
Training Quantum Kernels for
Clustering Algorithms

Master’s Thesis of

Niklas Metz

at the Department of Informatics

Steinbuch Centre for Computing

Reviewer: Prof. Dr.-Ing. Achim Streit

Second reviewer: Prof. Dr.-Ing. Bernhard Neumair

Advisor: Dr.-Ing. Eileen Kühn

Second advisor: Christof Wendenius, M.Sc.

02. November 2021 – 02. May 2022

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I hereby declare that this document has been composed by myself and describes my own

work, unless otherwise acknowledged in the text.

Karlsruhe, 02. May 2022

. .

(Niklas Metz)

Abstract

Clustering is an important machine learning (ML) task, especially for applications dealing

with large amounts of data. In these cases, clustering is used to detect structure in the data

by grouping together similar datapoints. In this context, similarity is no strictly de�ned

measure. Similarity is rather de�ned for each individual situation and dataset. This is the

reason why there is no single clustering algorithm that is applicable to all situations, as each

algorithm assumes a di�erent cluster model. Furthermore, many clustering algorithms

use interchangeable kernel functions that de�ne the similarity between two samples.

These kernel functions can not only be calculated on classical computers, but recent

research has shown that quantum computers are capable of computing them as well.

Quantum computers are generally known to be able to solve speci�c problems, which are

intractable on classical computers. The hope is that there are quantum kernel functions,

which are classically intractable, and pose an advantage over classical kernel functions.

Furthermore, these quantum kernel functions can be de�ned in combination with

variational quantum circuits (VQCs). VQCs are similar to classical neural networks (NNs)

in that they have free parameters that can be optimized to represent a target function.

Combining quantum kernels with VQCs makes the kernel function adjustable to re�ect

the actual structure of the provided data. This idea was �rst proposed in [Hub+21] and

combined with a support vector machine (SVM).

This thesis instead proposes a combination of variational quantum kernels (VQKs)

with classical clustering algorithms. While clustering is generally de�ned as a task of

unsupervised learning, optimizing the parameters of a VQK is di�cult without any labeled

training data. Therefore this thesis considers two ways of training the VQK, completely

unsupervised, where no labeled training data is available, and semi-supervised, where a

small amount of labeled training data is available. The trained VQKs are then combined

with various clustering algorithms that can utilize kernel functions.

In order to evaluate the proposed approach, a training and testing pipeline was imple-

mented using a simulated quantum computer on classical hardware.

Extensive experiments show that the VQKs can be optimized using di�erent semi-

supervised cost functions. Additionally, the trained quantum kernel can be used with

many di�erent classical clustering algorithms and perform well. In most cases the quantum

kernel performs as well as or even better than the popular classical radial basis function

(RBF) kernel. However, the unsupervised learning approaches proposed in this thesis were

shown to not be able to optimize the kernel function.

i

Zusammenfassung

Clustering ist eine außerordentlich wichtige Sparte des Maschinellen Lernens von der

besonders Anwendungen, die sich mit großen Datenmengen beschäftigen, pro�tieren

können. In diesen Anwendungen wird Clustering verwendet um Strukturen in Daten zu

�nden und ähnliche Datenpunkte zu gruppieren. Allerdings ist Ähnlichkeit in diesem

Kontext kein wohlde�niertes Maß und hängt stark von der jeweiligen Situation und

dem Datensatz ab. Diese Situationsabhängigkeit ist auch der Grund weshalb es nicht

nur einen Clustering Algorithmus gibt. Vielmehr gibt es unterschiedliche Modelle dafür

wie ein Cluster de�niert sein kann und entsprechend unterschiedliche Algorithmen, die

Cluster basierend auf diesen Modellen �nden können. Außerdem verwenden viele dieser

Algorithmen austauschbare Kernel-Funktionen, welche die Ähnlichkeit zwischen zwei

Datenpunkten de�niert.

Diese Kernel-Funktionen können allerdings nicht ausschließlich auf klassischen Compu-

tern berechnet werden, denn jüngste Forschung im Bereich des Quanten Maschinellen Ler-

nens zeigt, dass auch Quantencomputer verwendet werden können um Kernel-Funktionen

zu berechnen. Quantencomputer sind hauptsächlich dafür bekannt bestimmte Probleme,

die im Klassischen unlösbar oder nur schwer lösbar sind, e�zient berechnen zu können.

Die Ho�nung ist, dass es bestimmte Quanten Kernel-Funktionen gibt die klassisch nicht

berechnet werden können, aber einen Vorteil gegenüber klassischen Kernel-Funktionen

darstellen.

Quanten Kernel-Funktionen können des weiteren mit variierbaren Quanten Schalt-

kreisen kombiniert werden. Diese Quanten Schaltkreise sind sehr ähnlich zu klassischen

Neuronalen Netzen, denn beide besitzen variierbare Parameter die optimiert werden kön-

nen, um eine bestimmte Zielfunktion zu realisieren. Die Kombination einer Quanten

Kernel-Funktion und einem variierbaren Quanten Schaltkreis, auch variierbarer Quanten

Kernel genannt, sorgt dafür, dass die Kernel-Funktion durch Training an den vorhandenen

Datensatz angepasst werden kann. Diese Idee wurde zuerst von den Autoren von [Hub+21]

eingeführt, die die Kernel-Funktion mit einer Support Vector Machine kombiniert haben.

Im Vergleich dazu schlägt diese Arbeit eine Kombination von variierbaren Quanten

Kernels mit klassischen Clustering Algorithmen vor. Da Clustering generell im Bereich des

unüberwachten Maschinellen Lernens angesiedelt ist, wird die Optimierung der Parameter

ohne klassi�zierte Trainingsdaten schwierig. Deshalb betrachtet diese Arbeit zwei unter-

schiedlicheWege die Parameter zu trainieren. Einerseits vollständig unüberwacht, wodurch

keine klassi�zierten Trainingsdaten vorhanden sind, andererseits semi-überwacht, bei

dem kleine Mengen von klassi�zierten Daten für das Training verwendet werden können.

Die trainierten Quanten Kernels werden anschließend mit unterschiedlichen klassischen

Clustering Algorithmen, die Kernel-Funktionen nutzen können, kombiniert.

Um diesen Ansatz zu evaluieren wurde eine Trainings- und Testpipeline implementiert,

die simulierte Quantencomputer auf klassischer Hardware verwendet.

iii

Umfangreiche Experimente zeigen, dass variierbare Quanten Kernels mit unterschiedli-

chen semi-überwachten Kostenfunktionen trainiert werden können. Desweiteren können

diese trainierten Quanten Kernels in klassischen Clustering Verfahren gute Ergebnisse

erzielen. In den meisten Fällen sind die Clustering Ergebnisse mit trainierten Quanten Ker-

nels besser als mit dem häu�g benutzten, klassischen radial basis (rbf) Kernel. Allerdings

konnten für die vorgestellten unüberwachten Kostenfunktionen keine guten Ergebnisse

erreicht werden, weshalb diese momentan nicht geeignet sind, um einen variierbaren

Quanten Kernel zu trainieren.

iv

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 3
2.1. Machine Learning . 3

2.1.1. Linear Separability . 4

2.1.2. Kernels . 4

2.1.3. Clustering . 6

2.2. Quantum Computing . 12

2.2.1. Qubits . 13

2.2.2. Gates . 16

2.2.3. Basis states . 22

2.2.4. Measurement . 23

2.2.5. Entanglement . 23

2.2.6. Data Encoding . 24

2.2.7. Noise . 26

2.2.8. Quantum Machine Learning . 31

2.2.9. Variational Quantum Circuits . 32

2.2.10. Quantum Kernels . 33

2.2.11. Variational Quantum Kernels . 35

2.3. Related Work . 36

3. Approach 39
3.1. Variational Quantum Kernels for Clustering 39

3.2. Training and Testing Pipeline . 39

3.2.1. Circuit Layout . 40

3.2.2. Training Pipeline . 41

3.2.3. Testing Pipeline . 41

3.3. Semi-Supervised Cost Functions . 43

3.3.1. Kernel Target Alignment . 43

3.3.2. Triplet Loss . 45

3.4. Unsupervised Cost Functions . 46

3.4.1. Davies-Bouldin Index . 46

3.4.2. Calinski-Harabasz Index . 46

v

Contents

4. Evaluation 49
4.1. Setup . 49

4.1.1. Implementation . 49

4.1.2. Datasets . 50

4.1.3. Algorithm Selection . 51

4.1.4. Clustering Evaluation . 51

4.2. Noiseless Simulation . 52

4.2.1. Default parameters . 52

4.2.2. Overview of Results . 53

4.2.3. Combination with Clustering Algorithms 56

4.2.4. Cost Functions . 59

4.2.5. Circuit Size . 68

4.2.6. Training Dataset Size . 71

4.3. Noisy Simulation . 72

4.3.1. Noiseless Training with Noisy Testing 72

4.3.2. Noise Correction . 75

4.4. Discussion . 76

5. Conclusion 79

Bibliography 81

A. Appendix 87

Acronyms 91

Glossary 93

vi

List of Figures

2.1. Samples can be perfectly separated by a linear function 4

2.2. Samples that are non-linearly separable 4

2.3. Example of a quantum state visualized in the Bloch sphere 15

2.4. Example of a cicuit diagram using the H gate and X gate 16

2.5. Circuit diagram with an H gate applied to the |0〉 state 16

2.6. Bloch sphere showing the |0〉 state . 17

2.7. Bloch sphere showing the result of the H gate on the |0〉 state 17

2.8. Bloch sphere showing the |0〉 state . 18

2.9. Bloch sphere showing the result of the X on the |0〉 state 18

2.10. Circuit diagram showing the X, Y and Z-gate 18

2.11. Circuit diagram showing the parameterized rotational gates 18

2.12. Circuit diagram showing the controlled rotational gates 19

2.13. Representation of a CNOT gate with the �rst qubit as the target and the

second qubit the control . 20

2.14. Circuit diagram showing the SWAP gate a�ecting two qubits 20

2.15. Circuit diagram showing the CSWAP gate with the �rst qubit being the

control qubit and the last two qubits being the targets 22

2.16. Circuit diagram with a H-gate and the measurement operator applied to

the qubit . 23

2.17. Histogram showing results of a real measurement 24

2.18. Example of two qubits being entangled by the CNOT-gate 24

2.19. Circuit showing the basis encoding of the vector 𝑥 = (110) using X gates 25

2.20. Angle encoding circuit for the vector 𝑥 = (1.2, 2.6, 4.2) using RX gates . . 26

2.21. Histogram for 10 measurements . 27

2.22. Histogram for 100 measurements . 27

2.23. Decomposition of the noisy X̃ gate into an error gate and a perfect X gate 28

2.24. Decomposition of incoherent noise in the ideal case with probability 1 − 𝑝
and the not-ideal case with probability 𝑝 28

2.25. Combination of classical/quantum data and algorithms [DTB16] 31

2.26. Overview of VQCs and their optimization 32

2.27. Layered architecture with multiple repetitions of the same ansatz 32

2.28. Circuit for a classi�er using a variational quantum circuit 33

2.29. Circuit showing the SWAP test using an ancilla qubit as an output and two

qubits being prepared by their respective transformation𝑈 (𝑥𝑖) and𝑈 (𝑥 𝑗) 34

2.30. Adjoint method where two samples are encoded on the same qubits using

𝑈 (𝑥𝑖) and𝑈 †(𝑥 𝑗) . 35

2.31. Pipeline for learning a kernel and using it for a SVM [Hub+21] 36

vii

List of Figures

3.1. Used ansatz for 4 qubits and data of dimension 3 40

3.2. Adjoint ansatz which leads to parameterized gates cancelling each other 41

3.3. Adjoint ansatz where a data encoding gate is used as a barrier so that the

parameterized gates do not cancel each other 41

3.4. Pipeline for training a variational quantum kernel as a combination of

quantum computations (green) and classical optimization (red) 42

3.5. Pipeline for combining a trained quantum kernel (green) with classical

clustering algorithms (red) . 42

4.1. Toy datasets (moons and donuts) used for the evaluation 50

4.2. Kernel matrices for the moons dataset before training (Figure 4.2a) and

after 100 epochs of training (Figure 4.2b) using the KTA cost function . . 54

4.3. NMI when testing a VQK using spectral clustering on the moons dataset 55

4.4. NMI for testing of kernel k-means and spectral clustering while training a

VQK over 100 epochs for the donuts (Figure 4.4a), Iris (Figure 4.4b) and

moons (Figure 4.4c) dataset . 57

4.5. NMI for testing of DBSCAN over 100 epochs for di�erent 𝜖 values for the

donuts (Figure 4.5a) and Iris (Figure 4.5b) dataset 58

4.6. NMI for testing of DBSCAN over 100 epochs for di�erent𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

values for the donuts (Figure 4.6a) and Iris (Figure 4.6b) dataset 58

4.7. NMI for testing of hierarchical clustering over 100 epochs for di�erent

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values for the donuts (Figure 4.7a) and Iris (Figure 4.7b)

dataset. 59

4.8. Validation cost while training a VQK with the KTA cost function on the

donuts dataset . 61

4.9. Kernel matrices before (Figure 4.9a) and after (Figure 4.9b) optimizing a

VQK with KTA on the donuts dataset . 61

4.10. NMI for the testing dataset during training with KTA on the donuts dataset 62

4.11. Validation cost during training with triplet loss 63

4.12. Kernel matrices of the test dataset with an untrained (Figure 4.12a) and

trained (Figure 4.12b) VQK using triplet loss 64

4.13. NMI for the test data with the triplet loss function on the donuts dataset. 65

4.14. Testing result during training with the KTA and triplet loss cost functions

on the donuts dataset. 65

4.15. Validation cost during the training of a VQK with the DBI (Figure 4.15a)

and CHI (Figure 4.15b) cost functions . 66

4.16. Kernel matrix of the donuts dataset after optimizing with the DBI (Fig-

ure 4.16a) and CHI (Figure 4.16b) cost functions 67

4.17. Spectral clustering of the donut training dataset during the optimization

process using the DBI and CHI cost functions 68

4.18. NMI for testing VQKs with di�erent numbers of qubits on the Iris dataset. 69

4.19. NMI for testing VQKs with di�erent numbers of layers on the Iris dataset. 70

4.20. Testing results for the Iris (Figure 4.20a) and donuts (Figure 4.20b) dataset

for di�erent training dataset sizes . 72

4.21. Testing result for simulations with di�erent numbers of shots. 74

viii

List of Figures

4.22. Kernel matrices for 0 shots (Figure 4.22a) and 50 shots (Figure 4.22b) after

100 epochs of training. 74

4.23. Testing result for simulations with and without the in�uence of coherent

noise. 75

4.24. Testing results of simulations a�ected by di�erent types of incoherent

noise compared to a noiseless simulation. 76

A.1. Kernel matrix of the Iris dataset before (Figure A.1a) and after (Figure A.1b)

training with the KTA . 88

A.2. Testing result during training on the Iris dataset with KTA 88

A.3. Kernel matrix of the Iris dataset before (Figure A.3a) and after (Figure A.3b)

training with the triplet loss cost function 89

A.4. Testing result during training on the Iris dataset with triplet loss 89

A.5. Testing result for the moons (Figure A.5a) and donuts (Figure A.5b) dataset

for VQKs with di�erent numbers of qubits 90

A.6. Testing result for the moons (Figure A.6a) and donuts (Figure A.6b) dataset

for VQKs with di�erent numbers of layers 90

ix

1. Introduction

Many applications rely on grouping similar data together. Especially when dealing with

large amounts of data it is in many cases interesting to separate the data into groups

and discover patterns. This grouping of similar samples is the machine learning task of

clustering. However, there is not one speci�c algorithm that is able to solve the clustering

task in all situations. This is due to the fact that there is not one consistent de�nition of

what constitutes a good grouping. This led to the development of many di�erent clustering

algorithms, each with a unique de�nition of a cluster model. Many of these algorithms

rely on a similarity measure to decide if two samples are similar to each other and if they

should be grouped together. One type of possible similarity measures are kernel functions,

which are predominantly known from support vector machines (SVMs) and can calculate

similarities in implicit, high-dimensional spaces.

Recent advances in building quantum computers have sparked an interest in designing

adequate algorithms. Quantum computing (QC) is based on the well-known theories

of quantum mechanics. The core concepts of computations are very similar to classical

computers. Quantum bits (qubits), the quantum equivalent of classical bits, are processed

by quantum gates, which are similar to classical logic gates, in order to implement some

algorithm. These sequences of gates are referred to as quantum circuits, analogously to

classical circuits. There are multiple di�erent quantum circuits and algorithms that were

shown to outperform their best classical counterpart.

Furthermore, QC can be combined with classical machine learning (ML) to a new �eld of

study called quantum machine learning (QML). There are some proposals of transferring

classical clustering algorithms to quantum computers or even designing completely new

quantum clustering algorithms. It can be shown that some of these algorithms in theory

perform better than classical clustering. However, many of these algorithms require a

large number of qubits. This is problematic in the current era of noisy intermediate scale

quantum (NISQ) devices, as real quantum hardware is heavily a�ected by noise, which

currently prohibits building quantum computers with many qubits.

With these problems in mind, the attention turned to replacing smaller parts of classical

ML algorithms with quantum subroutines. As it turns out, the kernel functions used in

clustering algorithms, can also be calculated using a quantum computer by designing

speci�c quantum circuits. As kernel functions calculate a similarity between two samples

at a time, quantum kernels are possible in the current NISQ era. The hope is that there

are speci�c quantum kernels that are classically intractable and pose an advantage over

common classical kernel functions.

Furthermore, quantum kernels can not only be calculated by �xed quantum circuits, but

also through the usage of variational quantum circuits (VQCs). These circuits are similar to

classical neural networks (NNs), in that they take some parameters that can be optimized

to represent a target function. This combination leads to the introduction of variational

1

1. Introduction

quantum kernels (VQKs), where the kernel function can be optimized to represent the

given data. This idea was �rst introduced in [Hub+21] and used in combination with a

support vector machine (SVM).

This thesis proposes a combination of VQKs with classical clustering algorithms. The

goal is to increase the clustering performance by training the quantum circuit to re�ect

the similarities in the dataset. While clustering is generally considered an unsupervised

task, optimizing parameters without labeled training data is di�cult. This is why this

thesis introduces di�erent approaches of unsupervised training as well as semi-supervised

training, where typically a small amount of labeled training data is available.

In order to show the usability of VQKs in clustering, a pipeline for training and testing

was implemented in the context of this thesis. This implementation is used with di�erent

toy and real-world datasets to evaluate its performance.

Chapter 2 introduces the necessary basics, which are important for the remainder of

this thesis. Starting with an explanation of some classical clustering algorithms that can

utilize kernel functions. Afterwards some necessary basic concepts from QC, as well as

more advanced topics from QML are introduced.

The approach of this thesis, including the pipeline for training and testing, is shown in

Chapter 3. This section introduces some possible cost functions used for optimizing the

quantum kernel for unsupervised and semi-supervised learning.

Chapter 4 evaluates the general clustering performance compared to classical kernel

functions. Furthermore, this chapter also investigates which approaches from Chapter 3

are capable of optimizing the kernel function. Important parameters that in�uence the

clustering performance are detailed as well.

Lastly, Chapter 5 summarizes the important results of this thesis and discusses some

possible further research topics.

2

2. Foundations

The popularity of machine learning in science and the general media has skyrocketed in

recent years. However the concepts and fundamentals behind this topic are nothing new.

The recent popularity can be attributed to the fact that computing resources are �nally

a�ordable and able to satisfy the performance demands of complex machine learning

algorithms.

The same goes for quantum computers. The general theory of quantum mechanics is

known since the 20th century. But only recently the �rst bigger quantum computers were

introduced with up to 127 qubits [Tak+21]. These advances have led to much research into

the possible advantages of quantum computers for computer science and other �elds. One

topic that quickly came into focus for a possible combination with quantum computers

was machine learning. Many classical algorithms were and are currently being changed

to work with quantum computers, possibly leading to advances compared to classical

computers [SP18].

The following chapters introduce the necessary foundations for classical machine

learning and quantum computing. Section 2.1 details some concepts and algorithms from

machine learning. The ideas of quantum computing and quantum machine learning are

introduced in Section 2.2.

2.1. Machine Learning

Machine learning can be de�ned as a group of algorithms that use experience to improve

their performance. This experience generally comes through learning from available data,

often called training data. Using the training data the algorithm is able to make predictions

on unseen data, which is similar to the provided training data.

This rather general de�nition of machine learning can be further re�ned into some

subcategories, which are presented in the following. While there are more possible cate-

gories [MRT12], supervised, unsupervised and semi-supervised learning are the important

ones in the scope of this thesis.

Supervised Learning The algorithm receives training data containing the datapoints and

their assigned labels. Using this data the algorithm has to learn from it and predict the

labels for new and unseen data. This approach is most commonly used for assigning

discrete or continuous labels to the data, also called classi�cation and regression.

Unsupervised Learning Only unlabeled training data is provided to the algorithm and

can be used for training. Afterwards the algorithm has to assign labels to all unlabeled

datapoints. Common scenarios are clustering, where unlabeled data is assigned to similar

groups, or dimensionality reduction used to transform data into lower dimensional spaces.

3

2. Foundations

Semi-supervised Learning This type is the middleground between supervised and unsu-

pervised learning. The algorithm receives labeled and unlabeled training data and predicts

labels for unseen data. Most commonly the training data only consists of a small amount

of labeled data. Many algorithms typically associated with supervised and unsupervised

learning can also be phrased as semi-supervised learning. It is especially interesting how

good their performance is considering the small amount of available labeled training data.

The next sections introduce some concepts from machine learning that are important

for understanding this thesis. Namely kernel methods and some fundamental algorithms

for clustering.

2.1.1. Linear Separability

Many machine learning algorithms, including classi�cation and clustering, rely on sepa-

rating data. The easiest way to separate data is by using a hyperplane whose dimension

is one less than that of its euclidean space. If the data can be perfectly separated by a

hyperplane, it is called linear separable. This can be seen in Figure 2.1 for a 2-dimensional

example. However, this is not possible in most cases. As can be seen in Figure 2.2, there are

cases where using a hyperplane does not separate the data perfectly into the two classes

de�ned by green and blue datapoints. This is called non-linearly separable. The alternative
for non-linearly separable datasets is using non-linear functions.

0 1 2 3 4 5
0

1

2

3

4

5

Figure 2.1.: Samples can be perfectly sep-

arated by a linear function

0 1 2 3 4 5
0

1

2

3

4

5

Figure 2.2.: Samples that are non-

linearly separable

2.1.2. Kernels

The previous section introduced the concept of linear separability and the fact that more

complex functions are necessary for data that is non-linearly separable. Necessarily using

complex functions can be prevented by non-linearly mapping data from an input space 𝑋

into higher dimensional spaces 𝐻 , in which the data becomes linearly separable. Such a

function 𝜙 : 𝑋 → 𝐻 that maps data from the input space 𝑋 into a feature Hilbert space 𝐻

is called a feature map. However, just mapping the data into a higher dimensional feature

space and using this transformed data in algorithms is not always feasible. This is due

4

2.1. Machine Learning

to a very high or even in�nite dimension of the feature space, thus making the explicit

mapping very calculation intense or even impossible.

This is where kernels come into play. A kernel 𝑘 : 𝑋 ×𝑋 → R is a function that maps two

datapoints from the input set 𝑋 = {𝑥1, . . . , 𝑥𝑚} to a real number [MRT12]. Furthermore

the matrix

𝐾 = [𝑘 (𝑥𝑖, 𝑥 𝑗)]𝑖 𝑗 ∈ R𝑚𝑥𝑚 1 ≤ 𝑖, 𝑗 ≤ 𝑚,

called the kernel- or Gram matrix, has to be positive semide�nite [MRT12]. This require-

ment is equivalent to

𝑁∑︁
𝑖, 𝑗=1

𝑐𝑖𝑐
∗
𝑗𝑘 (𝑥𝑖, 𝑥 𝑗) ≥ 0 (2.1)

for any subset {𝑥1, . . . , 𝑥𝑁 } ⊆ 𝑋 and 𝑐1, . . . , 𝑐𝑁 ∈ R [MRT12].

Using a feature map 𝜙 : 𝑋 → 𝐻 , a kernel function can be de�ned as

𝑘 (𝑥𝑖, 𝑥 𝑗) = 〈𝜙 (𝑥𝑖), 𝜙 (𝑥 𝑗)〉𝐻 ,

using the inner product 〈·, ·〉𝐻 de�ned on the Hilbert space 𝐻 . To proof that this is a valid

kernel function, one has to show that the condition in Equation (2.1) is ful�lled. For any

{𝑥1, . . . , 𝑥𝑁 } ⊆ 𝑋 and 𝑐1, . . . , 𝑐𝑁 ∈ R one can show that

𝑁∑︁
𝑖, 𝑗=1

𝑐𝑖𝑐
∗
𝑗𝑘 (𝑥𝑖, 𝑥 𝑗) =

𝑁∑︁
𝑖, 𝑗=1

𝑐𝑖𝑐
∗
𝑗 〈𝜙 (𝑥𝑖), 𝜙 (𝑥 𝑗)〉𝐻

= 〈
𝑁∑︁
𝑖=1

𝑐𝑖𝜙 (𝑥𝑖),
𝑁∑︁
𝑗=1

𝑐 𝑗𝜙 (𝑥 𝑗)〉𝐻

= | |
𝑁∑︁
𝑖=1

𝑐𝑖𝜙 (𝑥𝑖) | |2 ≥ 0 �

This shows that every feature map induces a kernel function using the inner product

between the results of the feature mapping, also called feature vectors. Also, as these kernels
are de�ned through the inner product, they can be interpreted as similarity measures

between the datapoints.

The advantage of feature maps is the possibly non-linear mapping to higher dimensional

spaces, where the data is linearly separable. However, explicitly mapping each datapoint

into this space is expensive or impossible depending on its dimension. This is where kernel

functions can become useful. If the algorithm in question can be rewritten to use the inner

product between feature vectors 〈𝜙 (𝑥𝑖), 𝜙 (𝑥 𝑗)〉, this inner product can be replaced by a

kernel function. Instead of explicitly mapping the input vectors into higher dimensional

spaces and calculating their inner product, the kernel functions o�er an equation without

explicitly doing the transformation into higher dimensions. This practice is known as the

kernel trick [HSS08].

5

2. Foundations

An example for kernel functions are polynomial kernels de�ned as follows [MRT12]:

𝑘 (𝑥,𝑦) = (𝑥𝑇𝑦 + 𝑐)𝑑 𝑥,𝑦 ∈ R𝑚, 𝑑 ∈ N, 𝑐 ∈ R > 0.

For𝑚 = 2, 𝑑 = 3 and 𝑐 = 1 this leads to

𝑘 (𝑥,𝑦) = (
(
𝑥1, 𝑥2

) (𝑦1
𝑦2

)
+ 1)3

= (𝑥1𝑦1 + 𝑥2𝑦2 + 1)3

= 1 + 𝑥3
1
𝑦3
1
+ 𝑥3

2
𝑦3
2
+ 3𝑥1𝑦1 + 3𝑥2𝑦2 + 3𝑥2

1
𝑦2
1
𝑥2𝑦2

+ 3𝑥2
1
𝑦2
1
+ 3𝑥2

2
𝑦2
2
+ 3𝑥1𝑦1𝑥

2

2
𝑦2
2
+ 6𝑥1𝑦1𝑥2𝑦2.

This is the same as the inner product between(
1, 𝑥3

1
, 𝑥3

2
,

√
3𝑥1,

√
3𝑥2,

√
3𝑥2

1
𝑥2,

√
3𝑥2

1
,

√
3𝑥2

2
,

√
3𝑥1𝑥

2

2
,

√
6𝑥1𝑥2

)
,

and (
1, 𝑦3

1
, 𝑦3

2
,

√
3𝑦1,

√
3𝑦2,

√
3𝑦2

1
𝑦2,

√
3𝑦2

1
,

√
3𝑦2

2
,

√
3𝑦1𝑦

2

2
,

√
6𝑦1𝑦2

)
,

which leads to the feature map

𝜙 (𝑥) = 𝜙 (𝑥1, 𝑥2)

=

(
1, 𝑥3

1
, 𝑥3

2
,

√
3𝑥1,

√
3𝑥2,

√
3𝑥2

1
𝑥2,

√
3𝑥2

1
,

√
3𝑥2

2
,

√
3𝑥1𝑥

2

2
,

√
6𝑥1𝑥2

)
.

In conclusion, the feature map 𝜙 maps datapoints to a 10-dimensional space. The kernel

(𝑥𝑇𝑦 + 1)3 calculates an inner product between 𝜙 (𝑥) and 𝜙 (𝑦) without explicitly visiting

this 10-dimensional space, which shows the advantage of using kernels.

2.1.3. Clustering

Clustering is the task of grouping together datapoints so that samples from one group,

or cluster, are more similar to samples from the same cluster than from other clusters.

However, there is not only one reference algorithm for clustering, because the notion

of clusters and similarity is not perfectly de�ned [Est02a]. Depending on the use case

there are many di�erent ways of de�ning a cluster and again multiple di�erent algorithms

that are able to �nd these clusters. In the following some of these cluster-de�nitions are

presented.

Centroid based clustering de�nes a cluster through a mean vector of all samples assigned

to the cluster. A popular algorithm for this class is the k-means algorithm [Mac67]. Even

though weighted kernel k-means [DGK04] does not represent a cluster internally as a

mean vector, it can be assigned to this class of clustering. This is due to the fact that it is

an extension of the classical k-means algorithm and predominantly uses the mean in its

calculations. Spectral clustering [Lux07] can also be seen as a centroid based clustering

algorithm, as it uses k-means after a preprocessing of the input data.

6

2.1. Machine Learning

Hierarchical clustering methods de�ne clusters through a hierarchical structure [Nie16].

There are two di�erent strategies of building this hierarchy. Bottom-up, or agglomerative

clustering, starts with each datasample in its own cluster and iteratively merges them to

bigger clusters. Top-down, or divisive clustering, starts with one cluster of all samples and

iteratively separates it into smaller clusters. A linkage criteria determines the dissimilarity

between sets of datapoints, while a dissimilarity functions calculates pairwise dissimilari-

ties. Linkage criteria and dissimilarity function combined are used to determine which

clusters are merged or separated.

Density based clustering de�nes a cluster as a volume with many datapoints or a high

density of datapoints [Kri+11]. To detect these areas of higher densities, a distance or

dissimilarity measure is required to group the samples. One of the most popular density

based algorithms is DBSCAN [Est+96]. Common alternatives are OPTICS [Ank+99] or the

mean-shift algorithm [Che95].

In the following sections some of the mentioned algorithms are explained in greater

detail.

2.1.3.1. k-means

Standard k-means [Mac67] is based on �nding 𝑘 clusters, which are represented by 𝑘

di�erent mean vectors 𝑚1, . . . ,𝑚𝑘 , in a set of 𝑁 samples. The algorithm to �nd these

cluster centroids is shown in Algorithm 1.

Algorithm 1 k-means

Require: Dataset 𝐷 , number of clusters 𝑘 , number of 𝑠𝑡𝑒𝑝𝑠

1: Initialize 𝑘 clusters:

2: Sets of points for clusters 𝑆1, . . . , 𝑆𝑘
3: Cluster centers𝑚1, . . . ,𝑚𝑘

4: for 𝑠𝑡𝑒𝑝𝑠 do
5: for all Points 𝑝 ∈ 𝐷 do
6: Assign 𝑝 to the cluster 𝑆𝑖 with the closest cluster center𝑚𝑖 → 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 | |𝑝−𝑚𝑖 | |2

7: end for
8: for all Clusters 𝑆𝑖 do
9: Update the cluster center𝑚𝑖 as the mean over all points in 𝑆𝑖
10: end for
11: if the assignment has not changed since the last step then
12: k-means has converged→ Stop

13: end if
14: end for

This algorithm can be reduced to two steps, the assignment and update step. In the

assignment step (line 6), each sample is assigned to the cluster with the closest cluster

center. In the update step (line 9), the cluster centers are recalculated as the mean over all

samples that are assigned to the cluster. Once the assignment of samples to a cluster does

7

2. Foundations

not change in the next step, the algorithm has converged, as further steps also would not

change the assignment.

Note that k-means produces circular clusters due to the assignment step using the

euclidean distance. These circular clusters are one restriction of k-means, as datasets with

clusters in other shapes, which are not linearly separable, cannot be clustered correctly.

2.1.3.2. Weighted kernel k-means

Kernel k-means [DGK04] is a variant of the standard algorithm shown in Section 2.1.3.1.

It tries to solve the problem of non-linearly separable data, by using a kernel function to

transform the input data into a higher dimensional space. Furthermore this version adds

the option to assign a weight𝑤𝑖 to each input sample 𝑎𝑖 .

Kernel k-means tries to �nd 𝑘 clusters𝐶1, . . . ,𝐶𝑘 , which are de�ned by the set of samples

that belong to the given cluster. The objective function is given by:

𝐷 (𝐶𝑖) =
𝑘∑︁
𝑖=1

∑︁
𝑎∈𝐶𝑖

𝑤 (𝑎) | |𝜙 (𝑎) −𝑚𝑖 | |2 𝑚𝑖 =

∑
𝑏∈𝐶𝑖 𝑤 (𝑏)𝜙 (𝑏)∑

𝑏∈𝐶𝑖 𝑤 (𝑏) , (2.2)

with𝑚𝑖 being the cluster center for cluster 𝐶𝑖 and 𝜙 being a feature map [DGK04]. The

objective function is intuitively explained as the sum over the distances between each

embedded sample and all cluster centers. After minimizing this function, each sample is

assigned to the nearest cluster center.

However, the objective function as de�ned in Equation (2.2) cannot be optimized, as

𝜙 may be projecting 𝑎 into an in�nite dimensional space in which case 𝜙 (𝑎) cannot be
explicitly calculated [DGK04]. To resolve this, the euclidean distance between 𝜙 (𝑎) and
𝑚𝑖 in Equation (2.2) is rewritten as [DGK04]:

| |𝜙 (𝑎) −𝑚𝑖 | |2 =

𝜙 (𝑎) − ∑

𝑏∈𝐶𝑖 𝑤 (𝑏)𝜙 (𝑏)∑
𝑏∈𝐶𝑖 𝑤 (𝑏)

2 (2.3)

= 𝜙 (𝑎)𝜙 (𝑎) −
2

∑
𝑏∈𝐶𝑖 𝑤 (𝑏)𝜙 (𝑎)𝜙 (𝑏)∑

𝑏∈𝐶𝑖 𝑤 (𝑏) +
∑
𝑏,𝑐∈𝐶𝑖 𝑤 (𝑏)𝑤 (𝑐)𝜙 (𝑏)𝜙 (𝑐)

(∑𝑏∈𝐶𝑖 𝑤 (𝑏))2 . (2.4)

Note that Equation (2.4) only uses products between two feature vectors, which allows

us to apply the kernel trick and calculate these products using a kernel function. This

leads to the �nal Equation (2.5) to calculate the distance between 𝜙 (𝑎) and𝑚𝑖 [DGK04].

| |𝜙 (𝑎) −𝑚𝑖 | |2 = 𝑘 (𝑎, 𝑎) −
2

∑
𝑏∈𝐶𝑖 𝑤 (𝑏)𝑘 (𝑎, 𝑏)∑

𝑏∈𝐶𝑖 𝑤 (𝑏) +
∑
𝑏,𝑐∈𝐶𝑖 𝑤 (𝑏)𝑤 (𝑐)𝑘 (𝑏, 𝑐)

(∑𝑏∈𝐶𝑖 𝑤 (𝑏))2 . (2.5)

Using Equation (2.5), the weighted kernel k-means algorithm can be de�ned as seen in

Algorithm 2.

Note that this algorithm is very similar to the standard k-means algorithm, as each

sample is assigned to a speci�c cluster. The di�erences are that clusters are de�ned over a

set of points instead of a mean, and that distances between a sample and the clusters are

not calculated using euclidean distance but a kernel function. This kernel function allows

weighted kernel k-means to �nd clusters for not linearly separable datasets. However, this

feature is heavily con�ned to the quality of the kernel.

8

2.1. Machine Learning

Algorithm 2 Weighted kernel k-means

Require: Dataset 𝐷 , number of clusters 𝑘 , kernel function 𝑘 (·, ·), weights𝑤
1: Initialize 𝑘 clusters 𝐶1, . . . ,𝐶𝑘
2: while True do
3: for all Points 𝑝 ∈ 𝐷 do
4: Find the new cluster index 𝑗 (𝑝) for 𝑝 by solving 𝑗 (𝑝) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 | |𝜙 (𝑎) −𝑚𝑖 | |2

using Equation (2.5)

5: end for
6: for all Clusters 𝐶𝑖 do
7: Compute new clusters 𝐶𝑖 = {𝑝 | 𝑗 (𝑝) = 𝑖}
8: end for
9: if the assignment has not changed since the last step then
10: Algorithm has converged→ Stop

11: end if
12: end while

2.1.3.3. DBSCAN

DBSCAN is short for density-based spatial clustering of applications with noise [Est+96].

As the name suggests, it is based on �nding clusters in regions with a high density of data

samples. To specify how dense an area is, DBSCAN uses a distance metric.

DBSCAN distinguishes between three di�erent types of samples. Samples inside of a

cluster (core points), samples on the border of a cluster (border points) and outliers, which

are not part of any cluster (noise points).
The 𝜖-neighbourhood of a point 𝑝 is de�ned by all points 𝑞 that lie within a distance 𝜖

from 𝑝 [Est+96]. The mathematical de�nition for this is 𝑁𝜖 (𝑝) = {𝑞 ∈ 𝐷 |𝑑𝑖𝑠𝑡 (𝑝, 𝑞) ≤ 𝜖},
with 𝐷 being the set of points and 𝑑𝑖𝑠𝑡 (·, ·) being a distance measure. With that a core

point 𝑝 is de�ned as a point with an 𝜖-neighbourhood of at least 𝑀𝑖𝑛𝑃𝑡𝑠 other points

(|𝑁𝜖 (𝑝) | ≥ 𝑀𝑖𝑛𝑃𝑡𝑠). Border points do not ful�ll the core point condition, but lie within

the 𝜖-neighbourhood of a core point.

The cluster model of DBSCAN can be described as follows. A point 𝑝 is called directly
density-reachable from another point 𝑞, if 𝑞 is a core point and 𝑝 is in the 𝜖-neighbourhood

of 𝑞 [Est+96]. Furthermore, if a sequence of points 𝑝 = 𝑝1, . . . , 𝑝𝑛 = 𝑞 exists, with 𝑝𝑖+1
being directly density-reachable from 𝑝𝑖 , then 𝑞 is called density-reachable from 𝑝 [Est+96].

Directly density-reachability adds all points 𝑝 in the 𝜖-neighbourhood of a core point 𝑞

to the cluster of the core point. These points 𝑝 are either core points or border points. If

any point is again a core point, their 𝜖-neighbourhood is also added to the cluster. This is

described by density-reachability. Border points are density-reachable from a core point of

the cluster. All points which are not density-reachable from any core point are classi�ed

as noise.

This mathematical de�nition of a cluster model in DBSCAN can be translated into

pseudo-code [Sch+17] as seen in Algorithm 3. This algorithm gradually expands the

neighbourhood around core-points to include all neighbouring core- and border-points.

9

2. Foundations

Algorithm 3 DBSCAN

Require: Dataset 𝐷

Require: 𝑀𝑖𝑛𝑃𝑡𝑠 to be a core point

Require: 𝜖 to de�ne neighbourhood

Require: 𝑑𝑖𝑠𝑡 as distance measure

1: for all 𝑝 ∈ 𝐷 do
2: if 𝑙𝑎𝑏𝑒𝑙 (𝑝) ≠ 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 then
3: continue ⊲ Point was already processed

4: end if
5: Neighbours 𝑁 = {}
6: for all 𝑞 ∈ 𝐷 do
7: if 𝑑𝑖𝑠𝑡 (𝑝, 𝑞) ≤ 𝜖 then
8: 𝑁 = 𝑁 ∪ {𝑞} ⊲ Get 𝜖-neighbourhood of 𝑞

9: end if
10: end for
11: if |𝑁 | < 𝑀𝑖𝑛𝑃𝑡𝑠 then
12: 𝑙𝑎𝑏𝑒𝑙 (𝑝) = 𝑁𝑜𝑖𝑠𝑒 ⊲ Point is noise

13: continue

14: end if
15: 𝑐 = next cluster label ⊲ Start new cluster

16: 𝑙𝑎𝑏𝑒𝑙 (𝑝) = 𝑐
17: for all 𝑞 ∈ 𝑁 do
18: if 𝑙𝑎𝑏𝑒𝑙 (𝑞) = 𝑁𝑜𝑖𝑠𝑒 then
19: 𝑙𝑎𝑏𝑒𝑙 (𝑞) = 𝑐 ⊲ Point was previously classi�ed as noise

20: end if
21: if 𝑙𝑎𝑏𝑒𝑙 (𝑞) ≠ 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 then
22: continue ⊲ Point already has a cluster label

23: end if
24: 𝑙𝑎𝑏𝑒𝑙 (𝑞) = 𝑐
25: for all 𝑘 ∈ 𝐷 do
26: if 𝑑𝑖𝑠𝑡 (𝑞, 𝑘) ≤ 𝜖 then
27: 𝑁 = 𝑁 ∪ {𝑘} ⊲ Expand neighbourhood with all points in

neighbourhood of 𝑞

28: end if
29: end for
30: end for
31: end for

10

2.1. Machine Learning

The advantages of DBSCAN are that �rstly, it can detect clusters of any shape. Secondly

it can detect outliers in the data and classify them as such. And lastly DBSCAN can �nd

clusters without having to specify in advance how many clusters there are.

Problems of DBSCAN are that it is not deterministic, as a border point can potentially

be part of multiple clusters, if it is reachable from multiple clusters [Sch+17]. Furthermore

the algorithm relies on a distance metric and is therefore reliant on the quality of said

distance metric.

2.1.3.4. Spectral Clustering

Spectral clustering uses dimensionality reduction of the dataset 𝑋 = {𝑥1, . . . , 𝑥𝑛} before
clustering the reduced dataset using standard clustering algorithms to �nd 𝑘 di�erent

clusters [Lux07].

Spectral clustering requires the de�nition of a similarity function 𝑠 (𝑥𝑖, 𝑥 𝑗). Using this
function, the similarity matrix [𝑆]𝑖, 𝑗 ∈ R𝑛×𝑛 can be de�ned as the similarity between all

pairs of samples (𝑥𝑖, 𝑥 𝑗). This matrix can be interpreted as a similarity graph. Each sample

is seen as a vertex in the graph and two vertices are connected by an edge if they are similar

to each other. The edges are typically weighted by the similarity of the two connected

samples. Note that there are many di�erent ways of constructing this similarity graph.

Some examples are thresholding, where two vertices are only connected if their similarity

is above a certain threshold value. Another way is to connect a vertex only to 𝑘 other

vertices with the highest similarity [Lux07].

The similarity graph can be represented by a weighted adjacency matrix [𝑊]𝑖, 𝑗 that
contains the weight associated with an edge between two vertices or 0 if the two vertices

are not connected by an edge. Using the adjacency matrix𝑊 a Laplacian matrix can

be de�ned as a representation of the similarity graph. Note that there are again many

di�erent ways of de�ning this Laplacian matrix. One way is to de�ne the Laplacian matrix

as [Lux07]:

𝐿 = 𝐷 −𝑊,

where 𝐷 is de�ned as a diagonal matrix containing the number of connected vertices:

𝐷𝑖𝑖 =
∑︁
𝑗

𝑊𝑖 𝑗 .

Using the Laplacian 𝐿, the �rst 𝑘 eigenvectors 𝑒1, . . . , 𝑒𝑘 can be computed. They are

used to form the matrix 𝑈 ∈ R𝑛×𝑘 that contains the eigenvectors 𝑒𝑖 as columns. This is

e�ectively a dimensionality reduction from 𝑛 × 𝑛 to 𝑛 × 𝑘 , as 𝑘 is typically much smaller

than 𝑛. To calculate the �nal clusters, the 𝑛 row vectors of 𝑈 , each of dimension 𝑘 , are

clustered using standard clustering algorithms like k-means. The pseudocode [Lux07] for

spectral clustering is shown in Algorithm 4.

Note that there are many di�erent ways of specifying this clustering algorithm. Es-

pecially, there are many di�erent ways of building the similarity graph and de�ning the

Laplacian matrix. A good overview is provided in [Lux07].

11

2. Foundations

Algorithm 4 Spectral Clustering

Require: Dataset 𝑋 = {(𝑥𝑖)}𝑛𝑖=1, similarity measure 𝑠 (𝑥𝑖, 𝑥 𝑗), number of clusters 𝑘

1: for all pairs (𝑥𝑖, 𝑥 𝑗) do
2: 𝑆𝑖 𝑗 = 𝑠 (𝑥𝑖, 𝑥 𝑗)
3: end for
4: Construct a similarity graph and its adjacency matrix𝑊

5: for 𝑖 = 1 to 𝑛 do
6: 𝐷𝑖𝑖 =

∑
𝑗𝑊𝑖 𝑗

7: end for
8: Laplacian matrix 𝐿 = 𝐷 −𝑊
9: Compute �rst 𝑘 eigenvectors of 𝐿 as 𝑒1, . . . , 𝑒𝑘
10: De�ne𝑈 ∈ R𝑛×𝑘 as the matrix containing the eigenvectors 𝑒𝑖 as columns

11: De�ne 𝑦𝑖 ∈ R𝑘 as the 𝑛 row vectors of𝑈

12: Cluster {(𝑦𝑖)}𝑛𝑖=1 into 𝑘 clusters using k-means

2.1.3.5. Hierarchical Clustering

Hierarchical clustering builds a hierarchy of clusters [Nie16]. Either bottom-up, also called

agglomerative, through assigning each sample to its own cluster and iteratively merging

these clusters. Or top-down, also called divisive, by creating one cluster of all samples and

splitting it into smaller clusters.

For both variants two functions are required: a distance metric and a linkage criteria.

The distance metric 𝑑𝑖𝑠𝑡 (𝑥,𝑦) measures the distance between two samples 𝑥 and 𝑦. There

is a multitude of di�erent distance metrics that can be used. Some of the more popular ones

are the euclidean distance (| |𝑎 − 𝑏 | | =
√︁∑

𝑖 (𝑎𝑖 − 𝑏𝑖)2) or manhattan distance (| |𝑎 − 𝑏 | | =∑
𝑖 |𝑎𝑖 − 𝑏𝑖 |). However, every function that is a metric can be used.

The linkage criteria is used to de�ne the distance between two clusters, which possibly

contain more than one sample. Typically a linkage criteria uses the distance metric to

calculate the distance for all pairwise samples in these clusters. Equally as for the distance

metric, there are many di�erent ways of de�ning a linkage criteria. Some of the popular

ones are maximum linkage or single linkage. Maximum linkage is the largest distance

𝑑 (𝑥,𝑦) between two samples from the clusters 𝐶1 and 𝐶2. Single linkage is analogously

the smallest distance between two samples from both clusters.

Maximum linkage:𝑚𝑎𝑥 ({𝑑 (𝑥,𝑦) |𝑥 ∈ 𝐶1, 𝑦 ∈ 𝐶2})
Single linkage:𝑚𝑖𝑛({𝑑 (𝑥,𝑦) |𝑥 ∈ 𝐶1, 𝑦 ∈ 𝐶2})

The linkage criteria can then be used to merge of split clusters as long as the linkage

stays under some threshold 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

2.2. Quantum Computing

This section explains some of the basic concepts from quantum computing. From qubits in

Section 2.2.1 and gates in Section 2.2.2 over entanglement in Section 2.2.5 up to the e�ects

12

2.2. Quantum Computing

of quantum noise in Section 2.2.7. Afterwards the ideas of quantum machine learning,

variational circuits and quantum kernels are explained.

2.2.1. Qubits

In classical computing everything is built up from the smallest amount of information, a

bit. Each bit is either 0 or 1 at all times. Quantum computing has a similar concept called

a quantum bit (qubit). Furthermore there are also similar basis states for qubits, |0〉 and
|1〉, which are de�ned as follows [NC10]:

|0〉 =
(
1

0

)
|1〉 =

(
0

1

)
.

The |·〉 notation is called a ket-vector in the Dirac-notation [Dir39], which is used to

represent quantum states. The Dirac notation also de�nes bra-vectors (〈·|), which are the

complex conjugate and transposed of ket-vectors 〈·| = |·〉†. The basis states as bra-vectors
look like:

〈0| = |0〉† =
(
1, 0

)
〈1| = |1〉† =

(
0, 1

)
In contrast to a classical bit, a qubit does not have to be in either of the two basis states

|0〉 or |1〉 at all times. It can be a linear combination of these two basis states. This linear

combination is called a superposition in quantum computing and leads to the general

de�nition of a qubit [NC10]:

|𝜓 〉 = 𝛼 |0〉 + 𝛽 |1〉 =
(
𝛼

𝛽

)
𝛼, 𝛽 ∈ C. (2.6)

Equation (2.6) shows a qubit in ket-state as a superposition of the basis states |0〉 and |1〉
using the factors 𝛼 and 𝛽 , which are often called the amplitudes.

The analogous bra-state to (2.6) is

〈𝜓 | = 𝛼∗ 〈0| + 𝛽∗ 〈1| =
(
𝛼∗, 𝛽∗

)
𝛼, 𝛽 ∈ C,

with ∗ being the complex conjugate.

Each state vector |𝜙〉 belongs to a two-dimensional complex vector space with an inner

product, also called the Hilbert space [NC10]. This inner product is de�ned by:

〈𝑎 |𝑏〉 = 〈𝑎 | · |𝑏〉 =
(
𝑎∗
1
, 𝑎∗

2
, . . . , 𝑎∗𝑛

) ©­­­­­­­«

𝑏1
𝑏2
.

.

.

𝑏𝑛

ª®®®®®®®¬
= 𝑎∗

1
𝑏1 + 𝑎∗2𝑏2 + . . . + 𝑎∗𝑛𝑏𝑛 . (2.7)

13

2. Foundations

Even though the general qubit state can be mathematically expressed as de�ned in

Equation (2.6), the superposition cannot be obtained through a measurement. The result of

a measurement is always either |0〉 with probability |𝛼 |2 or |1〉 with probability |𝛽 |2 [NC10].
This interpretation of 𝛼 and 𝛽 as probabilities adds another constraint from probability

theory to their possible values:

|𝛼 |2 + |𝛽 |2 = 1. (2.8)

Furthermore, the de�nition of qubits from Equation (2.6) can be extended from one

qubit to n-qubit systems. In this case there are 2
𝑛
basis states and a quantum state is a

superpostion of these basis states, leading to 2
𝑛
complex amplitudes. The general de�nition

for a 2-qubit quantum systems is

|𝜓 〉 = 𝛼0 |00〉 + 𝛼1 |01〉 + 𝛼2 |10〉 + 𝛼3 |11〉 .

Note that the combined quantum state (e.g. |00〉) of two separate qubits (e.g. |0〉 and |0〉)
is described by the tensor product (i.e. |00〉 = |0〉 ⊗ |0〉) [NC10].
Again the 𝛼𝑖 coe�cients are interpreted as probabilities, so the constraint from Equa-

tion (2.8) also extends to n-qubit systems:

2
𝑛−1∑︁
𝑖=0

|𝛼𝑖 |2 = 1

In Equation (2.6) vectors were used to de�ne a quantum state |𝜓 〉. An alternative

way of describing quantum states is achieved by using matrices, often called the density

matrix [ANI+21]. Assuming a quantum state |𝜓 〉 in vector notation, the corresponding

density matrix is shown in Equation (2.9), de�ned through the dyadic product of the

vectors. The density matrix for a quantum state in an n-qubit system generally is C2
𝑛𝑥2𝑛

.

𝜌 = |𝜓 〉 〈𝜓 | |𝜓 〉 ∈ C2𝑛 (2.9)

A way of representing quantum states is using a graphical representation. As one qubit

with both complex amplitudes 𝛼 and 𝛽 has four degrees of freedom, which is di�cult to

visualize, the general qubit de�nition has to be rewritten. Using the de�nition for complex

numbers leads to:

|𝜙〉 = 𝛼 |0〉 + 𝛽 |1〉 = 𝑟0𝑒𝑖𝜑0 |0〉 + 𝑟1𝑒𝑖𝜑1 |1〉 . (2.10)

The next step requires the basics about measurements, which will be further explained

in 2.2.4. The measurement rule in Equation (2.11) returns the probability of �nding a

quantum state |𝜙〉 in state |𝜓 〉 [SP18].

𝑝 (|𝜓 〉) = | 〈𝜓 |𝜙〉 |2. (2.11)

However, for an overall factor 𝑥 with |𝑥 | = 1 multiplied to a quantum state 𝜙 , the

measurement rule leads to

| 〈𝜓 |𝑥 |𝜙〉 |2 = |𝑥 〈𝜓 |𝜙〉 |2 = | 〈𝜓 |𝜙〉 |2. (2.12)

14

2.2. Quantum Computing

𝑥 is called the global phase and does not make a di�erence when measuring a quan-

tum state(see Equation (2.12)). The relative phase in turn is the di�erence between the

amplitudes of a quantum state and can indeed be measured.

With this knowledge, that the global phase cannot be measured, but only the relative

phase 𝜑1 − 𝜑0 (see Equation 2.10), the four parameters of a quantum state reduce to three

real valued parameters [ANI+21]

|𝜙〉 = 𝛾 |0〉 + 𝛿𝑒𝑖𝜗 |1〉 𝛾, 𝛿, 𝜗 ∈ R.

Furthermore, the normalization in Equation (2.8) leads to√︁
𝛾2 + 𝛿2 = 1

and in combination with the trigonometric identity√︁
𝑠𝑖𝑛2(𝑥) + 𝑐𝑜𝑠2(𝑥) = 1

𝛾 and 𝛿 can be rewritten as

𝛾 = 𝑐𝑜𝑠 (𝜑
2

), 𝛿 = 𝑠𝑖𝑛(𝜑
2

) 𝜑 ∈ R.

This leads to the �nal equation for a quantum state using only two variables:

|𝜙〉 = 𝑐𝑜𝑠 (𝜑
2

) |0〉 + 𝑒𝑖𝜗𝑠𝑖𝑛(𝜑
2

) |1〉 𝜑, 𝜗 ∈ R.

Finally, rewriting any quantum state to the previously shown form and interpreting 𝜑

and 𝜗 as spherical coordinates allows plotting the quantum state using the so called Bloch
sphere [Blo46]. An example of the Bloch sphere is shown in Figure 2.3.

x
y

|0

|1

Figure 2.3.: Example of a quantum state visualized in the Bloch sphere

15

2. Foundations

2.2.2. Gates

Analogous to operations on classical bits, which change the state of a bit, there are

operations, so called gates, which change the state of qubits. Gates that work on log
2
𝑁

qubits are mathematically represented by complex unitary matrices 𝑈 ∈ C𝑁𝑥𝑁 [NC10].

The application of gate operations to a quantum state is a matrix-vector multiplication

between the corresponding gate matrix and the quantum state, as seen in Equation (2.13).

|𝜓 〉 = 𝑈 |𝜙〉 𝑈 ∈ C𝑁𝑥𝑁 ,𝜓, 𝜙 ∈ C𝑁 (2.13)

Furthermore, there is a way to visually represent qubits and the gates which are applied

to them as shown in Figure 2.4, which is often referred to as a circuit diagram. Each line in

this �gure represents an individual qubit and how its state changes over time depending

on the gates which are applied to it. Figure 2.4 shows how a H and X gate are applied to a

qubit.

|0〉 H X

Figure 2.4.: Example of a cicuit diagram using the H gate and X gate

The following paragraphs introduce some di�erent gate types, which are important for

the remainder of this thesis. If not states otherwise, all of these gates were introduced

in [NC10].

Basic Gates The most basic gate is the I gate, also known as the identity. The matrix is

shown in (2.14). However, as the name suggests, it does not change the state of a qubit, as

seen in (2.15).

I =

(
1 0

0 1

)
(2.14)

I |𝜓 〉 =
(
1 0

0 1

) (
𝛼

𝛽

)
=

(
𝛼

𝛽

)
(2.15)

A more interesting and important type of gate is the Hadamard gate, or H gate for short

in (2.16). It is one of the important gates, because it turns a qubit from the default state

|0〉 into an equal superposition of the basis states |0〉 and |1〉, as seen in (2.17). The circuit

notation is shown in Figure 2.5. Figure 2.6 shows the |0〉 state in a Bloch sphere. The

resulting state after applying a H to the |0〉 state is shown in Figure 2.7.

|0〉 H

Figure 2.5.: Circuit diagram with an H gate applied to the |0〉 state

H =
1

√
2

(
1 1

1 −1

)
(2.16)

16

2.2. Quantum Computing

H |0〉 = 1

√
2

(
1 1

1 −1

) (
1

0

)
=

1

√
2

(
1

1

)
=

1

√
2

|0〉 + 1

√
2

|1〉 (2.17)

x
y

|0

|1

Figure 2.6.: Bloch sphere showing the |0〉
state

x
y

|0

|1

Figure 2.7.: Bloch sphere showing the re-

sult of the H gate on the |0〉
state

Pauli Gates The Pauli gates are the most basic rotational gates used in quantum comput-

ing.

The �rst type of Pauli gates is the X gate in (2.18). From the example in (2.19) it can be

examined that the X gate switches the amplitudes of the provided qubit. This is commonly

referred to as a negation of the quantum state. Examining the Bloch spheres in Figure 2.8

and Figure 2.9 it can be seen that the X gate also represents a rotation around the x-axis

by 𝜋 radians.

X =

(
0 1

1 0

)
(2.18)

X |𝜓 〉 =
(
0 1

1 0

) (
𝛼

𝛽

)
=

(
𝛽

𝛼

)
(2.19)

Analogous to theX gate there are alsoY gates andZ gates, which correspond to rotations

around the y-axis and z-axis of the Bloch sphere by 𝜋 radians respectively. Their matrices

are shown in (2.20) and (2.21).

Y =

(
0 −𝑖
𝑖 0

)
(2.20)

Z =

(
1 0

0 −1

)
(2.21)

The circuit representations for the X, Y and Z gates are shown in Figure 2.10.

17

2. Foundations

x
y

|0

|1

Figure 2.8.: Bloch sphere showing the |0〉
state

x
y

|0

|1

Figure 2.9.: Bloch sphere showing the re-

sult of the X on the |0〉 state

|0〉 X Y Z

Figure 2.10.: Circuit diagram showing the X, Y and Z-gate

General Rotation Gates There are also generalized versions of the previously introduced

Pauli X, Y and Z gates. The matrices for these gates are shown in (2.22), (2.23) and (2.24).

These gates are parameterized by a value 𝜙 ∈ [0, 2𝜋), which represents the factor to rotate

around the given axis. Their gate representations are shown in the circuit diagram in

Figure 2.11.

RX(𝜙) =
(
𝑐𝑜𝑠 (𝜙/2) −𝑖 𝑠𝑖𝑛(𝜙/2)

−𝑖 𝑠𝑖𝑛(𝜙/2) 𝑐𝑜𝑠 (𝜙/2)

)
(2.22)

RY(𝜙) =
(
𝑐𝑜𝑠 (𝜙/2) −𝑠𝑖𝑛(𝜙/2)
𝑠𝑖𝑛(𝜙/2) 𝑐𝑜𝑠 (𝜙/2)

)
(2.23)

RZ(𝜙) =
(
𝑒−𝑖𝜙/2 0

0 𝑒𝑖𝜙/2

)
(2.24)

|0〉 RX(φ) RY(φ) RZ(φ)

Figure 2.11.: Circuit diagram showing the parameterized rotational gates

There are also controlled versions of these three gates, namely CRX, CRY and CRZ. Each
of these gates work with two qubits, the control and target qubit. If the control qubit is in

18

2.2. Quantum Computing

state |1〉, the parameterized rotation is applied to the target qubit. If the control qubit is

in state |0〉, the rotation is not applied. Their matrix representations are shown in (2.25),

(2.26) and (2.27). The circuit representations are shown in Figure 2.12, where the black

dots represent the control qubit.

CRX(𝜙) =
©­­­«
1 0 0 0

0 1 0 0

0 0 𝑐𝑜𝑠 (𝜙/2) −𝑖 𝑠𝑖𝑛(𝜙/2)
0 0 −𝑖 𝑠𝑖𝑛(𝜙/2) 𝑐𝑜𝑠 (𝜙/2)

ª®®®¬ (2.25)

CRY(𝜙) =
©­­­«
1 0 0 0

0 1 0 0

0 0 𝑐𝑜𝑠 (𝜙/2) 𝑠𝑖𝑛(𝜙/2)
0 0 𝑠𝑖𝑛(𝜙/2) 𝑐𝑜𝑠 (𝜙/2)

ª®®®¬ (2.26)

CRZ(𝜙) =
©­­­«
1 0 0 0

0 1 0 0

0 0 𝑒−𝑖𝜙/2 0

0 0 0 𝑒𝑖𝜙/2

ª®®®¬ (2.27)

|0〉

|0〉 RX(φ) RY(φ) RZ(φ)

Figure 2.12.: Circuit diagram showing the controlled rotational gates

CNOT The CNOT gate is a two qubit gate, with one being the target and the other one

being the control qubit. If the control qubit is found in state |1〉, a negation (X gate) is

performed on the target qubit. If the control qubit is in state |0〉, nothing is done to the

target qubit. The matrix represenation for the CNOT gate is shown in (2.28), if the �rst

qubit is considered the control and the second qubit the target. The reverse case can be

speci�ed analogously.

CNOT =

©­­­«
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

ª®®®¬ (2.28)

The circuit diagram representation is shown in Figure 2.13, with the �rst qubit being

the control and the second being the target qubit.

19

2. Foundations

|0〉

|0〉

Figure 2.13.: Representation of a CNOT gate with the �rst qubit as the target and the

second qubit the control

Table 2.1.: Input and output states of the CNOT

Input (target, control) Output (target, control)

|0〉, |0〉 |0〉, |0〉
|0〉, |1〉 |1〉, |1〉
|1〉, |0〉 |1〉, |0〉
|1〉, |1〉 |0〉, |1〉

When ignoring quantum states in a superposition of |0〉 and |1〉, the CNOT gate can be

understood through a truth table from classical computing as seen in Tab. 2.1.

When accounting for general two-qubit quantum states |𝛼〉, Equation (2.29) shows that

the CNOT gate switches the amplitudes for the two basis states |01〉 and |11〉.

CNOT |𝛼〉 =
©­­­«
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

ª®®®¬
©­­­«
𝛼00
𝛼01
𝛼10
𝛼11

ª®®®¬ =
©­­­«
𝛼00
𝛼11
𝛼10
𝛼01

ª®®®¬ (2.29)

SWAP Gate The SWAP gate is a two-qubit gate, which is used to swap the states of

two qubits. Its matrix representation is shown in (2.30) and the corresponding circuit in

Figure 2.14.

SWAP =

©­­­«
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

ª®®®¬ (2.30)

|0〉

|0〉

Figure 2.14.: Circuit diagram showing the SWAP gate a�ecting two qubits

20

2.2. Quantum Computing

Table 2.2.: Input and output states of the SWAP

Input (𝑞𝑢𝑏𝑖𝑡1, 𝑞𝑢𝑏𝑖𝑡2) Output (𝑞𝑢𝑏𝑖𝑡1, 𝑞𝑢𝑏𝑖𝑡2)

|0〉, |0〉 |0〉, |0〉
|0〉, |1〉 |1〉, |0〉
|1〉, |0〉 |0〉, |1〉
|1〉, |1〉 |1〉, |1〉

The following example shows why the states are swapped. Starting with two qubits

de�ned as:

|𝜙〉 = 𝑎 |0〉 + 𝑏 |1〉 =
(
𝑎

𝑏

)
|𝜓 〉 = 𝑐 |0〉 + 𝑑 |1〉 =

(
𝑐

𝑑

)
.

The two separate states lead to a combined quantum state of

|𝜓𝜙〉 = |𝜓 〉 ⊗ |𝜙〉 = 𝑐𝑎 |00〉 + 𝑐𝑏 |01〉 + 𝑑𝑎 |10〉 + 𝑑𝑏 |11〉 =
©­­­«
𝑐𝑎

𝑐𝑏

𝑑𝑎

𝑑𝑏

ª®®®¬ .
Now, applying the SWAP gate to this quantum state yields

©­­­«
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

ª®®®¬
©­­­«
𝑐𝑎

𝑐𝑏

𝑑𝑎

𝑑𝑏

ª®®®¬ =
©­­­«
𝑐𝑎

𝑑𝑎

𝑐𝑏

𝑑𝑏

ª®®®¬ .
Writing this state vector in terms of its basis states leads to

𝑐𝑎 |00〉 + 𝑑𝑎 |01〉 + 𝑐𝑏 |10〉 + 𝑑𝑏 |11〉 = (𝑎 |0〉 + 𝑏 |1〉) ⊗ (𝑐 |0〉 + 𝑑 |1〉)
= |𝜙〉 ⊗ |𝜓 〉
= |𝜙𝜓 〉 ,

which shows that the SWAP gate has actually swapped the amplitudes and therefore the

states.

The SWAP gate can be visualized with the truth table in Tab. 2.2.

An extension of this is the Fredkin gate, sometimes called the controlled SWAP gate or

CSWAP gate [Pat+16]. It uses an additional control qubit, that decides whether or not the

two target qubits are swapped. If the control qubit is found in state |1〉, the two qubits are

swapped. If the control qubit is |0〉, the target qubits are not swapped. This can be seen in

the truth table in Tab. 2.3.

The circuit representation for the CSWAP gate is shown in Figure 2.15.

21

2. Foundations

Table 2.3.: Input and output states of the CSWAP

Input (control, 𝑡𝑎𝑟𝑔𝑒𝑡1, 𝑡𝑎𝑟𝑔𝑒𝑡2) Output (control, 𝑡𝑎𝑟𝑔𝑒𝑡1, 𝑡𝑎𝑟𝑔𝑒𝑡2)

|0〉, |0〉, |0〉 |0〉, |0〉, |0〉
|0〉, |0〉, |1〉 |0〉, |0〉, |1〉
|0〉, |1〉, |0〉 |0〉, |1〉, |0〉
|0〉, |1〉, |1〉 |0〉, |1〉, |1〉
|1〉, |0〉, |0〉 |1〉, |0〉, |0〉
|1〉, |0〉, |1〉 |1〉, |1〉, |0〉
|1〉, |1〉, |0〉 |1〉, |0〉, |1〉
|1〉, |1〉, |1〉 |1〉, |1〉, |1〉

|0〉

|0〉

|0〉

Figure 2.15.: Circuit diagram showing theCSWAP gate with the �rst qubit being the control

qubit and the last two qubits being the targets

2.2.3. Basis states

Note that up until now, quantum states were always described as superpositions of the

basis states |0〉 and |1〉. However, these two states are not the only possible basis states. In

fact, any two states |𝑥〉 and |𝑦〉 could form a basis for quantum states, as long as they are

orthonormal [ANI+21]. A resulting quantum state in this arbitrary basis would be

|𝜓 〉 = 𝛼 |𝑥〉 + 𝛽 |𝑦〉 .

The earlier introduced de�nition of a qubit in (2.6) is just a special case of this general

de�nition, with |𝑥〉 = |0〉 and |𝑦〉 = |1〉.
One other popular basis is the {|+〉 , |−〉} basis, also called Hadamard-basis, de�ned in

Equation (2.31) and Equation (2.32) [ANI+21].

|+〉 = 1

√
2

(|0〉 + |1〉) = 1

√
2

(
1

1

)
(2.31)

|−〉 = 1

√
2

(|0〉 − |1〉) = 1

√
2

(
1

−1

)
(2.32)

While there are in theory in�nitely many di�erent bases that could be used to de�ne a

quantum state, in practice the {|0〉 , |1〉} basis is used most of the time.

22

2.2. Quantum Computing

2.2.4. Measurement

As mentioned earlier, a quantum state cannot just be read from a quantum computer.

Instead a quantum state has to be measured to get information about it. This is done

through the rule for quantum measurement [SP18] in Equation (2.11), which returns the

probability of measuring a quantum state |𝜓 〉 in a state |𝜙〉.
Let us assume a quantum state as follows:

|𝜓 〉 = 𝛼 |0〉 + 𝛽 |1〉 =
(
𝛼

𝛽

)
.

To get the probability of measuring the basis state |0〉 the rule of measurement would

be applied like:

| 〈0|𝜓 〉 |2 = |𝛼 〈0|0〉 + 𝛽 〈0|1〉 |2 = |𝛼 |2.

Note that the measurement rule can use any arbitrary state |𝜓 〉 for the measurement

and is not con�ned to the basis states |0〉 and |1〉.
However, when measuring in a real quantum computer once, neither the superposition

nor the probabilities for speci�c states are acquired directly. The result of measuring a

qubit is always either |0〉 or |1〉. To get the probabilities that a qubit is found in one of the

basis states, the same qubit has to be measured multiple times. One such evaluation of the

circuit is referred to as a shot.

The result of many shots is typically plotted in histograms like in Figure 2.17. This plot

was generated by measuring the state |𝜓 〉 = 1√
2

|0〉 + 1√
2

|1〉, which is build by the circuit

shown in Figure 2.16, 50 times. In theory, both |0〉 and |1〉 should be measured with 50%

probability according to Equation (2.11). However, the plot does not re�ect this equal

probability. This is due to the fact that the plot shows the probabilities from only 50 shots,

which is not enough to approximate the theoretical probabilities correctly.

|0〉 H

Figure 2.16.: Circuit diagram with a H-gate and the measurement operator applied to the

qubit

2.2.5. Entanglement

In Section 2.2.1 the notion of multi-qubit systems and their state description was introduced.

Multiple qubits can either be seen as separate quantum states (|𝜓 〉 and |𝜙〉) or as a combined

quantum state for all qubits (|𝜓𝜙〉 = |𝜓 〉 ⊗ |𝜙〉) using the tensor product. This de�nition
means that multiple qubits can be combined to one quantum state and vice versa. However,

there are quantum states which can only be expressed as combined quantum states and

cannot be decomposed into separate states. This is known as entanglement between the

concerning qubits [NC10].

23

2. Foundations

0 1

0.00

0.15

0.30

0.45

0.60
Pr

ob
ab

ilit
ie

s
0.580

0.420

Figure 2.17.: Histogram showing results of a real measurement

One example of such an entangled state is
1√
2

(|00〉 + |11〉). This state can be generated

by using a H and CNOT gate on two qubits as seen in Figure 2.18. This state cannot be

decomposed into two separate quantum states [ANI+21]. The state has a chance of 50% of

being |00〉 or |11〉, but it can never be |01〉 nor |10〉. This presents the interesting fact that

measuring only one of the qubits and �nding it to be |0〉 (|1〉) means that the other qubit

also has to be in state |0〉 (|1〉).

|0〉 H

|0〉

Figure 2.18.: Example of two qubits being entangled by the CNOT-gate

In summary, measuring only one qubit of an entangled state also tells us the state of

the second qubit, without having to measure it.

2.2.6. Data Encoding

Working with classical datasets requires additional steps compared to data which is already

in a quantum state. To process classical data on a quantum computer, it needs to be encoded
into a quantum state. This is often referred to as a quantum feature map, because the data
is mapped from its input space into a Hilbert space [SK19].

There are multiple di�erent strategies to achieve an encoding, but they all share some

fundamental strategies. Assume some arbitrary datapoint 𝑥 needs to be encoded into a

24

2.2. Quantum Computing

quantum state. As qubits commonly start in the |0〉 state, there needs to be some quantum

circuit𝑈 that uses 𝑥 as an input and applies gates to change the initial state [SK19]. This

is shown in Equation (2.33).

|𝜙〉 = 𝑈 (𝑥) |0〉 (2.33)

The following paragraphs show some speci�c strategies for building this circuit 𝑈 (𝑥),
to encode classical data onto a quantum computer.

Basis Encoding Basis encoding is the most intuitive encoding strategy, as it associates

each classical bit of information with a corresponding qubit [SP18]. For this, the data has

to be present in the form of a bit string 𝑥𝑛 with 𝑥 ∈ {0, 1}. This bit string is then encoded

into a quantum state |𝑥〉. As an example, the datapoint 𝑥 = (110) would correspond to a

quantum state of |𝜙〉 = |110〉.
In a circuit diagram, this can be achieved by adding an X gate to each qubit that is

supposed to be |1〉 and leaving the qubits that are supposed to be |0〉 as is. A circuit diagram

representing the basis encoding of the previously mentioned example of 𝑥 = (110) is
shown in Figure 2.19.

|0〉 X

|0〉 X

|0〉

Figure 2.19.: Circuit showing the basis encoding of the vector 𝑥 = (110) using X gates

When encoding multiple bit-strings of the same length, for example 𝑥1 = (110) and
𝑥2 = (111), both samples can be encoded in a superposition with 3 qubits as follows:

|𝜙〉 = 1

√
2

|110〉 + 1

√
2

|111〉 .

In general, basis encoding requires 𝑛 qubits to encode bit-strings of length 𝑛.

Angle Encoding Angle encoding utilizes the general rotation gates introduced in Sec-

tion 2.2.2 to encode data into a quantum state [Ber+20]. An input vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈
R𝑛 can therefore be encoded in an n-qubit system. Each 𝑥𝑖 ∈ 𝑥 is used as the rotational

parameter for a rotational gate, which is applied to the 𝑖th qubit. As the 𝑥𝑖 are now rota-

tional parameters, they should be limited to [0, 2𝜋). Which one of the three gates is used

is generally determined by the user.

An example with input vector 𝑥 = (1.2, 2.6, 4.2) and RX gates is shown in Figure 2.20.

The advantage of angle encoding over basis encoding is that the input vector 𝑥 ∈ R𝑛
can be encoded, without having to convert it to a binary string �rst.

Angle encoding requires 𝑛 qubits to encode a vector 𝑥 ∈ R𝑛 . While it requires the same

amount of qubits as basis encoding, angle encoding can encode a real value, instead of

just one bit of information, in each qubit.

25

2. Foundations

|0〉 RX(1.2)

|0〉 RX(2.6)

|0〉 RX(4.2)

Figure 2.20.: Angle encoding circuit for the vector 𝑥 = (1.2, 2.6, 4.2) using RX gates

Amplitude Encoding Amplitude encoding uses the amplitudes of a quantum state to

encode the values of an input vector 𝑥 = (𝑥1, . . . , 𝑥2𝑛) ∈ R2𝑛 [SK19]. The resulting

quantum state would look like

|𝜙〉 =
2
𝑛∑︁
𝑗=1

𝑥 𝑗 | 𝑗〉 ,

with | 𝑗〉 being the 𝑗-th computational basis state.

Using this method a 2
𝑛
-dimensional vector can be encoded in 2

𝑛
amplitudes, which

requires 𝑛 = 𝑙𝑜𝑔(2𝑛) qubits. Note that the input vector has to be padded with extra values,

if the size 𝑛 of the vector 𝑥 is smaller than the total number of available amplitudes 2
𝑛
.

Furthermore, as de�ned in Section 2.2.1, the fact that amplitudes correspond to proba-

bilities leads to a normalization constraint for the input vector:

𝑛∑︁
𝑖

|𝑥𝑖 |2 = 1.

When encoding vectors with many features, this normalization can be problematic as the

di�erences between features are decreased. This can lead to features being undistinguish-

able.

2.2.7. Noise

Up until now, this introduction of quantum computing assumed perfect conditions with

all gates performing exactly as intended. However, with quantum hardware this is not

feasible. The current era of quantum computers is called the noisy intermediate scale

quantum (NISQ) era [Pre18]. The name already suggests that current quantum computers

are a�ected by quantum noise, which prohibits the idea of perfect quantum computers and

leads to errors in the calculations. This noise needs to be accounted for when simulating

or using quantum hardware.

This section introduces some common sources of noise and their e�ect on calculations.

26

2.2. Quantum Computing

2.2.7.1. Sampling Noise

In Section 2.2.4 the concept of perfect and real measurements on quantum computers was

introduced. The mathematical de�nition of a measurement was shown in Equation (2.11)

as the probability of �nding a qubit in a speci�c state. On a real quantum computer, a

measurement only tells us if the qubit is 0 or 1. To approximate the perfect probability

given by the mathematical de�nition, the expectation value over many shots is used.

However, the quality of this approximation depends on the number of shots. This is

visualized in Figure 2.21 and Figure 2.22. The same experiment with only one qubit and a

H gate is repeated multiple times with a di�erent number of shots. The �gure shows that

the more shots are used, the closer the approximation is to the calculated probability of

0.5 for 0 and 1.

0 1

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

ie
s

0.700

0.300

Figure 2.21.: Histogram for 10 measure-

ments

0 1

0.00

0.15

0.30

0.45

0.60

Pr
ob

ab
ilit

ie
s

0.480
0.520

Figure 2.22.: Histogram for 100 measure-

ments

This leads to a trade-o� between accuracy and time complexity. Doing many shots will

increase the accuracy but also the execution time, as the same circuit has to be evaluated

many times. Using less shots leads to shorter execution times, but comes at the cost of

less accuracy in the result.

2.2.7.2. Coherent Noise

Coherent noise can be described as noisy gates that di�er from the perfect gate by some

unitary [Bou+04], sometimes called a systematic error. This noise generally originates

from miscalibrated gates, which do not perform perfect operations.

One example for coherent noise is the noisy X gate, denoted by X̃. The perfect X gate

would rotate around the x-axis by 𝜋 . The noisy version X̃ instead rotates by 𝜋 + 𝜖 , with 𝜖
being the error term.

It can be shown, that this noisy gate X̃ can be decomposed into two separate gates,

which are applied one after another. The �rst gate rotates around the x-axis by the error

term 𝜖 , which is equivalent to a RX with parameter 𝜖 . The second gate is the ideal X,
which rotates around the x-axis by 𝜋 . In sum, this leads to a total rotation of 𝜋 + 𝜖 . This
decomposition shows that the error is in fact only a unitary di�erence from the perfect

gate. The circuit for this decomposition can be seen in Figure 2.23.

27

2. Foundations

|0〉 X̃ → |0〉 RX(ε) X

Figure 2.23.: Decomposition of the noisy X̃ gate into an error gate and a perfect X gate

Note that the X̃ gate is only one example. The idea of coherent noise as some unitary

di�erence can be extended to other gates as well.

2.2.7.3. Incoherent Noise

Incoherent noise is the idea that there is the probability of the environment in�uencing the

state of a quantum system [Neu27]. As an example, Figure 2.24 shows an X gate which is

a�ected by one type of incoherent noise. Instead of simply applying the gate to a qubit,

there are now two cases. In the ideal case the X gate is preceded by the I gate, which

does not change the desired operation. This case occurs with a probability of 1 − 𝑝 . In the

second case, occurring with probability 𝑝 , the X gate is preceded by another X gate, which

is not the intended operation and therefore an error.

→

|0〉 I X |1〉 1− p

|0〉 X̃

|0〉 X X |0〉 p

Figure 2.24.: Decomposition of incoherent noise in the ideal case with probability 1 − 𝑝
and the not-ideal case with probability 𝑝

Tomodel this probabilistic behaviour, a new representation for quantum states is needed,

as the bra-ket notation does not have a convenient way of representing an ensemble of

quantum states. This is achieved using density matrices and mixed states. Density matrices

were �rst introduced in Equation (2.9), as an alternative way of representing a quantum

state |𝜙〉 as a matrix. This can be further generalized to an ensemble of multiple states as

follows [NC10]:

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜙𝑖〉 〈𝜙𝑖 | =
∑︁
𝑖

𝑝𝑖𝜌𝑖 . (2.34)

Note that 𝜌 now is a sum over many di�erent quantum states |𝜙𝑖〉 〈𝜙𝑖 | = 𝜌𝑖 with 𝑝𝑖 being
the probability that the system is in one speci�c state |𝜙𝑖〉 〈𝜙𝑖 | = 𝜌𝑖 .
If a quantum state represented by a density matrix 𝜌 only contains one state |𝜙〉 〈𝜙 |,

the state is said to be a pure state. Otherwise, if the state is an ensemble of multiple pure

states, it is called a mixed state [NC10]. Mixed states can therefore encode the probabilistic

behaviour as required by the example in Figure 2.24.

28

2.2. Quantum Computing

The ideal case of I and X leads to the quantum state |1〉. Written as a density matrix

this is:

|1〉 〈1| =
(
0

1

) (
0 1

)
=

(
0 0

0 1

)
.

In turn the non-ideal case with two X gates leads to the quantum state |0〉 and the following
density matrix:

|0〉 〈0| =
(
1

0

) (
1 0

)
=

(
1 0

0 0

)
.

The combined quantum state for the system in Figure 2.24 would therefore be the

combination of both density matrices:

𝜌 = 𝑝

(
1 0

0 0

)
+ (1 − 𝑝)

(
0 0

0 1

)
.

With this motivation, incoherent noise can be modelled as a map 𝜙 that maps a density

matrix 𝜌 to a new density matrix 𝜙 (𝜌), which is also called a quantum channel [NC10].

This map can be de�ned as

𝜙 (𝜌) =
∑︁
𝑖

𝐾𝑖𝜌𝐾
†
𝑖
, (2.35)

if

∑
𝑖 𝐾

†
𝑖
𝐾𝑖 = 𝐼 for a set of operators {𝐾𝑖} [NC10]. The 𝐾𝑖 are also called Kraus opera-

tors [Kra+83]. Following Equation (2.35), incoherent noise can be de�ned through a set of

Kraus operators.

The next paragraphs introduce some well known types of incoherent noise, their Kraus

operators and their e�ects on quantum states.

Bit-flip noise corresponds to noise as seen in the previous introduction and Figure 2.24.

It is de�ned by the two following Kraus operators:

𝐾0 =
√
𝑝X =

√
𝑝

(
0 1

1 0

)
𝐾1 =

√︁
1 − 𝑝I =

√︁
1 − 𝑝

(
1 0

0 1

)
.

The operators show that with a probability of 𝑝 a X gate is applied, which �ips the

amplitudes of a quantum state. This is similar to �ipping a bit in classical computing. The

alternative case with probability 1 − 𝑝 applies the identity, which does not change the

quantum state.

Amplitude damping models e�ects that arise from energy losses in a quantum system. In

real quantum computers the |0〉 state is represented through a low energy level, while the

|1〉 state equals a high energy level [NC10]. The process of energy relaxation describes

the fact that a physical system like a quantum computer always tends to a state with low

29

2. Foundations

energy [NC10]. This means that over time a qubit in the |1〉 state will loose its energy and

turn into a |0〉 state.
This can be modelled with the two Kraus operators [NC10]:

𝐾0 =

(
1 0

0

√
1 − 𝑦

)
𝐾1 =

(
0

√
𝑦

0 0

)
,

with 𝑦 ∈ [0, 1] being the amplitude damping probability.

Phase damping models physical processes that lead to a loss of quantum information

without losing energy [NC10]. This can generally be seen as a change in the relative phase

between basis states.

Phase damping can be expressed using the two following Kraus operators:

𝐾0 =

(
1 0

0

√
1 − 𝑦

)
𝐾1 =

(
0 0

0

√
𝑦

)
.

𝑦 ∈ [0, 1] is the probability of damping the phase.

Depolarizing noise has the probability of completly destroying all available information

on a single qubit [NC10]. This is modelled as the following map:

𝜙 (𝜌) = 𝑝 𝐼
2

+ (1 − 𝑝)𝜌.

With a probability of 1−𝑝 the quantum state is stays the same. However, with a probability

of 𝑝 , the state is replaced by the completly mixed state
𝐼
2
, which leaves the qubit with no

meaningfull information.

This can be generalized to 𝑛 qubits as follows:

𝜙 (𝜌) = 𝑝 𝐼
2
𝑛
+ (1 − 𝑝)𝜌.

The depolarizing channel for a single qubit can be described through the four following

Kraus operators:

𝐾0 =

√︂
1 − 3𝑝

4

I =

√︂
1 − 3𝑝

4

(
1 0

0 1

)
𝐾1 =

√︂
𝑝

4

X =

√︂
𝑝

4

(
0 1

1 0

)
𝐾2 =

√︂
𝑝

4

Y =

√︂
𝑝

4

(
0 −𝑖
𝑖 0

)
𝐾3 =

√︂
𝑝

4

Z =

√︂
𝑝

4

(
1 0

0 −1

)
.

In this case 𝑝 ∈ [0, 1] is the depolarizing probability.

30

2.2. Quantum Computing

2.2.8. QuantumMachine Learning

Quantummachine learning (QML) is the general theory of using advantages from quantum

computing to solve typical problems from classical machine learning. This is generally

split into four di�erent categories de�ned in [ABG06] and shown in Figure 2.25.

CC CQ

QC

classical quantum

Algorithm

cl
a
ss
ic
a
l

q
u
a
n
tu
m

D
a
ta

Figure 2.25.: Combination of classical/quantum data and algorithms [DTB16]

These four categories are de�ned in two di�erent dimensions. Firstly if the data to be

processed is generated classically (C) or by a quantum system (Q). And secondly the way

the data is processed, again either classically (C) or through a quantum system (Q).

The �rst category is CC, which is classical data classically processed. This is the standard

approach for classical machine learning without any involvement from a quantum system.

The second approach is using data generated by quantum systems and process it using

classical methods (QC). The QQ approach is focused on generating quantum data and

processing it with quantum computers.

Lastly the CQ, or classical data processed with quantum systems, is the most interesting

category in the scope of this thesis. There are several di�erent problems associatedwith this

category. The classical datasets have to be transferred onto the quantum computer. This is

generally achieved by some data encoding strategy as discussed in Section 2.2.6. There

are several di�erent ways the quantum computation in this category can be interpreted.

Firstly, classical machine learning methods can be transferred onto quantum computers

to replicate the classical algorithms as close as possible. Secondly, new speci�c quantum

algorithms could be designed to solve typical machine learning problems. And lastly

the quantum computer could only be used for small portions or subtasks of the classical

algorithms, which are especially computational expensive on classical computers.

31

2. Foundations

2.2.9. Variational Quantum Circuits

Variational quantum circuits (VQCs) are one of the �rst ideas of incorporating machine

learning ideas into quantum circuits. These variational circuits extensively use parameter-

ized gates introduced in Section 2.2.2. The idea is to optimize the parameters for these

gates so the circuit re�ects some function [McC+16].

Figure 2.26 gives a general overview of the approach, with the green block being

calculated on a quantum computer and the red block on a classical computer. The quantum

device implements some circuit 𝑈 (𝜃), where 𝜃 is a set of parameters used as inputs for

parameterized gates. The output of the measurement is then used in a cost function 𝐶 (𝜃)
to decide how good the current parameters 𝜃𝑡 are representing the desired function. This

cost function is then typically used in classical optimization algorithms. The optimization

iteratively updates the current parameters 𝜃𝑡 with new parameters 𝜃𝑡+1, to minimize the

cost function 𝐶 (𝜃). This combination of quantum devices and classical optimization is

commonly referred to as hybrid training of variational circuits [SP18].

U(θ)

Quantum device Classical
optimization

measure

update

Figure 2.26.: Overview of variational quantum circuits and their optimization

Typically the ciruit 𝑈 (𝜃) is built as a layered architecture [Ber+20]. Each layer is

generally de�ned by a sequence of gates applied to a set of qubits. This sequence of gates is

typically referred to as the ansatz. For the complete circuit, the ansatz is repeated multiple

times with di�erent paramters 𝜃 . This is shown in Figure 2.27.

|0〉 H RX(θ2) H RX(θ4) H RX(θ6)

|0〉 H RX(θ1) H RX(θ3) H RX(θ5)

Figure 2.27.: Layered architecture with multiple repetitions of the same ansatz

The advantage of VQCs is the fact that they are very robust against noise [SP18]. As

the parameters 𝜃 are optimized depending on the output of the circuit, a gate error caused

by noise in the quantum device can be compensated by adjusting the a�ected parameter.

The overall idea of variational circuits is very general and applicable to di�erent scenar-

ios. There is one popular example for the usage of variational circuits, namely variational

32

2.2. Quantum Computing

classi�ers [SP18]. It is used similar to classical classi�ers to assign a class label to a dat-

apoint 𝑥 . Figure 2.28 shows the typical layout for a variational classi�er. Note that this

�gure and therefore the process is very similar to Figure 2.26, with only one necessary

extension. The circuit 𝑈 not only depends on the set of parameters 𝜃 , but also on the

datapoint 𝑥 which has to be classi�ed. The measured output of this circuit can then be

interpreted as the assigned label for 𝑥 .

|0〉

U(θ, x)|0〉

|0〉

Figure 2.28.: Circuit for a classi�er using a variational quantum circuit

2.2.10. Quantum Kernels

In Section 2.1.2 the idea of feature maps and kernel methods was introduced. Furthermore

it was shown in Section 2.1 that many machine learning algorithms can bene�t from these

kernel methods. As it turns out, the idea of kernel methods can be translated to quantum

theory.

In Section 2.1.2 it was established that every feature map 𝜙 : 𝑋 → 𝐻 , with an inner

product 〈·, ·〉𝐻 de�ned on 𝐻 , de�nes a kernel function as:

𝑘 (𝑥𝑖, 𝑥 𝑗) := 〈𝜙 (𝑥𝑖), 𝜙 (𝑥 𝑗)〉𝐻 .
Furthermore, in Section 2.2.6 the notion of data encoding in quantum states was introduced

as one type of feature map. A quantum feature map 𝜙 maps input data into a Hilbert space.

Using these two insights and the Hilbert Schmidt inner product 〈𝜌, 𝜎〉𝐻 = 𝑡𝑟 {𝜌𝜎}
[Sch21] for mixed states 𝜌, 𝜎 ∈ C2𝑛×2𝑛 a quantum kernel function can be de�ned as the

overlap of two quantum states:

𝑘 (𝑥, 𝑥′) = 𝑡𝑟 {𝜌 (𝑥𝑖)𝜌 (𝑥 𝑗)} 𝜌 (𝑥𝑖), 𝜌 (𝑥 𝑗) ∈ C2
𝑛𝑥2𝑛 , (2.36)

with 𝑡𝑟 {·} being the trace of a matrix.

For the case of pure quantum states (i.e. 𝜌 (𝑥𝑖) = |𝜙 (𝑥𝑖)〉 〈𝜙 (𝑥𝑖) | and 𝜌 (𝑥 𝑗) = |𝜙 (𝑥 𝑗)〉 〈𝜙 (𝑥 𝑗) |)
Equation (2.36) reduces to

𝑘 (𝑥𝑖, 𝑥 𝑗) = 𝑡𝑟 {𝜌 (𝑥𝑖)𝜌 (𝑥 𝑗)} = | 〈𝜙 (𝑥𝑖) |𝜙 (𝑥 𝑗)〉 |2, (2.37)

as 𝑡𝑟 {𝜌 (𝑥𝑖)𝜌 (𝑥 𝑗)} = 𝑡𝑟 {|𝑥𝑖〉 〈𝑥𝑖 | |𝑥 𝑗 〉 〈𝑥 𝑗 |} = | 〈𝑥𝑖 |𝑥 𝑗 〉 |2 [PBP20].
There are di�erent possible routines to calculate the overlap of two quantum states on a

quantum computer. The next two sections describe the SWAP test and the adjoint method

to compute the overlap. The last section provides a comparison between the two methods.

33

2. Foundations

2.2.10.1. SWAP test

The SWAP test is one way of calculating the overlap of two quantum states |𝜙〉 and |𝜓 〉
[Buh+01]. It uses one ancilla qubit that stores the overlap of the two states in the end.

Furthermore it assumes that |𝜙〉 and |𝜓 〉 were previously prepared by some circuit 𝑈 . The

circuit diagram for the SWAP test is shown in Figure 2.29.

|0〉 H H

|0〉 U(xi)

|0〉 U(xj)

Figure 2.29.: Circuit showing the SWAP test using an ancilla qubit as an output and two

qubits being prepared by their respective transformation𝑈 (𝑥𝑖) and𝑈 (𝑥 𝑗)

The circuit starts in the state |000〉. The �rstH gate transforms it to
1√
2

(|0, 𝜙,𝜓 〉+|1, 𝜙,𝜓 〉).
The CSWAP gate only swaps 𝜙 and 𝜓 , if the ancilla qubit is in state |1〉, resulting in

the state
1√
2

(|0, 𝜙,𝜓 〉 + |1,𝜓, 𝜙〉). The last H gate leads to the �nal quantum state of

1

2
(|0, 𝜙,𝜓 〉 + |1, 𝜙,𝜓 〉 + |0,𝜓, 𝜙〉 − |1,𝜓, 𝜙〉). Measuring the ancilla qubit after the last H gate

leads to the two following probabilities:

𝑃 (𝑎𝑛𝑐𝑖𝑙𝑙𝑎 = 0) = 1

2

+ 1

2

| 〈𝜓 |𝜙〉 |2

𝑃 (𝑎𝑛𝑐𝑖𝑙𝑙𝑎 = 1) = 1

2

− 1

2

| 〈𝜓 |𝜙〉 |2.

Using the equation for 𝑃 (𝑎𝑛𝑐𝑖𝑙𝑙𝑎 = 1), the overlap of the quantum states 𝜙 and𝜓 can be

rewritten to the following equation:

| 〈𝜓 |𝜙〉 |2 = 1 − 2 · 𝑃 (𝑎𝑛𝑐𝑖𝑙𝑙𝑎 = 1). (2.38)

2.2.10.2. Adjoint method

The adjoint method uses the fact that the overlap of two quantum states in Equation (2.37)

can be rewritten as [Hub+21]

| 〈𝜙 (𝑥 𝑗) |𝜙 (𝑥𝑖)〉 |2 = | 〈0|𝑈 †(𝑥 𝑗)𝑈 (𝑥𝑖) |0〉 |2. (2.39)

This rewrite is possible because 〈𝜙 (𝑥′) | is prepared on the quantum computer with

〈0|𝑈 †(𝑥 𝑗) and |𝜙 (𝑥𝑖)〉 with𝑈 (𝑥𝑖) |0〉.
Using this circuit to calculate the overlap means applying the data encoding circuit

𝑈 (𝑥𝑖) and its adjoint𝑈 †(𝑥 𝑗) to |0〉 and measuring the probability of �nding the system in

the state |0〉.
A circuit diagram which depicts this method is shown in Figure 2.30.

34

2.2. Quantum Computing

|0〉

U(xi) U†(xj)|0〉

|0〉

Figure 2.30.: Adjoint method where two samples are encoded on the same qubits using

𝑈 (𝑥𝑖) and𝑈 †(𝑥 𝑗)

2.2.10.3. Comparison

Both, the SWAP test and adjoint method, can be used to calculate the overlap of two

quantum states. But there are some key di�erences that have to be considered.

In terms of circuit size, if the adjoint method requires 𝑛 qubits, an analogous SWAP test

requires 2 · 𝑛 + 1 qubits instead. This is simply due to the fact that the adjoint method

prepares both quantum states on the same qubits, while the SWAP test uses a set of 𝑛

qubits for each quantum state and an additional ancilla qubit to store the overlap.

For the amount of gates both methods are quite similar. If the state preparation circuit

needs 𝑚 gates, the adjoint method uses 2 ·𝑚 gates and the SWAP test 2 ·𝑚 + 3. The

additional gates for the SWAP test are the two H gates and the CSWAP. There is however
a di�erence in the depth of the circuit. Again, the adjoint method uses the same qubits for

both states, which leads to a double of the circuit depth compared to the SWAP test.

The biggest di�erence between the two methods comes through noise, where gates are

not perfectly unitary. This leads to a big problem for the adjoint method, as it requires

adjoint of the state preparation circuit. However, it is not possible to construct the adjoint

circuit in case of noisy gates, as the noise part is typically unknown [Hub+21]. The SWAP

test in turn can be used with noisy gates, since no adjoint circuit has to be constructed.

2.2.11. Variational Quantum Kernels

Instead of only parameterizing the circuit𝑈 , used for state preparation in quantum kernels,

with the input data 𝑥 , the circuit can also use additional adjustable parameters 𝜃 =

(𝜃1, 𝜃2, . . . , 𝜃𝑘) with 𝜃𝑖 ∈ R. These 𝜃𝑖 can be used for example as parameters for additional

rotational gates. This constitutes a combination of VQCs and data encoding [Llo+20],

commonly referred to as a variational quantum kernel (VQK) [Hub+21]. These circuits

𝑈𝜃 (𝑥) can then be used analogously to compute a quantum kernel function as seen in

Section 2.2.10.

The parameters 𝜃 can be optimized similar to parameters for variational circuits intro-

duced in Section 2.2.9. This optimization requires a cost or loss function 𝐶 : R𝑘 → R,
which determines a quality for the given parameters 𝜃 ∈ R𝑘 . What constitutes a good or

bad selection of parameters 𝜃 depends on the application.

35

2. Foundations

Figure 2.31.: Pipeline for learning a kernel and using it for a SVM [Hub+21]

Once a loss function is de�ned, it can be used in various classical optimization algorithms

to minimize the loss by optimizing the parameters 𝜃 . Some popular algorithm choices are

gradient descent [Lem12] and its variants like the Adam optimizer [KB15].

2.3. RelatedWork

Trainable quantum data encodings were �rst introduced in [Llo+20] as a type of quantum

metric learning. This idea was combined with quantum kernels in [Hub+21] to produce

trainable quantum kernels. [Hub+21] combined trainable quantum kernels with classical

support vector machines to a hybrid quantum classical algorithm. The proposed pipeline

for this algorithm from [Hub+21] is shown in Figure 2.31, where the kernel can be trained

separately and used as an input for the support vector machine. This pipeline of trainable

quantum kernels in combination with SVMs is very similar to the approach of this thesis.

However, instead of being concerned with a classi�cation problem, this thesis is focused

on the application of clustering.

There are also ideas for bringing classical clustering algorithms fully onto quantum

computers, like for example q-means [Ker+18]. The idea is to adapt the popular k-means

algorithm (see Section 2.1.3.1) to utilize advantages of quantum mechanics. Q-means

follows the same procedure as k-means by calculating distances and assigning data to

clusters accordingly. It promises similar results but better performance compared to the

classical algorithm. However, it requires the whole dataset to be stored in QRAM [LST10].

At the current state and size of quantum simulators and computers this requirement is

not ful�llable, but possibly will be in the future. Kernel methods used as a subroutine in a

bigger algorithm only query the quantum computer with two samples at a time and are

therefore usable with the current generation of quantum computers.

Trainable quantum kernels are also related to the classical idea of metric/similarity

learning as well as kernel learning. This is due to the fact that kernels are inherently

similarity measures between samples. Similarity and metric learning provide some inter-

36

2.3. Related Work

esting cost functions, which could be used to train the parameters for a quantum kernel.

One example for this is the triplet loss function used for learning similarities between

images [Che+10], which will be used as one loss function in this thesis. Triplet loss has

been shown to be usable for training variational quantum circuits [WKS22].

The closest classical approach to the topic of this thesis is "Deep Kernel Learning for

Clustering" [Wu+19]. Their approach is to learn two objectives at the same time. Firstly,

an encoding of the samples into a space, where the data is linearly separable. This is

achieved using a deep neural network. And secondly a spectral embedding is learned, that

reduces the dimension of all samples similar to the original spectral clustering algorithm

(see Section 2.1.3.4). This learned embedding is then used in standard clustering algorithms

such as k-means. In the worst case, the approach promises to be as good as spectral

clustering. But due to the optimization with real data, in many cases the clustering

outperforms the spectral clustering algorithm.

37

3. Approach

This section introduces the main idea of this thesis, using variational quantum kernels

(VQKs), introduced in Section 2.2.11, in combination with classical clustering algorithms.

The goal is to increase the clustering accuracy especially for datasets that are not-linearly

separable. The �rst section showcases the pipeline and process for this combination.

Afterwards some options for possible cost functions for semi-supervised and unsupervised

learning are presented.

3.1. Variational Quantum Kernels for Clustering

The combination of VQKs and classical machine learning algorithms was �rst introduced

in [Hub+21]. They used the kernel target alignment (KTA) (see Section 3.3.1) to train the

quantum kernel function to represent the training data well. This kernel function was

then used in combination with a support vector machine (SVM) to assign class labels to

unseen data.

There are however other machine learning applications that can bene�t from kernel

functions as well, namely clustering (see Section 2.1.3), where kernels are used to group

similar samples. The idea is to train a variational quantum kernel similar to [Hub+21], but

combine it with popular clustering algorithms.

One challenge of this approach is training the quantum kernel. SVMs are generally

considered a supervised learning task, where large training datasets with labeled samples

can be used for training. Clustering on the other hand is considered unsupervised, meaning

that no labeled data is accessible. This is problematic for optimizing the parameters

of a quantum kernel, as many classical cost functions as well as KTA from [Hub+21]

require labeled training data. To circumvent these issues and use already established cost

functions for training, clustering can be described as a semi-supervised learning task. This

rede�nition makes small amounts of labeled training data accessible.

3.2. Training and Testing Pipeline

The idea presented in this thesis for clustering with a variational quantum kernel (VQK) is

separated into two steps, training the VQK and testing it in combination with a clustering

algorithm. The pipeline for training is shown in Figure 3.4, the one for testing in Figure 3.5.

Section 3.2.1 details the circuit layout of the variational quantum kernel. Afterwards, the

training and testing pipelines are detailed in Section 3.2.2 and Section 3.2.3.

39

3. Approach

3.2.1. Circuit Layout

As outlined in Section 2.2.11, variational quantum kernels apply the concept of variational

circuits to encode data and use trainable parameters. Therefore a basic circuit ansatz has to

be de�ned, which is repeated multiple times and used for calculating the kernel function.

To focus on the transfer of VQK to clustering, this thesis uses an ansatz introduced by

[Hub+21] and shown in Figure 3.1.

The ansatz starts with H gates on each qubit followed by RZ gates that encode the data.

The data is encoded cyclically. If the dimension of the data 𝑥 is larger than the number of

qubits 𝑁 , the �rst 𝑁 parts of 𝑥 are encoded in the �rst layer and the rest in the following

layers. Furthermore, if the data can be fully encoded in a subset of gates, the remaining

gates are used to encode the data again. The next gates in the ansatz are RY gates that

are parameterized by the variational parameters. And lastly, CRZ gates which are also

parameterized by the variational parameters. For the CRZ gates a qubit is the control bit

for the rotation on the following qubit.

H RZ(x1) RY(θ1) RZ(θ8)

H RZ(x2) RY(θ2) RZ(θ5)

H RZ(x3) RY(θ3) RZ(θ6)

H RZ(x1) RY(θ4) RZ(θ7)

Figure 3.1.: Used ansatz for 4 qubits and data of dimension 3

In general, there is no intuition whether a speci�c ansatz is a good �t for a speci�c

application [SP18]. However, the ansatz in Figure 3.1 has two advantages concerning the

data encoding. Firstly, the data is repeated if there are more qubits than features or split

with the next layer if there are more features in the data than qubits. This allows for a

�exible scaling of the number of qubits. Secondly, the data encoding is repeated in every

layer. This technique is known as data reuploading and was shown to have a positive

e�ect on quantum classi�ers [Pér+20].

Note that when designing a circuit layout to use with the adjoint method (see Sec-

tion 2.2.10) of computing a quantum kernel, it is important to use a separating data gate.

The ensuing problem, when not following this, is shown in Figure 3.2. The shown ansatz

consists of a RX gate to encode the data and a RY gate with a free parameter. When

designing the ansatz in this order and its adjoint is added on the same qubits, the e�ects

of the parameterized RY gates will cancel each other out. A better design is to turn around

the ansatz and �rstly use the free parameter and encode the data afterwards as shown

in Figure 3.3. When the adjoint is added, the data encoding acts as a barrier and the

parameterized gates will not cancel each other.

40

3.2. Training and Testing Pipeline

If the circuit layout is built up of a layered architecture with many layers, where the

data is encoded in every layer, the problem is not as predominant, as only the last layer is

a�ected.

U(x1, θ) U†(x2, θ)

|0〉 RX(x1) RY(θ) RY(−θ) RX(−x2)

Figure 3.2.: Adjoint ansatz which leads to parameterized gates cancelling each other.

U(x1, θ) U†(x2, θ)

|0〉 RY(θ) RX(x1) RX(−x2) RY(−θ)

Figure 3.3.: Adjoint ansatz where a data encoding gate is used as a barrier so that the

parameterized gates do not cancel each other.

3.2.2. Training Pipeline

The training pipeline in Figure 3.4 starts with the necessary input, training data 𝐷 and

initial parameters 𝜃0. Whether the training dataset contains labeled {(𝑥𝑖, 𝑦𝑖)}𝑘𝑖=1 or unla-
beled {(𝑥𝑖)}𝑘𝑖=1 data is determined by whether the task is considered semi-supervised or

unsupervised. In the case of semi-supervised it is generally assumed that only few labeled

training samples are available (𝑘 typically small).

The pipeline itself consists of several steps, each of which is computed either classically

or on a quantum computer. In Figure 3.4 this is highlighted by the used coloring scheme.

The parameterized quantum kernel 𝑘𝜃 (𝑥𝑖, 𝑥 𝑗) is used as a subroutine to calculate the full

kernel matrix [𝐾]𝑖, 𝑗 for all possible sample combinations (𝑥𝑖, 𝑥 𝑗). This kernel matrix is

then used in a cost function 𝐶 (𝜃) to determine the quality of the parameters 𝜃 . The cost

function is then used in a classical optimization algorithm, which �nds new parameters

𝜃𝑡+1 that minimize the cost function. This cycle is repeated numerous times and the result

is a set of optimized parameters 𝜃𝑡 .

3.2.3. Testing Pipeline

The testing pipeline shown in Figure 3.5 uses a combination of classical and quantum

computation, similar to the training pipeline in Figure 3.4. The testing data is always a set

of unlabeled data {(𝑥𝑖)}𝑙𝑖=1 and the parameters 𝜃𝑡 were determined by the training pipeline

41

3. Approach

Quantum Kernel

Kernel Matrix Cost Function

OptimizerTraining data

Initial
parameters

Optimized
parameters

or

Figure 3.4.: Pipeline for training a variational quantum kernel as a combination of quantum

computations (green) and classical optimization (red)

in Figure 3.4. Based on this, the kernel matrix can be calculated for each pair of samples

(𝑥𝑖, 𝑥 𝑗) using the quantum kernel function 𝑘𝜃𝑡 (𝑥𝑖, 𝑥 𝑗). On the one hand, the kernel matrix

represents a measurement of the quantum kernel and on the other hand it can be used

as a core part of classical clustering algorithms. Therefore, it allows the combination of

quantum kernels and classical clustering algorithms to cluster the test dataset.

Some possible clustering algorithms were detailed in Section 2.1.3. Kernel k-means and

spectral clustering can use the kernel matrix directly. DBSCAN and hierarchical clustering

both rely on a distance measure instead. The kernel function 𝑘 is inherently a similarity

measure and a corresponding distance function can be calculated as 1 − 𝑘 .
The performance of the overall pipeline is evaluated by comparing the clusters found

by the algorithm and the real labels of the test data.

Quantum Kernel

Kernel Matrix

Testing data

Optimized
parameters

Clustering

Clustering for

Figure 3.5.: Pipeline for combining a trained quantum kernel (green) with classical cluster-

ing algorithms (red)

42

3.3. Semi-Supervised Cost Functions

3.3. Semi-Supervised Cost Functions

While clustering is typically de�ned as an unsupervised learning problem, this condition

can be softened to a semi-supervised learning problem. This makes a training dataset 𝐷

with labeled samples (𝑥𝑖, 𝑦𝑖) available. In comparison to fully supervised learning, semi-

supervised learning assumes that this dataset 𝐷 is rather small, as labeled samples are

hard to acquire.

This section introduces some possible cost functions that can utilize this semi-supervised

learning approach to optimize a variational quantum kernel, namely kernel target align-

ment and triplet loss.

3.3.1. Kernel Target Alignment

Kernel target alignment (KTA) is a measure to compare the di�erences between two kernel

matrices and can be used as a cost function to train a quantum kernel function [Cri+06].

Given a set of labeled samples 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, with 𝑥𝑖 ∈ 𝑋 being the input space and

𝑦𝑖 ∈ {±1} being the labels. Assuming two kernel functions 𝑘1 and 𝑘2 and their according

kernel matrices 𝐾 and𝑀 , the KTA is de�ned as:

𝐴(𝐾,𝑀) = 〈𝐾,𝑀〉𝐹√︁
〈𝐾,𝐾〉𝐹 〈𝑀,𝑀〉𝐹

. (3.1)

〈𝐴, 𝐵〉𝐹 is the Frobenius inner product between two general matrices 𝐴 ∈ R𝑛×𝑚 and

𝐵 ∈ R𝑛×𝑚 as de�ned by:

〈𝐴, 𝐵〉𝐹 =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝐴𝑖 𝑗𝐵𝑖 𝑗 .

For two kernel matrices 𝐾 ∈ R𝑛×𝑛 and 𝑀 ∈ R𝑛×𝑛 the Frobenius inner product can be

described by:

〈𝐾,𝑀〉𝐹 =

𝑛∑︁
𝑖, 𝑗=1

𝐾𝑖 𝑗𝑀𝑖 𝑗 .

The value of the KTA for two arbitrary matrices is in the range of [−1, 1] [WZT12]. For

two kernel matrices the range reduces to [0, 1], as kernel matrices are always positive

semide�nite (see Section 2.1.2). A KTA close to 1 means the kernel matrices are very

similar, while a KTA closer to 0 shows a signi�cant di�erence between the two matrices.

To use the kernel target alignment as a cost function to optimize a variational quantum

kernel, the current kernel function 𝑘𝜃 and its kernel matrix 𝐾 have to be compared to a

target matrix. This is done by de�ning an ideal kernel matrix

𝐾∗ = 𝑦𝑦𝑇 , (3.2)

with 𝑦 = (𝑦1, . . . , 𝑦𝑘) being the vector of labels from the dataset 𝐷 . This de�nition can be

reformulated to

[𝐾∗]𝑖, 𝑗 =
{
1, if 𝑦𝑖 = 𝑦 𝑗

−1, if 𝑦𝑖 ≠ 𝑦 𝑗 .

43

3. Approach

If both samples 𝑥𝑖 and 𝑥 𝑗 are from the same class, the multiplication of their labels 𝑦𝑖 and

𝑦 𝑗 leads to a matrix entry of 1. In the opposite case, if the two samples are from di�erent

classes, the multiplication leads to −1. This is the desired behaviour, as samples from the

same class should have a high kernel value, as they are very similar to another. Samples

from di�erent classes are not similar and therefore should have a low kernel value.

Furthermore, as most optimization algorithms try to minimize the cost function, but

higher KTA values denote a better alignment, an adequate cost function for minimization

is the negative KTA.

The resulting cost function to be optimized by a minimization algorithm for a kernel

matrix 𝐾 is:

𝑐𝑜𝑠𝑡 (𝐾,𝐾∗) = −𝐴(𝐾,𝐾∗) = − 〈𝐾,𝐾∗〉𝐹√︁
〈𝐾,𝐾〉𝐹 〈𝐾∗, 𝐾∗〉𝐹

= − 〈𝐾,𝑦𝑦𝑇 〉𝐹√︁
〈𝐾,𝐾〉𝐹 〈𝑦𝑦𝑇 , 𝑦𝑦𝑇 〉𝐹

3.3.1.1. Multiclass datasets

The de�nition of kernel target alignment used so far assumes that the data is separated

into two classes, +1 and −1. This is especially important for the de�nition of the ideal

target matrix in Equation (3.2).

However, many datasets contain more than two classes. This requires a new de�nition

of the ideal matrix 𝐾∗
. Matching classical approaches [GLV04], this thesis proposes the

solution:

[𝐾∗]𝑖, 𝑗 =
{
1, if 𝑦𝑖 = 𝑦 𝑗
−1
𝑚−1 , if 𝑦𝑖 ≠ 𝑦 𝑗 ,

with𝑚 the number of di�erent classes in the dataset, for quantum kernels as well. For

𝑚 = 2 this reduces to the de�nition of 𝐾∗ = 𝑦𝑦𝑇 as seen in Equation (3.2).

3.3.1.2. Unbalanced datasets

Balanced datasets have equal amounts of samples from each possible class. However, in

most real-world cases datasets are not balanced but have an equal amount of samples

from each class. These unbalanced datasets haven been shown to not work well with the

standard de�nition of kernel target alignment in the classical case, as the accuracy of the

measure drops signi�cantly [CMR12].

This problem can be addressed by centering the kernel function 𝑘 by subtracting the

expected value [CMR12]. This leads to the de�nition of a centered kernel function:

𝑘𝑐 (𝑥𝑖, 𝑥 𝑗) = 𝑘 (𝑥𝑖, 𝑥 𝑗) − 𝐸𝑥𝑖∈𝐷 [𝑘 (𝑥𝑖, 𝑥 𝑗)] − 𝐸𝑥 𝑗∈𝐷 [𝑘 (𝑥𝑖, 𝑥 𝑗)] + 𝐸𝑥𝑖 ,𝑥 𝑗∈𝐷 [𝑘 (𝑥𝑖, 𝑥 𝑗)],

where 𝐸𝑥∈𝐷 is the expected value of the kernel function for a 𝑥 ∈ 𝐷 .

44

3.3. Semi-Supervised Cost Functions

The associated centered kernel matrix 𝐾𝑐 to a non-centered matrix 𝐾 can be equally

de�ned by subtracting the expectation value:

[𝐾𝑐]𝑖 𝑗 = 𝐾𝑖 𝑗 −
1

𝑛

𝑛∑︁
𝑖=1

𝐾𝑖 𝑗 −
1

𝑛

𝑛∑︁
𝑗=1

𝐾𝑖 𝑗 +
1

𝑛2

𝑛∑︁
𝑖, 𝑗=1

𝐾𝑖 𝑗 .

This centered kernel matrix can be calculated using [CMR12]:

𝐾𝑐 = (𝐼 − 11𝑇

𝑛
)𝐾 (𝐼 − 11𝑇

𝑛
),

with 1 ∈ R𝑛×1 being the vector of all ones.
The kernel target alignment for centered matrices is equivalent to the standard de�nition

in Equation (3.1), only replacing matrices with their centered alternative [CMR12]:

𝐴(𝐾,𝐾∗) = 〈𝐾𝑐, 𝐾∗
𝑐 〉𝐹√︁

〈𝐾𝑐, 𝐾𝑐〉𝐹 〈𝐾∗
𝑐 , 𝐾

∗
𝑐 〉𝐹

.

3.3.2. Triplet Loss

Triplet loss is the general idea of constructing a loss function as a comparison between

three samples, also called a triplet. The triplet contains a reference sample (anchor 𝑎), a

sample from the same class as the anchor (positive 𝑝) and a sample from a di�erent class

(negative 𝑛). The assumption is that the anchor should be closer to the positive example

than to the negative example [SKP15].

This idea of triplets is used in cost functions for learning an embedding of images [SKP15],

but also for learning a similarity measure [Che+10]. The loss for a single triplet (𝑎, 𝑝, 𝑛)
and a parameterized similarity measure 𝑆𝜃 can be de�ned as:

𝑙 (𝑎, 𝑝, 𝑛) = max{0, 1 − 𝑆𝜃 (𝑎, 𝑝) + 𝑆𝜃 (𝑎, 𝑛)}. (3.3)

When minimizing this loss, 𝑆𝜃 (𝑎, 𝑝) is maximized and 𝑆𝜃 (𝑎, 𝑛) is minimized, which con-

forms to the intended purpose of the anchor and positive being similar and the anchor

and negative dissimilar.

The combined loss function for all triplets in a dataset 𝐷 is then de�ned as the sum over

all possible triplets:

𝐿 =
∑︁

(𝑎,𝑝,𝑛)∈𝐷
𝑙 (𝑎, 𝑝, 𝑛). (3.4)

This cost function for similarity learning can be transferred to kernel learning, as kernels

are inherently similarity measures. For this, only the similarity function 𝑆𝜃 in Equation (3.3)

is replaced by a parameterized kernel function 𝑘𝜃 , which leads to:

𝑙 (𝑎, 𝑝, 𝑛) =𝑚𝑎𝑥{0, 1 − 𝑘𝜃 (𝑎, 𝑝) + 𝑘𝜃 (𝑎, 𝑛)}.

The overall loss function in Equation (3.4) is de�ned over all possible triplets (𝑎, 𝑝, 𝑛)
in a dataset. However in most cases there are too many triplets for this approach to be

45

3. Approach

feasible. A possible alternative is using only a �xed number of triplets, which reduces

the complexity. These triplets could be generated by randomly sampling an anchor. The

positive example is then randomly sampled from the set of samples with the same class as

the anchor. The negative example equivalently from the set of samples with a di�erent

class [Che+10].

3.4. Unsupervised Cost Functions

When staying strictly with an unsupervised learning approach for clustering, the dataset𝐷

does not contain any label information, but only the data samples itself 𝐷 = {(𝑥𝑖)}𝑘𝑖=1, 𝑥𝑖 ∈
𝑋 . In this case, it is hard to use the kernel values directly for optimization, as there is no

target value available to compare them against. It is however possible to use the kernel

values to cluster the training data 𝐷 and use the resulting clusters for optimization. This

can be done, for example, with well known clustering metrics that evaluate the performance

of a clustering for a given dataset 𝐷 .

The following two sections introduce two clustering metrics that evaluate performance

solely based on the dataset 𝐷 and a clustering and could be used as a cost function for

training variational quantum kernels.

3.4.1. Davies-Bouldin Index

The Davies-Bouldin index (DBI) measures good clustering as clusters that are dense and

well separated from each other [DB79]. The density of a cluster 𝑖 is de�ned as its internal

dispersion 𝐵𝑖 , which could be calculated as the distance of all samples in the cluster to its

center. The importance is that 𝐵𝑖 is rather small for very dense clusters.

The separation between di�erent clusters 𝑖 and 𝑗 is de�ned as 𝑀𝑖, 𝑗 , which can be

calculated as the distance between the cluster centers of 𝑖 and 𝑗 . Well separated clusters

are indicated by a high value for𝑀𝑖, 𝑗 .

Density and separation can be combined to a single measure:

𝑅𝑖, 𝑗 =
𝐵𝑖 + 𝐵 𝑗
𝑀𝑖, 𝑗

,

which is small for dense and well separated clusters 𝑖 and 𝑗 .

The Davies-Bouldin index can then be de�ned as:

𝐷𝐵𝐼 =
1

𝑘

𝑘∑︁
𝑖=1

𝑚𝑎𝑥𝑖≠ 𝑗𝑅𝑖, 𝑗 ,

for a dataset of 𝑘 clusters. The DBI chooses the worst possible 𝑅𝑖, 𝑗 for each cluster. This

results in scores closer to 0 indicating dense and well separated clusters.

3.4.2. Calinski-Harabasz Index

The Calinski-Harabasz index (CHI) is a metric to measure the dispersion within and

between di�erent clusters [CJ74]. For a dataset 𝐷 of size 𝑛 clustered into 𝑘 clusters the

46

3.4. Unsupervised Cost Functions

CHI can be de�ned by:

𝐶𝐻𝐼 =
𝑡𝑟 {𝐵𝑘}
𝑡𝑟 {𝑊𝑘}

· 𝑛 − 𝑘
𝑘 − 1

.

𝐵𝑘 is the matrix describing dispersion between di�erent clusters. With the number of

points 𝑛𝑞 in cluster 𝑞, the center 𝑐𝑞 of cluster 𝑞 and the center 𝑐𝐷 of the dataset 𝐷 , 𝐵𝑘 can

be de�ned through:

𝐵𝑘 =

𝑘∑︁
𝑞=1

𝑛𝑞 (𝑐𝑞 − 𝑐𝐷) (𝑐𝑞 − 𝑐𝐷)𝑇 .

Similarly,𝑊𝑘 describes the dispersion within the clusters using the set of points from

each cluster 𝐶𝑞 and its center 𝑐𝑞 :

𝑊𝑘 =

𝑘∑︁
𝑞=1

∑︁
𝑥∈𝐶𝑞

(𝑥 − 𝑐𝑞) (𝑥 − 𝑐𝑞)𝑇 .

The CHI is generally higher when clusters are well separated, as 𝑡𝑟 {𝐵𝑘} is large, and
dense, as 𝑡𝑟 {𝑊𝑘} is small.

As a high CHI relates to good clustering performance, for usage as a cost function,

which will be minimized, the negative CHI has to be used.

47

4. Evaluation

This chapter presents the implementation and evaluation results of training a variational

quantum kernel (VQK) and combining it with classical clustering algorithms. These results

are compared to the performance of various clustering algorithms, which fully operate on

classical computers. Furthermore, the in�uence of some important classical and quantum

speci�c parameters on the performance of the VQK is investigated. Lastly, the e�ects of

di�erent types of quantum speci�c noise are investigated.

Section 4.1 introduces the implementation, used datasets and di�erent clustering al-

gorithms used for the evaluation. The performance of a VQK under perfect conditions

is detailed in Section 4.2. Di�erent simulations with real-word conditions, especially

concerning the e�ect of noise, are presented in Section 4.3. Lastly, Section 4.4 discusses

the obtained results and gives an outlook into possible future work.

4.1. Setup

This section introduces the main setup used for the following evaluation. Section 4.1.1

details the implementation of a variational quantum kernel for clustering as described in

Chapter 3. Section 4.1.2 describes the datasets used for evaluating the implementation

and the reference clustering algorithms are explained in Section 4.1.3. Lastly, Section 4.1.4

explains the used evaluation metric.

4.1.1. Implementation

The approach from Chapter 3 was implemented in python 3.8 [VD09]. The main library

used for implementing quantum circuits is pennylane version 0.22.1 [Ber+20]. While

pennylane allows the usage of real quantum hardware, for example from IBM, all results

in this thesis are obtained by simulating a quantum computer on a classical computer.

Pennylane also provides implementations of popular optimization algorithms such as

gradient descent (GD). The optimization is done in epochs, where in each epoch all samples

from the training dataset are processed once. For this the training dataset is split into

smaller batches, which are then used for individual optimization steps.

Pennylane has the advantage of having di�erent ways of simulating a quantum computer.

The analytical mode does not use shots, but explicitly calculates and saves the quantum

states obtained when applying gates to a qubit. The �nal probabilities of 0 and 1 are then

obtained by the measurement rule from Section 2.2.4. This simulation mode is especially

useful when the e�ects of a calculation are important, but not the in�uence of noise. The

alternative way of simulation is more closely related to real quantum computer. The

probabilities are approximated by the expectation value over many shots. This mode

49

4. Evaluation

is useful, if the simulation should be as closely related to a real quantum computer as

possible.

The remaining mathematical calculations are done with numpy [Har+20]. The imple-

mentations for spectral clustering, DBSCAN and hierarchical clustering are used from

scikit-learn [Ped+11]. An implementation of kernel k-means [Blo] was used with small

modi�cations to �t python 3 and be usable for unsupervised cost functions. All plots are

generated using matplotlib [Hun07].

The source code is available on GitHub
1
. All simulations were performed on bwUni-

Cluster 2.0. The author acknowledges support by the state of Baden-Württemberg through

bwHPC.

4.1.2. Datasets

The evaluation is done using three di�erent datasets, namely "moons", "donuts" and "Iris".

Firstly, the moons dataset is provided by scikit-learn [Ped+11]. Moons is a two dimen-

sional toy dataset containing two interleaving half-circles, or "moons". Each moon is

assigned its own class label. An example of this dataset is shown in Figure 4.1a.

Secondly, the two dimensional donuts toy dataset introduced in [Hub+21] is used. The

dataset contains two shapes that resemble a donut. Both donuts consist of two ovals. The

outside oval is assigned to the �rst class and the inside oval to the second class. For the

second donut, the class assignments are switched, meaning the outside oval is assigned to

class two and the inside oval to class one. The dataset can be seen in Figure 4.1b.

The last dataset is the real-world Iris dataset introduced in [FIS36] and provided by

scikit-learn [Ped+11]. The dataset is three dimensional and contains three di�erent classes

for di�erent species of the Iris �ower. Iris contains a total of 150 labeled samples.

These datasets are divided into three subsets for training, validation and testing. The

training dataset typically has 30 samples. The implications of this size are investigated in

Section 4.2.6. The validation set consists of 10 samples and the testing dataset has size 100.

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Moons dataset

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(b) Donuts dataset

Figure 4.1.: Toy datasets (moons and donuts) used for the evaluation.

1
https://github.com/nikmetz/quantum-clustering/

50

4.1. Setup

4.1.3. Algorithm Selection

The approach of this thesis is compared to multiple di�erent purely classical clustering

algorithms, which are explained in this section.

Firstly, the kernel-based algorithms kernel k-means (see Section 2.1.3.2) and spectral

clustering (see Section 2.1.3.4). Both are used in combination with the popular radial basis

function (RBF) kernel de�ned as follows [VTS04]:

𝑘 (𝑥𝑖, 𝑥 𝑗) = exp(−𝛾 | |𝑥𝑖 − 𝑥 𝑗 | |2).

The free parameter 𝛾 is optimized by hand to achieve a good clustering result.

The KernelNet (KNet) algorithm proposed in [Wu+19] can also be categorised as a

kernel-based method. The algorithm can be categorised as a centroid-based algorithm, as

it uses k-means after learning a kernel and appropriate embedding. The free parameters

are taken from experiments with comparable datasets provided in the implementation of

KNet [Wu+].

Secondly, the distance based algorithms DBSCAN (see Section 2.1.3.3) and hierarchical

clustering (see Section 2.1.3.5), with both using the euclidean distance. Hierarchical cluster-

ing uses the bottom-up approach and the single linkage criteria to combine clusters. The

free parameters for both algorithms are optimized by hand to achieve the best clustering.

4.1.4. Clustering Evaluation

There are numerous di�erent evaluation metrics for clustering, but the normalized mutual

information (NMI) is most commonly used in the literature and will be used in this thesis

to evaluate clustering performance [SG02; VEB10]. For a clustering 𝑈 = {𝑈1, . . . ,𝑈𝑅} of 𝑛
samples into 𝑅 clusters, the entropy is de�ned as [VEB10]:

𝐻 (𝑈) = −
𝑅∑︁
𝑖=1

|𝑈𝑖 |
𝑛
𝑙𝑜𝑔

(
|𝑈𝑖 |
𝑛

)
.

For two clusterings 𝑈 and 𝑉 of 𝑛 samples, the mutual information 𝑀𝐼 is de�ned

through [VEB10]:

𝑀𝐼 (𝑈 ,𝑉) =
|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

|𝑈𝑖 ∩𝑉𝑗 |
𝑛

𝑙𝑜𝑔

(
𝑛 |𝑈𝑖 ∩𝑉𝑗 |
|𝑈𝑖 | |𝑉𝑗 |

)
.

This mutual information is then normalized using the entropy of both clusterings to

calculate the NMI [VEB10]:

𝑁𝑀𝐼 =
𝑀𝐼 (𝑈 ,𝑉)√︁
𝐻 (𝑈)𝐻 (𝑉)

. (4.1)

The NMI is in the range [0, 1], with 1 representing the perfect clustering result.

51

4. Evaluation

Table 4.1.: Default parameters used in all following noiseless simulations

Dataset

Parameter Iris Donuts Moons

Training dataset size 30 30 30

Validation dataset size 10 10 10

Testing dataset size 100 100 100

Optimizer GD GD GD

Cost function KTA KTA KTA

Epochs 100 100 100

Batch size 5 5 5

Qubits 3 3 3

Layers 10 20 30

4.2. Noiseless Simulation

This section investigates the application of variational quantum kernels in clustering

algorithms under perfect conditions, especially without any noise. This means that all

quantum kernel functions can be calculated using the adjoint method.

The next section details the default parameters used in the simulations. These parameters

are used as long as nothing else is mentioned in the further sections. Section 4.2.2 gives

a general overview into the best results obtained in this thesis compared to standard

algorithms and an approach from the literature.

Afterwards, di�erent parameters and strategies are investigated concerning their in�u-

ence on the clustering result. Section 4.2.3 details the combination of a variational quantum

kernel with the four clustering algorithms kernel k-means, spectral clustering, DBSCAN

and hierarchical clustering. Section 4.2.4 goes into detail about the semi-supervised and

unsupervised cost functions proposed in Chapter 3. Section 4.2.5 examines the e�ects

of quantum circuits with di�erent numbers of qubits and layers. The size of the train-

ing dataset and its e�ects on the clustering performance of a test dataset are shown in

Section 4.2.6.

4.2.1. Default parameters

The implementation allows for an extensive con�guration using di�erent parameters. In

order to not describe these parameters in every section, a default set of parameters is

listed in Tab. 4.1. If not stated otherwise, the parameters listed in that table are used in the

following experiments.

Many of these parameters were determined by extensive experiments. In fact, the follow-

ing sections investigate the in�uence of some of these parameters. The size of the training

dataset was a consideration between being too small for training and too large to still

count as semi-supervised. The e�ects of the training dataset size are further investigated

in Section 4.2.6. The size of the testing dataset was chosen based on performance criteria,

52

4.2. Noiseless Simulation

as the kernel matrix for this dataset has to be computed every time the kernel is used for a

clustering algorithm.

The number of epochs was again determined by testing, as after 100 epochs neither the

cost nor the clustering results change signi�cantly. The circuit sizes for the three datasets

were chosen based on the best achievable results. Further experiments concerning this

size are shown in Section 4.2.5.

The initial parameters 𝜃0 for the VQK are chosen randomly in the range [0, 2𝜋].

4.2.2. Overview of Results

This section serves as an overview of the results and shows that the general approach

of this thesis works as intended. The following three questions will be answered in this

section:

1. Can the VQK bene�t from training?

2. Can the training of a VQK be bene�cial for the subsequent clustering?

3. Can VQKs lead to better clustering results than purely classical algorithms?

To visualize that the VQK bene�ts from training, Figure 4.2 shows the kernel matrix of

the test data before the training and after 100 epochs of training for the moons dataset. The

�gure visualizes the values of a kernel matrix by drawing samples farther apart, if their

similarity according to the kernel matrix is small, and closer together, if their similarity is

bigger. For this the samples are being reduced to two dimensions based on their similarity.

Remember that a good kernel function produces values close to 1, if the two samples are

similar, and values close to 0, if the samples are dissimilar. Figure 4.2a shows the kernel

matrix before the VQK is being trained. The �gure displays samples from di�erent classes

close to each other, which means that the kernel assigns them high kernel values. This

is unwanted behaviour, because the samples are from di�erent classes and should rather

receive kernel values close to 0.

In turn, Figure 4.2b shows the kernel matrix for the same test data after the training of

the VQK. It can be seen that the two classes are now separated, meaning that samples from

the same class produce kernel values close to 1 and close to 0 if they are from di�erent

classes. This is the intended behaviour for a good kernel function and answers the �rst

question of this section, that VQKs can bene�t from training. Note that the training in

this case was done with the KTA cost function. The e�ects of di�erent cost functions are

further explained in Section 4.2.4.

The second question is concerned with the testing pipeline explained in Section 3.2.3.

The VQK is combined with a clustering algorithm during training and every 20 epochs the

test data is clustered once using the current VQK. The NMI of this regular testing for the

moons dataset is shown in Figure 4.3. It can be seen that training the variational quantum

kernel also increases the clustering performance. Before the training starts, the clustering

leads to an NMI of 0.34. This improves during training by 0.66 or 194% to 1.00. Note that

this result was obtained with spectral clustering, but Section 4.2.3 dives deeper into the

usage and characteristics of di�erent clustering algorithms.

53

4. Evaluation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Before training

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

After training

Figure 4.2.: Kernel matrices for the moons dataset before training (Figure 4.2a) and after

100 epochs of training (Figure 4.2b) using the KTA cost function. The training

leads to a separation of the two classes.

Table 4.2.: Results for clustering using a variational quantum kernel before and after

training

KernelKMeans Spectral DBSCAN Hierarchical

Dataset Before After Before After Before After Before After

Moons 0.73 1.00 0.34 1.00 0.56 1.00 0.58 1.00

Donuts 0.10 0.93 0.12 0.93 0.51 0.97 0.56 0.97

Iris 0.48 0.93 0.71 0.93 0.31 0.82 0.36 0.88

Additionally, Table 4.2 shows that for all datasets and clustering algorithms the NMI

increases by training the VQK compared to the NMI before the training. While this

performance increase exists for all highlighted clustering algorithms and datasets, the

relative increase before and after the optimization is di�erent for all cases. The largest

performance increase can be noted for kernel k-means on the donuts dataset. An increase

of the NMI from 0.10 to 0.93, i.e. by 0.83 or 830%, can be observed. In turn the smallest

improvement can be seen with spectral clustering on the Iris dataset, with an increase

from 0.71 to 0.93 or 31%. On average the performance increases by 206% after training the

VQK.

Both, Figure 4.3 and Table 4.2, highlight that training a VQK leads to better clustering

results compared to untrained VQKs.

The last question of this section is concerned with the performance compared to the

purely classical clustering algorithms from Section 4.1.3. Table 4.3 shows the best results

achieved by these algorithms on all datasets. Note that the results for the KNet algorithm

from [Wu+19] for the Iris and donuts dataset should not be taken as the best achievable

results, as the algorithm has many di�erent parameters that can be optimized and in�uence

54

4.2. Noiseless Simulation

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

KTA

Figure 4.3.: NMI when testing a VQK using spectral clustering on the moons dataset. The

clustering changes for the better, while the VQK is being trained.

Table 4.3.: Results for standard clustering algorithms and KNet

Dataset KernelKMeans Spectral DBSCAN Hierarchical KNet

Moons 0.48 0.42 1.00 1.00 1.00

Donuts 0.83 0.46 1.00 1.00 0.40

Iris 0.81 0.79 0.74 0.74 0.69

the result heavily. Likewise the results for the standard algorithms can potentially be

further optimized.

Comparing the results for standard algorithms in Table 4.3 with the results using the

VQK in Table 4.2, it can be noted that the VQK is mostly at least as good and often times

even better than the standard algorithms. The largest performance increases can be seen

for the kernel k-means algorithm and spectral clustering using the VQK compared to

the RBF kernel. On the moons dataset kernel k-means improves by 108% and spectral

clustering by 137%. For DBSCAN and hierarchical clustering the performance di�erence is

only marginal. On the moons dataset the NMI is identical at 1.00. The only two instances

where a purely classical algorithm is better than the VQK variant is with DBSCAN and

hierarchical clustering on the donuts dataset. In both instances the di�erence is only 3.61%.

Therefore, the answer for the last question is that the approach of this thesis using

VQKs can increase the clustering performance compared to classical algorithms.

55

4. Evaluation

4.2.3. Combination with Clustering Algorithms

In Section 3.2.3 it was established that a VQK can be combined with di�erent kernel-

based algorithms, such as kernel k-means or spectral clustering, as well as distance-based

algorithms, such as DBSCAN or hierarchical clustering. This section investigates the

practical di�erences between kernel-based and distance-based algorithms.

4.2.3.1. Kernel-based Clustering Algorithms

Figure 4.4 shows the result of training a VQK and using this kernel function in kernel

k-means and spectral clustering. The �gure shows the NMI for both algorithms while

training the donuts, Iris and moons dataset. It can be seen that both algorithms have a

similar performance for all three datasets separately. During the training process there

are minimal performance di�erences between the two clustering algorithms for the Iris

(Figure 4.4b) and moons (Figure 4.4c) dataset. However, after the full training of 100 epochs,

the NMI is identical for both algorithms. For the donuts dataset (Figure 4.4a) the NMI is

identical for kernel k-means and spectral clustering over the complete training process.

One important advantage for both algorithms, that is not seen in the �gure, is that

they do not require any additional parameter optimization aside from the kernel function.

The algorithms are used "out-of-the-box" in combination with the VQK and perform well,

without additional parameter optimization aside from the VQK. This is in contrast to the

distance-based algorithms.

4.2.3.2. Distance-based Clustering Algorithms

Both, DBSCAN and hierarchical clustering, use a distance measure based on a kernel

function. Furthermore, both use parameters that interact with this distance measure. In

DBSCAN 𝜖 de�nes the neighbourhood of a sample and𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 speci�es whether or

not a point is a core point (see Section 2.1.3.3). In hierarchical clustering𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

de�nes when to split or merge a cluster (see Section 2.1.3.5). These parameters have to be

optimized in addition to the VQK, which adds more overhead.

Figure 4.5 shows the NMI for DBSCANwith di�erent 𝜖 values for the donuts (Figure 4.5a)

and Iris (Figure 4.5b) dataset, while training the VQK with a �xed value for𝑚𝑖𝑛_𝑝𝑡𝑠 . Both

�gures show that the performance of DBSCAN heavily depends on the parameter 𝜖 . This

indeed makes sense, as even with a well optimized distance measure, 𝜖 directly in�uences

how far apart samples can be while still being considered to be in the same cluster. However,

𝜖 cannot be optimized once for all datasets, but rather for each dataset individually. For

example, in case of a �xed value of𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 5, the optimal value of 𝜖 for the donuts

and Iris datasets are 0.4 and 0.3 respectively. Note that 𝜖 ∈ (0, 1], because the used distance
measure is computed as 1 − 𝑘 , with the kernel function 𝑘 ∈ [0, 1]. 𝜖 = 0 is not useful, as

the neighbourhood of each sample would be empty, except for identical samples.

Furthermore, DBSCAN can be parameterized with𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . The in�uence of this

parameter on DBSCAN for the donuts dataset with 𝜖 = 0.4 and Iris with 𝜖 = 0.3 are shown

in Figure 4.6a and Figure 4.6b. Both �gures show that after optimizing 𝜖 , di�erent choices

for𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do not make much of a di�erence to the overall performance.

56

4.2. Noiseless Simulation

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Spectral
KernelKMeans

(a) Donuts dataset

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Spectral
KernelKMeans

(b) Iris dataset

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Spectral
KernelKMeans

(c) Moons

Figure 4.4.: NMI for testing of kernel k-means and spectral clustering while training a

VQK over 100 epochs for the donuts (Figure 4.4a), Iris (Figure 4.4b) and moons

(Figure 4.4c) dataset. Both algorithms deliver a nearly identical result on all

datasets.

57

4. Evaluation

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

0.1
0.2
0.3
0.4

(a) Donuts dataset

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

0.1
0.2
0.3
0.4

(b) Iris dataset

Figure 4.5.: NMI for testing of DBSCAN over 100 epochs for di�erent 𝜖 values for the

donuts (Figure 4.5a) and Iris (Figure 4.5b) dataset. For the donuts dataset

𝜖 = 0.4 and for Iris 𝜖 = 0.3 is optimal.

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

1
2
3
4

(a) Donuts dataset

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

1
2
3
4

(b) Iris dataset

Figure 4.6.: NMI for testing of DBSCAN over 100 epochs for di�erent𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 val-

ues for the donuts (Figure 4.6a) and Iris (Figure 4.6b) dataset. The choice of

𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 does not make a big di�erence after �xating the 𝜖 parameter.

58

4.2. Noiseless Simulation

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

0.1
0.2
0.3
0.4

(a) Donuts dataset

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

0.1
0.2
0.3
0.4

(b) Iris dataset

Figure 4.7.: NMI for testing of hierarchical clustering over 100 epochs for di�erent

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values for the donuts (Figure 4.7a) and Iris (Figure 4.7b)

dataset. For the donuts dataset 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.4 and for Iris

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.3 is optimal.

Figure 4.7 shows the performance of hierarchical clustering on the donuts and Iris

dataset for di�erent 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values. Similar to DBSCAN, the performance

heavily varies for di�erent parameter choices. As the name of the parameter suggests, it

is used as a threshold to decide which clusters should be merged or split based on their

distance, which has a big impact on the performance no matter how well optimized the

used kernel function is. Furthermore, similar to DBSCAN, the parameter is dependant on

the dataset in question. For the donuts dataset in Figure 4.7a 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.4 is

optimal, while for the Iris dataset in Figure 4.7b 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.3 is the optimal

value.

Summarizing it can be seen that optimizing the kernel function alone does not imme-

diately yield good results for distance-based clustering algorithms. They rather require

further parameter optimization to fully utilize the trained kernel as a distance measure.

4.2.3.3. Conclusion

In conclusion, variational quantum kernels work well for all mentioned clustering al-

gorithms, kernel-based as well as distance-based. However, distance-based algorithms

require further optimization of classical parameters, while kernel-based algorithms can

perform well by using solely the provided kernel.

As all algorithms were shown to be working, the remainder of this thesis will focus on

spectral clustering.

4.2.4. Cost Functions

This section investigates the usability of di�erent cost functions for optimizing a VQK.

The cost function is used to determine the current quality of the parameters 𝜃 used in the

59

4. Evaluation

VQK. An optimization algorithm uses this cost function to minimize the cost and therefore

optimize the parameters.

Chapter 3 introduced two di�erent paradigms of de�ning such a cost function. Firstly,

semi-supervised cost functions as introduced in Section 3.3, where a small set of labeled

training data can be used. Secondly, unsupervised cost functions were introduced in

Section 3.4 and only use unlabeled training data during the optimization.

The following two sections evaluate the performance of semi-supervised as well as

unsupervised cost functions.

4.2.4.1. Semi-Supervised Cost Functions

This section investigates the usability of semi-supervised cost functions as introduced in

Section 3.3. Semi-supervised cost functions can use labeled training data for the optimiza-

tion. This data allows the cost function to compare current kernel values to optimal values

obtained from the training labels.

Kernel target alignment (KTA) computes the optimal kernel matrix from the labels in the

training dataset and compares this matrix to the current kernel matrix (see Section 3.3.1).

Figure 4.8 shows the cost for the validation data, while training the kernel function on

the donuts dataset. For the �rst 40 epochs the validation cost is optimized from −0.6 down
to −0.8. This indicates that the parameters for the VQK are being optimized. However, after

40 epochs, the validation cost starts to rise again, which can be explained by over�tting.
Over�tting describes the e�ect that parameters are being optimized to perfectly �t the

training data. However, adjusting the parameters to perfectly �t the training data also

captures possible noise in the data. This leads to less generalization of the model and

therefore worse performance on previously unseen data, i.e. the validation and test data.

This could be the case in Figure 4.8 after 40 epochs, where the VQK is trained to perfectly

represent the training data but fails to generalize to unseen data from the validation data.

There are multiple di�erent strategies from classical machine learning that can be

used to combat over�tting. Especially stopping the training process after 40 epochs, so

before the over�tting occurs, can potentially be useful. This practice is known as early
stopping [YRC07].

Figure 4.9a depicts the similarity induced by the kernel matrix of the testing donuts

dataset before the training. Both classes appear to be heavily intertwined, meaning that

samples from opposite classes receive kernel values close to 1 according to the untrained

VQK. In contrast to this, Figure 4.9b shows the same kernel matrix after 100 epochs of

training. The classes are now separated, as the kernel function assigns values close to 1

only to samples from the same class. This again shows that using the KTA cost function,

to train the VQK, leads to a kernel that better represents the actual structure of the data.

Lastly, the VQK, that is trained by the KTA cost function, is combined with spectral

clustering in the testing pipeline. Figure 4.10 shows the resulting NMI when clustering

the testing data in said pipeline. The plot clearly shows that training the VQK using the

KTA cost function increases the performance in following clustering steps. The initial

NMI before training is at 0.12 and after 100 epochs of optimization it is at 0.93, which is

an increase of 675%. The peak performance after 40 epochs is even better with an NMI of

1.00, which relates to an 733% increase.

60

4.2. Noiseless Simulation

0 20 40 60 80 100
Epoch

0.80

0.75

0.70

0.65

0.60

KT
A

Figure 4.8.: Validation cost while training a VQK with the KTA cost function on the donuts

dataset. The �rst 40 epochs show a good optimization behaviour. After 40

epochs the optimization runs into over�tting.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Before training

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) After training

Figure 4.9.: Kernel matrices before (Figure 4.9a) and after (Figure 4.9b) optimizing a VQK

with KTA on the donuts dataset. Before the training the kernel values do

not represent the class structure of the test data. This is only achieved after

optimizing the VQK.

61

4. Evaluation

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
NM

I

Figure 4.10.: NMI for the testing dataset during training with KTA on the donuts dataset.

The behaviour is very similar to the validation cost in Figure 4.8. Until epoch

40 the optimization leads to good clustering performance. However, after

epoch 40 the over�tting leads to a decrease in performance.

Furthermore it is also of interest how quickly the KTA cost function improves the kernel

function. After 20 epochs the performance is already at an NMI of 0.93 and after 40 epochs

at 1.00.

But also the over�tting e�ect observed in the validation cost in Figure 4.8 is visible

in the clustering result in Figure 4.10. After 40 epochs the NMI starts to decrease again,

similar to the validation cost which starts to increase after 40 epochs due to over�tting.

The KTA cost function not only works for datasets containing two classes, but also

multiclass datasets such as Iris. The kernel matrices before and after the training are

shown in Figure A.1 and show a good separation of the classses after training. The NMI

after using the VQK with spectral clustering is shown in Figure A.2 and suggests that

training the kernel function also increases the subsequent clustering performance.

Triplet loss as de�ned in Section 3.3.2, describes a cost function based on the kernel

values of multiple triplets of samples. A triplet (𝑎, 𝑝, 𝑛) is de�ned through an anchor 𝑎, a

positive sample 𝑝 of the same class as the anchor, and a negative sample 𝑛 from a di�erent

class than the anchor. The class labels are available, because triplet loss was de�ned as

a cost function for semi-supervised learning. The main idea for optimization is that the

kernel value between 𝑎 and 𝑝 should be close to 1, as they are from the same class, and the

kernel value between 𝑎 and 𝑛 should be nearly 0, because they are from di�erent classes.

The validation cost during training on the donuts dataset is shown in Figure 4.11. In

the plot, a downwards trend from a value of 6 to about 4.5 can be observed. The heavy

�uctuations of the triplet loss value can be explained through the triplet loss de�nition.

62

4.2. Noiseless Simulation

0 20 40 60 80 100
Epoch

3

4

5

6

7

8

9

Tr
ip

le
t l

os
s

Figure 4.11.: Validation cost during training with triplet loss. Before epoch 60 a decreasing

cost value is visible. After epoch 60 the cost increases again due to over�tting.

Instead of calculating the sum over all possible triplets, only a subset of all possible triplets

is taken into account. In this case, each sample of the training dataset is considered as

an anchor once and the positive and negative samples are chosen randomly from the

corresponding classes. This randomness is the reason for the observed �uctuations in

Figure 4.11.

Another e�ect observed in Figure 4.11 is the already known over�tting. After epoch 60

the validation cost does not decrease anymore, but rather increases again. The reasoning

is the same as for the KTA cost function. The parameters are trained to perfectly represent

the training data, but fail to generalize to unseen data from the validation set. Equally,

early stopping after 60 epochs could be used to mitigate this behaviour.

The kernel matrix before the training is shown in Figure 4.12a. Before the training, the

VQK is not yet optimized to the given dataset and cannot separate the classes. Figure 4.12b

shows the kernel matrix after 100 epochs of training. Except for some outliers, all samples

from the same class appear near each other, which indicates that the kernel assigns them

a value close to 1. This shows that training a VQK with the triplet loss cost function leads

to a kernel which better represents the dataset.

The result of the combination of the VQK, trainedwith triplet loss, and spectral clustering

is shown in Figure 4.13. This plot shows some interesting features.

Firstly, the positive e�ect on the clustering from training the VQK can be clearly seen.

The initial VQK produces an NMI of 0.12. After 100 epochs the NMI increases to 0.88,

which is an increase of 633%. At the peak performance after 40 epochs the NMI is at 1.00,

which relates to a performance increase of 733%.

63

4. Evaluation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Before training

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) After training

Figure 4.12.: Kernel matrices of the test dataset with an untrained (Figure 4.12a) and trained

(Figure 4.12b) VQK using triplet loss. Before training, the kernel matrix does

not represent the real structure of the data. However, after the optimization,

samples from the same class receive a high kernel value and samples from

opposite classes a low kernel value, as intended.

Secondly, the over�tting problem mentioned for Figure 4.11 can also be seen in Fig-

ure 4.13. After 60 epochs the clustering performance starts to decrease again, because the

VQK is being trained too much.

Lastly, optimizing with triplet loss quickly leads to an increase in clustering performance.

After 40 epochs of training the test data is already clustered perfectly.

Triplet loss also performs well for a multiclass dataset. Figure A.3 shows the kernel

matrix for the Iris dataset before and after training. After the optimization the three

classes are separated nicely. The NMI for the clustering result using this VQK is shown in

Figure A.4 and further shows that triplet loss can be e�ectively used to cluster mutliclass

datasets.

Comparison The previous sections have shown that both KTA as well as triplet loss

can be used to optimize a VQK. However, there are some small but important di�erences

between the two cost functions.

Figure 4.14 shows the clustering performance comparison for the KTA cost function

and triplet loss. The plot shows that KTA has a better performance most of the time

compared to triplet loss. Furthermore, KTA can increase the performance quicker in

comparison to triplet loss, which is seen in epoch 20. These di�erences can be attributed

to the way KTA and triplet loss operate. KTA compares every kernel value to its optimal

value, computed from the real labels of the data, and optimizes the parameters of the VQK

accordingly. KTA therefore compares O(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒2) many kernel values in each step

of the optimization. Triplet loss only uses 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 many triplets, with 2 kernel values

each, leading to O(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒) total kernel values used in each step. Therefore KTA has a

more precise measurement of how good the current kernel is.

However, this additional precision comes at a cost. The current speed limitation when

training the VQK is simulating the quantum device. KTA therefore has the disadvantage

64

4.2. Noiseless Simulation

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Figure 4.13.: NMI for the test data with the triplet loss function on the donuts dataset.

Until epoch 60 the otimization of the VQK leads to an increase in clustering

performance. After 60 epochs the over�tting becomes problematic and de-

creases the performance.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Triplet loss
KTA

Figure 4.14.: Testing result during training with the KTA and triplet loss cost functions on

the donuts dataset. KTA achieves the optimal NMI of 1.00 faster than triplet

loss. Both cost functions experience an over�tting, but the general e�ect is

smaller when training with the KTA function.

65

4. Evaluation

0 20 40 60 80 100
Epoch

8

6

4

2

0

DB
I

(a) DBI cost function

0 20 40 60 80 100
Epoch

80

60

40

20

0

CH
I

(b) CHI cost function

Figure 4.15.: Validation cost during the training of a VQK with the DBI (Figure 4.15a) and

CHI (Figure 4.15b) cost functions. Both cost functions fail to optimize the

parameters of the VQK to even recognize a trend on the validation data.

of having to query the quantum simulation O(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒2) times, while triplet loss only

requires O(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒). This can also be translated to the usage of current NISQ era

quantum devices. Because only few of these quantum computers exist, a cost function

that is able to train the VQK, but uses the quantum computer very little, is preferrable.

This leads to a possible advantage of triplet loss over KTA for current NISQ devices.

A possible solution to this consideration between computational cost and precision

would be a combination of triplet loss and KTA. The �rst training epochs could use triplet

loss to quickly adjust the parameters to an acceptable level. After this initial training, KTA

could be used to slowly optimize the parameters to a perfect level. Note that this is only

an idea for future work and is not tested in this thesis.

4.2.4.2. Unsupervised Cost Functions

The second type of cost functions are unsupervised cost functions, which only use un-

labeled training data. As there are no class labels available, the kernel values cannot be

compared to their optimal value. Instead, the kernel is used e.g. in the kernel k-means

algorithm (see Section 2.1.3.2) to cluster the training dataset. These predicted clusters are

then evaluated using the clustering metrics Davies-Bouldin index (DBI) (see Section 3.4.1)

and Calinski-Harabasz index (CHI) (see Section 3.4.2). Optimizing these clustering metrics

is therefore expected to also optimize the parameters of the used VQK.

Figure 4.15 shows the validation cost for both cost functions during the optimization on

the donuts dataset. Note that with the CHI a good clustering is determined by a higher

value, which means that the negative CHI has to be minimized. It can be seen that for

both cost functions no real optimization is happening.

Figure 4.16 shows the kernel matrix of the training data after training with the DBI cost

function (Figure 4.16a) or the CHI cost function (Figure 4.16b). It can be seen that even

66

4.2. Noiseless Simulation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) DBI cost function

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) CHI cost function

Figure 4.16.: Kernelmatrix of the donuts dataset after optimizingwith theDBI (Figure 4.16a)

and CHI (Figure 4.16b) cost functions. Even after training the two classes

of the donuts dataset are still heavily intertwined, which means high kernel

values for samples from opposite classes.

after training, the two classes are not separated at all. This means that the trained kernel

function returns high values for samples that are from di�erent classes.

The problem that the kernel values do not represent the structure of the data can also

be seen when combining the VQK with spectral clustering to cluster the training data as

visualized in Figure 4.17. Neither the DBI nor the CHI cost function adjust the parameters

enough to have a noticeable in�uence on the clustering result.

As not even the training dataset can be clustered correctly using either cost function,

the trained VQK is not be able to generalize on unseen data. With this result, both cost

functions can be deemed unusable for optimization purposes in clustering scenarios. There

are a few reasons as to why they do not work as intended.

Firstly, both cost functions are too insensitive to be an adequate indication for a good

kernel. Both functions are de�ned as clustering metrics, which only change if the predicted

labels change. However, a change in the predicted labels requires quite a large change in

the used kernel function, which most implementations of common optimization algorithms

cannot cope with.

And secondly, even if these cost functions could be optimized, neither DBI nor CHI

are perfect clustering metrics for all situations. This is because there is a large number of

di�erent clustering algorithms and many of those algorithms have their own de�nition

of what is considered a cluster [Est02b]. With these many di�erent cluster models it is

impossible to de�ne a single metric that can accurately evaluate all of them.

4.2.4.3. Conclusion

In conclusion it can be stated that both semi-supervised cost functions work well for

training a variational quantum kernel (VQK). There are advantages and disadvantages to

67

4. Evaluation

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
NM

I
DBI
CHI

Figure 4.17.: Spectral clustering of the donut training dataset during the optimization

process using the DBI and CHI cost functions. Both cost functions fail to

optimize the VQK enough to cluster the training dataset correctly.

both functions, especially concerning precision and speed. However, a combination of

both cost functions could potentially combine the advantages.

While the semi-supervised cost functions worked quite well, the proposed unsupervised

cost functions are not usable for optimization in the current state. They are both too

insensitive to be e�ectively used for parameter optimization. Unsupervised cost functions

enable ensuing future work. One possibility could be to use an unsupervised version of

KTA and triplet loss. All pairs of samples that have a kernel value above a certain threshold

(for example > 0.95) could be deemed to be from the same class, as it is unlikely that

their kernel values will change dramatically. With these assumed classes for the unlabeled

training data, KTA or triplet loss could be used for the optimization.

All further evaluations use the KTA cost function to optimize the VQK.

4.2.5. Circuit Size

In Section 3.2.1 it was established that the VQK is based on a layered architecture, where

the same ansatz is repeated multiple times. Furthermore, the used ansatz allows for a

�exible scaling of the number of qubits. The number of layers and number of qubits

together de�nes the size of the used circuit. The following two sections investigate what

in�uence these two parameters have on the VQK and subsequent clustering algorithms.

68

4.2. Noiseless Simulation

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

3
4
5
6

Figure 4.18.: NMI for testing VQKs with di�erent numbers of qubits on the Iris dataset. 3

qubits lead to the best overall performance, while more qubits are worse in

terms of clustering performance.

4.2.5.1. Qubits

Figure 4.18 shows the clustering result, if VQKs with di�erent numbers of qubits are used.

Note that less than 3 qubits cannot be used with the ansatz de�ned in Section 3.2.1 due to

the structure of the CRZ gates.

The �gure shows the best result for the Iris dataset at an NMI of 0.93 with a VQK that

uses 3 qubits. For circuits with increasing number of qubits the clustering performance

starts to decrease. Therefore, larger circuits with more qubits do not necessarily increase

the performance. This can be described by the already mentioned problem of over�tting.

With more qubits, and thus more optimizable parameters for the VQK, the training data

can be learned exactly. This however also captures possible noise in the training data

and leads to a worse generalization of the learned model, especially for new and unseen

samples. Thus, �nding the correct number of qubits for a given problem is an optimization

task.

However, choosing the correct number of qubits when designing a circuit is not only

a question of clustering performance. The decision should also consider feasibility and

execution speed. Circuits for real quantum computers are limited in the number of

qubits by the amount of qubits the speci�c quantum computer provides. When the

circuits are simulated on classical hardware, both feasibility and execution speed are

problematic. Classical hardware can only simulate a limited number of qubits 𝑛, because

such a simulation has to store all 2
𝑛
amplitudes to describe the quantum system. Execution

speed becomes a problem, because all of these 2
𝑛
amplitudes change, when gates are

applied to the qubits.

69

4. Evaluation

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
NM

I

4
8
10
12
16

Figure 4.19.: NMI for testing VQKs with di�erent numbers of layers on the Iris dataset.

The optimal performance is achieved with 10 layers, while 4 and 8 lead to

under�tting and 12 and 16 to over�tting.

Similar �gures for the donuts (Figure A.5b) and moons (Figure A.5a) dataset reveal that

for both datasets the optimal VQK uses 3 qubits. For more complex datasets, the VQK will

likely need more qubits for a good performance.

4.2.5.2. Layers

Similar to the number of qubits, also the number of layers can be adjusted. Figure 4.19

shows the clustering result for VQKs with di�erent numbers of layers. For 10 layers the

�nal clustering result is the best, in the examined range of layers, at an NMI of 0.93. All

other tests, with either less or more layers, produce worse results, which is interesting for

two reasons.

Firstly, bad results for VQKs with more than 10 layers is again an indication of over�tting.

The used circuit is considered again too complex and will �t the training data perfectly,

which leads to worse performance on unseen data.

Secondly, the results for less than 10 layers suggest the problem of under�tting, where

the used circuit is not large enough to capture the structure of the data. The only real

solution to this problem is increasing the model size or in this case the number of layers.

Figure A.6a and Figure A.6b show the clustering results when using VQKs with di�erent

numbers of layers on the moons and donuts dataset. The �gures indicate that for the

donuts dataset the optimum is at 20 layers and for the moons dataset at 30 layers. For

larger and more complex datasets, the number of required layers is likely larger.

Identically to the number of qubits, the correct choice of the number of layers not only

depends on the clustering performance. The two main additional points to consider are

70

4.2. Noiseless Simulation

execution speed and noise. Execution speed is obviously a problem, because more layers

lead to more gates that are applied to the qubits, which in turn takes longer to compute

in simulations. Noise is especially a problem when using real quantum computers. As

introduced in Section 2.2.7, each gate is a�ected by noise and applying more gates on a

qubit will therefore also increase the overall noise level on said qubit.

4.2.5.3. Conclusion

In conclusion, �nding the correct number of qubits and layers is a complex optimization

problem. Both parameters can lead to under- or over�tting. To solve under�tting, the

only real solution is to increase the circuit size in terms of the number of qubits or layers.

For over�tting, there are multiple di�erent mitigation strategies from classical machine

learning that can potentially also be used for VQKs.

The evaluations in this section also show why the default parameters for the number of

qubits and layers in Section 4.1 were chosen this way.

4.2.6. Training Dataset Size

The KTA cost function was introduced as semi-supervised. Semi-supervised learning

generally assumes that the size of the labeled training dataset is rather small. Therefore,

this section investigates the e�ects of di�erent amounts of training data on the performance

of a VQK.

Figure 4.20 shows the di�erences in the clustering result for di�erent sizes of training

data (Iris dataset in Figure 4.20a and moons dataset in Figure 4.20b). There are a couple of

interesting observations that are discussed in the following.

In the case of only 10 training samples, the performance is not increasing but rather

decreasing during optimization. For the Iris dataset the clustering performance decreases

from 0.69 to 0.64 and for themoons dataset from 0.54 to 0.40. While the VQK is indeed being

optimized even with small training datasets, the training set is not a good representation

of the overall dataset. This prohibits the trained VQK from making good predictions for

previously unseen data. This behaviour is also a known issue in classical machine learning.

The �rst possible solution is obviously increasing the size of the training dataset. However,

also a better choice of training data could solve the problem. If the 10 samples would be

chosen to be good representations of the real dataset, the VQK can possibly learn a good

enough model to predict unseen data.

The second observation in Figure 4.20 is that more training data potentially leads to a

better result on previously unseen data. For the moons dataset in Figure 4.20b the increase

is fairly obvious. With only 15 training samples, the NMI of the testing set increases to

1.0, which cannot be further improved with more training data.

With the Iris dataset in Figure 4.20a the performance di�erences for larger training

datasets are more nuanced. Generally, the �gure shows that each step that increases the

training dataset by 5 also increases the performance. For 10 training samples the NMI is

at 0.64 and for 30 samples at 0.93. However, the performance improvements get smaller

the larger the training dataset gets. For the step from 10 to 15 samples the NMI increases

71

4. Evaluation

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

10
15
20
25
30

(a) Iris dataset

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

10
15
20
25
30

(b) Moons dataset

Figure 4.20.: Testing results for the Iris (Figure 4.20a) and donuts (Figure 4.20b) dataset for

di�erent training dataset sizes. For the Iris dataset additional training data

leads to incremental performance increases. For the moons dataset already

15 training samples achieve the optimal performance.

from 0.64 to 0.80, which equals a growth of 25%. For the step from 25 to 30 samples the

performance only increases by 2%, from 0.91 to 0.93.

In summary, the size of the training dataset seems to have a big in�uence on the perfor-

mance of the model for unseen data. However, the required size for a good performance is

unknown and also depends on the speci�c dataset. Furthermore the performance increases

get smaller, the more training data is added.

4.3. Noisy Simulation

This section investigates the e�ect of quantum noise (see Section 2.2.7) on the testing of

VQKs. With current simulation frameworks, training the VQK under the e�ects of noise is

extremely time intensive. Therefore this thesis focuses on investigating the in�uence of

quantum noise only when the VQK is tested with a clustering algorithm. This means that

the optimization pipeline is carried out under perfect conditions, especially without the in-

�uence of noise, while the testing pipeline is considered under noisy conditions. Following

this evaluation, some possible noise mitigation techniques for VQKs are presented.

4.3.1. Noiseless Training with Noisy Testing

The evaluation in this sections builds on a combination of noiseless training and noisy

testing. The parameters of the VQK are optimized under perfect conditions and without

any in�uence from quantum noise. The VQK is combined with spectral clustering in order

to test the e�ects on the clustering. The kernel function for this testing procedure uses the

optimized parameters and is a�ected by the di�erent types of quantum noise as discussed

in Section 4.3.1.

72

4.3. Noisy Simulation

Note that all of the following results were obtained by simulating the noise of a quan-

tum computer on a classical computer. Therefore, the results are only as precise as the

simulation of real quantum e�ects. Testing VQKs on real quantum hardware is a topic for

future research.

Sampling noise is the type of noise originating from the statistical properties of the

quantum measurement. Measuring a real quantum computer only returns either 0 or 1

and the probabilities are obtained as the expectation value over multiple shots.

Figure 4.21 shows the testing results on the Iris dataset for VQKs with di�erent numbers

of shots. The result for 0 shots was obtained by the analytical mode and will be used as

the baseline comparison. The �gure allows the interesting observation that no matter

how many shots are used, the results after 100 epochs of training are always identical to

the perfect result of the baseline. This can be explained by the di�erences in the kernel

matrices between the baseline (Figure 4.22a) and the simulation with 50 shots (Figure 4.22b).

The simulation with 50 shots does add noise to the kernel matrix, due to the approximation

of the expectation value. Speci�cally, the mean di�erence between the baseline kernel

matrix and the one with 50 shots is at 0.10± 0.006. While this seems like a huge di�erence

for kernel values that are in the range [0, 1], it does not have an e�ect on the subsequent

clustering. This is due to the usage of the optimized parameters, which maximize the

dissimilarity between the three classes.

A second interesting insight can be seen when comparing the kernel matrices for

simulations with di�erent numbers of shots. While the mean di�erence from the baseline

kernel matrix for 50 shots is at 0.10 ± 0.006, the mean di�erence for 150 shots is only at

0.05 ± 0.001. This details the rather obvious idea that increasing the number of shots also

increases the precision of the expectation value and therefore the quantum kernel values.

Coherent noise was introduced as miscalibrated gates that lead to operations that di�er

by a unitary from the intended operation. The predominant example of this are rotation

gates that do not rotate by 𝜙 , but rather by 𝜙 + 𝜖 , with an error rate of 𝜖 .

Figure 4.23 shows the e�ect on the clustering result, when all x, y and z rotations are

a�ected by coherent noise with an error term of 𝜖 = 0.01 · 2 · 𝜋 . In comparison to this,

the target simulation is not a�ected by any noise. Starting at epoch 40, the performance

of the noise a�ected VQK di�ers from the target performance by a constant. The target

simulation uses the optimized parameters 𝜃 , while the noisy simulation uses an o�set from

the optimal parameters 𝜃 + 𝜖 . Therefore the noisy simulation constantly rotates further

than intended, which leads to the constant di�erence in performance.

The fact that the noisy simulation performs better at epoch 0 can be explained by the

parameter initialization. The target simulation uses randomly initialized parameters 𝜃0,

while the parameters for the noisy simulation o�sets these to 𝜃0 + 𝜖 . In this case the noisy

parameters are just a better starting point due to the randomness of the initialization.

Incoherent noise is the fact that real quantum hardware constantly interact with its

environment, which leads to imprecisions in the state of the quantum computer. There

are numerous possible e�ects, which are explaine in Section 2.2.7.

Figure 4.24 shows the testing result for simulations a�ected by the di�erent types of

incoherent noise compared to the target simulation without noise. All considered noise

variants use a noise probability of 1%.

73

4. Evaluation

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

0 Shots
50 Shots
100 Shots
150 Shots

Figure 4.21.: Testing result for simulations with di�erent numbers of shots. All simulations

lead to the optimal result due to the otimization of the parameters.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) 0 Shots

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) 50 Shots

Figure 4.22.: Kernel matrices for 0 shots (Figure 4.22a) and 50 shots (Figure 4.22b) after

100 epochs of training. Both kernel matrices separate the three classes. The

simulation with 50 shots however adds some noise to the kernel values.

74

4.3. Noisy Simulation

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Target
Coherent noise

Figure 4.23.: Testing result for simulations with andwithout the in�uence of coherent noise.

The coherent noise leads to a constant decrease in performance compared to

the target simulation.

Phase and amplitude damping are the two noise variants that decrease the clustering

performance the least. This is because, as their name suggest, they only damp the phase

and amplitude of the quantum states.

In turn both bit-�ip and depolarizing noise lead to a clustering performance near an

NMI of 0. This leads to the conclusion that both noise variants destroy the optimized

performance of the VQK. The bit-�ip noise has such a big e�ect, because even with the

small probability of 1%, if such a bit-�ip occurs on only 3 qubits, the loss of information

in the overall quantum state is quite large. Equally, if the depolarizing error occurs, all

information of the quantum state is lost.

4.3.2. Noise Correction

There are many proposed solutions that could be used to reduce the negative e�ects of

quantum noise on VQKs, some of which are explained in this section.

In case of sampling noise, there is no possible way of mitigation other than increasing

the number of shots that are used. However, this will also increase the execution time.

The impact of coherent noise can potentially be reduced by the training of the VQK.

If the coherent noise factor is constant over time, the training can still learn the target

function, as the coherent noise is an o�eset to the parameters that can be learned. If the

noise factor changes over time, is a bit more complicated as the o�set constantly changes.

This means that the performance will decrease every time the coherent noise changes and

the learning algorithm has to adapt to the changes.

75

4. Evaluation

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
NM

I

Target
Bit flip
Phase damping
Amplitude damping
Depolarizing

Figure 4.24.: Testing results of simulations a�ected by di�erent types of incoherent noise

compared to a noiseless simulation. Amplitude and phase damping lead to

a slight decrease in performance, while both bit-�ip as well as depolarizing

noise demolish the performance of the optimized parameters.

For incoherent noise there is a wide range of di�erent error correction codes that can be

used to make qubits more resilient against the e�ects of noise [NC10]. There are however

also ways of using the special properties of quantum kernel functions to mitigate these

e�ects. A kernel value of a sample with itself has to be equal to 1 at all times (𝑘 (𝑥𝑖, 𝑥𝑖) = 1).

In general, when computing 𝑘 (𝑥𝑖, 𝑥𝑖) on a quantum computer the result will di�er from

1 due to the e�ects of noise. The di�erence between the real value and 1 can be used to

estimate the overall in�uence of noise on the circuit. With this estimate all other kernel

values can be postprocessed accordingly [Hub+21].

4.4. Discussion

This section summarizes the evaluations and subsequent �ndings of this chapter.

Firstly, the general feasibility of combining a VQK with a clustering algorithm was

investigated. It was shown that training and optimizing a VQK has positive e�ects on

the clustering performance. These e�ects were shown for multiple di�erent clustering

algorithms including kernel k-means, spectral clustering, DBSCAN and hierarchical clus-

tering. In comparison to the classical RBF kernel function, the VQK was shown to be

advantageous in most cases with performance increases from about 10% to 100%. Only in

some instances the RBF kernel resulted in a better performance of about 4%.

The following evaluations considered the combination with di�erent clustering algo-

rithms. Especially kernel-based algorithms, namely kernel k-means and spectral clustering,

76

4.4. Discussion

were shown to be easily usable with the VQK, as no further parameters have to be op-

timized. Furthermore, also the distance-based algorithms, DBSCAN and hierarchical

clustering, were shown to be working by computing a distance measure from the VQK.

However, both distance-based algorithms use further parameters that act as thresholds on

the distance metric and have to be optimized in order to achieve the best possible result.

In summary, the VQK can be used for various di�erent clustering algorithms that use the

kernel function directly or indirectly, through a distance measure.

The proposed semi-supervised and unsupervised cost functions were evaluated next.

Both KTA and triplet loss were shown to be able to optimize the VQK. The di�erence

between the two being mainly precision and speed. KTA is more precise as it compares

more kernel values in each step, which is also time and compute intensive. Triplet loss

in turn compares only a small set of kernel values, which makes the optimization faster.

However, both cost functions also lead to problems with over�tting. It was further shown

that the two unsupervised cost functions, DBI and CHI, cannot optimize the VQK to

have a positive e�ect on the subsequent clustering. There are two main reasons for this

result. Firstly, both are inherently clustering metrics that evaluate whether or not a given

clustering �ts a speci�c underlying model of a cluster. The problem is that the notion of a

cluster is not well de�ned, thus the two cost functions try to optimize to a speci�c cluster

model although it does not necessarily �t to the dataset. Secondly, even if the cluster

models �t, both measures are extremely insensitive, as their values only change if there

are large changes in the kernel function.

Additionally, the size of the VQK circuit, described by the number of qubits and layers,

has a big impact on the performance. Under�tting could be the result of a circuit that is

too small, where the VQK may not be able to learn the underlying structure of the data.

Furthermore, the opposite problem of over�tting is also possible. If the circuit is too big

and has too many parameters, the VQK exactly learns the training data, including all

possible noise. Both under- and over�tting lead to a decreased performance on unseen

data.

The experiments concerning the size of the training dataset have shown that more

training data can lead to a better model and therefore better clustering results. However,

it was also noted that the performance increases get smaller the more training data is

provided.

As training a VQK with simulated quantum noise is currently extremely time intensive,

some experiments were conducted to study the e�ects of quantum noise on the testing

pipeline for VQKs. The experiments showed that especially incoherent noise can lead

to dramatic decreases in clustering performance. Nevertheless, di�erent mitigation tech-

niques for general quantum circuits and speci�cally quantum kernels exist, to reduce the

impact of quantum noise.

In summary, this thesis is concerned with investigating the usability of a variational

quantum kernel (VQK) in combination with classical clustering algorithms. To show the

feasibility of this approach two concepts are required. Firstly, it is necessary that there is

a way of optimizing the VQK. This thesis provided multiple di�erent cost functions, of

which KTA and triplet loss were shown to be usable for training the VQK. The second

requirement is that training the VQK should also lead to an increased performance in

the combined classical clustering algorithm. This was shown to be adequate for multiple

77

4. Evaluation

di�erent kernel-based and distance-based clustering algorithms. Furthermore it was shown

that the trained VQK outperforms the classical radial basis function (RBF) kernel function.

78

5. Conclusion

Quantummachine learning (QML) is a promising new research �eld combining the theories

from classical machine learning with the power of quantum computers.

Motivated by recent work introducing variational quantum kernels (VQKs) for super-

vised learning like the support vector machine (SVM), this thesis investigates whether

VQKs can also be utilized in unsupervised learning algorithms, especially clustering. The

questions arise if such an approach can be used computationally e�cient and potentially

increase the clustering accuracy compared to classical kernel methods. However, solely

training a VQK as an unsupervised learning task poses the issue of optimizing parameters

only with unlabeled training data. Therefore, this thesis proposes to train the VQK in an

unsupervised as well as semi-supervised fashion. To evaluate this approach, a two-step

pipeline was introduced. The �rst step of said pipeline is focused on training the VQK

with either unlabeled or labeled training data. The second step tests the trained VQK by

combining it with di�erent kernel- and distance-based clustering algorithms.

The methods for unsupervised learning proposed in this thesis use the quality of a

clustering to determine the loss of a given VQK. However, this approach of unsupervised

learning was shown to have some crucial �aws. Firstly, the two well-known clustering

metrics Davies-Bouldin index (DBI) and Calinski-Harabasz index (CHI) were shown to be

too insensitive to small changes of the kernel values. Secondly, using clustering metrics for

the optimization process leads to an extreme overhead of used computational resources,

as every step of the optimization requires a full clustering of the training data. Overall,

this thesis deems the proposed clustering metrics unusable for training a VQK, but the

task of unsupervised learning of VQKs poses interesting challenges for future work.

A possible alternative to bypass these problems with unsupervised learning is moving

to a semi-supervised approach, which provides labeled training data. Consequently, this

thesis evaluated the kernel target alignment (KTA) cost function in comparison to a new

way of training VQKs using the triplet loss in a hybrid quantum-classical pipeline. As

both functions operate directly on the kernel values, the insensitivity and complexity of

the unsupervised approaches are no longer a problem. The evaluation showed that both

functions can be used to train VQKs, which outperform the purely classical RBF kernel on

the chosen toy and real-world datasets. While KTA leads to a slightly better accuracy on

the clustering, there are serious di�erences concerning the computational complexity and

usability on current noisy intermediate scale quantum (NISQ) era quantum computers, as

triplet loss requires less queries of the quantum computer. Future work could investigate

merging the two proposed approaches leading to a possible combination of accuracy and

computational complexity.

Furthermore this thesis also investigated the in�uence of di�erent hyperparameters,

especially the size of the chosen circuit. It was shown that both, the number of qubits

as well as the number of layers, has a big impact on the performance of the VQK and an

79

5. Conclusion

inappropriate selection can lead to over- and under�tting. The applicability of di�erent

classical ideas of mitigating over- and under�tting is a possible topic fur future research.

While there is no general consensus in the quantum computing literature about what

constitutes a good circuit ansatz for a given problem, this thesis has detailed some important

characteristics when designing an ansatz speci�cally for quantum kernels.

Summarizing, this thesis suggests that VQKs, trained in a semi-supervised fashion with

either KTA or triplet loss, can be combined with di�erent classical clustering algorithms

and even increase their accuracy. While the proposed and evaluated approach is semi-

supervised, this thesis also lays the ground work for moving to unsupervised training

of VQKs. Due to the complexity of both training and testing a VQK, the current results

rely on quantum simulations and their di�erent variants of real quantum noise to study

the execution of algorithms under reproducible, well-de�ned conditions. This creates the

foundation for future work to explore both algorithmic improvements for using VQKs in

clustering, as well as practical improvements for executing such algorithms on current

NISQ and future quantum computing architectures.

80

Bibliography

[ABG06] Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. “Machine Learning in a

QuantumWorld”. In:Advances in Arti�cial Intelligence. Ed. by Luc Lamontagne

and Mario Marchand. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

pp. 431–442. isbn: 978-3-540-34630-2.

[ANI+21] MD SAJID ANIS et al. Qiskit: An Open-source Framework for Quantum Com-
puting. 2021. doi: 10.5281/zenodo.2573505.

[Ank+99] Mihael Ankerst et al. “OPTICS: Ordering Points To Identify the Clustering

Structure”. In: ACM Press, 1999, pp. 49–60.

[Ber+20] Ville Bergholm et al. PennyLane: Automatic di�erentiation of hybrid quantum-
classical computations. 2020. arXiv: 1811.04968 [quant-ph].

[Blo] Mathieu Blondel. Source code for kernel k-means. https://gist.github.com/
mblondel/6230787. Accessed: 22.04.2022.

[Blo46] F. Bloch. “Nuclear Induction”. In: Phys. Rev. 70 (7-8 Oct. 1946), pp. 460–474.
doi: 10.1103/PhysRev.70.460. url: https://link.aps.org/doi/10.1103/

PhysRev.70.460.

[Bou+04] N. Boulant et al. “Incoherent noise and quantum information processing”.

In: The Journal of Chemical Physics 121.7 (Aug. 2004), pp. 2955–2961. doi:

10.1063/1.1773161. url: https://doi.org/10.1063%2F1.1773161.

[Buh+01] Harry Buhrman et al. “Quantum Fingerprinting”. In: Physical Review Letters
87.16 (Sept. 2001). issn: 1079-7114. doi: 10.1103/physrevlett.87.167902.

url: http://dx.doi.org/10.1103/PhysRevLett.87.167902.

[Che+10] Gal Chechik et al. “Large Scale Online Learning of Image Similarity Through

Ranking”. In: J. Mach. Learn. Res. 11 (Mar. 2010), pp. 1109–1135. issn: 1532-

4435.

[Che95] Yizong Cheng. “Mean shift, mode seeking, and clustering”. In: IEEE TRANS-
ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (1995).

[CJ74] Tadeusz Caliński and Harabasz JA. “A Dendrite Method for Cluster Analysis”.

In: Communications in Statistics - Theory and Methods 3 (Jan. 1974), pp. 1–27.
doi: 10.1080/03610927408827101.

[CMR12] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. “Algorithms for

Learning Kernels Based on Centered Alignment”. In: (2012). doi: 10.48550/

ARXIV.1203.0550. url: https://arxiv.org/abs/1203.0550.

81

https://doi.org/10.5281/zenodo.2573505
https://arxiv.org/abs/1811.04968
https://gist.github.com/mblondel/6230787
https://gist.github.com/mblondel/6230787
https://doi.org/10.1103/PhysRev.70.460
https://link.aps.org/doi/10.1103/PhysRev.70.460
https://link.aps.org/doi/10.1103/PhysRev.70.460
https://doi.org/10.1063/1.1773161
https://doi.org/10.1063%2F1.1773161
https://doi.org/10.1103/physrevlett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1080/03610927408827101
https://doi.org/10.48550/ARXIV.1203.0550
https://doi.org/10.48550/ARXIV.1203.0550
https://arxiv.org/abs/1203.0550

Bibliography

[Cri+06] Nello Cristianini et al. “On Kernel Target Alignment”. In: Innovations in Ma-
chine Learning: Theory and Applications. Ed. by Dawn E. Holmes and Lakhmi

C. Jain. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 205–256.

isbn: 978-3-540-33486-6. doi: 10 . 1007 / 3 - 540 - 33486 - 6 _ 8. url: https :

//doi.org/10.1007/3-540-33486-6_8.

[DB79] David L. Davies and Donald W. Bouldin. “A Cluster Separation Measure”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1.2

(1979), pp. 224–227. doi: 10.1109/TPAMI.1979.4766909.

[DGK04] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. “Kernel K-Means: Spectral

Clustering and Normalized Cuts”. In: Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’04.

Seattle, WA, USA: Association for Computing Machinery, 2004, pp. 551–556.

isbn: 1581138881. doi: 10.1145/1014052.1014118. url: https://doi.org/10.

1145/1014052.1014118.

[Dir39] P. A. M. Dirac. “A new notation for quantum mechanics”. In: Mathematical
Proceedings of the Cambridge Philosophical Society 35.3 (1939), pp. 416–418.

doi: 10.1017/S0305004100021162.

[DTB16] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. “Quantum-Enhanced Ma-

chine Learning”. In: Physical Review Letters 117.13 (Sept. 2016). doi: 10.1103/
physrevlett.117.130501. url: https://doi.org/10.1103%2Fphysrevlett.

117.130501.

[Est+96] Martin Ester et al. “A density-based algorithm for discovering clusters in large

spatial databases with noise”. In: AAAI Press, 1996, pp. 226–231.

[Est02a] Vladimir Estivill-Castro. “Why so Many Clustering Algorithms: A Position

Paper”. In: SIGKDD Explor. Newsl. 4.1 (June 2002), pp. 65–75. issn: 1931-0145.
doi: 10.1145/568574.568575. url: https://doi.org/10.1145/568574.

568575.

[Est02b] Vladimir Estivill-Castro. “Why so Many Clustering Algorithms: A Position

Paper”. In: SIGKDD Explor. Newsl. 4.1 (June 2002), pp. 65–75. issn: 1931-0145.
doi: 10.1145/568574.568575. url: https://doi.org/10.1145/568574.

568575.

[FIS36] R. A. FISHER. “THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC

PROBLEMS”. In: Annals of Eugenics 7.2 (1936), pp. 179–188. doi: https :

//doi.org/10.1111/j.1469- 1809.1936.tb02137.x. eprint: https://

onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.

x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-

1809.1936.tb02137.x.

[GLV04] YannGuermeur, Alain Lifchitz, and Régis Vert. “A Kernel for Protein Secondary

Structure Prediction”. In:Kernel Methods in Computational Biology. Ed. by Bern-
hard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Chap. 9 - ISBN 0-262-19509-

7. http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc.

82

https://doi.org/10.1007/3-540-33486-6_8
https://doi.org/10.1007/3-540-33486-6_8
https://doi.org/10.1007/3-540-33486-6_8
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1145/1014052.1014118
https://doi.org/10.1145/1014052.1014118
https://doi.org/10.1145/1014052.1014118
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1103/physrevlett.117.130501
https://doi.org/10.1103/physrevlett.117.130501
https://doi.org/10.1103%2Fphysrevlett.117.130501
https://doi.org/10.1103%2Fphysrevlett.117.130501
https://doi.org/10.1145/568574.568575
https://doi.org/10.1145/568574.568575
https://doi.org/10.1145/568574.568575
https://doi.org/10.1145/568574.568575
https://doi.org/10.1145/568574.568575
https://doi.org/10.1145/568574.568575
https://doi.org/https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x

The MIT Press, Cambridge, Massachussetts, 2004, pp. 193–206. url: https:

//hal.archives-ouvertes.fr/hal-00012701.

[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https:

//doi.org/10.1038/s41586-020-2649-2.

[HSS08] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. “Kernel

methods in machine learning”. In: The Annals of Statistics 36.3 (2008), pp. 1171–
1220. doi: 10.1214/009053607000000677. url: https://doi.org/10.1214/

009053607000000677.

[Hub+21] Thomas Hubregtsen et al. Training Quantum Embedding Kernels on Near-
Term Quantum Computers. 2021. doi: 10.48550/ARXIV.2105.02276. url:
https://arxiv.org/abs/2105.02276.

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-

tion”. In: CoRR abs/1412.6980 (2015).

[Ker+18] Iordanis Kerenidis et al. “q-means: A quantum algorithm for unsupervised

machine learning”. In: (2018). doi: 10.48550/ARXIV.1812.03584. url: https:

//arxiv.org/abs/1812.03584.

[Kra+83] Karl Kraus et al., eds. States, E�ects, and Operations Fundamental Notions of
Quantum Theory: Lectures in Mathematical Physics at the University of Texas
at Austin. Springer Berlin Heidelberg, 1983. isbn: 978-3-540-38725-1. doi:

10.1007/3-540-12732-1. url: https://doi.org/10.1007/3-540-12732-1.

[Kri+11] Hans-Peter Kriegel et al. “Density-based clustering”. In:WIREs Data Mining
and Knowledge Discovery 1.3 (2011), pp. 231–240. doi: https://doi.org/10.

1002/widm.30. eprint: https://wires.onlinelibrary.wiley.com/doi/pdf/

10.1002/widm.30. url: https://wires.onlinelibrary.wiley.com/doi/abs/

10.1002/widm.30.

[Lem12] Claude Lemaréchal. Cauchy and the Gradient Method. 2012.

[Llo+20] Seth Lloyd et al. Quantum embeddings for machine learning. 2020. doi: 10.
48550/ARXIV.2001.03622. url: https://arxiv.org/abs/2001.03622.

[LST10] A. I. Lvovsky, B. C. Sanders, and W. Tittel. “Optical quantum memory”. In:

(2010). doi: 10.48550/ARXIV.1002.4659. url: https://arxiv.org/abs/1002.

4659.

[Lux07] Ulrike von Luxburg. “A Tutorial on Spectral Clustering”. In: (2007). doi: 10.

48550/ARXIV.0711.0189. url: https://arxiv.org/abs/0711.0189.

[Mac67] J. Macqueen. “Some methods for classi�cation and analysis of multivariate

observations”. In: In 5-th Berkeley Symposium on Mathematical Statistics and
Probability. 1967, pp. 281–297.

83

https://hal.archives-ouvertes.fr/hal-00012701
https://hal.archives-ouvertes.fr/hal-00012701
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677
https://doi.org/10.48550/ARXIV.2105.02276
https://arxiv.org/abs/2105.02276
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.48550/ARXIV.1812.03584
https://arxiv.org/abs/1812.03584
https://arxiv.org/abs/1812.03584
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
https://doi.org/https://doi.org/10.1002/widm.30
https://doi.org/https://doi.org/10.1002/widm.30
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.30
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.30
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.30
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.30
https://doi.org/10.48550/ARXIV.2001.03622
https://doi.org/10.48550/ARXIV.2001.03622
https://arxiv.org/abs/2001.03622
https://doi.org/10.48550/ARXIV.1002.4659
https://arxiv.org/abs/1002.4659
https://arxiv.org/abs/1002.4659
https://doi.org/10.48550/ARXIV.0711.0189
https://doi.org/10.48550/ARXIV.0711.0189
https://arxiv.org/abs/0711.0189

Bibliography

[McC+16] Jarrod R McClean et al. “The theory of variational hybrid quantum-classical

algorithms”. In: New Journal of Physics 18.2 (Feb. 2016), p. 023023. issn: 1367-
2630. doi: 10.1088/1367-2630/18/2/023023. url: http://dx.doi.org/10.

1088/1367-2630/18/2/023023.

[MRT12] M.Mohri, A. Rostamizadeh, andA. Talwalkar. Foundations ofMachine Learning.
Adaptive Computation and Machine Learning series. MIT Press, 2012. isbn:

9780262018258. url: https://books.google.de/books?id=maz6AQAAQBAJ.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010. doi:

10.1017/CBO9780511976667.

[Neu27] J. von Neumann. “Wahrscheinlichkeitstheoretischer Aufbau der Quanten-

mechanik”. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttin-
gen, Mathematisch-Physikalische Klasse 1927 (1927), pp. 245–272. url: http:
//eudml.org/doc/59230.

[Nie16] Frank Nielsen. “Hierarchical Clustering”. In: Feb. 2016, pp. 195–211. isbn:

978-3-319-21902-8. doi: 10.1007/978-3-319-21903-5_8.

[Pat+16] Raj B. Patel et al. “A quantum Fredkin gate”. In: Science Advances 2.3 (2016),
e1501531. doi: 10.1126/sciadv.1501531. eprint: https://www.science.org/

doi/pdf/10.1126/sciadv.1501531. url: https://www.science.org/doi/

abs/10.1126/sciadv.1501531.

[PBP20] Daniel K. Park, Carsten Blank, and Francesco Petruccione. “The theory of

the quantum kernel-based binary classi�er”. In: Physics Letters A 384.21 (July

2020), p. 126422. issn: 0375-9601. doi: 10.1016/j.physleta.2020.126422.

url: http://dx.doi.org/10.1016/j.physleta.2020.126422.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[Pér+20] Adrián Pérez-Salinas et al. “Data re-uploading for a universal quantum clas-

si�er”. In: Quantum 4 (Feb. 2020), p. 226. doi: 10.22331/q-2020-02-06-226.

url: https://doi.org/10.22331%2Fq-2020-02-06-226.

[Pre18] John Preskill. “QuantumComputing in the NISQ era and beyond”. In:Quantum
2 (Aug. 2018), p. 79. doi: 10.22331/q-2018-08-06-79. url: https://doi.org/

10.22331%2Fq-2018-08-06-79.

[Sch+17] Erich Schubert et al. “DBSCAN Revisited, Revisited: Why and How You Should

(Still) Use DBSCAN”. In: ACM Trans. Database Syst. 42.3 (July 2017). issn: 0362-
5915. doi: 10.1145/3068335. url: https://doi.org/10.1145/3068335.

[Sch21] Maria Schuld. Supervised quantum machine learning models are kernel methods.
2021. doi: 10.48550/ARXIV.2101.11020. url: https://arxiv.org/abs/2101.

11020.

[SG02] Alexander Strehl and JoydeepGhosh. “Cluster Ensembles - AKnowledge Reuse

Framework for Combining Multiple Partitions”. In: Journal of Machine Learn-
ing Research 3 (Jan. 2002), pp. 583–617. doi: 10.1162/153244303321897735.

84

https://doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023
https://books.google.de/books?id=maz6AQAAQBAJ
https://doi.org/10.1017/CBO9780511976667
http://eudml.org/doc/59230
http://eudml.org/doc/59230
https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1126/sciadv.1501531
https://www.science.org/doi/pdf/10.1126/sciadv.1501531
https://www.science.org/doi/pdf/10.1126/sciadv.1501531
https://www.science.org/doi/abs/10.1126/sciadv.1501531
https://www.science.org/doi/abs/10.1126/sciadv.1501531
https://doi.org/10.1016/j.physleta.2020.126422
http://dx.doi.org/10.1016/j.physleta.2020.126422
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331%2Fq-2020-02-06-226
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.48550/ARXIV.2101.11020
https://arxiv.org/abs/2101.11020
https://arxiv.org/abs/2101.11020
https://doi.org/10.1162/153244303321897735

[SK19] Maria Schuld and Nathan Killoran. “Quantum Machine Learning in Feature

Hilbert Spaces”. In: Physical Review Letters 122.4 (Feb. 2019). issn: 1079-7114.
doi: 10.1103/physrevlett.122.040504. url: http://dx.doi.org/10.1103/

PhysRevLett.122.040504.

[SKP15] Florian Schro�, Dmitry Kalenichenko, and James Philbin. “FaceNet: A uni�ed

embedding for face recognition and clustering”. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2015. doi:

10.1109/cvpr.2015.7298682. url: https://doi.org/10.1109%2Fcvpr.2015.

7298682.

[SP18] Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum
Computers. Springer, 2018.

[Tak+21] Maika Takita et al. IBM quantum breaks the 100-qubit processor barrier. Feb.
2021. url: https://research.ibm.com/blog/127-qubit-quantum-processor-

eagle.

[VD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009. isbn: 1441412697.

[VEB10] Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information Theoretic

Measures for Clusterings Comparison: Variants, Properties, Normalization

and Correction for Chance”. In: J. Mach. Learn. Res. 11 (Dec. 2010), pp. 2837–
2854. issn: 1532-4435.

[VTS04] J.P. Vert, Koji Tsuda, and Bernhard Schölkopf. “A Primer on Kernel Methods”.

In: Kernel Methods in Computational Biology, 35-70 (2004) (Jan. 2004).

[WKS22] Christof Wendenius, Eileen Kuehn, and Achim Streit. “Training Parameterized

Quantum Circuits with Triplet Loss”. unpublished. 2022.

[Wu+] ChiehWu et al.KernelNet Implementation. https://archive.softwareheritage.
org/browse/origin/directory/?origin_url=https://github.com/neu-

spiral/kernel_net. Accessed: 22.04.2022. Original github repository not

available anymore.

[Wu+19] Chieh Wu et al. Deep Kernel Learning for Clustering. 2019. doi: 10.48550/
ARXIV.1908.03515. url: https://arxiv.org/abs/1908.03515.

[WZT12] Tinghua Wang, Dongyan Zhao, and Shengfeng Tian. “An overview of kernel

alignment and its applications”. In: Arti�cial Intelligence Review 43 (Feb. 2012).

doi: 10.1007/s10462-012-9369-4.

[YRC07] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. “On early stopping in

gradient descent learning”. In: Constr. Approx (2007), pp. 289–315.

85

https://doi.org/10.1103/physrevlett.122.040504
http://dx.doi.org/10.1103/PhysRevLett.122.040504
http://dx.doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109%2Fcvpr.2015.7298682
https://doi.org/10.1109%2Fcvpr.2015.7298682
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/neu-spiral/kernel_net
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/neu-spiral/kernel_net
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/neu-spiral/kernel_net
https://doi.org/10.48550/ARXIV.1908.03515
https://doi.org/10.48550/ARXIV.1908.03515
https://arxiv.org/abs/1908.03515
https://doi.org/10.1007/s10462-012-9369-4

A. Appendix

87

A. Appendix

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Before training

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) After training

Figure A.1.: Kernel matrix of the Iris dataset before (Figure A.1a) and after (Figure A.1b)

training with the KTA. The three classes are initially intertwined and mostly

separated after the optimization.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Figure A.2.: Testing result during training on the Iris dataset with KTA. KTA can also be

used to train a VQK for a dataset with more than two classes.

88

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Before training

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) After training

Figure A.3.: Kernel matrix of the Iris dataset before (Figure A.3a) and after (Figure A.3b)

training with the triplet loss cost function. The initial kernel matrix shows

similarities for samples from opposite classes. After the optimization the tree

classes are separated and only samples from the same class appear similar.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Figure A.4.: Testing result during training on the Iris dataset with triplet loss. The triplet

loss cost function can also be used to train a VQK for a dataset with more than

two classes.

89

A. Appendix

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

3
4
5
6

(a) Moons dataset

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

3
4
5
6

(b) Donuts dataset

Figure A.5.: Testing result for the moons (Figure A.5a) and donuts (Figure A.5b) dataset

for VQKs with di�erent numbers of qubits. For both datasets 3 qubits is the

best combination of clustering performance and speed. For the moons dataset,

also 4 and 6 qubits lead to good results, but less qubits are generally favorable.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

25
30
35
40

(a) Moons dataset

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

10
20
30
40

(b) Donuts dataset

Figure A.6.: Testing result for the moons (Figure A.6a) and donuts (Figure A.6b) dataset

for VQKs with di�erent numbers of layers. For the moons dataset all of the

considered options lead to an optimal performance. For the donuts dataset the

optimum is at 20 layers, with 10 layers leading to under�tting and 40 layers

to over�tting.

90

Acronyms

CHI Calinski-Harabasz index.

DBI Davies-Bouldin index.

DBSCAN density-based spatial clustering of applications with noise.

GD gradient descent.

KTA kernel target alignment.

ML machine learning.

NISQ noisy intermediate scale quantum.

NMI normalized mutual information.

NN neural network.

QC quantum computing.

QML quantum machine learning.

qubit quantum bit.

RBF radial basis function.

SVM support vector machine.

VQC variational quantum circuit.

VQK variational quantum kernel.

91

Glossary

CNOT Controlled NOT gate.

CRX Controlled RX gate.

CRY Controlled RY gate.

CRZ Controlled RZ gate.

CSWAP Controlled SWAP gate.

H Hadamard gate.

I Identity gate.

RX RX gate.

RY RY gate.

RZ RZ gate.

SWAP SWAP gate.

X Pauli X gate.

Y Pauli Y gate.

Z Pauli Z gate.

93

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Machine Learning
	Linear Separability
	Kernels
	Clustering

	Quantum Computing
	Qubits
	Gates
	Basis states
	Measurement
	Entanglement
	Data Encoding
	Noise
	Quantum Machine Learning
	Variational Quantum Circuits
	Quantum Kernels
	Variational Quantum Kernels

	Related Work

	Approach
	Variational Quantum Kernels for Clustering
	Training and Testing Pipeline
	Circuit Layout
	Training Pipeline
	Testing Pipeline

	Semi-Supervised Cost Functions
	Kernel Target Alignment
	Triplet Loss

	Unsupervised Cost Functions
	Davies-Bouldin Index
	Calinski-Harabasz Index

	Evaluation
	Setup
	Implementation
	Datasets
	Algorithm Selection
	Clustering Evaluation

	Noiseless Simulation
	Default parameters
	Overview of Results
	Combination with Clustering Algorithms
	Cost Functions
	Circuit Size
	Training Dataset Size

	Noisy Simulation
	Noiseless Training with Noisy Testing
	Noise Correction

	Discussion

	Conclusion
	Bibliography
	Appendix
	Acronyms
	Glossary

