KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning-based autonomous vascular guidewire navigation without human demonstration in the venous system of a porcine liver

Karstensen, Lennart 1; Ritter, Jacqueline; Hatzl, Johannes; Pätz, Torben; Langejürgen, Jens; Uhl, Christian; Mathis-Ullrich, Franziska 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Purpose
The navigation of endovascular guidewires is a dexterous task where physicians and patients can benefit from automation. Machine learning-based controllers are promising to help master this task. However, human-generated training data are scarce and resource-intensive to generate. We investigate if a neural network-based controller trained without human-generated data can learn human-like behaviors.

Methods
We trained and evaluated a neural network-based controller via deep reinforcement learning in a finite element simulation to navigate the venous system of a porcine liver without human-generated data. The behavior is compared to manual expert navigation, and real-world transferability is evaluated.

Results
The controller achieves a success rate of 100% in simulation. The controller applies a wiggling behavior, where the guidewire tip is continuously rotated alternately clockwise and counterclockwise like the human expert applies. In the ex vivo porcine liver, the success rate drops to 30%, because either the wrong branch is probed, or the guidewire becomes entangled.

Conclusion
In this work, we prove that a learning-based controller is capable of learning human-like guidewire navigation behavior without human-generated data, therefore, mitigating the requirement to produce resource-intensive human-generated training data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000148708
Veröffentlicht am 15.07.2022
Originalveröffentlichung
DOI: 10.1007/s11548-022-02646-8
Scopus
Zitationen: 18
Web of Science
Zitationen: 14
Dimensions
Zitationen: 15
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1861-6429
KITopen-ID: 1000148708
Erschienen in International Journal of Computer Assisted Radiology and Surgery
Verlag Springer-Verlag
Band 17
Heft 11
Seiten 2033–2040
Vorab online veröffentlicht am 23.05.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page