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Ionic liquids offer unique bulk and interfacial characteristics as battery electrolytes. Our continuum ap-
proach naturally describes the electrolyte on a macroscale. An integral formulation for the molecular repulsion,
which can be quantitatively determined by both experimental and theoretical methods, models the electrolyte
on the nanoscale. In this article, we perform a systematic series expansion of this integral formulation, derive a
description of chemical potentials in terms of higher-order concentration gradients, and rationalize the appear-
ance of fourth-order derivative-operators in modified Poisson equations, recently proposed in this context. In
this way, we formulate a rigorous multi-scale methodology from atomistic quantum chemistry calculations to
phenomenologic continuum models. We apply our generalized framework to ionic liquids near electrified in-
terfaces and perform analytic asymptotic analysis. Three energy scales describing electrostatic forces between
ions, molecular repulsion, and thermal motion determine the shape and width of the long-ranging charged dou-
ble layer. We classify the charge screening mechanisms dependent on the system parameters dielectricity, ion
size, interaction strength, and temperature. We find that the charge density of electrochemical double layers in
ionic liquids either decays exponentially, for negligible molecular repulsion, or oscillates continuously. Charge
ordering across several ion-diameters occurs if the repulsion between molecules is comparable with thermal
energy and Coulomb interaction. Eventually, phase separation of the bulk electrolyte into ionic layers emerges
once the molecular repulsion becomes dominant. Our framework predicts the exact phase boundaries between
these three phases as function of temperature, dielectricity and ion-sizes.

I. INTRODUCTION

Strong electrostatic correlations in crowded environments
play an important role in biology, chemistry and physics.1–3

For example, in molecular biology, they account for DNA
packing,4 which is crucial for the compactification of genetic
materials in viruses,5 impact the cytoskeleton organization,6

and influence transport in ion channels.7 Furthermore,
such correlations explain the thermodynamic stability of
plasmas,8,9 and charged colloidal suspensions.10,11

Surprisingly, the complexity of these phenomena can be
understood to a large degree by models derived initially for
electrolyte solutions.12 Starting from the fundamental Debye-
Hückel theory for dilute solutions,13 increasingly accurate
models for concentrated electrolytes were developed,14 taking
more complex Coulomb correlations into account.

As ionic liquids (ILs) consist only of positive and negative
ions without neutral solvent, they constitute the extreme limit
for the examination of electrostatic correlations in electrolytic
solutions. Indeed, ILs possess characteristic properties in the
bulk-regime,15,16 but also near electrified interfaces.17 This
makes them highly attractive from both fundamental and ap-
plied perspectives.18–24 The study of interfacial electrochem-
istry is of wide-ranging interest. For example, the behavior of
ILs near electrified interfaces has paramount importance for
their performance as battery electrolytes.25,26

Theoretical studies of ILs near electrified interfaces dis-
cuss the structure of charged electrochemical double layers
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(EDL) on atomistic/molecular scales. These include classical
density functional theory (cDFT) simulations, and molecular-
dynamics (MD) simulations. cDFT gives detailed insights
into the arrangement of molecules in the EDL.27–29 MD
resolves the molecular motion and can elucidate the EDL
structure.30–32

However, cDFT/MD simulations are limited due to their
computational costs. Simulations at length-scales above the
nanometer scale are hardly accessible for the atomistic / mo-
lecular approach. Thus, continuum theories, and mean-field-
-theories (MFT) provide a complimentary methodology for
the simulation of larger systems, where the microscopic de-
tails can be neglected, or are used as averaged parameters (e.g.
constant dielectric parameters).

Usually, MFTs for electrolytes are based on lattice gas
models of ions, first proposed by Bikermann.33 Recently,
these MFTs have attained great interest in the study for
ILs. As proposed by Santangelo for aqueous systems,34

the extension of MFTs by higher-order electrostatic correla-
tions renders useful for the description of long-ranged struc-
tures emerging in electrolytes. Bazant, Storey and Korny-
shev (BSK) applied this approach to ILs near electrified
interfaces.35 By using a phenomenological model, which is
based on a generalized Ginzburg-Landau functional, BSK de-
scribe charge oscillations known as overscreening and charge
saturation known as crowding. Yochelis et al. rationalized
this approach, and extended it to bulk properties.36–40 How-
ever, MFT models are usually restricted to equilibrium effects
of binary ILs with structureless bulk, although rare MFT mod-
els, complemented by continuum methods39,41 and extended
to the ternary case42 exist.

This highlights the advantage of continuum frameworks,
which describe dynamical transport processes. In addition,
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continuum models based on rigorous physical assumptions,43

identify coupled phenomena arising from the interplay of me-
chanics, thermodynamics, and electromagnetic theory.44 Fur-
thermore, this approach allows to develop a unified, thermo-
dynamically consistent framework, which provides the com-
mon theoretical basis for the description of different electro-
chemical systems.45–49 Continuum models are not restricted
to binary, or ternary systems, as they can be formulated for
arbitrary many species, charged and uncharged. Thus, they
apply to more realistic electrolytes.

Recently, we proposed such a novel continuum transport
theory.45 In this theory, we take account for steric effects via
the mean-volume, which is due to finite molar volumes of
the ion species. For this purpose, we impose a volume con-
straint on the electrolyte. This mechanism stabilizes the bulk
structure against Coulomb collapse,50 and leads to charge-
saturation near electrified interfaces. Thus our theory re-
solves the deficiencies of the classical Poisson-Boltzmann
(PB) theory, which predicts unrealistically high interface-
concentrations.14 Furthermore, the existence of finite molar
volumes of the electrolyte species leads to a pressure depen-
dence of the chemical potentials (in accordance with thermo-
dynamic arguments).51

However, this bulk-framework cannot describe the emer-
gence of long-range structures in ILs near electrified inter-
faces. Therefore, in a joint experimental / theoretical work,
we extended our framework with non-local interactions, and
validated it with results obtained from atomic-force-micros-
copy.52 Thus, we extended the mean-volume-effect of the
bulk theory with molecular volume exclusion due to hard-
core repulsion. Our holistic framework allows to couple dy-
namic transport processes occurring in the bulk-electrolyte
with interfacial electrochemical processes. Thus, we provide a
continuum model which bridges the length-scales from nano-
meters, e.g., EDL, to millimeters, e.g., battery cells. More-
over, our framework allows to connect the continuum descrip-
tion with correlation functions generated by MD.

However, the dependence of EDL structures on molecu-
lar repulsion, molecular size, temperature, and dielectricity is
still unknown. In this paper, we derive such an understanding
with asymptotic analysis. To this aim, we present our ther-
modynamically consistent transport theory with an integral
formulation of non-local interactions in section II A. These
correlations represent atomistic volume exclusion and lead to
modified constitutive equations (eqs. (2) to (5)). Moreover,
the interactions impose contributions to the stress-tensor, and
thus modify the mechanical coupling to the transport equa-
tions (eq. (6)). In section II B, we approximate the interac-
tion functional with a gradient expansion, which facilitates
the analytic asymptotic analysis of the EDL structure. In sec-
tion II C, we apply our extended framework to study the EDL
structure for neat ILs. When we non-dimensionalize our dy-
namical description in section II D, three competing energy
scales describing electrostatic forces between ions, molecu-
lar repulsion, and thermal motion appear in the theory. Since
our focus lies on the formation of equilibrium structures, we
discuss the stationary state in section II E. In section II F, we
discuss limiting cases of our stationary theory.

We perform numeric simulations and analytic asymptotic
analysis to study the interplay and the effect of the competing
energy scales on EDL structures. First, in section III, we dis-
cuss the EDL structure for the mean volume constraint. Sec-
ond, in section IV, we incorporate molecular repulsion into
our analysis and classify the EDL structure dependent on the
relation between competing energy scales.

II. THEORY

A. Generalized Transport Theory

Recently, we have proposed a free energy functional Fb =∫
dV ρϕH for the dynamical description of ionic liquids in

the bulk-phase.45 In this bulk-model, the Helmholtz free en-
ergy density ϕH(Υ) = ϕH(T, c1, . . . , cN, D,κ) is a function
of the variables temperature T , concentrations cγ, dielectric
displacement D, and strain-rate tensor κ. This variable-set
Υ constitutes material-specific properties of multi-component,
viscous and polarizable media in liquid state.

In contrast, models describing non-local interactions rely
on functionals F int[Υ], such that the free energy takes the form

F[Υ] = F int[Υ] + Fb(Υ) = F int[Υ] +

∫
dV ρϕH. (1)

The following discussion relies on the derivation of our
bulk transport theory, presented in Ref. 45. Here, we highlight
all significant steps, and state the relevant, final results. In the
SI (see section SI-1), we provide a more detailed discussion.

The extension of the free energy according to eq. (1) leads
to modified constitutive equations for entropy density s, elec-
tric field strength E, magnetic field H, and chemical poten-
tials µγ, via functional-derivatives (see section SI-1 A),

ρs = −ρ
∂ϕH

∂T
−
δF int

δT
, (2)

E = ρ
∂ϕH

∂D
+
δF int

δD
, (3)

H = ρ
∂ϕH

∂B
+
δF int

δB
, (4)

µα =
∂(ρϕH)
∂cα

+
δF int

δcα
. (5)

Equations (2) to (5) are supplemented by ∂ϕH/∂κ =

δF int/δκ = 0, and by the constitutive equation for the stress
tensor,

σ = τ−

 N∑
α=1

cα

[
∂(ρϕH)
∂cα

+
δF int

δcα

]
− ρϕH + ED + HB

 Id

+ E ⊗ D + H ⊗ B. (6)

Here τ(κ) = λ∇v · Id + 2η · κtf describes the viscosity tensor,
where κ = grad v+ (grad v)T = ∇v ·Id/3+κtf is the strain-rate
tensor and v is the center-of-mass convection velocity.45

For the remaining part of this work, we neglect thermal
driving forces by setting the temperature to constant values,
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and assume the electrostatic limit B = 0 and H = 0. This de-
termines the electric field E = E by the electrostatic potential,
E = −∇Φ.

We evaluate our framework for the bulk-energy of a linear
dielectric medium discussed in Ref. 45.

ρϕH =
ED
2

+
K

2

1 − N∑
α=1

ν0
αcα


2

+ RT
N∑
α=1

cα ln(cανα), (7)

where the electric field is E = D/ε0εR. The second term com-
prises volumetric energy contributions. We express this term
by expansion around a stable reference configuration param-
eterized by ν0

α and K constitutes a Lagrange multiplier. To
take account for asymmetric volumes of the ions, we express
the entropy of mixture using volume fractions cανα, instead
of mole fractions cα/c.39 This “Flory-Huggins”-approach is
based on a modified statistics,53 which favours equal volumes
for each species instead of equal number of molecules, and
accounts for the averaged impact of strong short range re-
pulsions on particle distributions. Within the framework Ref.
45 this change is captured by the bulk activity coefficients fα
given by the partial molar volumes fα = να.

In Ref. 45 we show that the chemical potentials

µα = RT (1 + ln cανα) +
δF int

δcα
−Kν0

α

1 − N∑
β=1

cβν0
β

 , (8)

depend on elastic properties through the last term. As dis-
cussed in our previous work45 and in Ref. 54 for hardly com-
pressible electrolytes, this elastic energy represents a linear
pressure contribution and the Lagrange multiplier K is found
to be the Bulk modulus. In this work, we assume the incom-
pressible limit K→∞. This implies that the thermodynamic
partial molar volumes να become pressure independent and
approach the partial molar volumes in the reference state,

lim
K→∞

να = ν0
α. (9)

We take account for local conservation of volume via the Euler
equation for the volume,

N∑
α=1

cανα = 1. (10)

The elastic term in the chemical potentials (see eq. (8))
is constrained by the assumption of mechanical equilibrium
div σ = 0. Then, eq. (6) implies K

∑N
β=1 νβ · ∇cβ = −%∇Φ −

RT · ∇c−∇
∑N
β=1 cβ · δF int/δcβ and the electrochemical forces

∇µel
α = ∇µα + Fzα∇Φ become

∇µel
α = να · ∇τ +

N∑
β=1

(
δ
β
α − ναcβ

)
· ∇

(
FzβΦ +

δF int

δcβ

)
+

+ RT (∇ ln [cανα] − να∇c) , (11)

where ∇τ = (λ + η/3)∇(∇v) + η · ∇2v.
Thus, in this limit, we obtain inter-species couplings, in

agreement with the Gibbs-Duhem relation,
N∑
α=1

cα · ∇µel
α = ∇τ. (12)

B. Gradient Expansion of Molecular Interactions

Recently,52 we proposed a model for hardcore-interactions
based on a convolution-functional for the interaction free en-
ergy,

F int =
1
2

N∑
α, β

"
dx3dy3 Fαβ(|x − y|)cα(x)cβ(y), (13)

leading to transport contributions in the form (see section SI-
1 C)

δF int

δcα
(x) =

N∑
β

∫
dy3 Fαβ(|x − y|)cβ(y). (14)

The symmetric potentials Fαβ determine the correlation length
`int, and the magnitude of the interaction. The number of ad-
ditional parameters describing this interaction depends upon
the model for Fαβ. In a previous publication, for example, we
used a Lennard-Jones-type force-field for Fαβ.52 Such poten-
tials are often used in the literature.55–59 Furthermore, since

δ2F int

δcγ(z)δcα(x)
= Fαγ(|x − z|), (15)

the potentials Fαγ determine the direct pair correlation func-
tions used in liquid state theory.50

Experimental results suggest that such interactions typi-
cally decay after some ionic diameters.52 Thus, we focus on
potentials Fαβ ranging over the size of one molecule. Their
extend `int is large compared to the exponential decay of the
electric field, i.e., the Debye-length,60,61 yet small compared
to the battery cell.

In the SI (see section SI-1 B), we show that such convolu-
tion functionals F int can be approximated in power-series of
concentration gradients, when Fαβ is short-ranged,

F int[cγ] =
1
2

N∑
α, β

∞∑
n=0

Γ2n
αβ

∫
d3y cα(y) · ∇2ncβ(y), (16)

where

Γn
αβ(Fαβ) =

1
n!
·

∫
d3xFαβ(|x|) · xn. (17)

Here, Γn
αβ are symmetric perturbation coefficients of dimen-

sion [Γ2n
αβ] = J m3+2nmol−2. With this Ansatz, the complete

free energy functional for IL electrolytes becomes

F =

∫
dV

 ED
2

+ RT
N∑
α=1

cα ln(cανα) +
K

2

1 − N∑
α=1

cανα


2

+
1
2

N∑
α, β

∞∑
n=0

Γ2n
αβcα · ∇

2ncβ

 . (18)

The functional derivative in eq. (5) determines the excess
chemical potentials due to the interaction (see section SI-1 C),

δF int

δcα(z)
=

N∑
β=1

∞∑
n=0

Γ2n
αβ · ∇

2ncβ(z). (19)
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The corresponding electrochemical potentials for ionic liquid
electrolytes are

∇µel
γ =

(
Fzγ − νγ%

)
∇Φ + RT · (∇cγ)/cγ − RTνγ∇c

+

∞∑
n=0

N∑
α, β

(
δ
γ
α − νγcα

)
Γ2n
αβ · ∇

2n+1cβ. (20)

We specify our electrolyte model and assume a one-dimen-
sional Gaussian interaction potential for symmetric ions,

Fαβ =
(
2
√

2π
)3
· V0 · (NA)2 · exp

[
−2

( xπ
a

)2
]
. (21)

Here, V0 denotes the characteristic interaction energy, and a
is the extension of ion-pairs. This material parameter deter-
mines the correlation length `int = a/π

√
2 of the interaction.

We assume that a emerges naturally from the common molar
volume ν = ν+ + ν− via ν = NAa3, which is justified below
(see section IV A 2 and eq. (63)). Thus, only V0 is introduced
as a novel independent material parameter. In contrast, poten-
tials of Lennard Jones type need at least one more parameter
for the well-depth. In the case of a binary system, the lowest
order expansion coefficients (see eq. (17)) of the inter-species
correlations for the Gaussian model in eq. (21) are (see sec-
tion SI-3 D 1)

Γ0
12 = V0NAν = V0 (NA)2 a3, (22)

Γ2
12 =

`2
int

2
· Γ0

12 =
a2

4π2 · Γ
0
12. (23)

C. Binary IL

In this section, we apply our formalism to binary ILs at
electrified interfaces. Thus, we use the extended electrochem-
ical forces eq. (20) in our multicomponent framework derived
in Ref. 45.

As discussed in section II A, binary electrolytes are de-
scribed with the variables electric potential Φ, charge density
%, and center-of-mass convection velocity v. Furthermore, the
electric conductivity κ is the only independent transport pa-
rameter in this case.45 The dynamical transport equations are

∂t% = −∇ (%v) − ∇J , (24)
% = −ε0∇εR∇Φ, (25)

∇v = (M+ν− − M−ν+)/Fz+MIL · ∇J . (26)

Here, M± are the molar masses of the ionic species which sum
to MIL, and J is the electric current relative to the center-of-
mass motion, J = κ(M+ · ∇µ

el
− − M−∇µel

+ )/MILFz+.
Solutions to eqs. (24) to (26) determine the ionic concen-

trations via % = Fz+(c+ − c−) (charge-conservation), and via
the Euler equation for the volume eq. (10).

We restrict our set-up to one spatial dimension, and assume
that the inert electrified interface is located at x = 0. The elec-
troneutral boundary condition %(x→∞) = 0 implies that the
bulk concentration cb = c±(x→∞) is completely determined

FIG. 1. Scheme of the as-modelled set-up. The binary IL-electrolyte
PYR[1,4 ]TFSI is subject to the negatively charged interface at the
left, which causes the formation of an electrochemical double layer
(EDL). Charge-ordering diminishes with increasing distance from
the interface (towards the right side), and the electrolyte is elec-
troneutral in the bulk.

by the total partial molar volume ν = ν+ + ν− via cb · ν = 1.
Since binary ILs are electrically neutral, z+ = −z+, and we
choose z+ > 0.

We neglect viscous forces in our discussion of the EDL
(∇τ = 0). Therefore, the Gibbs-Duhem relation (see eq. (12))
becomes c+∇µ

el
+ +c−∇µel

− = 0, and the expression for the elec-
tric flux simplifies to J = −κνρ/Fz+MIL · ∇µIL, where we
use the chemical potential of the anion-species to determine
the IL-electrolyte (∇µIL = ∇µel

− ),

∇µIL = ∇

(
Fz+Φ − γ+

δF int

δc−
+ γ−

δF int

δc+

− RTγ+ ln
[
c−/cb

]
+RTγ− ln

[
c+/cb

])
. (27)

Here, we introduced the relative magnitude of the molar vol-
umes γ± = ν±/ν. Thus, the forces given by eq. (27) depend
upon the model for F int. Furthermore, using the Gauss-model
(see eq. (21)), we can either close the forces via the “com-
plete” integral equation ( eq. (14)), or using the gradient ex-
pansion ( eq. (19)).

We want to apply the half-cell potential ∆φ. Since the elec-
tric potential Φ is continuous across the electrode-electrolyte
interface, Φ(0) in the electrolyte is subject to the boundary
condition

Φ(0) −Φ(x→ ∞) = ∆φ. (28)

Without loss of generality, we set the electrolyte potential in
the bulk to zero, limx→∞Φ = 0. Hence, ∆φ = Φ(0) is the
potential applied to the electrode.

We perform one-dimensional numeric simulations of this
system of equations eqs. (24) and (25) in the completely dis-
sociated state, subject to an inert electrified interface (for
more details, see section SI-4 A). This electrolyte is part of
the IL-family comprised of TFSI anions and PYR cations.
Due to their excellent electrochemical properties, these ILs
are widely studied and used for applications in lithium-ion
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batteries.62 We state the electrolyte parameters in the SI (see
section SI-4 B).

D. Energy Scales and Dimensions

We introduce dimensionless variables for electric potential,
Φ̃ = Φ · Fz+/RT , and charge density, %̃ = %νc̃b/Fz+, where
c̃b = (γ+)2 + (γ−)2 is the dimensionless electroneutral bulk
state, corresponding to cb = 1/ν. In accordance with these
definitions, we introduce c̃α = cανc̃b such that %̃ = c̃+ − c̃−.
Hence, the Euler equation for the volume becomes c̃b =

γ+c̃+ + γ−c̃−. Via this gauge, the saturation threshold, corre-
sponding to maximal ion-concentration, is completely deter-
mined by the relative volume-size alone, c̃sat = c̃b/γα? , where
α? denotes the saturation species. Furthermore, we use sys-
tem parameters to define the time-scale ε0εR/κ, and introduce
a dimensionless time-derivative ∂t̃ = ε0εR/κ · ∂t. The center-
of-mass convection velocity in it’s non-dimensionalized form
reads ṽ = ε0εR/LDκχ · v. Here, χ = (M+γ− − M−γ+)/MILc̃b

measures the “asymmetry” of the ion-species. In the SI (see
section SI-2), we motivate our choice of non-dimensionalized
quantities.

The Poisson equation suggests defining the generalized
Debye-length

LD =

√
kBTε0εRa3c̃b

(ez+)2 . (29)

Here, we used F = eNA for the Faraday constant, where e
is the elementary charge, and NA is Avogadro’s constant, and
the model ν = NAa3 for the partial molar volumes introduced
above. This Debye-length differs from the canonical defini-
tion by the asymmetry-factors γ±.63 However, it reproduces
the textbook definition for symmetric ions (γ± = 0.5). LD be-
comes minimal for γ± = 0.5 because the mixing entropy of a
binary electrolyte is extremal for equal ion-size. Thus, asym-
metry increases the Debye-screening length.

With this length scale, we non-dimensionalize our grid, viz.
x̃ = x/LD and ∇̃ = LD · ∇, and obtain the dimensionless
Poisson-equation,

%̃ = −∇̃2Φ̃. (30)

This yields non-dimensionalized electrostatic fields D̃ =

ac̃b D/LDez+ and Ẽ = LDez+E/kBT , such that %̃ = ∇̃D̃,
Ẽ = −∇̃Φ̃, and D̃ = Ẽ.

Our theory also contains a generalized Bjerrum-length LB,
which measures the distance at which the electrostatic energy
and the thermal energy become comparable,

LB =
(ez+)2

kBTε0εRc̃b =
a3

L2
D

. (31)

Next, we non-dimensionalize the transport equations for
the binary, symmetric IL (see eqs. (24) and (26)). The
corresponding non-dimensional current flux takes the form
J̃ = −(1 + χ%̃)∇̃µ̃IL, where the non-dimensionalized chem-
ical forces ∇̃µ̃IL = 1/RT LD · ∇µIL are subject to the two de-
scriptions eqs. (14) and (19), see also eq. (27). Thus, we find

∂t̃%̃ = ∇̃[(1 + χ%̃)∇̃µ̃IL] − χ∇̃(%̃ṽ) and ∇̃ṽ = −∇̃[(1 + χ%̃)∇̃µ̃IL].
However, since we neglect convective effects in our EDL dis-
cussion, the complete set of equations consists of the Poisson
equation and one transport equation for the charges. In non-
dimensionalized form, the transport equation in the integral
description follows by substituting eq. (14) into eq. (27)

∂t̃%̃ = ∇̃

[
(1 + χ%̃) · ∇̃

(
Φ̃ − γ+ ln

[
c̃−/c̃b

]
+ γ− ln

[
c̃+/c̃b

]
−

−

∫
dx̃3F̃αβ(|x̃ − ỹ|)%̃(ỹ)

)]
, (32)

where we introduced two energy scales for thermal energy Eth
and electrostatic energy Eel,

Eth = kBT ·
c̃b

2γ+γ−
, (33)

Eel =
(ez+)2

4πε0εR
·

1
4γ+γ−

·
1
a
. (34)

In the case of symmetric ions γ± = 0.5, these energy scales
take the textbook form for thermal energy and Coulomb en-
ergy of charges at distance a. Apparently, both energy scales
are coupled by the generalized Debye-length LD,

Eth

Eel
= 8π

(LD

a

)2

. (35)

In eq. (32), we used these two energy-scales to non-dimen-
sionalize the interaction potential,

F̃ =

√
Eth

8πEel

F/(NA)2

8πEel
=

V0

Eel

√
Eth

Eel
exp

(
−2

[ xπ
a

]2
)
. (36)

The integral form eq. (32) for the transport equation allows
to relate our continuum framework to MD-simulations as dis-
cussed in section V A.

The energy scales Eth and Eel non-dimensionalize the per-
turbation-modes (see eq. (17)),

Γ̃2n
+− =

Γ2n
+−

Etha3(LD)2n(NA)2 . (37)

However, since we restrict the gradient-expansion of the
interaction to the trivial and first non-trivial modes (Γ̃0

+− =

V0/Eth and Γ̃2
+− = 2/π·V0/Eth ·Eel/Eth), we obtain for the non-

dimensionalized transport equation in the gradient description

∂t̃%̃ = ∇̃

[
(1 + χ%̃) · ∇̃

(
Φ̃ − γ+ ln

[
c̃−/c̃b

]
+ γ− ln

[
c̃+/c̃b

]
−

−
V0

Eth

(
1 +

2
π

Eel

Eth
· ∇̃2

)
%̃

)]
. (38)

E. Stationary State

Since our focus lies on the formation of equilibrium struc-
tures, we discuss the system of equations in the stationary
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limit. This allows to integrate the differential equations using
electroneutral boundary conditions, which results in a simpli-
fied description susceptible to analytic techniques.

Stationarity (∂t% = 0) implies that all fluxes are constant.
Here, we have no flux conditions J̃ = ṽ = 0, which implies
that both species are in equilibrium, ∇µel

+ = ∇µel
− , i.e.,

∇̃µ̃IL = 0. (39)

Thus, the stationary state for the binary electrolyte is de-
scribed by the Poisson equation and eq. (39). Here, we evalu-
ate the equilibrium condition using the gradient description
(eq. (27)) in the non-dimensionalized form (see eqs. (37)
and (38)), and integrate the result using electroneutral bound-
ary conditions in the bulk,

0 = Φ̃−
V0

Eth

(
1 +

2
π

Eel

Eth
∇̃2

)
%̃−

(
γ+ ln

[ c̃−
c̃b

]
− γ− ln

[ c̃+

c̃b

])
. (40)

Apparently, in contrast to the dynamical case where elec-
trolyte momentum is important, the molar masses appearing
as parameters in the fluxes v and J become irrelevant in the
stationary limit. Instead, the relative magnitude of the molar
volumes γ± enters the system of equations. This highlights the
principal role of molar volumes as parameters in the station-
ary state and is a consequence of the Euler equation for the
volume, eq. (10).

For completeness, we state the integral transport equation
32 in the stationary limit (see section SI-3 A)

0 = Φ̃−

∫
dỹF̃+− (x̃, ỹ) %̃(ỹ)−

(
γ+ ln

[ c̃−
c̃b

]
− γ− ln

[ c̃+

c̃b

])
. (41)

F. Small and Large Potentials

Equation (30) and eq. (40) (or eq. (41)) constitute the
complete set of equations, necessary to describe a binary
IL-electrolyte in stationary state. In section III A and sec-
tion IV C, we solve these equations using numeric methods.
Our goal is to supplement these numerical methods by an an-
alytic examination of the gradient description. However, the
analytic solution of the gradient description is hindered by the
higher order gradients appearing in eq. (40) and by the differ-
ent prefactors of the logarithmic terms (in general, γ+ , γ−).
Therefore, we distinguish different limiting cases in our anal-
ysis in sections III B and IV A. In the SI, we describe the spe-
cial case of symmetric ion-species (see sections SI-3 B and SI-
3 C 3).

In section III B we motivate that the limiting case of small
charge-densities, %̃ � 1, renders useful. In this case, we can
expand the logarithmic term in eq. (40) and eq. (41) around
the electroneutral state,

γ+ ln
(
c̃−/c̃b

)
− γ− ln

(
c̃+/c̃b

)
≈ −%̃, (42)

such that eqs. (30) and (40) become

%̃ = −∇̃2Φ̃, (43)

0 = Φ̃ + ε̂R%̃, (44)

where ε̂R is defined as dielectric operator

ε̂R = 1 −
1∑

n=0

Γ̃2n
+− · ∇̃

2n = 1 −
V0

Eth
−

2
π
·
V0

Eth
·

Eel

Eth
· ∇̃2. (45)

In the absence of molecular repulsion, V0 = 0, the dielectric
operator reduces to the canonical, scalar-valued dielectric pa-
rameter ε̂R → 1.

Furthermore, quantities similar to ε̂R also arise in the liquid
state theory of classical statistical mechanics. This expansion
corresponds to a small wave vector expansion of the dielectric
function expressed as correlation function of the molecular
dipole densities (see, e.g., Ref. 50).

In the following sections, we show that the gradient expan-
sion, eqs. (43) and (44), allows significant insights into the
competing effects of the interactions V0, Eel, Eth, and predicts
the EDL structure as function of the parameters temperature,
dielectricity, ion-size, and interaction strength.

III. MEAN STERIC EFFECT: CHARGE SATURATION

In this section, we neglect non-local interactions, V0 = 0,
and discuss the EDL structure of the electrolyte due to bulk ef-
fects alone based on Fb (see eq. (1)). In this way, we reveal the
competition between Coulombic ordering and entropic disor-
dering, i.e., diffusion.

To this aim, we consider the system of equations constituted
by the Poisson eq. (30) and eq. (40) subject to V0 = 0,

0 = Φ̃ − γ+ ln
(
c̃−/c̃b

)
+ γ− ln

(
c̃+/c̃b

)
. (46)

First, in section III A, we solve this system of equations
numericaly. We supplement this investigation by an analytic
analysis, and focus on the two limiting regimes of large and
small electric potentials; in section III B 1 we discuss the case
Φ̃ � 1, and in section III B 2 we discuss the case Φ̃ � 1.
For the special case of symmetric ion-species (γ± = 0.5), we
derive an analytic solution for the electric field Ẽ(Φ̃), and for
the charge density %̃(Φ̃) as functions of the electrolyte electric
potential in the SI (see section SI-3 C 3).

A. Simulations

Figure 2 shows numeric results for the system of eqs. (30)
and (46). Figure 2a and fig. 2b illustrate screening profiles of
the electric potential, the charge density, and the ion concen-
trations for varying electrode potentials ∆φ.

Apparently, the application of a negative electrode poten-
tial (∆φ < 0) polarizes the electrolyte. The electric poten-
tial (see fig. 2a) is continuous across the interface and decays
smoothly towards the electroneutral bulk region. The inset of
fig. 2a shows that, for low electrode potentials, the charge den-
sity decays exponentially. A similar behavior can be observed
in fig. 2b for the concentrations. The concentration of positive
counter-ions increases towards the interface, whereas negative
like-ions get depleted. Apparently, the electrolyte screens the
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a)                                                       b)

c)                                                       d)

FIG. 2. Simulation results of the EDL structure perpendicular to the electrode-electrolyte interface for a binary IL (see eqs. (30) and (46)).
If not mentioned otherwise, T = 300 K, εR = 15, and ∆φ = −0.1 V. a) Profiles of electric potential and charge density (inset) for different
electrode potentials ∆φ. b) Concentration profiles of the anions and cations for different electrode potentials ∆φ. c) Concentration profiles
for different volume ratios γ+. The inset shows the corresponding electric potential. d) Concentration profiles for varying dielectric constants
(dashed lines) and temperatures (solid lines).

electrode potential by accumulation of counter-ions. How-
ever, above ∆φ ≈ −0.05 V, the counter-ion concentration sat-
urates near the interface. A further increase of ∆φ broadens
the EDL.

This behavior can be explained by the mean volume ef-
fect. The application of a negative potential ∆φ implies
that positive ions accumulate near the interface, and nega-
tive ions deplete. However, the Euler equation for the vol-
ume, eq. (10), implies the saturation concentration csat

+ =

1/ν+. Once the accumulated species reaches this satura-
tion, the screening mechanism transitions from increasing the
concentration at the interface to broadening the width of the
EDL. The simulated EDL approaches a thickness of 0.6 nm
at ∆φ ≈ −0.05 V, which is significantly wider than predicted
by the canonical Debye-Hückel-theory with the Debye length
LD ≈ 0.7 Å (see eq. (29)). This phenomenon is typically de-
noted “crowding”.35

Since the saturation concentration depends upon the molar
volume, csat

α = 1/να, the partial molar volumes directly affect
the screening behavior. Figure 2c shows numeric results for
the ionic concentrations at different volume ratios γ± = ν±/ν
(ν is kept fixed). The EDL is thinner for smaller γ+, as this

allows for tighter packing of cations.

The effect of temperature T and dielectricity εR on the EDL
structure is illustrated in fig. 2d. The screening is more effec-
tive for smaller values of εR and the EDL width increases with
increasing magnitude of εR. This is in qualitative agreement
with the screening behavior for dilute solutions as predicted
by the Debye-Hückel theory. Likewise, the EDL becomes
more diffuse with increasing temperature because of the dis-
ordering effect of thermal motion. The observed effects of T
and εR highlight the competing interplay between the electro-
static effect of charge ordering and the disordering effect of
entropy.

To summarize, the simulations show two distinct regimes of
EDL structure. First, for large electrode potentials, ∆φ̃ � 1,
the charge is saturated near the interface. Second, near the
electroneutral bulk region, where ∆φ̃ � 1, the charge den-
sity decays exponentially. These two distinct EDL structures,
charge saturation and exponential decrease, correspond to two
disjoint electrolyte regimes, |Φ̃| � 1 and |Φ̃| � 1, respec-
tively.
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B. Asymptotic Analysis

T=100 K

a)

b)

FIG. 3. Comparison of the asymptotic analysis of the EDL structure
with numeric results obtained from eqs. (43) and (46) (T = 300 K
and εR = 15). We consider two different values of the interface po-
tential, corresponding to the regimes of small and large potentials at
∆φ = −0.01 V (∆φ̃ = −0.4), and ∆φ = −0.35 V (∆φ̃ = −13.5). a)
Profiles of the electric potentials as predicted by the analytic approx-
imation (see eqs. (48) and (51)). The inset highlights the region close
to the interface for the case ∆φ = −0.01 V. b) Profiles of the charge
density as predicted by the asymptotic analysis in eqs. (49) and (53).
The inset compares numeric and analytic values for the total charge
comprised in the EDL (see section SI-3 C 2 in the SI).

The simulation results in section III A motivate our pro-
cedure for analysing the EDL structure. First, we study the
EDL far away from the electrode close to the electroneu-
tral bulk (large x̃). For this purpose, we expand the station-
ary equations around the electroneutral bulk for small charge
densities, %̃ � 1. According to eq. (46), this regime cor-
responds to small dimensionless potentials |Φ̃| � 1. Note
that this coincides with the regime of high temperatures since
Φ̃ = Φ · Fz+/RT (see section III B 1).

Second, we analyze the behavior close to the electrode
(small x̃) at large electrode potentials |∆φ̃| � 1, where the
electrolyte potential satisfies |Φ̃| � 1. This corresponds to
small temperatures (see section III B 2).

1. Asymptotic Analysis: Small Potentials |Φ̃| � 1

As outlined above, we begin our analytic examination of
the EDL in the limit of small dimensionless potentials |Φ̃| �
1. Our idea is to approach the EDL from the electroneutral
bulk region along the direction of decreasing values x̃. Thus,
we use the expansion of ionic concentrations around the bulk
electrolyte in eq. (42), c̃± = c̃b ± %̃γ∓ ≈ c̃b.

To this aim, we insert %̃ from eq. (43) into eq. (44) for ε̂R =

1, yielding

∇̃2Φ̃ = Φ̃. (47)

With the boundary conditions discussed above, Φ̃(0) = ∆φ̃ =

Fz+∆φ/RT and Φ̃(x̃→ ∞) = 0, we obtain the solution

Φ̃ = ∆φ̃ · exp(−x̃), (48)

%̃ = −∆φ̃ · exp(−x̃). (49)

The corresponding dimensionalized electrolyte potential,

Φ = ∆φ · exp(−x/LD), (50)

decays exponentially with damping parameter 1/LD. Thus,
the decay length in the limit |Φ̃| � 1 is the Debye length LD
(see eq. (29)).

In fig. 3, we compare the analytic predictions for this limit
(dashed green lines) with the numeric results (blue lines) for
different electrode potentials. Apparently, the analytic and
numeric results for the electric potential and the charge den-
sity are in excellent agreement for small electrode potentials,
∆φ̃ ≈ −0.4, when the condition |Φ̃| � 1 is fulfilled every-
where.

In the SI, we derive the expressions for the total EDL-
surface-charge-density and the differential capacitance (see
section SI-3 C 1).

2. Asymptotic Analysis: Large Potentials |Φ̃| � 1

Next, we discuss the EDL in the limit of large potentials
|φ̃| � 1. This regime can be found for large electrode po-
tentials ∆Φ̃ � 1 close to the electrode/electrolyte interface.
As Φ̃ = Fz+∆φ/RT , this analysis is exact in the limit of zero
temperature, T = 0.

In this case, the logarithmic terms in eq. (46) must com-
pensate the diverging potential term Φ̃. Due to the mean vol-
ume constraint (see eq. (10)) one of the logarithmic terms is
diverging if one species depletes and the other species sat-
urates, %(x = 0) = Fzα∗/να∗ . Here, we denote the sat-
urating species by the index α∗. Since electric potentials
are continuous across interfaces, the saturation species α∗ is
uniquely determined by the sign of the electrode potential,
sign(zα∗ ) = −sign (∆φ̃).

Therefore, %̃sat = −sign(∆φ̃) · c̃sat solves eq. (46), where
c̃sat = c̃b/γα∗ . Upon integration of the Poisson eq. (43), we
find

Φ̃(x̃) = ∆φ̃ ·
(
1 − x̃/L̃EDL

)2
, (51)
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where the width of the EDL depends on the electrode poten-
tial, L̃EDL =

√
2γα∗ |∆φ̃|/c̃b. Thus, the dimensionalized EDL

length is

LEDL = LD · L̃EDL =

√
2a3|∆φ̃|γα∗kBTε0εR/(ez+)2 (52)

Apparently, the decay length increases with ion size due to the
mean-volume effect. Also, it scales with the asymmetry

√
γα∗ ,

i.e., it is small for small screening species. Comparison with
the Debye screening-length shows that LEDL > LD in the limit
of small temperatures T or large potentials |∆φ̃| � 1.

In the limit of vanishing temperature, T = 0, the charge pro-
file is box shaped and is determined by the screening-length
LEDL,

%̃ = −θ(L̃EDL − x̃) · sign(∆φ̃) · c̃sat, (53)

where θ is the Heaviside function. In the SI, we calculate the
analytic expressions for the total charge in the EDL and for
the differential capacitance in this limit (see section SI-3 C 2).

In fig. 3, we compare the analytic predictions for this limit
(dashed yellow lines) with the numeric results (solid red lines)
for ∆φ̃ = −13.5. The box-shaped charge-profile is in good
qualitative agreement with the numeric results, as it almost
predicts the correct width of the EDL. However, the transition
from saturation to the bulk-state is more diffuse in the numeric
profile. This is due to the entropic, thermal influence, which
“washes out” the box. Nevertheless, the inset shows that the
charge comprised in the EDL, as predicted by the analytic ap-
proximation, is quantitatively in good agreement with the nu-
meric results. We note that this profile and its temperature
dependence is reminiscent of the Fermi distribution.

IV. NON-LOCAL INTERACTIONS: CHARGE
OSCILLATIONS

In this section, we discuss the influence of non-local inter-
actions (V0 , 0) on the structure of the EDL. As in section III,
we discuss the two limiting cases of small and large potentials
separately.

A. Static Asymptotic Analysis

1. Asymptotic Analysis: Large Potentials |Φ̃| � 1

Let us first discuss the regime of diverging electrolyte po-
tentials |Φ̃| → ∞. In this limit, the interaction contribu-
tion cannot compensate the diverging electrolyte potential in
eq. (40). The logarithmic terms are diverging if one species
depletes and we recover the same results as described in sec-
tion III B 2 for the case of vanishing interaction contributions
V0 = 0.

2. Asymptotic Analysis: Small Potentials |Φ̃| � 1

In this section, we consider the full theory with molecular
repulsion in the regime of small potentials |Φ̃| � 1. As out-
lined above, we expand the interaction free energy in gradients
of the charge density, and restrict our analysis to the first two
perturbation modes n = 0 and n = 1. With the assumption
of small charge densities %̃ � 1, we derived linear equations
above (eqs. (43) and (44)), which we rephrase in matrix form,(

∇̃2%̃
∇̃2Φ̃

)
= Ã ·

(
%̃
Φ̃

)
, (54)

where

Ã =


πE2

th

2EelV0

(
1 −

V0

Eth

)
πE2

th

2EelV0

−1 0

 . (55)

We solve eq. (54) via the eigenvalue decomposition with the
eigenvalues α̃1,2 of the matrix eq. (55). These are deter-
mined by the relative magnitudes of the three competing en-
ergy scales, Eth, Eel, and V0,

α̃1,2 = −
π

4
·

Eth

Eel
·

1 − Eth

V0 ∓

√(
1 −

Eth

V0

)2

−
8
π
·

Eel

V0

 . (56)

Each eigenvalue α̃i gives rise to a dimensionless wave-vector,

k̃1,2 =
√
α̃1,2. (57)

These determine the general solution of eq. (54) together with
the eigenvectors ãα̃i = (ãα̃i

1 , ã
α̃i
2 )T = (−α̃i, 1)T ,(

%̃
Φ̃

)
=

(
aα̃1 aα̃2

)
·

(
A1ek̃1 x̃ + A2e−k̃1 x̃

A3ek̃2 x̃ + A4e−k̃2 x̃

)
. (58)

The expansion coefficients Ai are determined by boundary
conditions and physical arguments. Apparently, the corre-
sponding wave-vectors are functions k̃1,2(T, zα, εR,να,Fαβ),
which determine the structure of the EDL,

k̃1,2 ∈


R, exponential damping,
R + i · R, damped oscillations,
i · R, oscillations.

Thus, the EDL structure depends upon the relative magnitudes
of the energies Eth, Eel, and V0 via eq. (56). In particular, the
classification of k̃± depends upon the sign of the root

W =
(
1 − Eth/V

0
)2
− 8Eel/V

0π (59)

appearing in eq. (56). Thus, the critical values V0
±, defined

by the condition W(V0
±) = 0, determine the thresholds for the

transition between the phases of EDL structure,

V0
± = Eth + 4Eel/π ± 2

√
2Eel(2Eel/π + Eth)/π. (60)



10

a)                                                         b)

FIG. 4. Phase spaces for EDL structure as functions of T and εR for equally sized ions (γ± = 0.5), see eq. (60). a) Critical interaction energies
V0
± as function of temperature (here, εR = 15, a = 1.2 nm). b) Critical interaction energies V0

± as function of dielectricity (here, T = 300 K and
a = 1.2 nm). Three phases are present: exponentially damped charge density (shaded red), decaying oscillatory charge density (shaded gray),
quasi-crystalline (shaded blue).

Thus, with eq. (60) we can draw the phase diagram for the
EDL structures. Since 0 < V0

− < V0
+, there are three phases.

In the SI, we discuss each case in great detail (see section SI-
3 D 2). Next, we give a short description of each phase.

Phase 1: 0 ≤ V0 ≤ V0
−. In this regime, α̃1,2 ≥ 0, which im-

plies a real-valued wave-vector. Thus, this phase corresponds
to exponentially damped profiles, %̃ ∝ exp(−k̃R x̃). A harmonic
analysis of the root

√
W reveals that (see section SI-3 D 3)

lim
V0→0

k̃1 = ∞ and lim
V0→0

k̃2 = 1. (61)

Thus, solutions with the damping parameter k̃1 vanish quickly
and render unphysical, whereas the limit of vanishing interac-
tions for k̃2 reproduces the “bulk”-expansion for Φ̃ � 1 from
section III B 1, see eq. (48).

Phase 2: V0
− < V0 < V0

+. In this regime, W < 0,
and, thus, the root eq. (59) becomes complex. Therefore,
the wave-vector has non-vanishing real and imaginary parts,
k̃1,2 ∈ R × i · R. This corresponds to charge-profiles of expo-
nentially damped oscillations,

%̃ ∝ exp(−k̃R x̃) · cos(k̃C x̃). (62)

Phase 3: V0
+ ≤ V0. In this regime, both eigenvalues are

real but negative, α̃1,2 ≤ 0. Therefore, k± ∈ i · R, which
corresponds to undamped oscillatory profiles. The limiting
case for indefinitely strong interactions yields

lim
V0→∞

k1,2 = lim
V0→∞

k̃1,2/LD =

0,
±i · 2π/a.

(63)

Thus, the result for limV0→∞ k2 reproduces the experimen-
tal findings obtained by AFM-measurements that the wave-
lengths λ ≈ a/2π of the observed oscillations scale with the
size of molecules a.52,64 Apparently, the incompressibility of

FIG. 5. Real and imaginary parts of the non-dimensionalized wave-
vector k̃ = k · LD as function of the relative magnitude of the energy
scales V0 and Eth (see eqs. (56) and (57)). Here, T = 300 K, εR = 15,
and a = 1.2 nm.

ions in our model prevents a further decrease of the wave-
length.

Thus, the critical values V0
± constitute exactly the bound-

aries between the different EDL phases.
In fig. 4, we illustrate the phase space of EDL structures as

functions of temperature and dielectricity (in section SI-6 A
we also show the phase space as function of ion-size, ion-
asymmetry and valency). Apparently, three distinct phases of
EDL structures are present. Tthe exponentially damped EDL
phase corresponds to the regions below V0

− (red line), whereas
the damped-oscillatory EDL phase corresponds to the regions
between the blue and red lines. Finally, the undamped oscil-
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latory EDL phase corresponds to the regions above V0
+ (blue

line). Figure 4a illustrates that temperature T and hardcore-
interactions V0 are in competition and the critical interaction
strengths V0

± increase with increasing temperature T , i.e., ther-
mal energy Eth.

Figure 4b reveals the influence of dielectricity, i.e., electro-
static forces, on the EDL phases. Apparently, the damped os-
cillatory phase becomes narrower for ILs with larger dielec-
tricity εR, i.e., smaller electric energy Eel.

We note that the exponentially damped regime for small in-
teraction strengths (small compared to electrostatic and ther-
mal energy) corresponds to the EDL structure found in sec-
tion III B 1 in the absence of hardcore-interactions. However,
as can be inferred from fig. 4a, this phase is hardly present for
reasonable temperatures.

Figure 5 shows the non-dimensionalized wave-vector as
function of the relative energy scale V0/Eth (where T=300 K,
εR=15, and a=1.2 nm). For small interaction energies V0 <
V0
− the wave-vector is real, k̃ = k̃R, which corresponds to ex-

ponentially damped profiles. In particular, the static profile at
V0 → 0 reproduces the case described in section III B where
the exponential profile is determined by the scales Eth and Eel
alone, i.e. k̃ = 1. Apparently, k̃R increases with V0 up to the
threshold V0

−, beyond which which it starts to decrease. Thus,
the EDL has minimal extension at V0 = V0

−. This suggests
that the increasing strength of the repulsive ion-correlations
compresses the screening-layer. Once the hardcore potential
exceeds V0

−, the system overscreens, i.e., the ion-layers begin
to oscillate. The damping parameter Re(k̃) vanishes exactly
when V0 = V0

+, i.e., when the system transitions into satu-
rated nano-segregation of the ion species. Interestingly, the
frequency of the oscillations Im(k̃) exhibits a local maximum
and minimum in the regime of damped oscillations. Further-
more, Im(k̃) attains its maximal value in the limit of prevailing
interaction strength V0 → ∞.

In the SI (see sections SI-3 D 4 and SI-3 D 5) we investi-
gate the influence of the individual perturbation modes Γ0

12
and Γ2

12 on the phase diagram. As it turns out, neglecting all
but the zeroth-order correction Γ0

12 results in a binary phase
diagram comprising only exponentially damped profiles and
undamped, oscillatory profiles. In contrast, neglecting the
zeroth-order correction, and taking only the first non-trivial
order Γ2

12 into account, results in a binary phase-diagram com-
prising only exponentially damped profiles and damped oscil-
latory profiles. This is the case for MFTs based on the BSK-
framework. Thus, for the “complete” set of the three different
phases, both perturbation modes Γ0

12 and Γ2
12 are neccessary.

Interestingly, for the pathologic case of negative interact-
ion-strengths V0 < 0, the phase space reduces to the two
screening phases of exponentially damped profiles and un-
damped oscillatory profiles. This follows straightforwardly
from eq. (56) (see also the discussions in sections SI-3 D 4
and SI-3 D 5).

B. Dynamic Asymptotic Analysis: Linear Stability Analysis

In this section, we complement the static analysis of sec-
tion IV A by an analytic analysis of the dynamic transport
equation in the gradient description (eq. (38)).

For this purpose, we perform a linear stability analysis and
consider the limit of small potentials, |Φ̃| � 1. Thus, the log-
arithmic terms can approximated as in eq. (42), and eq. (38)
becomes

∂t̃%̃ = −∇̃2
(
Φ̃ + ε̂R%̃

)
. (64)

We expand the electric potential around an uniform bulk-state
Φ̃b,

Φ̃ = Φ̃b +

∞∑
i=1

ε i · Φ̃i. (65)

Here, the equilibrium state is determined by the electroneu-
tral bulk-condition Φ̃b = 0 and %̃b = 0. Thus, the first order
perturbation takes the form

Φ̃1 = exp
[
s̃t̃
]
· cos

[
k̃ x̃

]
. (66)

Here, the wave-number k̃ determines the spatial distribution
of the dimensionless perturbation ε̃1 � 1, and the parameter
s̃ measures the temporal growth rate of this perturbation.

We restrict our analysis to probing the linear stability and
substitute eq. (65) and the Poisson equation into eq. (64).
Next, we collect terms up to the first order in the perturbation
mode ε̃1, which yields a dispersion relation for the growth rate
of the perturbation,

s̃(k̃) = −1 −
(
1 −

V0

Eth
+

2
π

V0

Eth

Eel

Eth
(k̃)2

)
· (ik̃)2. (67)

The uniform state is stable under perturbations if and only
if s̃ < 0. This defines an instability onset k̃c for the wave-
numbers

k̃c
1,2 = ±

1
2

√
π(V0Eth − E2

th)/EelV0. (68)

The corresponding stability criterion s̃(k̃c
1,2)<0 determines the

phase boundary at which the bulk of the IL-electrolyte be-
comes unstable. This stability threshold equals exactly the
phase boundary between the damped oscillatory phase and the
nano-segregated phase (see eq. (60)),

V0
+ = Eth + 4Eel/π + 2

√
2Eel(2Eel/π + Eth)/π. (69)

Thus, for interaction energies V0>V0
+ the bulk state of the

system becomes unstable and phase separation emerges. The
initial cause for the structure-formation can be driven by ex-
ternal agents, or boundary conditions, e.g., by the application
of an electric potential to an IL/electrode interface.

This stability analysis complements the static analysis, and
rationalizes the emergence of phase separation into ionic lay-
ers occurring at interaction energies above V0

+.
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FIG. 6. Screening profiles of the charge density %̃, as obtained
from numerical simulations of the integral description (see eqs. (30)
and (32)) for diferent values V0. The y-axis is scaled from −1 to 1,
where |%̃| = 1 corresponds to charge saturation.

C. Validation With Simulation

Our goal in this section is to compare the results of our
asymptotic analysis (see eqs. (56) to (58) in section IV A 2),
with numeric simulations of the completely-coupled system
subject to the two theoretical descriptions (integral descrip-
tion eqs. (30) and (32), and gradient description eqs. (30)
and (38)).

We start our numerical investigations with an overview of
the screening profiles for the charge density at different values
V0, as obtained from the integral description eqs. (30) and (32)
(see fig. 6). Next, we compare our different EDL-descriptions
in detail for two different energies V0, see figs. 7 and 8. Fi-
nally, we generalize these exemplary findings via a systematic
study over the complete phase-space of interaction energies,
see fig. 9. This provides a clear illustration of the complete set
of phase-transitions which the system undergoes, and high-
lights the consistency between the three descriptions.

All simulations were performed for a symmetric cell set-
up, where the IL-electrolyte is located within two oppositely
charged, blocking interfaces separated by a distance of Lcell =

60 nm. The electrode on the left side is negatively charged
with ∆φ = −100 mV, whereas, on the right side, the elec-
trode is positively charged with ∆φ = 100 mV. Since charge
saturation begins roughly at ∆φ = 70 mV, see figs. 2 and 3,
the charge distribution can safely be assumed saturated adja-
cent to the interfaces (i.e. |%̃| = 1). The electrolyte is con-
sidered as consisting of symmetric ions (γ± = 0.5) of size
a = 1.2 nm. Hence, the cell-geometry allows a “maximal”
number of roughly 100 ions. In addition, we assume room
temperature, T = 300 K, and εR = 15. The phase boundaries
corresponding to these parameters as predicted by our analytic
description are V0

− = 3 meV and V0
+ = 253 meV (see eq. (60)).

Figure 6 shows numerical results of the charge density for
the integral description (eqs. (30) and (32)), where V0 takes
values across two orders of magnitude. First, at V0 = 1 meV
the profile shows charge saturation near the two electrified
electrodes, %̃(x=0) = 1 and %̃(x=Lcell) = −1. Near both
electrodes, the profile decays exponentially towards the elec-
troneutral bulk (%̃ = 0). This corresponds to the profiles which
we discussed in great detail in section III A. Since V0 < V0

−,
this is in accordance with the analytic prediction. The next
two profiles show results for interaction energies within the
intermediate phase, V0

− < V0 < V0
+. Both simulations show

damped oscillatory profiles, where the long-ranged oscilla-
tory profiles span across multiple nanometers. Apparently,
the oscillations in the profile for V0 = 196 meV extend al-
most across the entire cell. A slight increase by 2 meV to
V0 = 198 meV causes the profile to transition into a crys-
talline phase with undamped oscillatory shape. Note that
the amplitudes between the electrodes are smaller than unity,
i.e. the bulk region consists of mixed ion layers with one
dominant ion species. An increase to V0 = 204 meV en-
hances the amplitudes of the oscillations further, i.e. enhances
segregation of ion-species. The last plot shows the corre-
sponding profile for a significantly enhanced interaction en-
ergy (V0 = 500 meV). Here, the amplitudes of the oscillations
have reached saturation (|%̃| = 1), and the electrolyte has tran-
sitioned into a crystalline phase consisting of alternating pure
ion layers. In fig. SI-2 (see section SI-6 B), we highlight that
the ionic layers coincide exactly with the ion size a. Thus,
with increasing energies V0, the interfacial structure increases
into the bulk electrolyte, until the bulk itself gets nanostru-
cured by layering of the ion species. This phase transition
occurs rapidly within a few meV.

Apparently, the numeric results for the integral descrip-
tion confirm the existence of three different screening phases.
However, quantitative deviation between our descriptions are
present. As we show in the SI (see fig. SI-4) the phase tran-
sitions from exponential decay to damped oscillations occurs
roughly at V0 = 2 meV. In addition, as can be inferred from
fig. 6, the transition from damped oscillations to undamped
oscillations appears at V0 = 200 meV. Hence, both phase
boundaries are slightly shifted to smaller values, compared
with the analytic prediction V0

− = 3 meV and V0
+ = 253 meV

(see eq. (60)). Thus, the analytic prediction, which is based on
the gradient description, slightly underestimates the influence
of V0, when compared with Eth and Eel. This can be attributed
to the fact that the gradient description is an approximation
based on only the first two perturbation modes, whereas the
integral description comprises all modes.

Next, we give a quantitative comparison between the nu-
merical results of the two theoretical descriptions, and the
analytic predictions. Here, we restrict our discussion to
the interaction energy V0 = 180 meV, i.e. the intermedi-
ate phase of damped oscillations. Figure 7 shows the pro-
files for the charge density and electrolyte electric poten-
tial as obtained from the numeric simulations, and as pre-
dicted by the analytic description for the first few nanome-
ters of the left half-cell. Figure 7a illustrates the charge dis-
tribution adjacent to the negatively charged electrode. The
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b)

a)

FIG. 7. Results for electric potential and charge density as obtained
from numerical simulations of the integral description (eqs. (30)
and (32)), and of the gradient description (eqs. (30) and (38)), and
as predicted by the analytic predictions (see eqs. (56) to (58)) at
V0 = 180 meV.

dashed blue line shows the screening profile obtained from
the gradient description, which exhibits a damped oscilla-
tory shape. This confirms the analytic prediction for this in-
teraction energy. The dashed yellow line shows the result-
ing analytic profile. Note that the analytic prediction in sec-
tion IV does not capture charge-saturation, but only deter-
mines the damping-parameter and the oscillation-frequency of
the screening-profile. However, in section III B 2, we derived
an analytic prediction for the saturation-width LEDL, valid
close to the interface (see eq. (52)). Hence, in order to recon-
struct the "complete" profile, we supplement the contribution
emerging from the bulk eq. (58), valid far away from the in-
terface, by constant charge-saturation %̃ = 1 spanning over the
width LEDL. Apparently, the analytic and numeric results of
the gradient description are quantitatively in very good agree-
ment. Finally, the solid red line in fig. 7a shows the numerical
results for the integral description. In accordance with the re-
sults shown in fig. 6, these results reproduce the analytically
predicted screening phase, but the oscillations are more pro-

FIG. 8. Screening profile for the charge density %̃ obtained from nu-
merical simulations with respect to the gradient description (eqs. (30)
and (38)), and according to the analytic description (see eqs. (56)
to (58)), at V0 = 250 meV.

nounced. Hence, the influence of the interaction energy V0

is more dominant in the integral description than in the gra-
dient description. Next, in fig. 7b) we show the profiles for
the normalized electrolyte electric potential. The dashed blue
line shows the profile due to the gradient description. It is in
accordance with the charge-profile shown in fig. 7a, see also
eqs. (42) and (43). Again, we reconstruct the analytic profile
by supplementing the profile eq. (51), valid close to the inter-
face, by the profile eq. (58), valid towards the electroneutral
bulk. Apparently, the analytic results are quantitatively in very
good agreement with the results stemming from the gradient
description. The red line shows the profile as obtained from
the integral description. Like in fig. 7a for the charge density,
the oscillations are slightly enhanced when compared with the
gradient description. In addition, the brown solid lines show
the analytic envelopes for the screening. Apparently, it cap-
tures both numerical results qualitatively very well. Interest-
ingly, the differences in electrolyte potential between the three
descriptions depend on electrode potential near the electrode
as shown in fig. SI-3 (see section SI-6 C). However, the quali-
tative agreement is independent from the boundary conditions.

In fig. 8, we show results for the charge distribution at en-
hanced interaction energy V0 = 250 meV, i.e., close to the
phase boundary V0

+ = 253 meV. As can be inferred from
fig. 6, the integral description has already transitioned to the
phase of undamped oscillations for this interaction energy.
Hence, we only show the screening profile as obtained from
numerical simulation of the gradient description (solid blue
line), and compare it with the analytic prediction (yellow line).
Apparently, in accordance with the analytic prediction, the nu-
merical profile has a damped oscillatory shape, where the os-
cillations extend over roughly 20 ion sizes. This highlights the
influence of the enhanced interaction energy, see also fig. 7.
Overall, the analytic profile shown here is in nice agreement
with the numeric results.

Finally, we conduct a quantitative comparison between the
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FIG. 9. Meta analysis of the interfacial profiles for some thou-
sand simulations. The dashed vertical yellow lines show the phase
boundaries V0

± (see eq. (60)). The dashed and solid red / blue lines
show the peak-variance of the complete set of simulations as defined
by eq. (70), with respect to the integral description (see eqs. (30)
and (32)), and with respect to the gradient-description (see eqs. (30)
and (38)). The left inset shows the onset of the oscillations at
small interaction energies. The right inset shows the variance in a
non-logarithmic setting, which highlights the occurrence of phase-
transitions.

two EDL-discriptions and the analytic description across mul-
tiple orders of magnitude of V0. To address this goal, we
examine simulation results of roughly 4000 EDL-simulations
across the parameter range from 0.1 meV up to 500 meV. As
above, we apply ∆φ = ±100 meV at the electrodes such that
we can safely assume charge saturation near the interfaces.

We evaluate the simulation results by extracting two char-
acteristic properties. First, we count the number of peaks
Npeaks(V0) appearing in each screening profile. Due to charge
saturation, a minimal number of two peaks always occurs. At
most, roughly 90 ion-layers fit into the cell geometry of length
Lcell = 60 nm. We present the number of peaks occurring in
the full cell as function of the interaction strengths in the SI
(see fig. SI-4 in section SI-6).

However, beyond the number of peaks, we want to evaluate
the peak amplitudes, too. For this purpose, we investigate the
peak variance σ(V0) of the left half-cell, defined by

σ2 =

∑Npeaks

i=1 %̃i · (x̃i)2∑Npeaks

j %̃ j

. (70)

Here, x̃i is the discrete location of the i-th peak %̃i = |%̃(x̃i)|
(such that 0 ≤ %̃i ≤ 1, where %̃i = 1 corresponds to a satu-
rated peak, i.e. a pure ion-layer) appearing in the profile of the
charge density. In the SI (see section SI-6 D), we show ana-
lytically that σ converges to Lcell/

√
3 if the set of simulation-

energies comprises energies V0 � V0
+. For such interaction

energies, the bulk electrolyte has transitioned into a crystalline
phase composed of nano-segregated ion-layers (see fig. 6).

Figure 9 shows the results for variance σ2 normalized to
its maximum Lcell/

√
3 in logarithmic scale. In this figure, the

vertical dashed yellow lines indicate the phase-boundaries V0
±,

as predicted by the analytic description (see eq. (60)). The left
inset shows the simulation-results for small values V0, and the
right inset comprises the overall results in a non-logarithmic
representation highlighting the transition. The blue dashed
line shows the results for σ according to the gradient descrip-
tion (see eqs. (30) and (38)). At small interaction energies
V0 < V0

−, the variance is zero. This corresponds to an expo-
nentially damped, non-oscillatory screening profiles (note that
the only peak, due to charge saturation, is located at x̃i = 0).
The variance starts increasing exactly at V0

− (see also the left
inset). This corresponds to an increasing number of damped
oscillations, where the amplitudes of the peaks also increase
with V0. Finally, at V0

+, the variance converges to it’s constant
limiting value Lcell/3 (see also the right inset). In this energy-
regime, the bulk electrolyte consists completely of pure ion-
layers. Altogether, these results reproduce exactly the phases
as predicted by the analytic description.

The red curve shows the results for σ according to the in-
tegral description (see eqs. (30) and (32)). In contrast to the
gradient description, the variance starts increasing from zero
at roughly V0 = 1 meV, i.e. before the analytically pre-
dicted phase boundary V0

− (see also the left inset). Hence,
the phase transition from exponentially damped screening-
profiles to damped oscillatory screening-profiles is slightly
shifted to smaller energies. Next, the variance increases ex-
ponentially up to roughly V0 = 200 meV, above which it tran-
sitions into the constant limiting value Lcell/3. Altogether,
the phase boundaries of the integral description still exhibit
a qualitatively good agreement with the analytic predictions,
although being slightly shifted to smaller values. Apparently,
this behaviour is due to the cumulative effect of the integral-
term in eq. (32), which comprises all interaction modes. In
contrast, we consider only the first two modes (n=0 and n=1)
of the gradient expansion in eq. (38).

V. MULTI-SCALE METHODOLOGY

In this section, we highlight the relation of our model to
theories on smaller and larger length scales. We discuss in
section V A, based on basic concepts from liquid state theory,
how atomistic simulations can directly parametrize our the-
ory. Next, in section V B we sketch the phenomenologic BSK
continuum approach for the description of ILs near electrified
interfaces and illustrate its relation to our work. In addition,
we state the relation of our framework to AFM-experiments
in the section SI-5 ( see also Ref. 52).

A. From Molecular Dynamics to Non-Equilibrium
Thermodynamics

Here, we explain how the parameters of our continuum the-
ory can be rigorously calculated with quantum chemistry, i.e.,
DFT and MD.
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Ab-initio DFT calculations predict the forces between ions
and molecules by calculating their electronic structure. The
DFT-generated force-fields are the focal quantity for MD
simulations,65 which calculate the classical trajectories of ions
and molecules. Results from MD simulations are often inter-
preted via profiles of the radial distribution function g(r).

Liquid state theory,50 connects this atomistic description to
thermodynamic concepts and scattering experiments.66 On the
one hand, the radial distribution function allow a straightfor-
ward comparison with the structure factor S from scattering
experiments.67,68 On the other hand, the density distribution
function g(r) can be used to calculate different correlation
functions. By subtracting its asymptotic value follows the
so-called total correlation function used in integral equation
theories (IETs), h(r) = g(r) − 1.3 In IETs, the pairwise total
correlation function h relates to the the direct correlation func-
tion c(2), used in classical density functional theory (cDFT),
via the Ornstein-Zernike relation,69

h(r) = c(2) + ρb

∫
dr′c(2)(|r − r′|) · h(r′). (71)

In cDFT, the direct pair correlation functions c(2)
αβ account for

pairwise interactions between two ions of species α and β,
i.e., the excess free energy due to pairwise ion-interactions.70

Thus, they can be obtained via the twofold functional deriva-
tive of F int,66 i.e., via our interaction potential F (see eq. (15)),

c(2)
αβ(|r − r′|) = −

1
kBT (NA)2 · Fαβ(|r − r′|). (72)

To summarize, DFT determines force fields for MD, MD
determines g(r) for liquid state theory, g(r) determines c(2) via
the Ornstein-Zernike relation, c(2) determines F int and gener-
ates our non-equilibrium thermodynamic theory.

The dynamic properties of our theory can be determined
from atomistic simulations, too. These dynamic properties are
encoded in the Onsager coefficients,45 which can be measured
experimentally.71 The Onsager coefficients can be determined
by MD simulations (“Green Kubo relations”).72–74

B. From Non-Equilibrium Thermodynamics to
Phenomenologic BSK Theory

Now, we compare our thermodynamically consistent con-
tinuum approach with the phenomenologic theory proposed
by Bazant, Storey, and Kornyshev (BSK), a seminal MFT-
approach for ILs near electrified interfaces.35 In their contin-
uum model of the EDL, BSK incorporate ion-correlations us-
ing a modified linear dielectric relation D̄ = ˆ̄εE between the
electrostatic fields D̄ and E, where ˆ̄ε = εRε0(1− `c∇

2) is their
dielectric operator. The second order gradient term in %̄ ac-
counts for non-local ion-interactions, being effectively short-
ranged with correlation length `c. This Ansatz yields a mod-
ified Poisson equation, ˆ̄ε∇2Φ = −%̄. The chemical potential
connects electric potential and charge density. Finally,

ˆ̄ε∇2Φ = Φ. (73)

holds in the limit of small potentials Φ̃.
Our model conceptually differs from BSK theory. Since we

incorporate electrostatic correlations in the free energy, non-
local ion-interactions enter the set of equations via the chemi-
cal potentials. This implies that the MFT-quantities appearing
in the BSK description, D̄ and %̄ = ∇D̄, differ from the cor-
responding quantities % and D appearing in our formalism.
In contrast to the "mean field charge density" %̄, the charge
density % relates to the "bulk"-quantity D, which does not in-
corporate ion correlations.

Despite these differences, the resulting model equations are
very similar. This can be seen as follows. The complete set of
equations eqs. (43) and (44) for the limit of small potentials
can be cast into one equation for the electric potential alone,

ε̂R∇̃
2Φ̃ = Φ̃, (74)

where the dielectric operator ε̂R is defined in eq. (45). Noting
the conceptual similarity between the dielectric operators ε̂R
and ˆ̄ε, the similarity between our model and BSK theory be-
comes apparent. In this way, we give physical meaning to the
correlation length `c in BSK theory and outline its calculation.

Finally, we emphasize that the higher-order gradient-terms,
which are phenomenologically incorporated in the BSK ap-
proach, emerge naturally within our rigorous continuum mo-
del. In particular, they merely constitutes the limiting case for
small potentials of the more fundamental integral formulation
eq. (41). Furthermore, in contrast to the phenomenological
BSK model, our order-expansion comprises also a zero-order
correction in the dielectric operator, see eq. (45). This mode is
mandatory to realize the “complete” phase-space of interfacial
profiles (see sections SI-3 D 4 and SI-3 D 5 in the SI).

VI. CONCLUSION

In this work, we complement our thermodynamically con-
sistent continuum framework for IL electrolytes by non-local
molecular repulsion. Our integral formulation can be deter-
mined by ab-initio MD simulations. Assuming short-ranged
interactions, we expand the interaction free energy in gradi-
ents of the concentrations and adjust the dynamic equations
for transport. The resulting equations connect to the phe-
nomenologic approach of BSK theory. We validate our ap-
proach by simulations and find a remarkable agreement be-
tween the different variants of our theory.

In this way, we develop a predictive multi-scale approach
to the theory of ILs at electrified interfaces. Atomistic density
functional theory calculations parameterize MD simulations,
MD simulations yield an integral formulation for molecular
repulsion in our thermodynamic consistent transport theory,
our theory can be expanded to give the phenomenological
BSK theory.

The expanded continuum approach allows to perform an-
alytic asymptotic analysis which creates deeper insights into
parameter dependence of EDL structure as we demonstrate for
the example of binary ILs. First, we have neglected molecular
repulsion. We can analytically describe both limits, the dilute
Debye limit, where charge density is exponentially decaying,
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and the concentrated crowding limit, where charge is satu-
rated due to steric effects. Second, we have taken into account
molecular repulsion. We discuss the structure of the EDL de-
pendent on energy scales for thermal motion, molecular re-
pulsion, and electric Coulomb forces and find three different
phases. For small interactions, we recover the dilute Debye
limit. For intermediate interactions, a multi-layer structure
of ions emerges which is washed out over several atom lay-
ers. For very large interactions, the analysis predicts a long-
ranged, non-decaying crystalline order of the EDL. In simula-
tions of our full theory, we eventually observe charge ordering
of quasi-crystalline multi-layers in this case.

In summary, we have proposed a thermodynamic consistent
description of ILs at electrified interfaces that closes a gap in
their multi-scale understanding. This makes possible a predic-
tive theoretical approach for tailoring ILs. We proof that the

inter-molecular forces determine the EDL structure of binary
ILs. Future works should extend the work to ternary mixtures
of ILs and incorporate the shape of molecules into the theory.
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