KIT | KIT-Bibliothek | Impressum | Datenschutz

Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Parametric studies on capillary hysteresis

Sarkezi-Selsky, Patrick; Schmies, Henrike; Kube, Alexander; Latz, Arnulf; Jahnke, Thomas

Abstract:

Water management is crucial for reliable operation of Polymer Electrolyte Membrane Fuel Cells (PEMFC). Here, the gas diffusion layer (GDL) plays an essential role as it has to ensure efficient water removal from and oxygen transport to the catalyst layer.
In this study water transport through porous carbon felt GDLs was simulated using a 3D Color-Gradient Lattice Boltzmann model. Simulations were carried out on microstructures of plain and impregnated fiber substrates of a Freudenberg H14. The GDL microstructures were reconstructed from high-resolution X-ray micro-computed tomography ($\mu$-CT). For the distinction of carbon fibers and polytetrafluoroethylene (PTFE) in the binarized microstructures an in-house algorithm was developed. The additive was specified heterogeneously in the GDL through-plane direction employing a PTFE loading profile as derived based on $\mu$-CT image data. In the in-plane direction the additive was furthermore defined in a realistic fashion near carbon fiber intersections. Prior to parametric studies on capillary behavior a sophisticated modeling approach for semipermeable membranes had to be developed to account for experimental boundary conditions. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000148638
Originalveröffentlichung
DOI: 10.1016/j.jpowsour.2022.231381
Scopus
Zitationen: 18
Web of Science
Zitationen: 16
Dimensions
Zitationen: 20
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2022
Sprache Englisch
Identifikator ISSN: 0378-7753
KITopen-ID: 1000148638
HGF-Programm 38.02.02 (POF IV, LK 01) Components and Cells
Erschienen in Journal of Power Sources
Verlag Elsevier
Band 535
Seiten Art.Nr. 231381
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page