
Secure and Privacy-preserving

Decentralized Identities

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Sebastian Friebe

Tag der mündlichen Prüfung: 23. Mai 2022

1. Referentin: Professorin Dr. Martina Zitterbart

Karlsruher Institut für Technologie (KIT)

2. Referent: Professor Dr. Hannes Hartenstein

Karlsruher Institut für Technologie (KIT)

This document is licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

Danksagung

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am

Institut für Telematik des Karlsruher Instituts für Technologie (KIT). An erster Stelle

möchte ich daher Frau Prof. Dr. Martina Zitterbart danken, die als Doktormutter

meine Promotion betreute, und mir auch eine Anstellung am Institut für Telematik

ermöglichte. Durch ihre umfangreiche Betreuung und die zahllosen hilfreichen

Diskussionen und Anregungen hat sie mich bei meinem Promotionsvorhaben sehr

weitergebracht. Ebenso gilt mein Dank Herrn Prof. Dr. Hannes Hartenstein, der sich

trotz zahlreicher weiterer Verpflichtungen in Forschung und Lehre sofort dazu bereit

erklärt hat, das Korreferat für meine Promotion zu übernehmen und mir wegweisend

zur Seite stand.

Mein Dank gilt auch meinen Kolleginnen und Kollegen, die mich während meiner

Zeit am Institut für Telematik begleitet haben. Durch zahlreiche wertvolle Diskus-

sionen und Hinweise haben auch sie zu dieser Arbeit beigetragen. Auch abseits

der Forschung verdanke ich ihnen viele schöne Momente in meiner Zeit am Institut

für Telematik. An dieser Stelle möchte ich mich insbesondere bei Hauke Heseding

und Markus Jung bedanken, die mir gerade in der intensiven Zeit der Fertigstellung

meiner Promotion trotz eigener Verpflichtungen mit konstruktivem Feedback und

moralischer Unterstützung sehr weitergeholfen haben. Nicht zu vergessen ist auch

Dr. Martin Florian, der meine Masterarbeit betreute und mir mit seinen Kenntnissen

den Einstieg in den Forschungsbereich sehr vereinfachte. Mein Dank gilt auch den

Sekretärinnen und dem technischen Personal des Instituts, denen ich eine produktive

Arbeitsumgebung verdanke.

Für ihren Beitrag gilt mein Dank auch den Studierenden, die ich als Seminar-,

Bachelor- und Masterarbeiter, sowie als wissenschaftliche Hilfskräfte, im Rahmen

meiner Tätigkeit betreuten durfte. Im Gespräch mit ihnen sind neue Ideen entstanden,

und sowohl die neuen als auch bestehende Ideen und Ansätze wurden reflektiert und

weiterentwickelt.

Mein besonderer Dank gilt auch meiner Familie und meinen Freunden. Meine Eltern

ermöglichten mir mein Studium, und damit letztlich auch die Promotion. Sowohl

meine Familie als auch meine Freunde waren gerade in den anstrengenderen Phasen

der Promotion eine wichtige Motivation und Stütze für mich.

Vielen Dank euch allen.

Karlsruhe, im Juli 2022

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Research questions . 3

1.3 Main Contributions . 3

1.4 Outline . 7

2 Background 9

2.1 Privacy . 9

2.2 Trust assumptions . 12

2.3 Cryptography . 13

2.3.1 Hash functions . 13

2.3.2 Symmetric encryption . 14

2.3.3 Asymmetric encryption . 15

2.3.4 Asymmetric signatures . 15

2.3.4.1 Elliptic Curve Digital Signatures 17

2.3.4.2 Boneh-Lynn-Shacham signatures 17

2.4 Blockchains . 18

2.4.1 Basics . 18

2.4.1.1 Bitcoin . 19

2.4.2 Smart Contracts . 20

2.4.2.1 Ethereum . 20

2.4.3 Storing data in blockchains 21

2.5 Online identity management . 21

2.5.1 Current Situation . 21

2.5.2 Decentralized trusted identities 23

2.5.3 Self-sovereign identities . 24

2.6 Online social networks and social graphs 27

2.7 Sybil attacks . 28

2.8 Sybil defense . 29

2.8.1 Sybil defense based on social graphs 30

2.8.2 Decentralized Sybil defense based on social graphs 31

v

vi Contents

3 DecentID 33

3.1 Adversary model . 34

3.2 Design Goals . 35

3.3 Example Scenario . 37

3.4 Important terms and variables . 41

3.4.1 Definitions . 41

3.4.2 Smart contracts and files . 42

3.4.3 Cryptographic keys . 42

3.5 Shared Identities . 43

3.5.1 Creating and sharing SharedIdentityContracts 43

3.5.2 On-Chain Attributes . 46

3.5.3 Off-Chain Attributes . 50

3.5.4 Granting Attributes . 53

3.6 RootIdentityContract . 55

3.7 Replacing Cryptographic Keys . 56

3.7.1 Keys of permitted users . 56

3.7.2 Attribute encryption keys . 57

3.7.3 Attribute ownership . 58

3.7.4 Keys in the RootIdentityContract 58

3.8 Implementation . 59

3.8.1 Demonstrator . 59

3.8.1.1 Architecture . 60

3.8.1.2 Identity management 61

3.8.1.3 University . 62

3.8.1.4 Online shop . 63

3.8.1.5 Visualization . 64

3.8.2 Smartphone application . 65

3.8.2.1 Architecture . 65

3.8.2.2 Usage . 66

3.9 Evaluation . 67

3.9.1 Control over the identities . 68

3.9.1.1 Properties of smart contracts 68

3.9.1.2 Authenticity and integrity 69

3.9.1.3 Removals . 71

3.9.1.4 Comparison with the state of the art 72

3.9.2 Privacy of identities . 74

3.9.2.1 Confidentiality of attributes 74

3.9.2.2 Identifying users . 76

Contents vii

3.9.2.3 Passing on data . 78

3.9.2.4 Comparison with the state of the art 78

3.9.3 Multiple pseudonymous identities 80

3.9.3.1 Explicit linkability 81

3.9.3.2 Implicit linkability 81

3.9.3.3 Trade-offs . 82

3.9.3.4 Comparison with the state of the art 83

3.10 Applicability . 85

3.10.1 End user interaction . 85

3.10.1.1 Privacy protection 85

3.10.1.2 Interaction with online services 85

3.10.2 Overheads . 86

3.10.2.1 Writing to the blockchain 86

3.10.2.2 Reading from the blockchain 86

3.10.2.3 Cryptography . 87

3.10.3 Cost considerations . 87

3.11 Summary . 88

4 Use Cases for DecentID 89

4.1 Coupling with Palinodia . 90

4.1.1 Palinodia . 91

4.1.2 Coupling approaches . 92

4.1.3 Evaluating the approaches . 98

4.1.3.1 Security dependency 98

4.1.3.2 Costs . 100

4.1.3.3 Implementation effort 104

4.1.3.4 Interoperability . 105

4.1.4 Findings . 106

4.2 Voting integration . 107

4.2.1 Example Scenario . 107

4.2.2 Open Vote Network . 109

4.2.2.1 Ethereum implementation 110

4.2.2.2 Adaptions . 112

4.2.3 Smart Contracts . 113

4.2.3.1 SharedIdentityContract 113

4.2.3.2 VotingContract . 115

4.2.3.3 VotingDataContract 116

viii Contents

4.2.4 Poll Execution . 118

4.2.4.1 Preparing the poll 118

4.2.4.2 Registering . 120

4.2.4.3 Starting the voting 122

4.2.4.4 Voting . 123

4.2.4.5 Ending the poll . 124

4.2.5 Evaluation . 125

4.2.5.1 Security . 125

4.2.5.2 Voting for off-chain attributes 126

4.2.5.3 Voting for encrypted attributes 126

4.2.5.4 Privacy analysis . 127

4.3 Conclusion . 129

5 Sybil defense 131

5.1 Adversary model . 132

5.2 Approach . 133

5.3 Core components . 134

5.3.1 Ticket Sources . 134

5.3.2 Blockchain . 136

5.3.3 Authorization Tickets . 139

5.3.4 Round-based operation . 140

5.4 Design . 142

5.4.1 Basics and assumptions . 142

5.4.2 Ticket creation . 143

5.4.3 Round management . 144

5.4.3.1 Counting active nodes 144

5.4.3.2 Selecting new ticket sources 145

5.4.3.3 End of round . 148

5.4.4 Gaining authorizations . 149

5.5 Further restrictions for Sybil identities 151

5.5.1 Aging Authorizations . 152

5.5.2 Edge Values . 153

5.6 Evaluation . 155

5.6.1 Increase of Sybil strength . 155

5.6.1.1 Evaluation environment 155

5.6.1.2 Aging authorizations 156

5.6.1.3 Edge values . 161

5.6.2 Sybil controlled ticket sources 163

Contents ix

5.6.3 Overhead estimation . 165

5.6.4 Comparison with related work 166

5.7 Integration into DecentID . 168

5.7.1 Assumptions . 168

5.7.1.1 Existing identities 168

5.7.1.2 Trustworthy ticket sources 168

5.7.1.3 Access to data and systems 169

5.7.2 Requirements . 169

5.7.3 Approach . 170

5.7.3.1 Sending data to ticket sources 170

5.7.3.2 Handling at ticket sources 171

5.7.3.3 Assembling the link 172

5.7.3.4 Verifying the link . 173

5.7.4 Identification of the service 173

5.8 Conclusion . 174

6 Conclusion 175

6.1 Results . 176

6.2 Perspectives for Future Work . 178

Appendices 179

A Important terms 181

A.1 Definitions . 181

A.2 Smart contracts and files . 182

A.3 Cryptographic keys . 183

B Smart Contracts of DecentID 185

B.1 Mortal.sol . 185

B.2 RootIdentityContract.sol . 186

B.3 SharedIdentityContract.sol . 187

B.4 AttributeContract.sol . 191

B.5 VotingDataContract.sol . 192

B.6 VotingContract.sol . 196

Bibliography 201

Chapter 1

Introduction

With the increased interactivity of current websites, more and more online services

recommend or even require that their users create a user account. This has a variety

of reasons, some of those are beneficial and transparent for the user: store user

settings, rate posts, or write comments. Other reasons are less visible, but often

more profitable for the company running the service: Tracking users and analyzing

user behavior, which can be used to suggest interesting articles but also to display

personalized advertisements.

This trend has some drawbacks for the users. For instance, they are forced to create

multiple user accounts, of with each should be using unique credentials for authenti-

cation. However, the increasing number of accounts often leads to reusing the same

credentials for multiple accounts. This introduces a security vulnerability, especially

if the email address is used as account name and the same password is used for

both the service account and the email account. Through the increasing support for

Single-Sign-On (SSO) identity providers, e.g., offered by Google or Facebook, the

credential management is simplified. With those, only a single user account has to

be created and can be used at multiple online services.

A problem of centralized identity providers is that the privacy of the users can be

compromised. Especially if a SSO identity provider is used, the identity provider can

track which services are visited by the users. While users have the convenience of

simplified logins, they pay for it with a loss of privacy. Additionally, the user might

lose control over their personal data. They have to trust their identity providers to

not modify or sell their data, but can only rarely check whether this is the case. In

addition, the stored data poses a tempting target for attackers.

1

2 1 Introduction

To avoid the drawbacks of centralized SSO providers, an alternative can be offered

by decentralized identity providers. With those, trust into the company operating the

centralized identity provider is replaced with trust into a verifiable system. This way,

users can maintain self-sovereign identities, completely under their own control.

1.1 Problem statement

Important properties of all identity management systems are to ensure the privacy,

authenticity, and availability of the users data. These systems store large quantities of

personal, privacy-relevant data, to allow their users to display parts of the stored data

towards online services when required. If the authenticity of the data is not ensured,

services cannot trust the received data. When the system is unavailable, access to

dependent services is no longer possible. These properties have to be ensured for

decentralized identity management systems as well. Another property is that users

should have full control about their pseudonymous online identities. This includes

adding new attributes to an identity, modifying or deleting attributes, and sharing the

identity, by allowing online services to access the identity or parts of it. For example,

most services are permitted to retrieve the users email address to send notifications

to the user, while the birthday of the user is rarely required and consequently should

not be known by all services. With existing identity providers it only seems as if the

user is in control. If a centralized identity provider wants to modify or share personal

data, e.g., by selling the personal data to advertising agencies, it is able to do so. To

ensure that the user is in control and to allow the user to maintain self-sovereign

identities, the dependency on centralized trust anchors should be avoided.

A problem when permitting users to create and use pseudonymous identities for an

online service is that this also permits Sybil attacks on the service. These attacks

allow a single user, called a Sybil adversary, to create many digital identities in

order to manipulate or take over a system. If the identities of the Sybil adversary

outnumber the identities of honest users within a system, the adversary is able to

subvert majority votes, e.g. by single-handedly deciding on the results of polls. As

such, Sybil adversaries have to be prevented from creating a large number of Sybil

identities. The easiest way to restrict Sybil identities is to force users to present

unique personal identifiers towards the service, e.g., presenting their passport. To

protect the privacy of the users and allow integration into decentralized systems,

other approaches are preferable. While excluding Sybil adversaries, honest users

should not be stopped from creating identities. To prove towards online services that

an identity is no Sybil identity, a proof of “non-sybilness” should be generated.

1.2 Research questions 3

1.2 Research questions

In this thesis an identity management system is designed that allows its users to

maintain self-sovereign digital identities. To avoid that the system is abused by Sybil

adversaries, a Sybil defense system is designed that works together with the identity

management system to thwart the creation of Sybil identities. As such, this thesis

addresses two major research questions:

(1) How can the creation and sharing of digital identities be designed for a decen-

tralized identity provider, while providing privacy of the stored data. Access

and modification of the stored data has to be designed without permitting unau-

thorized access to the data. Additionally, the system has to be trustworthy in

the sense that modifications of and granting access permissions to the identities

have to be accountable for and permitted by the user.

(2) How can such a system be secured against the creation of large numbers of

Sybil identities. The presence of numerous Sybil identities would reduce the

trust other services have in the system, impeding its acceptance and widespread

deployment. At the same time, the usability of the system for honest users must

be maintained.

1.3 Main Contributions

The approach to answering the research questions is threefold: the design and evalu-

ation of a self-sovereign identity management system, an analysis of its interactions

with other smart contracts, and the design and evaluation of an accompanying Sybil

defense system. The designed solutions are based on existing infrastructure and,

thus, can be readily deployed. The main contributions of this thesis are the following:

Self-sovereign identity management

To improve the control users have about their digital identities, the decentralized

identity management system DecentID was designed [FSZ18]. An important part

of that is to ensure the trust into DecentID, both from the perspectives of users and

online services. Towards this goal, DecentID was designed based on smart contracts

on the blockchain, with the blockchain acting as a decentralized trust anchor. Due

to the used smart contracts, the user creating an identity is the only one able to

permit other users or services to access it. Attributes, which can be stored on the

blockchain or in off-chain storage, can be attached to the identities by permitted

users. Additionally, certifying attributes can be granted to other users, i.e., claims

4 1 Introduction

that can be verified by third parties. Adversary models are defined and used for

evaluations and privacy analyses. It is analyzed which information is available to

the adversaries and whether a breach of privacy occurred. Furthermore, practical

considerations, e.g., costs of operation and computational overheads, are discussed.

Interactions between smart contracts

Currently, most deployed smart contracts implement all required functionalities, e.g.,

identity management, themselves, resulting in higher implementation efforts and

possible introduction of additional security vulnerabilities. To improve interactions

between smart contracts, a case study was conducted with DecentID being used

as identity provider for another smart contract [Fri+21]. To solve the challenge

of mismatching function interfaces, different coupling approaches were designed

and evaluated. For the evaluations, multiple criteria were considered, e.g., security,

implementation effort, and financial costs. The findings where that the approaches

vary regarding their costs and capabilities, with the best approach depending on the

specific use case. When writing attributes to DecentID identities, a major challenge

is that the private key of a permitted user is required to do so. This was solved

by instead accepting a verifiable majority decision of authorized voters, with the

decision being ascertained by executing a poll on the blockchain. While not requiring

a private key, the security of the system is still upheld. The findings of a privacy

analysis indicated that, while the individual vote can be kept secret, the participation

of a user in the poll is always visible on the blockchain.

Decentralized Sybil defense

Using the trust relationships of online social graphs is an established approach to

defend against Sybil attacks. However, existing approaches are either unable to

authorize many nodes as honest at once, or are unable to deal with frequently joining

nodes. This thesis introduces a novel approach for decentralized Sybil defense,

Detasyr [FMZ19]. Besides filling the aforementioned gap in functionality, Detasyr

provides its users with proofs of authorization, which can be used in other contexts,

e.g., in the identities of DecentID. This is not possible with existing approaches.

Simulations were used to evaluate Detasyrs effectiveness when restricting Sybil

adversaries. The results show that honest identities become authorized with only a

small delay, while the Sybil adversary is bounded to an absolute number of identities.

For example, when evaluating on a static graph consisting of 10,000 honest users,

the Sybil adversary was only able to authorize around 15 Sybil identities, limiting its

presence in the social graph to under 0.2 percent. An evaluation of the overhead for

participating in Detasyr found that the number of exchanged network messages is

mostly negligible, with an average of only three messages exchanged per minute.

1.3 Main Contributions 5

In this thesis two systems, DecentID and Detasyr, are designed and evaluated. They

work together to provide self-sovereign but Sybil-resistant digital identities.

Social graphAuthorizations

Blockchain Detasyr

Proof

DecentID

Shared

identity

Attribute
Attribute

Attribute

Create

AccessService

Figure 1.1: DecentID and Detasyr and their interaction.

DecentID, depicted in the middle of figure 1.1, can be used to create digital identities.

Technically, DecentID is implemented as smart contracts on the blockchain Ethereum.

The identities can have attached attributes which describe properties of the user, e.g.,

its username within an online service. These attributes can be stored either on the

blockchain or in off-chain storage, to reduce the financial costs of maintaining the

identity. Access to the identity can be granted to other users, which for example

might represent online services the user interacts with. This service is then able to

read the attached attributes and attach attributes of its own to the shared identity.

The design of DecentID is described in detail in chapter 3.

Detasyr, depicted on the right in figure 1.1, is a Sybil defense system based on an

online social graph. The graph represents trust relationships between users of the

system. To get authorized as an honest user, i.e., as not being a Sybil identity, a user

has to collect a certain number of authorization tickets that are flooded through the

graph. After enough tickets have been collected by a node, the public key of this

node is added to the next block of a blockchain that is part of Detasyr. Due to the

structure of the social graph and the distribution strategy of the tickets, only few of

the flooded authorization tickets reach the Sybil adversary, restricting the number of

nodes it can authorize. Two extensions were evaluated to further restrict the number

of Sybil identities: keeping authorizations valid only for a limited amount of time,

and restricting the number of authorizations per neighbor. Detasyr and its extensions

are explained in depth in chapter 5.

In principle, these two systems can operate independently of each other. However,

since users are able to create digital identities by themselves, DecentID is in principle

vulnerable to Sybil attacks. To restrict the creation of identities by Sybil adversaries,

the two systems can be linked to each other. With Detasyr, a proof of authorization

can be created by a user. Later on, the user can use this proof to convince others,

6 1 Introduction

e.g., an online service they want to access, that their identity belongs to an honest

user and not to a Sybil adversary. For this, a cryptographic link between the service

and the proof of the user is established. This link is then stored in an attribute of the

identity used for the service. Afterwards, the service is able to verify the validity of

the link, without identifying which proof belongs to the user. Due to this unlinkability,

the privacy of the user is protected, since colluding services are unable to determine

whether two cryptographic links have been created by the same user. However, due

to Detasyr, each user is only able to generate a single link per service, preventing

Sybil attacks. Section 5.7 describes how this link has been designed.

DecentID
Shared

identity

Attribute
Attribute

Attribute

Assign

Create

AccessUse

Voting

contract

Palinodia

Access

Voting data

contract

Assign

Service

Figure 1.2: DecentID and its use cases.

Two use cases for DecentID where evaluated, as depicted in figure 1.2. For once,

DecentID was used to replace the integrated identity management of the already

existing smart contract-based system Palinodia. Instead of using the integrated

special purpose identity management, the general purpose identities of DecentID

were used to decide whether a user is permitted to access Palinodia. It was shown

that the attributes attached to the identities of DecentID can be read and processed

by other smart contracts, without depending on support by off-chain software. As

part of this case study different coupling approaches were designed, to evaluate how

DecentID can be accessed by other smart contracts. The coupling approaches and

their evaluation are discussed in section 4.1.

Furthermore, to evaluate how other smart contracts can write attributes to DecentID,

a voting system was integrated. It consists of two smart contracts: the voting contract

contains the program code to execute the polls, while the voting data contract stores

the temporary data for the current execution of one poll. To interact with DecentID,

the used smart contracts have to read existing identity attributes to determine whether

a user is permitted to vote, and add new attributes to existing identities. As was

determined in this case study, writing attributes was not possible without modifying

the smart contracts of DecentID. A detailed description of the voting integration is

found in section 4.2.

1.4 Outline 7

The focus of this work is on the technical design of the systems, and explicitly does

not investigate some considerations regarding their real-world deployment. No

insurmountable obstacles to their practical use are known, but some aspects still

have to be looked into. One aspect is the practical use of created identities by online

services, including both the standardization of a format to store the attribute data,

and also how users are presenting their identity towards the services. For Detasyr,

the success in restricting Sybil adversaries depends on the assumption that users will

not accept everyone as a friend. While this is a common assumption in related work,

it does not apply for current online social networks.

1.4 Outline

Chapter 2 presents required basics for the rest of the thesis. The chapter provides

definitions of privacy and trust, outlines the importance of them for the following

chapters, and states the goals of adversaries attacking theses properties. Introductions

into relevant cryptography schemes, the basics of blockchain networks, and to online

identity management are given. After explaining the structure of online social graphs,

the goals, abilities, and restrictions of Sybil adversaries are discussed.

The following three chapters present the design and technical details of DecentID

and Detasyr. In chapter 3, DecentID is explained in depth. Following the definition

of the considered adversaries, the design goals of DecentID are explained. Based

on a presented example scenario, the design is explained in detail. For evaluating

DecentID, an extensive analysis of its security and privacy is conducted and further

practical considerations are outlined regarding its real-world use.

How DecentID can be used together with other blockchain-based systems is explored

in chapter 4. Two use cases are explained, implemented, and evaluated. In the first

use case, DecentID is used as an identity provider for another application based on

smart contracts. The second use case considers the integration of a voting system

into DecentID to evaluate how attributes can be written by other smart contracts.

Detasyr is presented in chapter 5. After discussing the adversary and its restrictions,

the general approach of Detasyr and its core components are explained. Following,

its design is discussed in detail. Based on the presented design, two extensions for

further improved Sybil defense are presented and their advantages and disadvantages

analyzed. After discussing the results of a simulation-based evaluation, the integration

of the Detasyr authorizations into DecentID is explained.

A conclusion in chapter 6 summarizes the achieved results and outlines perspectives

for further work.

Chapter 2

Background

In this chapter, a number of required fundamentals for the rest of the thesis are

presented. The chapter starts with a definition of the concepts of privacy and trust.

Afterwards, relevant cryptographic schemes and the used algorithms are introduced.

The following introduction in blockchains contains an introduction into the smart

contract technology used extensively for the design of DecentID. Different approaches

for managing digital identities are presented afterwards. After defining online social

networks, Sybil attacks are explained as they pose a frequent problem in these

networks, before presenting approaches for Sybil defense.

2.1 Privacy

In the past years, privacy, and the related confidentiality of users data, has become

increasingly important to users of online services. However, most people are unable

to give a clear definition what “privacy” actually means, even though it has been

declared a fundamental human right [HC48]. Different approaches try to specify

what is meant by privacy, often by defining multiple aspects of it. Many definitions

are based on legal considerations, for example [Dan+14]. In their paper [PH10],

Pfitzmann and Hansen give definitions and explanations for various privacy related

terms, e.g., anonymity and unlinkability. Additionally, they define some terms relating

to digital identities. Some of these definitions, which are used in this thesis, are given

in the following.

9

10 2 Background

Anonymity A user is anonymous if it cannot be identified within a group of users,

its anonymity set. Given a certain group of users, e.g., all users of an online service,

anonymity means that it is impossible to differentiate between the users within this

group. For example, if one user sends a message to the service, an adversary is unable

to find out which of the users has send this message. Furthermore, anonymity means

that an adversary is unable to find out which human controls a digital user identity.

Pseudonymity While anonymity is ideal to protect the privacy of the anonymous

users, it is not practical for most use cases. For example, a two-way communication

between a user and a service is not sensible possible if the service cannot identify

the user. A pseudonym, which is an identity other than the real identity of the user,

can help in this case. The service only sees the pseudonym of the user, but does not

know the real identity of the user and should be unable to discover it given only

the pseudonym. Pseudonymity is especially important in this work, where both the

presented approaches DecentID and Detasyr are using pseudonyms to identify their

users. Both approaches aim to hide the real identity of their users, while using only

pseudonyms to address and interact between the participating users and services.

Unlinkability When two users are unlinkable, an adversary is unable to find out

whether these users are related. Such a relationship might exist if two users know

each other, but also when a single human controls both digital user identities. In the

context of this work, unlinkability is important since it stops adversaries from tracking

the actions of a user, e.g., which services are interacted with. If the same (potentially

pseudonymous) identity is used for all services this might easily be possible, resulting

in a requirement for multiple identities used by a single user.

To evaluate the privacy protection of a system, a list of seven privacy threats is given

and discussed by the LINDDUN methodology [Den+11]. These privacy threats and

subsequent protection goals were developed based on the definitions of Pfitzmann

and Hansen. While not all of these threats are completely applicable to this work,

they still offer a useful approach to evaluate the privacy of the presented system. The

seven privacy threats and the resulting protection goals are listed in the following:

Linkability As the privacy threat to the protection goal of unlinkability explained

above, it means that an adversary is able to distinguish whether two entities in the

system are related with each other. Considering the case of identity management in

this work, this means that an adversary would be able to discover that two digital

identities are controlled by the same human user. However, it also can mean that

the adversary discovers that two users are friends of each other or that two identity

attributes have been created by or belong to the same user.

2.1 Privacy 11

Identifiability If a digital identity is identifiable, that means that an adversary is able

to find out which human user controls the identity. In a broader sense, identifiability

can also mean that the user creating an attribute or message can be discovered. As

such, it is an attack on the anonymity or pseudonymity provided by a system.

Non-repudiation This allows an adversary to prove that a user knows or has done

something. As such, the relevant protection goal is plausible deniability. While not

overly relevant for this thesis, this threat is often considered in communication privacy,

where an adversary should be unable to prove anything about the contents of the

communication towards third parties.

Detectability An adversary is able to detect whether a message, identity, or other

data object exists, when it is possible to differentiate between it and random data.

While there are approaches for data storage which ensure the protection goal of

undetectability, communication over the Internet is difficult to hide. Related to

unlinkability and pseudonymity, it is part of the goals of this thesis to protect the

digital identities of a user from detection by adversaries.

Information Disclosure One of the more important points of this thesis, information

disclosure means that an adversary is able to access information it is not permitted to

access. Its protection goal, confidentiality, ensures that the contents of the protected

data cannot be read by an adversary. While undetectability stops the adversary from

even finding out about the existence of the data, confidentiality allows the adversary

to notice its existence, but stops it from reading it.

Content Unawareness With some systems, the user might be unaware of the data

they disclose to the system. This might be because they disclose more data than they

need to, or that the system is able to discover this data due to wrong decisions of

the user. Its protection goal, transparency, ensures that the user is able to find out

what the system knows about them and what is done with this data. While this is an

important factor when interacting with systems on the Internet, where data is kept

potentially forever, it is not considered in this thesis in detail. The identities created

with DecentID as well as their data are under the control of the user. However, how

services on the Internet handle this data cannot be solved in this thesis.

Policy and consent Noncompliance While a system might claim to adhere to pri-

vacy policies, it might still ignore them and abuse the given data. In the case of

DecentID itself, the correct handling of the data can be verified since the smart con-

tracts forming the identity can be reviewed. What the services accessing the identities

are doing with the data is out of scope for this thesis.

12 2 Background

2.2 Trust assumptions

In this thesis, assumed trust can be considered contrary to the assumed adversaries.

Different trust relationships are assumed between the participating users. In general,

if one user trusts another user, it assumes that the other user will not attack them

or the used system. Such an attack can mean unauthorized access to the computer

of the user, which is out of scope for this thesis, but also an attempt to maliciously

collect more data about the user than the user offered by themselves. This can be the

case if data can be accessed by an adversary that should not be possible to access for

them, but also when multiple adversaries cooperate and exchange the data each of

them was granted access to.

Both approaches presented in this work, DecentID and Detasyr, are based on de-

centralized networks. These networks are operated by many users, which for the

most part do not know each other directly. Still, it is assumed that the majority of

the participating users are honest, i.e., are no adversaries, and have no intention

of obstructing the operation of the system. As a consequence, it can be assumed

that the results of all majority decisions within the system are correct and have been

reached according to the rules of the system. Also, when a random user within the

system is selected, it will more likely be an honest user than an adversary. These

points are especially important for Detasyr, where random nodes are selected as

trusted nodes. Based on the trust assumptions, most or all of them will execute the

approach correctly, resulting in a trustworthy computation result. When two users

are neighbors in the online social graph that is used by Detasyr, it is assumed that

these users trust each other.

In DecentID, the user shares a digital identity with online services. Different from the

trust assumptions described above, a service is not assumed to be fully trustworthy.

While it is assumed that a service will not attack the user, they are considered to be

an honest-but-curious adversary. As such, they will try to find out as much about

the user as possible, but have no intention of harming the user, e.g., by attacking

their computer. A reason for this can be that they, e.g., want to present personalized

advertisement to the user. While not directly harmful for the user, the required data

collection is an infringement of the users privacy. Consequently, it is assumed that the

user does not completely trust the service and wants to restrict the data the service

can collect. When the user interacts with multiple services, a unique partial identity

is created by the user for each service. It is assumed that services can collude with

each other to exchange the collected data about a user. Thus, keeping the partial

identities of the user separated and unlinkable is important, since the service cannot

be trusted to keep the granted data solely for itself.

2.3 Cryptography 13

2.3 Cryptography

Both approaches presented in this work make heavy use of cryptography. Hash

functions are used to shorten inputs for more efficient encryption or for obfusca-

tion, symmetric and asymmetric encryption is used for protecting data, and digital

signatures are used to prove the ownership or validity of data.

This section gives a short introduction in relevant cryptography schemes, with a focus

on what the algorithms can be used for. Knowledge of the mathematical functioning

of the used algorithms is not required for this thesis and is therefore mostly omitted

in this section. It should be noted that a few concrete algorithms are mentioned

in the following as examples for their respective type of cryptographic algorithm.

While they would be good candidates to use in an implementation of the approaches

presented in this thesis, other secure algorithms could be used as well. Exceptions

where a specific algorithm should be used or additional requirements are present are

stated in the respective sections in chapter 3 and chapter 5.

2.3.1 Hash functions

A hash function is a function that reduces an input string of arbitrary length to a

string of fixed length. Hashes have a number of use cases, for example they can be

used to verify the integrity of a larger input efficiently or obfuscate an input. The

calculation of the hash value is a quite fast operation for many hash algorithms. As

such, they can be used to verify that the hash value stored at a trustworthy storage

matches the hash value calculated from data in an untrusted storage.

For cryptographic hash functions, three properties are required [Alf96]. Given is a

hash function H, inputs x and x ′, and outputs of the hash function y and y ′.

(1) Preimage resistance: For any given output y , it is computational infeasible to

find an input x so that H(x) = y. This means that for a known output value

no matching input value can easily be reconstructed.

(2) 2nd-preimage resistance: Given an input x , it is computational infeasible to

find an input x ′ so that H(x) = H(x ′).

(3) Collision resistance: It is computational infeasible to find inputs x and x ′ so

that H(x) = H(x ′). Here, both inputs can be selected arbitrarily. Consequently,

it is very hard to find two input values that result in the same hash value.

Property 1 ensures that the hash function works as a one-way function. Due to that,

the hash function can be used to obfuscate the input string since it is infeasible to

reconstruct the input from the output.

14 2 Background

To protect the integrity of data in publicly accessible storage, property 2 is important.

It makes sure that an adversary is unable to present some manipulated data to

another user for which the same trusted hash value would be calculated. If such a

manipulation would be possible, the user would be unable to decide which data is

the unmodified original data.

While generally important for the security of hash functions, property 3 is not explicitly

required in this work. The assumed adversaries are not able to provide arbitrary data

to the user, so colliding input data for the hash function cannot be introduced to

attack the user.

On the blockchain Ethereum, the hash algorithm KECCAK-256 [GA11] is used. For

compatibility and availability reasons, this hash algorithm is assumed to be used in

this thesis as well.

2.3.2 Symmetric encryption

To protect the confidentiality of data, it can be encrypted. When the data is encrypted,

it is indistinguishable from random data. Only entities knowing the secret key

required to decrypt the data are able to find out the encrypted contents.

When using symmetric encryption, only one key is used for both encryption and

decryption. Given a secret symmetric encryption key k, encrypting a message m

works as:

c = enck(m) (2.1)

The encrypted message c is then transmitted to the other party. Knowing the same

key k and having received c, the message m can be recovered by decrypting c:

m= deck(c) (2.2)

A consequence of using the same key for encryption and decryption is that both

communicating parties require access to the same cryptographic key. While one party

can generate the key, transmitting it to the other party can be difficult since no one

except the expected receiver is permitted to receive the key.

A currently state-of-the-art symmetric encryption algorithm is the Advanced Encryp-

tion Standard (AES) [DR13]. Designed as Rijndael by Vincent Rijmen and Joan

Daemen, it was selected by the U.S. National Institute of Standards and Technology

(NIST) for protecting secret data. It is able to operate with key lengths of 128, 192,

or 256 bits. As an efficient algorithm in both software and hardware, it is widely

used for symmetric encryption of large amounts of data.

2.3 Cryptography 15

2.3.3 Asymmetric encryption

To avoid the need to transmit the symmetric encryption key to the receiver, asymmetric

encryption algorithms were developed. In those, two different keys are used: a public

key that is used for encrypting a message, and a private key that is used to decrypt

the encrypted message. The private key is known only by the receiver of the message,

while the public key can be known by everyone.

The first asymmetric encryption algorithm was RSA [RSA78], its basic idea is described

in the following. The security of RSA is based on the difficulty of factoring the product

n of two large prime numbers, which is computational infeasible for large enough

values. The length of n is the key size of the algorithm and is between 2048 to 4096

bits. An asymmetric key pair based on n consists of two values (e, d), where e is

public and used for encrypting the message while d is the private key to decrypt a

message. To encrypt a message m, the sender calculates:

c ≡ me (mod n) (2.3)

c is then transmitted to the creator of the key pair, where it can be decrypted using

the private key d:

cd ≡ (me)d ≡ m (mod n) (2.4)

While this approach protects the confidentiality of the message and avoids the problem

of sharing a symmetric key, it still contains problems for a practical use: the required

key size is much larger than for symmetric keys, asymmetric algorithms are quite

slow compared with symmetric ones, and the sender of a message somehow has to

ensure that the used public key really belongs to the intended recipient. While these

problems can be solved, discussing the solutions is out of scope and not required for

this document.

One way to reduce the required key length are calculations on elliptic curves. An

asymmetric encryption scheme based on elliptic curves is the Elliptic Curve Integrated

Encryption Scheme [Sho01]. Since elliptic curve cryptography is used by Ethereum,

it is a good candidate for efficient asymmetric encryption in this thesis.

2.3.4 Asymmetric signatures

While encryption allows arbitrary senders to send confidential message to a receiver,

the receiver cannot be sure who send the messages and whether they arrived unmod-

ified. Since the public key used for encryption is publicly known, everyone is able to

send an encrypted message to the owner of the public key. While the contained data

16 2 Background

in encrypted messages cannot be read, the encrypted data can still be modified, both

accidentally or maliciously. Digital signatures can be used to protect the integrity of

the message, i.e., avoiding unperceived unauthorized modification, and to ensure

the authenticity of the sender.

Using RSA as an signature scheme, asymmetric digital signatures work similar to

encryption, but requires the sender, instead of the receiver, to posses an asymmetric

key pair. Given the asymmetric key pair (e, d), a digital signature can be calculated

by using the private key d:

h= H(m) (2.5)

s = hd (2.6)

First, a hash h of the to-be-signed message m is calculated, as depicted in equa-

tion (2.5). Computing the signature of the hash is more efficient than signing a long

message directly. The receiver of the message is able to calculate the hash of the

received message by themselves and can compare the locally calculated hash value

with the received hash value. Afterwards, the signature s over the hash value h is

calculated the same way as if a message would be encrypted, but using the private

key d instead of the public key e. This can be seen in equation (2.6), compared to

the asymmetric encryption in equation (2.3).

Since the private key is used to create the signature, only the owner of the private

key d is able to create a signature that can be verified with the known public key e.

As such, digital signatures can also be used to prove the knowledge of a matching

private key to a known public key.

se = (hd)e = hde = (hd)e ≡ h (mod n) (2.7)

h
?
= h′ = H(m) (2.8)

To verify the received signature, the receiver can “decrypt” the received signature

s, as displayed in equation (2.7). If the signature is valid, the result should match

the locally calculated hash value h′ over the received message m. If the transmitted

signature s or the message m have been modified or the sender does not own a valid

private key d for the public key e, h and h′ will not match. In that case, the received

message should be discarded and requested again from the sender.

In this work two concrete algorithms for digital signatures are used: Elliptic Curve

Digital signatures, and Boneh-Lynn-Shacham signatures. In the following, these two

signature schemes will be introduced.

2.3 Cryptography 17

2.3.4.1 Elliptic Curve Digital Signatures

The Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01] is a variant of the

Digital Signature Algorithm (DSA) [KSD13]. Using elliptic curves allows it to require

a much shorter key length than the original DSA algorithm requires. For the same

security level of 80 bits, DSA requires a key length of at least 1024 bits while ECDSA

only requires a key length of 80 bits. Additionally, given the message and a signature

over it, ECDSA allows the receiver to derive possible public keys for the signer from

it [Bro09]. However, this also works if the signature is invalid, resulting in an invalid

public key, and consequently of a seemingly correct, but actually broken verification

of the signature. As such, the derivation of the public key can only be done if at least

a hash of the correct public key is known to the receiver, so the validity of the public

key can be ensured.

For this work, the ECDSA algorithm is important since it is used by the blockchain

Ethereum to sign the transactions send to the miners of the blockchain. As such, all

Ethereum clients are already able to calculate and verify these signatures.

2.3.4.2 Boneh-Lynn-Shacham signatures

Boneh-Lynn-Shacham (BLS) signatures are based on bilinear pairings to provide

shorter signatures than existing approaches, while providing the same security

[BLS04]. As such, they are interesting to use when many signatures have to be

stored for a long time, reducing the amount of storage required. Also, using BLS

signatures reduces the amount of data that has to be transmitted over the network

when many signatures have to be send between many users.

An additional feature of BLS signatures is that their signatures can be aggregated

[Bon+03]. Given a number of signatures σi and the respective messages mi, the

signatures can be combined to form a single signature σ =
∏
σi, again reducing the

amount of storage required. This signature σ can then be used to verify the integrity

of the messages mi when the matching public keys pubKe yi and messages mi are

known.

While the messages have to be distinct for the aggregation to be secure, this does

not pose a restriction [Bon+03]. The individual signers i of a shared message m

can each prepend their respective public keys pubKe yi in front of the message m

before calculating their signatures σi over their modified messages mi = pubKe yi |m.

Since the public keys pubKe yi have to be known to verify the aggregated signature

σ anyway, this does not result in an additional storage requirement. It is sufficient to

store the aggregated signature σ, the individual public keys pubKe yi , and the shared

message m. To verify the signature, the distinct messages mi can be reconstructed.

18 2 Background

2.4 Blockchains

Simplified, a blockchain can be described as a distributed, append-only ledger. This

means that the participants of the system can only append new data blocks to a

blockchain, but are not able to modify already existing blocks. Since the blockchain

is public and distributed between different systems, all participants can verify the

correct operation of the blockchain. Modifying the blockchain, i.e., creating a new

block, requires a majority decision of the participants. Together with the assumption

that the majority of participants are honest, the blockchain can be considered a

trustworthy data store.

The verifiability and trustworthiness of blockchains make them an interesting basis

for numerous applications. The best known one is the blockchain Bitcoin (see

section 2.4.1.1), where a blockchain is used to record financial transactions. Here the

blockchain works as a decentralized trust anchor, making a traditional centralized

bank obsolete. The blockchain Ethereum (see section 2.4.2.1) extends the included

scripting language, making it possible to execute distributed computations.

2.4.1 Basics

The data structure of a blockchain consists of a chain of data blocks. This chain

is known to all participating systems. Each participant is able to verify the correct

construction of the blockchain, ensuring that invalid data blocks are not distributed

within the system.

Block n

Hash Block n - 1

Nonce

Timestamp

Transactions:

Transaction 1

Transaction 2

...

Block n + 1

Hash Block n

Nonce

Timestamp

Transactions:

Transaction 1

Transaction 2

...

Block n + 2

Hash Block n + 1

Nonce

Timestamp

Transactions:

Transaction 1

Transaction 2

...

Figure 2.1: The data structure of a blockchain (simplified).

The structure of these data blocks is depicted in figure 2.1. To ensure the integrity and

the correct linkage of the data blocks, each block contains a cryptographic hash of the

previous block in the chain. The payload data of these blocks is the list of transactions.

2.4 Blockchains 19

These transactions contain the use case specific actions of the participants. For a

financial blockchain, the transactions are in most cases financial transactions, i.e.,

orders to send money from one account within the blockchain to another one. To

avoid that money is stolen, the transactions require a proof of ownership. The digital

money is linked to a cryptographic public key. To prove the ownership of the money,

access to the matching private key is required.

In public blockchain networks like Bitcoin, all participants are permitted to create

new blocks. To avoid that many conflicting blocks are created at the same time, a

proof of work is employed. To create a new block, a participant has to spend some

amount of work, i.e., computation power. The amount of work spend is measured

by calculating the hash of the newly created block and interpreting it as a number.

Only if this number is smaller than a globally known threshold the new block will

be accepted by the other participants. If multiple blocks fulfill this requirement, the

block with the smallest hash value will be used. To be able to create multiple different

hashes for a block containing the same data, the nonce value within the block is

incremented. The advantage of this kind of proof of work is that it is quite hard to

create a valid proof (since many different nonces have to be tested, requiring a lot of

computational power) but it is simple to verify a finished proof (calculating a single

hash about the block is computational cheap).

2.4.1.1 Bitcoin

The first widespread known blockchain was Bitcoin [Nak08], which was presented

in 2008 by a person calling itself Satoshi Nakamoto. Currently, Bitcoin is the most

successful blockchain and also the blockchain with by far the most valuable currency 1.

The primary purpose of Bitcoin are financial transactions, meaning that transactions

can be used to send digital money between the different users of the currency. Apart

from simple transactions, small transaction scripts can be added. These can be used

to provide specialized requirements for spending the money, e.g., it can only be used

if two users both allow it. Additionally, this scripts can be used to store small amounts

of data within the blockchain.

Since it was the first blockchain, a lot of research has been done on top of it. This

includes improving the bitcoin protocol, improved privacy protection, and using the

blockchain for other purposes. The latter area of research often uses the integrity

and trust properties as well as the storage capabilities of the blockchain to execute

other protocols on top of Bitcoin.

1https://coinmarketcap.com/ Accessed: 11.03.2022

20 2 Background

2.4.2 Smart Contracts

While the transaction scripts in Bitcoin allow to include some basic intelligence into

the blockchain, they are still pretty limited. To improve the scripting abilities and

perform more advanced computations within the blockchain, the ability to write

smart contracts was developed. These can allow Turing complete programming

within the blockchain, making it possible for all participants to verify the correct

execution of the programs. Compared to traditional online services, this approach

can increase the trustworthiness of the system for its users.

The smart contracts can generally execute any calculations normal computer programs

can execute as well. Also, they are able to store arbitrary data within the blockchain.

Interactions between the smart contracts are possible as well, both for calling functions

of other smart contracts or for accessing the data stored by them. If the blockchain

offers financial payments the smart contracts can also be used to transfer money,

either to another smart contract or to an user. However, there are also some significant

restriction compared to traditional computer programs. Since all computation and

data processing has to be done within the blockchain, no external data sources can

be used directly. If external data is required, trustworthy smart contracts can be used

that receive their data through user input. A problem especially in the context of

this work is the missing data privacy when working with smart contracts. Since all

function calls and all data is, and has to be, publicly visible, the protection of users

data has to be ensured before passing the data to the blockchain.

Even more so than in traditional programs, the security of the smart contract code is

an issue. Everyone can analyze the deployed contract in a public blockchain and send

arbitrary commands to it. Additionally, the smart contract is permanently available

in the blockchain and normally it is not possible to replace it with a newer, secure,

version. If a vulnerable contract is found by an adversary, not only the data stored

within the smart contract can be overwritten, but also huge financial loss can occur.

2.4.2.1 Ethereum

The most popular blockchain which has been explicitly designed for the use of smart

contracts is Ethereum [But+13], proposed in 2013. After Bitcoin, it is the most

successful blockchain currently active. The currency used within the blockchain is

called Ether. The mostly used scripting language within Ethereum is called Solidity.

Solidity allows to write Turing complete smart contracts as described above.

A restriction to the programming and executing of the smart contracts is present due

to their costs. Publishing a new smart contract or calling an existing one costs Ether,

promoting the usage of short and efficient smart contracts.

2.5 Online identity management 21

2.4.3 Storing data in blockchains

Some blockchains have been specifically designed to handle the storage of data. An

example for this is the blockchain Namecoin2, which has been designed to offer an

alternative to the hierarchical domain name system (DNS). Compared with other

decentralized storage systems, e.g., distributed hash tables (DHTs), these blockchains

can offer additional features. While the integrity of data can already be ensured

in DHTs, blockchains can combine the storage of data with smart contracts and

payments. For example, in the Namecoin network the registration of domain names

has to be paid for. This registration expires after some time, forcing the owner of

the domain to regularly confirm its interest on the domain. At the same time, the

blockchain remains a distributed system which requires no single centralized trust

anchor for its operation.

2.5 Online identity management

Over the last decades, online identity management has slowly evolved. While initially

every online service had its own identity management, it is today often possible

to use a single account for multiple services. In this section, the existing identity

management approaches are discussed, as well as modern approaches which are

based on decentralized systems, e.g., on blockchains.

2.5.1 Current Situation

When the need for online identities initially occurred, most online services imple-

mented their own identity management. For the user this meant that they had to

register at each service anew. Consequently, the user has to deal with numerous

different logins, which is especially cumbersome if multiple Internet-capable devices

are utilized by the user. Apart from the overhead of entering the user data over and

over again, this also led to security problems. Regularly, another data breach of an

online service is reported, where the database with the users credentials and their

other data is stolen. For the ease of use, many users are using the same credentials

(i.e., an email address as username and a password) over and over again. If the user

database of one service is stolen, the attackers are able to access other services used

by the users as well. This is especially a problem when the same password is used for

securing the email account, with the email address often being used as a password

recovery address at further services.

2https://www.namecoin.org/ Accessed: 11.03.2022

22 2 Background

In the last years, various Single-Sign-On (SSO) providers were established. With

these, a user creates only a single identity at the SSO provider. Afterwards, this

identity can be used to login at other services as well. Common examples are buttons

as “Login with Google” or “Login with Facebook” as alternatives to creating a local

user account for one service. When the button is clicked, the user is forwarded to

the respective SSO provider, can enter their credentials there, and the visited online

service receives the result of a successful login attempt and can continue. Technically,

this is based on the decentralized authentication protocol OpenID3. For the user, this

simplifies their online experience since they only have to take care of a single online

identity. However, the SSO provider becomes a single point of failure, a tempting

target for attackers, and a potential privacy concern for the user. For once, the SSO

provider stores the data of the user. Also, since the online activities of the user refer

to the SSO provider for login, it is able to track the activities of the user. As such, the

user has to trust its SSO provider to not abuse the collected data. If malicious, the

SSO provider could even block the user from accessing services, by denying the login

request of an online service the user wants to access.

A blockchain-based SSO approach is 3BI-ECC [Mal+21], where three specialized

blockchains are used together to ensure the authenticity and integrity of the users

identities, store the identities and their data, and maintain a directory of revoked

identities. While blockchains are used, access to these blockchains, and consequently

the identities, is relayed through a logically centralized server. Since the users have

no direct access to their identities, the system is in practice a centralized approach

under control of a single entity.

An improvement over logically centralized SSO providers is the use of federated

identity providers. Instead of a single (logically) centralized provider, a number of

independent identity providers are offering identity management for the user. The

user is able to select any of the identity providers within the federation to manage their

identity data, which is especially useful when no single identity provider is trusted

by all users. An example for such a federated identity provider is the Shibboleth4

system used between universities. In that case, the respective university operates

as the users identity provider. When logging into some online service that is part of

the federation, the login request is forwarded to the selected identity provider, e.g.,

the users university, by using a standardized protocol. At the website of their trusted

identity provider the user can enter their credentials, without the forwarding online

service learning them. This way users have the convenience of using Single-Sign-On

but can still choose an identity provider they trust or are affiliated with.

3https://openid.net/ Accessed: 11.03.2022
4https://www.shibboleth.net/ Accessed: 11.03.2022

2.5 Online identity management 23

In [MDS19] a federated identity management based on the blockchain Ethereum is

presented. Users create their identities on the blockchain themselves. Afterwards,

participating authorities are able to add attributes to these identities. One goal of

the approach is to reduce the required communication when authenticating. This is

achieved by accessing local copies of the blockchain to verify the identity of a user.

When attributes of the identity are required, the users sends these attributes directly

to the service requesting them. While this increases the control the user has about

their identities, it also means that the user has to directly interact with the service for

all accesses to their identity.

2.5.2 Decentralized trusted identities

While the concept of federated identity providers is able to solve the issues with

being a single point of failure and not being trustworthy for all participants, the

privacy issue is not solved. The user has no direct control over the stored identity

data while a dishonest identity provider can modify or share the stored data in any

way it wants. A possible solution to this problem can be a decentralized system where

users are not required to place trust into a single institution. Instead, they have to

trust a (potentially verifiable) decentralized system, that is operated by multiple users

or institutions. In those systems the data of the user is distributed over multiple

nodes. While these nodes operate the system, they are individually unable to access

or manipulate the stored user data. Only the creator of an identity is able to modify

its own data since modifications by others are not accepted by the nodes of the

decentralized system.

In the last years, a number of decentralized identity management systems based on

blockchains have been designed. The advantage of using blockchains over other

decentralized storage systems is that they act as a decentralized trust anchor. In

centralized systems, some institution acts as a trust anchor and is responsible for

the integrity and security of the data storage. They ensure that no unauthorized

manipulation of the stored data occurs. In decentralized systems, this trust must

be moved from the institutions to the used algorithms. Blockchains, with their

distributed consensus algorithms, are a good candidate for this [DP18]. Consequently,

many decentralized identity management systems use blockchains as a verifiable and

trustworthy data storage.

Still, not all of systems using blockchains are truly decentralized. Even when they

use blockchains for parts of their functionality, some of them still use a centralized

server to provide parts of their service. One such system is ShoCard [SS16]. The

aim of ShoCard is to provide users with digital identities, that are connected to

24 2 Background

their offline identities. When creating a ShoCard identity, a user scans some personal

identification document, e.g., their passport, and creates an asymmetric cryptographic

key pair. A hash of the scan is signed and published on the blockchain of Bitcoin.

The resulting transaction number is considered the ShoCard identity. The user is

later on able to prove the creation of the Bitcoin transaction towards verification

services. These services are then able to grant attributes to the user, which in turn

can be presented towards other services. However, only the hash of the attribute

is stored on the decentralized blockchain. Its data is stored centrally on ShoCards

servers. While the confidentiality of the data is secured by encryption, the reliance

on the servers forms a dependency towards a centralized entity. If the servers fail

or their owners are no longer willing to maintain them, the generated identity is no

longer of any use.

Another approach, Tawki [WGK19], is not primarily designed as an identity man-

agement system, but still allows its users decentralized identity management. It

is an architecture for social communication, where the users can create their own

identities and profile pages and present these profile pages to other users. Still, an

important part of this is that users control their own identities. The data of their

identities and profile pages is stored on user-selected backend servers, where each

user can select a server they trust. To ensure the authenticity and integrity of the

approach, entries in the blockchain Ethereum are used to provide a mapping of user

names to the addresses of the backend servers.

2.5.3 Self-sovereign identities

Having self-sovereign identities means that each user creates and manages their own

digital identities. To define this term, ten principles for were defined, which are

summarized in the following [All16].

(1) Existence A user exists, which is digitally represented by their digital identity.

(2) Control Users are in control of their digital identity, including creating, updat-

ing, and deleting it. Publicly accepted algorithms ensure that no other users

can manipulate their identity.

(3) Access Users have access to their own data, and no parts of their identity are

hidden from them.

(4) Transparency The systems and algorithms used should be publicly known and

their management and operation be accountable.

2.5 Online identity management 25

(5) Persistence The identity exists as long as the user wants it to. While attributes

or cryptographic keys of the identity might be exchanged over time, the identity

consisting of a set of attributes should stay available.

(6) Portability Identities should be transportable, which means that they are inde-

pendent of a single service hosting them, or the current living environment of

the user.

(7) Interoperability The identities should be as widely usable as possible, i.e., they

should not be restricted to only a few services.

(8) Consent While sharing it is the purpose of the created identity, this should not

be possible without the user explicitly permitting it to be shared.

(9) Minimalization Only the required amount of data should be disclosed when

presenting identities. As an example, it might be sufficient to inform the service

about the country the user is in, instead of giving the exact street address.

(10) Protection The rights of the user should be protected, also against the service

using the identity.

To improve the control users have over their identities and and provide self-sovereign

identities, completely decentralized identity management systems based on block-

chains were designed. Still, depending on the kind of blockchain that is used, a

certain centralization might still exist. One example for this is Sovrin [WR18], which

is based on a permissioned blockchain. The advantages of using a permissioned

blockchain are that they can add new blocks much faster, since no proof of work

is required, and that no payment is required for modifying the data stored on it.

Reading data from the blockchain is still possible for all users. However, it also brings

some disadvantages. For once, since it is permissioned only a limited and known

number of entities are able to append new blocks to it. Depending on how many

entities are able to write blocks, the user is forced to trust a potentially small number

of institutions, instead of the more lenient assumption that the majority of a large

number of institutions is honest. Also, the institutions permitted to write to the

blockchain have to be previously selected, in the case of Sovrin by a single trusted

instance in form of the Sovrin Foundation. Based on this blockchain, users of Sovrin

can create decentralized identities for themselves and attach attributes to them. The

attributes can either be stored on the blockchain, on the smartphone of the user, or

at trusted agents that are part of Sovrin. Attributes can be selectively disclosed by

the user towards services.

26 2 Background

A further step towards decentralization and self-sovereign identities is done by uPort

[Lun+17]. Different from Sovrin, uPort is based on the public blockchain Ethereum

and the distributed file system IPFS for attribute storage [Ben14]. Being based on

these two systems, no single institution is required as trust anchor.

In uPort, the identities of users are represented by proxy contracts on Ethereum.

These smart contracts are intentionally kept simple since their primary purpose is to

provide a fixed blockchain address as identity for their creator. As such, they only

provide the functionality to forward transaction send by their creator. On Ethereum,

it makes no difference whether a transaction is send by a user, represented by a

public key, from outside the blockchain, or send by a smart contract, represented by

their blockchain address. Consequently, the called contract handles the transaction

as if the user would have send it directly, but considers the proxy contract the source

of the transaction. To add attributes to the identity, a single logically centralized

smart contract is used for all users for uPort. For each added proxy contract, a hash

is stored to lookup the attributes in the IPFS. Similar to Sovrin, users of uPort can

register a number of friends within the smart contract forming their identity. If their

cryptographic private key required to access the smart contract gets lost, their friends

can restore the access by assigning a new key to the contract.

In [SP18] another blockchain-based approach for self-sovereign identities is presented.

Different from uPort, where users can create as many identities as they want, only a

single identity per user is permitted in this approach. This is intentional, since the

identities are supposed to be used as a digital passport. Consequently, the digital

identities created within the system are linked to government issued identities.

Two projects that provide a single decentralized identity to their users are Civic5 and

SelfKey6. Both aim to provide a single digital identity to use with online services.

Attributes are stored on the users personal devices, and can be presented to services

when required. To prove the validity of the attributes, they can be presented to

certifying authorities. These authorities can be operated by whoever is able to

verify and certify a certain attribute. When an authority certifies an attribute, the

certification combined with a reference to the attribute is stored on the blockchain

Ethereum and other services can verify it. Another project, THEKEY [THE17], follows

a similar goal. It offers digital identities for its users as well, but compared to the

other two projects, has a more centralized approach. Users can add attributes and

allow services to access them. However, instead of granting access directly, a logically

centralized instance compares the access request of the service against the permissions

granted to this type of service. Only if these match the attribute can be accessed.

5https://www.civic.com/ Accessed: 11.03.2022
6https://selfkey.org/ Accessed: 11.03.2022

2.6 Online social networks and social graphs 27

2.6 Online social networks and social graphs

In online social networks users can create online identities to interact with other users.

To do so, they can register friendships within the social network that connect two user

identities with each other. In some social networks this friendships represent trust

between the connected users, though this is not valid for all online social networks.

From a theoretical point of view, the friendship connections of the social network

form a graph structure consisting of nodes and edges.

The nodes of the social graph represent identities within the system. Normally, these

identities are controlled by human users, with the assumption that each human user

controls one identity within the social graph. This assumption is violated by Sybil

adversaries (see section 2.7), which try to create many identities controlled by one

human attacker.

The bidirectional edges between the nodes represent trust between the identities in

the system. In this work, it is assumed that the edges in the social graph represents

strong trust relationships. That is, users who have a trust edge between their nodes

know each other well, possibly even know and trust each other in the real world. As

a consequence, it is assumed that users who create edges within the social graph

trust each other not to start an attack on the system.

Community
of users

Sparse cut
between
communities

Figure 2.2: A graph representing an online social network with multiple communities.

It has been shown that social graphs form multiple communities (see figure 2.2), each

representing a group of friends, e.g., sharing a common interest. Within a community

numerous friendship edges are present, significant more than between the different

28 2 Background

communities. The small number of edges connecting the communities is called a

sparse cut, and can be discovered and used by algorithms. However, calculating the

sparse cut for a given graph is computationally expensive, making it infeasible for

the social graphs of current online social networks.

One algorithm operating on social graphs are random walks. In these, a data packet

is send through the graph and on each node a next node is selected randomly. Since

there are many edges connecting nodes within a community and only few edges

leaving it, there is a high probability that the next node visited by the random walk is

within the same community. When the number of hops done by the random walk is

chosen small enough, it is relatively unlikely that the random walk ends up in another

community. Due to the structure of the graph of social graphs, a length of O(log n)

is enough to reach all nodes within the graph, independent of the start node of the

random walk [Yu+06].

Another approach is based on sparse cuts is flooding packets through the social graph.

Since only a small number of connections to other communities exists, most of the

flooded packets remain within the current community and only few packets reach

other communities. This can be used by algorithms which employ flooding tickets by

requiring nodes to receive and present a certain number of tickets [Tra+11]. Nodes

who are unable to do so are assumed to be located in another community.

A problem for the privacy protection of users is that some graph algorithms require

the structure of the social graph to be visible. It has been shown that in this case it is

possible to determine that a node in an anonymized graph and a node in a second

online social network belong to the same user, even without knowing anything about

the users except for the structure of their friendship graph [NS09]. As a consequence,

not only the identities of the users in online social graphs, but also the structure of

the social graph should remain hidden.

2.7 Sybil attacks

An important part of authorization systems is the avoidance of Sybil attacks [Dou02].

In such an attack, a single human adversary intends to create as many identities

within the system as possible, violating the “one identity per user” assumption of

many systems. This can have a number of adverse effects on the functioning of a

system. Depending on the intentions of the adversary, the Sybil attack can, e.g., aim

to deanonymize users, overload the system, control polls or discussions within the

system, or influence the public opinion. As an example, some invented information

can be made to seem trustworthy to honest users by posting the same information

2.8 Sybil defense 29

with multiple fake identities or writing acknowledging comments under the presented

information. The honest users are unable to discern between other honest users

and Sybil users. Since seemingly many users belief and confirm the information, it

increases the perceived trustworthiness of it.

The risk of such attacks can be reduced by enforcing a user registration with some

kind of “proof of uniqueness”. As an example, one way to implement such a proof

would be to force the user to present their passport to a verifying authority. In that

case, an online service has to place trust into multiple institutions: For once, the

government has to be trusted to only issue one passport per human, but also all

verifying authorities have to be trusted into. These validations are much easier to

implement for a centralized than for a decentralized system. For centralized systems,

the verification only has to be done once and later on a single coherent data store can

be queried about the result. In that case, the centralized data store acts as an trust

anchor for the system. For decentralized systems, other approaches are required.

Since no trusted centralized instance exists, all users need to be able to check the

verification of all other users themselves. For once, the result of the verification has

to be stored in a way to allow all users to access it. Also, the verification has to be

done in a way so it can later on be reviewed for correct execution.

2.8 Sybil defense

Over time, a number of different approaches to defend against Sybil attacks have been

proposed. The simplest approach is trusting some other service to take care of the

problem, for example by checking passports. Another, well known, approach is that

websites require their users to solve Captchas which are easy for humans but difficult

for computers [Ahn+03]. Prominent examples are transcribing hard to read texts or

selecting all pictures matching a given topic (e.g., select pictures containing cars).

However, for a determined adversary it is still possible to circumvent these restrictions

[RF06], for example by by hiring humans to solve the Captchas. Furthermore, both

approaches are only of limited use for decentralized systems. For both a (logically)

centralized entity is required, which needs either to be especially deployed or hired

as an external service. In the first case, the decentralized property of the system is

no longer valid while in the second case trust into a third party is needed. Captchas

could be checked decentralized as well, but there is no reason why any participant

should trust into other participants to perform valid verifications. Performing the

verifications over and over again for each combination of users would theoretically

be possible, but would practically be far too much overhead.

30 2 Background

Even when it is not its primary purpose, the proof of work of blockchain networks can

be considered a Sybil defense approach as well. Only users that are able to provide

enough computation power are permitted to create new blocks for the blockchain.

Creating numerous blockchain identities is of no use for a Sybil adversary, since it is

unable to provide sufficient amounts of computation power for all these identities.

Splitting its computation power between the Sybil identities does not increase the

number of created blocks, and consequently does not increase the influence the Sybil

adversary has on the blockchain. Related approaches – requiring computation power

or storage capacity – have been proposed for Sybil defense. However, outside of

the blockchain domain these approaches have been found lacking since they require

other users to frequently verify that the questionable identities are still able to provide

the required computation power or storage capacity.

2.8.1 Sybil defense based on social graphs

Newer research focused on using the trust relationships embedded within online

social networks for Sybil defense. In these networks, the social graph representing

the trust relationships between the users is used to estimate which identities are

trustworthy and which identities may be under the control of Sybil adversaries. The

basic assumption is that friends in the social network trust each other to not be a

Sybil adversary. Also, it is assumed that each human only has a limited, quite small

number of friends in the network.

Attack

edges

Honest

community

Sybil

community

Figure 2.3: A social graph with an honest and a Sybil community.

Consequently, the Sybil adversary should only be able to create a small number

of edges between its Sybil nodes and the nodes of honest users. When the Sybil

adversary creates a lot of Sybil nodes that are only connected to other Sybil nodes,

the Sybil community become discernible in the structure of the social graph. With a

2.8 Sybil defense 31

global view on the graph, two communities of nodes can be separated: A community

of honest nodes and a community of Sybil nodes. Within each community the nodes

are closely connected by edges. However, only few edges lead from one community

to the other, representing (misplaced) trust of an honest user into a Sybil identity.

These edges are called attack edges, as depicted in figure 2.3.

Two examples for centralized approaches for Sybil defense are SybilInfer [DM09]

and SybilDefender [Wei+12], with the latter one offering better scalability and

performance. Both require the social graph to be visible for the user executing the

Sybil defense. They also share the requirement of having at least one node in the

graph that is known to be honest. The assumption is that the node is part of the

honest community within the social graph. Consequently, all nodes outside of this

community are considered Sybil nodes. Since these approaches know the whole

social graph, they are able to not only identify a single Sybil node but try to detect

the complete Sybil community.

2.8.2 Decentralized Sybil defense based on social graphs

Current decentralized Sybil defense approaches are mostly focusing on social graphs

to detect and exclude Sybil identities and their communities. While other approaches

exists, those have been found to be unable or too impractical to effectively restrict

the creation of Sybil identities.

The first significant approach that employed the trust structure of social graphs

was SybilGuard [Yu+06]. It uses random routes, an adaption of random walks, to

decide whether another node in the social graph is controlled by an honest user

or a Sybil adversary. As in all other approaches, it is assumed that there is only a

small probability that random routes will leave the current community and enter the

community of the Sybil adversary. If multiple random routes between two nodes

intersect, the other node is considered to be in the same community as the testing

node and is consequently considered to be honest. The successor of SybilGuard,

SybilLimit [Yu+08], improves on the guaranties of SybilGuard with regard to the

number of Sybil nodes permitted into the system. Furthermore, it experimentally

confirms the assumptions regarding the propagation of random routes for multiple

real-world online social networks.

An approach using random walks is SybilHedge [FFB17]. It has a high emphasis

of protecting the privacy of its users, particularly by keeping the structure of the

social graph hidden. Also, it limit the number of newly created Sybil nodes instead of

detecting the existing nodes. To do so, a newly created node has to send random walks

through the graph and collect (cryptographic) confirmations from existing, already

32 2 Background

accepted nodes. When enough confirmations have been collected and returned to

the new node, it is considered accepted as well. Sybil adversaries are excluded by

directed edge values on all edges. If too many confirmation request are received

from a neighboring node, the requests will no longer be forwarded. This way, a Sybil

adversary can only get a restricted number of Sybil nodes accepted.

A different approach is used by Gatekeeper [Tra+11]. Instead of using random

walks for accepting nodes, tickets are flooded through the graph. Nodes that receive

tickets of enough different ticket sources are accepted as honest. While using a

different approach, the underlying assumption remains the same: Sybil nodes are

only connected by few edges and will consequently receive fewer of the flooded

tickets than honest nodes do.

This assumption and its derived propagation behavior becomes a disadvantage when

multiple honest communities are present. In social networks where the community

structure is mostly defined by shared interests the existence of multiple communities

is to be expected [KNT06]. In that case, all nodes outside of the own community

will be determined to be Sybil nodes, even when they are controlled by honest users

that are only in a different community. An approach that attempts to avoid this

problem is SybilShield [Shi+13]. To avoid false positives where honest nodes in

other communities are falsely marked as Sybil nodes, randomly selected nodes, called

agents, are used. These are placed in other communities and try to verify the tested

node as well. If enough of the agents accept the tested node as honest, the initial

testing node accepts the tested node as honest as well.

Chapter 3

DecentID

DecentID, presented in the following, is a decentralized identity management system

based on smart contracts on the blockchain Ethereum. It allows its users to manage

their own self-sovereign digital identities and present them to online services, while

deciding which shared identity contains which of their attributes. An early version of

DecentID has been published in [FSZ18].

In section 3.1 the adversary model is defined, before in section 3.2 the design goals

of DecentID based on the adversary model are enumerated and discussed. Following

that, section 3.3 presents an example scenario for the use of DecentID from an end

user perspective. As such, most technical details are omitted in that section and

will be explained afterwards. Section 3.4 introduces the terminology used in the

remainder of the chapter, before section 3.5 explains the design and functioning

of the core component of DecentID, the SharedIdentityContract. Contrived for

easier management of multiple SharedIdentityContracts, the RootIdentityContract

is presented in section 3.6. How the cryptographic keys used within DecentID can

be replaced is discussed in section 3.7. In section 3.8, two implementations of

DecentID are introduced. Section 3.9 contains the evaluation of DecentID based

on the previously presented design goals. Considerations for the widespread use

of DecentID are discussed in section 3.10, before the results of this chapter are

summarized in section 3.11.

33

34 3 DecentID

3.1 Adversary model

For DecentID, multiple possible adversaries and related security and privacy threats

are considered. These adversaries are based on the adversaries present in connection

with current online services and identity management systems, as introduced in

chapter 1 and in section 2.5.

Identity providers For the most part, currently existing identity providers can be

considered honest-but-curious adversaries. They are able to track the actions of

their users, allowing them to create user profiles which can be used for generating

revenue from the user, e.g., by selling the collected user profiles. However, the identity

provider controls the data of the user that is stored at its server. It could, if it wants to,

manipulate and abuse the stored identity data. As such, neither the integrity, nor the

privacy of the stored data is necessarily ensured. If the identity provider manipulates

the stored data, the user represented by it might be misrepresented towards other

online services, possibly even without the user noticing.

While being possible adversaries themselves, the identity providers can also be targets

of other adversaries. Considering the often large amount of personal data stored at an

identity provider, the servers storing the data become tempting targets for attacks. So

even when an identity provider has no intention of abusing their users data, another

adversary could try to gain access to it and use the data for its own gain.

Online services The visited online services are also expected to behave as honest-

but-curious adversaries. While they will not impede the user while it is using the

service, they want to learn as much about the user as possible. This includes data

the user does not want the service to have. This includes, but is not limited to, the

contents of stored attributes of other identities of the user, how often which service is

used, or which services are used by the user at all. The latter part is related to linking

multiple identities of a single user, allowing to track the behavior of the user. All of

these online services might cooperate and exchange collected data: either with or

without the user being aware of it. For (potentially cooperating) services it should

not be possible to determine that multiple identities belong together, as long as no

unique attributes, e.g., the passport ID, are used. Ensuring these goals while the

users data is stored in a publicly readable data store is one of the challenges solved in

this thesis. As an example, the adversaries can be visualized as being advertisement

companies: they want to know as much about the user as possible to display matching

advertisements on the visited services, but are not actively interested in harming the

user and driving them away from the service.

3.2 Design Goals 35

Network participants The personal data of the proposed identity management sys-

tem is stored in a decentralized, and as such, public, data storage network. Assuming

that the majority of the participants of this network are honest, the integrity of the

stored data against accidental or malicious manipulation is ensured. When using

smart contracts on blockchains, additionally the authentication of the stored data

can be guaranteed, i.e., the smart contracts can ensure that only authorized users are

able to modify the stored data. However, all participants of the network are able to

read the stored identity data. Additionally, some metadata, e.g., which identities are

controlled by a single user, might be visible. As such, the privacy of the users data

can be attacked and has to be protected.

3.2 Design Goals

DecentID is an approach for decentralized identity management. It is supposed to

improve on the current state of the art of identity management by protecting against

the adversaries described in the previous section. As such, it aims to give users full

control over their digital identities, protect their privacy, and allow them to maintain

multiple separate digital identities. These goals are explained in the following.

(1) Control over the identities

One of the motivations for DecentID is to give users the control over their

digital identities. While a user seems to be in control of their identity with

existing identity providers, this is only partially true. Since a centralized identity

provider stores the users data on its own servers, it is able to modify or remove

the users data, grant others access to it, or stop the user from accessing their

own data. As such, DecentID should give users the control of their identities

without any single instance being able to impede it.

Related to that, dependence on a single, centralized instance should be avoided.

Having such an instance would require all users to trust it, which will be hard

to achieve given a potentially global usage of an identity provider. While many

people use at least one globally operating identity provider, e.g., Facebook

or Google, there are still many people who do not want their data managed

by large companies. One way to avoid centralized instances can be a design

based on distributed ledger technology, e.g., blockchains. replacing the trust

in a single provider with trust into a verifiable system. However, this leads to

its own challenges. While using a distributed system, only the creator of an

identity should be able to modify it, and the integrity of the created identities

has to be ensured.

36 3 DecentID

(2) Privacy of identities

Attributes in DecentID should be protected against unauthorized access, i.e.,

not everyone should be able to read the private data. For example, storing

an email address as an attribute is useful in many cases, but could easily be

abused for spam messages. Additionally, access to unique identifiers like the

email address would permit linkability of multiple identities of the same user.

This also includes metadata. For example, there should be no publicly readable

list of attribute names, even when the attribute data itself is protected.

Furthermore, complete identities have to be protected. The identifiability of the

user should be avoided, i.e., it should not be possible to find the offline identity

of the creator of an identity. Related is the goal that third parties should be

unable to find out that a user presents their identity to another user.

(3) Multiple pseudonymous identities for different contexts

On the Internet many users want to create separate identities for different

contexts. For example, most people have separate digital identities for business

and private life, represented by two different email addresses. As such, DecentID

should support multiple identities per user, where the user can choose whether

the identities represent their real or a freely chosen, pseudonymous, identity.

When maintaining multiple identities, it is important to ensure the unlinkability

of that these identities. Otherwise, it would be possible to find out multiple or all

identities of a user when only one of them is known. In that case, maintaining

multiple identities would no longer protect the privacy of the user.

In the following sections, the design of DecentID is presented. The properties of

the approach will be presented, and the taken design decision justified based on the

aforementioned design goals.

3.3 Example Scenario 37

3.3 Example Scenario

A use case for the identities created with DecentID would be authentication for an

online service, for example a webforum. To join such a forum and communicate with

other participants, a user has to create an identity for it.

Definition 3.1: User

A user is a person using DecentID to manage their identities. Within DecentID,

a user U is represented by their public key pubKe yUi
of their asymmetric key

pair. The private key privKe yUi
matching the public key pubKe yUi

is kept

secret and is only known to the user. Multiple public keys might be in use in

parallel by the same user. pubKe yUi
is the i-th public key of user U , e.g., the

5th public key of user B would be pubKe yB5
.

As described in definition 3.1, a user is a person using DecentID to digitally represent

themselves. DecentID is based on smart contracts on the blockchain Ethereum.

This is a step towards design goal 1, since the use of smart contracts ensures that

only permitted users, but no single identity provider, can modify the identities. To

interact with Ethereum, a user is represented by a cryptographic public key. In this

scenario, a user Alice is represented by three public keys: pubKe yA1
, pubKe yA2

, and

pubKe yA3
. For these keys, Alice has the matching private keys privKe yA1

, privKe yA2
,

and privKe yA3
. Her ownership of these private keys can be proven towards others by

using the private keys to create digital signatures over random data. Others can then

verify the signatures by using the public keys she presented to them. While they are

called “public keys” in a cryptographic sense as opposed to the “private keys”, a user

of DecentID should not actually display all their public keys publicly at one place,

e.g., listing them on their website. By using multiple public keys, a user can maintain

multiple digital identities for different purposes. Those identities cannot be linked to

each other, as long as it is kept secret that a single user created all these public keys.

Definition 3.2: Service

A service is an online entity that requires a digital identity to use its offered

features. Similar to a user, a service S is identified by its public key pubKe yS .

While a service could use multiple public keys, in this work it is assumed that

only a single one is used.

Within DecentID, there is no technical difference between a user and a service as

defined in definition 3.2. However, for ease of explaining the system a service is

considered a special type of user which offers something to the users interacting with

38 3 DecentID

it. Different from a user, the public key used by a service is commonly known by

others. For example, a service S could display its public key pubKe yS on its webpage

so that interested users can access it. In practice, a service could also use multiple

public keys the same as a user does. However, in the following it is assumed that

a service only uses a single public key and has no reason to use multiple ones. In

this example scenario, three services are considered which are offering three distinct

webforums for their users. Within the webforums, the users can talk to other users

online about the topics discussed in the specific webforum. The webforums also offer

their users to present a user profile to other users of the respective webforum, where

personal data can be displayed by the user.

Service S offers a webforum where its users can discuss about their hobby of skiing.

The service is identified by its public key pubKe yS .

Service P offers a webforum where its users can discuss about their pets. The service

is identified by its public key pubKe yP.

Service D offers a webforum where its users can discuss about their dogs. The

service is identified by its public key pubKe yD.

Service D

 Dogs!

 pubKeyD

Service P

 PetLife

 pubKeyP

Service S

 Skiing

 pubKeyS

pubKeyA3

pubKeyD

nPosts: 142

Shared Identity SI{A,D,P}

pubKeyP

Attributes:

Permitted user 1 / creator:

Permitted user 2:

Permitted user 3:

pubKeyA2

pubKeyP

Shared Identity SI{A,P}

Attributes:

Permitted user 1 / creator:

Breed: Bengal

Photo:

Permitted user 2:

pubKeyA1

pubKeyS

Shared Identity SI{A,S}

Permitted user 1 / creator:

Permitted user 2:

User A

 Alice

 pubKeyA1

 pubKeyA2

 pubKeyA3

Figure 3.1: Alice is using shared identities to interact with services. Two of the shared

identities contain attributes describing them.

In figure 3.1 the example scenario is depicted. The user Alice, identified by her public

keys pubKe yA1
, pubKe yA2

, and pubKe yA3
has created three shared identities SI{A,S},

SI{A,P}, and SI{A,D,P} to use for three webforums. The services offering the webforums

are identified by their respective public keys pubKe yS , pubKe yP, and pubKe yD. As

such, Alice has three pseudonymous identities, as described in design goal 3.

3.3 Example Scenario 39

Definition 3.3: Shared Identity

A shared identity SI{A,S} is a digital representation of a user A and has been

created by this user A. Further users and services, e.g., service S, can be

permitted to access the shared identity. It can contain attributes describing the

user A. These attributes could have been created by the user themselves or

other permitted users. Within DecentID, a shared identity is represented by a

SharedIdentityContract (see section 3.5) and the attributes that are part of it.

As described in definition 3.3, a shared identity exists between a user and a service.

As seen in figure 3.1, the user Alice, identified by pubKe yA1
, has created a shared

identity SI{A,S} with the service identified by pubKe yS . This shared identity is used

to represent Alice towards the service when she uses the provided webforum to talk

about skiing. Since no further data is part of this shared identity, the service only

knows the shared identity SI{A,S} and the public key pubKe yA1
. It does not know that

the public key belongs to Alice, does not know about her other public keys, nor does

it know about her other shared identities.

The shared identity SI{A,P} that has been created by Alice to use for the webforum

“PetLife” provided by service P, also contains an attribute.

Definition 3.4: Attributes

An attribute can be created by a user or a service and contains some arbitrary

data. Two types of attributes are differentiated in DecentID: small attributes,

that are stored on the blockchain, and large attributes, that are referenced

from the blockchain but are stored in an external storage.

To describe her cat to other users, Alice added two attributes to her identity SI{A,P}: a

small attribute, describing the breed of her cat, and a large attribute, containing a

photo of her cat. While the small attribute is stored within the shared identity on the

blockchain, the large attribute is stored off-chain in an arbitrary storage to reduce

the financial cost of storing it. The service P has been granted access to her shared

identity SI{A,P} by Alice and is able to read the contained attributes.

To talk about dogs on the webforum provided by service D, Alice created the shared

identity SI{A,D,P} while using her public key pubKe yA3
. The service D then added

an attribute to the identity SI{A,D,P} created by Alice, which describes the number of

posts Alice wrote within the webforum. This is depicted on the right of figure 3.1. To

talk about dogs on the “PetLife” forum of service P as well, Alice added the public

key pubKe yP of service P to the shared identity SI{A,D,P}.

40 3 DecentID

Now that the public key of service P has been added, it is able to read all attributes

linked to the shared identity SI{A,D,P}, independent of who added the attribute to

the identity. The inverse is also true: If service P adds an own attribute to the

shared identity, all other users permitted to access the identity can read this attribute.

However, just because a service is able to read an attribute, that does not mean that

it has to use the data contained within it. For example, service P is able to read the

attribute containing the number of posts written in the forum of service D. But since

this is no property of the identity that is of interest for service P, it is ignored by it. In

the future, service P might still decide otherwise and start using the attribute. Other

users or services, which have not been added to SI{A,D,P}, are not able to read the

attached attributes. Due to this, the confidentiality of the attributes is ensured, which

is part of design goal 2.

Since Alice used different public keys for her shared identities, each service only

knows about the shared identities they have been added to as permitted users. This

means, that service S only knows about the shared identity SI{A,S} and can only read

the attributes contained within it (which are currently none). Service P is able to

access both identities SI{A,P} and SI{A,D,P}, but does not know that they have been

created by the same user since different public keys have been used. The attributes

contained in these identities can be read by service P. Service D is able to read the

attributes contained in the shared identity SI{A,D,P}, but does not know about the

other two shared identities of Alice. As such, the privacy component of design goal 3

is fulfilled.

3.4 Important terms and variables 41

3.4 Important terms and variables

In this section, some terms are listed which are used in the rest of the chapter. These

terms are shortly explained here for reference, a longer explanation is found on the

listed page.

3.4.1 Definitions

Term Description Page

Attributes Created by a user and contains some data. 39

Creator The creator of a shared identity or attribute is

the user that created it.

44

Off-chain attribute An off-chain attribute is an attribute stored

outside the blockchain in external storage.

50

On-chain attribute An on-chain attribute is an attribute stored within

a SharedIdentityContract on the blockchain.

46

Owner The owner of an AttributeContract is the user

that the AttributeContract was created for.

53

Permitted user A permitted user is a user that has been permitted

access to a shared identity.

44

Service A service is a type of user that offers a platform

to interact with other users.

37

Shared Identity SI{U} A digital representation of a user U . 39

User U A person using DecentID to manage their identi-

ties, represented by their public keys pubKe yUi
.

37

Table 3.1: General terms used in this chapter.

42 3 DecentID

3.4.2 Smart contracts and files

Term Description Page

AttributeContract

ACi

A smart contract, representing an attribute stored

off-chain.

51

AttributeData

ADi

Stored in external storage, contains the data of

an attribute.

52

AttributeLocatorFile

ALF{U ,S},i

Stored in external storage, contains a list of block-

chain addresses to AttributeContracts.

51

IdentityLocatorFile

I LF{U}

Similar to the AttributeLocatorFile, stored off-

chain and contains references to the Shared-

IdentityContracts of a user U .

55

RootIdentityContract

RIC{U}

A smart contract, storing multiple references

to the SharedIdentityContracts and Attribute-

Contracts of a user U .

55

SharedIdentityContract

SIC{U ,S}

A smart contract, the technical representation of

the shared identity of user U , used for service S.

43

Table 3.2: The smart contracts and off-chain files used in this chapter.

3.4.3 Cryptographic keys

Term Description Page

kSIC{U ,S} kSIC{U ,S} is a symmetric attribute encryption key

used for encrypting the attribute data stored

within the SharedIdentityContract SIC{U ,S}.

44

privKe yUi
The i-th private key privKe yUi

of a user U .

Forms an asymmetric key pair together with the

public key pubKe yUi
.

–

pubKe yUi
The i-th public key pubKe yUi

of a user U . Forms

an asymmetric key pair together with the private

key privKe yUi
.

–

Table 3.3: The cryptographic keys used in this chapter.

3.5 Shared Identities 43

3.5 Shared Identities

In this section, the creation of a shared identity for the user Alice is described step by

step. The created identity is then shared with an online service. Alice is represented

by her public key pubKe yA1
, the service S by its public key pubKe yS . Alice creates a

shared identity SI{A,S} and grants the service access to it. Afterwards, Alice adds a

small on-chain attribute to the shared identity, while the service adds a large off-chain

attribute. The off-chain attribute can then be shown to another service by Alice.

3.5.1 Creating and sharing SharedIdentityContracts

Within DecentID, shared identities are represented by SharedIdentityContracts and

additional attributes stored in or referenced by it.

Definition 3.5: SharedIdentityContract

A SharedIdentityContract SIC{U ,S} is an instantiation of the shared identity of a

user U within DecentID, that is shared with a service S. It is a smart contract on

the blockchain Ethereum and can be accessed by its fixed address on the block-

chain until it is deleted by its creator. The contents of a SharedIdentityContract

are:

• A list with at least one permitted user, represented by their public keys.

The first permitted user is the creator of the SharedIdentityContract.

• For each permitted user, a symmetric encryption key kSIC{U ,S} used for

the stored attributes.

• For each permitted user, an arbitrary number of attributes. All permitted

users are able to read all attached attributes and add own ones.

A user is able to maintain SharedIdentityContracts towards multiple other users

or services.

To begin creating her shared identity, Alice deploys a SharedIdentityContract, which

is the central part of DecentID, to the blockchain. This smart contract is created

at the blockchain address SIC{A,S}. Initially, only Alice is able to access its data.

The blockchain transaction to create this smart contract is sent from her Ethereum

account identified by her public key pubKe yA1
. On construction, the smart contract

automatically adds this public key as the first permitted user of SIC{A,S}.

44 3 DecentID

Definition 3.6: Permitted user

A permitted user is a user or service that has been permitted access to a shared

identity. They are identified by their public keys which are stored within the

SharedIdentityContract. Permitted users are able to read all attributes that

are part of the shared identity, as well as to add own attributes to it. Only the

public keys of users that have been permitted access to the shared identity are

stored within it.

As permitted user, Alice is able to add and remove attributes to SIC{A,S}. Since Alice

is the first permitted user, she is also the creator of the SharedIdentityContract.

Definition 3.7: Creator

The creator of a shared identity or attribute is the user or service that created

the identity or attribute. The public key that was used to send the blockchain

transaction creating the SharedIdentityContract is automatically stored as its

first permitted user and as such as its creator.

As creator, Alice is additionally able to add and remove further permitted users. Also,

she is the only one able to remove the SharedIdentityContract from the blockchain

if it is no longer needed at some time in the future. As such, she is the only person

being in control of the SharedIdentityContract, as required by design goal 1.

Even though no attributes are contained in the new SharedIdentityContract yet, Alice

has to provide an attribute encryption key kSIC{A,S} when creating the contract.

Definition 3.8: kSIC

kSIC{U ,S} is a symmetric attribute encryption key used for encrypting the

attribute data stored within the SharedIdentityContract SIC{U ,S} as well as in

linked AttributeLocatorFiles. One kSIC{U ,S} is used per SharedIdentityContract.

Copies of the key are encrypted with the respective pubKe yPi
for each permitted

user P and stored encrypted in the SharedIdentityContract.

kSIC{A,S} is a newly generated symmetric encryption key, used to encrypt any at-

tributes that will be added to the identity. Ensuring the confidentiality of the attributes

is an important step towards design goal 2, i.e., to protect the privacy of the users

data. The same kSIC{A,S} is used for encrypting and decrypting the attributes attached

by all permitted users of the identity SIC{A,S}. To protect kSIC{A,S} from unauthorized

access, it is encrypted with Alice’s public key pubKe yA1
before being added to the

newly created SharedIdentityContract SIC{A,S}.

3.5 Shared Identities 45

To allow the service S to access her SharedIdentityContract SIC{A,S} and future con-

tained attributes, Alice adds the public key of the service pubKe yS as an permitted

user to SIC{A,S}. This public key pubKe yS could for example be available on a web-

site provided by the service. While Alice might not want that anyone knows that

pubKe yA1
is owned by her for privacy reasons, the service wants to be accessible

for others and as such displays its public key. Before adding the pubKe yS to the list

of permitted users, the smart contract code of SIC{A,S} ensures that pubKe yS is not

registered as a permitted user already.

Since the future attributes will be encrypted, the service needs access to the attribute

encryption key kSIC{A,S} as well. For this, Alice encrypts kSIC{A,S} with pubKe yS and

adds encpubKe yS
(kSIC{A,S}) to SIC{A,S}. Now, kSIC{A,S} is stored in the SharedIdentity-

Contract twice: once encrypted for Alice, and once for the service.

Service S

pubKeyS

pubKeyA1

SharedIdentityContract SIC{A,S}

Permitted user 1 / creator:

Alice

pubKeyA1

Attribute key:

encpubKeyA1
(kSIC{A,S})

pubKeyS

Permitted user 2:

Attribute key:

encpubKeyS
(kSIC{A,S})

Figure 3.2: A SharedIdentityContract with Alice as creator and a service as an additional

permitted user.

Figure 3.2 shows the state of the newly created SharedIdentityContract SIC{A,S}. Alice,

represented by her public key pubKe yA1
, is listed within the SharedIdentityContract

as the first permitted user and creator of it. The attribute encryption key kSIC{A,S}
for this contract is encrypted with pubKe yA1

and stored in the contract as well. Since

Alice has access to the private key privKe yA1
matching pubKe yA1

, she is able to

decrypt encpubKe yA1
(kSIC{A,S}) and retrieve kSIC{A,S} to encrypt and decrypt the future

attributes. Similarly, the service S which is identified by its public key pubKe yS has

been added as a permitted user to SIC{A,S}. The service has access to its own copy of

kSIC{A,S} which is encrypted with pubKe yS .

Now that the shared identity has been created, Alice can inform the service about the

newly created SharedIdentityContract SIC{A,S}. This could be done by entering the

blockchain address SIC{A,S} of the SharedIdentityContract into a form on the website

of the service, or automatically by a smartphone application that also automated

the creation of the SharedIdentityContract. The service can then access the shared

identity, and is able to recognize Alice when she wants to interact with the service.

46 3 DecentID

Adding a second service to the same SharedIdentityContract SIC{A,S} would be possible

as well. This would grant the second service access to the attributes appended by both

Alice and the first service S, since each permitted user of a SharedIdentityContract is

able to read all contained attributes. As seen in the introductory example scenario

in section 3.3, using one shared identity with multiple services could be done to

maintain one identity used for a certain topic on multiple online services.

3.5.2 On-Chain Attributes

Two types of attributes are supported in DecentID: on-chain and off-chain attributes.

The data of on-chain attributes is stored directly in the SharedIdentityContract,

whereas the data of off-chain attributes is stored in an external storage. In this

section on-chain attributes are explained, the following section explains how off-

chain attributes are linked to the identity.

To enable the service to send her a newsletter, Alice wants to add her email address

as an on-chain attribute to SIC{A,S}. While this section uses Alice as an example, it

should be noted that all permitted users are able to add attributes to the Shared-

IdentityContract.

Definition 3.9: On-chain attribute

An on-chain attribute is a small attribute stored within a SharedIdentityContract.

At t r{U ,S},i. j denotes the j-th attribute of the i-th permitted user in SIC{U ,S}. It

can be accessed with the indexing key Index{U ,S},i. j. Additional data about the

attribute is provided by its flags.

The on-chain attributes are stored in a mapping within the SharedIdentityContract.

A mapping in Solidity, a programming language for smart contracts in Ethereum, is

a key-value data structure, where the data value is addressed with the hash value

of its indexing key. As such, there is no order of attributes, the indices used in the

following are only for explanation. In DecentID, the stored data value consists of the

flags of the attribute, as well as the attribute data itself. For each permitted user, a

separate attribute mapping exists, containing the attributes the respective permitted

user added to the SharedIdentityContract. While all permitted users are able to read

all attributes attached to the identity, they are only able to add, modify, or remove

attributes stored in their own mapping.

The attribute mapping for one permitted user is shown in figure 3.3. In the following,

the indexing key, the flags, and the data value will be explained.

3.5 Shared Identities 47

mapping (string => Attribute{byte flags, bytes data})

Figure 3.3: Pseudocode of a mapping of attributes.

Within DecentID, the indexing key is an arbitrary string the user selects to address

the attribute. Technically, not the string but the hash value of the string is used to

index the stored data. Also, the hash value of the indexing key is not stored within

the smart contract. On the one hand, this improves the privacy of the users data

since it is not possible to read the used indexing keys from the stored contract. Doing

so would grant an adversary information about the users attributes, even when the

attributes themselves are encrypted. On the other hand, that means that it is not

possible to iterate over the list of stored attributes with Solidity. The data value at a

known indexing key can be retrieved, but by itself there is no possibility to iterate

over all used indexing keys of a mapping. If this functionality is required, an adjacent

list of indexing keys could be stored in the smart contract.

The flags stored for each attribute contain some metadata about the stored attribute

data. They are stored as a bit set next to the attribute data, i.e., the single bits of the

stored byte are interpreted. Specifically, the following flags are currently supported:

Set In Solidity it is not possible to determine whether a mapping entry is not set

or is set to zero. Consequently, when an attribute with an empty string as data is

added, some way is needed to mark the attribute as set. A possible use case why

some user might want to do so could be to store a single bit of data: It is enough to

know whether the attribute was set, its value does not matter. As such, this flag is set

for all existing attributes. Additionally, it is also used as a parameter when calling

a function to set the value of an attribute: If the flag is set in the flags of the new

attribute, the attribute is stored, otherwise it is removed.

Encrypted This flag informs whether the attribute data is encrypted with the attribute

encryption key kSIC{A,S} or not. Especially when storing binary data in the attribute

it might be impossible to determine whether the stored data is encrypted by only

checking the data itself. To ensure the confidentiality of the users data, most attributes

should be stored encrypted. However, in some cases it could be desirable to explicitly

not encrypt the attribute data, e.g., to store an attribute that should be read by

another smart contract without access to kSIC{A,S}.

External Storing on-chain attributes within the blockchain is quite financially expen-

sive. As such, it is preferable to store large attributes, e.g., a profile picture, in some

cheaper external storage. To determine whether the stored data is the attribute itself

or a reference to an external, off-chain, storage, this flag is used. Off-chain attributes

are explained later on in section 3.5.3.

48 3 DecentID

DecentID makes no assumptions about the type of data that is stored within the

identity attributes. Technically, the attribute data itself is stored as a byte array within

the smart contract. This means that it can, but does not have to be, a human readable

string. Consequently, arbitrary machine-readable binary data or human-readable

strings can be stored in the attributes. Which data is stored in which format is

determined by the use case of the attribute, e.g., it could be a human readable string

or a list of binary data entries. If the attribute is supposed to be encrypted, it is

encrypted with the symmetric attribute encryption key kSIC{A,S} before the attribute

is added to the SharedIdentityContract.

Service S

pubKeyS

pubKeyA1

SharedIdentityContract SIC{A,S}

Permitted user 1 / creator:

Alice

pubKeyA1

Attribute key:

encpubKeyA1
(kSIC{A,S})

pubKeyS

Permitted user 2:

Attribute key:

encpubKeyS
(kSIC{A,S})

Index{A,S},1.1 -> Attr{A,S},1.1

Attributes:

Index{A,S},1.2 -> Attr{A,S},1.2

Figure 3.4: A SharedIdentityContract with two on-chain attributes, created by Alice.

In figure 3.4 the SharedIdentityContract SIC{A,S} is depicted. The attribute mapping

of the first permitted user, Alice, contains two attributes, that can be looked up by

their indexing keys Index{A,S},1.1 and Index{A,S},1.2: They are the first two attributes

added by the first permitted user of SIC{A,S}. In this example, the first attribute is the

email address of Alice, which means that Index{A,S},1.1 is the hash value of the string

“email”:

Index{A,S},1.1 = H(”email”)

At t r{AS},1.1 is the data stored in this mapping referenced by Index{A,S},1.1. It contains

Alice’s email address “alice@example.com” as well as the flags of the attribute.

Since Alice does not want the email address to be publicly readable, she encrypts it

with the symmetric attribute encryption key kSIC{A,S} of the SharedIdentityContract:

enckSIC{A,S}(”alice@example.com”). As such, the flags denote the attribute as set, as

encrypted, and as on-chain. Together, the flags and the encrypted email address form

the stored attribute:

At t r{A,S},1.1 = {Set|Encr ypted; enckSIC{A,S}(”alice@example.com”)}

3.5 Shared Identities 49

Everyone with access to the blockchain is now able to retrieve At t r{A,S},1.1 from the

smart contract. However, only permitted users registered in SIC{A,S}, e.g., the service

S, are able to read the attribute encryption key kSIC{A,S}, and decrypt the encrypted

email address. As such, only users permitted by Alice are able to retrieve her email

address from the stored attribute. The same is true for other attributes attached to

SIC{A,S}, for example At t r{A,S},1.2.

1 function getAttribute (address _user, string memory _key)

2 public view returns (bytes memory) {

3 if (users[_user].key.length == 0) {

4 return "";

5 }

6 Attribute memory attr = users[_user].attributes[_key];

7 if ((attr.flags & flag_set) == 0) {

8 return "";

9 }

10 return attr.data;

11 }

Figure 3.5: The source code of the SharedIdentityContract for retrieving attribute data.

The source code of the smart contract function to read an attribute from the Shared-

IdentityContract is depicted in figure 3.5. The depicted function has three parts:

checking whether the permitted user exists (line 3-5), checking whether the attribute

is set (line 6-9), and returning the attributes data (line 10). The first if-clause in

line 3 checks whether a permitted user with the given public key is stored within the

mapping of permitted users. Within Solidity, public keys and blockchain addresses

are both stored in the data type address. If the permitted user with the given public

key _user has an attribute encryption key kSIC{A,S} stored in their variable key, they

are registered within the smart contract. Since Solidity does not differentiate between

an entry not existing in a mapping or being set to zero, part of the data value, in

this case the variable key containing kSIC{A,S} for this permitted user, is checked

whether it is empty. This should not be the case for any existing permitted user. If

the variable key is not empty, the attribute is checked for existence in line 7. Again, a

part of the data has to be checked whether it is different from zero. In this case, the

flag of the attribute (attr.flags) is checked whether the bit of the flag “set” is zero:

(attr.flags & flag_set) == 0. If the attribute is marked as set, its value is returned

in line 10. Otherwise, if either the permitted user is unknown or the attribute is not

set, an empty string is returned (lines 4 and 8, respectively).

50 3 DecentID

3.5.3 Off-Chain Attributes

For small attributes, e.g., the aforementioned email address, storing them on the

blockchain is financially cheap. However, for larger attributes, e.g., an email cer-

tificate, storing it within the blockchain becomes financially too expensive. As an

alternative, it is possible to store attributes off-chain in external storage.

Definition 3.10: Off-chain attribute

An off-chain attribute is an attribute stored outside the blockchain. A reference

to it is stored within the blockchain in an on-chain attribute.

The contents of the reference on the blockchain depends on the referred to storage.

For example, when a distribute hash table (DHT) is referenced, a reference to the DHT

and the hash of the referred to data has to be stored. When using a web storage, the

URL would be enough to retrieve the file. However, if the integrity of the referenced

data needs to be ensured, an additional hash of the data has to be stored in the

smart contract. Otherwise, the referenced data could be modified by the web storage

provider. When the permitted users of the shared identity are unable to verify the

integrity of the attributes, the stored data cannot be trusted and should not be used.

Service S

pubKeyS

pubKeyA1

SharedIdentityContract SIC{A,S}

Permitted user 1 / creator:

Alice

pubKeyA1

Attribute key:

encpubKeyA1
(kSIC{A,S})

pubKeyS

Permitted user 2:

Attribute key:

encpubKeyS
(kSIC{A,S})

Index{A,S},1.1 -> Attr{A,S},1.1

Attributes:

Attributes:

Index{A,S},2.1 -> Attr{A,S},2.1

AttributeLocatorFile ALF{A,S},1

enckSIC{A,S}

{kAttr1, AddrAC1
}

AttributeContract AC1

pubKeyS

Creator:

Addr. AttributeData:

enckAttr1(AddrAD1
)

AttributeData AD1

enckAttr1

<data>

Figure 3.6: A SharedIdentityContract with an on-chain attribute created by Alice, and

an off-chain attribute created by the service.

Figure 3.6 displays the files and smart contracts used when storing attributes outside

the blockchain. At t r{A,S},2.1 in the SharedIdentityContract SIC{A,S} contains a reference

to an AttributeLocatorFile ALF{A,S},1 stored in an external storage. Within ALF{A,S},1,

a list of symmetric encryption keys and blockchain addresses can be stored. In

this example, only a single key and address is stored. This address refers to an

AttributeContract AC1 on the blockchain, which itself contains another reference to

the AttributeData AD1 stored in the external storage.

3.5 Shared Identities 51

While the multiple references bring a certain overhead with them, they also offer some

advantages to the users. Most importantly, storing data in an external storage is much

cheaper than storing data on the blockchain. This way, even large attributes can be

stored, which might be prohibitively expensive or even impossible on-chain. Especially

when multiple attributes should be stored the presence of the AttributeLocatorFile

reduces the amount of storage needed on the blockchain.

In the following, these files and smart contracts will be discussed.

Definition 3.11: AttributeLocatorFile

A file ALF{U ,S},i stored in an external storage, containing a list of blockchain

addresses to AttributeContracts. For each blockchain address AddrAC j
, an

additional symmetric encryption key kAt t r j can be stored.

The purpose of the AttributeLocatorFile ALF{A,S},1 is to reduce the number of attribute

references that have to be stored on the blockchain. If many attributes should be

added to a SharedIdentityContract but the list of attributes is rarely or never modified,

it is more cost efficient to store the list of attribute in ALF{A,S},1 instead of in SIC{A,S}.

Since the AttributeLocatorFile can become quite large, it is stored off-chain, e.g.,

in a distributed hash table. To protect ALF{A,S},1 against unauthorized access, it

can be encrypted with the symmetric attribute encryption key kSIC{A,S} stored in

SIC{A,S}. Whether this is the case can be recorded in the flags of the on-chain attribute

referencing ALF{A,S},1, i.e. At t r{A,S},2.1 in figure 3.6. The encryption key kAt t r1 stored

in ALF{A,S},1 is used to encrypt the data in the AttributeContract AC1, as well as Alice’s

email certificate itself in the AttributeData file AD1.

Definition 3.12: AttributeContract

The AttributeContract ACi is a smart contract stored on the blockchain, repre-

senting an attribute stored off-chain. It contains the public key of the user that

created it, as well as the address of the AttributeData ADi it represents.

Within the blockchain, AC1 contains the public key of the creator of the attribute

as well as the off-chain address of the attribute. Its purpose is to prove the creator

of the attribute. Since the public key privKe yS of the creator of the smart contract

is permanently set on its deployment, no one except the owner of privKe yS could

have created AC1. Additionally, AC1 ensuring the integrity of the attribute data. The

contained address AddrAD1
of the attribute is encrypted with kAt t r1.

52 3 DecentID

Definition 3.13: AttributeData

A file ADi stored in an external storage that contains the data of an attribute.

It is encrypted with a unique symmetric attribute encryption key kAt t ri.

The attribute data file AD1 contains the attribute itself and is stored in the external

storage. As with on-chain attributes, the format of the contents of the attribute are

use case specific and are not specified by DecentID.

To retrieve the data of off-chain attributes, more work is required as for retrieving

on-chain attributes. The contents of At t r{A,S},2.1 can be retrieved from the Shared-

IdentityContract SIC{A,S} and decrypted as described in section 3.5.2. However, this

does not contain the attribute data but only the address of ALF{A,S},1 in the off-chain

storage. ALF{A,S},1 can now be retrieved from the storage and its contents be de-

crypted with kSIC{A,S}. Contained is the address of AC1 and the symmetric attribute

encryption key kAt t r1 used to encrypt the contents of the smart contract AC1 as well

as the attribute data in AD1. After retrieving AC1 from the blockchain and decrypting

it, the service can verify the public key stored in AC1. The key should be from a

known user or service, in this case from service S. At last, the data can be retrieved

from AD1 in the off-chain storage where it resides at the address stored in AC1.

As explained above, each file and contract used for off-chain attributes has a certain

purpose: The AttributeLocatorFile ALF{A,S},1 stores a list of attributes, the Attribute-

Contract AC1 proves the creator of an attribute, and the AttributeData AD1 stores large

attributes off-chain. While all three of these have been used in the above scenario,

not all of them have to be used in each case.

For example, since only a single large attribute has to be stored in the presented

scenario, using the AttributeLocatorFile ALF{A,S},1 could be skipped and the attribute

entry in SIC{A,S} could directly refer to the attribute. In that case, using the Attribute-

Contract AC1 would not be required either, since only the service S is able to assign an

attribute reference to the list of its attributes in SIC{A,S}. As another example, it might

be sufficient to only use the AttributeLocatorFile ALF{A,S},1 if numerous small attributes

should be linked from SIC{A,S}. In that case, the attribute data could be stored directly

within ALF{A,S},1 without using the additional AttributeContract or AttributeData.

While small attributes can be stored within SIC{A,S}, storing many small attributes is

still financially cheaper when stored off-chain within an AttributeLocatorFile.

3.5 Shared Identities 53

3.5.4 Granting Attributes

When using online identities, a frequent occurrence is that properties of a user are

confirmed by another user or service. For example, email certificates are created

by a certificate authority to confirm that the contained public key really belongs to

a certain email address [Boe+08]. Afterwards, the user can present the certificate

towards a third party, which is called verifier in the following. The verifier is then

able to check the data contained in the certificate, and, if they trust the certificate

authority, accept the contained public key as belonging to the email address.

When using smart contracts, parts of this confirmation process becomes simpler.

Without smart contracts, the creator of such a certificate is identified by their public

key, and proves the ownership of the accompanying private key by adding a signature

within the certificate. With smart contracts, the public key can be automatically

stored within the smart contract on deployment. Storing a signature is not required,

since without the matching private key the transaction creating the smart contract

could not have been send. Additionally, the program code of the smart contract

ensures that the stored creator cannot be changed later on. Similarly, the program

code of the smart contract can ensure that the owner of the certificate, i.e., the user

for whom something is confirmed, can only be set by the creator of the smart contract

and can only be set once.

To include this functionality into DecentID, the AttributeContract has been extended.

This way, one user, the creator of the AttributeContract, can grant the ownership of

the AttributeContract to another user, its new owner.

Definition 3.14: Owner

The owner of an AttributeContract is the user or service that the Attribute-

Contract was created for. The creator of an AttributeContract is able to set the

ownership of it to another user, which is identified by their public key.

For this, two public keys are now stored in the AttributeContract. The first public key

is of the creator of the contract. This public key should be made generally known,

e.g., by publishing it on the website of a service. By checking this key, a verifier can

later on ensure that the AttributeContract has really been created by this service. The

second public key is of the owner of the AttributeContract. To protect their privacy,

the receiving user should create a new public key. If the same public key is used

for both the AttributeContract and a SharedIdentityContract, a third party can find

out that the same public key has been used, and that the AttributeContract and the

SharedIdentityContract are owned by the same user. As before, the address of the

AttributeData is still contained within the contract.

54 3 DecentID

When creating the attribute, it has to be considered whether encryption is used for

the attributes data. If the attribute is stored unencrypted, everyone can read its data.

Depending on the use case of the granted attribute, this can be what is wanted by the

attribute creator and owner anyway. If the attribute should be stored in encrypted

form, a single-use encryption key should be generated for it. This encryption key

then has to be stored in the shared identity that the verifier can access, e.g., as the

encryption key for the attribute as stored in the AttributeLocatorFile. If the same

encryption key is used for multiple attributes within SIC{A,S} between owner and

creator of the attribute, all these other attributes become readable to the verifier as

well, even when the verifier is not added as a permitted user to SIC{A,S}.

Service S

pubKeyS

Alice

pubKeyA2

AttributeContract AC1

pubKeyS

Creator:

Addr. AttributeData:

enckAttr1(AddrAD1
)

AttributeData AD1

enckAttr1

<data>

pubKeyA2

Owner:

...

Figure 3.7: Extended excerpt of figure 3.6: The AttributeContract AC1 now contains a

creator as well as an owner.

In figure 3.7, the AttributeContract AC1 presented in the previous section has been

extended by the public key of an owner. Service S created the AttributeContract, so

its public key pubKe yS is automatically stored as the creator of AC1 on deployment

of the contract. Since this public key is generally known, other users can verify that

AC1 has been created by the service S. The user Alice created a new public key,

pubKe yA2
, to be registered as owner of AC1. This way, the AttributeContract can also

be referenced from other SharedIdentityContracts Alice uses, without disclosing the

address of SIC{A,S} or Alice’s public key used for SIC{A,S}, which would allow a third

party to find out that both AC1 and SIC{A,S} are owned by Alice. Due to the code of

AC1, only its creator is able to set the owner of it. Consequently, a verifier can be sure

that Alice, identified by pubKe yA2
, has been granted this attribute by the service S,

identified by its known pubKe yS .

As before, AD1 is linked from AC1. Continuing the example of an email certificate,

AD1 would contain Alice’s email address, the encryption key used to write encrypted

emails to it. Other information, i.e., the identity of the certificate authority, its public

key, and a signature over the certificate data, is no longer required and has been

made obsolete by the source code of the AttributeContract.

3.6 RootIdentityContract 55

3.6 RootIdentityContract

For easier management of the owned identities, the RootIdentityContract RIC{A} has

been designed.

Definition 3.15: RootIdentityContract

The RootIdentityContract RIC{U} is a smart contract stored on the blockchain,

storing references to the SharedIdentityContracts and AttributeContracts of a

user U .

The RootIdentityContract simplifies the use of DecentID, especially when multiple

end devices are used in parallel, e.g., a smartphone and a desktop computer at home.

Since all SharedIdentityContracts can be linked from the RootIdentityContract, all of

them are known on all devices without updating the list of owned identities by some

external means.

Since it should only be accessed by its creator, the address of the users RootIdentity-

Contract is kept private and not shared with any other users or services. Similar to the

SharedIdentityContract and its use of AttributeLocatorFiles, the RootIdentityContract

contains two references to lists of blockchain addresses, with the lists themselves

being stored off-chain. One of them is an AttributeLocatorFile, storing references to

AttributeContracts that are currently not referenced by any SharedIdentityContracts.

The other referenced list is an IdentityLocatorFile.

Definition 3.16: IdentityLocatorFile

Similar to the AttributeLocatorFile, an IdentityLocatorFile I LF{U} is stored

off-chain and contains references to the SharedIdentityContracts of a user U .

It contains the blockchain addresses of all the SharedIdentityContracts of the user.

Additionally, RIC{A} contains an symmetric encryption key kRIC{A}, to encrypt the

addresses as well as the contents of I LF{A} and ALF{A}.

As seen in figure 3.8, the user Alice created a RootIdentityContract RIC{A}. To do

so, a new public key pubKe yA3
was used, that is not used in any other context.

This way, third parties are unable to link RIC{A} to any other blockchain transaction

or smart contract, nor to Alice herself. Within RIC{A}, a symmetric encryption key

kRIC{A} is stored, that is encrypted with the public key pubKe yA3
. As with the

symmetric encryption keys stored in the SharedIdentityContracts, this allows only

permitted users to access the data stored within the contract. In the case of a

RootIdentityContract, only its creator is permitted to access its contents, further

permitted users cannot be added.

56 3 DecentID

pubKeyA3

RootIdentityContract RIC{A}

Creator:

Alice

pubKeyA3

Attribute key:

encpubKeyA3
(kRIC{A})

enckRIC{A}
(AddrILF{A}

)
SharedIdentityContract:

IdentityLocatorFile ILF{A}

enckRIC{A}

{AddrSIC{A,S}}

AttributeLocatorFile ALF{A}

enckRIC{A}

enckRIC{A}(AddrALF{A}
)

Unused Attributes: {kAttr3, AddrAC3
}

Figure 3.8: A RootIdentityContract linking the SharedIdentityContracts and unused

AttributeContracts of the user Alice.

The first reference stored within RIC{A} contains the address of the IdentityLocatorFile

I LF{A}. Only Alice is able to decrypt the contents of this file, and retrieve the block-

chain addresses of the SharedIdentityContracts listed within it. Also, the address of

an AttributeLocatorFile ALF{A} is stored in RIC{A}. Within it, the symmetric encryption

keys for and the addresses of a number of AttributeContracts are stored. In this

example, only a single AttributeContract AC3 is referenced. Since AC3 is currently not

used by any SharedIdentityContract, its address and encryption key are stored in the

ALF{A} referenced from RIC{A}, to avoid losing access to it.

3.7 Replacing Cryptographic Keys

In this section, the different cryptographic keys used within DecentID are discussed.

For each used key, it is considered what has to be done to replace it with a newly

generated key. This can be required for various reasons, most importantly when a

key has been compromised by an adversary.

3.7.1 Keys of permitted users

Within a SharedIdentityContract SIC{U ,S} two asymmetric public keys are stored:

pubKe yU for the first permitted user and creator U of SIC{U ,S}, and pubKe yS for

the service S that has been permitted access to the shared identity (see figure 3.4).

Additionally, for each permitted user a copy of kSIC{U ,S} is stored within SIC{U ,S},

that is encrypted with the public key of the respective permitted user. Instead of

storing complete public keys within SIC{U ,S}, it could be considered to only store

the cryptographic hashes of the public keys. This would reduce the amount of data

stored on the blockchain. However, the complete public key is required for encrypting

kSIC{U ,S}, and can also be used to encrypt messages send to the respective permitted

3.7 Replacing Cryptographic Keys 57

user. If the public keys are not stored within the smart contract, both the identity

creator and the permitted users would need to store these public keys locally on all

of their used devices.

To replace a public key of a permitted user, the respective user has to create a new

asymmetric key pair, and store the new public key within SIC{U ,S}, thereby replacing

the old public key. Additionally, the copy of kSIC{U ,S} encrypted with the old public

key of this user has to be retrieved from the blockchain, decrypted with the old private

key, encrypted with the new public key, and stored in SIC{U ,S} again.

3.7.2 Attribute encryption keys

To encrypt the potentially large attributes within a shared identity SI{U ,S}, symmetric

encryption is used. In general, symmetric encryption is more efficient than asymmet-

ric encryption and has shorter keys. The latter point is important for DecentID, since

the key has to be distributed to all permitted users of a shared identity. Two sym-

metric keys are used to encrypt attributes: kSIC{U ,S}, to encrypt the attributes stored

within the SharedIdentityContract SIC{U ,S} and the AttributeLocatorFiles ALF{U ,S},i
referenced from it, and kAt t r j, to encrypt a single off-chain attribute (see figure 3.6).

To replace kSIC{U ,S}, the cooperation of all registered permitted users is required.

The permitted user U starting the replacement is able to generate a new symmetric

attribute encryption key kSIC ′{U ,S}, encrypt it with the public keys of all permitted

users, and store the encrypted keys in the smart contract SIC{U ,S}. However, all the

attributes and the linked AttributeLocatorFiles have to be re-encrypted with the new

encryption key. For their own attributes, user U is able to do so themselves. The

attributes can be retrieved from the blockchain, decrypted with the old kSIC{U ,S},

encrypted with the new kSIC ′{U ,S}, and stored within SIC{U ,S} again. It works similar

for a linked AttributeLocatorFile ALF{U ,S},i: the ALF{U ,S},i is retrieved from the off-

chain storage, decrypted, re-encrypted, and stored in the off-chain storage again.

Independent of whether the address of ALF{U ,S},i changes through the re-encryption,

the reference to it in SIC{U ,S} has to be re-encrypted with the new kSIC ′{U ,S} as well.

This is done the same way as described above for on-chain attributes.

When kAt t r j is replaced with a new symmetric attribute encryption key kAt t r ′{ j}, the

AttributeData ADj stored off-chain has to be re-encrypted, as well as the reference to

it stored within the AttributeContract AC j stored on-chain. Afterwards, the new key

kAt t r ′{ j} can be stored in the AttributeLocatorFile ALF{U ,S},i, where AC j is referenced

from. Depending on the off-chain storage used, it can be that the address of ALF{U ,S},i
changes when its data is modified, for example when a distributed hash table is

used. If the address changes, the new address of the modified ALF{U ,S},i has to be

58 3 DecentID

stored in SIC{U ,S} in place of the previous reference to ALF{U ,S},i. Otherwise, the

SharedIdentityContract would still reference the old AttributeLocatorFile, containing

the now no longer valid encryption key kAt t r j.

3.7.3 Attribute ownership

Two public keys are stored within AttributeContracts ACi (see figure 3.7). These

denote the creator as well as the current owner of the linked AttributeData ADi, and

are not necessarily the same public keys as in the SharedIdentityContract referencing

ACi. Different from the public keys stored within a SharedIdentityContract, they are

not used for encryption. As such, replacing them is only a matter of storing new

public keys within the smart contract. Both the public keys of the attribute creator as

well as the attribute owner can only be replaced by the user denoted by the creators

public key. The purpose of the AttributeContract is that the creator C of the attribute

can grant an attribute to an arbitrary owner O. Due to this, the assumption of third

parties is that the owner presenting an AttributeContract ACi has been granted this

attribute by the creator of ACi. If the owner of the attribute would be able to replace

their public key by themselves, this assumption no longer holds. The owner O of

ACi would be able to pass on the attribute to an arbitrary other user O′, allowing

them to pretend towards third parties that the attribute has been granted to them.

However, the creator C might know nothing about the new owner O′, despite the

new owner being able to wrongly prove that they do. By using the smart contract

code to enforce that only the creator C is able to change the public key of the owner,

this can be avoided.

3.7.4 Keys in the RootIdentityContract

Within the RootIdentityContract RIC{U}, two cryptographic keys are used: an asym-

metric key pair representing the creator of RIC{U}, and a symmetric encryption key

kRIC{U} to protect the data stored within RIC{U} (see figure 3.8).

The public key pubKe yU of the asymmetric key pair is stored within the smart contract

RIC{U} and is used to encrypt the stored symmetric encryption key kRIC{U}. Since the

user is the only one having access to the RootIdentityContract, both entries can be

replaced without interacting with other users. After a new key pair has been created,

the new pubKe yU ′ can be stored in RIC{U}. The stored kRIC{U} can be decrypted with

the old private key privKe yU , encrypted again with the new public key pubKe yU ′ ,

and the old entry in RIC{U} can be overwritten.

3.8 Implementation 59

The symmetric encryption key kRIC{U} is used to encrypt the references to and the

contents of the linked IdentityLocatorFile I LF{U} and the AttributeLocatorFile ALF{U}.

Replacing it is more complicated than replacing the stored public key pubKe yU , but

works similar to replacing kSIC within a SharedIdentityContract. A new symmetric

key kRIC{U ′} has to be generated by the user, encrypted with pubKe yU , and stored in

the smart contract RIC{U}. Both locator files I LF{U} and ALF{U} have to be retrieved

from the off-chain storage, decrypted, and encrypted again with the new encryption

key kRIC{U ′}. After encrypting them, they can be stored in the off-chain storage

again. Their storage addresses are then encrypted with kRIC{U ′} as well, and stored

in RIC{U}. If the off-chain storage supports removing data from it, the old I LF{U} and

ALF{U} can subsequently be removed.

Replacing one of the attribute encryption keys kAt t ri within the linked ALF{U} can

be done the same way as replacing kAt t r j within an AttributeLocatorFile of a Shared-

IdentityContract.

3.8 Implementation

Two implementation of DecentID have been developed with different goals. The

intention when developing the first implementation was to demonstrate the use

and functionality of DecentID. The second implementation has been a prototypical

implementation of a smartphone application. For once, it showed that DecentID is

efficient enough to use it on a smartphone. Furthermore, the implementation can be

used as a basis for an application used by the general public.

In the following, these two implementations will be presented. For ease of implemen-

tation and demonstration, both implementations operate on local Ethereum instances.

Compared to using the official Ethereum network, a local blockchain instances offers

some advantages. For example, it can operate without the delays necessary for the

functioning of a public blockchain and as such allows faster operations, especially

important when developing or demonstrating DecentID. Also, no fees have to be paid

to write data to the local blockchain. However, only a change in the configuration of

the implementations is required to use the official Ethereum network instead.

3.8.1 Demonstrator

The demonstrator for DecentID consists of four web applications. It demonstrates

how an identity is created, accessed by online services, and how attributes are granted

and displayed. The four web applications can be run on a single as well as on multiple

60 3 DecentID

computers. Independent of whether the web applications are run on one or multiple

computers, they do not interact with each other directly. Instead, all data exchange

is only done through the SharedIdentityContracts stored in the local blockchain. The

web applications are listed here and explained in detail in the following:

• The first web application allows to create a DecentID identity.

• The “university website” allows the user to receive an attribute for their DecentID

identity, confirming the student status.

• At an “online shop”, the student attribute can be presented for a discount.

• At the fourth web application, the state of all identities stored on the local

blockchain is visualized.

The initial version of this demonstrator has been implemented as a prototype as

part of the master thesis of Ingo Sobik [Sob17], while most of the demonstrator was

designed and implemented in cooperation with the student assistant Philipp Matheis.

It is based on the JavaScript framework Meteor1 to display the current state at the

users webbrowser and communicate with the server. There, the library web3x2 is

used to interact with a locally running Ethereum client. For storing the attributes,

the distributed hash table Swarm3 is employed.

3.8.1.1 Architecture

The software architecture of the demonstrator follows the usual approach for using

the JavaScript framework Meteor. As depicted in figure 3.9, the web applications of

the demonstrator each consist of a client and a server part, with the server part using

server side services for blockchain access and data storage.

For Meteor projects, the database MongoDB is used as a default for storing the users

data. However, for the demonstrator this is not needed since all data is stored on the

blockchain Ethereum or in the distributed hash table Swarm. Swarm can be accessed

from the JavaScript code directly since it offers a HTTP interface. To access Ethereum,

the library web3x is employed. It offers descriptions of the used smart contracts in

JSON format and allows to send transactions and call smart contract functions on

the blockchain.

1https://www.meteor.com/ Accessed: 11.03.2022
2https://github.com/xf00f/web3x Accessed: 11.03.2022
3https://www.ethswarm.org/ Accessed: 11.03.2022

3.8 Implementation 61

Meteor framework

Client

ID Management

University

Shop

Visualization

Server

ID Management

University

Shop

Visualization

Services

sharedIdentityService

storageService

cryptoService

...

web3x

Ethereum

Swarm

Figure 3.9: An overview over the software architecture of the demonstrator.

To allow web applications within the demonstrator to interact with smart contracts

or the distributed hash table, a number of Meteor services were implemented. For

each smart contract class, one such service exist. They work similar to software

libraries and hide the complexity of the interaction behind JavaScript functions.

Besides interacting with existing smart contracts, they also allow to deploy new smart

contracts to the blockchain. Additionally, a Meteor service providing cryptographic

functionalities has been implemented.

For each web application, which are described in the following sections, a client and

a server part has been implemented. The client part is executed in the web browser

of a user and displays the current state of the relevant data. For example, in the

identity management this means listing which identities have been created and with

which attributes. If the user wants to modify an identity, the respective request is

send to the server part of the web application. This part is run on the web server and

can access the provided Meteor services and through them the blockchain as well as

the distributed hash table. With support of the Meteor framework, the server part

is afterwards able to notify the client of the modified data, to allow a reactive web

design without the client having to wait for long page load times.

3.8.1.2 Identity management

The first web application provided by the demonstrator is an identity management

interface, allowing the user to create their own shared identities. These identities

can be augmented with arbitrary attributes, which are stored on the locally running

distributed hash table Swarm.

One of the screens of the identity management interface is displayed in figure 3.10.

The user has already created two SharedIdentityContracts, one with the university

and one with the online shop. Shown is the shared identity with the university. The

user has not added any attributes to the identity themselves, but the university has

62 3 DecentID

List of shared

identities

No attributes

added by the

identity creator

Currently

selected

shared identity

Attributes

added by the

permitted user

Figure 3.10: The web interface to create and modify identities.

added three attributes. Two of these attributes (“student” and “subject”) have been

granted to the user, which can be seen since their owner has been set to the user.

As such, the user is able to add these existing attributes to their other identities, for

example to the identity with the online shop.

3.8.1.3 University

The created identities can then be used with online services. As one such service, the

web portal of a university has been implemented.

QR code can

be scanned

Status of

interaction

is displayed

Moveable

smartphone

to scan

QR code

Figure 3.11: The web interface to receive an attribute from the “university”.

Depicted in figure 3.11, it allows students to automatically create the shared identity

displayed in figure 3.10. To do so, the user of the demonstrator has to “login” at the

3.8 Implementation 63

university website, and scan the provided QR code4 with a virtual smartphone that

is part of the website. When doing so, a new SharedIdentityContract between the

user and the university is automatically created. This identity contains a number

of attributes created by the university, for example the matriculation number of the

student and their course of studies, as displayed above.

While simplified for the demonstrator, a real implementation could follow the same

sequence. The smartphone application would create a SharedIdentityContract for the

user and add the public key of the university, which is contained in the QR code, as a

permitted user to it. Then, the application can inform the university webpage about

the new shared identity by sending its blockchain address to the URL also contained

in the QR code. The university is then able to attach the relevant attributes to the

new identity of the user.

3.8.1.4 Online shop

As a second web application an “online shop” has been implemented. For once, this

online shop allows its visitors to login by providing a DecentID identity with the

online shop as a permitted user. The creation process of this identity and also the

following login processes can be handled as described for the university by scanning

a QR code.

The price has

been reduced

for logged in

students

Figure 3.12: The web interface of the “online shop” with reduced prices for students.

After creating the identity, the user can login at the online shop but will only see

the normal prices for the wares. However, the user can add the “student” attribute

granted by the university to the SharedIdentityContract between the user and the

4https://www.qrcode.com/ Accessed: 11.03.2022

64 3 DecentID

online shop. This discloses towards the shop that the user is a student of the university,

but does not disclose the real identity of the user. Afterwards, the online shop can

verify that the user is a student, and can offer a student discount for its wares, as is

depicted in figure 3.12.

When the “student” attribute is displayed towards the online shop, the online shop

learns that the user is a student at a certain university. While the real identity of the

user is kept secret, the online shop still learns something about the user. Whether the

loss of privacy, e.g., disclosure of the student status, is worth the advantage gained,

e.g., a price reduction in the online shop, has to be decided by the user.

3.8.1.5 Visualization

While the other web applications are demonstrating how DecentID could be used in

practice, this application displays the data on the local blockchain, visualizing the

created identities. It cannot be used on the official blockchain of Ethereum, since it

requires access to the private keys of the users which created the identities.

Blockchain

wallets of the

demonstrator

Shared identity

between wallets

Attributes of

identity stored

in DHT

Wallet with

root identity

Figure 3.13: A visualization of the identities currently stored on the local blockchain.

The display as depicted in figure 3.13 consists of two parts: In the upper half the

state of the local Ethereum blockchain is presented, while in the lower half the

attributes of the selected SharedIdentityContract are shown, which are stored in the

distributed hash table Swarm. In the upper half, the blockchain wallets created for

the demonstrator are presented, placed in a circle and labeled with there shortened

public keys. Only the wallet owned by the user “Peter” has been used and named yet.

With it, two SharedIdentityContracts, respectively with the university and the online

shop, have been created. This is depicted by the lines connecting the wallet of the

user with the wallets of the two web services. The SharedIdentityContract with the

3.8 Implementation 65

university is currently selected, with its blockchain address being displayed in the

middle of the screen. The attributes linked to it are stored in the distributed hash

table Swarm, and are listed in the lower half of the screen.

3.8.2 Smartphone application

The second implementation of DecentID is a mobile smartphone application. It allows

to manipulate the owned identities of the user, similar to the identity management

interface of the demonstrator.

The application has been implemented under supervision in the bachelor thesis of

Evgeni Cholakov [Cho20]. It is written in Kotlin5, the programming language cur-

rently recommended by Google for Android applications. To interact with Ethereum

the web3j6 library is employed. For attribute storage in the distributed hash table

Swarm, the library Retrofit7 is used.

3.8.2.1 Architecture

Different to traditional software, the applications running on smartphones have to

be strictly partitioned in a user interface and the model. Due to constrained memory

and processing power on smartphones, the user interface parts might be destroyed

by the operating system at any time. To avoid data loss in these events, all data has

to be stored within the model.

web3j

Ethereum

Swarm

Retrofit

SQLite Room

Android Key Store

Model

Listen

Inform

ViewModelView

Figure 3.14: An overview over the software architecture of the smartphone application.

The components on the left side might be destroyed by the operating system

at any time.

As displayed in figure 3.14, the user interface consists of the View and the ViewModel.

The View contains the presentation logic of the application and displays the data to

the user. Additionally, it handles the user input and forms requests for the ViewModel.

5https://kotlinlang.org/ Accessed: 11.03.2022
6https://docs.web3j.io/ Accessed: 11.03.2022
7https://square.github.io/retrofit/ Accessed: 11.03.2022

66 3 DecentID

The ViewModel interacts with both the View and the Model. It maintains the state

of the View, informs the View of data changes in the Model, and forwards change

requests from the View to the Model.

The Model manages the application data. In the DecentID application, not much

data is stored on the smartphone itself. To store the cryptographic keys needed for

DecentID, the Android key store is used. This way, the keys are kept secret even from

other applications running on the smartphone. For other data, e.g., the blockchain

address of the RootIdentityContract, an SQLite database is used. To access it, the

library Room is used.

To interact with the blockchain, the web3j library is used. Besides communicating

with the blockchain, it also offers local classes to represent the smart contracts on the

blockchain. The distributed hash table Swarm is accessed over its HTTP interface, by

using the library Retrofit for HTTP communication.

3.8.2.2 Usage

In the following the usage of the application will be explained, based on the four

screens shown in figure 3.15.

Figure 3.15: Four screens of the smartphone application for DecentID: creating an

Ethereum wallet, selecting the RootIdentityContract, creating a Shared-

IdentityContract, viewing an existing SharedIdentityContract containing

an attribute.

3.9 Evaluation 67

When starting the application, an Ethereum wallet has to be selected or created. To

use DecentID, this wallet must contain funds to pay for the blockchain transactions.

Sending funds into the wallet is not supported by the DecentID application, since

this would require interaction with financial institutions to transfer money. The first

screen displayed in figure 3.15 shows the creation of a new blockchain wallet by

selecting a file to store its data in and entering a password for its encryption. The

private keys used for DecentID are created and stored in secure storage provided by

the operating system on the smartphone.

After loading the wallet, a new RootIdentityContract can be created for the selected

blockchain wallet, or the existing one can be selected. Selecting an existing RootI-

dentityContract is shown in the second screen.

Referred to from the RootIdentityContract, a number of SharedIdentityContracts can

be maintained by the user. When creating a new identity, as seen in the third screen,

the blockchain address of a user to share it with has to be entered.

The last screen in figure 3.15 shows an existing SharedIdentityContract. It is currently

shared with one other user, and the user that created the identity added one attribute

to it. The attributes added by the other user can be displayed as well.

While the first implementation, the demonstrator, is running on normal computer

hardware, the hardware of a smartphone is much more restricted. Still, the application

has shown that DecentID is usable even on less powerful devices. The operation

with the longest execution time, that is executed on the smartphone itself, is the

loading of the blockchain wallet, which took around 6 seconds. All further operations,

e.g., creating identities and attributes, are no longer restricted by the computational

capabilities of the smartphone, but are instead delayed by the network and the

blockchain speeds. As such, these delays cannot be avoided, independent of the

implementation or hardware used.

3.9 Evaluation

Since DecentID is based on smart contracts on a public blockchain, a “traditional”

evaluation of quantitative features like response time, throughput, or memory con-

sumption is not useful. These features are directly inherited from the used blockchain

Ethereum and are not or only marginally influenced by DecentID. For example, on av-

erage each 13 seconds8 a new block is published on Ethereum. The speed of changing

an attribute in DecentID is directly linked to publishing new blocks, independently of

how efficient the smart contracts themselves are written.

8https://ethereum.org/en/developers/docs/blocks/#block-time Accessed: 11.03.2022

68 3 DecentID

Instead, qualitative features of DecentID are discussed in the following. Based on

the design goals presented in section 3.2, various aspects are evaluated and their

contribution towards the goals are described. Afterwards, practical considerations

for using DecentID are considered.

Another factor for the security and privacy of DecentID are the applications and the

end systems that are used to interact with DecentID. If the used application or the

end system contains security vulnerabilities that can be abused by an adversary, the

security of DecentID itself is irrelevant. However, evaluating the security of all these

systems, e.g., applications, smartphones, or computers, is out of scope for this thesis.

3.9.1 Control over the identities

Users should be in complete control over their digital identities. In how far this is

the case within DecentID will be discussed in the following. This includes whether

anyone else can access or modify their identities, as well as whether trust into a single

instance is required. Additionally, it will be discussed whether permitted users can

trust the authenticity and integrity of the linked attributes. Lastly, the removal of

attributes, permitted users, or whole identities is discussed.

3.9.1.1 Properties of smart contracts

When developing and executing smart contracts, many aspects are similar to tradi-

tional software. Still, some aspects regarding their security have to be considered,

which are discussed in the following.

Unmodifiable code Different from traditional software systems, the openness of

public blockchains allows all participants to review the code of smart contracts and

verify its execution. While this simplifies finding weaknesses for adversaries, it also

means that the code can be easily reviewed. This is especially important since smart

contracts on the blockchain cannot be overwritten by newer versions of them. If a

bug in an already deployed contract c is found, a new contract c′ has to be deployed

at another blockchain address. Since this disrupts existing uses of the old contract c,

it should be avoided as much as possible. Consequently, smart contracts should be

extensively tested and analyzed before deploying them to the blockchain.

Verified execution When a function f of a smart contract is executed on the block-

chain, the miners of the blockchain execute the function and store the results r of the

execution in the next published block. While only the block created by a single miner

will become part of the blockchain, all other miners will verify the correct construction

3.9 Evaluation 69

of this block. This includes that the function f must have been executed as expected

and all miners reach the same result r. If their execution deviates from the expected

execution based on the known smart contract code, the input parameters, and the

current state of the blockchain, the other miners will not accept the published block.

Consequently, if an execution result of a smart contract ends up on the blockchain,

the majority of miners agrees that the smart contract was executed as it should be.

As such, users of smart contracts, and consequently DecentID, can be sure that the

contract has been executed as it is written.

State-dependent execution The result r of calling a function f in a smart contract

depends on the function parameters p as well as the state s stored in the smart

contract: f (p, s)→ r. However, the blockchain is a distributed system and the state

of the smart contract might change before the function call is executed: f (p, s′)→ r ′.

In that case the result of the function might be different than the user calling the

function expected. This can also happen if the same user calls two functions nearly

at the same time. Even if the function call f (p, s) is done before the function call

f ′(p′, s), the order of execution is not fixed until one of the results is stored on the

blockchain. As such, it can happen that f ′(p′, s) is executed first, modifying the

state of the smart contract and leading to for the user unexpected results when f is

executed on this changed state.

When modifying a SharedIdentityContract, this can happen as well. However, only

permitted users are able to call modifying functions of the smart contract. Additionally,

each permitted user Ui can only modify the attributes they added themselves. As such,

their function calls operate on different states si, even when they are all operating on

the same SharedIdentityContract: fU1
(p, s1) does not conflict with fU2

(p′, s2). Still,

the function calls of a user Ui can conflict with earlier function calls of themselves if

both function calls modify the same state, e.g., the same attribute.

The above explained properties of smart contracts together with the program code

of DecentID ensure that only the permitted users have control over the respective

SharedIdentityContracts. Due to the decentralized architecture of blockchains, this

can be achieved without relying on centralized instances or trust anchors.

3.9.1.2 Authenticity and integrity

In DecentID, the privacy of the stored data is ensured by encrypting it, while its

authenticity and integrity is ensured by checking the authenticity and authority of

the user that wants to modify an attribute. The access rights for the functions in the

SharedIdentityContract can be differentiated between three user groups: unknown

70 3 DecentID

users, that are not listed as permitted users within the shared identity, permitted

users of the identity, and the creator of the identity. Unknown users, which are not

registered in the SharedIdentityContract, are not permitted to call any modifying

functions and are unable to modify the state of the contract.

Checking authorization Some functions of the SharedIdentityContract can only be

called by permitted users registered in the smart contract. An example for this is the

function setAttribute() to write attributes. To check the access rights, it is checked

whether the public key pubKe yC of the caller C , representing their identity, is stored

in the SharedIdentityContract. Only when pubKe yC is known as a permitted user is

C permitted to execute the protected function setAttribute(). Since the instruction

to call the function is digitally signed with the private key privKe yC belonging to

the public key pubKe yC , the miners of the blockchain can verify that the caller C

has access to the private key privKe yC and, consequently, really is the permitted

user stored in the SharedIdentityContract. If an unpermitted user tries to call this

function, they are unable to create the required signature and cannot prove that they

own a permitted public key. Consequently, their access to the function is denied.

Separation of permitted users Within the SharedIdentityContract, multiple lists

lAt t rUi
of attributes, separate for each permitted user, are stored. By using the

public key pubKe yC of the caller C as index into the list of permitted users, only the

attributes in this users attribute list lAt t rC can be written. Both measures, checking

whether the caller is a permitted user and accessing the right entry in the list of

permitted users, are enforced by the program code of the smart contract. The miners

ensure that this code is executed as written, consequently ensuring that the linked

attributes can only be modified by their respective user.

Integrity of data Since an append-only blockchain is used the attributes in published

blocks cannot be modified, ensuring the integrity of the data in the smart contract.

As such, other permitted users can be sure that the attributes have been added by

the respective users and that no-one else was able to modify them.

Permissions of the creator In a SharedIdentityContract the creator of the identity

is listed as the first permitted user. As a permitted user, they are able to modify their

own attributes, but are unable to modify the attributes added by other permitted

users. Additionally some functions, most importantly to add and remove permitted

users, can only be executed by the creator. As explained before, this is ensured by

checking the public key of the user calling the function. Assuming that the user

creating the SharedIdentityContract keeps their private key secret, they are the only

person able to grant and revoke access to the identity and its attributes.

3.9 Evaluation 71

3.9.1.3 Removals

In addition to appending and modifying attributes and the list of permitted users,

it is also possible to remove attributes and permitted users, or even the complete

shared identity. After some general remarks, these three cases are discussed.

Removing from the blockchain In general, removing data from blockchains, and

consequently DecentID, is problematic. While it is no problem, e.g., to remove

an attribute from the current state si of a SharedIdentityContract, all older states

si−1, si−2, . . . of the smart contract can be recovered from the blockchain. Compared

to other digital storage systems, this is a pitfall the user is most likely unaware about.

To mitigate this problem, some approaches should be taken if DecentID is widely

deployed. For once, the identity management application used to access DecentID

should warn its user about this issue. However, for most use cases of DecentID storing

some attributes in the shared identity cannot be avoided. Instead of storing attributes

on the blockchain itself, they could be stored in an off-chain storage which permits

removal of data. While this can improve the privacy of the attributes, other smart

contracts can no longer retrieve these attributes, which might be required depending

on the use case of the identity.

Removing attributes When removing attributes, they are removed from the current

state of the identity but, as explained above, older states can still be reconstructed.

Still, when permitted users read the attributes of the identity the removed attribute

is no longer part of the identity. As such, the permitted users know that the data in

the removed attribute should no longer be considered part of the shared identity.

Adding additional permitted users It can happen that a user removes their at-

tribute At t ri and later on adds a new permitted user U j to the SharedIdentityContract

SIC{A}. This new user U j should not be able to access the removed attribute At t ri,

but would still be able to do so by reconstructing the older state of the smart contract.

If the symmetric attribute encryption key kSIC{A} has not been changed in the mean-

time, the newly added permitted user U j could use the attribute encryption key, which

they now have access to, to decrypt the attribute At t ri that was linked to the identity

at an earlier time. To change kSIC{A}, all linked attributes have to be re-encrypted

with the new attribute encryption key. After re-encrypting the attributes, they have

to be written to the blockchain or the off-chain storage again. Additionally, since

each permitted user is only able to modify the attributes they linked to the identity

themselves, this requires cooperation with all other permitted users. Alternatively, a

new SharedIdentityContract SIC{B}, with a new kSIC{B}, could be created, instead of

continue using the existing identity SIC{A}.

72 3 DecentID

Removing permitted users Removing a permitted user from the shared identity

leads to a similar effect. The removed user no longer has access to the encrypted

kSIC{A} stored within the SharedIdentityContract SIC{A}. However, if they kept a

copy of kSIC{A} locally or are accessing an old status of SIC{A} on the blockchain,

they are still able to decrypt the attributes linked to the SharedIdentityContract. For

the attributes that were already linked at the time of removal this is most likely not

problematic: The (then still permitted) user could have already read them at that

time. When new attributes are added to the identity, however, the removed user

might still be able to decrypt them. To avoid this, kSIC{A} has to be replaced and

all attributes have to be re-encrypted, or a new SharedIdentityContract has to be

created.

Removing a shared identity In some cases, the creator of a SharedIdentityContract

might want to remove their shared identity completely. While a functionality for

this is offered, the persistent history of the blockchain means that the smart contract

could be reconstructed. As such, the removal of a SharedIdentityContract only shows

the intent of the user that the identity should no longer be used, but does not stop

previously permitted users from accessing the linked attributes.

In summary, the creator of a SharedIdentityContract is able to remove data from it,

but it is mostly a declaration of intent. However, this is similar as with traditional,

centralized identity providers: When a user removes data from their identity, they

have to trust the identity provider to really remove the data and not keep any copies.

Regarding the removal of attributes or permitted users and the following addition of

new users respectively new attributes, this does not occur with traditional identity

providers. Still, a malicious identity provider could forwards these data without the

users consent. At least, in DecentID this potential privacy leak is visible, and can

be avoided when a DecentID application informs the user of the privacy risk and

suggests the above mentioned mitigation approaches, i.e., re-encrypting attributes

and creating separate shared identities.

3.9.1.4 Comparison with the state of the art

In table 3.4 the most relevant related works are compared to DecentID. Some of

them, e.g., uPort, have been selected for comparison since their design is similar

to the design of DecentID. Other approaches, e.g., Sovrin, use a different technical

approach but want to reach similar goals as DecentID with regard to the identity

management and the privacy protection. However, all compared approaches claim to

provide a decentralized, blockchain-based, system. The compared approaches, as

well as further, less similar, approaches, are described in section 2.5.3.

3.9 Evaluation 73

Approach Full Control Decentralized Integrity Authenticity Removable

DecentID
p p p p p

uPort
p

(
p

)
p

(
p

) (
p

)

Sovrin (
p

) (
p

)
p p p

ShoCard X X
p p

(
p

)

[MDS19] X (
p

)
p p p

[SP18]
p p p p p

Tawki
p p p p p

3BI-ECC X X
p

(
p

) X

Table 3.4: Comparison with related work regarding the control of the user, depicting

whether the approach fulfills the requirement completely
p

, mostly (
p

), or

does not X fulfill it.

For self-sovereign identities it is important that the user is in full control over their

identity and its data. However, for ShoCard and [MDS19] this is not sufficiently

supported, since the user requires other, hierarchically appointed, entities to receive

attributes for their identities. For a user this means that it is not possible to receive

attributes from any service that might want to grant an attribute to them. Additionally,

this restricts the use of the identities to the contexts the maintainers of the approaches

permit. Within Sovrin the distributed ledger is maintained by selected entities, while

in 3BI-ECC a centralized middleware software is used to forward requests to the

blockchain. In both cases the access of users to their own identities might be restricted.

In the other compared approaches, including DecentID, the user is able to control

their identity without another entity being able to restrict them from doing so.

Both ShoCard and Sovrin contain centralized control by their respective organizations,

ShoCard for storing attributes, Sovrin for selecting participants for its permissioned

blockchain. While uPort does not depend on centralized off-chain entities, a cen-

tralized registry smart contract is used for linking attributes. This contract could

become a central point of failure, either through attack from malicious users or when

its creator decides to remove it. Furthermore, the existence of multiple of these

registry contracts could result in multiple, separated instances of uPort which are

unable to accept their mutual identities. For 3BI-ECC the middleware software is an

undesirable point of centralization. Compared to these approaches, DecentID does

not contain any centralized instances and all identities and interacting users and

services can operate independently.

74 3 DecentID

All compared approaches ensure the integrity of the stored attributes. The integrity

is ensured by storing the attributes or, when off-chain storage is used, their hashes on

the blockchain. Since the data on the blockchain can only be modified by authorized

users, other users accessing the data can be sure that the data is still the same as

when the user stored it on the blockchain.

Regarding the authenticity, most approaches support proving who created an attribute.

While most approaches simply store the identity of the attribute creator, DecentID

improves over this by storing the identity creator and additionally assigning the

current owner of the attribute. Exceptions are uPort and 3BI-ECC. There, only the

creator of the identity can attach attributes to it. As such, the creator of an attribute

has to use additional measures, e.g., an attached digital signature, to prove that they

created the attribute. The attribute data combined with the signature can then be

added as an attribute by the creator of the identity.

If an identity or some of its attributes are no longer needed, a user might want to

remove it. This functionality is supported and under the users control in nearly all

compared systems. For uPort, it is unclear whether a user can remove their identity

entry from the registry contract. However, removing the linked attribute data is

possible, which means that the users data can be removed, even when the previous

existence of the identity can still be discovered. With ShoCard, the identity is stored

on the centralized server used by the system. As such, the user can request that their

identity is removed, but has no direct control whether this really happens. Removing

attributes or identities is not considered in the description of 3BI-ECC.

3.9.2 Privacy of identities

When evaluating the privacy protection supported by DecentID, multiple aspects are

considered in the following. For once, the confidentiality of the attributes on the

blockchain has to be ensured. Also, a shared identity should not permit others to find

out which person created it. Additionally, the risk of services passing on the private

identity data is discussed.

3.9.2.1 Confidentiality of attributes

DecentID is based on smart contracts on Ethereum, which is a public blockchain.

As such, all data on the blockchain and all transactions send to it are visible to

all interested parties. Additionally, external storage might be linked to the shared

identities. The data stored in this storage should be accessible by permitted users

of shared identities. Consequently, this data has to be public as well, but might,

3.9 Evaluation 75

depending on the used storage, at least be hidden by a hard to guess address9. In

the following, the existence of a SharedIdentityContract SIC{U} with the symmetric

encryption key kSIC{U} is assumed. kSIC{U} is stored encrypted in the smart contract

and can be decrypted with the private keys privKe yU1
and privKe yU2

, which are

owned by the two permitted users U1 and U2 of SIC{U}.

Encryption of attributes Since DecentID manages personal data of its users, the

protection of their privacy is an important design consideration. In general, all

attributes should be encrypted before they are stored, independently of whether they

are stored on-chain or off-chain. On-chain attributes are encrypted with kSIC{U},

and can be decrypted by one of the permitted users U1 or U2. Other, potentially

malicious, users have no access to kSIC{U}, since they have no access to privKe yU1

or privKe yU2
. Consequently, they are unable to decrypt the attribute. For off-chain

attributes, kSIC{U} is used to encrypt the reference to the AttributeLocatorFile ALF{U},i,

as well as ALF{U},i itself. As for on-chain attributes, an adversary has no access to

kSIC{U} and thus is unable to find nor decrypt ALF{U},i. Whether an attribute is

encrypted is decided by the user adding the attribute, with the decision being stored

in the flags of the attributes.

Encryption of indexing keys For the indexing keys of the attributes there is no flag

to describe their encryption status. Instead, it is up to the application using DecentID

to decide whether an indexing key Index i is encrypted. Adding a flag for it would

bring no advantage: The flags can only be accessed after the attribute has been

looked up using the indexing keys. Consequently, a permitted user would have to

look up the attribute with both the unencrypted Index i and the encrypted indexing

key enckSIC{U}(Index i) to retrieve the flags and find out whether encryption was used.

As described in section 3.5.2, the indexing keys are not stored in the SharedIdentity-

Contract. While this stops an adversary from receiving the list of used indexing keys

from the current state of the smart contract, they are still able to fetch the blockchain

transactions that added the attributes, retrieving the indexing keys from them. So

while the confidentiality of the attribute data can be ensured, the metadata, which

attributes exist, can be discovered by a determined adversary. If this is problematic,

off-chain attributes can be used. There, the AttributeLocatorFile ALF{U},i stores the

indexing keys Index i, encrypted by kSIC{U}. As such, they are not transmitted over

the blockchain, keeping them confidential.

9For example, this approach is used by Google Docs: Shared files can be made available without

authentication, but their address is randomly generated and quite long, making it unlikely that

someone manages to discover it.

76 3 DecentID

Unencrypted attributes For some attributes it might not be practical to store them

in encrypted form. When the value of the attribute should be automatically evaluated

by another smart contract, e.g., to verify an authorization token stored as an attribute,

the attribute cannot be encrypted. If the verifying smart contract is able to decrypt the

attribute, then it would leak the secret key material for decryption on the blockchain.

Afterwards, everyone else is able to decrypt the attribute as well. This is the case

independently of whether symmetric encryption with kSIC{U}, a new symmetric

encryption key, or asymmetric encryption with a new key pair is used. In all cases

the key required for decryption would be visible on the blockchain. As such, the

encryption of the attribute does not improve its confidentiality, if a smart contract

needs to access its unencrypted data.

While the attribute data has to be readable, the information contained within it can

be limited to exactly what is required for its purpose. For example, depending on the

use case it can be sufficient to prove that a certain user is an employee of a certain

company. Disclosing their name or any other information about the employee is not

required, and can be omitted from the attribute. Alternatively, verifying the attribute

outside the blockchain could be done without disclosing the secret key material.

However, this does not help in the scenario where a smart contract wants to verify

an attribute, since smart contracts are unable to access data outside the blockchain.

3.9.2.2 Identifying users

The idea behind using pseudonymous identities on the Internet is that online services

are unable to determine the real-world, offline identity of a user. To reach this goal,

the pseudonymous identity must not contain information that allows to identify a

single human.

Attribute combinations Unfortunately, determining which information are critical

for identification is hard to decide. In some cases, the combination of non-identifying

data can result in identifying a single human. Assuming the existence of three

attributes: attribute A, the email address of the user, attribute B, the home address of

the user in a large building, and attribute C , the users work address. If an adversary

discovers attribute A, the user can most likely be identified since most email addresses

are only used by a single person. However, neither attribute B nor C are sufficient

to identify the user by themselves, if only one of them is given. On the other hand,

if both attributes B and C are known, it is quite probable that only a single person

remains where both attributes are correct. This identification can happen with every

identity system, including DecentID. A smart user interface can try to warn the user

about this privacy risk and can even try to find identifying attributes, e.g., by trying to

3.9 Evaluation 77

recognize email addresses and attribute combinations. However, this most likely will

not work in every case due to the many different connections that can exist between

individual attributes.

Cryptographic keys Specific to blockchain based systems is the asymmetric key pair,

pubKe yUi
and privKe yUi

, representing a blockchain user U . Continued use of one

key pair i can allow adversaries to track the actions of the user. Depending on what

the user U is doing, this might lead to their identification. Consequently, each key

pair should only be used for a single purpose, e.g., one shared identity, or a limited

time. Since new key pairs can easily be created locally without interacting with other

users or systems, this does not pose a problem.

Transferring funds Another privacy risk is caused by the financial properties of

blockchains. To send transactions through the blockchain, either to transmit money

or to call a function of a smart contract, Ether is required. This Ether has to be

obtained previously, often by paying government-issued money at cryptocurrency

exchanges. If the money is paid from a regular bank account, the Ether transaction

can be traced back to the real-world identity of a user. This is a general problem

when trying to interact with blockchains anonymously. Different approaches have

been proposed to obfuscate the origin of funds on blockchains [Liu+18; Xia+21].

Depending on the use case for a users DecentID identity, a link to a regular bank

account might not be a problem. Services on the Internet, which the user interacts

with, can only see that the Ether was send to the users blockchain account from the

blockchain account of the cryptocurrency exchange. However, the services cannot

find out which bank account was used to pay for the Ether at the exchange, nor the

identity of the bank account owner. Neither the cryptocurrency exchange nor the

bank are able to uncover all steps of the link either. So to link a DecentID identity to

a real-world person, multiple entities, the bank, the exchange, and the service, have

to cooperate. This is unlikely to happen, since the entities have different interests in

the user and are additionally often bound by legal contracts, forbidding them to pass

on the private data of the user.

Interacting users In some scenarios, it might be interesting for an adversary to find

out whether two users UA and UB interact with each other, i.e., have a SharedIdentity-

Contract SIC{A,B} where both of them are permitted users. Whether the adversary is

able to do so, depends on multiple factors.

• In the most privacy preserving case, both users created new asymmetric key

pairs for the SharedIdentityContract SIC{A,B}, and these new key pairs cannot be

linked back to real-world persons. In that case, the adversary can only observe

78 3 DecentID

that two users are interacting, but cannot say anything about the identities of

the users. Still, care has to be taken to not disclose the identities, e.g., by storing

a street address as an unencrypted attribute.

• If the user UA is a publicly known service, its public key pubKe yUA
is known to

the adversary as well. Assuming that the other user UB uses a new key pair, the

adversary only knows that someone interacts with the service, but not who it is.

• The same is true if the identity of one user is known for some other reason, e.g.,

due to earlier uses of the key pair.

• Only when the identities of the owners of both key pairs are known to the

adversary, the adversary can be sure that the two users UA and UB interact. For

example, the key pairs might be known to the adversary due to previous uses of

the respective key pairs.

As such, an adversary cannot detect the interaction of two users UA and UB, as long

as atleast one of them uses an asymmetric key pair unknown to the adversary.

3.9.2.3 Passing on data

A problem that cannot be solved technically is that permitted users with access to a

shared identity SI{X } might make local copies of the linked attributes At t r{X },i. Even

more concerning, the retrieved data could be passed on to other users or unknown

third parties. When two online services A and B are cooperating, sharing the private

data of their users might allow them to identify a user U by using a unique attribute,

e.g., their e-mail address, and establish that two shared identities SI{X } and SI{Y } on

their respective services A and B are controlled by the same human user U .

While undesirable, this same problem exists for all other data stores as well, be it

on the blockchain, with centralized online providers, or even with offline services.

Technically, this possibility cannot be inhibited when someone is able to access private

data. As a partial solution, legal contracts and terms of business might forbid passing

on the data, but the user has to trust the used services to observe their contracts.

3.9.2.4 Comparison with the state of the art

When incorporating blockchains in the design of an identity management system, pri-

vacy is an important challenge to consider. While data stored within a smart contract

can be removed from the current state of the smart contract, all its older states can

be restored. As such, data written to the blockchain once will stay accessible perma-

nently and have to be protected. For large attribute data and to avoid this permanent

3.9 Evaluation 79

Approach Encrypted Encrypted Smart contract Selective Interactions

attributes metadata interactions disclosure hidden

DecentID
p

(
p

)
p p p

uPort
p

X X
p p

Sovrin
p

(
p

) X
p p

ShoCard
p p

X
p

(
p

)

[MDS19]
p

(
p

) X
p p

[SP18]
p

X X
p p

Tawki
p p

X
p p

3BI-ECC X X X
p

(
p

)

Table 3.5: Comparison with related work regarding their privacy protection.

record, using other storage is supported by all compared systems. However, whether

the data is really removed when requested remains an open question. Additionally,

ShoCard and Sovrin use centralized storage providers, which have to be trusted to

operate as expected. Independent of the used storage, nearly all systems compared

in table 3.5 are using encryption to protect the data of their users. An exception is

3BI-ECC, where encryption is not considered in the design.

Whether metadata is encrypted differs between the approaches. Metadata here

means for once the indexing keys used to access a specific attribute, but also other

administration data, e.g., references from the identity to the attributes. In ShoCard

and Tawki, the attributes are stored off-chain together with their encrypted metadata.

As long as every identity links to own off-chain data, no metadata is leaked. In uPort

the attributes and their metadata are stored off-chain as well. While the attribute

itself is encrypted, the metadata containing additional information about the attribute

is stored unencrypted, which can give an adversary clues about the type of the stored

data. For other approaches, the metadata is partially encrypted. In DecentID the

metadata is encrypted when the attributes are stored off-chain. If the attributes

are stored on-chain, the blockchain transactions contain the indexing keys for the

on-chain attributes.

While the visible indexing keys in DecentID are undesirable from a privacy point

of view, they are the result of a design decision. With DecentID, a user can explic-

itly decide to store an attribute unencrypted on the blockchain. To protect their

confidentiality, the attributes should normally be stored encrypted. However, when

storing an attribute unencrypted, other smart contracts are able to interact with the

80 3 DecentID

shared identity to retrieve this attribute and use its data, e.g., for access control. This

feature is not supported by the other approaches in this comparison. Mostly, the other

approaches store their data completely off-chain, making it impossible to retrieve it

within a smart contract. The attributes that are stored on-chain are always encrypted,

stopping smart contracts from reading them.

In all compared approaches it is possible to selectively disclose attributes to other

user. This is done by granting other users access to an attribute or a whole identity,

mostly by sharing an attribute encryption key,

Except with ShoCard and 3BI-ECC, disclosing identities to other users can not be

observed by third parties. That two users are accessing one identity might be known,

e.g., by observing blockchain transactions. However, the access to single attributes

within a shared identity cannot be observed. With ShoCard and 3BI-ECC, the inter-

actions between the users require access to the centralized server respectively the

middleware software which manages the attributes for the users. As such, this central

instance knows which attributes are accessed by whom.

3.9.3 Multiple pseudonymous identities

To improve their privacy, users might want to maintain multiple identities at the same

time. For example, a user U might want to have separate identities SI{U ,A} and SI{U ,B}
for different online services A and B. By doing so, they improve their privacy since

each service receives less information about the user, as each service is only able to

retrieve the attributes that are part of the respective shared identity. Even when the

services A and B are cooperating, they should be unable to discover that the two

identities belong to the same user U . By linking the identities SI{U ,A} and SI{U ,B}, they

would be able to assemble a single identity SI{U ,A∪B} containing all data about the

user, which the user wants to avoid. Consequently, DecentID should prevent links

between the two identities or their attributes. Some measures have been taken in

the design of DecentID, while other measures should be included in an application to

manage the identities, e.g., warning the user that AttributeContracts should only be

reused if needed. Further measures have to be taken by the users themselves, for

example determining which pieces of information might allow an adversary to link

identities. In the following, potential vulnerabilities are discussed.

A special case of having multiple shared identities SI{U ,A} and SI{U ,B} for multiple

services A and B, is having multiple shared identities SI{U ,A},1 and SI{U ,A},2 for a

single service A. One use case for this is to maintain different identities for different

discussion topics within one online forum. When analyzing the privacy protection

provided by maintaining multiple identities this does not differ to interacting with

3.9 Evaluation 81

multiple services which cooperate with each other. In both cases the user wants to

avoid that the single service or the multiple services can link their identities. However,

when a service cannot find out that two identities belong to the same user, Sybil

attacks on the service become possible. In these attacks, a single user creates many

DecentID identities for a single service to abuse its functionality. This threat and a

countermeasure to it is discussed below.

3.9.3.1 Explicit linkability

Explicit linkability exists if the user U adds an identifying attribute At t r{U},i to two

shared identities SI{U ,A} and SI{U ,B}. For example, such an identifying attribute might

be an email address. In that case, the two services A and B can both read the address

from the identity, and, if they are cooperating, find out that they both have a user

with this email address. Most email addresses are only used by a single person, so two

shared identities containing the same email address most likely belong to the same

person. Consequently, the services A and B can assume that both shared identities

have been created by the same user U . This allows them to create a more extensive

profile for the user, which can be abused by the services, e.g., to track the users

actions or display personalized advertising.

For the user, this is undesirable: The use case for creating separate identities is to

avoid such tracking, but now the user has to maintain two identities without the

desired gain of privacy. This explicit linkability cannot be prevented by technical

means only, and a solution is out of scope for this work. An application for DecentIDs

identity management could warn the user when the same attribute data is assigned

to attributes of two identities. However, deciding whether the attribute is identifying

for the user, e.g., their email address, or not, e.g., their hair color, is not always

possible for an application. Additionally, some attributes are only identifiable in

certain contexts. For example, the hair color might be an identifying attribute when

only a few users are considered, but will no longer be identifiable when a larger user

group is regarded. Consequently, an application can only warn a user but the user

has to decide whether they want to use that attribute or not.

3.9.3.2 Implicit linkability

Another vulnerability is due to implicit linkability. When an AttributeContract or an

off-chain storage is used to store an attribute A for the shared identity SI{U}, it has a

unique address addrA on the blockchain or in the external storage, respectively. This

address addrA can then be used by two services to discern that two shared identities,

SI{U},1 and SI{U},2, which link to the same attribute address, are controlled by the

82 3 DecentID

same user U . As long as the data within the attribute does not identify the user,

i.e., no explicit linkability exists, the user can copy the attribute A and the copy A′

can be referenced to by the second shared identity. Copying the attribute can either

be done by the user manually, or it can be automated by an identity management

application for DecentID. After copying the attribute, the attribute addresses, addrA

and addrA′ , are different and no longer allow the services to link the identities. This

increases the overhead for the user since multiple attributes have to be kept updated

and synchronized, but this can be simplified by an identity management application.

3.9.3.3 Trade-offs

To protect the privacy of a user, maintaining multiple SharedIdentityContracts be-

tween the user and a single service can be an advantage. Especially for larger services,

e.g., a general discussion forum with many sub-forums, this can be preferable to

maintain separate identities to discuss different topics. However, at the same time

this introduces two vulnerabilities for the service.

Sybil attacks One vulnerability is that malicious users can execute Sybil attacks.

In those, a single malicious user U creates numerous identities SI{U ,S},1, SI{U ,S},2,

SI{U ,S},3, . . . for a service S, without the service being able to recognize that they are

from the same user. Those identities are then used to abuse features of the service,

e.g., by participating many times in a poll. Sybil defense systems offer a solution for

this problem by being able to recognize Sybil identities. One such system, Detasyr, is

presented in chapter 5. By linking the “proof of authorization” pA created by Detasyr,

i.e., a proof that a user is no Sybil adversary, with a shared identity, each user is only

able to create a single identity per online service. Consequently, Sybil attacks are no

longer possible. The tracking protection of DecentID between multiple services is

still working: While shared identities with the same service can be recognized by

the service, even cooperating services cannot find out that a single user has shared

identities with both of them.

Whether Sybil attacks are a problem for the service or whether the ability of the user

to maintain multiple identities is more important, depends on the service in question.

For example, a service providing a general discussion forum might not require a

proof of authorization of its users. Its users are then able to create multiple identities

SI{U ,S},1, SI{U ,S},2, . . . for this forum, and the service is unable to discover that they

are controlled by the same human. The threat due to the multiple identities can be

considered low: There is not much to gain for an adversary by creating numerous

identities, but for honest users it can be preferable to maintain separate identities

for separate discussion topics. For a political discussion forum this threat can be

3.9 Evaluation 83

considered higher: A Sybil attacker could try to use its many identities to manipulate

the public opinion of a party or politician. When a proof of authorization pA is

required, only one identity can be maintained for the service, which restricts the

abilities of the adversary.

Blocking users Another vulnerability due to having multiple identities is that mis-

behaving users cannot be blocked from accessing a service. A single shared identity

SI{U},1 can easily be blocked, e.g., the service can attach an attribute describing the

shared identity as blocked. However, even when the service is blocking one identity

of a user U , the user can simply create a new identity SI{U},2 and continue using the

service. While some collected attribute data might be lost this way, it does not stop a

malicious user from using the service. When a service requires that a shared identity

refers to a Detasyr proof pA, the service is able to block the user from continued use

of the service. Since all shared identities of the user for one service use the same

proof pA, a second shared identity of the user can be recognized and blocked. To do

so, the service has to keep a local list of blocked Detasyr proofs. When a user informs

the service about their new shared identity, the service can check in the local list for

the proof contained in the new identity, and block it directly if the user is already

known as misbehaving.

3.9.3.4 Comparison with the state of the art

Most of the decentralized identity management systems compared in table 3.6 support

maintaining multiple pseudonymous identities. However, while maintaining multiple

identities was a design goal for DecentID, the other systems only support additional

identities by creating a completely new identity, independent of the already existing

identity of the user. Support for creating or maintaining these multiple identities is not

part of their designs. For the systems that do not support having multiple identities,

a trusted identity document, e.g., a government ID, has to be presented on identity

creation. As such, maintaining pseudonymous identities is not possible. For these

systems, this is acceptable since their intended purpose is a digital representation of

the real identity of the user.

When a user maintains multiple identities, these identities should not be linkable to

each other. Otherwise, an adversary could detect that they are maintained by the

same user. If the user created the multiple identities to avoid tracking, their goal of

privacy protection would not be fulfilled. For most systems which support multiple

identities, this requirement is fulfilled. With uPort or Sovrin the identities might be

linked. These systems support to recover an identity when the used private key is lost.

To do so, the identity creator can register a group of friends that confirm that the new

84 3 DecentID

Approach Pseudonymous Unlinkable Transferring Sybil Blocking

identities identities attributes protection users

DecentID
p p p p p

uPort
p

(
p

) X X X

Sovrin
p

(
p

) X X X

ShoCard X X
p p p

[MDS19]
p p p

X X

[SP18] X X
p p p

Tawki X X X X X

3BI-ECC
p p

X X X

Table 3.6: Comparison with related work regarding multiple identities.

private key is from the same user. When having multiple identities, different groups

of friends or different identities of the same friends should be used. Otherwise, the

identities of the user can be linked since all of them the refer to the same friends. For

ShoCard, [SP18], and Tawki, no unlinkable identities are possible since a trusted

identity document is required for identity creation.

When using multiple identities, it can be of interest to the user to receive a certification

of some kind from one service, and present it to another service. In DecentID, this is

possible since services can grant attributes to users that have a shared identity with

them. ShoCard, [MDS19], and [SP18] support a similar functionality, by allowing

their users to integrate attributes created by participating services into their identities.

For the remaining approaches, no such functionality is integrated by design.

DecentID avoids Sybil attacks while maintaining privacy protection through the

integration of the Sybil defense system Detasyr. While doing so, the real identity

of the user is kept secret. Contrary to that, ShoCard and [SP18] require a proof

of identity, e.g., presenting a passport towards a trusted authority, on creation of a

digital identity. This protects against Sybil attacks, but also links the digital identities

to the real identity of their users, a linkage that has been avoided in DecentID. The

other approaches do not offer any Sybil protection.

The protection against Sybil attacks and the ability to block a user from accessing a

certain service are related: If the unlimited creation of identities is possible, the user

can simply create a new identity to access a service again. Consequently, only the

approaches which protect against Sybil attacks are able to permanently block a user

from accessing a service.

3.10 Applicability 85

3.10 Applicability

The previous section evaluated DecentID analytically based on its design. In this

section, practical considerations are evaluated that influence whether and how an

implementation of DecentID would be used in everyday life.

3.10.1 End user interaction

From a technical viewpoint, the blockchain-based DecentID is more complicated than

a traditional centralized identity provider. For the user however, the used technology

does not really matter. To manage their identities, users need some management

application. Considering the amount of cryptographic keys and addresses used by

DecentID, manual management of the shared identities is not feasible. Given the

prevalent availability of smartphones, a smartphone application is a good candidate

for this. This application can hide the complexity of DecentID from the user, offering

a simple interface as the user is already used to from other identity providers.

3.10.1.1 Privacy protection

Compared to centralized identity providers, the improved privacy protection of

DecentID can increase the difficulty of maintaining the shared identities. While the

technical complexity can be hidden within an application, the user has to decide by

themselves which attributes are added to which shared identities. To protect their

privacy, the user has to make a conscious decision which attributes to add. When

using multiple centralized identity providers for different services, the user has to

face the same decisions. Still, using DecentID can make this easier since all identities

can be managed in one application, instead of interacting with multiple websites.

3.10.1.2 Interaction with online services

While developing the demonstrator described in section 3.8, scanning QR codes with

ones smartphone turned out to be a feasible approach to display ones identity to

a service. The scanned QR code can contain a web address the smartphone can

automatically access to provide the service with the blockchain address of the shared

identity. If no shared identity for this service is present yet, the smartphone application

is able to create a shared identity automatically and add the service as an owner to

the identity. When the service receives the address of the users shared identity, it can

verify that it is registered as a permitted user within it and that the attributes stored

in the identity grant access to the service. Afterwards, the website displaying the QR

86 3 DecentID

code can be automatically refreshed for the user to access the service. Compared

to traditional website logins with username and password, the effort for the user is

comparable, since the complexity of the identity management can be automated by

the smartphone application.

3.10.2 Overheads

Compared to traditional systems, where a service provider stores the users data on

its own server, DecentID generates a certain overhead for its operation, especially

due to the use of a blockchain.

3.10.2.1 Writing to the blockchain

When modifying attributes, either creating or changing them, the state of the block-

chain has to be updated. Since Ethereum only publishes new blocks around each 13

seconds, a significant delay occurs compared to a local database run by the service

provider. Additionally, the transaction containing the change might not end up in

the block published next but in a later one, increasing the delay. Even when the

transaction has been added to a block, a user should wait for another few blocks to

be added since the newest blocks might still be removed again. While the service

might just assume that the attribute will be assigned and might pretend that it exists

to improve the user experience, the user would not be able to see the attribute in

their identity management application immediately.

3.10.2.2 Reading from the blockchain

When reading attributes from the blockchain, no delay due to block creation occurs.

However, both the user and the service provider either need to request the data from

blockchain participants, or keep a local copy of the blockchain. Which approach is

preferable is a trade-off: When requesting the data, a trusted blockchain participant

is required and a small delay occurs. If a local copy of the blockchain is maintained,

a lot of irrelevant data is stored and the local state has to be constantly updated.

While both approaches are possible for service providers, users will most likely prefer

the first approach using a trusted blockchain participant due to storage restrictions

on their smartphones. A point that should be noted is that with DecentID both the

service provider and the user always have access to the most recent user data. In

traditional systems using a local database at the service provider, the user has no

direct access to their own data and can only access it through the service provider.

3.10 Applicability 87

3.10.2.3 Cryptography

Another overhead is increased computation effort due to the used cryptography, when

compared against a centralized data store under the control of a service provider. All

data stored in the blockchain has to be encrypted to protect the privacy of the user.

Additionally, sending transactions towards the blockchain requires the creation of

digital signatures. Given that today’s smartphones have enough processing power

to easily do so, this should not pose any obstruction to the deployment of DecentID.

Significant computation effort is required to create new blocks for the blockchain.

However, to use DecentID creating new blocks is not required from the users, since

other blockchain participants are already doing so independently of DecentID.

3.10.3 Cost considerations

A significant difference to traditional systems is the direct financial cost incurred

by using a blockchain. In Ethereum, all calculations done by the miners have to

be paid for. While ordinary Ether transactions or function executions are relatively

cheap, writing data to a variable in a smart contract or, especially, deploying a new

smart contract is expensive. Unfortunately, the dollar price for Ether has drastically

increased in the last years and is significantly fluctuating.

In July 2021, deploying a SharedIdentityContract would cost around $80 - $300,

depending on how fast the smart contract should be deployed to the blockchain.

Obviously, this is much too expensive for most use cases. Compared to the current

state, where creating an online identity only costs a few moments of time, it is unlikely

that most users are willing to pay that much money. In comparison, adding a small

attribute to an already existing shared identity cost only about one percent of the

gas, which, while still expensive, is a more feasible cost. Using only a single shared

identity with many attributes for multiple services would save money, but would

abandon the privacy protection provided by using separate identities.

Using another blockchain instead of Ethereum to avoid or at least reduce the mon-

etary costs is not advisable. Technically, DecentID is not bound to Ethereum and

could operate on another blockchain supporting smart contracts as well. However, an

important factor for the security of blockchains is the number of users who participate

in mining blocks for the blockchain. If more than half of the mining power of a

blockchain is controlled by one, potentially malicious, user, the blockchain can no

longer be trusted. This user would be able to publish arbitrary blocks, invalidating

the assumed security guarantees of the blockchain. A consequence of this is that it

is a security advantage if many users participate in mining the blockchain. Using

88 3 DecentID

Ethereum, the second largest blockchain by market value10, as a basis for DecentID

means that it is very unlikely that a malicious adversary is able to control most of

the miners and bypass the security features integrated into the smart contracts of

DecentID. Using a smaller blockchain, e.g., because a special purpose blockchain

allows faster or cheaper execution, would forfeit this advantage. While some block-

chains seem to be promising regarding their capabilities, they are currently supported

by significantly less miners than Ethereum. If a blockchain is only controlled by a

small number of entities, it is no more secure than a traditional centralized system.

3.11 Summary

DecentID is a self-sovereign identity management system based on the blockchain

Ethereum. It gives users the control over their own identities, protects the privacy of

its users, and allows to maintain multiple pseudonymous identities to access different

online services. Decentralized identities can be created and arbitrary attributes added

to them. For large attributes external storage can be used, to avoid the costs of

writing to the blockchain. The added attributes can then be shared with online

services, granting the service access to the linked attributes and allowing them attach

attributes of their own. When doing so, the service is only able to read the attributes

attached to the identity shared with it, but does not receive any information about

other identities or attributes of the user.

The security and privacy features of DecentID were evaluated, and its advantages

and limits were discussed. A comparison with the state of the art was conducted

and DecentIDs unique characteristics were identified. Improving over existing work,

the creation of multiple identities per user has been considered in the design and

evaluation of DecentID, while related work only considers one identity per user.

Attributes can be granted by other users or services, and can be presented to third

parties. This is especially useful when interacting with other smart contracts, a

feature of DecentID that is not supported by related work. However, this flexibil-

ity and increased privacy protection comes with increased costs for operations on

the blockchain. Furthermore, aspects for the applicability of DecentID in practice

were considered. Using a prototype smartphone application and a computer-based

demonstrator, two implementations were presented.

10https://coinmarketcap.com/ Accessed: 11.03.2022

Chapter 4

Use Cases for DecentID

With DecentID, identities can be managed by their creator without a dependence on a

centralized service. This allows users to maintain self-sovereign identities completely

under their own control. However, when no service supports using these identities,

DecentID is of no use. As exemplary use cases for DecentID two example scenarios

are presented and evaluated in this chapter, where DecentID is coupled with existing

systems. The first example is using the identities created with DecentID for access

control in Palinodia, while as a second example DecentID is extended with the voting

system Open Vote Network for improved decentralization of online services, by

reducing the dependency on a single user. Both Palinodia and the voting system are

implemented by using smart contracts, allowing to interact with DecentID without

the help of off-chain programs.

These two examples have been chosen since their coupling with DecentID, as pre-

sented in chapter 3, is achieved by different approaches. For coupling with Palinodia,

presented in section 4.1, DecentID does not have to be modified. The smart contracts

of DecentID already support the required interface, namely the ability to retrieve

on-chain attributes from other smart contracts. For the integration of the voting

system, presented in section 4.2, DecentID had to be extended. The voting system

is supposed to allow users to assign attributes to the SharedIdentityContracts of

other users. Normally, this requires the private key of a permitted user of the target

SharedIdentityContract. With the integration of the voting system, authorized users

are able to execute a poll in the name of a permitted user. To enable the voting

system to modify the attribute after a successful poll without knowing the private

key, additional functions had to be added to the SharedIdentityContract of DecentID.

89

90 4 Use Cases for DecentID

4.1 Coupling with Palinodia

By itself, an identity management system as DecentID is of limited use. Only when

other services require identities and are able to interact with the identity management

system it becomes useful. One possibility for such a service is an off-chain service

that uses the identities. As such, the service is able to access the data stored in the

smart contracts on the blockchain as well as the data stored in off-chain attributes. To

do so, use case specific software is required for the service. In other cases, DecentID

can be used by services running as smart contracts on the blockchain. How the

smart contracts of DecentID can be coupled with other smart contracts, and what

approaches are feasible to do so, is discussed in the following. As an example contract

to discuss the possible coupling approaches Palinodia is used. However, the evaluated

coupling approaches and the reached conclusions apply to other services implemented

as smart contracts as well.

SharedIdentityContract

Permitted user 1 / creator

Attributes

IdentityManagement
Authorized users

Palinodia
Hash storage

Read attribute X

Use

?

Figure 4.1: Replacing the identity management of Palinodia with DecentID.

Palinodia, which will be introduced in the following, requires identities to decide

which users are authorized to update the stored hashes. Instead of using a specialized

smart contract to store the identities, approaches to couple with the generalized

identities of DecentID have been evaluated. This is depicted in figure 4.1. How

these two systems can be coupled, that is, which smart contracts have to be added or

modified, is evaluated.

After introducing Palinodia, the coupling approaches that will be evaluated are

introduced. These approaches are evaluated based on multiple criteria. Afterwards,

the finding will be summarized, both generally for coupling of smart contracts and

for identity management systems, especially for DecentID.

An earlier state has also been presented in [Fri+21]. The design and implementation

of the coupling approaches as well as the costs measurements were mostly done

by myself, while the other parts of the evaluation and the discussion have been

collaborative work.

4.1 Coupling with Palinodia 91

4.1.1 Palinodia

Palinodia [Ste+19], designed by Stengele, et al., is a blockchain-based system to

verify the integrity of downloaded software binaries. It allows to verify the binary

integrity of downloaded software automatically, by calculating the hash of the local

software binary and comparing it with the known hash stored in the blockchain. If

a software version should no longer be used, e.g., because security vulnerabilities

have been found, the respective binary hash for this version can be marked on the

blockchain as no longer valid. When the user tries to run the software the next time,

they are automatically warned that the used version should not be used.

Similar systems already exist based on centralized servers. However, if an adversary

can take over the server providing the software hashes, they can report arbitrary

hashes and even manipulate the user to update to an insecure version. Using block-

chain as a storage for the hashes avoids this problem since its security guarantees

protect against unauthorized manipulation, and avoids a single trust anchor.

Stores authorized users

Stores hashes

Stores

authorized

users

software_name

Software

Variables:

 public_key

 public_key

IdentityManagement

Variables:

 hash

 hash

BinaryHashStorage

Variables:

platform

 hash

 hash

BinaryHashStorage

Variables:

platform

 public_key

 public_key

IdentityManagement

Variables:

 public_key

 public_key

IdentityManagement

Variables:

Figure 4.2: The smart contracts of Palinodia and their interactions.

Palinodia by itself consists of three smart contracts, which are described in the

following. Additionally, their interaction is displayed in figure 4.2.

Software contract The software contract represents one specific software with all its

versions on the blockchain. Also, it links to a number of BinaryHashStorage contracts

that store hashes for specific platforms. Since not everyone should be able to add

or remove links to BinaryHashStorage contracts, an IdentityManagement contract is

used to store the public keys of permitted software developers.

BinaryHashStorage contract BinaryHashStorage contracts, one for each supported

platform, store the hashes for the software binaries that were published. Such a

platform consists of an operating system and the respective hardware the operating

92 4 Use Cases for DecentID

system is running on. If a software version has been revoked, the respective hash

stored in the contract is marked as revoked, resulting in future software verifications

to fail. Only the software maintainers that are listed in a linked IdentityManagement

contract are permitted to add or revoke hashes from the contract.

IdentityManagement contract Multiple of these contracts are used for a single

software to form a simple role-based access control system. One contract lists the

authorized software developers for a specific Software contract, while the other

IdentityManagement contracts list the software maintainers for specific platforms.

Whether they list developers or maintainers is not stored in these contracts, but is

implicitly defined depending on which contract links the respective IdentityManage-

ment contract. Technically, these contracts store a list of public keys of permitted

users. Adding or removing public keys from this list is only permitted to the users

already listed.

While being sufficient for the requirements of Palinodia, the abilities of the Identity-

Management contract are pretty limited. The IdentityManagement contract stores

identities simply as the public keys of the authorized users. This is enough to check

whether a function call on one of the other contracts of Palinodia should be executed.

However, this approach is lacking most features which are expected from digital

identities, restricting their use in other contexts. In the following, it is discussed how

this contract can be replaced by using the shared identities of DecentID, and which

aspects have to be considered when linking two blockchain-based systems.

4.1.2 Coupling approaches

As traditional software development has shown, a standardized interface is the

best approach to couple two systems to work together. However, with blockchain

technology being relatively new, no such interface exists yet for identity management.

While some approaches exist [Bra03; Fab02; Pel03], they are all still considered

drafts and no widely supported interface has emerged yet.

Missing a standardized interface, several coupling approaches were evaluated. As

it turned out, the most restricting factor is the question whether one or both of

the contracts are already deployed. If one of the systems that should be coupled is

already deployed to the blockchain, its smart contracts can no longer be modified.

Consequently, the other system has to be adapted. Alternatively, a proxy contract

can be used that translates the function calls of the calling smart contract to the

supported interface of the called system. Which approach is possible depending on

4.1 Coupling with Palinodia 93

Palinodia

In development Deployed
D

ec
en

tI
D

In development Proxy Contract

Adapting Palinoda

Adapting DecentID

Proxy Contract

Adapting DecentID

Deployed Proxy Contract

Adapting Palinoda

Proxy Contract

Figure 4.3: The possible coupling approaches based on the deployment status of the

smart contracts.

the deployment status of Palinodia and DecentID is displayed in figure 4.3. In the

following, the possible approaches are presented.

No coupling The simplest approach is to use the integrated identity management

of Palinodia. Since it is specially designed for its purpose, it is simple to use and

quite efficient. However, the identities stored within it are not very useful in other

contexts.

1 function checkIdentity(address _addr) public view returns(bool) {

2 return (arr_idents[map_idents[_addr].array_index] == _addr);

3 }

Figure 4.4: A function in the IdentityManagement contract of Palinodia which checks

the authorization of users.

In figure 4.4 the function used for authorization checks in the IdentityManagement

contract of Palinodia is displayed. As a function argument, it receives the public

key1 of the user that wants to call a restricted function in Palinodia. Within the

smart contract, a mapping map_idents allows to retrieve an array index, and possibly

further data, for all registered public keys. This array index is then used to look up the

respective array entry in the array arr_idents, which should be the public key of the

authorized user. Due to the way Solidity works, a non existing mapping entry would

return a zero initialized array index, resulting in a lookup of the first element in the

array arr_idents. Consequently, the retrieved array element has to be compared to

the function parameter to ensure that the correct element has been retrieved, and

that the public key is registered as an authorized user within the IdentityManagement

1In Solidity, the programming language for smart contract on the blockchain Ethereum, public keys

and blockchain addresses are both represented by the address data type.

94 4 Use Cases for DecentID

contract. If this check succeeds, true is returned and the restricted function in

Palinodia can be executed. When replacing the IdentityManagement contract with

either a proxy contract or DecentID, the functionality of this checkIdentity() function

has to be provided in some other way.

Using a proxy contract When both systems, in this example Palinodia and DecentID,

already have been deployed, no further changes to their function interfaces can be

done. Consequently, a special purpose proxy contract has to be used. It offers the

interface expected by Palinodia for its IdentityManagement contract, namely the

checkIdentity() function, and adapts the calls to the interface DecentID supports.

If required, the proxy contract can execute multiple function calls to DecentID or

even modify the data passed to or received from DecentID to match the data format

required by Palinodia. With further proxy contracts, even more identity management

systems could be coupled with Palinodia without the need to adapt the function

interfaces. As such, it is a very universal solution for most coupling scenarios, but

due to the additional function calls and data modifications it is not as efficient as

matching interfaces.

1 function checkIdentity(address _addr) public view returns(bool) {

2 SharedIdentityContract sic = map_idents[_addr];

3 if (sic == SharedIdentityContract(address(0))) {

4 return false;

5 }

6 bytes memory attr = sic.getAttribute(admin,

7 addressToHexString(msg.sender));

8 return attr.length == 1 && attr[0] == role;

9 }

Figure 4.5: The checkIdentity() function in the proxy contract, previously provided

by the IdentityManagement contract.

The adaption between the interfaces required by Palinodia and provided by DecentID

is displayed in figure 4.5. As seen in line 1, the function declaration is the same as

in the IdentityManagement contract of Palinodia. This is required since Palinodia

should not be modified, and expects this function declaration from its identity man-

agement. Within the function, the SharedIdentityContract linked to the given public

key is retrieved from the mapping map_idents. Previously, this mapping has been

established in the proxy contract by the user identified by this public key. While

registering the mapping, the cryptographic hash of the smart contract code at the

registered address is checked to match the code of a known SharedIdentityContract.

4.1 Coupling with Palinodia 95

Also, the proxy contract ensured that the user really is the creator of the registered

SharedIdentityContract. Further authorization to add the mapping, e.g., checking

the authorization for Palinodia, is not required. Checking the authorization only

once on registration to the proxy contract is insufficient, since the authorization

might be revoked at some time in the future. Instead, it has to be checked on each

access of Palinodia. Since the mapping has to be stored, the proxy contract maintains

some state for each identity that should be used. A stateless proxy contract would

be preferable, since it is more flexible and financially cheaper to use. However, this

is not possible due to the smart contract code of Palinodia: Only the public key of

the user calling one of Palinodias functions is passed on to the identity management,

without the possibility to pass on the address of a SharedIdentityContract with it.

After the address of the SharedIdentityContract has been retrieved from the mapping,

the returned address is compared whether it is valid. If the address is equal to a

default constructed address, no existing entry in the mapping has been found and the

public key _addr is not registered in the proxy. In that case, the access to Palinodia is

denied by returning false from this function. From the SharedIdentityContract at the

found address an attribute is retrieved. This attribute was granted by the permitted

user admin, which has been set in the proxy contract earlier. This user has granted

an attribute with the address of the Software or BinaryHashStorage contract, that is

calling the checkIdentity() function, as indexing key. This way, separate permissions

can be granted for the different software projects and their binaries. In line 8 the

actual authorization check is done and the result of it returned. The retrieved attribute

is expected to have a length of one byte, containing the role this user has for the smart

contract calling this function. If the length differs, the attribute is either not set or set

to an unexpected value. In both cases the access to Palinodia should be denied. As

with the admin address, the role that should be checked has been stored in the proxy

contract on its deployment. For this exemplary implementation of a proxy contract,

two roles have been defined: a “developer” role for access to a Software contract,

and a “maintainer” role for access to a BinaryHashStorage contract. Depending on

the specific requirements, additional roles could be defined for other use cases.

Adapting Palinodia When the smart contracts of Palinodia have not been deployed

to the blockchain yet, they can be modified to support the generic function interface

of DecentID. Normally, Palinodia expects a certain function, i.e., checkIdentity(),

from its identity management system that takes a public key as parameter and returns

whether the user represented by it is permitted to access Palinodia. Whether the user

is a software developer or maintainer is not passed towards the identity management

system, but is inferred from the context of the call. As such, a generic identity of

96 4 Use Cases for DecentID

DecentID cannot be called with this function directly. Instead, Palinodia has to be

modified to retrieve an attribute from a given shared identity and check whether the

attribute allows its owner to perform the requested action.

1 function checkIdentity(SharedIdentityContract sic, address sender)

2 internal view returns (bool) {

3 if (getContractHash(address(sic_root)) !=

4 getContractHash(address(sic))

5 || sic.getCreator() != sender) {

6 return false;

7 }

8 bytes memory attr = sic.getAttribute(sic_root.ownerAddrs(0),

9 addressToHexString(address(this)));

10 return attr.length == 1 && attr[0] == byte(0x02);

11 }

Figure 4.6: Added code in Palinodia for checking authorization in the attributes of

DecentID.

The code that has to be added to both the Software and the BinaryHashStorage

contracts can be seen in figure 4.6. From its functionality, it is similar to what is

done in the proxy contract. The checks in the lines 3 – 6 are the same as executed

when registering a new SharedIdentityContract within the proxy contract. As done

in the proxy contract, the hash of the provided contract is compared to the hash of a

known SharedIdentityContract to ensure that no modified smart contract is provided

by an adversary. Furthermore, the creator as stored in the SharedIdentityContract is

checked to be the user trying to access Palinodia. In the proxy contracts these checks

only have to be done once when registering the SharedIdentityContract. Here, the

checks have to be executed each time since the address of the SharedIdentityContract

is not stored within Palinodia. This is avoided since the addresses would have to be

stored for all authorized users, increasing the size and the cost of the smart contract.

Afterwards, nearly the same attribute check as used in the proxy contract is done in

lines 8 – 10. While using the same functional logic, the values used to access and

check the attribute has been replaced to refer to the contract containing the function.

Instead of a stored administrator public key, the administrator of the current Palinodia

contract is used in line 8. In the following line 9, msg.sender, which refers to the

entity calling the function, has been replaced by this, which refers to the contract

containing the function. Finally, instead of a previously stored role the value 0x02 is

used, which denotes a “maintainer” role.

4.1 Coupling with Palinodia 97

Adapting DecentID Instead of adapting Palinodia as described above, DecentID

could be adapted to support the expected interface required for checking the autho-

rization of users.

1 function checkIdentity(address _addr) public view returns(bool) {

2 if (getCreator() != _addr) {

3 return false;

4 }

5 bytes memory attr = getAttribute(palinodia_admin,

6 addressToHexString(msg.sender));

7 return attr.length == 1 && attr[0] == palinodia_role;

8 }

Figure 4.7: The checkIdentity() function as it could be added to the SharedIdentity-

Contract.

Technically, this would require code as displayed in figure 4.7. The function would

receive the public key of the user that wants to access Palinodia as the function

parameter _addr. Afterwards, the function ensures that the user identified by the

given public key is the creator of this shared identity. If it is, the attribute is checked

as done in the other implementations as well.

However, for multiple reasons this approach was not evaluated in the following. For

once, including this function into DecentID would mean that the generic identities of

DecentID would contain a function and variables specific to a single use case, i.e.,

Palinodia. From a design perspective, this is very undesirable. If further use cases

ought to be supported, even more single use functionality would have to be included

in the SharedIdentityContract.

Furthermore, this approach introduces a security vulnerability: If an arbitrary smart

contract could be provided by a user to call the checkIdentity() function on it, the

user can simply provide a smart contract where the function always returns true.

This would mean that they are able to access any contract of Palinodia, since the

authorization check is bypassed. This is also the reason why the hash of the smart

contract code needs to be verified in the previous coupling approaches.

Finally, the smart contract of Palinodia expect one fixed smart contract address where

the identity management resides at. When a different SharedIdentityContract is

supposed to be used for each authorization, an Palinodia administrator would be

needed to manually change the called address each time. Besides being impracticable,

changing the address of the identity management is currently not supported by

98 4 Use Cases for DecentID

Palinodia. Consequently, Palinodia would have to be adapted to add this functionality,

which should have been avoided by adapting DecentID. Also, adapting Palinodia is

impossible if Palinodia has already been deployed.

Based on the first three approaches, an evaluation given multiple criteria is performed

in the following.

4.1.3 Evaluating the approaches

In this section, multiple criteria related to the coupling of smart contracts are discussed.

As an example, these criteria are applied to the approaches described above. To do

so, a proxy contract as well as a modified version of Palinodia were implemented.

These approaches are compared to the native identity management system included

into Palinodia, which requires no coupling with DecentID.

4.1.3.1 Security dependency

Blockchains ensure that the smart contract code is executed as it is written, but

at the same time they do not allow later modification of the code. As such, it is

even more important than for traditional software to ensure that the deployed code

does not contains bugs or security vulnerabilities. While a single smart contract

can be verified, it becomes much more complicated when multiple smart contracts

are coupled. For once, the called contracts might contain security vulnerabilities

themselves, endangering the correct execution of the calling contract. Also, calling

other contracts add additional complexity to handle the call, which might lead to

security vulnerabilities by itself.

An additional problems is that the address of the called contract has to be known. If

all functionality is contained within one smart contract, all functions are simply called

on the current contract without additional addresses being required. When a smart

contract should call another smart contract, by whichever coupling approach, the

addresses of the contract that should be called has to be given to the calling contract

at some time. This might either happen rarely or only once, e.g., on deployment, or

be done on each function call. The security becomes even more difficult to evaluate

when the called contract calls a further contract. However, this case is not explicitly

regarded in this section, since the same considerations apply even with multiple

consecutive call steps.

In the original version of Palinodia the IdentityManagement contract I is called by

the other contracts, e.g., Software or BinaryHashStorage contracts, to check the

authorization of a user. The address of I is provided when deploying the calling

4.1 Coupling with Palinodia 99

contract C to the blockchain, and then stored as an attribute within the contract C .

This has the advantage that the creator of C can verify the code of the smart contract

residing at the address of I , i.e., they can check the functionality and security of the

code of I . When a function of I is called later on, it is already known beforehand

what will happen.

When adapting Palinodia to call SharedIdentityContracts directly, another approach

is used. Instead of providing the address at construction of the calling contract C , the

address of the called SharedIdentityContract SICi is provided when a function is called

that requires authorization. When accessing C , each authorized user i provides their

own SICi. Consequently, a different blockchain address is required each time. Storing

all possible addresses of authorized SharedIdentityContract beforehand is for once

expensive, but would also defeat the purpose of providing a SharedIdentityContract

in the first place: If all users are already known and registered in C , there is no reason

to check the authorization in SICi. Instead, the smart contract SICi at the provided

address has to be verified by C to ensure its validity. As described in section 4.1.2, this

is achieved by verifying the hash of the smart contract code, followed by verifying the

ownership and attributes stored in the provided SharedIdentityContract. If the code

of SICi, respectively its hash, would not be checked by C , an adversary could provide

a modified contract SIC ′
i

which always returns that the adversary is permitted to

access Palinodia, even when the relevant attribute has not been granted to them. A

similar approach can also be used when coupling other smart contract, independently

of the example used in this section. However, a drawback of verifying the hash of the

smart contract code is that only those smart contracts can be used, where the hash

has been previously stored in the calling contract. Using an updated or a completely

different smart contract is not possible, even when this contract would still provide

the same functionality.

When using a proxy contract to couple Palinodia and DecentID, both variants of pass-

ing the address are used. To call the proxy contract P from within one of Palinodias

contracts C , a fixed blockchain address is provided at deployment of C . This has to

be done, since the unmodified smart contracts of Palinodia expect a fixed address

for their identity management and do not support working with dynamic addresses.

When retrieving the attribute from the user-provided SharedIdentityContract SICi,

the address of SICi has been previously stored in the proxy contract P. Technically,

this differs from the direct coupling by adapting Palinodias contracts. From a security

standpoint however, it results in the same challenges and required considerations.

Since the address of SICi is provided and registered in P by the user, the address of

SICi has to be considered an untrusted address. Consequently, the code residing at

this address has to be verified before calling a function on this contract.

100 4 Use Cases for DecentID

4.1.3.2 Costs

In Ethereum, calling smart contract function and deploying new smart contracts has

to be paid for in Ether, with the costs depending of the amount of code executed

or written. This cost, measured in gas, is paid to the miners, motivating them to

include the execution of the call in the next block. As such, function code should be

written as efficient as possible, to avoid high costs for the calling user. To evaluate

the costs, a simple scenario has been chosen: One instance of Palinodia, consisting

of a Software contract and a BinaryHashStorage contract, is deployed, together

with the identity management contracts of the different approaches. The latter are

either the IdentityManagement contracts of Palinodia, a SharedIdentityContract of

DecentID, or a SharedIdentityContract together with a proxy contract. The created

identity is then authorized as a developer for the Software contract. While deploying

contracts is much more expensive than executing contracts, it is also a relatively rare

occurrence. Much more frequent are code executions and small data modifications

on the blockchain, e.g., authorizing a new user or updating a stored binary hash.

S
et

up
 Id

en
tit
y
M

an
ag

em
en

t

S
et

up
 P

al
in
od

ia

C
re

at
e

us
er

 id
en

tit
y

A
ut

ho
riz

e
us

er
1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

Gas Cost

Per Instance Per User Per Authorization Check

IdentityManagement Contract Proxy Contract Adapting Palinodia

S
uc

ce
ss

fu
l c

he
ck

Fai
le
d

ch
ec

k

Figure 4.8: Gas costs when deploying and using Palinodia and DecentID plotted on a

logarithmic scale.

The results of the cost measurements are displayed in figure 4.8. Depending on how

often these costs occur, they are separated between once per deployed instance, once

per authorized user, and once per authorization check of a user.

4.1 Coupling with Palinodia 101

Per Instance

The costs per instance occur only once per deployed Palinodia instance, independently

of how many users are authorized for it or how much the system is used.

Setup Identity Management In the original design of Palinodia, two IdentityMan-

agement contracts are created per deployment of Palinodia. If a proxy is used, the

costs are based on deploying the two proxy contracts, which are replacing the Identi-

tyManagement contracts of Palinodia. The IdentityManagement and proxy contracts

are always created, even when no users will be authorized. When more than one

BinaryHashStorage contract is deployed, an additional IdentityManagement or proxy

contract has to be deployed as well. Since shared identities are created per user, no

setup cost for the identity management occurs when using an adapted version of

Palinodia, which directly interacts with DecentID.

Setup Palinodia When using the IdentityManagement contracts or the proxy con-

tracts, the cost to deploy the other contracts of Palinodia remains the same. In

both cases, Palinodia does not need to be adapted. The cost to deploy the Palin-

odia contracts is slightly higher when coupling directly with DecentID. In that case,

the adapting code towards the function interface of DecentID is included within

Palinodias contracts, instead of not being required or being part of the proxy contract.

Per User

The costs per user describes the costs when authorizing a single user to access Palin-

odia. It is separated between creating a new identity to do so, and the authorization

itself.

Create user identity When the IdentityManagement contract is used, no costs occur

for creating user identities. Since the IdentityManagement contract only stores the

public keys of authorized users, there are no identities which need to be created

or stored on the blockchain. When DecentID is used, the relatively high costs of

deploying shared identities is visible. If the created shared identities are only used

to access Palinodia, this cost might be too high to be acceptable for many users.

However, when a shared identity already exists for some other purpose and can be

used for Palinodia as well, this cost does not apply, significantly reducing the costs

for using DecentID with Palinodia.

Authorize user When using the IdentityManagement contract, the cost to authorize

a user is the cost to add a new public key to the list of authorized users stored within

the contract. When using DecentID, either directly or through a proxy, a new attribute

is added to the SharedIdentityContract describing the role of the user. Adding the

102 4 Use Cases for DecentID

attribute is cheaper than adding the public key, since the attribute is shorter and

requires less storage on the blockchain. If a proxy is used, the cost is slightly higher

than when using DecentID directly, since state within the proxy contract has to be

established.

Per Authorization Check

When a user wants to modify the state of Palinodia, e.g., add a new binary hash, their

authorization is verified.

Successful check At a successful authorization check the public key is found in the

IdentityManagement contract, respectively a matching attribute found in the shared

identity. Since additional checks are required to verify the SharedIdentityContract, the

costs for the authorization check is higher. If the proxy contract is used, some of these

additional checks were already done when registering the SharedIdentityContract

within the proxy contract, reducing the costs compared to a direct coupling when

checking the authorization later on.

Failed check A failed authorization check is executed when a new user should receive

access permissions, since already authorized users should not be authorized a second

time. With the IdentityManagement contract, the cost is the same as for a successful

check, since in both cases a check for the existence of the public key is executed. The

cost when using the proxy is in the evaluation scenario lower than a successful check,

since the authorization check already fails when the missing state of the proxy is

discovered, instead of needing to retrieve the attribute from the shared identity. Using

an adapted version of Palinodia and accessing the SharedIdentityContract directly is

slightly cheaper than a successful check as well, since some of the required checks,

e.g., processing the value of the attribute, are not executed.

The previous cost evaluation has regarded the creation of a minimal Palinodia de-

ployment. Contrary to that, figure 4.9 considers the costs of larger, more realistic,

deployments. The depicted costs for only one user are the same as the sum of the costs

displayed in figure 4.8. Based on that, the costs for systems with more authorized

users have been calculated. These calculations assume that one instance each of the

Software and BinaryHashStorage contracts have been deployed to the blockchain.

If the IdentityManagement contract or the proxy are used, two of those, one per

Palinodia contract, have been deployed.

The first three bar groups assume that for each user that should be authorized a new

identity is created and authorized. When the IdentityManagement contract is used,

the costs are only increasing slowly, since for each newly authorized identity only

4.1 Coupling with Palinodia 103

1
us

er

2
us

er
s

50
 u

se
rs

50
 e

xi
st
in
g

us
er

s

50
0

ex
is
tin

g
us

er
s

1.000.000

10.000.000

100.000.000

1.000.000.000

Gas Cost IdentityManagement Contract Proxy Contract Adapting Palinodia

Figure 4.9: Costs with different amounts of authorized users on a logarithmic scale.

a single public keys has to be written to the blockchain. When DecentID is used,

either directly or through the proxy contract, the costs are increasing much faster.

Deploying SharedIdentityContracts is much more expensive than writing a single

public key, resulting in the higher costs.

The last two bar groups assume that the users of Palinodia already have Shared-

IdentityContracts and want to add the authorization to access Palinodia to their

existing shared identities. For the IdentityManagement contract this does not change

anything and the costs are increasing as in the previous bars. The IdentityManagement

contract only lists authorized users, so it is not possible to reuse existing identities

for it. However, when DecentID is used the costs are significantly reduced. If a proxy

contract is employed, the costs are higher than with the IdentityManagement contract,

since the state stored within the proxy is larger, and as such more expensive to store,

than the public key stored in the IdentityManagement contract. If Palinodia is coupled

with DecentID directly, the cost is lower than with the IdentityManagement contract.

As already seen in figure 4.8, the cost for authorizations is lower when creating an

attribute in DecentID, than adding a public key to the IdentityManagement contract.

When more identities are authorized, this saving becomes more apparent.

This evaluation has shown that the costs of using the general purpose identity manage-

ment system DecentID is higher than using the special purpose identity management

included in Palinodia. This is most likely true for every generic identity management

system that is coupled instead of using a special purpose approach. The costs are

especially high when users have to or want to create a new SharedIdentityContract

for their Palinodia authorization. However, when they already own a shared identity

and are reusing it for Palinodia, the costs are even cheaper compared to the included

104 4 Use Cases for DecentID

IdentityManagement contract. In conclusion it can be said that DecentID gives the

user of Palinodia more flexibility to use their identity, but results in higher financial

costs if this flexibility is not used.

4.1.3.3 Implementation effort

In section 4.1.2 the relevant code segments for checking the authorization in the

different coupling approaches were shown. As is apparent, less smart contract code

is required when the IdentityManagement contract of Palinodia is used (displayed in

figure 4.4). Compared to that, the other coupling approaches require similar amounts

of code, since they are all providing the same functionality: Adapting the function

interface provided by DecentID to the requirements of Palinodia.

When adapting Palinodia, an adapter function has to be implemented that reads

the attributes from the SharedIdentityContracts and checks whether the returned

values match the requirement for the desired modifying action in Palinodia. Addi-

tionally, this function has to check whether the given blockchain address even is a

SharedIdentityContract and whether the identity has been created by the calling user.

Both the attribute check and the verification of the provided smart contract are not

required when using the IdentityManagement contract.

If a proxy contract is used, the same checks have to be done. Additionally, the proxy

contract has to contain code to fulfill the expected function interface of Palinodia.

Since Palinodia only passes the public key of the function caller to the identity

management, which is represented by the proxy contract, the proxy has to contains a

mapping of public keys to addresses of shared identities. Consequently, a user has to

register their shared identity in the proxy before using Palinodia. Furthermore, using

a proxy contract requires the implementation and deployment of a complete smart

contract. However, the additional implementation effort for this smart contract is

negligible, since it only consists of the adapting function.

Based on this, it appears that coupling with an existing identity management system

is more effort than using a special purpose identity management, especially when

comparing the shown code segments required to check the authorization. However,

while a special purpose identity management offers a simpler function interface, using

one requires the implementation of a complete smart contract, with functionalities to

create, authorize, and delete identities. Additionally, the security of this system has

to be considered and evaluated, to avoid that adversaries authorize themselves. So

while coupling with an existing identity management system might seem to be more

effort, it can actually reduce the required amount of work, both in the design and in

the implementation of the system.

4.1 Coupling with Palinodia 105

4.1.3.4 Interoperability

To improve the interoperability between smart contracts, the function interface of a

contract should be designed as generic as possible. Given a publicly known interface,

two contracts can be coupled even when their developers did not consider this specific

pairing of contracts. Doing so can avoid the costs for deploying additional, single

purpose, contracts, as well as increasing the reusability and flexibility. Preferably,

changes to the design of smart contracts should try to improve the coupling options

for their users and not replace one fixed coupling with another.

In the original design of Palinodia, the function interface of the IdentityManagement

contract was tailored to the requirement of receiving a public key and checking

whether it has been authorized. As such, the Software and BinaryHashStorage

contracts expected such a function interface, which simply takes and checks a provided

public key. While this is sufficient for the use case of Palinodia, it restricts the abilities

of the identity management system and hinders possible other uses of the stored

identities, e.g., using the received authorization for other smart contracts.

DecentID, on the other hand, provides a generic function interface to read and

write the attributes of the SharedIdentityContracts. While this permits other smart

contracts to interact with the shared identities, it also means that the calling smart

contracts have to interpret the returned attribute data. In the case of Palinodia, that

means that the retrieved attribute data has to be checked whether it represents a

valid authorization to interact with the system. However, after adapting Palinodia

any other identity management system, that supports the same function interface as

DecentID, could be coupled with Palinodia as well.

Considering the costs of deploying additional contracts like the proxy contract, the

interfaces should be as generic as possible for the use case of the called system. This

way, the called system can be exchanged, while at the same time multiple systems

can use its functionality. If a proxy contract is implemented, it should try to avoid

keeping state for the desired coupling. Without state in the proxy contract, multiple

other smart contract can call the proxy contract, allowing to use one proxy contract

to couple between multiple systems. In that case, the proxy contract only adapts the

mismatching function interfaces of the systems that are coupled, without being tied

to any of them.

In general, standardized interfaces, offering use case independent functions, between

smart contracts are preferable to improve their interoperability. If this is not possible,

e.g., because one or both of the smart contracts that should interact are already

deployed to the blockchain, a proxy contract can help to adapt the interfaces and

permit interacting with other smart contracts.

106 4 Use Cases for DecentID

4.1.4 Findings

Similar to what is common practice in software development outside of the blockchain,

a modular design for smart contracts is preferable, since it can reduce the costs of

implementation and deployment of smart contracts. However, how the coupling

interface between modular smart contracts is designed is not quite clear yet. In

the future, conforming to a standardized function interfaces will be preferable, to

permit coupling with as many other smart contracts as possible. Unfortunately,

no such interface for identities management has emerged yet. For now, a clear

recommendation which of the evaluated coupling approaches is best cannot be given

and depends heavily on the specific use case of the to be coupled systems.

The evaluation has shown that the different coupling approaches each have their own

advantages and disadvantages. If one of the contracts that should be coupled has not

been deployed to the blockchain yet, it can be preferable to adapt its interface to the

already deployed contract. However, this should not be done if this results in adding

use case specific functionality in an otherwise generalized smart contract. In that

case, or if both contracts have already been deployed, a proxy contract can help to

bridge the gap. While always applicable and allowing additional adaptions between

the smart contracts, they bring their own disadvantages of higher implementation

effort, more costs, and potentially additional security vulnerabilities.

For DecentID, this evaluation has shown that it can be used as an identity management

system for other blockchain-based systems. Its generic interface can be used to fulfill

purposes that have not been an explicit design goal, without increasing the required

adaption overhead for the calling contract too much. A restriction that should be noted

again is that smart contracts are unable to access data stored outside the blockchain.

Both Palinodias IdentityManagement contract and the SharedIdentityContract store

their data on the blockchain, while some other identity management systems, e.g.,

ShoCard and uPort, store their data off-chain. As such, identity attributes stored

off-chain are not available to other smart contracts on the blockchain. While off-

chain storage is cheaper, it limits the versatility of the identities. However, since

computation on the blockchain incurs financial costs, there probably is no demand

for accessing and processing large amounts of data on-chain anyway. Accessing the

small attributes stored directly within the shared identities on-chain should most

likely be enough when using DecentID from within other smart contracts.

4.2 Voting integration 107

4.2 Voting integration

Given a SharedIdentityContract SIC{A,S}, only the user A and the service S are able to

add, modify, or delete attributes from SIC{A,S}. For many use cases, this is sufficient:

The user A can add attributes describing themselves, while the service S reads these

attributes and might add own attributes. However, given a group of users having

shared identities with a service, it can be useful if some of the users are able to add

attributes to the other users in the name of the service.

In the following, such a scenario is described. Afterwards, the decentralized voting

system Open Vote Network is introduced, together with its Ethereum implementation

and the adaptions required for its integration into DecentID. The modified and newly

added smart contracts are presented, before the technical execution of a poll is

detailed. In the following, the security and privacy of the approach is analyzed.

4.2.1 Example Scenario

In this example scenario, each user of a group of users, Alice, Bob, Carol, and Thomas,

has their own SharedIdentityContract with the service S. The users do not have

access to the shared identities of the other users. This can be seen in figure 4.10.

Service S

pubKeyS

pubKeyA1

SIC{A,S}

Permitted user 1:

Alice

pubKeyA1

pubKeyS

Permitted user 2:

"voter" -> "yes"
Attributes:

pubKeyB1

SIC{B,S}

Permitted user 1:

pubKeyS

Permitted user 2:

"voter" -> "yes"
Attributes:

pubKeyC1

SIC{C,S}

Permitted user 1:

pubKeyS

Permitted user 2:

Bob

pubKeyB1

Carol

pubKeyC1

pubKeyT1

SIC{T,S}

Permitted user 1:

pubKeyS

Permitted user 2:

Thomas

pubKeyT1

Figure 4.10: Example scenario for voting. The attribute keys and other attributes are

omitted in this figure.

As explained in chapter 3, only the permitted users of a SharedIdentityContract are

able to attach attributes to it. For example, only Thomas and the service S are able

to attach attributes to SIC{T,S}. The same holds true for the other SharedIdentity-

Contracts in the example. If the service S wants to add an attribute to SIC{T,S}, the

108 4 Use Cases for DecentID

private key privKe yS of the asymmetric key pair used by the service is required. This

means, that other users are not able to attach attributes to SIC{T,S}, especially not in

the name of the service. In most scenarios this is not needed anyway. One example

would be when the service offers an online shop: Only Thomas and the service need

to access SIC{T,S}, other users should not be able to do so, and there is no reason for

them to do so. In other scenarios, e.g., when the service offers an online forum, this

might be different. Here, the service might want to authorize certain users of the

forum to add attributes to other users of the forum.

Initially, most online forums are managed by a single human, here represented by the

service S. Consequently, only S has access to the private key privKe yS , meaning that

this single person becomes a single point of failure. If this manager is not available

for some reason, management tasks of the forum regarding a SharedIdentityContract

cannot be executed. These management tasks could, for example, be to grant an

advanced forum rank to a user of the forum. While other people might be able to

agree on the decision to grant the rank, they are unable to assign the respective

attribute to the user. Assigning the attribute would require access to privKe yS , which

should not be disclosed to other users.

As an alternative to disclosing privKe yS , a voting system has been integrated into

DecentID. By executing a poll and agreeing on the action that should be done,

authorized users are able to add, modify, or remove attributes in the name of the

service S to identities that have been shared with it.

Definition 4.1: Voter

A voter V is a user having a SharedIdentityContract SIC{V,S} with a service

S, that has been authorized by the service S to participate in polls and add

attributes to other users of the service S by voting.

In the depicted example scenario in figure 4.10, the service S has added an attribute

“voter” to the SharedIdentityContracts SIC{A,S} and SIC{B,S} created by Alice and

Bob, authorizing them as voters. Carol and Thomas have not received this attribute,

prohibiting them from participating in polls for this service.

After executing the poll and agreeing on the desired change, the voters are able to

add a new attribute to the SharedIdentityContract SIC{T,S} between Thomas and the

service. This new attribute is added to SIC{T,S} as if the service S had added it itself

using its private key privKe yS .

Due to the involved smart contracts, the addition or modification of the attribute

can be executed without requiring the private key privKe yS of the service. Still, the

attribute is modified in the name of the service S. As explained in section 3.5.2, this

4.2 Voting integration 109

means that manipulating attributes attached to SIC{T,S} by Thomas is not possible.

Only Thomas is able to modify the attributes he added to SIC{T,S}, the integration

of the voting system does not change this. Furthermore, the voters are only able to

write, overwrite, or remove attributes: Reading encrypted attributes that are already

attached to SIC{T,S} is not possible.

On the blockchain Ethereum, functions in smart contracts are able to execute code

and call other functions and smart contracts. However, they cannot to be called

automatically, e.g., periodically each ten minutes. For this reason, the smart contract

used for polls require a voting administrator.

Definition 4.2: Voting administrator

The voting administrator is the voter that started the poll, and that calls the

required smart contract functions to advance it.

It should be noted that voting in this context is not meant to be and is not sufficient for

legal votes, e.g., for political offices. Since the offline identity of a DecentID user is not

known, it cannot be checked when voting. Consequently, the voting should only be

used for informal opinion polls, where a wrong result, e.g., due to a non-terminating

poll or malicious manipulation, is not critical. Also, the bootstrapping problem is

not completely solved within DecentID: The first two voter authorizations have to

be assigned by the administrator of the forum. How the administrator of the forum

selects these first two voters is out of scope for this work. Afterwards, further voting

permissions can be granted or withdrawn through a poll by the existing voters.

4.2.2 Open Vote Network

Designing and evaluating a secure and privacy-preserving digital voting system is

by itself a formidable task, which is no goal of this work. Instead, an existing decen-

tralized voting system, Open Vote Network [Zie10], was integrated into DecentID.

It has been selected since it fulfills the requirement for the desired voting system:

no dependency on centralized trust anchors, protection of the voters privacy, and

verifiability of the results, besides being frequently referred to by related approaches.

Additionally, there already exists an implementation based on smart contracts for

Ethereum, simplifying the integration into DecentID.

Since this work focused on the integration of the system into DecentID and not on

the design of a decentralized voting system as such, only a high-level overview over

the functioning of Open Vote Network is given. For an extensive description of the

approach and a security analysis, see the paper by Hao, et al. [Zie10]. The approach

110 4 Use Cases for DecentID

presented in the following only supports votes of “yes” or “no”. However, it would be

possible to extend the voting approach to support more choices if required.

In general, Open Vote Network operates in two rounds: Publishing of the voting

public keys and publishing of the votes. Before executing the two rounds, a finite

cyclic group G with its generator g is selected.

(1) In the first round, the voting public keys are created and published. To do

so, each voter i selects a random value x i and calculates their voting public

key as g x i . This voting public key is send to the other voters, together with a

zero-knowledge proof demonstrating that they know the value of x i. When

every voter has done so, the received zero-knowledge proofs are verified and a

reconstructed key g yi based on all g x i is calculated by each voter.

(2) In the second round, each voter publishes g x i yi g vi , with vi being their own vote

in {0, 1}. Again, a zero-knowledge proof is published together with this value,

this time to prove that vi is in {0,1}. After all votes have been published, the

zero-knowledge proofs are verified.

Due to the inclusion of the secret x i values within their published vote, other voters

or observers are unable to deduce the vote of a single voter. However, by calculating

the product of the published votes, the final tally can be calculated: Πi g
x i yi g vi = gΣi vi .

As shown in [Zie10], Πi g
x i yi evaluates to 1. Since only a small number of voters is

present, the discrete logarithm of gΣi vi can be calculated, revealing Σi vi which is the

number of “yes” votes. By comparing this number with the known total number of

voters, it can be determined whether the vote passed or not.

4.2.2.1 Ethereum implementation

In [MSH17], an Ethereum implementation of the Open Vote Network based on smart

contracts is presented. The smart contracts have been published under the MIT

license and are available online2. Additionally, a webinterface to commence a vote

has been implemented, which is not regarded in the following.

While the theoretical design of the approach only consists of two rounds, five stages

are required for its implementation in Ethereum. These stages are SETUP, SIGNUP,

COMMIT, VOTE, and TALLY, which are described in the following. In the previous

section all voters have been regarded as equal. However, for the practical implemen-

tation as smart contracts, one of the voters acts as a voting administrator to create

the smart contracts of the poll and advance the stages, as defined above.

2https://github.com/stonecoldpat/anonymousvoting Accessed: 11.03.2022

4.2 Voting integration 111

While not necessary for the execution of the poll, the implementation demands a

deposit of Ether to participate in it. This deposit has to be paid by voters when

they register for the poll, and is returned when they submit their vote. This way,

misbehaving voters, i.e., voters that do not contribute a vote despite having registered,

are punished by losing their deposit.

Another property of the implementation is that a number of durations can be set

for the stages of the poll. The set minimum durations ensure that there is enough

time for the voters to interact with the voting contract, even when their blockchain

transactions need some time to get processed. The maximum durations make sure

that the deposits can be returned to the voters, when either one of the voters or even

the voting administrator stops participating in the poll.

SETUP In the first stage, the voting administrator creates the voting contract and

sets the parameters for the poll. This includes setting the voting question, the size of

the deposit, whether the optional COMMIT stage should be used, and the durations

of the stages. Also, a list with the public keys of the authorized voters is stored.

SIGNUP In this stage, all voters which have previously been authorized by the

voting administrator can now register for the poll, but do not have to do so. To

register, they send their voting public key g x i , a zero-knowledge proof for x i, and

their deposit to the voting contract on the blockchain. When enough time passed, the

voting administrator can advance the stage. When this happens, the smart contract

calculates the keys g yi .

COMMIT This stage is optional to avoid an advantage for the last voter. Without this

stage, the last voter is able to calculate the final tally even before voting themselves,

since all previous votes are already stored on the blockchain and their own vote is

known to them. When the COMMIT stage is used, all voters publish a hash of their

vote on the blockchain. In the next stage, if the hash of their vote does not match

this committed hash, their vote is declined. Since the number of voters is known, the

stage can advance automatically once the last commit has been received.

VOTE All voters send their votes g x i yi g vi to the voting contract together with a

zero-knowledge proof for its validity. If the vote is accepted, i.e., it matches the

commitment and the zero-knowledge proof is correct, their deposit is refunded. Once

the last vote is cast, the voting administrator can notify the voting contract to compute

the final tally of the poll.

TALLY The voting contract calculates the tally gΣi vi . Afterwards, the discrete loga-

rithm of it is calculated by testing all possible values, up to the known number of

voters, until Σi vi, the number of “yes” votes, is known.

112 4 Use Cases for DecentID

4.2.2.2 Adaptions

To integrate the Ethereum implementation of Open Vote Network into DecentID, a

number of adaptions are required, both to the voting implementation and to the

SharedIdentityContract of DecentID. These changes are listed in this section, before

describing the relevant smart contracts and the execution of a poll in detail in the

following sections.

Separation of contracts The Ethereum implementation of Open Vote Network uses

a single smart contract to store all data about the poll and the code for the required

calculations. From a financial viewpoint this can be optimized. Instead of deploying

the smart contract code to the blockchain again and again for each poll, this smart

contract has been split into two parts: one permanent smart contract containing the

static program code and a lightweight smart contract containing the state variables

for a currently running poll.

Authorizing voters In the voting implementation, the voting administrator has to

add the public keys of the authorized voters to the voting contract. When integrated

into DecentID, this is no longer required. Instead, the smart contracts can automat-

ically check whether a user is authorized to vote in the currently running poll, by

accessing their SharedIdentityContract.

Security verifications Beside verifying the authorization of the voters, the use of

the correct smart contracts has to be verified as well. Since multiple contracts interact

with each other, they have to ensure that the correct smart contracts are the callers

respectively parameters of functions. Otherwise, an adversary could use a modified

voting contract which, e.g., always returns that the poll has passed, independently of

the real votes submitted.

Removing the COMMIT stage The COMMIT stage was only added in the Ethereum

implementation of Open Vote Network, and is no required part of the algorithm. Its

purpose is to avoid the vulnerability that the last voter can predict the result of the

poll even before they are submitting their own vote. If the other voters ended up in

a tie, the last voter would be able to reconsider their vote. Since the threat due to

this vulnerability is quite low and the COMMIT stage increases the financial costs of

voting, it was omitted when integrating voting in DecentID.

Adapting the SharedIdentityContract Normally, the SharedIdentityContract only

accepts attribute modification by permitted users. For voting, an additional method

has been added that permits to modify attributes when the result of a passed poll is

given as a parameter.

4.2 Voting integration 113

4.2.3 Smart Contracts

Voting in DecentID is executed with the help of three smart contracts on the block-

chain: a modified version of the SharedIdentityContract, the VotingContract, and the

VotingDataContract. These smart contracts and their interactions are displayed in

figure 4.11 and will be described afterwards.

pubKeyB1

SIC{B,S}

Permitted user 1:

pubKeyS

Permitted user 2:

"voter" -> "yes"
Attributes:

Service S

pubKeyS

Thomas

pubKeyT1

Alice

pubKeyA1

pubKeyA1

SIC{A,S}

Permitted user 1:

pubKeyS

Permitted user 2:

"voter" -> "yes"
Attributes:

Bob

pubKeyB1

pubKeyT1

SIC{T,S}

Permitted user 1:

pubKeyS

Permitted user 2:

signUp()

finishSignUp()

submitVote()

computeTally()

VotingContract

Functions:

SIC target; ...

VotingContract vc; ...

Stage stage; ...

mapping voters; ...

VotingDataContract

Variables: Vote

References

Manage

data

Assign attribute

Figure 4.11: The smart contracts used when voting. The additional parts of DecentID,

e.g., for attribute management, have been omitted since they are not

relevant for voting.

4.2.3.1 SharedIdentityContract

To support voting, the SharedIdentityContract, introduced in section 3.5, had to be

adapted. Two new functions are required: a function to start a poll, and a function

to modify the attributes of the SharedIdentityContract as decided in a passed poll.

Their function declarations are displayed in figure 4.12. In its previously described

state, adding attributes to a SharedIdentityContract is only possible when knowing

the private key of a permitted user. To circumvent this requirement, the following

voting functions were added. The already existing functions of the smart contract as

well as its existing functionality is not changed by integrating the voting system, only

the new voting functionality is added.

114 4 Use Cases for DecentID

1 function startVoting(SharedIdentityContract sic, address _pkService,

2 string memory _key, byte _flags, bytes memory _data)

3 public returns (VotingDataContract);

4

5 function updateAttribute(VotingDataContract vdc) public;

Figure 4.12: The function declarations for voting in the SharedIdentityContract.

startVoting() This function starts the voting process by creating and initializing the

VotingDataContract before returning its address. Before doing so, the authorization

of the function caller is checked whether the caller is authorized to start a poll.

This includes checking that the passed service is a known permitted user of this

SharedIdentityContract, that the SharedIdentityContract of the caller uses the same

contract code as the called contract, that the caller is the creator of the passed

SharedIdentityContract, and that the passed SharedIdentityContract is an authorized

voter for the given service. If these checks pass, a new VotingDataContract is deployed

to the blockchain. It is initialized with the parameters given to the startVoting()

function: the address of the service, as well as the indexing key, the flags, and the

data for the new attribute. Additionally, the new VotingDataContract stores the

address of the to-be-modified SharedIdentityContract and of the VotingContract that

is permitted to modify its data. The to-be-modified SharedIdentityContract is the

contract where the startVoting() function is called on, while the address of the

VotingContract is stored as a variable in this SharedIdentityContract. The address of

the new VotingDataContract is returned to the caller of the function, and can be later

on given to other interested voters so they can participate in the poll.

updateAttribute() When the poll is finished and has passed, this function is called

to modify the attributes of the SharedIdentityContract as requested. To protect

against unauthorized modifications, a number of checks are executed. First, it is

checked whether the given VotingDataContract uses the known smart contract code

and has been created to modify this SharedIdentityContract. Since the code of the

VotingDataContract is known, the SharedIdentityContract can be sure that the poll

has been correctly executed. Afterwards, the state of the poll is checked: it has to be

finished, and the proposed change has to be accepted by the majority of the voters.

If all checks succeed, the attribute is added, modified, or deleted as described in the

VotingDataContract. It should be noted that only attribute modifications in the name

of the service can be done. Especially this means, that no attributes added by other

permitted users, e.g., the creator, of the SharedIdentityContract can be modified.

4.2 Voting integration 115

4.2.3.2 VotingContract

The VotingContract contains the program code required to execute polls. It only

contains the code but no state variables, which allows to deploy it to the blockchain

only once and use the same smart contract for all executed polls. The states of the

currently running polls are stored in VotingDataContracts, which are explained in

the next subsection. The function declarations of the VotingContract are displayed

in figure 4.13, and represent the stages of Open Vote Network. The code of the

functions is partially inherited from the Ethereum implementation of Open Vote

Network [MSH17], with adaptions to work together with the VotingDataContract

and the SharedIdentityContract. These adaptions include the authorization checks

for the voters, the checks of the smart contracts that are interacted with, and the

code modifications required to store the state of the poll in the VotingDataContract

instead of in local variables.

1 function signUp(VotingDataContract vdc, SharedIdentityContract sic,

2 uint[2] memory xG, uint[3] memory vG, uint r)

3 public payable returns (bool);

4

5 function finishSignUp(VotingDataContract vdc) public;

6

7 function submitVote(VotingDataContract vdc, uint[4] memory params,

8 uint[2] memory y, uint[2] memory a1, uint[2] memory b1,

9 uint[2] memory a2, uint[2] memory b2)

10 public returns (bool);

11

12 function computeTally(VotingDataContract vdc) public;

Figure 4.13: The function declarations of the VotingContract.

signUp() After a poll has been started by creating a VotingDataContract, users

can sign up to participate in the poll. First, the function ensures that the given

VotingDataContract is supposed to be used with this VotingContract, and that it is in

the correct voting stage. Afterwards, the time is checked whether signing up is still

allowed. To participate in the poll, the user has to place a deposit that is returned

when voting in the respective stage. Whether a large enough Ether deposit was send

with the sign up request is checked next. The last check ensures that the user is an

authorized voter for this vote, i.e., the user uses a SharedIdentityContract with known

program code and the user has been authorized as a voter. After these security checks,

116 4 Use Cases for DecentID

the voting public key xG of the new voter is stored in the VotingDataContract. To

ensure that the voter really knows the private key for the voting public key xG, a zero-

knowledge proof consisting of vG and r is submitted to the function and automatically

checked before storing the voting public key.

finishSignUp() After the time for the SIGNUP stage has expired, finishSignUp()

can be called by the voting administrator to proceed to the next stage. Before the

stage is advanced, the function checks that the poll is currently in the SIGNUP stage,

that at least two voters signed up, and that the time for the SIGNUP stage has passed.

When the checks are successful, the reconstructed keys g yi are calculated and stored

in the VotingDataContract. Finally, the stage is advanced and the voting itself can be

started.

submitVote() In this stage, all signed up voters that have not voted yet can submit

their votes. Similar to the checks of the other functions, this function checks whether

the poll is currently in the VOTE stage and whether its time has not expired yet.

Before the vote y is stored in the VotingDataContract, the zero-knowledge proof

consisting of the other function parameters is checked to ensure that the vote is either

1 or 0. After voting successfully, the voters receive their deposit back.

computeTally() After all voters have submitted their vote or the time allotted for the

VOTE stage is over, the voting administrator can end the poll by computing the voting

result. The result is calculated as described in section 4.2.2.1, and stored in the Vot-

ingDataContract. If the poll passed, the function updateAttribute() is called on the

SharedIdentityContract of the user that should receive the new attribute. Afterwards,

the poll is over and the voting administrator can delete the VotingDataContract to

reclaim some of the Ether spend in its deployment.

4.2.3.3 VotingDataContract

The purpose of the VotingDataContract is to store all data required for a currently

running poll. The variables it contains are displayed in figure 4.14. While all of

them are declared as public, this only means that other smart contracts can read the

variables directly. To write them, a number of trivial functions are present which take

the new values and store them in the respective contract variables. However, they

additionally verify that the caller of the function is the VotingContract at a known

address, which already checked the requirements to set the variable. This way, as

much code as possible has been moved to the static VotingContract, reducing the cost

of deploying the VotingDataContract.

4.2 Voting integration 117

Most of the stored variables are required by the implementation in [MSH17]. However,

the authorization checks for modifying the variable values had to be added, since they

should only be set by the VotingContract. Additionally, storing the to-be-assigned

attribute in the VotingDataContract is not required for the original voting system.

1 SharedIdentityContract public target;

2 address public pkService;

3 string public key;

4 byte public flags;

5 bytes public data;

6

7 VotingContract public votingContract;

8 address public votingAdministrator;

9

10 Stage public stage;

11 uint public timeNextStage;

12 uint public totalregistered;

13 uint public totalvoted;

14 uint[2] public finaltally;

15

16 struct Voter {

17 address addr;

18 uint[2] registeredkey;

19 uint[2] reconstructedkey;

20 uint[2] vote;

21 }

22 mapping (address => uint) public addressid;

23 mapping (uint => Voter) public voters;

24 mapping (address => bool) public registered;

25 mapping (address => bool) public votecast;

26 mapping (address => uint) public refunds;

Figure 4.14: The data stored in the VotingDataContract.

Attribute data The first block of variables, in lines 1-5, contains the data that should

be stored in the attribute of the linked SharedIdentityContract target. This data

should be added as an attribute of the service identified by pkService.

Access control The variables in line 7 and 8 are used to prevent unauthorized

modification of the stored data. All calls to the functions of the contract have to be

send by the VotingContract. When the poll is done, the listed voting administrator is

able to remove the deployed VotingDataContract from the blockchain.

118 4 Use Cases for DecentID

Voting progress In lines 10-14 the variables describing the progress of the poll are

stored. The variable stage describes the current stage of the poll: one of SIGNUP,

VOTE, or FINISHED. timeNextStage is the time when the next stage should start

and interactions for the current stage are no longer possible. Whether this temporal

requirement is fulfilled is checked by the VotingContract. totalregistered and

totalvoted are counters used to determine the progress of the current stage, and,

e.g., decide whether the VOTE stage can be ended early because all voters have

already voted. This data could be calculated by checking the status of the registered

voters. However, this would be more expensive than storing the counter in the

contract. Additionally, the final result of the poll will be stored in finaltally after it

has been computed by the VotingContract.

Voter status The lines 16-26 store the current status of the registered voters. Each

voter is identified by their public key, represented by the datatype address in the

smart contract. For each voter it is stored whether they registered, voted, how much

deposit they placed, which voting public key they registered, and what their respective

calculated reconstructed key and vote are.

4.2.4 Poll Execution

In this section, an exemplary execution of a poll is presented in detail. As introduced

in the example scenario in section 4.2.1, two moderators of an online service S,

named Alice A and Bob B, want to add an attribute to the user Thomas T . They all

have SharedIdentityContracts with the service, i.e., SIC{A,S}, SIC{B,S}, and SIC{T,S}.

The two SharedIdentityContracts of Alice and Bob contain an attribute marking them

as voters for the service S. Since the real-world identities of the users are not known

within DecentID, the integrated voting system should only be used for informal

opinion polls. As such, only a small number of users is expected to participate in each

poll, and a different subgroup of the authorized voters might participate each time.

4.2.4.1 Preparing the poll

To start a poll, one of the authorized voters of the service S, Alice A in this example,

calls the function startVoting() on the SharedIdentityContract SIC{T,S} of the target

user Thomas T , where the attribute should be modified at. When doing so, Alice

has to provide the address of her SharedIdentityContract SIC{A,S}, the address of the

service S, and indexing key, flags, and data for the attribute. Depending on the given

flags and on whether the indexing key already exists at SIC{T,S}, the poll is either

4.2 Voting integration 119

vdc:VotingDataContract

{A,S}:SharedIdentityContract{T,S}:SharedIdentityContract

vdc
«Create»

Compare with
transaction sender

isVoterFor(S)

A

getCreator()

Compare contract
hashes

0x142

getContractHash()

Permitted user is known

startVoting()

Figure 4.15: Sequence of starting a poll for a SharedIdentityContract SIC{T,S}.

about adding, modification, of removal of the attribute. Since Alice started the poll,

she becomes the voting administrator for this poll and has to advance the stages of it.

The purpose of the function startVoting() is to create the required VotingDataCon-

tract vdc that is used to store the state of the poll. Before the smart contract creates

the vdc, a number of prerequisites are checked. This is depicted in figure 4.15.

• First, it is checked whether the service S is a permitted user in SIC{T,S}. If it is

not, S has no right to modify the attributes attached to the shared identity, and

consequently it should not be possible to do so by voting.

• As a precaution, the binary hash of the code of the users SIC{T,S} is compared

to the hash of the code of SIC{A,S}. If these hashes do not match, one of the

participants is using a modified SharedIdentityContract. This might either

happen due to different versions of DecentID being used by the participants, or

due to a malicious attempt to bypass the authorization checks. For example,

if Alice would be using a maliciously modified SharedIdentityContract, this

contract could always return that Alice is a valid voter for any service. Since

fully automated code reviews on the blockchain are not possible, it is instead

enforced that the same smart contract code, as represented by its hash value,

is used by all participants of the poll.

120 4 Use Cases for DecentID

• For the given shared identity SIC{A,S}, it is checked whether the caller of the

function startVoting() is the creator of it, i.e., Alice A. If this is not the case,

a malicious user is possibly trying to abuse the voting permission in SIC{A,S}
even though SIC{A,S} is not their own SharedIdentityContract. Afterwards, it is

checked whether SIC{A,S} contains the attribute representing voting permissions

for service S.

When these check pass, the VotingDataContract vdc is created and its address returned

by the function. When creating vdc, the constructor stores the public keys pubKe yA

and pubKe yS of Alice and the service as well as the blockchain addresses of SIC{T,S}
and the static VotingContract used for later security checks. Also, the attribute to be

modified is stored. The vdc is now in the SIGNUP stage and allows registration of

voters that want to participate in the poll. If Alice wants to participate in the poll,

she has to register as a voter as well.

4.2.4.2 Registering

In the SIGNUP stage, authorized voters are able to register for a started poll, as

depicted in figure 4.16. The authorized voters are able to do so by calling the function

signUp() of the VotingContract by providing the address of the VotingDataContract

vdc, that stores all data about this poll, as a parameter. On registration, a voter

V provides their public key of an asymmetric key pair used for the voting process,

a zero-knowledge proof that the matching private key is known, the address of

their SharedIdentityContract SIC{V,S}, and a small deposit in Ether. In the example

scenario, Alice A and Bob B register as voters for the poll with their respective

SharedIdentityContracts SIC{A,S} and SIC{B,S}. Before the voting public key of the

new voter is stored, a number of checks are executed to ensure the correct and secure

execution of the poll.

• To ensure that the VotingContract vc is permitted to modify the state stored

within the VotingDataContract vdc, it is checked that the address of the Voting-

Contract stored within vdc matches the address of the VotingContract vc being

executed.

• The stage of the voting process as stored in vdc has to be at SIGNUP.

• The time for the stage is not over yet. If the time is reached, the registering for

the vote is no longer permitted and the voting administrator should advance

the stage.

4.2 Voting integration 121

{B,S}:SharedIdentityContractvc:VotingContract

Compare with
transaction sender

isVoterFor(S)

B

getCreator()

Compare contract
hashes

0x142

getContractHash()

vdc:VotingDataContract

signUp()
checkVotingContract(vc)

checkVotingStage(SIGNUP)

checkStageTime()

checkDeposit()

Verify ZKP

! isRegistered(B)

storeDepositAndKey()

Figure 4.16: Bob B is calling the signUp() function at the VotingContract vc to register

for a poll. The poll is identified by the provided VotingDataContract vdc.

To register, Bob provides his SIC{B,S} and the required voting public key.

• To stop malicious voters from blocking the poll, a deposit of Ether has to be

send with the signUp() function call on the VotingContract. If the deposit does

not fulfill the expected amount, the function execution is aborted. The deposit

ensures that the voter has a motivation to continue with the poll and does not

simply abandons it and keeps the other participants waiting.

• When registering Bob B as a voter for the poll, the same checks are executed as

before when the voting administrator Alice A created the VotingDataContract

vdc: the hashes of the program codes of the SharedIdentityContracts SIC{T,S}
and SIC{B,S} have to be the same, B has to be the creator of the provided

SharedIdentityContract SIC{B,S}, and B has to be an authorized voter for the

service S, as stored in vdc.

122 4 Use Cases for DecentID

• To ensure the correct further execution of the poll, a non-interactive zero-

knowledge proof has to succeed. This ensures that the voter has the matching

private key to the submitted voting public key.

• The voter B must not already be registered as a voter for this poll, i.e., Bobs

blockchain public key pubKe yB must not already be stored in vdc.

If the checks are passed, the deposit amount as well as the provided voting public

key are stored in the VotingDataContract vdc. Later on, the voter is able to use their

voting public key to encrypt their vote.

4.2.4.3 Starting the voting

vc:VotingContract vdc:VotingDataContract

finishSignUp()

checkVotingStage(SIGNUP)

checkRegistrationCount()

Calculate

! checkStageTime()

checkFunctionCaller()

reconstructed keys

setReconstructedKeys()

setStage(VOTE)

Figure 4.17: The voting administrator Alice A advances the stage of the poll.

When the time of the SIGNUP stage is up and at least two voters have registered,

the voting administrator is able to advance the stage. Different from the later stages,

waiting for the whole time of the stage is important to give the potential voters

the possibility to register. To advance the stage, the VotingContract vc offers the

function finishSignUp(), as depicted in figure 4.17. Only the address of the Voting-

DataContract vdc is expected as a parameter. Based on the registered voting public

keys, which are stored in vdc, the VotingContract vc is able to calculate a number

of reconstructed keys used when encrypting the votes. These keys are stored in

the VotingDataContract vdc as well. They are calculated in a way that when com-

bining all voting public keys, reconstructed keys, and votes, only the votes remain.

4.2 Voting integration 123

So while the votes are encrypted individually, the final result can be decrypted after

all registered participants casted their votes. Consequently, the poll cannot complete

and has to be restarted if some of the registered participants do not vote.

4.2.4.4 Voting

vc:VotingContract vdc:VotingDataContract

submitVote()

Verify ZKP

isRegistered(B)

storeVote()

! hasVoted(B)

deposit deposit

checkVotingStage(VOTE)

Figure 4.18: Bob B votes for the poll. The same sequence is repeated for all voters.

In the VOTE stage, the registered voters submit their encrypted vote as well as a

zero-knowledge proof to the VotingContract, by passing them as parameters to the

function submitVote(). Its execution is shown in figure 4.18. As for all other voting

operations, the address of the VotingDataContract vdc has to be provided.

For the voter Bob B his public key pubKe yB is used to check that he registered as

a voter before, and that he has not voted in this poll yet. Additional checks, e.g.,

whether Bob is an authorized voter for the service, are not required again. If a user

on Ethereum is able to send a blockchain transaction signed with from privKe yB ,

they are considered the owner of pubKe yB . They could only have been added as

a voter in the smart contract vdc, after they have signed up at the VotingContract.

As such, it must be the same user that previously registered with their checked

SharedIdentityContract SIC{B,S}, making another check unnecessary.

Afterwards, the one-out-of-two zero-knowledge proof is verified. It proves that the

encrypted vote either has the value 0 or 1, without disclosing which of the two it is.

If this check is passed, the submitted vote is stored in vdc. Since this voter has now

cast their vote, their deposit is returned to them.

124 4 Use Cases for DecentID

4.2.4.5 Ending the poll

When all participants voted, the voting administrator can call the respective Voting-

Contract function computeTally() to calculate the result of the poll. Its successful

execution is depicted in figure 4.19.

{T,S}:SharedIdentityContractvc:VotingContract

updateAttribute()

vdc:VotingDataContract

computeTally()
checkVotingStage(VOTE)

checkFunctionCaller()

checkAllVoted()

Calculate
poll result

storeFinalTally()

setStage(FINISHED)

Compare contract
hashes

0x142

getContractHash()

 (FINISHED)
checkVotingStage

hasPassed()

Check target

{T,S}

getTarget()

Assign attribute

Figure 4.19: The voting administrator Alice A ends the poll, assigning the attribute.

The calculation of the result is done the same way as in [MSH17]. As a first step, the

mathematical product of all the submitted votes is calculated. Due to the way the

encryption keys for voting have been constructed, they cancel each other out while

doing so. What remains is gΣi vi , the base g of the cyclic group used for encryption

4.2 Voting integration 125

raised to the power of the sum of the votes vi. Since the number of participants is

known and quite small, the logarithm can be calculated by brute forcing it. Summing

up g should result in gΣi vi after only a small number of repetitions j less than or

equal to the number of voters. When j is found, it is equal to the number of “yes”

votes in the poll. Consequently, if j is greater than half the number of participating

voters, the poll passed and the attribute will be assigned. After calculating the result,

the stage of the poll is set to FINISHED and the final tally is stored in vdc.

Normally, a SharedIdentityContract only accepts attribute modifications from per-

mitted users registered within it. For voting, the SharedIdentityContract contains

an additional function updateAttribute() that accepts the address of a vdc as a

parameter. Before the attribute is assigned, the state of the passed vdc is verified.

These checks include whether the hash of the vdc matches a known hash of a Vot-

ingDataContract, whether the target SharedIdentityContract of the vdc is the called

SharedIdentityContract, whether the poll is finished, and whether the poll passed.

Afterwards, depending on the attribute flags stored in the VotingDataContract vdc,

the new attribute stored in vdc is either written to the SharedIdentityContract SIC{T,S}
as an attribute of the permitted user S, or removed based on its indexing key. When

this is done, vdc is no longer needed and can be removed by the voting administrator.

4.2.5 Evaluation

In this section, the integration of Open Vote Network into DecentID is evaluated. This

includes the modifications on DecentID to support the voting, as well as an analysis

regarding the voters privacy. For an evaluation of the voting process itself, see the

original publication of Open Vote Network [Zie10].

4.2.5.1 Security

While the integration of Open Vote Network into DecentID offers new abilities for the

users of DecentID, it also offer new attack approaches for malicious users. One such

approach is that an adversary might try to forge the state of a VotingDataContract vdc

to use it to manipulate the attributes in a SharedIdentityContract SIC{T,S} by passing

the address of vdc to the function updateAttribute() in SIC{T,S}. If successful, the

adversary would be able to add, modify or remove attributes of any permitted user in

any SharedIdentityContract. To protect against this, the function updateAttribute()

checks that the received smart contract vdc uses the same program code as a known

benign VotingDataContract. If they use the same program code, the adversary would

have been unable to modify the code of the smart contract to their advantage. To

126 4 Use Cases for DecentID

avoid manipulation of the data stored within a VotingDataContract, only the linked

VotingContract is permitted to call its functions. The VotingContract itself verifies

that its callers are authorized to call its functions as well, as described in the previous

sections. So as long as the guarantees of the blockchain, namely that the smart

contract code is executed as written, hold, the added voting functionality should not

offer new attack approaches.

4.2.5.2 Voting for off-chain attributes

In the previous paragraphs, voting has only been described for modifying on-chain

attributes. Due to the restrictions of the blockchain Ethereum, smart contracts can

only access and modify data stored on the blockchain itself, meaning that only on-

chain attributes can be assigned by voting. However, the voting administrator could

store arbitrary attribute data in an off-chain storage by themselves. Afterwards, not

the attribute data itself would be assigned to SIC{T,S} within the poll, but instead

a reference towards the off-chain attribute. The other voters would still be able to

retrieve the off-chain attribute, allowing them to verify what they are voting for.

For off-chain attributes it can be useful to contain a digital signature by their creator,

i.e., service S, to ensure their integrity and authenticity. When assigning off-chain

attributes by voting, this is not possible, though, since this would require the private

key of the service. However, the hash value of the attribute data can be stored in the

assigned attribute within the SharedIdentityContract, ensuring the integrity of the

off-chain data. Since the attribute in the SharedIdentityContract SIC{T,S} is assigned

as an attribute of the service S, the authenticity of the data is known to the user T as

well: Only the service S or authorized voters are able to assign this attribute, which

means that the referred off-chain attribute has been endorsed by them.

4.2.5.3 Voting for encrypted attributes

To keep the attribute data confidential, it should be encrypted before the poll is started.

This way, the already encrypted data is included in the VotingDataContract, which

means that the unencrypted data is never seen on the blockchain. Technically, it does

not matter for the execution of the poll whether the to-be-assigned attribute data

is encrypted or not. The used smart contracts require no access to the unencrypted

attribute data, since the contents of the attribute are not relevant for the execution

of the poll. However, the voters need to know the contents of the attribute they

are voting about. Voting to add an unknown attribute would mean that the voting

administrator could add arbitrary attributes, making the joint decision to add the

attribute meaningless. Still, by encrypting the attribute data it could be avoided to

4.2 Voting integration 127

display the data publicly by sharing the unencrypted data only between the authorized

voters by off-chain communication. If, e.g., asymmetric encryption is used to encrypt

the attribute, the voters are able to locally encrypt the shared unencrypted attribute

with the known public key, and verify that the result matches the encrypted attribute

as stored in the VotingDataContract.

A challenge when the attribute is to be encrypted is the question which encryption

key to use. Normally, attributes are encrypted with the symmetric encryption key

kSIC{T,S} which is stored in SIC{T,S}. However, this key is only available to permitted

users and not to the voters. An alternative would be to encrypt the new attribute

with the public key of either the creator T of the SharedIdentityContract SIC{T,S} or

of the service S that is a permitted user in SIC{T,S}. A drawback of this alternative

is that only the respective permitted user can decrypt the attribute. Instead, a new

symmetric encryption key k could be generated and used to encrypt the attribute.

Then, copies of k could be respectively encrypted with the public keys of all permitted

users and the encrypted copies of k could be stored together with the attribute. This

approach would be similar to the way kSIC{T,S} is stored and encrypted in SIC{T,S}.

4.2.5.4 Privacy analysis

Regarding the privacy of the voting approach and its integration, multiple facets have

to be considered. These are discussed in the following.

Privacy of the vote The use of Open Vote Network ensures that the vote of each

user is kept secret and cannot be discerned from the data written to the blockchain

[Zie10]. However, since the total number of approving votes is calculated by Open

Vote Network, it is possible to calculate the vote of a certain user if the votes of all

other voters are known to an adversary. This n− 1 attack, with n being the number

of voters, is a frequent problem in privacy preserving approaches, and the attack

cannot be avoided. When only two voting options are available, e.g., for voting in

DecentID, the attack can be improved. If, e.g., the adversary knows the votes of c of n

voters and knows that they have all voted against the proposal, but there were n− c

votes for the proposal, the adversary knows that the uncompromised voters voted

for the proposal. Nevertheless, the risk due to this attack is assumed to be low. To

determine the votes of the individual voters, the adversary has to either compromise

the endsystems of the voters, or participate in the poll with many own voters. Both

variants are unlikely given the effort required to do so. Additionally, depending of

the context of the poll, the vote of a specific user might not be worth knowing for the

adversary. As long as the polls executed within DecentID are only informal opinion

polls, the effort required from an adversary might be larger than their gains.

128 4 Use Cases for DecentID

Privacy of the voting permission While the vote itself is encrypted, the voting per-

mission can be seen on the blockchain. Furthermore, since the voting permission

has to be checked automatically by a smart contract, the permission is currently

stored as an unencrypted attribute. As such, it is possible for third parties to find

out whether a shared identity is a voter for a certain service. Encrypting the voting

permission is by itself not sufficient to protect the privacy of the voter status. For

once, since the attribute has to be verified by a public smart contract, all data to

check the voter status has to be public. Consequently, everyone else is able to verify

the voter status as well. Also, when setting the voter permission a publicly visible

blockchain transaction has to be used. Since the indexing key for the voting attribute

has to be known and fixed, writing data to this attribute will reveal the voter status.

This metadata leak could be fixed by assigning this attribute with a value of “no-voter”

to all SharedIdentityContracts shared with the service. However, as long as the

other leaks exist this does not improve the privacy. At last, participating in a poll as

voter will reveal the status as voter permanently on the blockchain. As long as the

participation in a poll is publicly visible, protecting the state of the attribute does not

improve the privacy of the user.

Privacy of the participation Besides being out of scope for this work, since it is a

restriction brought by the use of Open Vote Network, hiding the participation in the

poll is a difficult problem. An relatively easy solution would be to abandon the idea

to execute the poll on the blockchain and execute it in private off-chain. This would

protect the participation of users, but brings up the question whether the result of

the vote can be trusted, and how this trust can be proven towards the smart contracts

on the blockchain to set the desired attribute. An on-chain approach could possibly

use “dummy” voters, which participate in the poll without their votes being counted.

However, if the VotingContract can determine whether a vote should be ignored, then

an adversary can do so as well. Using equal numbers of “yes” and “no” dummy voters

would avoid that problem, since their votes would not change the result of the poll.

If observers of the poll do not know how many dummy voters were added the result

would look distorted, though. Seemingly, many voters participated and the result of

the poll would still nearly be a draw. This could be interpreted as the voters being

split about the poll, even though all real voters might have voted the same. How

the numerous dummy voters are selected and in which way they secretly receive the

information that and how they are supposed to vote, is an open question that is out

of scope for this work. Additionally, it would not be possible to verify whether they

really voted as they were supposed to. Since this can open up new ways to attack the

voting system, a solution for this will probably not be trivial.

4.3 Conclusion 129

4.3 Conclusion

In this chapter two use cases for DecentID have been discussed: using DecentID as

an identity management system for other smart contracts, and extending DecentID

by integrating a voting system.

Using the identities for other blockchain-based systems, as well as different aspects

for coupling the systems, were analyzed. To maintain the generality of DecentID,

providing self-sovereign identities independently of a specific use case, coupling

approaches without modifying the smart contracts of DecentID were evaluated. As

long as other smart contracts are able to use the interface provided by DecentID,

either directly or by using a proxy contract, they can access the shared identities

and retrieve the attributes contained within them. While all stored attributes can be

retrieved, some of them might be encrypted. Since smart contracts have no access to

the private keys required for decrypting the attributes, only unencrypted attributes

can be used automatically.

To reduce the dependency on single service administrators, a voting system was

integrated into DecentID. It allows authorized users of a service to conduct a poll,

which can be used to modify attributes of other users of the service. To support

this functionality, the code of the SharedIdentityContract had to be modified. The

integration of the voting system requires that attributes can be automatically written to

an identity by another smart contract, i.e., the VotingContract. Without the private key

of a permitted user this was not possible before modifying the SharedIdentityContract.

This modification was implemented in a way that does not limit the already existing

capabilities of DecentID.

In conclusion, reading unencrypted attributes of SharedIdentityContracts from other

smart contracts is possible without modifying DecentID, since reading the attributes

requires no private keys. This was demonstrated by coupling DecentID with Palinodia.

Adding support for modifying attributes, however, requires a modification of DecentID

to circumvent the requirement for private keys. Integrating the voting system into

DecentID demonstrated this.

If DecentID would be designed anew, the adherence to a publicly known and used

interface for smart contract identity management would be recommendable. This

would permit easier interactions with other smart contracts which require identities

for their functioning. Unfortunately, such an interface has not been established yet.

Whether such an interface would permit to write attributes to identities remains to be

seen. Some kind of access control is required to ensure the authenticity and integrity

of the identities. Providing such access control in a generalized fashion independently

of a single use case, e.g., integrating voting, will be a challenge.

Chapter 5

Sybil defense

DecentID, as presented in chapter 3, allows its users to create pseudonymous identities.

These identities can then be used to access online services. To protect the users privacy,

multiple identities of the same user cannot be linked to each other. While this prevents

the services from tracking the user, they are also unable to link multiple identities of

one user within one service, which this permits Sybil attacks.

In these, a single adversary tries to create as many identities within a system as

possible. Depending on the attacked system this allows a number of attacks, e.g., ma-

nipulating polls or the public opinion. Sybil defense sums up the various approaches

to recognize and protect against Sybil attacks. To avoid Sybil attacks when DecentID

is used, a Sybil defense system should be integrated into it.

For this only decentralized Sybil defense systems that hinder the creation of Sybil

identities are relevant. Centralized systems would introduce a single trust anchor,

something that should not exist in DecentID. A Sybil detection system could be used

as well, but restricting the Sybil adversary already at registration time is preferable.

To detect the Sybil identities within the user group of a system a significant number

of existing Sybil identities is required, which should be avoided in the first place.

In this chapter, the Sybil defense system Detasyr is presented. After defining the

capabilities of Sybil adversaries in section 5.1, the approach of Detasyr is presented in

section 5.2. Its design is explained based on its core components, listed in section 5.3,

and their operation, as explained in section 5.4. To further improve the Sybil defense

capabilities of Detasyr, two possible extensions are discussed in section 5.5, before

evaluating the extensions in section 5.6. Finally, the integration of the created proofs

of authorization into DecentID is presented in section 5.7.

131

132 5 Sybil defense

5.1 Adversary model

The presented Sybil defense approach is based on the trust relationships embedded

into online social graphs (see section 2.6). These graphs consist of nodes, representing

the users, and edges, connecting the nodes and representing trust between the

connected users. It is assumed that the majority of the participants in the network

are honest, with a smaller number of nodes controlled by a Sybil adversary.

Definition 5.1: Sybil adversary

A Sybil adversary wants to create as many Sybil identities as possible, to

manipulate or take over the attacked system. The same as for the identities of

honest users, each Sybil identity is represented by a node in the social graph.

The adversary tries to create the Sybil identities without other participants of the

system realizing that the nodes are controlled by a Sybil adversary, which would

lead to them blocking the nodes of the adversary. The following abilities of the Sybil

adversary are similarly used in other work [Yu+06; DM09; Wei+12; Vis+10].

Any number of Sybil nodes is possible The Sybil adversary in most systems is able

to create as many Sybil nodes as it requires. Since normal users are unable to see

the structure of the social graph, the number of and connectivity between the Sybil

nodes is unknown to them.

Limited number of attack edges Attack edges are the edges between a Sybil node

and a node controlled by an honest human user. Since the effectiveness of the system

depends on the relationship edges being trustworthy, the users in the social graph

should not accept anyone as neighbor but only accept other users they trust not to

launch a Sybil attack. Preferably, the neighboring users know and trust each other in

the real world as well. It is not entirely sure whether this trust really exists in online

social networks. Research has shown that on widespread online social networks the

acceptance rate of friendship requests of a fake account is over 20 percent [Bil+09].

For an adversary creating friendship requests automatically this allows to create large

numbers of friendships. However, due to the purpose of these networks their users

are not highly concerned about their privacy. Another, more privacy oriented, social

network could possibly avoid this problem when the users are sufficiently aware of

the implications of their friendships. In these social networks, the Sybil adversary

would be unable to have an unlimited numbers of honest friends, i.e., attack edges,

within the social graph.

5.2 Approach 133

Existence of communities As in the real world, online social graphs tend to exhibit

a graph structure containing multiple communities [KNT06]. Users have many friend-

ships, i.e., edges between nodes, within a community where the whole community

shares interests. Between these communities, fewer edges exist. Since Sybil adver-

saries are able to create as many nodes as they want, but are only able to create

a restricted number of attack edges, a separate Sybil community is present in the

social graph. This varying degree of connectivity between the communities, especially

towards the Sybil community, can be detected and used by Sybil defense algorithms.

Control over own Sybil community Since the adversary can modify the edges in

its community of Sybil nodes arbitrarily, the paths of random walks or the distribution

of flooded packets within the Sybil community can be manipulated by the Sybil

adversary. Since the structure of the social graph is hidden for the honest users,

they are unable to determine whether the Sybil adversary is manipulating the data

exchange within its community or is correctly following the protocol. Consequently,

the adversary is able to deviate from the protocol in any way. However, sending

invalid data to the honest users will lead to the honest users dropping the received

data and possibly blocking further communication with the deviating Sybil identity.

Restricted abilities Similar with other work, we do not assume the adversary to have

an omnipotent view of the social graph. It is also unable to listen to or manipulate all

network traffic within the network. Especially the adversary is not able to manipulate

a significant number of honest nodes, since that would allow the adversary total

control of the system. A small number of controlled honest nodes can be tolerated,

since they do not offer any advantage over having more Sybil nodes.

5.2 Approach

In this chapter the Sybil defense system Detasyr is presented, which restricts possibil-

ities for Sybil attacks, works decentralized, and protects the privacy of participating

users. An earlier version of Detasyr has been published in [FMZ19].

To protect against Sybil adversaries, the graph structure of an online social graph

is utilized. Through this graph small data packets, called authorization tickets, are

flooded. To become authorized as honest, i.e., not being a Sybil adversary, users

have to collect a sufficient number of these tickets. After being authorized as honest,

users can prove their successful authorization towards third parties, for example by

referencing this proof within an identity attribute of DecentID. This feature is missing

in most existing decentralized Sybil defense systems (e.g., [Wei+12] or [Yu+06]).

134 5 Sybil defense

Due to the structure of the social graph, the influence of Sybil adversaries can be

restricted. Since users are assumed to only create connections with users they trust,

the number of connections towards the Sybil adversary is restricted. Consequently,

the number of authorization tickets that can be collected by Sybil adversaries is

restricted as well, and the Sybil adversary can only authorize a bounded number of

Sybil identities within the system. The unrestricted creation of Sybil identities and

the malicious take over of the system is prevented.

Since honest users only want to authorize their own, single, identity, they are mostly

unhindered by this restrictions. Due to Detasyr operating decentralized, the disadvan-

tages of single trust anchors are avoided. Also, the privacy of the users relationships

is protected, averting, e.g., linking their digital identities to their real-world ones.

5.3 Core components

The design of Detasyr is based on some core components, namely the ticket sources,

a blockchain, authorization tickets, and rounds. These components are explained in

this section. Ticket sources execute the management tasks of Detasyr, which includes

maintaining the blockchain which stores the authorized nodes. To become authorized,

the nodes are required to collect a certain amount of authorization tickets emitted

by the ticket sources. In each recurring round, new ticket sources are active, a new

block is appended to the blockchain, and new authorization tickets are distributed.

5.3.1 Ticket Sources

Each round a group of ticket sources is selected out of the authorized nodes. The

ticket sources for the next round are randomly selected by the ticket sources of the

current round, which is described in detail in section 5.4.3.2.

Definition 5.2: Ticket Source

Ticket sources (TS) are a group of s ≥ 3 authorized nodes, that are randomly

selected for a single round. They are responsible for the management tasks of

Detasyr. Each ticket source is identified by a cryptographic public key.

For the current round, in which the ticket sources are active, they are responsible

for the management tasks in Detasyr. This includes the creation of authorization

tickets, the verification of authorization requests, the selection of the ticket sources

for the next round, and the creation of a new block for the blockchain. These tasks

are explained in detail in section 5.4.

5.3 Core components 135

Every authorized node has an asymmetric key pair that is used to identify the node.

In the case of the ticket sources, it also is used to digitally sign the authorization

requests of other nodes as well as the new block for the blockchain.

Selecting new ticket sources each round serves multiple purposes. For once, due to

the new placement of the ticket sources, authorization tickets are propagated through

different parts of the social graph, allowing nodes to become authorized that might

have been not well enough connected in the previous round. Furthermore, it leads

to a distribution of effort required to maintain the system. Operating a ticket source

is more effort for a node than simple being part of the social graph, so by regularly

changing the ticket sources the effort for each single node is reduced. It also increases

the security of the system. If a malicious node is elected as a ticket source, it could

try to hinder the operation of the system. However, this malicious node is only a

ticket source for one round. Additionally, the changing ticket sources pose a moving

target for an adversary. If an adversary wants to take over the system, they would

need to compromise most of the ticket sources. If the ticket sources are regularly

changing, this has to be achieved within a restricted time period.

To increase the efficiency of the protocol, one of the ticket sources is selected as a

prime ticket source. If the prime ticket source goes offline or acts malicious, the

next ticket source in the list of active ticket sources, based on the newest block of

the blockchain, takes over its duties. For all management tasks that are executed by

the group of ticket sources, a number of messages have to be exchanged. Always

sending these messages to all other ticket sources would result in many unnecessary

messages, increasing the overhead of the protocol and slowing its execution. Instead,

all messages are only send to the prime ticket source. There, the messages are

aggregated as required and then send to the other ticket sources which still need to

handle the message. For example, the current ticket sources have to exchange the

results of their random walks done to select new ticket sources (see section 5.4.3.2).

To reduce the number of transmitted messages, all ticket sources send their results to

the prime ticket source, which then forwards the collected results to the other ticket

sources. While the prime ticket source is trusted with doing these organizational tasks,

it has no elevated rights compared to the other ticket sources. Since all actions have

to be confirmed and digitally signed by a group of ticket sources, even a malicious

prime ticket source cannot decide anything by itself.

136 5 Sybil defense

5.3.2 Blockchain

One design goal of Detasyr is to enable users of the system to prove to others that

they have been authorized. This makes it possible to use the received authorization

in other contexts, for example within DecentID. To allow them to do so, the public

keys of authorized users are stored in a publicly readable blockchain, together with

some other data required for operating Detasyr. Each round a new block, shown in

figure 5.1, is appended to the blockchain by the ticket sources.

Blockn
Hash Blockn-1

Timestamp

New auth. nodes pubKeyj

Estimated node count

New ticket sources pubKeyk

IDs signature TSi

aggrSigTSi

ID prime TS

sigprimeTS

Blockn+1
Hash Blockn

Timestamp

New auth. nodes pubKeyj

Estimated node count

New ticket sources pubKeyk

IDs signature TSi

aggrSigTSi

ID prime TS

sigprimeTS

Figure 5.1: Structure of the data blocks of the Detasyr blockchain.

The blocks are replicated between the nodes participating in Detasyr, increasing the

availability of the stored data. The contained data elements can be divided into three

categories: node authorization, management data, and linking the blocks. These

categories and their associated block elements are discussed in the following.

Node authorization

The primary purpose of the blockchain is to store a list of public keys pubKe y j of

authorized nodes, to allow the nodes to prove their authorization towards third

parties. Each node that successfully finished its authorization has its public key

recorded in the next published block of the blockchain, enabling the node to prove

its authorization toward others.

Individual signatures by the ticket sources over each authorized public key are not

required, since the whole block is digitally signed. This allows to reduce the storage

space required for the blockchain, which becomes increasingly important if the length

of the blockchain, and with that the number of authorized nodes, grows over time.

Management data

While not directly important to a user of Detasyr, some data has to be stored in the

blockchain to ensure a continued operation of the system. These block elements are

described in the following.

5.3 Core components 137

New ticket sources As part of the current round, new ticket sources for the next

round are selected. These new ticket sources are randomly selected out of the nodes

that have been authorized in earlier rounds. The public keys pubKe yk of the new

ticket sources are stored as part of the block published at the end of the current

round. This way, the nodes participating in the next round can verify that the active

ticket sources have been selected by the ticket sources of the previous round. When

multiple blocks are considered, these public keys increase the security since they form

a forward directed link between the blocks, complementing the hashes linking back

to the previous blocks. Since the public keys pubKe yk are listed in a fixed ordering,

it becomes possible to reference ticket sources by their ID within the block.

Timestamp A timestamp contained in the block documents the time when the next

round begins. After this time, the previous ticket sources return to being normal

authorized nodes, while the newly selected ticket sources take over their duties. Also,

authorized nodes can use this timestamp to prove that they have become authorized

at a certain time.

Estimated count of active nodes The number of currently active nodes is used to

determine how many authorization tickets have to be flooded through the graph.

While the number of authorized nodes is known and can be calculated based on the

authorizations stored in the blockchain, some of these nodes might temporarily or

permanently be offline when a new block is created. As such, the number of active

authorized nodes is most likely smaller than the number of authorized nodes. Since

the number of active nodes is required at the beginning of a round, their number is

determined in the previous round as described in section 5.4.3.1 and stored in the

new block of the blockchain.

Linking the blocks

To ensure the security and integrity of the blockchain, the blocks have to be cryp-

tographically linked to each other, and the integrity of the blocks data has to be

ensured. The link towards the next block, by listing the future ticket sources, has

been described above. To link the previous block, a cryptographic hash is used. To

ensure the integrity and authenticity of the block, the current ticket sources digitally

sign its contents.

Hash of the previous block The blockchain of Detasyr, similar to the blockchains

of existing cryptocurrencies, consists of a cryptographically secured chain of publicly

known data blocks. As in the blockchains of existing systems like Bitcoin, each block

contains a cryptographic hash of the previous block [Nak08]. This creates a linked

138 5 Sybil defense

list of blocks, stopping adversaries from replacing older blocks within the blockchain.

If any of the older blocks would be modified, all newer blocks would need to be

replaced by the adversary as well, replacing the whole blockchain.

Signature over the block Different from existing public blockchains, no proof of

work is used in Detasyr. Instead, the active ticket sources are the only ones able to

create a new block. This is ensured by an aggregated signature over the previously

listed contents of the block, created by the active ticket sources. Based on the public

keys pubKe yk in the previous block and the signature, all nodes can verify that the

block has been created by the selected ticket sources, ensuring the integrity and

authenticity of the current block.

To avoid a stalling system, only a configurable percentage b ∈]0.5, 1.0[of all s

ticket sources are required to participate in the aggregated signature. As such, up

to (1− b) ∗ s offline or malicious ticket sources can be tolerated. For the verification

of the aggregated signature ag grSigTS the public keys of the participating ticket

sources are required. To select the respective public keys pubKe yk in the previous

block, their IDs within the block are required. Consequently, the list of IDs is stored

in the block as well.

Signature of the prime ticket source When the new block is complete and the ag-

gregated signature has been created by the current group of ticket sources, the prime

ticket source adds the aggregated signature, the list of IDs of participating ticket

sources, and its own ID to the block. These new data elements of the block are signed

by the prime ticket source, and the new signature added to the block as well. This

additional signature protects the signed data elements against, potentially malicious,

manipulation. If the list of IDs or the aggregated signature would be modified, the

verification of the integrity and authenticity of the block would fail.

If required, each of the currently active ticket sources could declare itself the prime

ticket source for block creation. This is possible since the ID of the public key of

the prime ticket source is not digitally signed by the other ticket sources. However,

without the signatures created by the other ticket sources a new block cannot be

created, meaning that the other ticket sources have to cooperate with the prime ticket

source. This allows to replace the prime ticket source if the initial prime ticket source

is not able to finish the creation of the block, e.g., because it went offline.

5.3 Core components 139

5.3.3 Authorization Tickets

To differentiate between Sybil and honest nodes, authorization tickets are used.

Definition 5.3: Authorization Ticket

Authorization tickets are signed data packets flooded through the social graph

by the ticket sources. If a node receives enough authorization tickets, it can

become authorized.

New nodes, that have not been authorized yet, need to collect a sufficient number of

authorization tickets to become authorized. They are issued by ticket sources and

flooded through the social graph, following the trust relationships between users. The

basic idea is that only nodes well connected within the social graph receive enough

tickets to become authorized, while Sybil adversaries are unable to receive sufficient

tickets to create a large amount of Sybil nodes [Tra+11].

Ticket ID

Ticket Source ID

SignatureSource

Hop Count

Figure 5.2: Structure of authorization tickets.

The structure of an authorization ticket is depicted in figure 5.2. The contained ticket

ID is unique regarding the creating ticket source. It is used to differentiate between

the tickets created by a specific ticket source, in order to avoid that the same ticket is

used for multiple times. The sending ticket source is referred to by its ID within the

list of ticket sources in the blockchain. The signature digitally signs the IDs of the

ticket and of the ticket source, protecting the integrity of the ticket and proving that it

has been created by the referenced ticket source. Based on the ID of the ticket source,

receiving nodes are able to retrieve its public key from the blockchain and verify the

signature. Adding this public key to the authorization ticket would be possible, but

the receiving user would still have to access the blockchain to ensure that it belongs

to a valid ticket source. The hop count ensures that flooded tickets do not circulate

though the graph indefinitely.

Authorization tickets only stay valid for one round and can no longer be verified

when new ticket sources become active. When a new round begins, the public keys

of the new ticket sources are present in the most recent block of the blockchain. Now,

the public key referenced within the authorization ticket by the ID of the ticket source

refers to the public key of the new ticket source. Consequently, the signature in the

ticket can no longer be verified.

140 5 Sybil defense

5.3.4 Round-based operation

Since each authorization ticket can only used once, periodic flooding of new tickets

is required. To do so, the operation of Detasyr is divided into repeating rounds.

Definition 5.4: Round

In each round, new authorization tickets are created and flooded through the

social graph, allowing further nodes to become authorized. In parallel, some

management tasks are executed, e.g. selecting new ticket sources and counting

the number of active nodes.

In the following it is assumed that the system has already been running for some

time, i.e., some authorized users already exist and ticket sources have been selected.

Additionally, some new nodes want to become authorized.

The round starts after a new block has been added to the blockchain. The new ticket

sources listed in the new block start the round by sending tickets through the graph,

allowing the authorization of new nodes. In parallel to sending the tickets, two

preparing steps for the next round are executed: counting the number of currently

active nodes, to determine the number of authorization tickets that have to be created

in the next round (see section 5.4.3.1), and selecting the new ticket sources for the

next round (see section 5.4.3.2).

S

A

N
Flooding

tickets (1)

Ticket

request (2)

Requested

tickets (3)

Authorization

request including

collected tickets (4)

A

Figure 5.3: Example of the data for authorization being passed by neighbors through

the social graph between ticket sources (S), authorized nodes (A), and new,

unauthorized, nodes (N).

The high-level procedure of a node to become authorized is depicted in figure 5.3

and described in the following. A detailed explanation can be found in section 5.4.4.

5.3 Core components 141

(1) Flooding tickets All ticket sources flood a number of tickets through the social

graph to the authorized nodes. The number of flooded tickets is based on the number

of currently active authorized nodes. Each authorized node keeps one ticket from

each ticket source for themselves and forwards the remaining tickets to its other

authorized neighbors.

(2) Requesting tickets If a new node wants to become authorized, it sends ticket

requests to its authorized neighbors. When a node is well connected within the social

graph, tickets from more neighbors can be requested.

(3) Receiving tickets The received ticket requests are answered with the tickets the

neighbors collected. Due to the assumption that Sybil nodes have only a limited

number of neighbors, they will only receive a small number of authorization tickets.

(4) Authorization request When the new node has received tickets from enough

ticket sources, it creates an authorization request. This request is send back to an

active ticket source. The ticket sources verify the validity of the received authorization

request and, if the request is valid, add the public key of the new node to the next

block of the blockchain.

When the authorization requests received by the ticket sources have used most of the

created tickets or no authorization requests have been received for some time, the

round ends. The assumption is that most authorization tickets have either been used

or are stored at nodes without unauthorized neighbors. In the latter case, the stored

tickets are of no use and no further authorizations are possible in this round. This is

detailed in section 5.4.3.3.

To end the round, the current ticket sources prepare and publish the new block of

the blockchain. When publishing the block, the old ticket sources become normal

authorized nodes again. At the same time, the new ticket sources start a new round

by flooding new authorization tickets through the graph. The new block also contains

the public keys of the nodes that managed to send valid authorization requests in

this round, making them authorized nodes. An explicit synchronization between

the nodes is not required for changing the round, and diverging local clocks at the

different nodes can be tolerated. As soon as the nodes receive the newest block of

the blockchain, they are able to verify the contained signatures to ensure the correct

linkage of the blockchain. Afterwards, they are able to verify the contained signatures

of messages send and signed by the new ticket sources. At which time this happens

is not important for the functioning of the system. Remaining authorization tickets

of the previous round can be removed.

142 5 Sybil defense

5.4 Design

In this section the design of Detasyr is described in detail, based upon the core com-

ponents presented in the previous section. First, the required basics and assumption

are explained, before the details of the ticket creation and forwarding are presented.

Then, a number of management tasks that need to be executed by the ticket sources

are discussed. Finally, how new nodes use the received authorization tickets to

become authorized is explained.

5.4.1 Basics and assumptions

Based on the assumption that users only accept trustworthy friends as neighbors

in the social graph, the Sybil adversary only has a restricted number of neighbors

and is unable to convince unlimited numbers of users to add its Sybil identities as

friends. The trust relationships between users in the social graph are represented

by network connections between the nodes operated by the users, e.g., as software

on their smartphones. Each node only knows about its relationships to its directly

neighboring nodes, no global view of the social graph is available. This protects the

privacy of the users since it has been shown that it is possible to infer the real-world

identities of users from the structure of a social graph, even when the individual

identities are anonymized [NS09].

Each node within Detasyr owns an asymmetric digital key pair for the Boneh–Lynn–

Shacham (BLS) signature scheme [BLS04]. For a short introduction into BLS signa-

tures, see section 2.3.4.2. To identify a node when sending messages through the

network, the public key is used. As usual for asymmetric cryptography, the private

key is used to create digital signatures used to prove the authenticity of send data.

Compared to other asymmetric signature schemes, BLS signatures offer the advantage

that they are quite small and can be aggregated. Out of the signatures contained

in the flooded authorization tickets, a single signature can be calculated. With this

signature, each of the single tickets can be verified by using the public key of the

respective ticket source that created the ticket. The advantage of the aggregation

is that less data has to be transmitted and stored since only one signature is used

instead of one signature per ticket. Instead of BLS signatures, another signature

scheme could be used as well. While BLS signatures offer these advantages, Detasyr

does not depend on this features.

For the following description of the design, it can be assumed that the users of Detasyr

are always online, even after they have been authorized. This is no restriction of

the presented approach: nodes going offline do not hinder the execution of the

5.4 Design 143

protocol. Measures to ensure the continued operation are explained where required.

Regarding the structure of the social graph, offline nodes can be treated as if they

do not exist. For the neighbors of the offline nodes this means that they have less

connections to other nodes. In some cases, this can result in nodes that temporarily

are no longer able to become authorized or even are disconnected from the social

graph. While unfortunate for the affected nodes, it is unproblematic for the other

nodes or the general execution of the system. When running only Detasyr itself as

an own application, the assumption that all nodes are always online is probably

unrealistic, since the participation induces network traffic and requires computation

efforts. Due to this, the participation within the system should be included in a

popular service, e.g., integrating Detasyr into the app of some web service that wants

to avoid Sybil attacks.

5.4.2 Ticket creation

The most important factor to restrict the number of Sybil nodes that can join the

system each round is the creation, flooding, and collection of authorization tickets.

Only a restricted number of tickets are flooded each round, so that only well connected

nodes receive tickets, i.e., nodes that are in the same community as the emitting ticket

source. Due to the common assumption that Sybil nodes only have a limited number

of honest friends in the social graph, they receive a restricted number of tickets and

are less likely to be able to authorize additional Sybil nodes [Yu+08; DM09].

C

A

B

S
7

7

2

2

1

1

2

2

2

2

1

1

Figure 5.4: Created by the ticket source (S), the labeled amounts of authorization tickets

are flooded through the social graph between the nodes (A-C). Node C is

unable to forwards tickets to all its neighbors.

144 5 Sybil defense

Tickets are created by the currently active ticket sources. The number of tickets

created per source is based on the estimated number of active nodes in the previous

round, as stored in the newest block of the blockchain, multiplied by a fixed factor

t ∈]0, 1[. Each ticket source creates its tickets independently from the other ticket

sources and floods them to its neighboring authorized nodes. If a node receives a

ticket from a ticket source, where it has not received a ticket from yet, it keeps one

of the tickets for itself. After reducing the hop count of the tickets, the other tickets

are evenly distributed to all authorized neighbors, except the one the tickets have

been received from. This process is depicted in figure 5.4.

Due to BLS signatures being used for the tickets, the signatures of multiple tickets

can be aggregated, reducing the amount of data that has to be transmitted. A

disadvantage of this aggregation is that it becomes impossible to use only a single of

the aggregated tickets for an authorization request, since the aggregated signatures

cannot be separated again. Since for each authorization request only a single ticket

from each ticket source is required, this would lead to tickets that cannot be used.

Consequently, the signatures of multiple tickets of one ticket source should not be

aggregated, while aggregating tickets from different ticket sources is preferable to

reduce the amount of data that needs to be stored and transmitted.

5.4.3 Round management

In each round of Detasyr a new block with the newly authorized nodes is published,

new ticket sources are selected and new tickets are flooded. This subsection deals

with the management of these rounds, i.e., the different tasks ticket sources have

to do to run the system. These and the other presented procedures are running in

parallel, i.e., counting active nodes, selecting new ticket sources, distributing tickets,

and handling authorization requests can all be done in parallel.

5.4.3.1 Counting active nodes

The number of currently active nodes is used to set thresholds for other parts of the

system. As an example, the number of active nodes is used to determine the number

of authorization tickets flooded through the social graph by each ticket source. When

using a fixed number of tickets, either too many tickets would be created, resulting

in too many Sybil nodes joining the system, or not enough ticket, resulting in nodes

not receiving tickets and being unable to become authorized. In centralized systems,

the number of active nodes is known to the single centralized server. Due to the

decentralized design of Detasyr, no such server exists. While the number of nodes

5.4 Design 145

already authorized in the system is known from the authorizations in the blockchain,

not all authorized nodes will be available at all times. Instead, the current number of

active nodes needs to be estimated in each round.

For this, each ticket source selects a group of authorized nodes out of the blockchain

randomly. The amount of selected nodes is logarithmic in the known total number of

authorized nodes. A list containing the public keys of the selected nodes is signed

by the ticket source and flooded through the graph. When a node receives the list it

first checks the signature created by the sending public and dismisses the list if the

signature is invalid. Also, based on local state stored for this round, the node checks

whether the list has been received before and dismisses the list if it is not receiving

it for the first time. When these initial checks are done, the node checks whether

its public key is part of the received list. If it is, it assembles an answer and sends

it back to the ticket source as a confirmation that it is active. This answer contains

its public key, the public key of the ticket source that send the list, and a signature

over the two public keys. Afterwards, the list is flooded to the neighbors of the node,

independently of whether the node was part of the list.

At the end of the round the ticket sources exchange their received percentages

of responses. Based on the measurements, an average percentage of responses is

calculated. This average is assumed to represent the percentage of active authorized

nodes compared to the total number of authorized nodes. Multiplied with the total

number of authorized nodes, it is written to the blockchain and used as the estimated

number of active nodes, e.g., for calculations of ticket amounts, in the following

round of the system.

5.4.3.2 Selecting new ticket sources

For each round, new ticket sources are selected. To do so, a random walk is started

by each currently active ticket source. In random walks each node that receives the

random walk forwards its to another, randomly selected, neighbor. As previous work

has shown, random walks are successful in traversing social graphs and selecting

nodes randomly, while having a reduced probability of entering another, possibly

Sybil, community [Yu+06; DM09].

sigw-2 pubKeywpubKey1 sigw-1 sigwTimestamp sigTSIDTS

EncTS EncTS EncTS

sig1 pubKey2

EncTS

Figure 5.5: Structure of the data blocks of a random walk for ticket source selection.

146 5 Sybil defense

The data forwarded in the random walk consists of a chain of data blocks. These data

blocks are connected by a signature si gi over its predecessor block i, as well as the

public key pubKe yi+1 of the following node i + 1 of the walk (see figure 5.5). The

complete block is encrypted with the public key of the ticket source that started the

random walk before being passed on to the next node. Visited nodes only know about

the respective previous and next node of the random walk, since they are unable

to decrypt the public keys contained in earlier blocks. No additional information is

learned by this, since they have this information anyway since they communicate

with these nodes directly. If the block would not be encrypted, all nodes receiving

the random walk would learn information about the structure of the social graph.

Since they can reconstruct the path used by the random walk, they can infer which

nodes are neighbors of each other. This should be avoided, since over time it would

allow nodes to map the whole graph. The signatures in the data blocks are used to

avoid manipulation of the random walk. A malicious node is unable to modify or

remove elements of the chain of data blocks without the ticket source noticing the

breach of the signature chain. If such a breach is noticed, the ticket source discards

the manipulated random walk and starts a new one.

The first block and the last block of the chain are different from the later ones. The

first block is not encrypted and contains the number I DTS of the public key of the

sending ticket source TS within the current block of the blockchain, a timestamp, a

signature si gTS over public key and timestamp created by the sending ticket source,

and the public key pubKe y1 of the next node to visit. While being send unencrypted

by the ticket source, the public key of the next node will be encrypted by that node

before forwarding the blocks. The same as later blocks, the second block contains a

signature si g1 over the first block as well as the public key pubKe y2 of the second

receiver and will be encrypted with the public key of the ticket source TS. The special

contents of the first block allows receivers of the random walk to check whether it

has been started by a valid ticket source. Starting with the second block, the correct

linkage of the chain is ensured by the public keys and the signatures.

After w = log(n) hops, with n being the estimated number of active nodes, the

random walk ends and is sent back to the originating ticket source. Due to the fast

mixing property of social graphs, this length w should be enough to end the random

walk at any connected node [WS98]. The last block w of the chain differs from the

other blocks as well since it does not contain a pointer to a further next block. Instead,

it contains a signature si gw over the signature si gw−1 of the previous block. Since

only the last visited node is able to create the signature si gw, this ensures that the

node referenced by the public key pubKe yw in the previous block w− 1 is a valid

node and is currently online.

5.4 Design 147

After the random walks are finished, the ticket sources exchange lists of the collected

public keys. To avoid that the social graph is recreated based on the walked paths, the

lists of public keys are sorted by the respective ticket source. For the resulting sorted

list, a cryptographic commitment [KL14] is created and shared with the other ticket

sources. The commitment is used to avoid a potential attack, in which a malicious

ticket source would be able to forge its own list to match the ones received from other

ticket sources. Candidates for the new ticket sources for the next round are selected

out of the nodes that are part of the lists provided by multiple ticket sources. As such,

a malicious ticket source could create an own list that contains all the Sybil nodes

that also appear in the lists of honest ticket sources, which is prevented by sharing the

commitments. After the random walks of the active ticket sources are finished and

their commitments have been received by the other ticket sources, all commitments

are opened and verified. This means that the lists themselves are exchanged and all

ticket sources check the commitments whether they really belong to the respective

lists. If a commitment cannot be successfully verified, the respective ticket source is

considered malicious and excluded from the following process. The same applies to

ticket sources that are no longer available, e.g., due to being offline. Similar to other

decisions that have to be concluded in Detasyr, only a configurable percentage in

]0.5, 1.0] of all ticket sources needs to be involved to select new ones by executing the

random walks and exchanging the lists of public keys. This avoids that misbehaving

or offline ticket sources stop the process from progressing.

Based on the exchanged lists the potential ticket sources are determined. To do

so, the intersection of the lists is calculated, i.e., the public keys are found that

appear in more than one of the lists. The nodes in the intersection are candidates

to become new ticket sources. For each pair of lists, at most two public keys are

used from the intersection. This is done to avoid an attack when two Sybil nodes

already are ticket sources. Without this restriction, these two malicious ticket sources

could both publish the same list, which would result in up to log(n) ticket source

candidates appointed by the Sybil adversary. When providing so many candidates,

the Sybil adversary would most likely be able to gain control over the majority of

ticket sources. If less candidate nodes are found as there are current ticket sources,

additional random walks are executed. When there are enough candidates, the

new ticket sources are selected. First, all public keys of the candidates are summed

up by bitwise XOR. The candidates whose public keys have the smallest hamming

distance to this sum are selected as new ticket sources. In case two candidates have

the same hamming distance, the one that has been authorized earlier, based on the

block number in the blockchain, is selected. This approach brings some deterministic

randomness into the selection process to avoid possible attacks due to specifically

148 5 Sybil defense

chosen public keys. Otherwise, a Sybil adversary might be able to specifically select

the public keys of its nodes with the goal of becoming ticket sources. However, since

the Sybil adversary cannot influence the public keys contributed to the process by

the honest ticket sources, the calculated XOR value, and with that the optimal public

key to become a ticket source, cannot be predicted. In each round the same number

of ticket sources is selected, i.e., as many new ticket sources are selected as there are

ticket sources in the current (and consequently every) round.

For publishing the newly selected ticket sources, an aggregated signature over their

public keys is calculated by the current ticket sources. Together the list of public keys

and the signature are published in a new block on the blockchain. When doing so,

the public keys of the new ticket sources are listed in the same order as they were

selected. The first ticket source in the list becomes the new prime ticket source.

If less than a configurable percentage in]0.5, 1.0] of the ticket sources sign the list

of public keys, the selection of new ticket sources is considered invalid. For example,

this could happen if an adversary provides a list of public keys for new ticket sources

to sign that has not been created according to protocol. In case no new group of ticket

sources is selected in time, the ticket sources of previous rounds are starting own

random walks and are joining the selection process. There is no explicit notification

for the authorized nodes when new ticket sources have been selected. Instead, they

are informed about the new round, and with that the new ticket sources, by receiving

the newest block of the blockchain when it is flooded through the social graph.

5.4.3.3 End of round

Authorization tickets are only created and flooded by the ticket sources once per

round. To create further tickets, new rounds have to be started from time to time.

To decide when a new round should be started, multiple conditions are monitored

by the ticket sources. If any of the conditions is reached, the current round ends by

publishing a block for the blockchain. Afterwards, a new round is started with new

ticket sources, repeating the operation of the previous rounds.

Enough nodes authorized In each round a new block for the blockchain is created

by the ticket sources. This block contains, besides other data, a list of public keys of

the newly authorized nodes. If a certain number of nodes, depending on the number

of emitted authorization tickets, has been added to this list, the round ends. Only a

limited number of tickets are available for authorization in each round and successful

authorizations use some of them. Consequently, it becomes increasingly unlikely that

further new nodes are able to collect enough tickets to become authorized, so a new

round is started.

5.4 Design 149

Not enough tickets left The number of unused authorization tickets is monitored

by the ticket sources. While related to the number of newly authorized nodes, the

number of unused authorization tickets can shrink faster then strictly necessary to

fulfill all received authorization requests. This is possible since authorization requests

can contain more tickets than are required for a successful authorization, e.g., since

nodes have aggregated authorization tickets. As the ticket sources know how many

tickets they created, they are able to calculate the number of still available tickets

based on the tickets used in the authorization requests they receive. The number of

tickets set for this condition should be higher than the number of tickets required to

fulfill the previous condition regarding the authorized nodes.

No authorization requests The last condition checks if no authorization requests

have been received by the ticket sources for some time. In this case, two possibilities

exist. Either, no further nodes want to become authorized. Alternatively, the unused

authorization tickets still present at some nodes do not reach the new nodes that

need them. In that case, starting a new round and flooding tickets from the positions

of the new ticket sources within the social graph leads to a different distribution of

tickets that allows further authorizations.

If the fulfillment of one of these conditions is noticed by a ticket source, it notifies the

other ticket sources about it. To increase the efficiency of the protocol, this message is

not broadcasted between the ticket sources directly. Instead, the prime ticket source

is informed about the reached condition.

The prime ticket source will then start to assemble a new block for the blockchain.

As described in section 5.3.2, among other entries this block contains a list of the

public keys of the newly selected ticket sources, and the list with the public keys of

newly authorized nodes. Also, the other entries in the new block are filled with the

exception of the ID of the prime ticket source and its signature. This block is then

send to all other ticket sources which will verify and digitally sign the created block.

The prime ticket source can then aggregate the created signatures, sign the block

itself and broadcast the finished block to the other ticket sources and through the

social graph, thus ending the current round and starting a new one.

5.4.4 Gaining authorizations

For its authorization to succeed, a node has to possess a number of authorization

tickets, each from a different ticket source. The number of required tickets is c ∗ s

with a configurable constant c ∈]0.0, 1.0] and s being the number of ticket sources.

The parameter c influences the security as well as the usability of Detasyr. With a

150 5 Sybil defense

low value for c, new nodes can join the system easily but Sybil nodes are able to join

easily as well. On contrary, a too high value of c results in a system that can hardly

be used. Tickets from only some ticket sources are required so that ticket sources

which become unconnected within a round, or are only reachable over many other

nodes, do not block the authorization of new nodes.

1 while not check_if_authorized():

2 sources_with_tickets = 0

3 tickets = []

4 while sources_with_tickets < c * s:

5 neighbors.send_ticket_requests()

6 tickets.add(neighbors.receive_tickets())

7 sources_with_tickets = tickets.count_unique_sources()

8 tickets.aggregate()

9 tickets.send_to_ticket_source()

10 wait_for_new_block()

Figure 5.6: Pseudocode for the process of gaining authorization.

As explained in section 5.4.2, only already authorized nodes receive the tickets send

by the ticket sources. To collect the required tickets, a new node can send ticket

requests to all its neighbors. The neighbors respond with the separated or aggregated

authorization tickets they have collected. When the new node has acquired tickets

from enough different ticket sources, an authorization request can be assembled and

send to any of the ticket sources. This process is depicted in figure 5.6.

To identify the sending node, an authorization request contains the public key of the

new node. As proof that they are connected to other already authorized nodes, the

aggregated signatures of the received tickets, the indices of the tickets, and the indices,

within the current block of the blockchain, of the ticket sources that contributed the

respective ticket, are added. To protect the integrity and to prove the ownership of

the matching private key, the data of the ticket request is signed by the new node.

The data and the signature are encrypted with the public key of the addressed ticket

source to stop malicious nodes from stealing the authorization tickets contained

within the ticket request. Otherwise, a malicious node could intercept the ticket

request, replace the public key of the new node with its own, and sign the ticket

request itself. Finally, the data packet, as depicted in figure 5.7, is send to the ticket

source the authorization request has been encrypted for.

After decrypting the packet, the ticket source receiving the authorization request first

checks the contained signature of the new node and the number of tickets by different

5.5 Further restrictions for Sybil identities 151

pubKeyNode

aggrSigTickets

sigNode

EncTSTarget

[IDTS ...]

[IDTicket ...]

Figure 5.7: The structure of an authorization request as send to the ticket sources.

sources. If the signature is invalid or not enough different tickets are provided, the

authorization request is invalid and will be ignored. To avoid duplicate usage of

tickets, tickets are only accepted if they have not been used in a previous authorization

request. This is checked by each ticket source for the tickets it generated, based on

a list of previously used tickets stored locally. This list only needs to be stored as

long as the node is a ticket source, i.e., for one round. If the authorization request

is accepted by this ticket source, it creates a signature over the public key of the

new node, representing the acceptance of the request. The signature as well as the

authorization request are then send to the other ticket sources. Each ticket source

will then repeat the checks, create an own signature, and send the ticket request

together with its signature to the prime ticket source for inclusion in the next block

of the blockchain. Only when a high enough percentage r ∈]0.5, 1] of ticket sources

are accepting the request the new node will be authorized. As for the number of

tickets that have to be collected, the number of ticket sources that have to participate

in accepting the request can be less than the total number of ticket sources. This

increases the robustness of the process in case some of the ticket sources are no

longer available. Especially important if an adversary is present, this means that a

misbehaving ticket source is unable to block the authorization of a node, i.e., if it

intentionally does not sign the authorization request. Still, more than half of the

ticket sources are required to sign the request to ensure the acceptance of a majority

of ticket sources and to avoid that a single, or a few, malicious ticket sources are able

to authorize nodes without the honest ticket sources confirming the authorization.

5.5 Further restrictions for Sybil identities

For Sybil adversaries, the design presented so far restricts them from authorizing

an unlimited number of nodes per round. The same as honest nodes, they have to

collect authorization tickets from their neighbors to send authorization requests to

the ticket sources. However, different from honest nodes, a Sybil adversary does not

stop authorizing nodes after the first node has been authorized. Instead, they try

to authorize enough nodes to gain control over the system. While the number of

152 5 Sybil defense

authorized nodes per round is limited by the number of received authorization tickets,

a similar number of nodes can be authorized by the Sybil adversary every round.

In this section two extensions are presented that aim to provide an absolute upper

bound to the number of Sybil nodes: a maximum age of authorizations and edge

values. Both extensions restrict the absolute number of Sybil nodes, independently

of the number of rounds passed, leading to a smaller relative number of Sybil nodes

as the size of the social graph increases.

5.5.1 Aging Authorizations

In the design presented so far, successful authorizations are stored in the blockchain

and stay valid indefinitely. This is changed by the extension presented in this sub-

section. The underlying idea is, that only authorizations in the v newest blocks are

considered valid. If regarding, e.g., only the newest v = 30 blocks, a node becomes

unauthorized again 30 blocks after it successfully authorized itself. Afterwards, it

has to reauthorize itself again.

This extension results in an upper bound for the number of Sybil nodes that can

become authorized. While the basic design already ensures that only a limited

number of Sybil nodes is authorized each round, it allows an unlimited number of

Sybil nodes over time. With this extension authorizations become invalid after some

rounds, so the Sybil adversary has to spend the received tickets to reauthorize its

nodes. Consequently, no further nodes can be authorized, leading to a bounded

number of Sybil nodes. Even when this upper bound can be rather large in absolute

numbers (depending on the number of nodes the Sybil adversary has as neighbors

and the number of valid blocks v), it is an absolute upper bound. As a result, the

relative number of Sybil nodes decreases as the number of authorized honest nodes

increases. Another point is that the security of the blockchain is improved. Since only

the last few blocks are important for the verification of authorizations, an adversary

has only limited time available to forge the signatures of the ticket sources for these

blocks or compromise their nodes. In the basic design an adversary has unlimited

time to compromise the signature of a block, and, e.g., add numerous Sybil nodes as

authorized nodes within the block.

However, this extension also leads to a higher overhead for honest nodes. All nodes,

both controlled by a Sybil adversary and and by honest users, have to reauthorize

themselves periodically. In the basic design presented so far, an “idle-state” estab-

lishes after some time for a finite social graph, as can be seen in the evaluation in

section 5.6.1.2. In this state, the required work for honest nodes is reduced, since no

further (honest) authorizations happen as all nodes already are authorized.

5.5 Further restrictions for Sybil identities 153

Another advantage is that with this extension it becomes possible to withdraw trust

from other users, e.g., because a user now assumes that their neighbor is a Sybil

identity. In the basic design, an authorized node stays authorized permanently, even

when its neighbors no longer trust it. Even with this extension, removing the edge to

a neighboring node does not immediately revokes its authorization. However, when

the node tries to reauthorize itself after v rounds, this can fail due to it not having

enough authorized neighboring nodes anymore.

5.5.2 Edge Values

Applying unidirectional edge values to the edges between nodes is another possible

extension to limit the absolute number of Sybil nodes. When using edge value, each

node stores one of these values for each of its neighboring nodes, representing the

trust into the relationship with the respective neighboring node. The idea is that

receiving authorization requests from a node reduces this trust. When the edge value

for one neighbor reaches zero, no more authorization requests are accepted from this

neighbor by the receiving node, restricting the number of requests that are possible

over each edge. While only slightly hindering for honest nodes, this extension stops

Sybil nodes from sending unlimited numbers of authorization requests.

A 44

4

A 34

4

Request

A 35

4

Request

Figure 5.8: Local edge values on the three edges of a node with the initial state on

the left. When an authorization request is received the edge value of the

respective edge is reduced (middle). When the request is accepted by a

neighbor, the edge value of the respective edge is increased (right).

As depicted in figure 5.8, the edge values are considered when a node receives an

authorization request for forwarding. First, it checks its local edge value on the edge

to the sending node, i.e., the edge where the request have been received over. If

the edge value is greater than zero, the edge value in the direction of the sending

node is reduced by one and the request is forwarded in the direction of the ticket

source. Otherwise, the request is declined and send back. If the neighboring node in

the direction of the ticket source accepts the request, the edge value in its direction

is increased by one. Combined this means that the sum of edge values stored by a

node keeps the same. While the individual edge values on its edges are modified,

154 5 Sybil defense

the trust towards the sending neighbor is moved to another edge in the direction of

the ticket source. For the edges towards the node initially sending the authorization

request, the edge values are only reduced. This node does not receive the request

from another node, so no other node increases its trust in it. This results in a limited

number of requests that can be send by each node, since the neighboring nodes will

stop accepting authorization requests. For Sybil adversaries this results in a restriction

of their abilities, which prohibits them from creating as many Sybil identities as they

want. The sum of the edge values over all edges towards a node, i.e., as seen by

its neighbors, is only increased when a node becomes a ticket source and handles

authorization requests itself. In that case no authorization requests are send to

neighboring nodes, so their edge values are not reduced. However, the ticket source

will receive a lot of authorization requests from its neighbors, leading to its edge

values reaching zero and blocking further authorizations. To avoid this problem, the

current ticket sources, and also their direct neighbors, should not modify their edge

values when handling and forwarding authorization requests.

While the introduction of edge values is technically a restriction for all nodes, honest

nodes should only be slightly restricted by it in practice. They only send a single

authorization request and should have many different paths to send their request over.

Since the ticket sources are placed differently each round, it is likely the authorization

request in the next round succeeds, even when it failed in the current round due

to the edge values. However, Sybil adversaries are assumed to send unlimited

numbers of authorization requests to create further Sybil nodes. Sending these

requests will reduce the edge values of all of their honest neighbors for all their attack

edges to zero, stopping the Sybil adversary from sending any further authorization

requests. Since they are unable to authorize further nodes, this restricting them to

Ini t ialEd geValue ∗#Neighbors Sybil nodes. This bound can only be exceeded if a

Sybil node becomes randomly selected as a ticket source which becomes increasingly

unlikely with a growing graph. If this happens, the Sybil adversary can accept its

own ticket requests without having to send out authorization requests, avoiding the

restriction by the edge values. Still, the other ticket sources have to confirm the

authorization of the new Sybil nodes. This means that the Sybil node is not relieved

from collecting enough tickets for the authorization, which was already restricted by

the basic design of Detasyr. Consequently, unlimited creation of Sybil nodes is still

not possible if the Sybil adversary controls a ticket source.

The initial edge value e is a parameter of this extension. It determines the balance

between speed of authorization for honest users and the maximum number of Sybil

nodes, with a high value for e favoring both of them. As in the other extension, the

maximum number of Sybil nodes is an absolute number.

5.6 Evaluation 155

5.6 Evaluation

In this section the evaluation of Detasyr is presented. After introducing the simulation

environment used for the conducted measurements, the results of simulating the

extensions presented in section 5.5 are shown and discussed. Afterwards, the conse-

quences due to Sybil controlled ticket sources as well as the overhead introduced by

participating in the Detasyr network are analyzed. Finally, a comparison with related

work is conducted.

5.6.1 Increase of Sybil strength

In this subsection the evaluation results for the two extensions presented in section 5.5

are shown and discussed. This includes the authorization rates for honest nodes as

well as Sybil nodes. Simulation results for the basic design, i.e., without either of the

extensions, are shown for comparison as part of the other simulation results.

5.6.1.1 Evaluation environment

An event-based simulator has been implemented for the evaluation. It creates a

synthetic social graph and simulates the state of the nodes as well as the message

passing and processing. Two social graphs were evaluated, based on the models

by Barabási-Albert [BA99] and Watts-Strogatz [WS98]. With the Barabási-Albert

model a scale free graphs is generated that is assumed to be close to current online

social networks. In those, some users have huge amounts of friends, while most users

have much less or only a few friends. As an alternative, the Watts-Strogatz model

generates a graph with a strong community structure. This means that multiple

communities exists which are extensively connected within themselves but have only

few connections to other communities. Such a graph would most likely be the result

if users would only accept trustworthy real-world friends as their neighbors in the

social graph, which is the preferable scenario for executing Detasyr.

Due to the execution time of the simulations, graphs with 10,000 nodes are used for

the presented evaluation plots. Initially, only n = 20 connected nodes are already

authorized. Of these nodes, s = 10 are ticket sources. Comparative simulation

runs with larger graphs and an excerpt of a real social graph have shown that the

qualitative results of the simulations, e.g., the authorization rates for both honest

and Sybil nodes, are the same. For each parameter combination, 40 repetitions have

been run. The Sybil adversary starts the creation of nodes in round 7. Starting the

Sybil adversary already in the first round would be possible, but would allow the

156 5 Sybil defense

adversary to authorize more nodes than honest users are currently authorized which

results in the Sybil adversary controlling the system. Considering a real-world use of

Detasyr this delayed start of the Sybil adversary is probably realistic. Initially, only

real-world friends have nodes in the initial group forming the social graph. Since

this small group of people knows how important trust is for the operation of the

system, they will most likely be careful about selecting their friends in the social

graph. Additionally, even when a Sybil adversary is present immediately, it would

not be beneficial to start the attack, by creating many Sybil nodes, early on. As long

as only few users are part of the system such an attack would be noticed and the

system would be restarted, thwarting the attack of the Sybil adversary.

The evaluation of the number of nodes the Sybil adversary controls focuses on the

behavior of the system when no further honest nodes in the simulated graph become

authorized. As long as honest nodes are becoming authorized, the relative number

of Sybil nodes is naturally restricted even when the absolute number of Sybil nodes

increases. Only when no further honest nodes are becoming authorized the real

increase of the relative number of Sybil nodes can be evaluated.

5.6.1.2 Aging authorizations

In the first extension, described in section 5.5.1, authorizations only stay valid for v

rounds. In this subsection, the simulation results using this extension are displayed

and discussed.

N
u
m

b
e

r
o
f
a
u
th

o
ri

z
e
d
 n

o
d
e
s

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

unrestricted
v=10

v=5
v=50

Aging authorizations

Barabasi-Albert graph

Rounds

N
u
m

b
e

r
o
f
a
u
th

o
ri

z
e
d
 n

o
d
e
s

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

unrestricted
v=10

v=5
v=50

Aging authorizations

Watts-Strogatz graph

Rounds

Figure 5.9: Simulation results of the aging extension for different numbers v of valid

rounds. Depicted are the numbers of authorized honest nodes.

In figure 5.9 the simulation results regarding the successful authorization of honest

nodes are displayed. Depicted are simulation runs on the two social graphs used for

the evaluation for different values of v, which is the number of rounds authorizations

stay valid. The simulations were running for 120 rounds.

5.6 Evaluation 157

The “unrestricted” curve is based on simulation runs without using the aging extension

and is displayed for comparison. As can be seen, the curve starts to grow only slowly

at first. Since only 20 nodes are authorized initially, only relatively few nodes are

neighbors of an authorized node and can become authorized themselves in the

current round. However, the number of authorized nodes increases exponentially,

since each newly authorized node allows all its neighbors to become authorized as

well. At about round 10 the initially slow start is over and the number of authorized

nodes significantly increases with each following round. It should be noted that in a

real-world implementation of Detasyr the number of authorized nodes would most

likely increase much slower. While many nodes could be authorized each round,

users would probably join the system much slower than authorizations are possible.

On the other hand, this means that every new joining user would likely become

authorized in its first round in the system. At round 17 it can be seen that the rate

of authorization starts decreasing again. Around this time, nearly all nodes of the

fixed size generated social graph already have been authorized. The remaining nodes

that have not been authorized yet are either connected to too few nodes and are not

receiving enough tickets to become authorized immediately, or are part of a group of

unauthorized nodes which become authorized one after the other. After a few rounds,

all 10,000 nodes of the social graph have been authorized. While the structures of

the simulated social graphs differ, both “unrestricted” curves look nearly the same,

even though the community structure of the Watts-Strogatz graph leads to a slightly

slower authorization of honest nodes.

When using the extension with a maximum age of authorizations, periodic dips in the

graphs of both plots are visible due to the limited validity of the authorizations. Every

v rounds the authorizations of the nodes become invalid and have to be renewed. The

form of the resulting dip in authorizations depends on the speed the nodes have been

authorized with earlier. Further evaluations have shown that the dips are shallower

but longer when the nodes are getting authorized at a slower pace.

For low values of v, not all nodes manage to become authorized. Furthermore, a

significant variance between the executed simulation runs is visible. When inspecting

the underlying data that has been plotted, this misleading variance can be explained.

For a value of v = 5 in the graph based on the Barabási-Albert model, most simulations

result in one of two frequent outcomes. In the better outcome, around 8000 nodes

manage to become authorized, which is still less than the total number of 10,000

nodes. In the other frequent outcome, no nodes are authorized at the end of the

simulation. To become authorized, a node requires at least one authorized neighbor

and at least 6 (indirectly) connected ticket sources. If nodes are forced to reauthorize

too early, this can lead to a fragmented structure for the social graph. In that case,

158 5 Sybil defense

each graph fragment contains some ticket sources, but no fragment contains enough

ticket sources to continue authorizing further nodes. At most v rounds later, all nodes

are unauthorized again. A value v = 10 with the graph based on the Watts-Strogatz

model leads to a similar result. If a large enough value for v is used, the authorized

subgraph of the generated social graph reaches a large enough size with a high

enough connectivity between its nodes. When some nodes become unauthorized

again, no significant fragmentation of the social graph occurs.

Additionally, a difference between the generated social graphs becomes visible. In

the graph generated with the Barabási-Albert model, a validity duration of v = 10 is

sufficient to allow all 10,000 nodes of the social graph to become authorized. With

the graph based on the Watts-Strogatz model, a value v = 10 is not sufficient to

authorize all nodes yet. This difference can be explained due to the structure of

the graphs. With the Barabási-Albert model, some nodes have a huge number of

friends. As such, many neighboring nodes can be authorized at once, leading to a

faster authorization of nodes and consequently to a faster reauthorization as well.

Additionally, these well connected nodes introduce shorter paths through the social

graph, which is beneficial for flooding authorization tickets and allows more nodes

to receiving tickets. With the Watts-Strogatz model a stronger community structure

is present, with less edges between the different communities. Due to being only

connected by relatively few edges, the distribution of authorization tickets is delayed,

leading to a slower authorization of nodes. This results in reauthorizations being

required before all nodes were able to become authorized, repeating each v rounds.

0

50

100

150

200

250

300

0 20 40 60 80 100 120

N
u
m

b
e
r

o
f
S

yb
il

n
o
d
e
s

unrestricted
v=5
v=10
v=50
delayed, v=50

Aging authorizations

Barabasi-Albert graph

Rounds

0

50

100

150

200

250

0 20 40 60 80 100 120

N
u
m

b
e
r

o
f
S

yb
il

n
o
d
e
s

Rounds

Aging authorizations
Watts-Strogatz graph

unrestricted
v=5
v=10
v=50
delayed, v=50

Figure 5.10: Simulation results of the aging extension for different numbers v of valid

rounds. Depicted are the numbers of authorized Sybil nodes.

The plots in figure 5.10 display the number of Sybil nodes that have been authorized,

based on the same simulation runs as the previous plots. Again, the “unrestricted”

curves are showing the increase of Sybil nodes when no extension is used. As has

5.6 Evaluation 159

been explained before, the Sybil adversary is able to only register a restricted number

of nodes per round, but can repeat this in every round. Consequently, the number of

Sybil nodes keeps increasing, albeit with a limited rate.

Compared to the previous plots in figure 5.9, where the authorization of honest nodes

was shown, no periodic structure is visible in the graphs. This can be explained with

the much lower amount of nodes compared with the previous plots. While previously

up to 10,000 nodes were authorized and became unauthorized again, here only

around 65 nodes have been authorized by the Sybil, which additionally happened

at a slower rate. Consequently, the periodic structure is not visible in the graph and

only visible as a small deviation in the numeric representation.

What is clearly visible in both graphs of figure 5.10 is that a higher value of v results

in more authorized Sybil nodes. Still, for all depicted values of v the Sybil adversary

is restricted in its ability to authorize nodes. At round 20, when all 10,000 honest

nodes have been authorized, the Sybil adversary only managed to authorize 16 nodes.

Since the Sybil adversary started its attack after seven rounds, this means that the

Sybil adversary was only able to authorize around one node per round, even with

the basic design of Detasyr without the extensions. At the end of the evaluation

period of 120 round the Sybil adversary had on average 150 authorized nodes in the

unrestricted simulation runs, which constitutes for 1.5 percent of the social graph.

When aging authorizations where used with a maximum age of v = 50 rounds,

only 65 Sybil nodes where authorized, resulting in a Sybil presence of less than one

percent. Both results show the effectiveness of Detasyr. It should be noted that with

aging authorizations the absolute number of Sybil nodes no longer increases. If the

size of the honest social graph increases over time, which is to be expected in a real

deployment, the percentage of Sybil nodes decreases.

Two phases can be discerned in the increase of the number of authorized Sybil nodes.

Initially, the number of Sybil nodes increases with the same rate as in the unrestricted

simulation runs. However, after some rounds (v + 7) the increase of Sybil nodes

stops. At this point, the first nodes of the Sybil adversary become unauthorized again.

As are honest nodes, the Sybil nodes become unauthorized with the same rate as

they have become authorized v rounds before. Since the Sybil adversary is unable to

increase the amount of authorization tickets it receives, it is only able to reauthorize

its nodes with the same rate as nodes become unauthorized. As such, the number of

Sybil nodes remains the same and is no longer increasing.

Compare to the authorization of honest nodes, a higher variance between the sim-

ulation runs is present. In the honest part of the social graph there are always

neighboring unauthorized nodes which can be added to the graph. With Sybil nodes

this is not the case. Instead, the nodes form an own community within the social

160 5 Sybil defense

graph which is only connected to few honest nodes. Due to this, the Sybil adver-

sary is more dependent on its placement within the social graph, leading to varying

simulation results depending on this placement.

In the plot based on the Watts-Strogatz graph, the curve shows a more complicated

pattern than in the graph generated by the Barabási-Albert model. As an example,

the curve for v = 50 is discussed, with the other curves behaving similar. Initially,

in the rounds 7 – 16, the increase of Sybil nodes is quite high. This is also visible in

the unrestricted curve. In this phase, the Sybil adversary profits from the small size

of the social graph, which leads to the ticket sources being close to the Sybil nodes.

Consequently, the Sybil adversary receives many authorization tickets and is able to

authorize more nodes in these rounds. When the Sybil adversary starts its attack at a

later time, as in the “delayed” curve which starts the attack in round 30, this steep

increase of Sybil nodes is not present.

As depicted in figure 5.9, the number of honest nodes significantly increases around

round 16. This leads to higher distances between the ticket sources and the Sybil

adversary. Additionally, the Watts-Strogatz graph has a community structure. Since

most flooded authorization tickets stay within the community of the sending ticket

source, the Sybil adversary receives even less tickets. In the rounds 17 – 57, the

Sybil adversary is able to authorize similar amounts of nodes as in the unrestricted

simulations, and also as in the Barabási-Albert graph. In the following rounds 58 –

67 the number of Sybil nodes declines. The Sybil adversary does not receive enough

tickets to keep all of its nodes authorized, since it no longer receives as many tickets

as it did in the earlier rounds 7 – 16. For the rest of the simulation, the two curves

using a validation duration v = 50 are at similar numbers of Sybil nodes. While the

Sybil adversary that started its attack in round 7 was able to temporarily authorize

more nodes, this early advantage is no longer relevant after round 57. Afterwards,

the number of Sybil nodes is only influenced by the number of authorization tickets

the Sybil adversary receives each round, which is the same independently of the

round it started the authorization of Sybil nodes.

Based on these results, it can be seen that a larger value for the validity duration

v is required for a graph structure which contains more communities, as well as

for an increasing size of the social graph. An “ideal” value for v cannot be derived

analytically. For once, it could be beneficial to increase the size of v together with

the size of the nodes in the social graph. Starting with a large, but fixed, value for

v would not benefit the honest nodes, while it would permit the Sybil adversary

to authorize more of its nodes. A fixed small value for v would restrict the Sybil

adversary, but would result in a maximum number of authorized nodes, both for

honest users and the Sybil adversary. Additionally, the structure of the social graph

5.6 Evaluation 161

has been shown to have a significant influence on the required value for v. Since this

structure changes depending on the social graph of the online service Detasyr is run

on, a “good” value for v has to be found experimentally by running Detasyr on the

social graph in question.

5.6.1.3 Edge values

As introduced in section 5.5.2, this extension limits the amount of Sybil nodes by

only accepting a restricted number of authorization requests from each neighbor. If

a neighboring node sends too many authorization requests, further requests are no

longer forwarded.

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40

Edge Values

Barabasi-Albert graph

Rounds

unrestricted
e=10
e=20
e=40

N
u
m

b
e

r
o
f
a
u
th

o
ri

z
e
d
 n

o
d
e
s

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40

unrestricted
e=10
e=20
e=40

Edge Values

Watts-Strogatz graph

Rounds

N
u
m

b
e

r
o
f
a
u
th

o
ri

z
e
d
 n

o
d
e
s

Figure 5.11: Evaluation results of the extension with edge values for different initial

edge values e. Depicted are the numbers of authorized honest nodes.

The simulation results for the number of authorized honest nodes are shown in

figure 5.11. Displayed are the first 40 rounds of the simulation. Similar to the

previously discussed extension using a maximum age of authorizations, the graph

based on the Watts-Strogatz model leads to a slower authorization of honest users.

Since multiple communities exist in this graph model, authorizations are restricted by

the fewer edges between the communities. The edge values on these edges become

zero, prohibiting further authorization requests from crossing the boundary between

the communities. Missing alternative paths over other edges, the community is unable

to authorize further nodes in this round. Only when ticket sources are present in

this community in a later round authorizations become possible again. This effect is

especially prevalent with low initial edge values, since this leads to a faster depletion

of the trust in neighboring nodes. This can be seen in both graphs, were an initial

edge value of e = 10 leads to a significant slower authorization than with higher

edge values. However, independently from the initial edge value all nodes become

authorized eventually.

162 5 Sybil defense

-10

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

S
y
b

il
n

o
d

e
s

unrestricted
e=10
e=20
e=40

Edge Values

Barabasi-Albert graph

Rounds

-10

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

S
y
b

il
n

o
d

e
s

unrestricted
e=10
e=20
e=40

Edge Values

Watts-Strogatz graph

Rounds

Figure 5.12: Evaluation results of the extension with edge values for different initial

edge values e. Depicted are the numbers of authorized Sybil nodes.

While this is a restriction for honest users, it is an even more significant restriction for

Sybil adversaries, as shown in figure 5.12. As already seen in the previous section,

the number of Sybil nodes keeps increasing when no restriction is applied. With

edge values however, the maximum number of authorized Sybil nodes is restricted

to an absolute upper bound. Initially the number of Sybil nodes increases, e.g., as

seen in rounds 7 – 20 in the graph generated by the Barabási-Albert model. In these

rounds, the edge values towards the Sybil community have not been depleted to zero

yet, allowing the Sybil adversary to send authorization requests through the honest

community to the ticket sources. Later on, the edge values for e = 10 and e = 20 are

depleted and no further authorization request can be send. For an initial edge value

of e = 40 this state is not reached in the 40 rounds that are displayed in the plot. Due

to the higher initial edge value, the Sybil adversary is able to send more authorization

request before being blocked. Still, when considering the authorization of honest

users, a higher initial edge value, e.g., e = 40, might be preferable. With an increasing

size of the social graph the relative number of Sybil nodes decreases, even when the

Sybil adversary is able to authorize a higher absolute number of nodes initially. At

the same time, the higher initial edge value improves the authorization speed for

honest users, which is an important consideration for the general acceptance of the

system by its users.

Compared to the simulation results of the aging authorizations displayed in figure 5.10,

even less nodes can be authorized by the Sybil adversary. Though, as already seen

for the different values of the validity duration v, the initial edge value e influences

how many Sybil nodes become authorized. Both these parameters v and e have to

be chosen by the operator of Detasyr to achieve an acceptable compromise between

the ease of authorization for honest users, and the restriction of the Sybil adversary.

5.6 Evaluation 163

5.6.2 Sybil controlled ticket sources

New ticket sources are selected randomly out of the authorized nodes which are

currently active, by executing random walks through the social graph and calculating

the intersection of these walks. This is explained in detail in section 5.4.3.2. As

previous work has shown, random walks have an increased probability to stay within

one community of the social graph [Yu+06; DM09], reducing the chance that a Sybil

node is proposed as a ticket source. Still, it can happen that Sybil nodes become

selected as ticket sources.

If only a single Sybil node or a few Sybil nodes are selected as ticket sources, the

Sybil adversary is unable to significantly disrupt the functioning of Detasyr. Most

operations executed by the ticket sources are based on a majority decision, e.g.,

authorizing new nodes, selecting the next ticket sources, or adding a new block to

the blockchain. To disrupt these operations, the Sybil adversary can attempt three

attacks: providing invalid data, withholding acceptance to a correct decision, or

intercepting authorization requests.

Invalid data When providing invalid data, e.g., to authorize further Sybil nodes

without enough collected authorization tickets, the honest ticket sources will recog-

nized that the received data is invalid. In that case, they will not confirm it, thwarting

the attack. For some procedures, e.g., selecting new ticket sources, providing invalid

data even results in the malicious ticket source being excluded from the rest of the

procedure, limiting the influence of the Sybil adversary.

Withholding acceptance To block the honest ticket sources from operating, the

Sybil controlled ticket source could ignore requests send to it, e.g., to sign the new

block for the blockchain. However, only a configurable percentage in]0.5, 1.0] of

all ticket sources have to confirm these requests. If the Sybil adversary refuses its

acceptance, this is not worse than a ticket source which goes offline. As long as a

sufficient number of honest ticket sources remain active, a small number of malicious

ticket sources ignoring a request can be tolerated.

Intercepting authorization requests An attack that is possible for the Sybil adver-

sary is to intercept the authorization requests of honest nodes. For once, this stops

an honest node from being authorized. The advantage for the Sybil adversary is that

the correct operation of the system is at least slightly disrupted, and that the size of

the social graph does not increase, keeping the percentage of Sybil controlled nodes

from decreasing. For the requesting node, this is only a temporary inconvenience.

With a high probability a second authorization request in the next round will not be

received by a Sybil controlled ticket source, resulting in a successful authorization.

164 5 Sybil defense

However, the Sybil controlled ticket source is able to decrypt the encrypted autho-

rization request, something that normal nodes forwarding authorization requests are

not possible to do. This allows the Sybil adversary to steal the authorization tickets

contained within the request, and create an own authorization request for one of its

own Sybil nodes.

How successful this attack is depends on the specific situation, most significantly on

the number of nodes which try to become authorized in this round. Additionally, the

authorization requests can be send by the nodes to arbitrary selected ticket sources.

On average, a single Sybil controlled ticket source receives 1
s

of the authorization

requests, with s being the number of ticket sources. Finally, when aging authoriza-

tions are used, this gain of authorized Sybil nodes is only temporary. While the

Sybil adversary is able to authorize more of its nodes in this round, it is unable to

reauthorize this nodes v rounds later when the nodes become unauthorized again.

To gain complete control over the system, the Sybil adversary can try to get as many

ticket sources under its control as possible. If the adversary controls more as the

configurable percentage in]0.5, 1.0] of ticket sources required to confirm decisions,

it is able to appoint new ticket sources at will and control all authorizations within

the social graph. Since the behavior of possibly remaining honest ticket sources is

no longer relevant when this state is reached, the system can be considered broken

and under the control of the Sybil adversary. Consequently, the required percentage

for decisions should be selected as high as possible, while still allowing for offline or

single malicious ticket sources.

To control further ticket sources, the Sybil adversary has to manipulate the selection

of new ticket sources in its favor. Candidates for new ticket sources are selected by

intersecting random walks, with at most two candidates taken from each intersecting

pair of random walks. Assuming that sa ticket sources are controlled by the Sybil

adversary, up to sa ∗ (sa − 1) candidates can be presented by the Sybil adversary to

the honest ticket sources. For sa ≥ 3 the adversary would be able to introduce more

candidates as it currently controls ticket sources, potentially increasing its number of

ticket sources in the next round.

However, this only allows the Sybil adversary to propose more ticket source candidates

as it currently controls. As described in section 5.4.3.2, the selection of ticket sources

out of the candidates is based on calculating the XOR sum of the candidates public

keys. The Sybil adversary is unable to influence or predict this sum, since it does

not know the public keys of the other candidates until after it committed to its own

candidates. Consequently, the Sybil adversary cannot enforce that its candidates are

selected as the next ticket sources, resulting in a low probability that it can even

maintain its current number of Sybil controlled ticket sources.

5.6 Evaluation 165

5.6.3 Overhead estimation

The effort required to participate in Detasyr is hard to estimate, since it depends on a

number of factors, most importantly the current role of a node within the system.

This role changes every round, with most nodes being normal authorized nodes.

Ticket sources From the roles nodes can have in Detasyr, operating as a ticket sources

requires the most computation and communication from a node. Ticket sources have

to create and send authorization tickets, receive and process authorization responses,

and maintain the state of Detasyr and its blockchain. Another factor is the size of the

social graph, with a larger graph resulting in more authorization tickets that need to

be flooded and potentially more authorization requests that are received. However,

nodes are normally only a ticket source for a single round. Furthermore, the number

of ticket sources is low: For the simulated evaluation only 10 ticket sources were

used for a graph of 10,000 honest nodes. So while the overhead of operating a ticket

source is the highest overhead that can occur within Detasyr, it is a relatively rare

occurrence for a single node.

Authorized nodes The tasks of authorized nodes are forwarding tickets and random

walks. How much effort this requires depends on the placement of the node relative

to the placement of the ticket sources. If placed near one or multiple ticket sources,

the node receives many authorization tickets it has to forward to other nodes. On the

other hand, if placed at the border of the social graph far from ticket sources, the node

receives only few tickets. Additionally, when having an neighboring unauthorized

node, the authorized node has to answer received ticket requests and potentially

forward an authorization request. If aging authorizations are used, additional effort

is inflicted to ticket sources and authorized nodes by the periodic reauthorizations.

Unauthorized nodes Within Detasyr, both authorization tickets and random walks

are not forwarded to unauthorized nodes. As such, their overhead is basically non

existent: All effort that is required is to become authorized itself.

Based on measurements in the simulations, authorized nodes had to process on

average 3 messages per minute in a graph of 10,000 nodes. However, these messages

are not equally distributed, neither about the nodes nor about the time. For a single

node, the required effort can significantly change depending on the distance to the

next ticket source. Also, within one round more effort is required at the beginning of

the round when the authorization tickets are flooded, while later on only sporadic

messages have to be processed. In conclusion, running a Detasyr node should on

average not result in excessive overhead compared to other network traffic on the

users device, but can occasionally cause an burst of activity.

166 5 Sybil defense

5.6.4 Comparison with related work

In the last years multiple approaches for Sybil defense based on social graphs have

been proposed. All of them are based on the assumption that there is a sparse cut

consisting of only few edges between the community of honest nodes and of Sybil

nodes. How the sparse cut is employed by the approaches differs, though. Also, the

approaches differ in their requirements and their abilities. An overview is given in

table 5.1 and discussed in the following.

Approach Privacy / Dynamic Multi- Group Proof of

Decentralized graph community auth. auth.

Detasyr
p p p p p

SybilGuard
p p

X X X

SybilLimit
p p

X X X

SybilShield
p p p

X X

SybilInfer X X X
p

X

SybilDefender X X X
p

X

SybilHedge
p p

X X
p

Gatekeeper
p

X
p p p

Table 5.1: Comparison with related Sybil defense approaches.

For integration into DecentID, it is important that the Sybil defense approach operates

decentralized and protects the privacy of its users. Otherwise, the privacy protection of

DecentID could be circumvented by looking up the identities used in the Sybil defense

approach. Most approach considered in this comparison operate decentralized and

do not require a complete view of the social graph. An exception to this are SybilInfer

and SybilDefender. In these approaches, a complete view of the social graph is

required. While detrimental for the privacy of the users, it allows the approaches to

authorize complete communities of nodes as honest or Sybil at once.

When the size of a dynamic social graph increases, it becomes more and more

impractical to authorize all nodes in the graph at once, due to the increasing required

effort to do so. As such, it is preferable if a Sybil defense approach is able to authorize

further nodes when required, without evaluating the authorization of all nodes again.

In the case of Detasyr this becomes possible by operating in recurring rounds, with

new nodes becoming authorized in each round. In the remaining approaches which

support this ability, individual nodes are authorized one by one, i.e., each node

5.6 Evaluation 167

verifies all other nodes it wants to interact with by themselves. While this reduces

the efficiency of the approaches, it allows to authorize newly joined nodes.

As analyses of real-world social graphs have shown, there is no single honest commu-

nity in the social graph but instead multiple communities with varying sizes [KNT06].

If this structure is not considered, as is especially the case for older Sybil defense

approaches, these other communities are detected as Sybil communities, despite

consisting of honest users. Detasyr, SybilShield, and Gatekeeper are able to handle

multiple honest communities by using additional nodes in the other communities

to help with authorization, instead of only executing the Sybil detection from the

position of a single node.

To improve the efficiency of authorization, it is beneficial to authorize or decline entire

groups of nodes at once, instead of authorizing each node by itself. Based on the

assumption that the nodes controlled by the Sybil adversary form an own community

in the social graph, this allows to exclude all Sybil nodes at once. In SybilInfer and

SybilDefender this is done by finding a single Sybil node and afterwards detecting

its surrounding community. Detasyr and Gatekeeper are using another approach,

where tickets are flooded through the complete social graph, allowing to authorize

the whole graph, including the communities in it, at once.

When using a Sybil defense approach coupled with another system, e.g., DecentID, it

is important for the users to be able to prove their successful authorization towards

third parties. Most Sybil defense systems do not support such proofs. Instead, each

user has to authorize each other user if an authorization is required. In Detasyr,

the authorization is stored on a public blockchain which can be used to prove the

authorization towards others. With SybilHedge and Gatekeeper, the authorization is

not explicitly stored somewhere. Instead, the result of the successful authorization,

respectively a successful random walk or the collected tickets, can be stored by the

individual nodes and presented to a third party if required.

As apparent from this comparison, the available approaches to Sybil defense require

different conditions and offer varying advantages. Depending on the use case, dif-

ferent approaches might be appropriate. For integration with DecentID, none of the

existing approaches was fully eligible, most of them due to the missing ability to

prove a successful authorization. While the ability to authorize whole groups of nodes

at once improves the efficiency, it is no hard requirement for the integration into

DecentID. On the other hand, modern online social networks consist of constantly

changing social graphs with multiple, interest-based, communities, making support

for dynamic social graphs an important feature for Sybil defense as well. With Detasyr,

a previously missing Sybil defense system matching the requirements of DecentID

has been designed.

168 5 Sybil defense

5.7 Integration into DecentID

DecentID enables its users to create pseudonymous identities to use them for different

online services. Since users can create these identities by themselves, DecentID

is susceptible for Sybil attacks. This allows a Sybil adversary to create numerous

DecentID identities as well as using them for online services. Since the services cannot

recognize that these identities are controlled by the same user, Sybil attacks on these

services become possible.

To avoid this problem, Detasyr can be used to restrict the number of identities a Sybil

adversary can use with the same service. The simplest approach would be to enforce

the successful authorization within Detasyr. The service can require a cryptographic

proof, e.g., a digital signature, from the user that it has access to the private key of a

public key registered within the blockchain of Detasyr. This would allow the service

to recognize that the different identities are in fact all controlled by the same user.

However, this is undesirable, since it also allows tracking of the user through different

services. With privacy protection being an important design goal of DecentID and

Detasyr, a different approach has to be used. Instead, a cryptographic link between

the service and the proof of authorization created by Detasyr is created.

5.7.1 Assumptions

In the following, a number of assumptions for the correct functioning and privacy of

the integration approach are listed.

5.7.1.1 Existing identities

It is assumed that the user already created a Detasyr identity and their public key

pubKe yuser is registered as entry I Dpk in a block I Dblock of the blockchain of Detasyr.

The user also has created a shared identity with an online service, where the service

has presented itself with an identifier I Dservice. For example, I Dservice could be the

public key of the service, as discussed later on in section 5.7.4. To avoid Sybil attacks,

the service now requires proof of a successful Detasyr authorization before allowing

access to its offered features.

5.7.1.2 Trustworthy ticket sources

It is assumed that the randomly selected ticket sources of Detasyr are trustworthy.

This means, that they will not try to track which services a user is using. While they

do receive I Dservice and could identify a single visited service, the frequent selection

5.7 Integration into DecentID 169

of new ticket sources means that the user cannot be tracked by a single malicious

ticket source. Also, it is assumed that no ticket source maliciously cooperates with a

service. If doing so, they would be able to discover the permanent Detasyr identities

of the users, allowing the service to track its users.

No assumptions about the trustworthiness of the service are made. Today, many

advertisement services try to track visitors of website showing their advertisement.

This way, they are able to create user profiles and present user targeted advertisement.

While the unlinkable identities of DecentID prevent this, such services would be

interested to find out the permanent identifiers of their users within Detasyr.

5.7.1.3 Access to data and systems

The user trying to create a cryptographic link needs to know the position of their

public key pubKe yuser within the Detasyr blockchain and needs to have access to the

matching private key. Access to the blockchain itself is not required. However, they

need to be able to communicate with at least one currently active ticket source.

The Detasyr ticket sources require access to at least the block of the Detasyr blockchain,

where the users public key is stored. Given that the ticket sources are supposed to

have access to the whole Detasyr blockchain anyway, this should be the case.

The service needs access to the Detasyr blockchain to verify the link presented by the

user. Specifically, it needs access to the data block where the public keys of the ticket

sources that created the link are stored. Communication between the service and the

ticket sources is not required.

5.7.2 Requirements

Based on the desired functionality and privacy features, a number of requirements

emerge. While stronger privacy guarantees would be desirable, these are not possible

due to the conflict between privacy and the required verifiability of the created link.

Services should recognize multiple shared identities of one user To avoid Sybil

attacks, it should only be possible for each user to create a limited number of shared

identities for a single service. For most services, a single identity is sufficient to use

all features offered by the service. As such, only a single link should be created for

each pair of users and services.

The service should be able to verify the created link By accessing the blockchain

of Detasyr, services should be able to verify the validity of a link presented to them

by one of their users. This should be possible without interacting with the user.

170 5 Sybil defense

The link should be independent from the shared identities When the user cre-

ates multiple shared identities for one service, the same link should be created

each time. Consequently, the created link should be independent of the shared

identity used for the service. If the user presents the created link in multiple shared

identities with the service, the service is permitted to find out that it is the same link.

Shared identities on multiple services should be unlinkable A single user is per-

mitted to create shared identities for multiple services. To prevent tracking, even

cooperating services should be unable to find out whether these identities all belong

to the same user.

Users permanent identities should be kept private A service should not be able

to find out which Detasyr identity, i.e., which proof of authorization, was used to

create the cryptographic link. Since the Detasyr identity is a permanent identifier for

the user, it should be kept secret.

5.7.3 Approach

Creating a link consists of three parts: First, the data that should be proved to the

service is assembled and send to the ticket sources. The ticket sources then verify

the request and sign it if it is valid. Afterwards, the user combines the responses

of the ticket sources to form the cryptographic link that will be presented to the

service. This link is stored in an attribute of the used shared identity of DecentID, no

modification of the code of the smart contracts is required. The service can later on

use the data contained in the link to verify that it was created by valid ticket sources

and that they certify the authorization of the user within Detasyr.

5.7.3.1 Sending data to ticket sources

Before the ticket sources can create their signatures to prove the previous Detasyr

authorization of the user, the data that should be signed has to be provided by the

user to the ticket sources.

I Dpk, I Dblock (5.1)

Together, the values in equation (5.1) describe the position of the users public key

pubKe yuser within the Detasyr blockchain. While I Dblock is the number of the block

on the blockchain, I Dpk describes the number of pubKe yuser within the list of public

keys contained in the block.

5.7 Integration into DecentID 171

I Dservice (5.2)

The service provides some identifying value I Dservice to the user when a link is required.

This value should be unique and only used by this service, so the service can be sure

that the link was created specifically for accessing it. At the same time, the value

should be the same for all users of the service so two DecentID shared identities using

the same Detasyr identity can be recognized by their same link. From the viewpoint

of the ticket sources, I Dservice appears to be random data, i.e., no specific structure or

cryptographic properties are required.

S = Siguser(I Dpk|I Dblock|I Dservice) (5.3)

The cryptographic signature S in equation (5.3) is created by the user using the

asymmetric key pair for their Detasyr identity. As such, the public key pubKe yuser

found in the blockchain location at the position of I Dblock, I Dpk can be used to verify

the signature. It proves towards the ticket sources that the user sending the request is

actually the owner of pubKe yuser , since they are able to access the matching private

key and create a valid digital signature.

Req = {I Dpk, I Dblock, I Dservice, S} (5.4)

Together, these values are send as a request Req to a currently active ticket source.

5.7.3.2 Handling at ticket sources

At the ticket source, the request is first verified. Based on I Dblock and I Dpk, the public

key pubKe yuser of the requesting user is recovered from the blockchain. With the

public key, the signature S is checked. If the signature is valid the link request is

forwarded to the other ticket sources.

H(Siguser(I Dpk|I Dblock|I Dservice)) (5.5)

Each ticket source calculates a cryptographic hash of S. Hashing the user created

signature provides additional privacy for the user. If the signature itself would be

passed on to the service later on, the service would be able to iterate over all possible

(I Dblock, I Dpk) pairs and try to verify the signature with the referenced public keys

taken from the Detasyr blockchain. If a matching public key is found, the service

would have managed to find the Detasyr identity of the user.

172 5 Sybil defense

Hashing the signature prevents this attack, since recovering the signature from the

hash is not possible. Calculating the signature itself and hashing it is not possible for

the service, since the service is missing the private key of the user.

M = H(Siguser(I Dpk|I Dblock|I Dservice))|I Dservice (5.6)

σi = Sigi(M) (5.7)

After verifying the request, each ticket source separately calculates a Boneh–Lynn–

Shacham signature σi over the message M = H(S)|I Dservice and sends it back to the

requesting user. I Dservice is appended to H(S) so the service can later on verify that

the link was created specifically for itself and not for some other service. To create the

signature, the ticket sources use their asymmetric key pair matching the public key

stored for the respective ticket source in the newest block of the Detasyr blockchain.

5.7.3.3 Assembling the link

After receiving the different signatures σi created by at least half of the ticket sources,

the user can assemble the cryptographic link to present to the service.

σ =
∏
σi (5.8)

To do so, the user aggregates the received signatures σi to a single signature σ.

P = {H(S),σ, [i1, . . . , in], I DblockTS} (5.9)

Afterwards, the user assembles a link data structure consisting of the hash of the

users signature H(S), the aggregated signature σ of the ticket sources, the indices

i1, . . . , in of the public keys of the contributing ticket sources within the newest block

of the Detasyr blockchain, and the number I DblockTS of this block.

It should be noted that the created link does not contain any reference towards the

shared identity of the user. This has to be avoided, since otherwise a different link

would be created for each shared identity, again permitting Sybil attacks. At the same

time, this allows users to use the created link in any of their shared identities without

being restricted by a single one. Since they are all recognized as being controlled

by the same user, by referring back to the same Detasyr identity, no Sybil attack is

possible by doing so. Also, the user would be able to pass on their link to another user

to permit them to use a service. However, this would exclude the user that originally

created the link from accessing the service.

5.7 Integration into DecentID 173

5.7.3.4 Verifying the link

After receiving the link data structure, e.g., by reading it from an attribute of the

shared identity of the user, the service can verify it. To verify the aggregated signature

of the ticket sources, the message that was signed and the public keys of the signing

ticket sources are required.

To reassemble the signed message, the service concatenates the value H(S), as

contained within the attribute, with its own identifier I Dservice. By appending I Dservice

itself, and not receiving the complete message M from the user, the service can ensure

that the link was created especially for itself. The required public keys of the ticket

sources can be read from the block denoted by I DblockTS in the Detasyr blockchain.

This block contains the public keys of all ticket sources that were active at the time of

the creation of the link. The public keys required to verify the signature are indexed

by [i1, . . . , in] as given in the link data structure.

After all required information is collected, the aggregated signature can be verified

as described in [BLS04]. If the verification succeeds, the service knows that the link

was created specifically for this service for a user authorized within Detasyr. As a last

step, the service can compare the received hash H(S) to hash values already known

from other shared identities1. If another shared identity already uses the same hash

value, it means that the two shared identities are using the same Detasyr identity

and are most likely controlled by the same user. Whether this is a reason to decline

the new user access to the service or accept another identity of the user, depends on

the service. For example, it could be permitted by the service to maintain, e.g., five

different identities per user.

5.7.4 Identification of the service

As explained above, I Dservice is a value provided by the service to the user as an

identifier. In its simplest case, it is an identifier unique for a service but the same for

all users of it, e.g., its public key pubKe yservice . Consequently, all links created by a

single user for this service will contain the same user-signed value within the message

M , even when the signatures created by the ticket sources differ. As intended, this

allows the service to recognize multiple identities of a single user. However, this also

allows the ticket sources to find out which service is used by the user, since they are

able to compare the I Dservice contained in the signed data with the different I Dservicei

disclosed by known services.

1In practice, it might be more efficient to first check whether the hash value is already known, and

verify it only when it is not known yet. Which order is preferable depends on specifics of the

service, e.g., on the number of stored hash values or access speed to the Detasyr blockchain.

174 5 Sybil defense

Unfortunately, this cannot be avoided using the presented approach. The I Dservice

used within the hashed signature of the user in equation (5.5) has to remain the

same for all links created by a user for a certain service. The service must not receive

the data that has been signed (since that would disclose the Detasyr identity of the

user) and consequently cannot check that the correct I Dservice is part of the signed

data. If different I Dservice would be used, the hashed signature would be different

and the service would be unable to recognize Sybil identities.

Since different values for I Dservice cannot be used to permit multiple shared identities

per user at a single service, the service has to maintain a list of permitted shared

identities locally. Instead of only maintaining a list of all known links to check for

duplicates, the shared identities used for each link are stored as well. This way, the

service can permit, e.g., up to five shared identities per link, depending on how many

identities per user are acceptable for the service. If too many shared identities already

presented a single link, access by the new shared identity can be declined.

5.8 Conclusion

Detasyr is a decentralized, privacy preserving system to protect against Sybil attacks.

By leveraging the trust relationships of the social graph between its users, attempts

to create numerous Sybil identities are thwarted.

By flooding messages through the digital representation of the social graph, Sybil

adversaries with only a limited number of real-world friends are restricted from au-

thorizing unlimited amounts of identities. Additionally, two extensions for restricting

the number of Sybil identities to an absolute upper bound are presented, based on

aging authorizations and edge values, respectively. The simulative evaluation has

shown that this goal was reached without excessive restrictions or computational

overhead for honest users. While both extensions are able to restrict the Sybil adver-

sary, they offer different advantages. Compared to the extension using edge values,

the aging authorizations can permit faster authorization for honest users and allows

to withdraw authorizations. The use of edge values on the other hand requires less

computation and communication effort from the participating nodes and reaches a

lower amount of Sybil identities.

Since DecentID provides pseudonymous identities to its users, it is easy for an adver-

sary to create numerous Sybil identities within it. To restrict this abuse, an approach

is presented to use the authorizations gained within Detasyr as a requirement for

access to online services. While doing so, the privacy offered by DecentID is not

compromised, i.e., identities of a single user at multiple services cannot be linked.

Chapter 6

Conclusion

In this thesis, two novel systems were designed and evaluated: DecentID, an identity

management system, and Detasyr, a Sybil defense system. Together, they provide

trustworthy, self-sovereign identities, while ensuring the privacy of their users and

preventing Sybil adversaries from utilizing the identities. Additionally, two use cases

for DecentID were analyzed.

DecentID has been designed to grant users the control over their digital identities.

Especially when interacting with online services on the Internet, digital identities

are becoming more and more prevalent in everyday use. To simplify the identity

management for their users, many online services support Single-Sign-On (SSO)

providers, where the user creates a single identity through which they interact with

multiple services. While convenient for the user, this creates a high dependency on

the provider and increases the risk to the users privacy. The SSO provider can observe

all activities of the user, learning which services are accessed and also how often

which service is used. This can be used to create extensive user profiles, e.g., allowing

targeted advertisement, and threatening the users privacy in general. Additionally,

users depend on the availability and correct functioning of their identity providers:

An SSO provider is, accidentally or maliciously, able to block access to the used

services or report wrong user data to them.

To avoid these drawbacks, the decentralized identity management system DecentID

was introduced in this thesis. It provides the functionality of SSO providers, without

the need to depend on a presumably trustworthy identity provider. Furthermore, it

enables users to create self-sovereign identities to access online services. Compared to

existing centralized SSO providers, the user remains in control about which identity

175

176 6 Conclusion

is presented to which service. As part of that, access to the identities data is restricted

to authorized users and services, protecting the privacy of the users data, without a

centralized identity provider being able to pass on their personal data or track their

actions when interacting with online services.

How online services can interact with DecentID was analyzed based on two use cases.

In the first use case, demonstrating how other blockchain-based systems can use

DecentID as an identity provider, attribute data was read from the smart contracts

of DecentID without requiring external support. In the second use case, a voting

system was integrated into DecentID to evaluate how data can be written to the

identities. This integration enables other services to improve their decentralization

by supporting majority decisions instead of depending on a single user.

The second presented system, Detasyr, is an approach to restrict Sybil attacks. In

those, a Sybil adversary creates numerous identities to subvert the correct functioning

of a service. To prevent effective Sybil attacks, the number of pseudonymous identities

that a single human can create has to be restricted. However, existing Sybil defense

approaches exhibit shortcomings when verifying the identity of many nodes at once

and when proving the successful verification towards third parties. To fill that gap,

Detasyr has been presented in this thesis. It offers three key benefits: it allows to

verify many user identities at once, restricts the creation of numerous Sybil identities

by a single user, and enables users to prove their successful verification. In particular,

proving the verification towards third parties allows the integration of Detasyr into

DecentID. By cryptographically linking the created proof, users can prove that their

identity is no Sybil identity, while remaining pseudonymous.

6.1 Results

In the following, the most important contributions of DecentID, its use case analysis,

and those of Detasyr are listed.

DecentID Based on the blockchain Ethereum, DecentID allows users to manage

their own self-sovereign identities, which means that users are in full control of their

created identities. The blockchain acts as a decentralized trust anchor, avoiding the

dependence on any centralized instance. To reduce the financial costs of storing

data on the blockchain, identity attributes can be stored both on-chain and off-chain.

The security and integrity of the off-chain data is still ensured by cryptographic data,

e.g., encryption keys and hash values, stored on the blockchain. For all attribute

data, encryption can be used to ensure confidentiality. Only the identity creator

controls the access to their identity: by adding permitted users to the identity, access

6.1 Results 177

to the contained attributes can be granted to online services. If desired, the user can

maintain multiple identities. Attributes granted by a service to one identity can be

added to other identities as well, allowing the user to prove to third parties that they

received a certification from the service. The security and privacy of DecentID has

been evaluated and compared to the state of the art.

Use cases for DecentID To evaluate DecentIDs applicability and usability, two use

cases were implemented and evaluated. The first use case analyzed how DecentID

can be coupled with other smart contract-based systems, by using DecentID as an

identity management for another system. Multiple approaches for coupling the two

contracts were designed and evaluated, generalizing findings where possible. To

further reduce the dependency of online services on centralized entities, an existing

voting system was integrated into DecentID. It enables services to distribute their

administration privileges by granting some of their users the right to assign attributes

in the name of the service without disclosing the cryptographic private key of the

service. Additionally, based on this integration, it was analyzed how attributes can be

written to DecentIDs identities without requiring private keys, while still maintaining

the security of the integrated access control.

Detasyr To avoid that a Sybil adversary creates large numbers of identities within

DecentID and use these to attack an online service, Detasyr has been designed. It

operates decentralized on an online social graph, protecting the privacy of its users

by only directly communicating with the neighbors in the social graph and keeping

the topology of the graph secret. A group of special nodes, called ticket sources,

are periodically selected, replacing a centralized trust anchor. The ticket sources

flood tickets through the social graph, allowing other nodes to generate a proof of

authorization, i.e., a proof that they are no Sybil adversaries. The periodic operation

of Detasyr allows to avoid a computational expensive reauthorization of all users

when additional users want to be authorized. The generated proof of authorization

can be shown to third parties which are able to verify the correctness of the proof.

This also makes it possible to refer to this proof from within DecentID, allowing its

users to prove that they are no Sybil adversaries, without compromising their privacy.

The simulation-based evaluation has shown that the Sybil adversaries are effectively

restricted to a small constant number of Sybil nodes. At the same time, honest users

can get authorized with only a negligible delay.

178 6 Conclusion

6.2 Perspectives for Future Work

In their current state, both DecentID and Detasyr could be used for their respective

purposes. Regarding the practical usability of DecentID, an as of now unsolved

challenge is the currently high cost of creating identities and adding attributes.

Since beginning the design of DecentID, the costs of calculations and storage on

the blockchain Ethereum significantly increased. At present, creating an identity

would most likely be unacceptable expensive for most users. Since the blockchain

Ethereum itself is still under development, it remains to be seen if future changes lead

to reduced costs. While there may be a small optimization potential for the smart

contracts used for identities, it is unlikely that these changes will reduce the costs to

an acceptable level for widespread deployment of DecentID. Alternatively, DecentID

could be adapted to operate on a sidechain, i.e., a cheaper blockchain inheriting its

security from Ethereum.

When coupling DecentID to other smart contracts, adherence to a standardized

function interface for identity management would be preferable. Since such an

interface has not been defined yet, it remains a challenge for future work.

The evaluation of DecentIDs security and privacy is mostly based on theoretical

analyses. While there already exist first approaches for formal verification of Ethereum

smart contracts, not all vulnerabilities can be detected and false positives can still

occur. When it becomes possible, a formal verification of the designed smart contracts

would be desirable, to provide a solid basis of trust for DecentID.

For Detasyr, there has to be an incentive to remain online even after a user has

become authorized. This is required to allow further users to become authorized,

and might be solved by coupling Detasyr with another application that the users are

using anyway.

Another challenge for Detasyr is the willingness of users to accept most friendship

requests in current online social networks. This breaks the assumptions of Sybil

defense systems, since a Sybil adversary would be able to find further friends and

add further Sybil identities. To solve this problem, users have to be educated about

the importance of the relationships represented within Detasyr and that they should

not just accept everyone to be their friend in the online social network.

Appendices

179

Appendix A

Important terms

A.1 Definitions

Attributes Page 39, definition 3.4

An attribute can be created by a user and contains some arbitrary data.

Authorization Ticket Page 139, definition 5.3

Flooded data packets that have to be collected to become authorized.

Creator Page 44, definition 3.7

The creator of a shared identity or attribute is the user or service that created the

identity or attribute.

Off-chain attribute Page 50, definition 3.10

An off-chain attribute is an attribute stored outside the blockchain in external storage.

On-chain attribute Page 46, definition 3.9

An on-chain attribute is an attribute stored within a SharedIdentityContract.

Owner Page 53, definition 3.14

The owner of an AttributeContract is the user or service that the AttributeContract

was created for.

Permitted user Page 44, definition 3.6

A permitted user is a user or service that has been permitted access to a shared

identity.

181

182 A Important terms

Round Page 140, definition 5.4

Detasyr operates in rounds. In each round, new users become authorized.

Service Page 37, definition 3.2

A service is a type of user that offers a platform to interact with other users.

Shared Identity Page 39, definition 3.3

A shared identity SI{U} is a digital representation of a user U .

Sybil adversary Page 132, definition 5.1

An adversary that tries to create as many identities as possible to subvert a system.

Ticket Source Page 134, definition 5.2

Ticket sources are selected nodes that manage the operation of Detasyr for one round.

User Page 37, definition 3.1

A user U is a person using DecentID to manage their identities, represented by their

public key pubKe yUi
.

Voter Page 108, definition 4.1

A user that is authorized to participate in polls in the name of a service.

Voting administrator Page 109, definition 4.2

A voter that additionally starts and manages the execution of a poll.

A.2 Smart contracts and files

AttributeContract Page 51, definition 3.12

The AttributeContract ACi is a smart contract stored on the blockchain, representing

an attribute stored off-chain.

AttributeData Page 52, definition 3.13

A file ADi stored in an external storage that contains the data of an attribute.

AttributeLocatorFile Page 51, definition 3.11

A file ALF{U ,A},1 stored in an external storage, containing a list of blockchain addresses

to AttributeContracts.

IdentityLocatorFile Page 55, definition 3.16

Similar to the AttributeLocatorFile, an IdentityLocatorFile I LF{U} is stored off-chain

and contains references to the SharedIdentityContracts of a user U .

A.3 Cryptographic keys 183

RootIdentityContract Page 55, definition 3.15

A RootIdentityContract RIC{U} is a smart contract stored on the blockchain, storing

references to the SharedIdentityContracts and AttributeContracts of a user U .

SharedIdentityContract Page 43, definition 3.5

A SharedIdentityContract SIC{U} is the technical representation of the shared identity

of a user U within DecentID.

VotingContract Page 115, section 4.2.3.2

The static VotingContract contains the program code required to execute polls in

DecentID.

VotingDataContract Page 116, section 4.2.3.3

A new VotingDataContract is created for each poll, storing the state of the poll.

A.3 Cryptographic keys

kSIC{U} Page 44, definition 3.8

kSIC{U} is a symmetric attribute encryption key used for encrypting the attribute

data stored within the SharedIdentityContract SIC{U} as well as linked AttributeLoca-

torFiles.

privKe yUi

The i-th private key privKe yUi
of a user U . Forms an asymmetric key pair together

with the public key pubKe yUi
.

pubKe yUi

The i-th public key pubKe yUi
of a user U . Forms an asymmetric key pair together

with the private key privKe yUi
.

Appendix B

Smart Contracts of DecentID

B.1 Mortal.sol

The smart contract Mortal is a common contract on the blockchain Ethereum, designed

to be used as a parent contract for others. When created, it stores the public key of

the user creating it in the variable creator. Later on, it allows this user to delete the

smart contract from the blockchain by calling the function kill(). This returns some

of the Ether spend on deploying the contract back to its creator. Also it supports the

modifier onlyByCreator, allowing to provide access control to functions that should

only be called by the creator of the smart contract.

1 pragma solidity ^0.5.0;

2

3 contract Mortal {

4 address payable creator;

5

6 constructor() public {

7 creator = msg.sender;

8 }

9

10 modifier onlyByCreator {

11 require(msg.sender == creator);

12 _; // This line is replaced by the

13 // code where onlyByCreator is applied to

14 }

15

16 function kill() public onlyByCreator {

17 selfdestruct(creator);

18 }

19 }

185

186 B Smart Contracts of DecentID

B.2 RootIdentityContract.sol

As described in section 3.6, the RootIdentityContract stores references to the Shared-

IdentityContracts of the user as well as to currently unused attributes.

1 pragma solidity ^0.5.0;

2

3 import "./Mortal.sol";

4

5 contract RootIdentityContract is Mortal {

6

7 string public identityCLFref;

8 string public attributeCLFref;

9 string public clfKey;

10

11 constructor(string memory _clfKey) public {

12 clfKey = _clfKey;

13 }

14

15 function updateIdentityCLF(string memory _storageReference)

16 public onlyByCreator {

17 identityCLFref = _storageReference;

18 }

19

20 function updateAttributeCLF(string memory _storageReference)

21 public onlyByCreator {

22 attributeCLFref = _storageReference;

23 }

24

25 function updateCLFkey(string memory _clfKey) public onlyByCreator {

26 clfKey = _clfKey;

27 }

28 }

B.3 SharedIdentityContract.sol 187

B.3 SharedIdentityContract.sol

The SharedIdentityContract, as described in section 3.5, is the central part of the

digital identities within DecentID. It stores identity attributes and references to off-

chain attributes for each user in the attributes mapping within the PermittedUser

structure.

1 pragma solidity ^0.5.0;

2

3 import "./Mortal.sol";

4 import "./VotingDataContract.sol";

5

6 contract SharedIdentityContract is Mortal {

7

8 struct Attribute {

9 byte flags;

10 bytes data;

11 }

12

13 // flag_set is used to check whether indexing key is used

14 byte public constant flag_set = 0x01;

15 byte public constant flag_external = 0x02;

16 byte public constant flag_encrypted = 0x04;

17

18 struct PermittedUser {

19 bytes key;

20 mapping (string => Attribute) attributes;

21 }

22

23 mapping (address => PermittedUser) users;

24 // The list of addresses is used by user interfaces to display

25 // which permitted users are registered.

26 // Entry 0 is the creator of the identity

27 address payable[] public userAddrs;

28

29 VotingContract public votingContract;

30

31 // The hash of the VotingDataContract can be set before deployment

32 bytes32 private vdcHash = 0x3A...;

188 B Smart Contracts of DecentID

34 function getContractHash(address _addr) public view

35 returns (bytes32) {

36 bytes32 codehash;

37 assembly {

38 codehash := extcodehash(_addr)

39 }

40 return codehash;

41 }

42

43 constructor (VotingContract _votingContract, bytes memory _key)

44 public {

45 require(_key.length != 0);

46 users[msg.sender] = PermittedUser(_key);

47 userAddrs.push(msg.sender);

48 votingContract = _votingContract;

49 }

50

51 function addPermittedUser (address payable _user, bytes memory _key)

52 public onlyByCreator {

53 require(_key.length != 0);

54 require(users[_user].key.length == 0);

55 users[_user] = PermittedUser(_key);

56 userAddrs.push(_user);

57 }

58

59 function removePermittedUser (address _user) public onlyByCreator {

60 assert(users[_user].key.length != 0);

61 // First entry is skipped: Creator cannot be removed

62 for (uint i = 1; i < userAddrs.length; i++) {

63 if (userAddrs[i] == _user) {

64 userAddrs[i] = userAddrs[userAddrs.length - 1];

65 delete userAddrs[userAddrs.length - 1];

66 userAddrs.length--;

67 delete users[_user];

68 assert(users[_user].key.length == 0);

69 return;

70 }

71 }

72 }

B.3 SharedIdentityContract.sol 189

74 function setAttribute(string memory key, byte flags,

75 bytes memory data) public {

76 assert(users[_user].key.length != 0);

77 users[msg.sender].attributes[key] =

78 Attribute(flags | flag_set, data);

79 }

80

81 function deleteAttribute(string memory key) public {

82 require (users[msg.sender].key.length != 0);

83 delete users[msg.sender].attributes[key];

84 }

85

86 function getAttribute (address _user, string memory _key)

87 public view returns (bytes memory) {

88 if (users[_user].key.length == 0) {

89 return "";

90 }

91 Attribute memory attr = users[_user].attributes[_key];

92 if ((attr.flags & flag_set) == 0) {

93 return "";

94 }

95 return attr.data;

96 }

97

98 function getAttributeFlags (address _user, string memory _key)

99 public view returns (byte) {

100 if (users[_user].key.length == 0) {

101 return 0x00;

102 }

103 Attribute memory attr = users[_user].attributes[_key];

104 return attr.flags;

105 }

106

107 function updateKey (address _user, bytes memory _newKey)

108 public onlyByCreator {

109 users[_user].key = _newKey;

110 }

190 B Smart Contracts of DecentID

112 function startVoting(SharedIdentityContract sic,

113 address _pkService, string memory _key, byte _flags,

114 bytes memory _data) public returns (VotingDataContract) {

115 require (users[_pkService].key.length != 0);

116 require (getContractHash(address(this)) ==

117 getContractHash(address(sic)));

118 require (sic.userAddrs(0) == msg.sender);

119 require (sic.isVoterFor(_pkService));

120 VotingDataContract vdc

121 = new VotingDataContract(msg.sender, votingContract,

122 _pkService, _key, _flags, _data);

123 assert(vdc.target() == this);

124 return vdc;

125 }

126

127 function updateAttribute(VotingDataContract vdc) public {

128 require (getContractHash(address(vdc)) == vdcHash);

129 require (vdc.target() == this);

130 require (vdc.state() == VotingDataContract.State.FINISHED);

131 require (vdc.finaltally() > vdc.totalvoted() / 2);

132 if ((vdc.flags() & flag_set) != 0) {

133 users[vdc.pkService()].attributes[vdc.key()] =

134 Attribute(vdc.flags(), vdc.data());

135 } else {

136 delete users[vdc.pkService()].attributes[vdc.key()];

137 }

138 }

139

140 function isVoterFor (address _user) public view returns (bool) {

141 if (users[_user].key.length == 0) {

142 return false;

143 }

144 return (users[_user].attributes["voter"].flags & flag_set)

145 != 0;

146 }

147 }

The functions startVoting(), updateAttribute(), and isVoterFor() have been added

to support the integration of Open Vote Network.

B.4 AttributeContract.sol 191

B.4 AttributeContract.sol

The AttributeContract, introduced in section 3.5.3 and section 3.5.4, references to

attribute data stored outside the blockchain with its storageReference. Additionally,

it allows to set an owner of the attribute that is different than the attributes creator.

The code of the smart contract ensures that only the creator is able to set the owner.

1 pragma solidity ^0.5.0;

2

3 import "./Mortal.sol";

4

5 contract AttributeContract is Mortal {

6

7 address public owner;

8 string public storageReference;

9

10 constructor(address _owner, string memory _storageReference) public {

11 owner = _owner;

12 storageReference = _storageReference;

13 }

14

15 function updateReference(string memory _storageReference) public

onlyByCreator {

16 storageReference = _storageReference;

17 }

18

19 function transferOwnership(address _newOwner) public onlyByCreator {

20 owner = _newOwner;

21 }

22 }

192 B Smart Contracts of DecentID

B.5 VotingDataContract.sol

As described in section 4.2.3.3, the VotingDataContract stores the data of a currently

running poll. Its functions ensure that they are called by the registered VotingContract,

and then store the function parameters in the matching state variables.

1 pragma solidity ^0.5.0;

2

3 import "./Mortal.sol";

4

5 contract VotingDataContract is Mortal {

6

7 // Verification of callers

8 SharedIdentityContract public target;

9 address public pkService;

10

11 // Attribute to create

12 string public key;

13 byte public flags;

14 bytes public data;

15

16 VotingContract public votingContract;

17 address public voteAdmin;

18

19 enum Stage { SIGNUP, VOTE, FINISHED }

20 Stage public stage;

21 uint constant stageDuration = 3 * 60;

22 // Timestamp when the next stage starts in seconds

23 uint public timeNextStage;

24 // Total number of participants that have submited a voting key

25 uint public totalregistered;

26 uint public totalvoted;

27 uint[2] public finaltally; // Final tally

28

29 struct Voter {

30 address addr;

31 uint[2] registeredkey;

32 uint[2] reconstructedkey;

33 uint[2] vote;

34 }

B.5 VotingDataContract.sol 193

36 // Address to index in voters

37 mapping (address => uint) public addressid;

38 // Registered voters, indices in addressid

39 mapping (uint => Voter) public voters;

40 // Address registered?

41 mapping (address => bool) public registered;

42 // Address voted?

43 mapping (address => bool) public votecast;

44 // Have we received their deposit?

45 mapping (address => uint) public refunds;

46

47

48 constructor(address _admin, VotingContract _vc,

49 address _pkService, string memory _key, byte _flags,

50 bytes memory _data) public {

51 votingContract = _vc;

52 target = SharedIdentityContract(msg.sender);

53 pkService = _pkService;

54 key = _key;

55 flags = _flags;

56 data = _data;

57 voteAdmin = _admin;

58 stage = Stage.SIGNUP;

59 timeNextStage = block.timestamp + stageDuration;

60 }

61

62 function signUp(address _sender, uint[2] memory xG)

63 public payable {

64 require (msg.sender == address(votingContract));

65 refunds[msg.sender] += msg.value;

66 refunds[_sender] += msg.value;

67 uint[2] memory empty;

68 addressid[_sender] = totalregistered;

69 voters[totalregistered] = Voter({addr: _sender,

70 registeredkey: xG, reconstructedkey: empty, vote: empty});

71 registered[_sender] = true;

72 totalregistered += 1;

73 }

194 B Smart Contracts of DecentID

75 function setReconstructedKey(address sender, uint i, uint a,

76 uint b) public {

77 require (msg.sender == address(votingContract));

78 require (sender == voteAdmin);

79 voters[i].reconstructedkey[0] = a;

80 voters[i].reconstructedkey[1] = b;

81 }

82

83 function setStage(address sender, Stage s) public {

84 require (msg.sender == address(votingContract));

85 require (sender == voteAdmin);

86 stage = s;

87 timeNextStage = block.timestamp + stageDuration;

88 }

89

90 function submitVote(address payable sender, uint[2] memory y)

91 public {

92 require (msg.sender == address(votingContract));

93 require (registered[sender]);

94 require (!votecast[sender]);

95

96 uint i = addressid[sender];

97 voters[i].vote[0] = y[0];

98 voters[i].vote[1] = y[1];

99 votecast[sender] = true;

100 totalvoted += 1;

101

102 // Voter has voted, send back the deposit

103 uint refund = refunds[sender];

104 refunds[sender] = 0;

105 // If sending the Ether failed, store the deposit

106 if (!sender.send(refund)) {

107 refunds[sender] = refund;

108 }

109 }

B.5 VotingDataContract.sol 195

111 function setFinalTally(address payable sender, uint a, uint b)

112 public {

113 require (msg.sender == address(votingContract));

114 require (sender == voteAdmin);

115 finaltally[0] = a;

116 finaltally[1] = b;

117 }

118

119 function getRegisteredKey(uint voterId) public view

120 returns (uint[2] memory) {

121 return voters[voterId].registeredkey;

122 }

123

124 function getReconstructedKey(uint voterId) public view

125 returns (uint[2] memory) {

126 return voters[voterId].reconstructedkey;

127 }

128

129 function getVoterAddr(uint voterId) public view returns (address) {

130 return voters[voterId].addr;

131 }

132

133 function getVoterVote(uint voterId) public view

134 returns (uint[2] memory) {

135 return voters[voterId].vote;

136 }

137 }

196 B Smart Contracts of DecentID

B.6 VotingContract.sol

The static VotingContract, described in section 4.2.3.2, stores the program code

required to execute a poll. All data specific for a individual poll is stored in a

VotingDataContract. The implementation of the VotingContract is based on the

implementation of OpenVoteNetwork which was written by McCorry et al. [MSH17].

1 pragma solidity ^0.5.0;

2

3 import "./SharedIdentityContract.sol";

4 import "./VotingDataContract.sol";

5 // Import mathematical libraries ECCMath and Secp256k1

6 // offering elliptic curve cryptography

7 import "./ECCMath.sol"

8

9 // Implementation of OpenVoteNetwork by Patrick McCorry and Jon Johnson

10 // written in 2017 at https://github.com/stonecoldpat/anonymousvoting

11 // Adapted to work with SharedIdentityContracts and VotingDataContracts

12

13 contract VotingContract {

14

15 function signUp(VotingDataContract vdc, SharedIdentityContract sic,

16 uint[2] memory xG, uint[3] memory vG, uint r)

17 public payable returns (bool) {

18 require (vdc.votingContract() == this);

19 require (vdc.stage() == VotingDataContract.Stage.SIGNUP);

20 require (block.timestamp < vdc.timeNextStage());

21 require (msg.value >= 10);

22 require (sic.ownerAddrs(0) == msg.sender);

23 require (sic.isVoterfor (vdc.pkService()));

24

25 if (Secp256k1.verifyZKP(msg.sender, xG,r,vG)

26 && !vdc.registered(msg.sender)) {

27 vdc.signUp.value(msg.value)(msg.sender, xG);

28 return true;

29 }

30 return false;

31 }

B.6 VotingContract.sol 197

32

33 function finishSignUp(VotingDataContract vdc) public {

34

35 require (vdc.totalregistered() >= 2);

36 require (vdc.stage() == VotingDataContract.Stage.SIGNUP);

37 require (block.timestamp >= vdc.timeNextStage());

38 require (msg.sender == vdc.voteAdmin());

39

40 uint[2] memory temp;

41 uint[3] memory yG;

42 uint[3] memory beforei;

43 uint[3] memory afteri;

44

45 // Step 1 is to compute the index 1 reconstructed key

46 {

47 uint[2] memory key = vdc.getRegisteredKey(1);

48 afteri[0] = key[0];

49 afteri[1] = key[1];

50 afteri[2] = 1;

51 }

52

53 for (uint i=2; i<vdc.totalregistered(); i++) {

54 Secp256k1._addMixedM(afteri, vdc.getRegisteredKey(i));

55 }

56

57 ECCMath.toZ1(afteri,Secp256k1.pp());

58 vdc.setReconstructedKey(msg.sender, 0, afteri[0],

59 Secp256k1.pp() - afteri[1]);

60

61 // Step 2 is to add to beforei, and subtract from afteri.

62 for (uint i=1; i<vdc.totalregistered(); i++) {

63

64 if (i==1) {

65 uint[2] memory key = vdc.getRegisteredKey(0);

66 beforei[0] = key[0];

67 beforei[1] = key[1];

68 beforei[2] = 1;

69 } else {

70 Secp256k1._addMixedM(beforei, vdc.getRegisteredKey(i-1));

71 }

198 B Smart Contracts of DecentID

72

73 // If we have reached the end, just store beforei

74 // Otherwise, we need to compute a key.

75 // Counting from 0 to n-1

76 if (i==(vdc.totalregistered()-1)) {

77 ECCMath.toZ1(beforei,Secp256k1.pp());

78 vdc.setReconstructedKey(msg.sender, i,

79 beforei[0], beforei[1]);

80 } else {

81 // Subtract ’i’ from afteri

82 uint[2] memory key = vdc.getRegisteredKey(i);

83 temp[0] = key[0];

84 temp[1] = Secp256k1.pp() - key[1];

85 Secp256k1._addMixedM(afteri,temp);

86 ECCMath.toZ1(afteri,Secp256k1.pp());

87 temp[0] = afteri[0];

88 temp[1] = Secp256k1.pp() - afteri[1];

89 yG = Secp256k1._addMixed(beforei, temp);

90 ECCMath.toZ1(yG,Secp256k1.pp());

91

92 vdc.setReconstructedKey(msg.sender, i, yG[0], yG[1]);

93 }

94 }

95 vdc.setStage(msg.sender, VotingDataContract.Stage.VOTE);

96 }

97

98 function submitVote(VotingDataContract vdc, uint[4] memory params,

99 uint[2] memory y, uint[2] memory a1, uint[2] memory b1,

100 uint[2] memory a2, uint[2] memory b2) public returns (bool) {

101

102 require (vdc.stage() == VotingDataContract.Stage.VOTE);

103 require (block.timestamp < vdc.timeNextStage());

104

105 if (vdc.registered(msg.sender) && !vdc.votecast(msg.sender)) {

106 uint i = vdc.addressid(msg.sender);

B.6 VotingContract.sol 199

107

108 // Verify the ZKP for the vote being cast

109 if (Secp256k1.verify1outof2ZKP(msg.sender,

110 vdc.getReconstructedKey(i), vdc.getRegisteredKey(i),

111 params, y, a1, b1, a2, b2)) {

112 vdc.submitVote(msg.sender, y);

113 return true;

114 }

115 }

116 return false;

117 }

118

119 function computeTally(VotingDataContract vdc) public {

120

121 require (vdc.stage() == VotingDataContract.Stage.VOTE);

122 require (block.timestamp >= vdc.timeNextStage()

123 || vdc.totalregistered() == vdc.totalvoted());

124 require (msg.sender == vdc.voteAdmin());

125 require (vdc.totalregistered() == vdc.totalvoted());

126

127 uint[3] memory temp;

128 uint[2] memory vote;

129 uint refund;

130

131 // Sum all votes

132 for (uint i=0; i<vdc.totalregistered(); i++) {

133 // Confirm all votes have been cast...

134 if (!vdc.votecast(vdc.getVoterAddr(i))) {

135 revert();

136 }

137 vote = vdc.getVoterVote(i);

138

139 if (i==0) {

140 temp[0] = vote[0];

141 temp[1] = vote[1];

142 temp[2] = 1;

143 } else {

144 Secp256k1._addMixedM(temp, vote);

145 }

146 }

200 B Smart Contracts of DecentID

147 // Now temp contains G^sum(vi), that is G^(sum of yes votes)

148 vdc.setStage(msg.sender, VotingDataContract.Stage.FINISHED);

149

150 // Each vote is represented by a G.

151 if (temp[0] == 0) {

152 vdc.setFinalTally(msg.sender, 0, vdc.totalregistered());

153 return;

154 } else {

155 // There must be a vote. Add ’G’ until we find the result.

156 // temp is G^(sum of yes votes), so brute force the logarithm

157 ECCMath.toZ1(temp,Secp256k1.pp());

158 uint[3] memory tempG;

159 tempG[0] = Secp256k1.G()[0];

160 tempG[1] = Secp256k1.G()[1];

161 tempG[2] = 1;

162

163 // totalregistered() is the maximal number of tries,

164 // there can’t be more "yes" votes than total votes

165 for (uint i=1; i<=vdc.totalregistered(); i++) {

166

167 // We hit a matching value.

168 if (temp[0] == tempG[0]) {

169 vdc.setFinalTally(msg.sender, i,

170 vdc.totalregistered());

171 if (i > vdc.totalregistered() / 2) {

172 SharedIdentityContract sic =

173 SharedIdentityContract(vdc.target());

174 sic.updateAttribute(vdc);

175 }

176 return;

177 }

178 Secp256k1._addMixedM(tempG, Secp256k1.G());

179 ECCMath.toZ1(tempG,Secp256k1.pp());

180 }

181 // Error: Should never get here

182 vdc.setFinalTally(msg.sender, 0, 0);

183 }

184 }

185 }

Bibliography

[Ahn+03] L. von Ahn et al. “CAPTCHA: Using Hard AI Problems for Security.” In:

Advances in Cryptology — EUROCRYPT 2003. Ed. by E. Biham. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2003, pp. 294–311. ISBN: 978-

3-540-39200-2.

[Alf96] S. V. Alfred Menezes Paul van Oorschot. Handbook of Applied Cryptogra-

phy. CRC Press, 1996. URL: https://cacr.uwaterloo.ca/hac/about/

chap9.pdf.

[All16] C. Allen. The Path to Self-Sovereign Identity. Accessed: 2022-01-12.

2016. URL: https://www.coindesk.com/markets/2016/04/27/the-

path-to-self-sovereign-identity/.

[BA99] A.-L. Barabási and R. Albert. “Emergence of Scaling in Random Net-

works.” In: Science 286.5439 (1999), pp. 509–512. ISSN: 0036-8075.

DOI: 10.1126/science.286.5439.509. eprint: http://science.

sciencemag.org/content/286/5439/509.full.pdf. URL: http:

//science.sciencemag.org/content/286/5439/509.

[Ben14] J. Benet. “IPFS - Content Addressed, Versioned, P2P File System.” In:

CoRR abs/1407.3561 (2014). URL: http://arxiv.org/abs/1407.

3561.

[Bil+09] L. Bilge et al. “All Your Contacts Are Belong to Us: Automated Identity

Theft Attacks on Social Networks.” In: Proceedings of the 18th Interna-

tional Conference on World Wide Web. Madrid, Spain: Association for

Computing Machinery, 2009. DOI: 10.1145/1526709.1526784.

201

https://cacr.uwaterloo.ca/hac/about/chap9.pdf
https://cacr.uwaterloo.ca/hac/about/chap9.pdf
https://www.coindesk.com/markets/2016/04/27/the-path-to-self-sovereign-identity/
https://www.coindesk.com/markets/2016/04/27/the-path-to-self-sovereign-identity/
https://doi.org/10.1126/science.286.5439.509
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509
http://science.sciencemag.org/content/286/5439/509
http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://doi.org/10.1145/1526709.1526784

202 Bibliography

[BLS04] D. Boneh, B. Lynn, and H. Shacham. “Short signatures from the Weil

pairing.” In: Journal of cryptology 17.4 (2004), pp. 297–319.

[Boe+08] S. Boeyen et al. Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile. RFC 5280. May 2008. DOI: 10.

17487/RFC5280. URL: https://rfc-editor.org/rfc/rfc5280.txt.

[Bon+03] D. Boneh et al. “Aggregate and verifiably encrypted signatures from

bilinear maps.” In: Proceedings of Eurocrypt 2656 (2003), pp. 416–32.

[Bra03] P. Braendgaard. ERC-1812: Ethereum Verifiable Claims. 2019-03-03.

URL: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-

1812.md (visited on 03/19/2021).

[Bro09] D. R. L. Brownt. “SEC 1: Elliptic Curve Cryptography.” Version 2.0. In:

(May 2009). URL: https://www.secg.org/sec1-v2.pdf (visited on

08/28/2021).

[But+13] V. Buterin et al. “Ethereum white paper: a next generation smart contract

and decentralized application platform.” In: (2013). Accessed: 2021-12-

23. URL: https://ethereum.org/en/whitepaper/.

[Cho20] E. Cholakov. “InDependency: An App UI for DecentID.” Bachelor Thesis.

Karlsruhe Institute of Technology, 2020.

[Dan+14] G. Danezis et al. Privacy and Data Protection by Design - from Policy to

Engineering. Dec. 2014. ISBN: 978-92-9204-108-3. DOI: 10.2824/38623.

[Den+11] M. Deng et al. “A privacy threat analysis framework: Supporting the

elicitation and fulfillment of privacy requirements.” In: Requir. Eng. 16

(Mar. 2011), pp. 3–32. DOI: 10.1007/s00766-010-0115-7.

[DM09] G. Danezis and P. Mittal. “SybilInfer: Detecting Sybil Nodes using Social

Networks.” In: NDSS. San Diego, CA. 2009.

[Dou02] J. R. Douceur. “The Sybil Attack.” In: Revised Papers from the First

International Workshop on Peer-to-Peer Systems. IPTPS ’01. London, UK:

Springer-Verlag, 2002, pp. 251–260. ISBN: 3-540-44179-4.

[DP18] P. Dunphy and F. A. Petitcolas. “A First Look at Identity Management

Schemes on the Blockchain.” In: IEEE Security Privacy 16.4 (2018),

pp. 20–29. DOI: 10.1109/MSP.2018.3111247.

[DR13] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced

encryption standard. Springer Science & Business Media, 2013.

https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC5280
https://rfc-editor.org/rfc/rfc5280.txt
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1812.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1812.md
https://www.secg.org/sec1-v2.pdf
https://ethereum.org/en/whitepaper/
https://doi.org/10.2824/38623
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1109/MSP.2018.3111247

203

[Fab02] T. Y. Fabian Vogelsteller. ERC-725: Smart Contract Based Account. 2017-

10-02. URL: https://github.com/ethereum/EIPs/issues/725 (vis-

ited on 03/19/2021).

[FFB17] S. Friebe, M. Florian, and I. Baumgart. “Decentralized and sybil-resistant

pseudonym registration using social graphs.” In: 14th Annual Conference

on Privacy, Security and Trust (PST), Auckland, New Zealand, 12th - 14th

December 2016. IEEE. 2017, pp. 121–128. ISBN: 978-1-5090-4379-8.

DOI: 10.1109/PST.2016.7906946.

[FMZ19] S. Friebe, P. Martinat, and M. Zitterbart. “Detasyr: Decentralized Ticket-

based Authorization with Sybil Resistance.” In: IEEE 44th Conference

on Local Computer Networks (LCN), Osnabrueck, Germany, 14-17 Oct.

2019. 44th IEEE Conference on Local Computer Networks. LCN 2019.

2019, pp. 60–68. ISBN: 978-1-7281-1029-5. DOI: 10.1109/LCN44214.

2019.8990773.

[Fri+21] S. Friebe et al. “Coupling Smart Contracts: A Comparative Case Study.”

In: 3rd Conference on Blockchain Research & Applications for Innovative

Networks and Services (BRAINS), 27-30 Sept. 2021. 3rd Conference

on Blockchain Research & Applications for Innovative Networks and

Services. IEEE. 2021, pp. 137–144. ISBN: 978-1-6654-3925-1. DOI: 10.

1109/BRAINS52497.2021.9569830.

[FSZ18] S. Friebe, I. Sobik, and M. Zitterbart. “DecentID: Decentralized and

Privacy-Preserving Identity Storage System Using Smart Contracts.” In:

2018 17th IEEE International Conference On Trust, Security And Privacy

In Computing And Communications/ 12th IEEE International Conference

On Big Data Science And Engineering (TrustCom/BigDataSE), New York,

NY, August 1-3, 2018. 2018, pp. 37–42. ISBN: 978-1-5386-4388-4. DOI:

10.1109/TrustCom/BigDataSE.2018.00016.

[GA11] M. P. G. Bertoni J. Daemen and G. V. Assche. The Keccak reference, SHA-

3 competition (round 3). 2011. URL: https://keccak.team/files/

Keccak-reference-3.0.pdf (visited on 08/24/2021).

[HC48] J. P. Humphrey and R. Cassin. Universal Declaration of Human Rights.

Dec. 1948. URL: https://www.un.org/en/about-us/universal-

declaration-of-human-rights.

[JMV01] D. Johnson, A. Menezes, and S. Vanstone. “The elliptic curve digital

signature algorithm (ECDSA).” In: Int. J. Inf. Sec. 1 (Aug. 2001), pp. 36–

63. DOI: 10.1007/s102070100002.

https://github.com/ethereum/EIPs/issues/725
https://doi.org/10.1109/PST.2016.7906946
https://doi.org/10.1109/LCN44214.2019.8990773
https://doi.org/10.1109/LCN44214.2019.8990773
https://doi.org/10.1109/BRAINS52497.2021.9569830
https://doi.org/10.1109/BRAINS52497.2021.9569830
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00016
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://www.un.org/en/about-us/universal-declaration-of-human-rights
https://www.un.org/en/about-us/universal-declaration-of-human-rights
https://doi.org/10.1007/s102070100002

204 Bibliography

[KL14] J. Katz and Y. Lindell. Introduction to modern cryptography. 2014.

[KNT06] R. Kumar, J. Novak, and A. Tomkins. “Structure and Evolution of Online

Social Networks.” In: Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. KDD ’06. Philadel-

phia, PA, USA: Association for Computing Machinery, 2006, pp. 611–617.

ISBN: 1595933395. DOI: 10.1145/1150402.1150476.

[KSD13] C. F. Kerry, A. Secretary, and C. R. Director. FIPS PUB 186-4 FEDERAL

INFORMATION PROCESSING STANDARDS PUBLICATION Digital Signa-

ture Standard (DSS). 2013.

[Liu+18] Y. Liu et al. “Unlinkable Coin Mixing Scheme for Transaction Privacy

Enhancement of Bitcoin.” In: IEEE Access 6 (2018), pp. 23261–23270.

DOI: 10.1109/ACCESS.2018.2827163.

[Lun+17] D. C. Lundkvist et al. [Whitepaper] uPort: A Platform for Self-Sovereign

Identity. 2017.

[Mal+21] D. Maldonado-Ruiz et al. “An Innovative and Decentralized Identity

Framework Based on Blockchain Technology.” In: 2021 11th IFIP In-

ternational Conference on New Technologies, Mobility and Security

(NTMS). 2021, pp. 1–8. DOI: 10.1109/NTMS49979.2021.9432656.

[MDS19] P. Mell, J. Dray, and J. Shook. “Smart contract federated identity man-

agement without third party authentication services.” In: arXiv preprint

arXiv:1906.11057 (2019).

[MSH17] P. McCorry, S. F. Shahandashti, and F. Hao. “A smart contract for board-

room voting with maximum voter privacy.” In: International Conference

on Financial Cryptography and Data Security. Springer. 2017, pp. 357–

375.

[Nak08] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. URL:

https://bitcoin.org/bitcoin.pdf.

[NS09] A. Narayanan and V. Shmatikov. “De-anonymizing Social Networks.” In:

2009 30th IEEE Symposium on Security and Privacy. May 2009. DOI:

10.1109/SP.2009.22.

[Pel03] J. T. Pelle Braendgaard. ERC-1056: Lightweight Identity. 2018-05-03.

URL: https://github.com/ethereum/EIPs/issues/1056 (visited on

03/19/2021).

https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1109/ACCESS.2018.2827163
https://doi.org/10.1109/NTMS49979.2021.9432656
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/SP.2009.22
https://github.com/ethereum/EIPs/issues/1056

205

[PH10] A. Pfitzmann and M. Hansen. A terminology for talking about privacy

by data minimization: Anonymity, Unlinkability, Undetectability, Unob-

servability, Pseudonymity, and Identity Management. Version 0.34. Aug.

2010. URL: https://dud.inf.tu-dresden.de/literatur/Anon_

Terminology_v0.34.pdf.

[RF06] A. Ramachandran and N. Feamster. “Understanding the Network-level

Behavior of Spammers.” In: Proceedings of the 2006 Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications. SIGCOMM ’06. Pisa, Italy: ACM, 2006, pp. 291–302.

ISBN: 1-59593-308-5. DOI: 10.1145/1159913.1159947.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems.” In: Commun. ACM 21.2 (Feb.

1978), pp. 120–126. ISSN: 0001-0782. DOI: 10.1145/359340.359342.

[Shi+13] L. Shi et al. “SybilShield: An agent-aided social network-based Sybil

defense among multiple communities.” In: 2013 Proceedings IEEE INFO-

COM. Apr. 2013, pp. 1034–1042. DOI: 10.1109/INFCOM.2013.6566893.

[Sho01] V. Shoup. “A proposal for an ISO standard for public key encryption.” Ver-

sion 2.1. In: (Dec. 20, 2001). URL: https://www.shoup.net/papers/

iso-2_1.pdf (visited on 08/28/2021).

[Sob17] I. Sobik. “DecentID: Distributed and Privacy-preserving Identity Manage-

ment using Blockchain-based Smart Contracts.” Master Thesis. Karlsruhe

Institute of Technology, 2017.

[SP18] Q. Stokkink and J. Pouwelse. “Deployment of a blockchain-based self-

sovereign identity.” In: 2018 IEEE international conference on Internet

of Things (iThings) and IEEE green computing and communications

(GreenCom) and IEEE cyber, physical and social computing (CPSCom)

and IEEE smart data (SmartData). IEEE. 2018, pp. 1336–1342.

[SS16] SITA and ShoCard. White Paper: Travel Identity of the Future. Accessed:

2022-01-12. May 2016. URL: https://blockchainlab.com/pdf/2016-

05-00-idm-ShoCard-travel-identity-of-the-future.pdf.

[Ste+19] O. Stengele et al. “Access Control for Binary Integrity Protection Using

Ethereum.” In: Proc. of the 24th ACM SACMAT. Toronto ON, Canada:

ACM, 2019, pp. 3–12. ISBN: 9781450367530. DOI: 10.1145/3322431.

3325108.

[THE17] THEKEY. A Decentralized Ecosystem of an Identity Verification Tool

Using National Big-data and Blockchain [Whitepaper]. 2017.

https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://doi.org/10.1145/1159913.1159947
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/INFCOM.2013.6566893
https://www.shoup.net/papers/iso-2_1.pdf
https://www.shoup.net/papers/iso-2_1.pdf
https://blockchainlab.com/pdf/2016-05-00-idm-ShoCard-travel-identity-of-the-future.pdf
https://blockchainlab.com/pdf/2016-05-00-idm-ShoCard-travel-identity-of-the-future.pdf
https://doi.org/10.1145/3322431.3325108
https://doi.org/10.1145/3322431.3325108

206 Bibliography

[Tra+11] N. Tran et al. “Optimal Sybil-resilient node admission control.” In: The

30th IEEE International Conference on Computer Communications (IN-

FOCOM 2011). Apr. 2011.

[Vis+10] B. Viswanath et al. “An Analysis of Social Network-based Sybil Defenses.”

In: SIGCOMM Comput. Commun. Rev. 40.4 (Aug. 2010), pp. 363–374.

ISSN: 0146-4833. DOI: 10.1145/1851275.1851226.

[Wei+12] W. Wei et al. “SybilDefender: Defend against sybil attacks in large social

networks.” In: 2012 Proceedings IEEE INFOCOM. Mar. 2012, pp. 1951–

1959. DOI: 10.1109/INFCOM.2012.6195572.

[WGK19] M. Westerkamp, S. Göndör, and A. Küpper. “Tawki:Towards self-sovereign

social communication.” In: 2019 IEEE International Conference on De-

centralized Applications and Infrastructures (DAPPCON). IEEE. 2019,

pp. 29–38.

[WR18] P. Windley and D. Reed. “Sovrin: A protocol and token for self-sovereign

identity and decentralized trust.” Version 1.0. In: Whitepaper, The Sovrin

Foundation (2018).

[WS98] D. J. Watts and S. H. Strogatz. “Collective dynamics of ’small-world’

networks.” In: nature 393.6684 (1998), p. 440.

[Xia+21] R. Xiao et al. “A Mixing Scheme Using a Decentralized Signature Protocol

for Privacy Protection in Bitcoin Blockchain.” In: IEEE Transactions on

Dependable and Secure Computing 18.4 (2021), pp. 1793–1803. DOI:

10.1109/TDSC.2019.2938953.

[Yu+06] H. Yu et al. “SybilGuard: Defending Against Sybil Attacks via Social Net-

works.” In: ACM SIGCOMM Computer Communication Review. Vol. 36.

New York, NY, USA: ACM, Aug. 2006, pp. 267–278. DOI: 10.1145/

1151659.1159945.

[Yu+08] H. Yu et al. “SybilLimit: A Near-Optimal Social Network Defense Against

Sybil Attacks.” In: Proceedings of the 2008 IEEE Symposium on Security

and Privacy. SP ’08. Washington, DC, USA: IEEE Computer Society, 2008,

pp. 3–17. ISBN: 978-0-7695-3168-7. DOI: 10.1109/SP.2008.13.

[Zie10] P. Zieliński. “Anonymous voting by two-round public discussion.” English.

In: IET Information Security 4 (2 June 2010), 62–67(5). ISSN: 1751-8709.

URL: https://digital-library.theiet.org/content/journals/

10.1049/iet-ifs.2008.0127.

https://doi.org/10.1145/1851275.1851226
https://doi.org/10.1109/INFCOM.2012.6195572
https://doi.org/10.1109/TDSC.2019.2938953
https://doi.org/10.1145/1151659.1159945
https://doi.org/10.1145/1151659.1159945
https://doi.org/10.1109/SP.2008.13
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2008.0127
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2008.0127

List of Publications

Conference articles

1. Sebastian Friebe, Martin Florian, and Ingmar Baumgart. Decentralized
and sybil-resistant pseudonym registration using social graphs. In 14th
Annual Conference on Privacy, Security and Trust (PST), Auckland,
New Zealand, 12th - 14th December 2016, pages 121–128. Institute of
Electrical and Electronics Engineers (IEEE), 2017

2. Sebastian Friebe, Ingo Sobik, and Martina Zitterbart. Decentid: De-
centralized and privacy-preserving identity storage system using smart
contracts. In 17th IEEE International Conference On Trust, Secu-
rity And Privacy In Computing And Communications/ 12th IEEE In-
ternational Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), New York, NY, August 1-3, 2018, pages 37–42. In-
stitute of Electrical and Electronics Engineers (IEEE), 2018

3. Sebastian Friebe, Paul Martinat, and Martina Zitterbart. Detasyr:
Decentralized ticket-based authorization with sybil resistance. In IEEE
44th Conference on Local Computer Networks (LCN), Osnabrueck,
Germany, 14-17 Oct. 2019, pages 60–68. Institute of Electrical and
Electronics Engineers (IEEE), 2019

4. Jonas Schiffl, Matthias Grundmann, Marc Leinweber, Oliver Stengele,
Sebastian Friebe, and Bernhard Beckert. Towards correct smart con-
tracts: A case study on formal verification of access control. In SAC-
MAT ’21: Proceedings of the 26th ACM Symposium on Access Control
Models and Technologies, pages 125–130. Association for Computing
Machinery (ACM), 2021

5. Sebastian Friebe, Oliver Stengele, Hannes Hartenstein, and Martina
Zitterbart. Coupling smart contracts: A comparative case study. In
3rd Conference on Blockchain Research & Applications for Innovative
Networks and Services (BRAINS), 27-30 Sept. 2021, pages 137–144.
Institute of Electrical and Electronics Engineers (IEEE), 2021

Demonstrators

1. Sebastian Friebe and Martin Florian. Desyps : A decentralized, sybil-
resistant, pseudonymous online discussion platform. In Proceedings of
the International Conference on Networked Systems, NetSys 2017, Gt-
tingen, Germany, 13th - 16th March 2017, pages 1–2. Institute of Elec-
trical and Electronics Engineers (IEEE), 2017

2. Sebastian Friebe and Martin Florian. Dps-discuss: Demonstrating de-
centralized, pseudonymous, sybil-resistant communication. In SIG-
COMM Posters and Demos’17. Proceedings of the 2017 SIGCOMM
Posters and Demos, Los Angeles, CA, August 22-24, 2017, pages 74–
75. Association for Computing Machinery (ACM), 2017

	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Main Contributions
	1.4 Outline

	2 Background
	2.1 Privacy
	2.2 Trust assumptions
	2.3 Cryptography
	2.3.1 Hash functions
	2.3.2 Symmetric encryption
	2.3.3 Asymmetric encryption
	2.3.4 Asymmetric signatures
	2.3.4.1 Elliptic Curve Digital Signatures
	2.3.4.2 Boneh-Lynn-Shacham signatures

	2.4 Blockchains
	2.4.1 Basics
	2.4.1.1 Bitcoin

	2.4.2 Smart Contracts
	2.4.2.1 Ethereum

	2.4.3 Storing data in blockchains

	2.5 Online identity management
	2.5.1 Current Situation
	2.5.2 Decentralized trusted identities
	2.5.3 Self-sovereign identities

	2.6 Online social networks and social graphs
	2.7 Sybil attacks
	2.8 Sybil defense
	2.8.1 Sybil defense based on social graphs
	2.8.2 Decentralized Sybil defense based on social graphs

	3 DecentID
	3.1 Adversary model
	3.2 Design Goals
	3.3 Example Scenario
	3.4 Important terms and variables
	3.4.1 Definitions
	3.4.2 Smart contracts and files
	3.4.3 Cryptographic keys

	3.5 Shared Identities
	3.5.1 Creating and sharing SharedIdentityContracts
	3.5.2 On-Chain Attributes
	3.5.3 Off-Chain Attributes
	3.5.4 Granting Attributes

	3.6 RootIdentityContract
	3.7 Replacing Cryptographic Keys
	3.7.1 Keys of permitted users
	3.7.2 Attribute encryption keys
	3.7.3 Attribute ownership
	3.7.4 Keys in the RootIdentityContract

	3.8 Implementation
	3.8.1 Demonstrator
	3.8.1.1 Architecture
	3.8.1.2 Identity management
	3.8.1.3 University
	3.8.1.4 Online shop
	3.8.1.5 Visualization

	3.8.2 Smartphone application
	3.8.2.1 Architecture
	3.8.2.2 Usage

	3.9 Evaluation
	3.9.1 Control over the identities
	3.9.1.1 Properties of smart contracts
	3.9.1.2 Authenticity and integrity
	3.9.1.3 Removals
	3.9.1.4 Comparison with the state of the art

	3.9.2 Privacy of identities
	3.9.2.1 Confidentiality of attributes
	3.9.2.2 Identifying users
	3.9.2.3 Passing on data
	3.9.2.4 Comparison with the state of the art

	3.9.3 Multiple pseudonymous identities
	3.9.3.1 Explicit linkability
	3.9.3.2 Implicit linkability
	3.9.3.3 Trade-offs
	3.9.3.4 Comparison with the state of the art

	3.10 Applicability
	3.10.1 End user interaction
	3.10.1.1 Privacy protection
	3.10.1.2 Interaction with online services

	3.10.2 Overheads
	3.10.2.1 Writing to the blockchain
	3.10.2.2 Reading from the blockchain
	3.10.2.3 Cryptography

	3.10.3 Cost considerations

	3.11 Summary

	4 Use Cases for DecentID
	4.1 Coupling with Palinodia
	4.1.1 Palinodia
	4.1.2 Coupling approaches
	4.1.3 Evaluating the approaches
	4.1.3.1 Security dependency
	4.1.3.2 Costs
	4.1.3.3 Implementation effort
	4.1.3.4 Interoperability

	4.1.4 Findings

	4.2 Voting integration
	4.2.1 Example Scenario
	4.2.2 Open Vote Network
	4.2.2.1 Ethereum implementation
	4.2.2.2 Adaptions

	4.2.3 Smart Contracts
	4.2.3.1 SharedIdentityContract
	4.2.3.2 VotingContract
	4.2.3.3 VotingDataContract

	4.2.4 Poll Execution
	4.2.4.1 Preparing the poll
	4.2.4.2 Registering
	4.2.4.3 Starting the voting
	4.2.4.4 Voting
	4.2.4.5 Ending the poll

	4.2.5 Evaluation
	4.2.5.1 Security
	4.2.5.2 Voting for off-chain attributes
	4.2.5.3 Voting for encrypted attributes
	4.2.5.4 Privacy analysis

	4.3 Conclusion

	5 Sybil defense
	5.1 Adversary model
	5.2 Approach
	5.3 Core components
	5.3.1 Ticket Sources
	5.3.2 Blockchain
	5.3.3 Authorization Tickets
	5.3.4 Round-based operation

	5.4 Design
	5.4.1 Basics and assumptions
	5.4.2 Ticket creation
	5.4.3 Round management
	5.4.3.1 Counting active nodes
	5.4.3.2 Selecting new ticket sources
	5.4.3.3 End of round

	5.4.4 Gaining authorizations

	5.5 Further restrictions for Sybil identities
	5.5.1 Aging Authorizations
	5.5.2 Edge Values

	5.6 Evaluation
	5.6.1 Increase of Sybil strength
	5.6.1.1 Evaluation environment
	5.6.1.2 Aging authorizations
	5.6.1.3 Edge values

	5.6.2 Sybil controlled ticket sources
	5.6.3 Overhead estimation
	5.6.4 Comparison with related work

	5.7 Integration into DecentID
	5.7.1 Assumptions
	5.7.1.1 Existing identities
	5.7.1.2 Trustworthy ticket sources
	5.7.1.3 Access to data and systems

	5.7.2 Requirements
	5.7.3 Approach
	5.7.3.1 Sending data to ticket sources
	5.7.3.2 Handling at ticket sources
	5.7.3.3 Assembling the link
	5.7.3.4 Verifying the link

	5.7.4 Identification of the service

	5.8 Conclusion

	6 Conclusion
	6.1 Results
	6.2 Perspectives for Future Work

	Appendices
	A Important terms
	A.1 Definitions
	A.2 Smart contracts and files
	A.3 Cryptographic keys

	B Smart Contracts of DecentID
	B.1 Mortal.sol
	B.2 RootIdentityContract.sol
	B.3 SharedIdentityContract.sol
	B.4 AttributeContract.sol
	B.5 VotingDataContract.sol
	B.6 VotingContract.sol

	Bibliography

