KIT | KIT-Bibliothek | Impressum | Datenschutz

Simulation of Single Vapor Bubble Condensation with Sharp Interface Mass Transfer Model

Samkhaniani, Nima ORCID iD icon 1; Stroh, Alexander 1
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

Pure numerical simulation of phase-change phenomena such as boiling and condensation is challenging, as there is no universal model to calculate the transferred mass in all configurations. Among the existing models, the sharp interface model (Fourier model) seems to be a promising solution. In this study, we investigate the limitation of this model via a comparison of the numerical results with the analytical solution and experimental data. Our study confirms the great importance of the initial thermal boundary layer prescription for a simulation of single bubble condensation. Additionally, we derive a semi-analytical correlation based on energy conservation to estimate the condensing bubble lifetime. This correlation declares that the initial diameter, subcooled temperature, and vapor thermophysical properties determine how long a bubble lasts. The simulations are carried out within the OpenFOAM framework using the VoF method to capture the interface between phases. Our investigation demonstrates that calculation of the curvature of interface with the Contour-Based Reconstruction (CBR) method can suppress the parasitic current up to one order.


Verlagsausgabe §
DOI: 10.5445/IR/1000148733
Veröffentlicht am 15.07.2022
Originalveröffentlichung
DOI: 10.3390/thermo2030012
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2673-7264
KITopen-ID: 1000148733
Erschienen in Thermo
Verlag Multidisciplinary Digital Publishing Institute (MDPI AG)
Band 2
Heft 3
Seiten 149–159
Vorab online veröffentlicht am 30.06.2022
Schlagwörter volume-of-fluid (VoF); mass transfer models; bubble condensation; OpenFOAM; parasitic current
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page