. [25] described above impose a higher p⊥ℓ

cut in case of the lighter (W-)boson, which effectively gives more weight to events with
higher p⊥. In fact, if we only employ a cut in p⊥ℓ , we can use Eqs. (5.18)-(5.19) to compute
the normalized average momentum at LO. We obtain

f LO
(

25
91.1876

)
≈ 0.422 , f LO

(
30

80.398

)
≈ 0.459 , (5.30)

4 Again, uncertainties are estimated with a three-point variation.
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for the Z- and the W-boson, respectively. This effect leads to a decorrelation of Z- and
W-boson production distributions and eventually causes larger shift in the extracted
value of the W-boson mass.

tuned cuts Since the large shift in Eq. (5.29) is caused by particularities of cuts used
by the ATLAS collaboration in the analyses in Ref. [25], it is interesting to ask, whether
one can tune these cuts leading to a stronger correlation of p⊥ℓ,V distributions in Z- and
W-boson production. To this end, we keep the kinematic cuts in the case of Z-boson
production as chosen by ATLAS and lower p⊥ℓ,W until Cth = 1 at leading order. We find
that we have to choose p⊥ℓ,W > 25.44 GeV instead of p⊥ℓ,W > 30 GeV. For the refined cut
value, we obtain a shift in the extracted W-boson mass of

(δMW)mixed = −1± 5 MeV , (5.31)

where uncertainties are estimated by three-point scale variation. For the refined cut, the
NLO EW correction shifts the extracted value for MW by O(−3)MeV.

summary We have used the average transverse momentum of leptons from decays of
on-shell Z and W bosons to study the impact of mixed initial-initial QCD-EW corrections
on the extraction of the W-boson mass at the LHC. From the three different scenarios that
we considered in our simplified approach, we conclude that mixed QCD-EW corrections
affect the extracted value of the W-boson mass at the level of O(10) MeV and that
kinematic selection criteria do matter.5 In fact, we find that mixed initial-initial QCD-EW

corrections, which are not fully accounted for in Ref. [25], may shift Mmeas
W by up to

17 MeV; a value that is comparable to the target precision. While these results are only
estimates, they point to the need to study mixed initial-initial QCD-EW effects in a way
that is aligned with the experimental strategies of the W-boson mass measurement, such
as e. g. template fits.

5 See also Ref. [262].
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This thesis is devoted to the development and application of theoretical methods that
facilitate high-precision description of hard scattering processes at the LHC. We described
analytic computations of important building blocks of the nested soft-collinear subtrac-
tion scheme, including integrated triple-collinear and double-soft subtraction terms. We
used these results to compute fully-differential mixed QCD-EW corrections to Z- and
W-boson production at hadron colliders and discussed the potential impact of these
corrections on the W-boson mass measurements at the LHC.

In the first part of this thesis, we studied technical aspects of the nested soft-collinear
subtraction scheme. In Chapter 2, we explained how subtraction terms needed for the
regularisation and extraction of soft and collinear singularities are defined in the nested
soft-collinear subtraction scheme. We presented analytic results for various integrated
subtraction terms in Chapter 3. Besides the direct integration of NLO-like subtraction
terms, we computed two double-unresolved integrated subtraction terms:

• double-soft subtraction terms for equal mass back-to-back hard emitters. Such
contributions arise in the fully differential description of colour singlet decays into
massive quarks, e. g. for Higgs-boson decays into bottom quarks or in heavy-quark
production;

• triple-collinear subtraction terms for all possible partonic splittings in initial and
final states.

Analytic results for subtraction terms improve the efficiency and numerical stability
of practical computations. Additionally, they will enable the derivation of a general
NNLO QCD subtraction formula for arbitrary hard processes at the LHC. We expect
the approach described in this thesis to be well suited to tackle the computation of
remaining double-soft subtraction terms, for example those needed for single-top or top
pair production.

In the second part of this thesis, we studied fully-differential mixed QCD-EW corrections
to on-shell vector boson production at the LHC. In particular, we obtained the so-far
unknown initial-initial contributions to mixed QCD-EW corrections to Z- and W-boson
production. Technical details of these computations were presented in Sec. 4.1 and Sec. 4.2.
There, we explained how to compute QCD-QED corrections to Z-boson production by
starting from the known QCD NNLO calculation [1, 2] and considering the abelian limit.
We combined this result with the finite remainder of one-loop weak corrections and the
analytical finite remainder of two-loop QCD-weak corrections.

103



104 conclusion

In the case of W-boson production, we discussed the regularisation of IR singularities
of double-real contributions within the nested soft-collinear subtraction scheme. We
adapted the scheme to accommodate simplifications that arise due to the abelian nature
of mixed O(αsα) corrections. We presented analytic formulas for double-real tree-level
helicity amplitudes, as well as several two-loop master integrals that are required for the
evaluation of the QCD-EW on-shell W-boson form factor in Appendix D.

We implemented results in a Fortan computer code that allows us to study QCD-EW

corrections to inclusive and fiducial cross sections, as well as kinematic distributions
related to on-shell Z- and W-boson production at the LHC. We found that mixed QCD-EW

initial-initial corrections to fiducial cross sections are small, of the order of one per mille.
However, these small corrections may become relevant for the direct W-boson mass

measurement at the LHC, since in this case precision of O(10)MeV is expected to be
achieved. In Sec. 5.2, we have used a simple but transparent model to study how initial-
initial mixed QCD-EW corrections affect Z and W boson p⊥ℓ -distributions. We have found
that induced shifts in the measured value for MW depend rather strongly on kinematic
cuts and that there are cases where they are comparable to the target precision of
O(10)MeV or even larger. This result calls for more detailed studies of the impact of
mixed QCD-EW corrections on the W-boson mass measurement that incorporate details
of experimental analyses.
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AS P E C I A L F U N C T I O N S

In this Appendix, we define various special functions that we use throughout this thesis.

a.1 gamma function

The gamma function is defined by the Euler integral [263]

Γ (α) =
∫ ∞

0
dx xα−1e−x , Re(α) > 0 . (A.1)

By analytical continuation, it can be defined as an meromorphic function Γ (z), having
simple poles at integer values z = −n with residue (−1)n/n!. The gamma function
obeys the recursion relation [263]

Γ (z + 1) = z Γ (z) , (A.2)

and the Legendre duplication formula [263]

Γ (z) Γ
(

z +
1
2

)
= 21−2z√π Γ (2z) , (A.3)

which can be applied to shift arguments of gamma functions such that ϵ-poles become
explicit.

a.2 beta function

The beta function is defined by the Euler integral [263]

B(α, β) =
∫ 1

0
dt tα−1 (1− t)β−1 =

Γ(α)Γ(β)

Γ(α + β)
, Re(α) > 0∧ Re(β) > 0 . (A.4)

Analytic continuation of the beta function is defined by continuing the gamma functions
on the r. h. s. of Eq. (A.4).

a.3 hypergeometric function

definition The hypergeometric series reads [263]

2F1 [{a, b}, {c}; z] =
Γ (c)

Γ (a) Γ (b)

∞

∑
n=0

Γ (a + n) Γ (b + n)
Γ (c + n)

zn

n!
, (A.5)
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with radius of convergence |z| = 1. The principal branch is obtained by a cut along the
real axis z ∈ [1, ∞], or equivalently |arg (1− z)| ≤ π. For Re(c) > Re(b) > 0, the integral
representation reads [263]

2F1 [{a, b}, {c}; z] =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
du ub−1(1− u)c−b−1(1− z u)−a . (A.6)

linear transformations Linear transformations that are used in this thesis
read [263]

2F1 [{a, b}, {c}; z]

=
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b) 2F1 [{a, b}, {a + b− c + 1}; 1− z]

+(1− z)c−a−b Γ (c) Γ (a + b− c)
Γ (a) Γ (b) 2F1 [{c− a, c− b}, {c− a− b + 1}; 1− z] ,

(A.7)

and

2F1 [{a, b}, {c}; z]

=
(−z)−a Γ (b− a) Γ (c)

Γ (b) Γ (c− a) 2F1 [{a, 1 + a− c}, {1 + a− b}; 1/z]

+
(−z)−b Γ (a− b) Γ (c)

Γ (a) Γ (c− b) 2F1 [{b, 1 + b− c}, {1− a + b}; 1/z] .

(A.8)

quadratic transformations Two useful quadratic transformations read [263]

2F1 [{a, b}, {2b}; z] =
(

1− z
2

)−a
2F1

[
{ a

2
,

a + 1
2
}, {b + 1

2
}; z2

4(1− z/2)2

]
, (A.9)

and

2F1

[
{a, a +

1
2
}, {c}; z

]
=
(
1±
√

z
)−2a

2F1

[
{2a, c− 1

2
}, {2c− 1}; ±2

√
z

1±√z

]
. (A.10)

generalized hypergeometric function By Euler’s recursion formula, we can
express certain integrals over hypergeometric functions as generalized hypergeometric
functions. In particular, we have [263]

p+1Fq+1
[
{a1 . . . ap+1}, {b1 . . . bq+1}; z

]

=
Γ
(
bq+1

)

Γ
(
ap+1

)
Γ
(
bq+1 − ap+1

)×
∫ 1

0
dx xap+1−1(1− x)bq+1−ap+1−1

pFq
[
{a1 . . . ap}, {b1 . . . bq}; x z

]
.

(A.11)



A.4 clausen function 109

a.4 clausen function

We define Clausen functions as [263]

Cln(z) =





1
2

[
Lin
(
eiz)+ Lin

(
e−iz)] , n odd ,

1
2i

[
Lin
(
eiz)− Lin

(
e−iz)] , n even .

(A.12)

a.5 goncharov polylogarithm

definition Goncharov polylogarithms (GPLs) [154, 155] are a special case of Chen
iterated integrals [152]. We define them via an integral representation

Gσ⃗ (x) = G({σn, . . . , σ1}; x) =
∫ x

0

dtn

tn − σn

∫ tn

0

dtn−1

tn−1 − σn−1
. . .
∫ t2

0

dt1

t1 − σ1
, (A.13)

where the so-called letters σi are arbitrary complex numbers and σ1 ̸= 0. We call the
n-tuple {σn, . . . , σ1} a word of weight n. We can write Eq. (A.13) recursively as

G({a, σ⃗}; x) =
∫ x

0

dt
t− a

G({⃗σ}; t) , G({}; x) = 1 . (A.14)

Integral representations in Eq. (A.13) and Eq. (A.14) diverge whenever the word σ⃗ ends
with (several) zero(es). To cover this case, we extend the definition by

G({0, . . . , 0︸ ︷︷ ︸
n times

}; x) =
lnn(x)

n!
. (A.15)

special cases GPLs are related to harmonic polylogarithms (HPLs) [264] via

H({ω⃗}; x) = (−1)n−1(ω⃗) ×G({ω⃗}; x) , (A.16)

where letters ωi are drawn from the alphabet {0, 1,−1} and n−1 (ω⃗) counts the ap-
pearances of letter “−1” in ω⃗. Classical polylogarithms can be expressed through GPLs

as

Lin(x) = −G({0, . . . , 0︸ ︷︷ ︸
n times

, 1}; x) . (A.17)

numerical evaluation Numerical evaluation of GPLs is, for example, discussed
in Refs. [176, 265].
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shuffle algebra GPLs obey the so-called shuffle identity

G({⃗σ1}; x)×G({⃗σ2}; x) = ∑
s⃗∈ σ⃗1⊔⊔ σ⃗2

G({⃗s}; x) , (A.18)

where the sum runs over all possible shuffles σ⃗1 ⊔⊔ σ⃗2. A shuffle of two words σ⃗1,2 of
lengths n1,2 is the set of (n1 + n2)!/n1!/n2! words, for which the ordering of letters is
the same as in the original words σ⃗i.

Example 6 (Shuffle)

As a straightforward example, we compute

Ga,b (t)×Gc,d (t)

= 2 Ga,b,c,d (t) + Ga,c,b,d (t) + Ga,c,d,b (t) + Gc,a,b,d (t) + Gc,a,d,b (t) . (A.19)

fibration basis A (multi-variable) GPL is said to be in a so-called fibration basis,
if it admits the from G({⃗σ}; x), where the word σ⃗ is independent of x. In practical
applications, it might be desirable to bring GPLs into a certain fibration basis. Here,
we describe such procedure, which is sometimes referred to as “super-shuffle” [172].
Consider a GPL of weight n,

G({R⃗(x)}; R̃(x)) (A.20)

where R⃗ (R̃) denotes a rational word (function) of x and suppose we want to find the
fibration basis in x. Up to a constant, we can write this function as the primitive of its
derivative,

G({R⃗(x)}; R̃(x)) =
∫ x

dt
[

∂

∂t
G({R⃗(t)}; R̃(t))

]
+ const . (A.21)

After taking the derivative in Eq. (A.21), the integrand contains only GPLs of weight n− 1,
and we can use the relation to recursively derive a fibration basis. The recursion starts
with the natural logarithm at weight one,

G({ f (x)}; g(x)) = ln
(

1− g(x)
f (x)

)
, G({0}; g(x)) = ln (g(x)) , (A.22)

where f and g are rational functions of x. Using standard identities, we can always bring
Eq. (A.22) into a fibration basis in x. We note that during this procedure, constants of
integration in Eq. (A.21) have to be fixed in a suitable limit x → a for each weight.
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Example 7 (Fibration basis)

We demonstrate the recursive super-shuffle algorithm re-writing the weight-three expression
G−1,1/x,1/x ((1− x)/x). Using Eq. (A.21), we write

G−1,1/x,1/x ((1− x)/x)

=
∫ x

dt
G−1,1/t ((1− t)/t)−G1/t,1/t ((1− t)/t)

1 + t
+ c3 . (A.23)

Using Eq. (A.21) again, we re-write the two weight-two expressions in the integrand as

G−1,1/x

(
1− x

x

)
=
∫ x

dt
G−1 ((1− t)/t)−G1/t ((1− t)/t)

1 + t
+ ca

2 ,

G1/x,1/x

(
1− x

x

)
=
∫ x

dt
G1/t ((1− t)/t)

t
+ cb

2 .
(A.24)

We are now in the position to re-write the weight-one integrand in Eq. (A.24) as

G−1 ((1− t)/t) = − ln(t) = −G0 (t) ,

G1/t ((1− t)/t) = ln(t) = G0 (t) .
(A.25)

We use Eq. (A.25) in Eq. (A.24) and find

G−1,1/x

(
1− x

x

)
= −2

∫ x
dt

G0 (t)
1 + t

+ ca
2 = −2 G−1,0 (x) + ca

2 ,

G1/x,1/x

(
1− x

x

)
=
∫ x

dt
G0 (t)

t
+ cb

2 = G0,0 (x) + cb
2 .

(A.26)

To compute constants ci
2, we take the (regular) limit x→ 1 in Eq. (A.26). We obtain

ca
2 = −π2

6
, cb

2 = 0 . (A.27)

Using the above formulas, we can express the integrand in Eq. (A.23) through a fibration basis
and integrate. We find

G−1,1/x,1/x ((1− x)/x)

=
∫ x

dt
−2 G−1,0 (t)− π2

6 −G0,0 (t)
1 + t

+ c3

= −2G−1,−1,0 (x)− π2

6
G−1 (x)−G−1,0,0 (x) + c3 .

(A.28)

Finally, we fix the constant c3 in the regular limit x → 1 and find c3 = ζ3.
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In this Appendix, we collect some of the definitions used in Chapter 2.

b.1 general definitions

b.1.1 Coupling constants

We use the following abbreviations for bare coupling constants

[αs] =
g2

s Ω(d−2)

2(2π)d−1 =
g2

s
8π2

(4π)ϵ

Γ (1− ϵ)
, (B.1)

and

[α] =
e2Ω(d−2)

2(2π)d−1 =
e2

8π2
(4π)ϵ

Γ (1− ϵ)
. (B.2)

In Eqs. (B.1)-(B.2), Ω(n) denotes the volume of a unit sphere embedded in n dimensions.
Its definition reads

∫
dΩ(n) = Ω(n) =

2πn/2

Γ (n/2)
. (B.3)

b.1.2 Plus prescription

We define the plus prescription as
∫ 1

0
dz [ f (z)]+ g(z) =

∫ 1

0
dz f (z) [g(z)− g(1)] , (B.4)

where g is a function that is regular at z = 1. In soft-regulated collinear contributions,
we will encounter integrals of the form

∫ 1

0
dz

g(z)− g(1)
(1− z)1+jϵ =

∫ 1

0
dz

[
∞

∑
n=0

(−1)n(jϵ)n

n!
Dn(z)

]
g(z) , (B.5)

where the r. h. s. follows from Taylor expansion in ϵ and we used the abbreviation

Dn(z) =
[

lnn(1− z)
1− z

]

+

. (B.6)
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It is useful to re-write Eq. (B.5) in the following way; we integrate the second term on
the l. h. s. and find

∫ 1

0
dz
[

1
(1− z)1+jϵ +

δ(1− z)
jϵ

]
g(z) =

∫ 1

0
dz

[
∞

∑
n=0

(−1)n(jϵ)n

n!
Dn(z)

]
g(z) , (B.7)

which we write as

1
(1− z)1+jϵ =

∞

∑
n=0

(−1)n(jϵ)n

n!
Dn(z)−

δ(1− z)
jϵ

. (B.8)

The relation in Eq. (B.8) should be understood in a distributional sense: it is only valid
when multiplied with a test function that is regular at z = 1 and integrated over z ∈ [0, 1].

b.2 eikonal functions

b.2.1 Color notation

We adopt color notations of Ref. [53] and write a generic matrix element as

Mc1,...,cn(p1, . . . , pn) =
〈
c1, . . . , cn|M(p1, . . . , pn)

〉
, (B.9)

where ci are color indices. We denote the color charge of a gluon emitted from a parton i
by an operator T i. This operator acts on the color space as

〈
c1, . . . , ci, . . . , cm, a|T i|b1, . . . , bi, . . . , bm

〉
= δc1b1 . . . Ta

cibi
. . . δcnbn , (B.10)

where a is the index of the gluon. We have

Ta
cibi

=





i facibi i is a gluon

ta
cibi

i is a quark

−ta
cibi

i is a antiquark

, (B.11)

where fabc and ta
bc are the SU(Nc) color generators in the adjoint and fundamental

representation, respectively. To describe eikonal functions up to O
(
α2

s
)
, we require the

following two correlations

|A(ij)({p})|2 = ⟨A(p1, . . . , pn)|T i · T j|A(p1, . . . , pn)⟩ ,

|A{(ij),(kl)}({p})|2 = ⟨A(p1, . . . , pn)|{T i · T j, Tk · T l}|A(p1, . . . , pn)⟩ ,
(B.12)

where {·, ·} denotes the anticommutator in colour space.
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b.2.2 Gluon emission

The double-soft function S0
ij(k1, k2) for gluon emission off massless emitters reads [123]

S0
ij(k1, k2) =

(1− ϵ)

(k1 · k2)2

[
(pi · k1)(pj · k2) + i↔ j

]

(pi · k12)(pj · k12)

− (pi · pj)
2

2(pi · k1)(pj · k2)(pi · k2)(pj · k1)

[
2−

[
(pi · k1)(pj · k2) + i↔ j

]

(pi · k12)(pj · k12)

]

+
(pi · pj)

2(k1 · k2)

[
2

(pi · k1)(pj · k2)
+

2
(pj · k1)(pi · k2)

− 1
(pi · k12)(pj · k12)

×
(

4 +

[
(pi · k1)(pj · k2) + i↔ j

]2

(pi · k1)(pj · k2)(pi · k2)(pj · k1)

)]
,

(B.13)

where k12 = k1 + k2. The double-soft function Sm
ij (k1, k2) for massive emitters was

derived in Ref. [96], building on the fact that eikonal currents are identical for massive
and massless emitters. The result is given by [96]

Sm
ij (k1, k2) = −

1
4(k1 · k2)(pi · k1)(pi · k2)

+
(pi · pj)(pj · k12)

2(pi · k1)(pj · k2)(pi · k2)(pj · k1)(pi · k12)

− 1
2(k1 · k2)(pi · k12)(pj · k12)

(
(pj · k1)

2

(pi · k1)(pj · k2)
+

(pj · k2)2

(pi · k2)(pj · k1)

)
.

(B.14)

b.2.3 Quark emission

The soft function Iij(k1, k2) for quark-antiquark pair emission is given by [123]

Iij(k1, k2) =

[
(pi · k1)

(
pj · k2

)
+ i↔ j

]
−
(

pi · pj
)
(k1 · k2)

(k1 · k2)
2 (pi · k12)

(
pj · k12

) . (B.15)

b.3 derivation of double-collinear gluon emission

In this Section, we derive the factorization formula given in Example 1. We consider the
double-real correction q(p1)q̄(p2)→ Z g(k4)g(k5) to color-singlet production and take
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the limit k4 ∥ p1. The tree-level diagrams that contribute to this process can be split in
two classes,

Aqq̄→Zgg = Ac +A f =

p1
k5

k4

+

p1
k5

k4

, (B.16)

where the black disc summarizes the various ways in which the gluon(s) can be attached.
On the r. h. s. of Eq. (B.16), the first diagram class, Ac, contains the singular propagator
1/ (p1 − k4)

2, while all other diagrams, in class A f , are finite in the limit k4 ∥ p1.
We begin with the first class and write

Ac = gs,bAblob,i
p̂1 − k̂4

(p1 − k4)
2 Tij ε̂4uj

1 , (B.17)

where the quark spinor uj
1, the gluon polarisation ε̂4, the quark propagator “q̂/q2”, as

well as the quark-gluon coupling are given explicitly and the remainder is summarized
in the object Ablob,i. We parameterize

kµ
4 = αp1 − qµ

⊥ −
q2
⊥
α

nµ

2(p1·n)
, (B.18)

where n2 = (q⊥ ·n) = (q⊥ ·p1) = 0. In this parameterization, n is an auxiliary vector that
defines the transverse component q⊥ and k4 ∥ p1 corresponds to the limit q⊥ → 0; we
find

(p1 − k4)
2 =

q2
⊥
α

. (B.19)

In the following, we extract the singular behaviour in Eq. (B.16) that contributes
to the non-integrable O

(
1/q2

⊥
)

singularity of the matrix element squared. We insert
parameterization Eq. (B.18) into Eq. (B.17) and obtain

Ac ∼
q⊥→0

gs,bTijAblob,i
(1− α) p̂1 + q̂⊥

(p1 − k4)
2 ε̂4uj

1

= gs,bTijAblob,i
2(1− α)(p1·ε4) + q̂⊥ ε̂4

(p1 − k4)
2 uj

1 ,
(B.20)

where we neglected the O
(
q2
⊥
)

contribution in the numerator and used the Dirac
equation p̂1uj

1 = 0. Since we work in the physical (light-cone) gauge, the following
transversality relation holds

0 = (k4·ε4) = α(p1·ε4)− (q⊥ ·ε4) +O
(
q2
⊥
)

. (B.21)
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Inserting the relation above into Eq. (B.20), we obtain

Ac ∼
q⊥→0

gs,bTij

(p1 − k4)
2Ablob,i

[
2(1− α)

α
(q⊥ ·ε4) + q̂⊥ ε̂4

]
uj

1 ≡ Alim
c . (B.22)

From Eq. (B.19) and Eq. (B.22), we find that Alim
c ∼ 1/q⊥. Hence, the non-integrable

contribution to the matrix element squared reads
∣∣Ac +A f

∣∣2 =
∣∣∣Alim

c

∣∣∣
2
+O(1/q⊥) . (B.23)

We conclude that, due to the physical gauge, the singularity factorizes on the external leg
such that no interference terms between singular and non-singular diagrams contribute
in Eq. (B.23).

We now turn to the computation of the singularity of the matrix element squared.1

We find

|Alim
c |2 =

g2
s,bCF

(p1 − k4)
4 ∑

λ4

Tr
{
Ablob

[
2(1− α)

α
(q⊥ ·ε4) + q̂⊥ ε̂4

]
p̂1

×
[

2(1− α)

α
(q⊥ ·ε∗4) + ε̂ ∗4 q̂⊥

]
A†

blob

}
.

(B.24)

The sum over polarisations of the gluon yields

∑
λ4

ε4,µε∗4,ν = −gµ,ν +
k4,µnν + k4,νnµ

(k4·n)
. (B.25)

We use that

∑
λ4

(q⊥ ·ε4)Tr
{
Ablob p̂1 ε̂ ∗4 q̂⊥A†

blob

}
= − q2

⊥Tr
{
Ablob p̂1A†

blob

}
, (B.26)

∑
λ4

Tr
{
Ablob q̂⊥ ε̂4 p̂1 ε̂ ∗4 q̂⊥A†

blob

}
= − (d− 2)q2

⊥Tr
{
Ablob p̂1A†

blob

}
, (B.27)

and arrive at

|Alim
c |2 =

g2
s,bCF

(p1·k4)
×
[

1 + z2

1− z
− ϵ(1− z)

]
× |Ared [p1 − k4]|2 , (B.28)

where z = 1− α. The reduced matrix element squared in Eq. (B.28) reads

|Ared [p1 − k4]|2

= (1− α)Tr
{
Ablob p̂1A†

blob

}

= Tr
{
Ablobu [(1− α)p1] ū [(1− α)p1] A†

blob

}
.

(B.29)

1 More precisely, we average over spin and colour of the incoming quark and sum over helicity and colour of
the outgoing gluon
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As can be seen from Eq. (B.29), Ared describes Ac in a situation where g(k4) is absent
and the incoming quark carries momentum (1− α)p1 = zp1 = p1 − k4 +O(q⊥) instead
of momentum p1.

b.4 color coherence in the soft-collinear limit

In the following, we explain how the coherence of soft emission forbids the appearance
of entangled soft-collinear singularities. The absence of this type of singularity is used
in the formulation of the nested soft-collinear subtraction scheme [1], where soft and
collinear singularities are regulated iteratively and independent of each other. In this
thesis, the regularisation is described in Chapter 2.

To understand how entangled soft-collinear singularities could arise, consider, for
example, the diagram

k4 k5

pi

(B.30)

In the limit k5 → 0 and k4 ∥ pi, this diagram behaves like

1
(pi ·k4)︸ ︷︷ ︸
collinear

+ (pi ·k5) + (k4·k5)︸ ︷︷ ︸
soft

→ ∞ . (B.31)

In the following, we employ arguments of Section 3.4 in Ref. [123] to explain the absence
of overlapping soft-collinear singularities in double-real corrections, using the example
of gluon-emission corrections to Higgs boson decay, H → b(p1)b̄(p2) + g(k4)g(k5).
Specifically, we consider the limit where one gluon becomes soft (k5 → 0) and the other
gluon becomes collinear to the b quark (k4 ∥ p1). The four diagrams that contribute to
the divergence in this particular limit are

A1 = h

b1

b̄2

g4

g5
, A2 = h

b1

b̄2

g4
g5 , (B.32)
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A3 = h

b1

b̄2

g5
g4 , A4 = h

b1

b̄2

g4

g5
. (B.33)

In the limit k5 → 0 and k4 ∥ p1, diagrams A2,3,4 in Eq. (B.32) have an entangled soft-
collinear divergence as displayed in Eq. (B.31) upon identifying p1 = pi. However, such
overlapping soft-collinear singularities only appear on the level of individual diagrams –
they are absent in gauge-invariant matrix elements due the fact soft emission in QCD is
coherent.

To verify this statement at the example of Higgs decay, we turn to the sum of diagrams
in Eqs. (B.32)-(B.33). We begin by extracting the leading singular behaviour in the soft
limit k5 → 0 and obtain

Ah→b1 b̄2g4g5 ∼
k5→0

A1 + · · ·+A4 ∼
k5→0

g2
s,b Jµ(k5) ε∗µ(k5)

(p1 + k4)2 ×Ah→b1 b̄2 , (B.34)

where Ah→b1 b̄2 is the Born-level amplitude. The soft current Jµ(k5) in Eq. (B.34) reads2

Jµ(k5) = T2
pµ

2
(p2·k5)︸ ︷︷ ︸
A1

+ (T4 + T1)
2(p1 + k4)

µ

(p1 + k4 + k5)2
︸ ︷︷ ︸

A2

+
(p1 + k4)

2

(p1 + k4 + k5)2


T1

pµ
1

(p1·k5)︸ ︷︷ ︸
A3

+ T4
kµ

4
(k4·k5)︸ ︷︷ ︸
A4


 . (B.35)

To simplify the computation of the collinear limit k4 ∥ p1, we re-arrange terms in
Eq. (B.35) and write the soft current as

Jµ(k5) = Jµ
cs(k5) + Jµ

cf(k5) , (B.36)

where

Jµ
cs(k5) = T2

pµ
2

(p2·k5)
+ (T1 + T4)

(p1 + k4)
µ

(p1 + k4) · k5
, (B.37)

and

Jµ
cf(k5) =

(p1 + k4)
2

(p1 + k4 + k5)2

×
[

T1
pµ

1
(p1·k5)

+ T4
kµ

4
(k4·k5)

− (T1 + T4)
(p1 + k4)

µ

(p1 + k4) · k5

]
. (B.38)

2 We employ the color notation of Sec. B.2 and retain all terms that cause singularities in k5 → 0, k4 ∥ p1.
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In writing Eqs. (B.36)-(B.38), we have used that

2(p1 + k4)
µ

(p1 + k4 + k5)2 =
(p1 + k4)

µ

(p1 + k4) · k5

[
1− (p1 + k4)

2

(p1 + k4 + k5)2

]
. (B.39)

We note the currents in Eqs. (B.37)-(B.38) are separately gauge invariant, since k5,µ Jµ
cs,cf(k5) =

0. For this reason, the decomposition in Eq. (B.36) does not spoil gauge invariance. Fur-
thermore, we note that both Jµ

cs(k5) and Jµ
cf(k5) show the expected soft behavior O(1/k5).

We now turn to the discussion of the collinear limit k4 ∥ p1. To this end, we parame-
terize momenta p1 and k4 as [123]

pµ
1 = z qµ + qµ

⊥ −
q2
⊥
z

nµ

2(q·n) ,

kµ
4 = (1− z) qµ − qµ

⊥ −
q2
⊥

1− z
nµ

2(q·n) ,
(B.40)

where q2 = n2 = (q⊥·n) = (q⊥·q) = 0. In this parameterization, q denotes the momentum
to which p1 and k4 become parallel, n is an auxiliary vector needed to define the
transverse component q⊥, and k4 ∥ p1 corresponds to the limit q⊥ → 0.

It is straightforward to see that in the limit q⊥ → 0 the soft current Jµ
cf(k5) in Eq. (B.38)

is suppressed by O(q⊥) w. r. t. the soft current Jµ
cs(k5) in Eq. (B.37). Hence, we can neglect

Jµ
cf(k5) in the soft-collinear limit and find

Ah→b1 b̄2g4g5 k5→0∼
k4∥p1

g2
s,b

2(p1·k4)

[
T2

pµ
2

(p2·k5)
+ (T1 + T4)

(p1 + k4)
µ

(p1 + k4) · k5

]

× ε∗µ(k5)Ah→b1 b̄2 .

(B.41)

The factorization formula in Eq. (B.41) describes the emission of a soft gluon g(k5) by
anti-quark b̄(p2) and the coherent soft emission by a particle with momentum p1 + k4

and charge T4 + T1. We emphasize again that the overlapping soft-collinear singularity
is absent on the level of the gauge-invariant amplitude, as can be seen from Eq. (B.41).

We note that the discussion above can be generalized to show the absence of overlap-
ping soft-collinear singularities in tree-level amplitudes describing the scattering of n
massless partons in cases where arbitrarily many particles become soft and arbitrarily
many particles become collinear [123].

b.5 phase-space parametrization

In the following, we briefly summarize the angular phase-space parameterization and
define double-collinear limits. We begin by separating energies and angles in Eq. (2.15)
and write

[dk4][dk5] =
dd−1k4

(2π)d−12E4

dd−1k5

(2π)d−12E5
=

dE4 dE5

(E4E5)−1+2ϵ

dΩ(d−1)
4

2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 . (B.42)
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We will present the parameterization of the angular phase-space in case of double-
collinear and triple-collinear partitions in Appendix B.5.1 and Appendix B.5.2, respec-
tively.

b.5.1 Double-collinear partitions

Double-collinear partitions ω
i4,j5
DC , i ̸= j, are defined to dampen all but the singular limits

k4 ∥ pi and k5 ∥ pj, see Eq. (2.49). To simplify double-collinear limits, we parameterize
the direction-of-flight of partons f4,5 relative to Born-particles i and j, respectively. We
write

nµ
4 = tµ + cos θ4i eµ

i + sin θ4i bµ
i , (B.43)

nµ
5 = tµ + cos θ5j eµ

j + sin θ5j bµ
j , (B.44)

where t = (1, 0) and ei,j =
(
0, ni,j

)
. Vectors bi,j fulfill the condition

t · bm = 0 , em · bm = 0 , m ∈ {i, j} . (B.45)

With this parameterization, the angular phase space in Eq. (B.42) reads

dΩ(d−1)
4

2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 =
dΩ(d−2)

bi

(2π)d−1

dΩ(d−2)
bj

(2π)d−1 (B.46)

× dη4i [4η4i(1− η4i)]
−ϵ dη5j

[
4η5j(1− η5j)

]−ϵ , (B.47)

where ηlm = (1− cos θlm)/2 ∈ [0, 1]. Double-collinear limits are defined to extract the
leading 1/η-behaviour; in this parameterization we find

C4i
dΩ(d−1)

4
2(2π)d−1 =

dΩ(d−2)
bi

(2π)d−1 dη4i [4η4i]
−ϵ ,

C5j
dΩ(d−1)

5
2(2π)d−1 =

dΩ(d−2)
bj

(2π)d−1 dη5j
[
4η5j

]−ϵ .

(B.48)

b.5.2 Triple-collinear partitions

Triple-collinear partitions ωi4,i5
T C are defined to dampen all but the double-collinear

singular limits k4 ∥ pi, k5 ∥ pi, and k4 ∥ k5, as well as the triple-collinear divergence
k4 ∥ k5 ∥ pi, see Eq. (2.50). To simplify the extraction of these singularities, we adopt the
parameterization of Ref. [95].3 We write

nµ
4 = tµ + cos θ4i eµ

i + sin θ4i bµ
i , (B.49)

3 Relevant formulas can also be found in Appendix B of Ref. [1].
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nµ
5 = tµ + cos θ5i eµ

i + sin θ5i
(
cos φ45 bµ

i + sin φ45 aµ
i

)
, (B.50)

where

t · ai = t · bi = ei · ai = ei · bi = ai · bi = 0 . (B.51)

We obtain

dΩ(d−1)
4

2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 =
dΩ(d−2)

bi
dΩ(d−3)

ai

26ϵ(2π)2d−2

× η1−2ϵ
45

dη4

[η4(1− η4)]
ϵ

dη5

[η5(1− η5)]
−ϵ

dλ

[λ(1− λ)]1/2+ϵ
.

(B.52)

In writing Eq. (B.52), we have defined

sin2 φ45 = 4λ(1− λ)η2
45 , η45 =

|η4 − η5|
D

, η4,5 =
1− cos θ4i,5i

2
, (B.53)

where

D = η4 + η5 − 2η4η5 + 2(2λ− 1)
√

η4η5(1− η4)(1− η5) . (B.54)

In Sec. 2.3.3, we have discussed how to split the phase space into sectors for two cases:
the general case, that admits a k4 ∥ k5 singularity, and the case without. We will explain
how to parameterize angles in both cases in what follows.

Parameterization in the general case

In the general case, which admits the k4 ∥ k5 singularity, we have split the phase space
into four sectors, see Eqs. (2.59)-(2.62). In these four sectors, we choose the following
parameterization

(a) η4 = x3 , η5 = x3 x4/2 , (B.55)

(b) η4 = x3 , η5 = x3(1− x4/2) , (B.56)

(c) η4 = x3 x4/2 , η5 = x3 , (B.57)

(d) η4 = x3(1− x4)/2 , η5 = x3 . (B.58)

Since the measure in Eq. (B.52) is symmetric in η4 ↔ η5, angular phase spaces for sectors
a, c and b, d are identical. We write

dΩ(d−1)
4

2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 × θa,c =
dΩ(d−2)

bi
dΩ(d−3)

ai

26ϵ(2π)2d−2

[
(1− x3)F(a,c)

ϵ

]−ϵ
F(a,c)

0 x2
3x4

× dx3

x1+2ϵ
3

dx4

x1+ϵ
4

dλ

[λ(1− λ)]1/2+ϵ
, (B.59)
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dΩ(d−1)
4

2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 × θb,d =
dΩ(d−2)

bi
dΩ(d−3)

ai

26ϵ(2π)2d−2

[
(1− x3)F(b,d)

ϵ

]−ϵ
F(b,d)

0 x2
3x2

4

× dx3

x1+2ϵ
3

dx4

x1+2ϵ
4

dλ

[λ(1− λ)]1/2+ϵ
, (B.60)

where

F(a,c)
ϵ =

(1− x3x4/2)(1− x4/2)2

2N(x3, x4/2, λ)2 , F(a,c)
0 =

(1− x4/2)
2N(x3, x4/2, λ)

, (B.61)

F(b,d)
ϵ =

(1− x4/2)(1− x3(1− x4/2))
4N(x3, 1− x4/2, λ)2 , F(b,d)

0 =
1

4N(x3, 1− x4/2, λ)
, (B.62)

and

N(x3, x4, λ) = 1 + x4(1− 2x3)− 2(1− 2λ)
√

x4(1− x3)(1− x3x4) . (B.63)

In sectors a and c, double-collinear singularities k5 ∥ pi and k4 ∥ pi are present. With
the parameterization Eq. (B.55) and Eq. (B.55), these limits correspond to the limit x4 → 0.
We find

Ck

[
dΩ(d−1)

4
2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 × θa,c

]
=

dΩ(d−2)
bi

dΩ(d−3)
ai

26ϵ(2π)2d−2

[
1− x3

2

]−ϵ x2
3x4

2

× dx3

x1+2ϵ
3

dx4

x1+ϵ
4

dλ

[λ(1− λ)]1/2+ϵ
, (B.64)

where k = a, c.
In sectors b and d, the double-collinear singularity k4 ∥ k5 is present. As can be seen

from Eq. (B.56) and Eq. (B.58), this limit again corresponds to taking x4 → 0. We find

Ck

[
dΩ(d−1)

4
2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 × θa,c

]
=

dΩ(d−2)
bi

dΩ(d−3)
ai

26ϵ(2π)2d−2

[
1

64λ2

]−ϵ x2
3x2

4
16(1− x3)λ

× dx3

x1+2ϵ
3

dx4

x1+2ϵ
4

dλ

[λ(1− λ)]1/2+ϵ
, (B.65)

where k = b, d.

Parameterization in the case of gγ emission

In the case of gγ emission, no singularity arises in the limit when the gluon and the
photon become collinear, k4 ∥ k5. Accordingly, we have split the phase space into only
two sectors, see Eqs. (2.65)-(2.66). We parameterize

(A) η4 = x3 x4 , η5 = x3 , (B.66)

(B) η4 = x3 , η5 = x3 x4 , (B.67)
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and find

dΩ(d−1)
4

2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 × θA,B =
dΩ(d−2)

bi
dΩ(d−3)

ai

26ϵ(2π)2d−2

[
(1− x3)F(A,B)

ϵ

]−ϵ
F(A,B)

0 x2
3x4

× dx3

x1+2ϵ
3

dx4

x1+ϵ
4

dλ

[λ(1− λ)]1/2+ϵ
, (B.68)

where

F(A,B)
ϵ =

(1− x3x4)(1− x4)
2

2N(x3, x4, λ)2 , F(A,B)
0 =

(1− x4)

N(x3, x4, λ)
. (B.69)

Also in this case, the double collinear limits correspond to x4 → 0. We find

Ck

[
dΩ(d−1)

4
2(2π)d−1

dΩ(d−1)
5

2(2π)d−1 × θA,B

]
=

dΩ(d−2)
bi

dΩ(d−3)
ai

26ϵ(2π)2d−2

[
1− x3

2

]−ϵ

x2
3x4

× dx3

x1+2ϵ
3

dx4

x1+ϵ
4

dλ

[λ(1− λ)]1/2+ϵ
, (B.70)

where k = A, B.
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In this Appendix, we collect formulas relevant to integrated subtraction terms discussed
in Chapter 3. We present double-soft subtraction terms for massless emitters [36, 37]
in Appendix C.1. In case of massive back-to-back emitters, we present master integrals,
differential equations and results for double-soft subtraction terms in Apps. C.2.1 - C.2.3,
respectively. In Appendix C.3, we present triple-collinear subtraction terms. In particular,
we show differential equations, computation of boundary constants and a few explicit
results in Apps. C.3.1 - C.3.3, respectively.

c.1 double-soft subtraction terms for massless emitters

In the following, we repeat the results of Refs. [36, 37] for double-soft subtraction terms
in case of massless emitters at an arbitrary angle. Adopting the notation used there, we
define

SS (gg)
ij = 2GG ij − GG ii − GG jj , (C.1)

SS (qq̄)
ij = − 2×

[
2QQ̄ij −QQ̄ii −QQ̄jj

]
, (C.2)

where GG ij and QQ̄ij are given in Eq. (2.91) and Eq. (2.92), respectively. To display results
in a compact form, we abbreviate s = sin δ and c = cos δ, where δ = θij/2 denotes half
of the relative angle between emitters i and j. We find [36, 37]

SS (gg)
ij = (2 Emax)

−4ϵ

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]2
{

1
2ϵ4 +

1
ϵ3

[
11
12
− ln(s2)

]

+
1
ϵ2

[
2 Li2

(
c2)+ ln2(s2)− 11

6
ln(s2) +

11
3

ln 2− π2

4
− 16

9

]

+
1
ϵ

[
6 Li3

(
s2)+ 2 Li3

(
c2)+

(
2 ln(s2) +

11
3

)
Li2
(
c2)− 2

3
ln3(s2)

+

(
3 ln(c2) +

11
6

)
ln2(s2)−

(
22
3

ln 2 +
π2

2
− 32

9

)
ln(s2)

− 45
4

ζ3 −
11
3

ln2 2− 11
36

π2 − 137
18

ln 2 +
217
54

]

+ 4G({−1, 0, 0, 1}; s2)− 7G({0, 1, 0, 1}; s2) +
22
3

Cl3(2δ) +
1

3 tan(δ)
Cl2(2δ)

+ 2 Li4
(
c2)− 14 Li4

(
s2)+ 4 Li4

(
1

1 + s2

)
− 2 Li4

(
1− s2

1 + s2

)
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+ 2 Li4

(
s2 − 1
1 + s2

)
+ Li4

(
1− s4

)
+

[
10 ln(s2)− 4 ln

(
1 + s2) (C.3)

+
11
3

]
Li3
(
c2)+

[
14 ln(c2) + 2 ln(s2) + 4 ln

(
1 + s2)+ 22

3

]
Li3
(
s2)

+ 4 ln(c2)Li3
(
−s2)+ 9

2
Li2

2
(
c2)− 4 Li2

(
c2)Li2

(
−s2)+

[
7 ln(c2) ln(s2)

− ln2(s2)− 5
2

π2 +
22
3

ln 2− 131
18

]
Li2
(
c2)+

[
2
3

π2 − 4 ln(c2) ln(s2)

]
×

Li2
(
−s2)+ ln4(s2)

3
+

ln4 (1 + s2)

6
− ln3(s2)

[
4
3

ln(c2) +
11
9

]

+ ln2(s2)

[
7 ln2(c2) +

11
3

ln(c2) +
π2

3
+

22
3

ln 2− 32
9

]
− π2

6
ln2 (1 + s2)

+ ζ3

[
17
2

ln(s2)− 11 ln(c2) +
7
2

ln
(
1 + s2)− 21

2
ln 2− 99

4

]
+ ln(s2)×

[
− 7π2

2
ln(c2) +

22
3

ln2 2− 11
18

π2 +
137
9

ln 2− 208
27

]
− 12 Li4

(
1
2

)

+
143
720

π4 − ln4 2
2

+
π2

2
ln2 2− 11

6
π2 ln 2 +

125
216

π2 +
22
9

ln3 2

+
137
18

ln2 2 +
434
27

ln 2− 649
81

+O(ϵ)
}

,

and

SS (qq̄)
ij = (2 Emax)

−4ϵ

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]2
{
− 1

3ϵ3 +
1
ϵ2

[
2
3

ln(s2)− 4
3

ln 2

+
13
18

]
+

1
ϵ

[
− 4

3
Li2
(
c2)− 2

3
ln2(s2) + ln(s2)

(
8
3

ln 2− 13
9

)
+

π2

9

+
4
3

ln2 2 +
35
9

ln 2− 125
54

]
− 8

3
Cl3(2δ)− 2

3 tan(δ)
Cl2(2δ)− 4

3
Li3
(
c2)

− 8
3

Li3
(
s2)+ Li2

(
c2)
[

29
9
− 8

3
ln 2
]
+

4
9

ln3(s2) + ln2(s2)

[
− 4

3
ln(c2)

− 8
3

ln 2 +
13
9

]
+ ln(s2)

[
− 8

3
ln2 2− 70

9
ln 2 +

2
9

π2 +
107
27

]
+ 9ζ3

+
2π2

3
ln 2− 8

9
ln3 2− 23

108
π2 − 35

9
ln2 2− 223

27
ln 2 +

601
162

+O(ϵ)
}

,

(C.4)

where Clausen functions Cln(z) are defined in Eq. (A.12).
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c.2 double-soft subtraction terms for massive emitters

In the following Section, we present formulas for the computation of double-soft sub-
traction with massive emitters that are back-to-back, discussed in Sec. 3.2.2.

c.2.1 Master integrals

We find the following set of thirteen master integrals

I1 =

〈
1
〉

,

I2,...,4 =

{〈
1

D3

〉
,
〈

1
D2D3

〉
,
〈

1
D2D3D5

〉}
⊂ T2,3,5 ,

I5,...,9 =

{〈
D2

D6

〉
,
〈

D5

D6

〉
,
〈

1
D6

〉
,
〈

1
D2D6

〉
,
〈

1
D2D5D6

〉}
⊂ T2,5,6 ,

I10 =

{〈
1

D2D7

〉}
⊂ T2,5,7 ,

I11,12 =

{〈
1

D4D6

〉
,
〈

1
D4D5D6

〉}
⊂ T4,5,6 ,

I13 =

{〈
1

D4D7

〉}
⊂ T4,5,7 ,

(C.5)

where topologies Ta1,a2,a3 are defined in Eq. (3.57).

c.2.2 Differential equations

In order to display the transformation matrix T̂can, which was defined in Eq. (3.62), we
write

T̂can = T̂diag
can + T̂extra

can , (C.6)

where

T̂diag
can = diag

(
z,

1− 2ϵ

3βϵ
,
(1− 2ϵ)2

9β2ϵ2 ,
(1− 2ϵ)2

9βϵ2z
, 0, 0, 0,

(1− 2ϵ)2

9β2ϵ2 ,
2(1− 2ϵ)2

9βϵ2(z + 1)
,

(1− 2ϵ)2

9β2ϵ2 ,
(1− 2ϵ)2

9β2ϵ2 ,
2(1− 2ϵ)2

9βϵ2z(z + 1)
,
(1− 2ϵ)2

9β2ϵ2

)
,

(C.7)

and the non-zero elements of T̂extra
can read

(
T̂extra

can
)
{5,1} = −

z
2

, (C.8)
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(
T̂extra

can
)
{5,5} =

(2ϵ− 1)(z + 1)
(

β2(4ϵ− 1)(z− 1) + (2ϵ− 1)(z + 3)
)

12β2ϵ(4ϵ− 1)
, (C.9)

(
T̂extra

can
)
{5,6} = −

11(2ϵ− 1)(z + 1)(3ϵz + ϵ− z− 1)
36βϵ(4ϵ− 1)

, (C.10)

(
T̂extra

can
)
{5,7} = −

(2ϵ− 1)
(
ϵ
(
15z2 + 18z + 7

)
− 5z2 − 10z− 7

)

18βϵ(4ϵ− 1)
, (C.11)

(
T̂extra

can
)
{6,1} = −

(2ϵ− 1)z(z + 1)
2β2(4ϵ− 3)

, (C.12)

(
T̂extra

can
)
{6,5} =

(1− 2ϵ)2(z + 1)
12β4ϵ(4ϵ− 3)(4ϵ− 1)

[
β2 (8ϵ

(
z2 + z + 1

)
− 3(z + 1)2)

− (2ϵ− 1)(z + 1)2

]
, (C.13)

(
T̂extra

can
)
{6,6} = −

11(1− 2ϵ)2(z + 1)
36β3ϵ(4ϵ− 3)(4ϵ− 1)

[
β2 (2ϵ

(
z2 + 1

)
− (z + 1)2)

+ ϵ(z + 1)2

]
, (C.14)

(
T̂extra

can
)
{6,7} = −

(1− 2ϵ)2

18β3ϵ(4ϵ− 3)(4ϵ− 1)

[
ϵ(z + 1)2(5z + 7)

+ β2 (2ϵ
(
5z3 + 3z2 + 9z + 7

)
− 5z3 − 15z2 − 21z− 7

)
]

, (C.15)

(
T̂extra

can
)
{7,5} =

(1− 2ϵ)2(z + 1)
6β2ϵ(4ϵ− 1)

, (C.16)

(
T̂extra

can
)
{7,6} = −

11(1− 2ϵ)2(z + 1)
36βϵ(4ϵ− 1)

, (C.17)

(
T̂extra

can
)
{7,7} = −

(1− 2ϵ)2(5z + 7)
18βϵ(4ϵ− 1)

, (C.18)

where
(
T̂extra

can
)
{i,j} denotes the entry in the i-th row and the j-th column of T̂extra

can .
To present the system of differential equations in Eq. (3.63), we write

dJ = ϵ
11

∑
k=1

âk dln (Rk) , (C.19)

where we defined the alphabet

R1 = z , R2 = 1 + z , R3 = β , R4,5 = 1± β ,

R6,7 = z +
1± β

2
, R8,9 = z +

1± β

1∓ β
, R10,11 = 1 + z +

1± β

1∓ β
.

(C.20)
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The matrices âk in Eq. (C.19) read

â1 =




−2 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 0 0 0 0 0

0 0 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −7 − 70
11 0 0 0 0 0 0

0 0 0 0 0 11
2 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 3
4 0 0 0 11

16
5
8 0 0 0 0 0 0

0 0 0 0 3
2 0 0 0 0 −2 0 0 0

0 0 0 0 3
2 0 0 0 0 0 −2 0 0

0 0 0 0 0 0 0 0 0 0 0 −2 0

0 0 0 0 − 3
2 0 0 0 0 0 0 0 −2




, (C.21)

â2 =




0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

−3 0 0 0 −2 0 0 0 0 0 0 0 0

0 0 0 0 0 −2 − 24
11 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 0 0 0 0 0 0




, (C.22)
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â3 =




0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 4




, (C.23)

â4 =




0 0 0 0 0 0 0 0 0 0 0 0 0

− 3
2 −1 0 0 0 0 0 0 0 0 0 0 0

0 −3 −2 0 0 0 0 0 0 0 0 0 0
9
4 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 − 11
6 − 5

3 0 0 0 0 0 0
45
11 0 0 0 − 42

11 −1 0 0 0 0 0 0 0

− 9
2 0 0 0 3 0 −1 0 0 0 0 0 0

0 − 3
2 0 0 0 − 11

4 −3 −2 0 0 0 0 0
9
8 0 0 0 3

8 0 0 − 1
2 0 0 0 0 0

0 − 3
2 0 0 0 0 − 1

2 0 0 −2 0 0 0

0 0 0 0 3
4 − 11

8 − 5
4 0 0 0 −1 0 0

9
8

3
8 0 0 9

16
11
32

7
16 0 0 0 − 1

4 0 0

0 − 3
2 0 0 0 0 1

2 0 0 0 0 0 −2




, (C.24)
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â5 =




0 0 0 0 0 0 0 0 0 0 0 0 0
3
2 −1 0 0 0 0 0 0 0 0 0 0 0

0 3 −2 0 0 0 0 0 0 0 0 0 0

− 9
4 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 11
6

5
3 0 0 0 0 0 0

− 45
11 0 0 0 42

11 −1 0 0 0 0 0 0 0
9
2 0 0 0 −3 0 −1 0 0 0 0 0 0

0 3
2 0 0 0 11

4 3 −2 0 0 0 0 0

− 9
8 0 0 0 − 3

8 0 0 1
2 0 0 0 0 0

0 3
2 0 0 0 0 1

2 0 0 −2 0 0 0

0 0 0 0 3
4

11
8

5
4 0 0 0 −1 0 0

− 9
8

3
8 0 0 − 9

16
11
32

7
16 0 0 0 1

4 0 0

0 3
2 0 0 0 0 − 1

2 0 0 0 0 0 −2




, (C.25)

â6 =




0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 3
2 0 0 − 3

4
11
8

7
4 0 0 0 −1 0 0

0 − 3
8 0 0 3

16 − 11
32 − 7

16 0 0 0 1
4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




, (C.26)
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â7 =




0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 3
2 0 0 − 3

4 − 11
8 − 7

4 0 0 0 −1 0 0

0 − 3
8 0 0 − 3

16 − 11
32 − 7

16 0 0 0 − 1
4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




, (C.27)

â8 =




0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
3
2 0 0 0 −1 0 1

3 0 0 0 0 0 0
54
11 0 0 0 − 36

11 0 12
11 0 0 0 0 0 0

− 9
2 0 0 0 3 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




, (C.28)
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â9 =




0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
3
2 0 0 0 −1 0 − 1

3 0 0 0 0 0 0

− 54
11 0 0 0 36

11 0 12
11 0 0 0 0 0 0

9
2 0 0 0 −3 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




, (C.29)

â10 =




0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 3
2 0 0 − 3

4 − 11
8 − 5

4 −1 0 0 0 0 0

0 − 3
8 0 0 − 3

16 − 11
32 − 5

16 − 1
4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




, (C.30)
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â11 =




0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 3
2 0 0 − 3

4
11
8

5
4 −1 0 0 0 0 0

0 − 3
8 0 0 3

16 − 11
32 − 5

16
1
4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




. (C.31)

c.2.3 Results

Coefficients of 1/ϵ poles of the functions f gg,qq̄
ij (β, ϵ) can be expressed though HPLs of β

up to weight three. We employ the Duhr-Gangl-Rhodes algorithm [266] to write them in
terms of independent classical polylogarithms. We abbreviate

xβ =
1− β

1 + β
, y±β =

1± β

2
, zβ = 1 + β2 , (C.32)

and find

f gg
AA(β, ϵ) = − 1

8ϵ3 +
1
ϵ2

1
4β

{
ln(xβ) + β

}
+

1
ϵ

1
4β

{
2β− 3 ln(xβ)− 8β ln(2)

− 2
[
Li2(y−β ) + Li2(β)− Li2(−β)

]
+ y−β ln2(xβ)

− ln2(y−β ) + ζ2

}
+O

(
ϵ0) , (C.33)

f gg
AB(β, ϵ) =

1
ϵ3

1
8β

{
3β + 2zβ ln(xβ)

}
− 1

ϵ2
1

24β2

{
32β2 + β

(
31 + 13β2) ln(xβ)

+ 12zββ [Li2(β)− Li2(−β)] + 3z2
β ln2(xβ)

}

− 1
ϵ

1
72β2

{
104β2 + 27z2

βζ3 − 120β2 ln(2)

+ 36z2
β

(
Li3(xβ)− Li3(y−β )− Li3(y+β )

)
+ 72βzβ (Li3(β)− Li3(−β))

+ 2β
(
62β2 − 25

)
ln(xβ)− 12β

(
4β2 + 13

)
(Li2(β)− Li2(−β))
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+ 6β
(

β2 − 2
) (

ζ2 − 2 Li2(y−β )− ln2(y−β )
)

− 18z2
β ln(xβ) (Li2(β)− Li2(−β))

− 3
(

24 + 2β + 9β2 − β3 + 12β4
)

ln2(xβ)

− 132βzβ ln(2) ln(xβ)− 18ζ2z2
β

(
3 ln(xβ)− 2 ln(y−β )

)

+ 18z2
β ln(β) ln2(xβ) + 6zβ

(
3 + 2β + 3β2) ln3(xβ)

+ 6z2
β

(
3 ln(xβ) ln2(y−β )− 2 ln3(y−β )− 6 ln2(xβ) ln(y−β )

)}

+O
(
ϵ0) , (C.34)

f qq̄
AA(β, ϵ) = − 1

4ϵ2 +
1
ϵ

1
4β

{
6β− 4β ln(2) + ln(xβ)

}
+O

(
ϵ0) , (C.35)

f qq̄
AB(β, ϵ) =

1
ϵ2

1
12β

{
zβ ln(xβ)− β

}
+

1
ϵ

1
72β

{
34β−

(
37β2 + 43

)
ln(xβ)

− 24zβ

(
Li2(y−β ) + Li2(β)− Li2(−β)

)
− 24β ln(2)

+ 6zβ

(
ln2(xβ)− 2 ln2(y−β ) + 4 ln(2) ln(xβ) + 2ζ2

)}
+O

(
ϵ0) . (C.36)

In the threshold limit, energies of emitting particles are comparable to their masses,
i. e. E ≈ m⇔ β≪ 1. We perform a Taylor expansion in small β and find

f gg
AA(β ≈ 0, ϵ) = β0

[
− 1

8ϵ3 −
1

4ϵ2 +
1− 2 ln(2)

ϵ
+ 2

(
2 ln(2)− 1− π2

6

)]

+ β2
[
− 1

6ϵ2 −
4
9ϵ

+

(
1
27
− 8

3
ln(2)

)]
+O

(
β4
)

, (C.37)

f gg
AB(β ≈ 0, ϵ) = β0

[
− 1

8ϵ3 −
1

4ϵ2 +
1− 2 ln(2)

ϵ
+ 2

(
2 ln(2)− 1− π2

6

)]

+ β2
[
− 2

3ϵ3 −
1

2ϵ2 +
1
ϵ

(
1− 44

9
ln(2)

)

+

(
104
27

ln(2)− 1
3
− 22

27
π2
) ]

+O
(

β4
)

, (C.38)

f qq̄
AA(β ≈ 0, ϵ) = β0

[
− 1

4ϵ2 +
1− ln(2)

ϵ
+

(
4 ln(2)− 3

2
− π2

6

)]

+ β2
[
− 1

6ϵ
+

(
13
18
− 4

3
ln(2)

)]
+O

(
β4
)

, (C.39)

f qq̄
AB(β ≈ 0, ϵ) = β0

[
− 1

4ϵ2 +
1− ln(2)

ϵ
+

(
4 ln(2)− 3

2
− π2

6

)]

+ β2
[
− 2

9ϵ2 +
1
ϵ

(
25
54
− 8

9
ln(2)

)
+

(
23

162
− 4

27
π2
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+
44
27

ln(2)
)]

+O
(

β4
)

. (C.40)

As already noted in Sec. 3.2.2, the spatial parts of momenta pA and pB vanish in the
threshold limit, β→ 0. Therefore, the leading terms in Eqs. (C.37)-(C.40) are equal for
the case of two back-to-back emitters (AB) and the case of self-correlated emissions (AA),
i. e.

f gg,qq̄
AA (β, ϵ) = f gg,qq̄

AB (β, ϵ) +O
(

β2) . (C.41)

In the high-energy limit, energies of the emitting particles are much larger than their
masses, i. e. E≫ m⇔ β ≈ 1. We perform an expansion in 1− β and find

f gg
AA(β ≈ 1, ϵ) =

(1− β)0
[
− 1

8ϵ3 +
1− ln(2)

4ϵ2 +
1
2ϵ

(
1− π2

6
− 5

2
ln(2)− 1

2
ln2(2)

)

+

(
21
2

ln(2)− 3− π2

6
ln(2)− π2

24
− 1

6
ln3(2)− 7

4
ln2(2)− ζ3

2

) ]

+ ln(1− β)

[
1

4ϵ2 +
1
ϵ

(
1
2

ln(2)− 3
4

)
+

(
π2

6
− 1

2
+ 3 ln(2) +

1
2

ln2(2)
) ]

− ln2(1− β)

[
1
4ϵ

+

(
1
2

ln(2)− 3
4

)]
+

1
6

ln3(1− β) +O
(
(1− β)1

)
, (C.42)

f gg
AB(β ≈ 1, ϵ) =

(1− β)0
[

1
ϵ3

(
3
8
− 1

2
ln(2)

)
+

1
ϵ2

(
11
6

ln(2)− 4
3
− π2

4
− 1

2
ln2(2)

)

+
1
ϵ

(
13π2

18
− 3ζ3 −

13
9
− 1

3
ln3(2)− 11

6
ln2(2) +

97
36

ln(2)− 5π2

12
ln(2)

)

+

(
6 Li4(

1
2
) +

7ζ3

3
+

5ζ3

2
ln(2) +

1787
108

+
179π2

108
− 13π4

48
+

1
12

ln4(2)

+
11
9

ln3(2) +
881
36

ln2(2)− 2π2

3
ln2(2)− 2059

54
ln(2)− 13π2

18
ln(2)

)]

+ ln(1− β)

[
1

2ϵ3 +
1
ϵ2

(
ln(2)− 11

6

)
+

1
ϵ

(
ln2(2) +

5π2

12
− 37

36

)

+

(
11ζ3

4
+

491
27
− 10π2

9
+

2
3

ln3(2)− 163
6

ln(2) +
5π2

6
ln(2)

) ]

+ ln2(1− β)

[
− 1

2ϵ2 −
1
ϵ

(
ln(2)− 11

6

)
−
(

ln2(2) +
5π2

12
− 37

36

) ]

+ ln3(1− β)

[
1
3ϵ

+

(
2
3

ln(2)− 11
9

)]
− 1

6
ln4(1− β) +O

(
(1− β)1

)
, (C.43)
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f qq̄
AA(β ≈ 1, ϵ) =

(1− β)0
[
− 1

4ϵ2 +
1
ϵ

(
3
2
− 5

4
ln(2)

)
+

(
43
4

ln(2)− 7
4

ln2(2)− 6− 5π2

24

) ]

+ ln(1− β)

[
1
4ϵ

+

(
3 ln(2)− 11

4

)]
− 1

4
ln2(1− β) +O

(
(1− β)1

)
, (C.44)

f qq̄
AB(β ≈ 1, ϵ) =

(1− β)0
[
− 1

ϵ2

(
1

12
+

1
6

ln(2)
)
+

1
ϵ

(
17
36
− π2

9
− 5

6
ln2(2) +

7
9

ln(2)
)

+

(
77π2

108
− 13ζ3

6
− 161

54
− 1

9
ln3(2) +

44
9

ln2(2) +
31
27

ln(2)− 5π2

9
ln(2)

) ]

+ ln(1− β)

[
1

6ϵ2 +
1
ϵ

(
ln(2)− 10

9

)
+

(
139
54

+
2π2

9
+ ln2(2)− 17

3
ln(2)

)]

− ln2(1− β)

[
1
6ϵ

+

(
ln(2)− 10

9

)]
+

1
9

ln3(1− β) +O
(
(1− β)1

)
. (C.45)

We note that the results in Eqs. (C.42)-(C.45) are not regular in the β→ 1 limit; on the
contrary, they contain logarithms of the form lnn(1− β) , n = 0 . . . 4. These quasi-collinear
divergences appear, since the masses of the hard emitters that screen actual collinear
singularities, become negligible in the high-energy limit. They manifest themselves as
poles in 1/ϵ in the massless calculation [37].

c.3 triple-collinear subtraction terms

In the following, we present additional formulas for the computation of genuine triple-
collinear subtraction terms in Sec. 3.2.3. differential equations and computation of the
required boundary constant is discussed in Sec. C.3.1 and Sec. C.3.2, respectively. We
present some analytic results in Sec. C.3.3.
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c.3.1 Differential equations

The transformation defined in Eq. (3.88) reads

T̂can =
(1− 2ϵ)2

(1− 6ϵ)

×




(1−6ϵ)ω4ω5
(2ϵ−1)2 0 0 0

0 2ω4+2ω5−1
ϵ

−ω4−1
ϵ

−ω5−1
ϵ

0 2ω4−2ϵ(4ω4−2ω5+1)
ϵ

2ϵ(2ω4−1)−ω4
ϵ −2(ω5 + 1)

0 2ϵ(2ω4−4ω5−1)+2ω5
ϵ −2(ω4 + 1) 2ϵ(2ω5−1)−ω5

ϵ




.
(C.46)

The coefficient matrices in Eq. (3.90) are given by

m̂(ω4)
ω4 =




−40 0 0 0

1 −12 16 0

−3 36 −48 0

2 −24 32 0




, m̂(ω4−1)
ω4 =




0 0 0 0

−2 −8 0 −16

1 4 0 8

−4 −16 0 −32




,

m̂(ω4+ω5)
ω4 =




0 0 0 0

−2 −24 16 16

1 12 −8 −8

1 12 −8 −8




, m̂(ω4+ω5−1)
ω4 =




0 0 0 0

3 −60 0 0

1 −20 0 0

1 −20 0 0




, (C.47)

and

m̂(ω5)
ω5 =




−40 0 0 0

1 −12 0 16

2 −24 0 32

−3 36 0 −48




, m̂(ω5−1)
ω5 =




0 0 0 0

−2 −8 −16 0

−4 −16 −32 0

1 4 8 0




,

m̂(ω4+ω5)
ω5 =




0 0 0 0

−2 −24 16 16

1 12 −8 −8

1 12 −8 −8




, m̂(ω4+ω5−1)
ω5 =




0 0 0 0

3 −60 0 0

1 −20 0 0

1 −20 0 0




. (C.48)

c.3.2 Boundary integral

Fixing the constants of integration requires the computation of MI Ī0,0,0,1 in the limit
ω4 ∼ ω5 → 0. To this end, we consider the integral

Ib.c. =
∫ dΩ(d−1)

4 dΩ(d−1)
5[

Ω(d−1)
]2

1
[ηi4 + ηi5]

, (C.49)
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where ηik = (1− eiek)/2 ∈ [0, 1]. In this parameterization, the measure reads

dΩ(d−1)
k = 2 [4ηik(1− ηik)]

−ϵ dηik × dΩ(d−2) , k ∈ {4, 5} . (C.50)

We obtain

Ib.c.

=

[
21−2ϵ Ω(d−2)

Ω(d−1)

]2 ∫ 1

0
dηi4

∫ 1

0
dηi5

[ηi4(1− ηi4)]
−ϵ [ηi5(1− ηi5)]

−ϵ

[ηi4 + ηi5]

=
Γ (2− 2ϵ)

Γ2 (1− ϵ)

∫ 1

0
dηi4 η−1−ϵ

i4 (1− ηi4)
−ϵ

2F1

[
{1, 1− ϵ}, {2(1− ϵ)}; −1

ηi4

]
. (C.51)

We apply the linear transformation shown in Eq. (A.8) to the hypergeometric function
and find

Ib.c. =
Γ2 (2− 2ϵ) Γ (1 + ϵ)

ϵ Γ3 (1− ϵ)

∫ 1

0
dηi4 η−2ϵ

i4 (1− ηi4)
−ϵ(1 + ηi4)

−ϵ

− Γ2 (2− 2ϵ)

ϵ Γ (1− 2ϵ) Γ2 (1− ϵ)

∫ 1

0
dηi4 [ηi4(1− ηi4)]

−ϵ

× 2F1 [{1, 2ϵ}, {1 + ϵ};−ηi4] . (C.52)

Using Eq. (A.11), the remaining integral over ηi4 evaluates to

Ib.c. =
(1− 2ϵ)

ϵ

{
4−ϵ(1− 2ϵ)

(1− 4ϵ)

Γ4 (1− 2ϵ) Γ (1 + ϵ)

Γ (1− 4ϵ) Γ3 (1− ϵ)

− 3F2 [{1, 1− ϵ, 2ϵ}, {2(1− ϵ), 1 + ϵ};−1]
}

. (C.53)

We note that the ϵ-expansion of Ib.c. can be obtained using HypExp [127, 128].

c.3.3 Results for triple-collinear subtraction terms

In the following, we present some explicit results for triple-collinear subtraction terms.

Initial state radiation

We begin by illustrating results relevant for NNLO QCD computations in case of initial-
state radiation for two partonic configurations, q→ q∗ + gg and g→ q∗ + qg. Then, we
present the result for the splitting q→ q∗ + gγ, which arises in QCD-EW corrections to W
boson production and was obtained in Ref. [9].
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q → q∗ + g g Since the case f4,5 = gg exhibits a double-soft singularity, we employ the
energy-ordered phase-space parametrization. We decompose the quantities in Eq. (2.116)
into color factors

Rδ,+,reg = C2
FRA

δ,+,reg + CFCA RNA
δ,+,reg , (C.54)

we obtain

RA
δ =

1
ϵ

(
π2

3
ln(2)

)
− 7π2

6
ln2(2) + 8ζ3 ln(2),

RNA
δ =

1
ϵ

(
−1571

216
+

11π2

36
+

3
8

ζ3 +
π2

3
ln(2) +

11
2

ln2(2) +
(
−32

9
+

π2

6
− 11 ln(2)

3

)
ln( Emax/E1)

)

− 1
12

ln4(2)− 176
9

ln3(2)−
(

79
9

+
11π2

12

)
ln2(2) +

513ζ3 + 913 + 165π2

108
ln(2)

+

(
64
9
− π2

3
+

22 ln(2)
3

)
ln2( Emax/E1)

+

(
11ζ3

2
+

383
54
− 22π2

9
− 11 ln2(2) +

ln(2)
3
− 2

3
π2 ln(2)

)
ln( Emax/E1) ,

RA
+ = −4π2

3
ln(2),

RNA
+ =

1
ϵ

(
11
3

ln(2)− π2

6
+

32
9

)
− 11 ln2(2)− 1 + 2π2

3
ln(2)− 7ζ3 +

11π2

9
+ 22.

(C.55)

The results for regular parts are more complex. For the abelian part, we find

RA
reg =

1
ϵ

(
− z + 1

2
ln(2) ln(z) + (1− z) ln(2) +

(
z2 + 3

)

4(z− 1)
ln2(z)− ln(z)z +

3(z− 1)
2

)

+
z2 (−36ζ3 + 33 + 4π2)− 2

(
33 + 2π2) z− 60ζ3 + 33

6(z− 1)
+

7(z− 1)
2

ln2(2)

+
(
−6z + π2(z + 1) + 6

)
ln(2) +

(
3(z− 1)z− π2 (3z2 + 5

))

3(z− 1)
ln(z)

+
z
2

ln2(z) +
(
9z2 + 19

)

12(1− z)
ln3(z) +

7(z + 1)
4

ln2(2) ln(z) +
(
z2 + 7

)

2(1− z)
ln(2) ln2(z)

+ (3z− 1) ln(2) ln(z) + 6(1− z) ln(1− z)− 4(1− z) ln(1− z) ln(2)

+

(
−2(z + 1) ln(2)− 2

(
z2 + 1

)

z− 1
ln(z)− 4z

)
Li2(z) +

(
2
(
3z2 + 5

)

z− 1

)
Li3(z),

(C.56)

and for the non-abelian part we find

RNA
reg =

1
ϵ

((
6π2 − 61

)
z2 − 15z + 76

36(z− 1)
− 11(z + 1)

6
ln(2) +

(
11z2 + 2

)

12(z− 1)
ln(z)
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+

(
z2 + 1

)

2(1− z)
ln(1− z) ln(z) +

(
1 + z2

2(1− z)

)
Li2(z)

)

+
3
(
z2(48ζ3 − 119)− 46z− 36ζ3 + 165

)
+ π2 (−50z2 + 12z + 12

)

36(z− 1)

+

((
61− 6π2) z2 + 15z− 76

)

9(z− 1)
ln(1− z) +

(
49z2 + 57z− 20

)

36(z− 1)
ln(z)

+
2
(
z2 + 1

)

z− 1
ln2(1− z) ln(z) +

(z− 1)
2

ln(1− z) ln(z) +
(
11z2 + 2

)

8(1− z)
ln2(z) (C.57)

+
2
(
z2 + 1

)

z− 1
ln(1− z) ln(z) ln(2) +

22(z + 1)
3

ln(1− z) ln(2) +

(
z2 + 1

)

4(z− 1)
ln(1− z) ln2(z)

+
11(z + 1)

2
ln2(2) +

(
11z2 + 2

)

3(1− z)
ln(2) ln(z) +

(
−7z2 + 6z + 4π2 + 1

)

6(1− z)
ln(2)

+

(
2
(
z2 + 1

)

z− 1
ln(1− z) +

2
(
z2 + 1

)

z− 1
ln(2) +

(
z2 + 1

)

2(z− 1)
ln(z) +

25z2 − 6z + 7
6(z− 1)

)
Li2(z)

+

(
2
(
z2 + 1

)

z− 1

)
Li3(1− z) +

((
z2 + 1

)

2(1− z)

)
Li3(z) .

g → q∗ + q g As a second example, we present the integrated triple-collinear subtrac-
tion term that describes the splitting g→ q∗ + qg. Due to the absence of a double-soft
singularity, we do not have to order energies. We decompose the quantity R̃reg(z) in
Eq. (2.123) into color factors

R̃reg(z) = C2
F R̃A

reg(z) + CFCA R̃NA
reg (z) , (C.58)

and find

R̃A
reg =

1
ϵ

(
8π2z2 − 8π2z− 15z + 4π2 − 3

12
+ 3

(
2z2 − 2z + 1

)
ln(1− z) ln(2)

+
(
−2z2 + 2z− 1

)
ln(1− z) ln(z) +

1− 2z
2

ln(z) ln(2) +
−9z2 + 11z− 5

2
ln(2)

+
4z2 − 6z + 3

4
ln2(z)− 3

4
ln(z)−

(
2z2 − 2z + 1

)
Li2(z)

− 3(1− 2z + 2z2) ln(2) ln( Emax/E1)

)

+
−3π2z2 + 12zζ3 + 3π2z− 24z− 6ζ3 − π2

3
− 9

(
2z2 − 2z + 1

)
ln2(1− z) ln(2)

+ 4
(
2z2 − 2z + 1

)
ln2(1− z) ln(z)− 19

(
2z2 − 2z + 1

)

2
ln(1− z) ln2(2)

+ 4
(
2z2 − 2z + 1

)
ln(1− z) ln(2) ln(2) +

(
18z2 − 22z + 7

)
ln(1− z) ln(2) (C.59)
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+

(
2z2 − 2z + 1

)

2
ln(1− z) ln2(z) + ln(1− z) ln(z) +

7(2z− 1)
4

ln(z) ln2(2)

+
3− 4π2z2 + 4π2z + 15z− 2π2

3
ln(1− z) +

57z2 − 71z + 32
4

ln2(2)

+
−8z2 + 14z− 7

2
ln2(z) ln(2) + 2(z + 2) ln(z) ln(2)

+
−4π2z2 − 117z2 + 8π2z + 150z− 4π2 − 27

6
ln(2) +

−28z2 + 38z− 19
12

ln3(z)

+
(8z + 9)

8
ln2(z) +

−32π2z2 + 40π2z− 21z− 20π2 + 9
12

ln(z)

+

(
ln(2)

(
8z2 − 12z + 6

)
+
(
−2z2 + 2z− 1

)
(ln(z)− 4 ln(1− z))− 2

)
Li2(z)

+

(
8z2 − 8z + 4

)
Li3(1− z) +

(
14z2 − 18z + 9

)
Li3(z)

+ 3(1− 2z + 2z2) ln(2) ln2( Emax/E1)

+

(
19(1− 2z + 2z2)

2
ln2(2) + 6(1− 2z + 2z2) ln(1− z) ln(2) + 3 ln(2)

− 2π2(1− 2z + 2z2)

3

)
ln( Emax/E1) , (C.60)

and

R̃NA
reg =

1
ϵ

(
−6π2z3 − 67z3 + 3π2z2 + 81z2 − 3π2z− 27z + 13

9z

+
(
2z2 − 2z + 1

)
ln(1− z) ln(2) +

(
2z2 − 2z + 1

)
ln(1− z) ln(z)

−
(
2z2 + 2z + 1

)
ln(1 + z) ln(z) + (4z + 1) ln(z) ln(2) +

4− 31z3 + 24z2 + 3z
6z

ln(2)

+
6z + 1

2
ln2(z) +

12z + 1
2

ln(z)−
(

2z2 + 2z + 1
)

Li2(−z) +
(

2z2 − 2z + 1
)

Li2(z)

− (1− 2z + 2z2) ln(2) ln( Emax/E1)

)

+

( (
8z2 + 8z + 4

) (
ln(1− z) + ln(2)

)
+
(
2z2 − 6z + 1

)
ln(z)

)
Li2(−z)

+

( (
−8z2 + 8z− 4

)
ln(1− z)− 8(z− 3)z ln(2)− 4z ln(z)

)
Li2(z) (C.61)

+
44z3 + 48z2 + 15z + 8

3z
Li2(−z) +

−22z3 + 96z2 − 3z + 20
3z

Li2(z)

−
(

18z2 − 2z + 9
)

Li3(1− z) +
(

10z2 + 26z + 5
)

Li3(−z)
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+

(
4z2 + 4z + 2

)(
3Li3

(
z

1 + z

)
+ Li3(1− z2)

)
+

(
32z + 4

)
Li3(z)

+ (1− 2z + 2z2) ln(2) ln2( Emax/E1)

+

(
7(1− 2z + 2z2)

2
ln(2) + 2(1− 2z + 2z2) ln(1− z) + 1

)
ln(2) ln( Emax/E1) .

Final state radiation

We illustrate results in case of initial-state radiation for two partonic configurations,
q∗ → ggq and q∗ → q̄q′q̄′. To present results, we write

Iq f4 f5
TC = [αs]

2E−4ϵRq f4 f5 , (C.62)

and obtain1

Rqgg = CACF

{
1
ϵ

[
− 1015

108
+

19ζ3

8
+

π2

8
+

11
2

ln2(2)− 11
4

ln(2) +
1
3

π2 ln(2)
]

+

[
− 2281

48
− 2Li4(1/2) +

25ζ3

24
− 13

4
ζ3 ln(2)− 119π2

144
+

173π4

480
− ln4(2)

12

− 176
9

ln3(2)− 19
36

ln2(2)− 11
12

π2 ln2(2)− 1247
108

ln(2) +
161
36

π2 ln(2)
]}

(C.63)

+ C2
F

{
1
ϵ

[
31
16
− 2ζ3 +

9
8

ln(2) +
1
3

π2 ln(2)
]
+

[
715
32

+ 16ζ3 ln(2)− 7π4

30

− 63
16

ln2(2)− 7
6

π2 ln2(2) +
17
8

ln(2) + π2 ln(2)
]}

,

Rqq̄′q′ = CFTR

{
1
ϵ

[
329
108
− 2 ln2(2) + ln(2)

]
+

[
2773
216

+
19ζ3

6
(C.64)

+
35π2

72
+

64
9

ln3(2) +
32
9

ln2(2) +
43
27

ln(2)− 13
9

π2 ln(2)
]}

,

Rqq̄q,id = CF

(
CF −

1
2

CA

) {
1
ϵ

[
− 13

4
− 2ζ3 +

π2

2

]
(C.65)

+

[
− 335

8
+ 39ζ3 + 8ζ3 ln(2) +

5π2

3
− 14π4

45
+ 13 ln(2)− 2π2 ln(2)

]}
.

1 Following Ref. [123], we split Pq̄1q2q3 = Pq̄′1q′2q3
+ Pid

q̄1q2q3
, which allows the description of final states with

both identical and different quark flavors.
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In this Appendix, we show results in connection to Part II of this thesis. We describe the
computation of two-loop master integrals with two internal masses that are required
to describe QCD-EW corrections to the on-shell W-boson form factor in Appendix D.1.
Furthermore, we present helicity amplitudes required for double-real corrections to
W-boson production at O(αsα) in Appendix D.2. We collect some additional formulas in
Sec. D.3.

d.1 computation of master integrals for the two-loop qcd-ew form

factor

We begin with the discussion of two-loop O(αsα) corrections to the qq̄′ → W+ form
factor. The computation requires the evaluation of two-loop diagrams with up to two
massive propagators, for example

AVV
qq̄→W ⊃

Z

W

W . (D.1)

While all necessary master integrals have been computed in the equal-mass limit MZ =

MW [267–269], the on-shell form factor for different values of MW and MZ is not available
in the literature.1

In the following, we will describe the computation of additional master integrals
with two different internal masses, which are required in the unequal mass case. Since
we are interested in the on-shell form factor, the center-of-mass energy squared s =

(p1 + p2)2 equals to s = M2
W so that these integrals are functions of MZ and MW only.

All contributions to the form factor with two internal masses can be expressed through
one planar integral topology,

T EWZ
a⃗ =

∫
ddk1 ddk2

7

∏
n=1

D−an
n , (D.2)

1 We note that in Ref. [270], the form factor was presented as an expansion in sin2 θW .
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where we have defined inverse propagators

D1 = k2
1 , D2 = k2

2 −M2
W , D3 = (k1 − k2)

2 , D4 = (k1 − p1)
2 ,

D5 = (k2 − p1)
2 , D6 = (k2 − p12)

2 , D7 = (k2 − p12)
2 −M2

Z .
(D.3)

We use the computer program Reduze2 [144] to express all integrals with two internal
masses that contribute to the form factor through ten master integrals I(MZ, MW , ϵ),

I1 = T EWZ
{1,1,1,0,0,0,1} , I2 = T EWZ

{0,1,1,1,0,0,1} , I3 = T EWZ
{0,2,1,1,0,0,1} , I4 = T EWZ

{1,1,0,0,0,1,1} ,

I5 = T EWZ
{0,1,1,0,0,1,1} , I6 = T EWZ

{1,1,1,1,0,0,1} , I7 = T EWZ
{1,1,1,0,1,0,1} , I8 = T EWZ

{1,1,1,0,0,1,1} ,

I9 = T EWZ
{0,1,1,1,0,1,1} , I10 = T EWZ

{0,1,1,0,1,1,1} .

(D.4)

With the help of Reduze2, we derive a closed system of differential equations for the
vector of master integrals I by differentiating w. r. t. MZ and MW and expressing the
result through I again. We then introduce a dimensionless Landau variable y

M2
Z

M2
W

=
(1 + y)2

y
, (D.5)

and write the DEQ in the following form

∂

∂y
I = M̂ih(y, ϵ) I + M̂ih(y, ϵ) f . (D.6)

Integrals f in Eq. (D.6) are known and can be found in Refs. [267–269]. Result in those
references describe off-shell contributions with one internal mass and are expressed
through HPLs with arguments xZ,W = −q2/M2

Z,W , where q = p1 + p2. To accommodate
our on-shell constraint, we require f as a function of y, in the limit q2 → M2

W ; in this
limit we find

xW → −1 , xZ → −
y

(1 + y)2 . (D.7)

It is beneficial to rewrite the results of Refs. [267–269] through GPLs with argument y. To
accomplish this, we use a combination of PolyLogTools [171] and a private Mathematica

implementation of the “super-shuffle” procedure, which we explain in Appendix A.5.
We are now in position to compute I as a function of y by solving the DEQ in Eq. (D.6).

To simplify this task, we use Libra [168] to construct a transformation

I = T̂can(y, ϵ)J , (D.8)

into a new “canonical-like” basis. In the new basis J, the DEQ reads

∂

∂y
J = ϵB̂h(y) J + B̂ih(y, ϵ) f , (D.9)
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where

ϵB̂h = ϵ ∑
a∈{0,±1}

b̂a

y− a
= T̂−1

can

[
M̂ih −

∂

∂y

]
T̂can , (D.10)

and

B̂ih(y, ϵ) = T̂−1
canM̂ih(y, ϵ) . (D.11)

We note that the inhomogeneous term B̂ih(y, ϵ) f has poles starting at 1/ϵ2. We expand
up to the required order in ϵ and write2

B̂ih(y, ϵ) f =
2

∑
n=−2

ϵn [B̂ih(y, ϵ) f
](n) , (D.12)

J =
2

∑
n=−2

ϵn J(n) . (D.13)

Thanks to the ϵ-factorized from, the DEQ in Eq. (D.9) decouples order-by order in ϵ. The
solution reads3

J(n)(y) =
∫ y

dt
{

∑
a∈{0,±1}

b̂a

t− a
J(n−1)(t) +

[
B̂ih(t, ϵ) f (t)

](n)
}
+ C(n) , (D.14)

where n ≥ −2 and C(n) are constants of integration. We express the integrals in Eq. (D.14)
through GPLs of y up to weight four, where letters are drawn from the alphabet

Ay = {0 , ±1 , ±i , e±iπ/3 , e±2iπ/3} . (D.15)

We fix the constants C(n) in the equal-mass limit

MZ = MW ⇔ y = e2iπ/3 , (D.16)

using the results of Refs. [267–269]. We have verified the correctness of our results by
comparing them to numerical results obtained with pySecDec [271–279]. We note that the
complete computation of the renormalized two-loop on-shell form factor can be found
in Ref. [9].

2 For the finite part of the two-loop form factor, we require integrals J up to ϵ2, which corresponds to weight
four.

3 In this recursive formula, we set J(−3) = 0.



148 mixed corrections to vector boson production

d.2 double-real matrix elements for W -boson production

In this Section, we present the amplitudes that are required to describe double-real
O(αsα) corrections to on-shell W+-boson production in spinor-helicity formalism. All
matrix elements can be obtained from crossing the following two amplitudes

Aūq̄qd : 0→ ū(p1) q̄(p2) q(p3) d(p4) W+(→ ν(p5) ℓ(p6)) , (D.17)

Aūdγg : 0→ ū(p1) d(p2) γ(p3) g(p4) W+(→ ν(p5) ℓ(p6)) . (D.18)

In Eqs. (D.17)-(D.18), all momenta are outgoing such that −p1234 = pW = p56. In what
follows, we define conventions for Feynman rules and spinor-helicity notations in
Appendix D.2.1. We then provide expressions for the four-quark and the two-quark
amplitude in Appendix D.2.2 and Appendix D.2.3, respectively.4

d.2.1 Conventions

Feynman rules

We use the Feynman rules given in Appendix A of Ref. [253]. There, the couplings that
enter electroweak fermion-boson and three-boson couplings are defined as

c−A, f = −Q f , c+A, f = −Q f ,

c−Z, f =
I3 − sin2 θW Q f

sin θW cos θW
, c+Z, f = −

sin θW

cos θW
Q f , (D.19)

c−W =
1

sin θW
√

2
, c+W = 0 ,

and

cAWW = 1 , cZWW = −cos θW

sin θW
, (D.20)

respectively.

Spinor-helicity formalism

We describe amplitudes in spinor-helicity formalism following the conventions of
Ref. [281]. In particular, we denote four-spinors by

UL(p) = ⟨p| , UR(p) = [p| , (D.21)

UL(p) = |p] , UR(p) = |p⟩ , (D.22)

4 We note the gluon-photon amplitude Audγg in Eq. (D.18) was also computed in Ref. [280].
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where UL(p) and UR(p) denote left-and right-handed, outgoing fermions. UR(p) and
UL(p) denote left- and right-handed outgoing antifermions. Polarization vectors for
outgoing vector-like particles are defined to be transverse to a reference momentum r.
They read

ε
∗,µ
+ (k) =

1√
2
⟨r| γµ |k]
⟨rk⟩ ε

∗,µ
− (k) = − 1√

2
[r| γµ |k⟩

[rk]
, (D.23)

and satisfy

ε
∗,µ
± · ε±,µ = −1 , ε

∗,µ
± · pµ = ε

∗,µ
± · rµ = 0 . (D.24)

d.2.2 Four-quark amplitudes

In the following, we obtain mixed O(αsα) corrections that involve four quarks. In
particular, we consider strong and electroweak corrections to the amplitude Auq̄qd in
Eq. (D.17) for the case q = u.5 We use the fact that the amplitude Aūūud is symmetric in
p1 ↔ p2 and write

Aαs
ūūud = PW ∑

t∈{I,II}
At

µ(1ū, 2ū, 3u, 4d, g) ⟨5| γµ |6] + 1←→ 2 , (D.25)

Aα,V0
ūūud = PW

[
∑

t∈{I,II,IV}
At

µ(1ū, 2ū, 3u, 4d, V0) +AIII
µ (1ū, 2ū, 3u, 4d, W)

]
⟨5| γµ |6]

+ 1←→ 2 , (D.26)

where V0 = γ, Z and

PW =
iec−W[

s56 −M2
W

]2 . (D.27)

5 The case q = d can be obtained along the same lines.
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The four diagrams that contribute to Eqs. (D.25)-(D.26) are

AI
µ =

4

1

W+

3

2

g/a/Z

, AII
µ =

4

1

W+

3

2

g/a/Z

,

AIII
µ =

3

2

W+

4

1

W

, AIV
µ =

4

1

W+
3

2

W a/Z

αβ .

(D.28)

To compute mixed corrections at O(αsα), we have to take the interference between
strong and electroweak corrections given in Eq. (D.25) and Eq. (D.26), respectively; we
write

|Aūūud|2
∣∣∣∣
O(αsα)

= ∑
helicities

2 Re
{
Aαs

ūūud ×
[
Aα,γ

ūūud +Aα,Z
ūūud

]†
}

. (D.29)

However, products of strong and electroweak amplitudes that contain the same assign-
ment for momenta p1,2 produce two disjunct quark traces. Hence, they are proportional
to Tr(Ta) = 0 and vanish. The remaining products, which contain a different assignment
for momenta p1,2, have one continuous quark line. Hence, we only have to consider
all-minus helicity configurations. We find

|Aūūud|2
∣∣∣∣
O(αsα)

=

[
gs e3c−W

]2 CF[
s56 −M2

W

]2 × 2 Re
{[

∑
t∈{I,II}

At(1−ū , 2−ū , 3−u , 4−d , g)

]

×
[
AIII(2−ū , 1−ū , 3−u , 4−d , W) + ∑

t∈{I,II,IV}
∑

V0∈{γ,Z}

(
At(2−ū , 1−ū , 3−u , 4−d , V0)

)
]† }

(D.30)

+ 1←→ 2 ,
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where AI...IV = AI...IV
µ ⟨5| γµ |6] denotes the product of the diagrams in Eq. (D.28) with

the W+-decay amplitude. Explicitly, they read6

AI = N I ⟨43⟩ [2| 2̂34 |5⟩ [61] ,

AII = N II ⟨45⟩ [6| 1̂23 |3⟩ [21] ,

AIII = N III ⟨34⟩ [1| 1̂34 |5⟩ [62] ,

AIV = N IV
[
⟨34⟩ [12] ⟨5| 2̂3 |6] + ⟨45⟩ [61] ⟨3| 1̂4 |2]− ⟨35⟩ [62] ⟨4| 2̂3 |1]

]
,

(D.31)

where we have defined7

N I =
−4
[
c−V,u

]2

(s23 −M2
V)s234

, N II =
4
[
c−V,u

]2

(s23 −M2
V)s123

, (D.32)

N III =
−4
[
c−W
]2

(s14 −M2
W)s134

, N IV =
−4cVWW c−V,u

(s14 −M2
W)(s23 −M2

V)
. (D.33)

d.2.3 Two-quark plus photon plus gluon amplitudes

In the following, we consider the amplitude Audγg in Eq. (D.18). We write the corre-
sponding matrix element squared as a sum over helicities,

∣∣Aūdγg
∣∣2
∣∣∣∣
O(αsα)

= ∑
hγ=+,−

∑
hg=+,−

∣∣∣A(1−ū , 2−d , 3hγ
γ , 4hg

g )
∣∣∣
2

, (D.34)

where

A(1−ū , 2−d , 3γ, 4g)

=
ie3gs(Ta)ij[
s56 −M2

W

]2

[
QuAI

µ + QdAII
µ +

QW

s124 −M2
W
AIII

µ

]
⟨5| γµ |6] ,

(D.35)

with QW = Qu − Qd. We note that terms with indices I . . . III in Eq. (D.35) collect
diagrams where the photon is emitted from the up quark, the down quark and the W
boson, respectively.

6 We omit arguments “1−2−3−4−”.
7 For contributions with a gluon, c−g, f ≡ 1.
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Diagrammatically, we have

AI
µ =

1

2

g

γ

W

+

1

2

γ

g

W

+

1

2

γ

W

g

,

AII
µ =

1

2

g

W

γ

+

1

2

W

g

γ

+

1

2

W

γ

g

,

AIII
µ =

1

2

g

γ

W

+

1

2

W

γ

g

.

(D.36)

We obtain

A(1−ū , 2−d , 3+γ , 4+g ) =
4 ⟨25⟩2 [56]
⟨24⟩ ⟨14⟩ ⟨23⟩

[
Qu
⟨12⟩
⟨13⟩ + QW

⟨2| 1̂4 |3]
s124 −M2

W

]
, (D.37)

A(1−ū , 2−d , 3+γ , 4−g ) =

− 4
{

Qu

[14] ⟨13⟩

(
−⟨25⟩ [6| 2̂5 |4⟩ [13]

s134
+

[1| 2̂4 |5⟩ [6| 1̂3 |2⟩
[42] ⟨23⟩

)

−Qd
⟨24⟩ [3| 1̂6 |5⟩ [61]
⟨23⟩ [42] s234

− QW

s124 −M2
W

( ⟨24⟩ [31] ⟨53⟩ [36]
[42] ⟨23⟩ (D.38)

+
[1| 3̂6 |5⟩ [61] ⟨2| 1̂4 |3]

[14] [42] ⟨23⟩ +
⟨25⟩ [63] [1| 2̂4 |3⟩ [31]

[14] [42] ⟨23⟩

)}
,

A(1−ū , 2−d , 3−γ , 4+g ) =

− 4
{
−Qu ×

[14] ⟨25⟩ [6| 2̂5 |3⟩
[13] ⟨14⟩ s134
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+ Qd ×
(
[1| 4̂6 |5⟩ [6| 3̂5 |2⟩
⟨14⟩ [13] ⟨24⟩ [32]

+
⟨23⟩ [4| 2̂3 |5⟩ [61]

s234 ⟨24⟩ [32]

)
(D.39)

+
QW

s124 −M2
W
×
( ⟨23⟩ [14] ⟨53⟩ [36]

⟨14⟩ [13]
− ⟨25⟩ [6| 1̂4 |2⟩ [1| 2̂4 |3⟩

⟨24⟩ ⟨14⟩ [13]

+
⟨35⟩ [61] ⟨23⟩ [3| 1̂4 |2⟩
⟨24⟩ ⟨14⟩ [13]

)}
,

A(1−ū , 2−d , 3−γ , 4−g ) =
4 [16]2 ⟨56⟩
[13] [14] [42]

[
Qd

[12]
[32]
−QW

⟨3| 2̂4 |1]
s124 −M2

W

]
. (D.40)

d.3 additional definitions

In this Section, we collect some formulas that we use in the fully-differential description
of W-boson production in Sec. 4.2.

d.3.1 Integrated subtraction term for a soft photon

The integrated subtraction term that describes the emission of a soft photon in the
gluon-initiated process g1d̄2 →W+ + ū4γ5 reads [9]

Jγ(2, 4, W) =
Q2

2 + Q2
4

ϵ2 +
QW

ϵ

[
QW + 2Q4 ln

(
κ4W√
1− β2

)

+ 2Q2 ln

(
κ2W√
1− β2

)]
+

2Q2Q4

ϵ
ln (η42)

−Q2
W

[
1
β

ln
(

1− β

1 + β

)
− 1

2
ln2
(

1− β

1 + β

)]

− 2QW ∑
i∈{2,4}

Qi ln
(

κiW

1− β

)
ln
(

κiW

1 + β

)

− 2QW ∑
i∈{2,4}

Qi

[
Li2

(
1− κiW

1− β

)
+ Li2

(
1− κiW

1 + β

)]

− 2Q2Q4

(
Li2(1− η42) +

1
2

ln2 (η42)

)
+O(ϵ) .

(D.41)
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d.3.2 Additional splitting functions for W-boson production

We use the function PNLO
qq (z, L), defined in Eq. (4.29), to express integrands of soft-

regulated collinear subtraction terms for initial-state splittings q→ γq∗ and q→ gq∗. We
use Eq. (B.8) to achieve an explicit cancellation of the 1/ϵ-poles, expand in ϵ and obtain

PNLO
qq (z, L) =

− 2L δ(1− z) + 2D0(z)− (1 + z)

+

(
2L2δ(1− z)− 4D1(z) + 2(1 + z) ln(1− z)− (1− z)

)
ϵ

−
(

4
3

L3δ(1− z)− 4D2(z)− 2(1− z) ln(1− z) + 2(1 + z) ln2(1− z)
)

ϵ2

+

(
2
3

L4δ(1− z)− 8
3
D3(z)− 2(1− z) ln2(1− z) +

4
3
(1 + z) ln3(1− z)

)
ϵ3

+O
(

ϵ4
)

.

(D.42)

The function PNLO
qg (z, L) was used in Sec. 4.2.2 to write the integrand of soft-regulated

collinear subtraction terms for initial-state splittings g→ qq∗ and γ→ qq∗; it reads

PNLO
qg (z) =

(1− z)−2ϵ

(1− ϵ)

[
(1− z)2 + z2 − ϵ

]
. (D.43)

Function PNLO
qg (z) in Eq. (D.43) is integrable over z ∈ [0, 1], hence its expansion in ϵ is

straightforward.
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