KIT | KIT-Bibliothek | Impressum | Datenschutz

Structural Origin of Suppressed Voltage Decay in Single‐Crystalline Li‐Rich Layered Li[Li$_{0.2}$Ni$_{0.2}$Mn$_{0.6}$]O$_{2}$ Cathodes

Yang, Xiaoxia; Wang, Suning 1; Han, Duzhao; Wang, Kai 2; Tayal, Akhil; Baran, Volodymyr; Missyul, Alexander; Fu, Qiang 1; Song, Jiangxuan; Ehrenberg, Helmut 1; Indris, Sylvio ORCID iD icon 1; Hua, Weibo 3
1 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)


Lithium- and manganese-rich layered oxides (LMLOs, ≥ 250 mAh g$^{−1}$) with polycrystalline morphology always suffer from severe voltage decay upon cycling because of the anisotropic lattice strain and oxygen release induced chemo-mechanical breakdown. Herein, a Co-free single-crystalline LMLO, that is, Li[Li$_{0.2}$Ni$_{0.2}$Mn$_{0.6}$]O$_{2}$ (LLNMO-SC), is prepared via a Li$^+$/Na$^+$ ion-exchange reaction. In situ synchrotron-based X-ray diffraction (sXRD) results demonstrate that relatively small changes in lattice parameters and reduced average micro-strain are observed in LLNMO-SC compared to its polycrystalline counterpart (LLNMO-PC) during the charge–discharge process. Specifically, the as-synthesized LLNMO-SC exhibits a unit cell volume change as low as 1.1% during electrochemical cycling. Such low strain characteristics ensure a stable framework for Li-ion insertion/extraction, which considerably enhances the structural stability of LLNMO during long-term cycling. Due to these peculiar benefits, the average discharge voltage of LLNMO-SC decreases by only ≈0.2 V after 100 cycles at 28 mA g$^{-1}$ between 2.0 and 4.8 V, which is much lower than that of LLNMO-PC (≈0.5 V). ... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000148718
Veröffentlicht am 15.07.2022
DOI: 10.1002/smll.202201522
Zitationen: 12
Web of Science
Zitationen: 10
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Center for Electrochemical Energy Storage Ulm & Karlsruhe (CELEST)
Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2022
Sprache Englisch
Identifikator ISSN: 1613-6810, 1613-6829
KITopen-ID: 1000148718
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Weitere HGF-Programme 43.35.03 (POF IV, LK 01) Structural and Functional Behavior of Solid State Systems
Erschienen in Small
Verlag John Wiley and Sons
Band 18
Heft 25
Seiten Art.-Nr.: 2201522
Vorab online veröffentlicht am 23.05.2022
Schlagwörter 2020-024-028709 TEM
Nachgewiesen in Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page