KIT | KIT-Bibliothek | Impressum | Datenschutz

Anonymizing Trajectory Data: Limitations and Opportunities

Guerra-Balboa, Patricia ORCID iD icon 1,2; Miranda-Pascual, Àlex ORCID iD icon 1,2; Strufe, Thorsten ORCID iD icon; Parra-Arnau, Javier; Forné, Jordi
1 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)
2 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

A variety of conditions and limiting properties complicate the anonymization of trajectory data, since they are sequential, high-dimensional, bound to geophysical restrictions and eas-ily mapped to semantic points of interest and regions with known properties like suburban neighborhoods, industrial areas or city-centers. Learning the places where one has been is extremely privacy-invasive. However, analyzing real trajectories holds numerous promises, ranging from better informed traffic management, to location recommendations or computational social science, infrastructure and even urban development planning. The aim of this paper is to establish various challenges, stemming from ideas and also limitations of existing proposals for
the anonymization of trajectories, and subsequently identify research opportunities. Keeping both utility and privacy challenges prominent, we sketch the way towards establishing a useful research framework and propose possible research venues towards privacy-preserving trajectory publication.


Verlagsausgabe §
DOI: 10.5445/IR/1000148633
Veröffentlicht am 06.10.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator KITopen-ID: 1000148633
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in AAAI Workshop on Privacy-Preserving Artificial Intelligence
Veranstaltung 3rd AAAI Workshop on Privacy-Preserving Artificial Intelligence (PPAI-22 2022), Online, 28.02.2022
Schlagwörter trajectory data, anonymization
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page