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Abstract

This PhD thesis covers my work done at the KIT under the supervision of Prof. Thomas
Schwetz-Mangold, in the field of neutrino-oscillation phenomenology. I first give an his-
torical overview of neutrino physics, covering the Standard Model of particle physics, how
the neutrino was discovered, and the experimental developments that led to the discov-
ery of the neutrino, and subsequent experimental developments. Then I cover the latest
analysis of the three-neutrino oscillation parameters with all relevant experimental data,
which was done as a part of the NuFit collaboration. The global dataset contains op-
posing tendencies, which have low statistical significance, but may develop into a serious
tension with future exposure.

Then I cover my work undertaking a statistically rigorous analysis of the sterile-
neutrino hypothesis, using data from terrestrial experiments, as well as solar data with a
focus on the recent claimed evidence of sterile neutrinos from the Neutrino-4 and BEST
experimental collaborations. The significant statistical tensions within the datasets are
also evaluated, as the solar data constrains the sterile-neutrino hypothesis.

Finally, I consider the so-called neutrino dipole portal, where a neutrino interacts with
a new heavy neutral particle via a magnetic interaction. This interaction was proposed
to explain an observed excess at MiniBooNE. I consider this type of interaction with
the different flavours of neutrino at the future experiment DUNE, which will use new
liquid-argon detector technology, which will be able to distinguish electron and photon
tracks. I find that DUNE is well placed to probe the neutrino dipole portal at currently
unconstrained parameter space, and will be competitive with other proposed experiments
such as SHiP.
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Chapter 1

Introduction

Corpora sunt porro partim primordia rerum,
partim concilio quae constant principiorum.
sed quae sunt rerum primordia, nulla potest vis
stinguere; nam solido vincunt ea corpore demum.

TITI LVCRETI CARI DE RERVM NATVRA
LIBER PRIMVS

Bodies, again,
Are partly primal germs of things, and partly
Unions deriving from the primal germs.
And those which are the primal germs of things
No power can quench; for in the end they conquer
By their own solidness;

Translation, courtesy of Tufts University [1]

Lucretius describes in his poem On the Nature of Things (circa 50 B.C.) the atomic
hypothesis: that matter is composed of indivisible, elementary particles called atoms
(from the Greek word ατoµoς, “uncuttable”). The atomic hypothesis has its origins
in the fifth-century B.C. from the Greek philosophers Leucippus and Democritus, who
hailed from the coast of Thrace [2], and whose works we have lost. The atomic hypothesis
marks one of the earliest attempts to investigate the nature of matter; a quest that still
intrigues many scientists today.

Whilst the atomic hypothesis is millennia old, even as late as 1897, the idea of matter
being a continuous field (like electricity) was defended by Lord Kelvin [3,4]. The first em-
pirical evidence for the atomic hypothesis comes from J. J. Thomson’s experiments, which
demonstrated a fixed charge-to-mass ratio of the charge carriers of electricity, suggesting
a particle interpretation [2]. Thomson went on to hypothesise, from the wavelength of
optical light, that atoms had a radius of roughly one Angstrom, and hypothesised that
the equilibrium electronic configurations determined the chemical properties of the ele-
ments. By using a physical magnetic analogue, he deduced a shell model of electronic
states, qualitatively similar to the hydrogenic wave functions [4].
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It is a testament to the reductive hypothesis, that Thomson could have gleaned such
an accurate qualitative picture of the microscopic components of ordinary matter from
such a humble starting point. Indeed, his investigations may be seen as the precursor
to quantum chemistry. His discovery was also the origin of elementary particle physics,
and kicked off a series of investigations that birthed modern physics: the particle inter-
pretation of light and the successful explanation of the UV catastrophe with black-body
radiation by Planck; the invention of quantum mechanics, which accurately described
atomic phenomena like hydrogen’s absorption lines; and the discovery of radioactivity,
accurately described by Fermi’s effective four-point interaction.

Further study of cosmic rays revealed that there were several mesons, whose produc-
tion and decay, it was correctly reasoned, occurred via different interactions: one weak
and one strong.1 The investigation into the nature of mesons, the organisation of the zoo
of particles, led to the quark hypothesis and the formulation of quantum chromodynamics;
whereas the study of their decay and the nature of radioactivity led to the development
of electroweak theory. With the technical developments of non-abelian gauge theory, we
now have the highly theoretically and phenomenologically successful Standard Model of
particle physics.

The success of the symmetry principles that led to chiral perturbation theory, quantum
chromodynamics, and the pursuit of unification of forces that led to electroweak theory
emboldened theoretical particle physicists to hypothesise the unification of lepton and
hadron number, and also grand unified theories, where all interactions could be described
by a single Lie group. The discovery of a new space-time symmetry, namely supersym-
metry, was hypothesised to resolve fine-tuning problems like the hierarchy problem, or
the cosmological-constant problem.

However, precision electroweak tests and the absence of new heavy resonances at
the LHC outside of the Higgs have pushed the scale of symmetry restoration to energies
that are difficult to explore experimentally, or excluded the “natural” space of parameters
(although the triggers of collider searches prohibit constraining long-lived particles). This
has led to growing interest in weakly coupled, light new physics; this thesis will focus on
this particularly in the context of neutrino physics.

One of the most interesting phenomena in neutrino physics is their flavour oscilla-
tions. Due to the weakly interacting nature of neutrinos, the confirmation of neutrino
oscillations, which started from the solar-neutrino deficit, took decades. And as evidence
in favour of the deficit grew, the question of how to generate its mass generated much
theoretical activity to construct models, at first in relation to unified theories and sponta-
neous CP violation, and later in the context of minimal extensions of the Standard Model,
which hypothesise new scalars or sterile neutrinos. Nowadays, there is a plethora of neu-
trino mass-generation models, and experimental data searching for oscillations. There
are also numerous outstanding anomalies in these data, such as the MiniBooNE anomaly
and the gallium anomaly, which may be indications of new physics in the neutrino sector.

The plethora of data from different experiments, which sometimes lead to contra-
dictory conclusions, some indicating new physics, others not, as well as the difficulty
accumulating statistics, due to the weakly interacting nature of the neutrino, make it im-
portant to do global statistical analyses, to obtain the maximum usage of available data

1For a succinct but broad summary of these historical developments, which I have relied on, see
chapter one of [5].
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and to determine the true significance of anomalies, as well as their compatibility with
other experiments. In this work, I cover my work done during my PhD at KIT, under the
supervision of Prof. Thomas Schwetz-Mangold, in which I was involved with the global
fits of the three-neutrino oscillation parameters, a global Feldman-Cousins Monte-Carlo
statistical analysis of the sterile-neutrino hypothesis, and probing the neutrino dipole
portal at the future neutrino experiment DUNE.

In chapter 2, I give an historical introduction to the neutrino. I first give an overview
of the Standard Model in section 2.1, and then give an introduction into the formulation
of electroweak theory and the neutrino in section 2.2. In section 2.3, I give an historical
overview of neutrino mass models, and then in the following sections 2.4 to 2.6, I give an
historical overview of the establishment of the phenomenon of neutrino oscillations. Then
in section 2.7, I overview the early evidence of a light sterile neutrino, and I conclude in
section 2.8 with a brief overview of topics in neutrino astrophysics and cosmology.

In chapter 3, I present a review of the current status of the three-neutrino oscillation
parameters, and my contribution to the latest NuFit results, updating the reactor analysis
with new data from Neutrino 2020 conference; this chapter also provides the foundations
of the simplified simulation for neutrino phenomenology and the basic statistical tools.
In chapter 4, I cover my work in the statistical analysis of the sterile-neutrino hypothesis,
which is more involved due to the inapplicability of Wilks’ theorem, and requires much
more computationally involved Monte Carlo simulations. I not only constructed my own
fast χ2 routines for individual experiments, but highly optimised the routines from other
collaborators, including the multidimensional pull minimisation for STEREO; auxiliary
details are presented in appendix A. Finally, in chapter 5, I cover my work investigating
the neutrino dipole portal at DUNE; the dipole portal was originally considered to resolve
the MiniBooNE anomaly, and we found that the dipole portal can be well probed at
DUNE.

This thesis is based on the following publications:

• I. Esteban, M. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, The fate of
hints: updated global analysis of three-flavor neutrino oscillations, J. High Energy
Phys. 2020 178 (Sep, 2020), [arXiv:2007.14792]

• J. M. Berryman, P. Coloma, P. Huber, T. Schwetz, and A. Zhou, Statistical signif-
icance of the sterile-neutrino hypothesis in the context of reactor and gallium data,
J. High Energy Phys. 2022 55 (Feb, 2022), [arXiv:2111.12530]

• T. Schwetz, A. Zhou, and J.-Y. Zhu, Constraining active-sterile neutrino transition
magnetic moments at DUNE near and far detectors, JHEP 2021 200 (July, 2020),
[arXiv:2105.09699].
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Chapter 2

An Historical Introduction to
Neutrino Physics

In this chapter, I first give an overview of the Standard Model with a focus on the
neutrino sector in section 2.1; then in section 2.2, I review the origins of the neutrino
and the development of the theory of its oscillation, as well as the electroweak model for
leptons; in section 2.3, I review the historically significant neutrino mass models and the
seesaw mechanism, which ends the theory part of my introduction.

In section 2.4, I review the discovery of the solar neutrino deficit and the history
of the confirmation of solar oscillations; then in section 2.5, I review how atmospheric
oscillations were discovered. In section 2.6 I give the early history of determining the
oscillation parameters quantitatively and a brief overview of the statistical methods. In
section 2.7 I touch upon some evidence for a light sterile neutrino, and I conclude this
chapter with some aspects of neutrino cosmology and astrophysics in section 2.8.

2.1 Overview of the Standard Model
The Standard Model is a quantum field theory described by the gauge group SU(3)C ⊗
SU(2)L ⊗ U(1)Y. I will not cover the Standard Model at the quantum level; technical
aspects of the quantisation of non-abelian, chiral gauge theories, ghosts, Feynman rules
etc. can be found in the standard texts [6–8]. The colour group SU(3)C describes the
strongly coupled force of the gluon. The form of perturbation theory of the S-matrix with
asymptotically free quark fields, is only valid above the confinement scale, where at high
energies the coupling constant is small. Below that, the quarks are bound in colourless
states like mesons or nucleons. Interactions between leptons and hadrons can be factorised
into a perturbative leptonic part, which can be calculated using perturbative methods,
and a hadronic part, which is phenomenologically parameterised into form factors.

The SU(2)L gauge group operates only on the left-handed fields, the charges of which
are called weak isospin. The U(1)Y describes hypercharge interactions, which acts on
both left- and right-handed fields, albeit with different charges. The left-handed fields
transform as isospin doublets

L 7→ exp
[
iθa(x)Ia + iη(x)YL

2

]
L, where Ia ≡ σa

2 (2.1)
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Generation: 1 2 3 I I3 Y

left-handed lepton L =
νe

eL

 νµ

µL

 ντ

τL

 1
2

+1
2

−1
2

-1

left-handed quark Q =
uL

dL

 cL

sL

 tL
bL

 1
2

+1
2

−1
2

1
3

right-handed lepton ℓR = eR µR τR 0 0 -2

right-handed quark qR = uR

dR

cR

sR

tR

bR
0 0 +4

3
−2

3

Table 2.1: Charges of the three generations of fermion fields.

are the generators for SU(2), whilst the right-handed fields transform as

ψR 7→ exp
[
iη(x)YR

2

]
ψR. (2.2)
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Figure 2.1: The cross section for hadron pro-
duction at the Z resonance for two, three
and four neutrino species, compared to data;
courtesy of [9].

The three generations of fermion fields
and their charges are given in table 2.1.
The electric charge is given by Q = I3 +
Y/2 (for a kind of derivation of the elec-
troweak gauge group, see [6, §11]). Whilst
there are no theoretical constraints on the
number of generations, precise measure-
ment of the Z resonance from electron-
positron colliders constrain the number of
light neutrino flavours with electroweak
couplings to be three [9].

As per gauge theory, electroweak in-
teractions are determined by the covariant
derivative

ψ†
L (iσµDµ)ψL + ψ†

R (iσµDµ)ψR,

Dµ = ∂µ − igIσ · Aµ − ig′Y

2 Bµ, (2.3)

where σµ =
(
1 σ

)
, σµ =

(
1 −σ

)
, and

Aµ are the gauge fields for the SU(2)L
group, and Bµ is the gauge field for the U(1)Y group. For one lepton generation, the
interaction term for the charged-current interactions may be written

L(CC)
int ∋ g√

2
(
ν†

eσ
µeLW

+
µ + e†

Lσ
µνeW

−
µ

)
, where W±

µ ≡
A1

µ ∓ iA2
µ√

2
. (2.4)

The neutral-current interactions are determined by the diagonal components of the co-
variant derivative (in weak-isospin space),
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L(NC)
int ∋ −iψ†

Lσ
µψL

(
gI3A

3
µ + g′YL

2 Bµ

)
− i

(
ψ†

Rσ
µψR

)
g′YR

2 Bµ. (2.5)

We will see below, when we introduce the Higgs, that the mass spectrum for the neutral
gauge bosons is

AEM
µ = sin θWA

3
µ + cos θWBµ, Zµ = cos θWA

3
µ − sin θWBµ, (2.6)

where tan θW ≡ g/g′ is the weak mixing angle. By defining QEM ≡ I3 + YL/2 = YR/2, we
can write the neutral-current term as

L(NC)
int ∋ −i g

cos θW

[(
ψ†

Lσ
µψL

)
I3Zµ +

(
ψγµψ

)
sin θWQEMBµ

]
, (2.7)

where one must make the substitution Bµ = cos θWA
EM
µ − sin θWZµ. For neutral leptons

like the neutrino, the heavy neutral current is purely left-handed, however for charged
leptons, it will have both left- and right-handed couplings.

The Higgs field Φ ∼ (1
2 , 1) is a scalar SU(2)L doublet, with I = 1

2 , and hypercharge
Y = 1, whose Lagrangian contains the famous Mexican-hat potential,

|DµΦ|2 − V
(
Φ†Φ

)
, V

(
Φ†Φ

)
≡ −µ2|Φ|2 + λ|Φ|4, Φ ≡

(
ϕ+ ϕ0

)T
. (2.8)

The potential determines the symmetry-breaking Higgs vacuum ⟨Φ⟩0, which in the unitary
gauge adopts the form

(
0 v/

√
2
)T

, where v is a real number. The other degrees of
freedom (ϕ+ and ℑϕ0) are transferred to the gauge bosons in the unitary gauge. The
gauge-boson masses then come from the covariant derivative,

|Dµ ⟨Φ⟩0|
2 = v2

4

[
g2W+

µ W
−µ + 1

2
(
gA3

µ − g′Bµ

)2
]
. (2.9)

The first term defines the W -boson mass as MW = gv/2, whereas the second defines the
mass matrix, which is diagonalised by eq. (2.6)

v2

8
(
A3

µ Bµ

)( g2 −gg′

−gg′ g′2

)(
A3µ

Bµ

)
= 1

2
(
Zµ, A

EM
µ

)(M2
Z 0

0 0

)(
Zµ

Aµ
EM

)
, (2.10)

where M2
Z = v2(g2 + g′2)/4. Since perturbation theory is done in the mass basis, where

the propagator ∼ (p2 − m2)−1 is well-defined, the eigenstates of the mass matrix define
the physical basis of propagating particles.

Fermion masses are generated by Yukawa couplings∑
i,j=1,2,3

[
Y u

ijQ
i†
L Φ̃uj

R + Y d
ijQ

i†
L Φdj

R + Y ℓ
ijL

i†Φℓi
R + h. c.

]
, where Φ̃ ≡ iσ2Φ∗. (2.11)

Note that the up-type quarks have two units of hypercharge more than the down-type
quarks, which is why we need Φ̃, which transforms as Y = −1,

Φ̃ 7→ iσ2 exp
[
−iθa(x)σ∗

a + η(x)
2

]
Φ∗ = exp

[
iθa(x)σa − η(x)

2

]
Φ̃, (2.12)
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where we have used the relation σ2σ
∗
aσ2 = −σa. In the unitary gauge, the hypercharge

conjugate Φ̃ flips the top and bottom components, so that the VEV v can connect with
the top components of the quark doublet. Note how we have not written a neutrino mass
term L†Φ̃νR, as there is, by definition, no right-handed neutrino.

Note how the fermionic mass term is not diagonal. Since particles propagate as mass
states (see the discussion on coherence in section 2.2), we must diagonalise the mass
matrix MΨ

ij ≡ Y Ψ
ij v/

√
2, via biunitary transformations ΨL 7→ V Ψ

L ΨL, ΨR 7→ V Ψ
R ΨR,

Mu
ij 7→

(
V u†

L

)
ik
mu

k (V u
R )kj = V u†

L diag(mu,mc,mt)V u
R (2.13)

Md
ij 7→

(
V d†

L

)
ik
md

k

(
V d

R

)
kj

= V d†
L diag(md,ms,mb)V d

R (2.14)

M ℓ
ij 7→

(
V ℓ†

L

)
ik
mℓ

k

(
V ℓ

R

)
kj

= V ℓ†
L diag(me,mµ,mτ )V ℓ

R (2.15)

(for a proof that this is possible, see [10, §4]). Since neutral interactions are diagonal in
weak-isospin space, the left- and right-handed currents are invariant under such trans-
formations, Ψ†

L,RΨL,R 7→ Ψ†
L,RV

Ψ†
L,RV

Ψ
L,RΨL,R = Ψ†

L,RΨL,R. (We have ignored gamma/Pauli
matrices because they only act on spinor indices, not flavour indices.) However charged-
current interactions mix flavours of quarks and leptons,

ui†
Lσ

µdi
LW

+
µ 7→

(
V u†

L V d
L

)
jk
uj†

L σ
µdk

LW
+
µ , νi†

L σ
µℓi

LW
+
µ 7→

(
V ℓ

L

)
ij
νi†

L σ
µℓj

LW
+
µ . (2.16)

For the quarks, we have intergenerational couplings like the up-strange charged-current
coupling, which induce kaon oscillations, given by the CKM matrix UCKM ≡ V u†

L V d
L .

If neutrinos were massless, we could absorb V ℓ
L by the transformation νi

L 7→
(
V ℓ

L

)
ij
νj

L,
however since we know that neutrinos do have mass, there will be a similar PMNS matrix
UPMNS ≡ V ν†

L V ℓ
L , which can be parameterised as1 0 0

0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδCP

0 1 0
−s13e

iδCP 0 c13


 c12 s12 0

−s12 c12 0
0 0 1


e

iα1 0 0
0 eiα2 0
0 0 1

 , (2.17)

where sij ≡ sin θij and cij ≡ cos θij. The last term are the Majorana phases, which have no
physical meaning for Dirac neutrinos, due to the lepton-number symmetry νi 7→ e−iφiνi.
(The reason for there only being two is that only phase differences matter in physical
quantities.) The CP-violating phase δCP cannot be transformed away, and determines
the amount of CP violation, with δCP = 0, π restoring CP in the neutrino sector.

Due to the lightness of the neutrinos, they are emitted in charged-current interactions
as a coherent quantum superposition of mass eigenstates (for a discussion on coherence
see section 2.2),

|να⟩ = U∗
α1 |ν1⟩ + U∗

α2 |ν2⟩ + U∗
α3 |ν3⟩ . (2.18)

In the simplified derivation (although see the discussion on coherence for a list of caveats),
the neutrino mass states are assumed to be plane waves with equal momentum, whence
the oscillation probability is

P (να → νβ) = |⟨νβ(t) | να(0)⟩|2 =
∣∣∣Uβje

iEjtU∗
αj

∣∣∣2
=
∑
i,j

UαiU
∗
αjU

∗
βiUβj exp

(
−i

∆m2
ijL

2E

)
,

(2.19)
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where we have made the approximations Ei −Ej = ∆m2
ij

2E
and t = L, which are valid in the

ultra-relativistic limit. In the two-flavour approximation, the only non-zero parameters
are θ12, ∆m2

12 and one obtains the oscillation probabilities

Peµ = sin2 2θ · sin2
(

∆m2

4Eν

L

)
, Pee = 1 − Peµ. (2.20)

The quantity Losc ≡ π
2

4Eνℏc
∆m2 is called the oscillation length, which is the distance of

maximum oscillation. Terrestrial experiments tune their neutrino energy and source-to-
detector distance to be at this maximum.

There are important phenomenological differences when oscillations occur in mat-
ter, rather than vacuum. Neutrinos will coherently scatter off the electrons, protons
and neutrons via charged- and neutral-current scattering. This scattering induces an
effective potential in the wave-function picture of neutrino propagation (for a deriva-
tion, see [10, §9] and [11, §8]), which in flavour space is the diagonal matrix V ≡√

2GF diag
(
Ne − 1

2Nn,−1
2Nn,−1

2Nn

)
, where Ne,n is the electron, neutron number den-

sity, respectively. The neutron number density appears due to the flavour-blind neutral-
current scattering, and can be transformed away by a flavour-blind phase rotation. This
results in the equations of propagation in matter,

i d
dt

(
νe

νµ

)
=
(

−∆m2

4E
cos 2θ +

√
2GFNe

∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ

)(
νe

νµ

)
. (2.21)

In the case of constant density, two-flavour oscillations in matter can be understood as
replacing the vacuum angle and oscillation length with its matter values

sin2 2θm = S2(
C −

√
2GFNe

)2
+ S2

, where S = ∆m2

2E sin 2θ, C = ∆m2

2E cos 2θ, (2.22)

and Lm
osc = 2π√(

C −
√

2GFNe

)2
+ S2

. (2.23)

When
√

2GFNe = C, the matter mixing is maximal sin2 2θm = 1 and is called the MSW
resonance, after Mikheev, Smirnov and Wolfenstein. If the electron density slowly varies
with propagation, then the matter mixing (i.e. the propagation eigenstates) adiabati-
cally varies; this adiabatic rotation basis also has significant consequences for oscillation
phenomenology, as flavour transitions are then driven by the slowly varying electron den-
sity, rather than quantum-mechanical oscillations (θm(t) : 0◦ 7→ 90◦ adiabatically during
evolution). For more details, see the relevant sections of [10,11].

If the matter density is extremely high, then it may become opaque to neutrinos (the
scattering length becomes small), which occurs for the Earth at extremely high neutrino
energies. Furthermore, if the neutrino density is extremely large (dense neutrino gas),
which can occur in a supernova, collective oscillations can take place, whereby neutrinos
can themselves generate a matter potential, and the density-matrix formalism is needed
(see [12]). We will not address this, as it is not relevant for this work.
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2.2 The Birth of the Neutrino and their Oscillations

Figure 2.2: Sketch of the prompt and de-
layed scintillation signal, used in the experi-
ment that detected the neutrino; from [13].

Whilst most accounts credit Wolfgang
Pauli for the invention of the neutrino,
his original suggestion in his now-famous
1930 letter (with the title “Dear radioac-
tive ladies and gentlemen”) connected the
problem of the continuous beta spectrum
with the need for additional constituents of
the nucleus to obey the spin-statistics re-
lation; indeed he originally called this neu-
tral particle a neutron, which he hypothe-
sised had a mass similar to the electron and
resided in the nucleus. (My presentation of
this history follows [14].) It was Fermi in
1934 who coupled a neutrino-electron vec-
tor bilinear (which he saw analogous to the
photon vector field), to a proton-neutron
current, in analogy to quantum electrody-
namics [15, 16]: in what could be called
the first (successful) application of effec-
tive field theory.1 One crucial observation, which was essentially the generalisation of the
fundamental ideas of quantum electrodynamics, was that the number of neutrinos and
electrons need not be constant, but could create and destroy one another:

“Die totale Anzahl der Elektronen, sowie der Neutrinos, ist nicht notwendigerweise
konstant. Elektronen (oder Neutrinos) können entstehen und verschwinden. . . . , dass
jedem Übergang von Neutron zu Proton das Entstehen eines Elektrons und eines Neutrinos
zugeordnet ist. Dem umgekehrten Prozess, Verwandlung eines Protons in ein Neutron,
soll dagegen das Verschwinden eines Elektrons und eines Neutrinos zugeordnet sein. Man
bemerke, dass hierdurch die Erhaltung der Ladung gesichert ist.” [15]

The first detection of an antineutrino occurred in the first reactor antineutrino ex-
periment by Reines, Cowan, et al., using liquid scintillation and a delayed coincident
signal. This signal, a prompt pair of 511 keV gammas from positron annihilation and
then scintillation from neutron capture, allowed excellent discrimination from cosmic-ray
backgrounds [13, 17], and is still used for reactor experiments today (see fig. 2.2). The
results of the 1953 experiment were reported in 1956. Shortly afterwards, Lee and Yang
suggested, based on meson-decay observations, that parity was not conserved in weak
interactions, despite being conserved in electromagnetic and strong ones [18], which was
confirmed by Wu et al. in 1957 [19].

There were many attempts to describe a universal theory of the Fermi interaction
based on symmetry principles (see [10, §1] for a list of references, and whose detailed
historical overview I have relied on), however one crucial step was the introduction of
lepton-number conservation by Konopinski and Mahmoud in 1953 [20], which explained
the non-observation of certain lepton-number-violating decays. With the evidence that

1Fermi does not even assume the equations of motion for the “heavy” particles: the proton and
neutron; he merely assumed they can be described by a wave function.
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parity was not conserved, Salam [21], Landau [22], and Lee & Yang [23] simultaneously
suggested in 1957 that this was due to a two-component theory of a massless neutrino,
where the handedness of the neutrino was fixed; later that year, the Majorana formulation
of the neutrino, where a small mass was allowed, was published by Case [24]. (A few
months prior, McLennan had noted that there are no differences between a massless
Majorana neutrino and the two-component theory [25].)

The Lorentz structure of the coupling (vector minus axial vector) was elucidated
in 1958 by Sudarshan & Marshak [26], and Sakurai [27] by symmetry principles, and
also Feynman & Gell-Mann [28] based on other arguments; the left-handedness of the
neutrino was confirmed experimentally in 1958 by Goldhaber, Grodzins and Sunyar [29],
by indirectly measuring the neutrino polarisation in the electron-capture decay of 152Eu
to a metastable state of 152Sm.

During these developments, Pontecorvo suggested that, in analogy to K0 oscillations,
neutrinos and antineutrinos could also mix and oscillate [30]. Although this would violate
lepton number (or neutrino charge, as he put it) Pontecorvo was motivated by a rumour,
which turned out to be false, that Davis had observed a lepton-number violating process
[31]. (Davis would later use this experimental technique to pioneer his famous Homestake
experiment, which was the first evidence for neutrino oscillations.)

Since Pontecorvo did not know about the flavours of neutrino, he could not postulate
flavour oscillations. In 1962, in the first neutrino accelerator experiment [32], electron-like
events were searched for in an off-axis muon-neutrino beam (created by colliding accel-
erated protons on a beryllium target). The absence of electron-like events confirmed the
hypothesis that electron and muon neutrinos were different particles. This was important
for the “intermediate-meson theory” (the existence of the W boson), which would have
otherwise incorrectly predicted µ → eγ decay, as pointed out by Feinberg in 1958 [33].

Simultaneously in 1962, Maki, Nakagawa and Sakata proposed flavour oscillations
under the two-neutrino hypothesis [34], although they did not pursue the idea in depth.
However, by 1968, Davis would report the first results of his experiment to detect solar
neutrinos: an upper bound on the solar-neutrino flux, which was smaller than theoretical
predictions [35].2 The indication of such a deficit prompted Gribov and Pontecorvo in
1969 to suggest that the cause of this deficit might be due to almost-massless neutrinos
undergoing flavour oscillations, with frequency ∆ = (m2

1 −m2
2)/(2p) [38].

Simultaneous to these developments was the unification of the electromagnetic and
weak interactions. An important technical development in 1954 was the invention of
Yang-Mills theory by generalising gauge theory to non-abelian groups [39]. In 1957,
Schwinger suggested that the two charged vector bosons of SU(2) gauge theory generated
the weak force, and the neutral boson generated the electromagnetic force [40]. Later
in 1961, Sheldon Glashow noticed that the neutral boson of SU(2) did not couple to
the charged leptonic currents. He argued that using a principle of partial symmetry (in
analogy with the partially conserved axial current), to allow for gauge-violating mass
terms for the vector bosons, there should be a new neutral boson (which we now call the
Z boson), which could mix with the photon [41].

Although it was generally accepted that gauge invariance necessitated massless gauge
2John N. Bahcall’s contribution seems to have been overlooked when Davis was awarded the Nobel

Prize in 2002, despite Bahcall’s pioneering efforts predicting the solar neutrino flux, crucial to the claim
of a deficit [36] and his involvement in proposing the Homestake experiment [37].
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bosons, and a theory of massive gauge bosons would not be renormalisable, doubt first
came in 1962 in an article by Schwinger suggesting a loop-hole [42]. The first explicit
realisations of a massive gauge boson in a Lorentz-invariant theory came in 1964, by
two independent papers: one by Higgs [43], which only dealt with classical field theory;
another by Englert and Brout [44], which also considered leading-order quantum correc-
tions. Only a few months later, Guralnik, Hagen and Kibble published another similar
paper [45]. This mechanism was incorporated into Glashow’s model by Weinberg and
Salam by 1968 [46, 47], however the crucial question of renormalisability was still open,
and was addressed only as conjecture by Weinberg and Salam. This issue was finally
resolved by ’t Hooft and Veltman in 1972, where they introduced dimensional regularisa-
tion as a way to renormalise non-abelian gauge theories that also respects Ward identities
(gauge invariance or positivity) [48].3 The existence of neutral-current neutrino interac-
tions, as predicted by the electroweak theory, was discovered first in the Gargamelle
experiment at CERN in 1973 [49] and then Fermilab in 1974 [50]. The discovery and
confirmation of a third heavy lepton a few years later, which Martin Perl called the
tau, and the inference of its associated neutrino, completed the Standard Model leptonic
sector [51, 52].

Coherence In 1976, Nussinov addressed an important conceptual issue for neutrino
oscillations [53]. Since oscillations are due to mass differences, each neutrino mass state
will travel at a different speed — after long enough propagation, the wave packets of the
different states will physically separate and cease to oscillate. Nussinov’s treatment was
merely heuristic, but in 1981, Kayser fleshed out the wave-packet formalism for neutrino
oscillations, and also realised that kinematic coherence was crucial [54], i.e. there has to
be enough momentum uncertainty in the parent particle and other decay products like
charged leptons, so that individual neutrino mass eigenstates cannot be kinematically
resolved.

The early history of neutrino oscillations was dominated by the solar neutrino deficit,
which I review in section 2.4. It took decades for the deficit to gain credibility, due to the
complexity of solar modelling and important phenomenology that needed to be discov-
ered, like matter oscillations and the MSW resonance. For this reason it was not until the
90s that theorists began to examine the foundations of neutrino oscillations. There was
much confusion over the assumptions made to derive the neutrino-oscillation formula: for
example the original derivation of the formula by Gribov and Pontecorvo assumes that
the mass states have equal energy. This condition is not Lorentz invariant, and will be
violated in different frames. This caused many authors to propose alternative oscillation
formulae (for a review of this history as well as the various theoretical issues, see the
review by Beuthe [55]). This issue is also nicely highlighted in Winter’s 1981 deriva-
tion of neutrino oscillations from electron-capture decay [56], where energy-momentum
conservation fixes the neutrino kinematics.

Another important theoretical aspect, pointed out by Giunti, Kim and Lee in 1992
[57], was the problem of creating a Fock space for the weak eigenstates. Since the prop-
agators of quantum field theory have a definite mass i/(�p − m), it is impossible to use
weak eigenstates for perturbation theory. In 1993, Giunti, Kim, Lee and Lee proposed a

3I omit a discussion of the technical details of chiral non-abelian gauge theory such as anomaly
cancellation and the BRST formalism. I refer the reader to the references in §§9, 11 of [6]; see also [7, §16].
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prescription in quantum field theory [58], in which neutrinos were internal lines of a Feyn-
man diagram and the amplitudes of the different mass states were summed coherently
(fig. 2.3). External particles, however, were described as wave packets. (There would still
be confusion due to the arbitrariness of the form of the external wave packet, which was
eventually resolved in 2002 by Beuthe [59].)

Aeµ =
∑

i

µ−
p

n

π− ν̄i

Source Detector
e+

Figure 2.3: Feynman diagram for muon-to-electron neutrino flavour oscillation.

Thus, we see that neutrino oscillations are an explicitly quantum-mechanical phe-
nomenon on a macroscopic scale. Whilst (partial) macroscopic coherency is also exhibited
in systems such as a toroidal Josephson junction, (see for example the seminal Caldeira-
Leggett model [60]), where the magnetic flux through the torus is quantised, neutrinos
are perhaps unique in that they exhibit perfect coherence over thousands of kilometres.
For a more recent discussion on issues such as Lorentz invariance of neutrino oscillations,
on whether charged leptons can oscillate, see Akhmedov and Smirnov’s articles [61–63].
Whilst these discussions are purely academic for SM neutrinos, the issue of coherence
does become relevant for a fourth, light sterile neutrino of mass 1–10 eV.

2.3 Neutrino-Mass Models
Introduction Recall that in the chiral representation, a four-component spinor ψ =(
L R

)T
transforms under SU(2)L ⊗ SU(2)R in the following way

L 7→ exp
[
−σ

2 · (iθ + ϕ)
]
L R 7→ exp

[
−σ

2 · (iθ − ϕ)
]
R, (2.24)

where L, R are two-component spinors, θ are the parameters for spinor rotations, and
ϕ are for spinor boosts. (Throughout this section I use two-component spinors unless
otherwise stated.) Since the rotations have the same sign, whilst the boosts have opposite
signs for left and right spinors, the simplest Lorentz scalar must mix the left and right
two-component spinors L, R,

mD(L†R +R†L). (2.25)
This is thoroughly dissatisfying as a theory of neutrino mass, as one must introduce three
SM singlets νR for each neutrino flavour, which have no interactions apart from the Higgs.
Furthermore, there is no explanation for why the neutrino is almost massless. Fortunately,
there is an alternative to Dirac’s formulation of spinors, first developed by Majorana [64].
We shall not need its quantum theory, which is covered in [24] and [10, §6.2]. We shall
merely note that, with the aid of the relation σ2σ

T
i σ2 = −σi, we can write down the
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Majorana mass

mM(LTiσ2L+ L†iσ2L
∗) = mM χ̄χ, where χ ≡

(
L iσ2L

∗
)T

(2.26)

is called a (four-component) Majorana spinor. Note that the antiparticle of L is Lc ≡
iσ2L

∗, which is derived in most textbooks when determining the charge-conjugation oper-
ator C ≡ iγ2. Thus, we can understand the four-component Majorana spinor χ as using
the antiparticle of the left-handed component to generate the right-handed component.

To explain neutrino mass, we need a model that induces one of these mass terms, and
which preferably explains why it is almost massless. In the so-called Standard-Model
Effective Field Theory, neutrino masses can be generated by the non-renormalisable
electroweak-invariant dimension-five operator, first published by Weinberg in 1979 [65],

yν

Λ
(
LTiσ2σL

)
·
(
HTiσ2σH

)
. (2.27)

In eq. (2.34), I demonstrate that ΨTiσ2σΨ transforms as the adjoint representation.

The seesaw mechanism Already in the first quantitative discussion of neutrino os-
cillations by Gribov and Pontecorvo in 1969 [38], Majorana mass terms for the electron
and muon neutrinos were explicitly introduced to induce oscillations — however they did
not address how to generate them in a way that respected electroweak gauge invariance.
When Pati and Salam first introduced their grand unified theory (GUT), with left-right
symmetry, they found in 1974 that neutrino masses could naturally arise from it [66]. This
idea was followed up in 1975 by Mohapatra and Pati [67], who developed a GUT, whose
CP violation was naturally suppressed by the parameter (mWL/mWR)2 sin 2θR/ sin 2θL,
where mWL is the mass of the Standard-Model W boson, and mWR is the mass of a new
heavy gauge boson that couples to right-handed currents. This suppression due to the
ratio of a lighter and heavier scale is the essence of the seesaw mechanism, and indeed
they even mentioned in the introduction

“We conjecture that a qualitative link between [the] breakdown of CP invariance and
tiny but nonzero neutrino masses may emerge in such an extended scheme, which may be
considered elsewhere.”

Another precursor to the seesaw mechanism came later that year, in a footnote by a
paper by Fritzsch, Gell-Mann and Minkowski [68] and was followed up in more detail by
Cheng in 1976 [69], who sought to explain the lightness of the neutrino by setting its bare
mass to zero, and inducing a small Majorana mass term through radiative corrections
with a heavy Majorana neutrino NM (he did not take this to be sterile, but was motivated
by emerging evidence of a new heavy charged lepton, which we now know as the tau, and
took NM to be its doublet partner). He also considered inducing a small mixing between
the SM neutrino and the new Majorana one, νe+ϵNM for small ϵ, to explain the hierarchy
of masses between neutrinos and electrons; this was based off analogous earlier work to
explain the mass hierarchy in the quark sector by Zee in 1974 and 1976 [70,71]. In 1977,
Cheng and Li [72, 73] showed that such a lepton-flavour-violating Majorana mass term
did not contradict bounds on processes like µ → eγ, 3e etc., due to a suppression similar
to the GIM mechanism (1970) in the quark sector [74].

In 1977, Peter Minkowski first wrote down the type-I seesaw mechanism [75], which
was popularised by Gell-Mann, Ramond and Slansky [76] and Yanagida [77, 78] in the
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context of SO(10) GUT. Mohapatra and Senjanović also discussed it in 1980 by [79] in
the context of a left-right symmetric model with gauge group SU(2)L ⊗ SU(2)R ⊗ U(1).
(I personally find their suggestion particularly elegant, as they connect the smallness of
the neutrino mass with the suppression of right-handed currents. The neutrino mass
is suppressed by me/mWR , and in the limit of an infinitely heavy WR, the neutrino is
massless and there is maximal parity violation.)

In type-I seesaw, a new electroweak-singlet (sterile), right-handed, two-component
neutrino NR is introduced, with a Majorana mass term, whose mass is connected with
the UV scale of new physics; the Lagrangian also contains a Dirac mass term, generated
by the SM Higgs in the same way as the charged leptons:

Lmass = −mEWN
†
RνL −MUV

1
2N

†
Riσ2N

∗
R + h. c.

= −1
2
(
ν†

L [N c
R]†
)
Ĉ−1

(
0 mEW

mEW MUV

)(
νL
N c

R

)
+ h. c.,

(2.28)

where Ĉ ≡ iγ2γ0 = (iσ2)L ⊗ (−iσ2)R is the particle-antiparticle conjugation operator, and
ψc ≡ ψTĈ−1. Expanding to leading order in ε ≡ mEW/MUV, the mass eigenstates and
there masses become

(νlight)L = νL − ενc
R, mlight = ε ·mEW

(νheavy)L = ενL + νc
R, mheavy = MUV.

(2.29)

One can formulate the theory of Majorana neutrinos with the four-component Majorana
spinors χα =

(
(να)L (να)c

L

)T
, where α = light, heavy.

As it is expected that the new-physics scale, which I call MUV, is many orders of
magnitude larger than the electroweak scale, ε is expected to be very small, thus naturally
explaining the smallness of the neutrino mass. (And if one takes the electroweak Yukawa
coupling to be small, so mEW ∼ electron mass, then MUV ∼ TeV.) If the Majorana mass
is generated by the spontaneous breaking of global lepton-number symmetry, the (very
weakly coupled) massless Nambu-Goldstone mode is called the majoron, which was first
considered in 1980 by Chikashige, Mohapatra and Peccei [80].

In type-II seesaw, a Majorana mass for the left-handed SM neutrino is generated
directly. This can be achieved via a Higgs triplet ∆ ∼ (−1, 2), which, to the best of my
knowledge, was first discussed in the context of lepton-number violation by Konetschny
and Kummer in 1977 [81],

Lmass = y∆
(
Lciσ2σL

)
· (U∆) + h. c.

= −
√

2y∆
(
νc

LνL∆0 + ec
LeL∆++ +

√
2νc

LeL∆+
)

+ h. c.,
(2.30)

where σ is the vector of Pauli matrices, whose second component is σ2, and

U ≡


− 1√

2 0 1√
2

i√
2 0 i√

2
0 1 0

 , ∆ ≡

 ∆0

∆+

∆++

 , L ≡
(
νL
eL

)
; (2.31)

the superscripts on ∆ reflect their electric charge. Note that the Pauli matrices operate in
weak-isospin space, whereas the conjugate Lc ≡ LTĈ−1 operates on the Lorentz indices.
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To see that
(
Lciσ2σL

)
∼ (−1,−2), we note that since L has hypercharge -1, it’s clear that

the combination has hypercharge -2. To see how it transforms under SU(2)L, first discard
Ĉ, which only operates on spinor indices, and then apply an infinitesimal transformation

LTiσ2σiL 7→ LT
(

1 + i
ϵa
σT

a

)
iσ2σi

(
1 + i

2ϵaσa

)
L. (2.32)

One can move the σ2 left by conjugating σ2σ
T
a σ2 = −σa, whence one obtains

LTiσ2

(
1 − i

2ϵaσa

)
σi

(
1 + i

2ϵaσa

)
L = LTiσ2

(
σi − i

2 [σa, σi]
)
L. (2.33)

Recall from representation theory, that the adjoint representation is defined by the ac-
tion of the commutator, that is Aa(σb

2 ) = [σa

2 ,
σb

2 ] = iεabc
σc

2 . Therefore, we have the
transformation (with a sign flip from swapping the indices of Aa)

LTiσ2σiLUim 7→ LTiσ2σjL (1 + iϵaAa)ji Uim. (2.34)

Inserting UU † = 1, and noting that U †AaU = Ta, where Ta is the triplet representation
of su(2), we see LTiσ2σLU manifestly transforming as a triplet under SU(2)L.

The triplet will develop a VEV like the Higgs (with associated Majoron [82]; see [83]
for a more recent analysis with a sterile neutrino),

⟨σ · U∆⟩ ≡
(

⟨∆+⟩
√

2 ⟨∆++⟩
−

√
2 ⟨∆0⟩ − ⟨∆+⟩

)
=
(

0 0√
2v∆ 0

)
, (2.35)

thereby generating a tree-level Majorana mass for the neutrino. However, since one is
now modifying the electroweak sector, one has to consider constraints from, for example,
the electroweak parameter ρ ≡ M2

W/(MZ cos θW )2, due to the contribution from the new
scalar (see [84] for an early discussion).

In 1980, Zee proposed a neutrino-mass model of type II, where the neutrino mass is
generated at the one-loop level and is calculable [85]. (This suppression of the neutrino
mass due to it being generated radiatively is not possible for the triplet [84].) A scalar
h is introduced, which has electric charge, but is a singlet under SU(2)L. (This can be
well motivated from SU(5) → SU(3)⊗SU(2)L ⊗U(1)Y, GUT-to-SM symmetry breaking.)
Since it is charged, it cannot attain a VEV due to gauge invariance, so one must have two
Higgs doublets to introduce a trilinear scalar interaction (here my presentation follows
[84]), with Lagrangian

Lmass = yabL
T
a Ĉ

−1iσ2Lbh+ f12H
T
1 iσ2H2h+ h. c. (2.36)

Notice that since iσ2 is antisymmetric, the operators for diagonal couplings y11 and f11
vanish, such that only couplings off-diagonal in flavour space are permitted. Further note
that Ĉ−1 makes the first term a Lorentz scalar, and that (ψTiσ2ψ) ∼ (0, 2) for ψ ∼

(
1
2 , 1

)
,

whence h ∼ (0,−2).
In 1980 Cheng and Li also discussed [84] using a doubly charged singlet scalar (coupled

to the right-handed leptons) to induce a neutrino mass at the two-loop level (see fig. 2.4),
however they did not investigate the model in detail. (Konetschny and Kummer discussed
both the singly and doubly charged scalar, but in the context of lepton-number violation,
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Figure 2.4: Left: one-loop diagram, which generates the neutrino mass in Zee’s model.
Middle two-loop diagram, which generates the neutrino mass à la Cheng & Li, and Babu.
Right: two-loop diagram that induces neutrino mass by Petcov and Toshev.

not neutrino mass.) Later in 1988 Babu investigated this suggestion as a realistic mass
model in more depth [86], albeit with a singly charged singlet instead of a multiplet like
Cheng & Li’s original suggestion.

In addition to these scalar extensions, it is possible to extend only the fermionic lepton
sector to induce a radiative Majorana mass, one of the first examples being that of Petcov
and Toshev in 1984 [87] (later rediscovered by Babu and Ma in 1988 [88]). By introducing
a fourth heavy neutrino with both Dirac and Majorana masses, which mixes with the
light SM neutrinos, two-loop Majorana masses for the SM neutrinos can be induced by
double W-boson exchange fig. 2.4. The diagram is proportional to the mass of the central
neutrino mα, which is why a heavy neutral lepton is needed, otherwise the neutrino mass
is protected (multiplicatively renormalisable; see [89] for an instructive overview).

The models discussed above were historically important, but since then various other
radiative models with one-, two- and three-loop diagrams involving new scalars or lepto-
quarks have been proposed. For a review, see [90]; see also the references of [91, §1].

Another novel extension of the fermionic lepton sector, which can induce tree-level
neutrino masses, was considered by Foot et al. in 1989 [92], but see also [93,94]. (This is
called type-III seesaw by some [95, 96], however for others type-III seesaw means some-
thing different [97–99]. The former epithet is due to a complete classification of tree-level
realisations of the dimension-5 effective operator, which generates neutrino mass [100].)
An hyperchargeless (Y = 0), SU(2)L triplet of right-handed (two-component) leptons ΣR
is introduced,

σ · UΣR =
(

Σ0
R

√
2Σ+

R
−

√
2Σ−

R −Σ0
R

)
, where (2.37)

LΣ =
∑

α=e,µ,τ

yαϕ
Tiσ2σ · UΣ†

RLα − 1
2 Tr

(
MΣΣT

RĈ
−1ΣR

)
+ h. c.

= −
∑

α=e,µ,τ

yα

[√
2ϕ0

(
Σ+

R

)†
eL + ϕ0

(
Σ0

R

)†
νL + ϕ+

(
Σ0

R

)†
eL +

√
2ϕ+

(
Σ−

R

)†
νL

]

− 1
2 Tr

(
MΣΣT

RĈ
−1ΣR

)
+ h. c.

(2.38)

Recall that L ∼
(

1
2 ,−1

)
, ϕT ∼

(
1
2 ,+1

)
, so in the first term, the SM fields ϕTiσ2σLα form

a hypercharge singlet, isospin triplet. Note that in Foot et al.’s original paper, they use
Σc

L instead of ΣR. Upon electroweak symmetry breaking, a Dirac mass term between Σ0
R
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and νL is generated, leading to a mass matrix like type-I seesaw.
For a modern review on the seesaw mechanism in the context of GUTs, see [99, §§6,7].

For a comprehensive early review, see [101].

Dirac vs. Majorana As already pointed out by Case in 1957 [24], novel effects due to
the Majorana nature of a fermion are suppressed by factors (m/E)2, for Majorana mass
m and where E is the characteristic energy scale for a relevant process. Case already
recognised that double β decay was a crucial observable for the differentiation between
the Dirac or Majorana nature of the neutrino, noting that,

“The only experimental conclusion that follows from the [Majorana] theory is that a
maximum degree of nonconservation of parity [ i.e. massless neutrinos] implies a minimum
probability of double β decay while conservation of parity implies a maximum probability
of double β decay. Loosely speaking, this says that “parity nonconservation” and “double
β decay” are conjugate variables.”

(He credits [25] for first noting this.) Since neutrino oscillations do not violate the
total lepton number, they cannot distinguish between Dirac or Majorana masses, either
in vacuum [102, 103], or matter [104], although lepton-number violating processes like
ν ↔ ν, like those originally considered by Pontecorvo, may be sensitive to Majorana
phases [105]. For an overview of neutrinoless double-beta decay, see [10, §14.3].

The existence of Dirac neutrinos is determined by whether the Lagrangian has a
global U(1) symmetry; if no such symmetry exists, then lepton number (the charge of the
U(1) symmetry) is violated, and we have Majorana neutrinos. However, this cannot be
determined by simply inspecting the mass term, as identified by Wolfenstein in 1981 [106]
(see [107] for a discussion with arbitrary number of generations). Wolfenstein considered
the case of pseudo-Dirac neutrinos, where the mass matrix has a global U(1) symmetry,
however the charge of the symmetry is not the same as the lepton number of the weak
sector. Namely, it is possible to write the mass term in the Dirac form only, but in a
basis that is not the weak-flavour basis. Therefore, there is no global U(1) symmetry of
the whole Lagrangian, and a small Majorana mass is generated by radiative corrections.

2.4 Solar Oscillations
The oscillations of solar neutrinos were the first kind of neutrino oscillations to be ob-
served. Whilst the notion of neutrino oscillations seems natural to us today, at the
time there was much scepticism of Davis’s experiment; furthermore, enormous effort was
needed in both nuclear-physics experiments and solar-physics simulations to create what
is now known as a standard solar model (for an historical overview with relevant refer-
ences, upon which I have relied, I refer the reader to the scientific biography of John
Bahcall [108]; also see the appendix of [109]). Numerous alternative solutions to the solar
neutrino problem were also put forward, which we shall briefly review here.

The foundations of any prediction for the solar neutrino flux lie in stellar nucleosyn-
thesis. Ions in the plasma of the sun collide with each other, with the collision energy
determined by the Maxwell-Boltzmann distribution with the local thermodynamic pa-
rameters (temperature, density, pressure, etc.). Some of those collisions will result in
quantum-tunneling ions and nuclear fusion (the physics of Coulomb-barrier tunneling
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was first worked out by Gamow: see §10.1 of [10] for relevant references).
The primary source of solar neutrinos comes from the pp chain, where protons col-

lide to make deuteron, which again collides with protons to make isotopes of helium,
which collide to make beryllium and also boron. The cross section of each relevant nu-
clear reaction has to be measured in laboratory experiments. (One important historical
development was the measurement of the 3He(α, γ)7Be cross section, which was one thou-
sand times larger than expected [110]; another is the calculation by Bahcall in 1964 that
showed the capture of 8B neutrinos by 37Cl was enhanced by 18 times due to transitions
to excited states of 37Ar [111].) These along with observations of the surface composition,
opacity, equation of state and age, are input parameters for a detailed, computationally
sophisticated simulation of the sun.

The first realistic calculation of the solar neutrino flux by Bahcall, Fowler, Iben and
Sears [36] was crucial for the design of the Homestake experiment. (This is because
the neutrino-capture cross section increases sharply with energy, so the neutrinos from
8B contribute the most, despite it being the least common reaction in the sun — and
therefore the most difficult to predict). The complicated procedure for predicting the
neutrino flux, and the dependence of the model on input parameters, meant that Bahcall
would continue refining the solar model for the rest of his career. (§1.17 of [109] gives
a taste of some of the scepticism that solar modelling could be accurate enough for the
purpose of neutrino physics.) His efforts eventually bore fruit, as his standard solar model
could independently reproduce the precise measurements of solar helioseismology [112].

A list of non-neutrino solutions to the solar neutrino problem can be found in §5
of [109]. Whilst most involve modifying solar physics to reduce the 8B flux (to explain
the Homestake deficit), there are some more exotic suggestions, such as a black hole in
the solar core [114], and WIMPs altering solar physics in its core [115–117]. Other non-
oscillation solutions were also suggested: electron-neutrino decay by Bahcall in 1972 [118]
(see also §9.4 of [109]), spin precession (via solar magnetic fields into the right-handed
sterile state) from a neutrino magnetic moment by Cisneros and Werntz in 1971 [119]
(see also §9.3 of [109]), and violation of the equivalence principle (flavour-dependent
gravitational couplings) by Gasperini in 1988 [120].

An important development for the solar neutrino problem was the consideration of
matter effects. It was Wolfenstein in 1978 who first considered how off-diagonal, coherent
forward scattering (analogous to kaon oscillations), could induce oscillation in the case
of massless neutrinos, and how they modified oscillations from massive neutrinos [121].
Further investigation of the effect of matter on solar neutrino propagation by Mikheyev
and Smirnov in 1986 led them to discover that the varying electron density of the sun
could lead to resonant oscillations within the sun, for a wide range of neutrino oscillation
parameters, including small mixing [122]. They also noted that in some regions of param-
eter space, the resonance effect would only affect high-energy 8B neutrinos. The physics
of the resonance, its analysis as adiabatic conversion in the form of a two-level crossing
and its analogy with the Landau-Zener transition was immediately made by Bethe [123],
Parke [124] and Haxton [125].

The resonance in matter, called the MSW effect, was a turning point for the solar
neutrino problem. Since the deficit of observed neutrinos was ∼ 3 times less, mixing
parameters between all three neutrinos would need to be maximal to explain the deficit,
which was viewed as unattractive [126]. (Indeed in 1988, Bahcall, Davis and Wolfenstein
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Figure 2.5: Solar neutrino flux, as calculated by Bahcall, Serenelli and Sarbani in 2005
[113] (a PDF version can be found at www.sns.ias.edu/~jnb/).

wrote a review article in Nature titled Solar neutrinos: a field in transition [127].) In 1986,
using only a two-neutrino framework, Rosen and Gelb identified two possible solutions
to the solar neutrino problem: one with small and the other with large vacuum mixing
angles [128]. Large mixing angles were seen to be unattractive at the time (Rosen and
Gelb state that the solution with small mixing angles was “a most attractive solution”),
particularly as the other example of flavour mixing in the quark sector had small mixing
parameters. (Bahcall and Bethe would write a paper in 1990 predicting the small mixing
angle would prevail [129].)

During these theoretical developments, other experiments were proposed to confirm
the deficit observed by Homestake. The second experiment to observe solar neutrinos was
Kamiokande-II. This experiment was original proposed as a nucleon decay experiment
at a mine in the mountain Kamioka, Japan — hence the acronym KamiokaNDE —
by observing 3000 tonnes of water with photomultiplier tubes, to detect any anomalous
decays of protons, as predicted by grand unified theories. The experiment was upgraded
to observe elastic scattering of solar neutrinos on electrons, by observing the Cerenkov
radiation of a scattered electron.

Kamiokande-II was able to infer the direction (and energy spectrum) of the incoming
neutrinos, thereby correlating the signal to the sun, and timing information was also
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used, for example to observe the day-night asymmetry, when solar neutrino propagation
through the Earth at night can regenerate electron neutrinos [130]. However, the scat-
tering cross section is much smaller than the absorption cross section so the event rate
was much lower than Homestake. This required much effort to reduce backgrounds from
radioactive species in water; furthermore, since any light high-energy particle can mimic
the Cerenkov-radiation signal, this technique has poor particle identification — another
problem for background reduction. (See [131] and §13.2 of [109] for details.) This meant
that K-II had a high energy threshold for neutrino events, and was only sensitive to 8B
neutrinos — but it confirmed the deficit by Homestake and unequivocally determined
the origin of the neutrinos in 1989 [132]. (It was also fortunate to have been operating
during the famous SN1987A neutrino burst [133], which still provide relevant constraints
on new physics in the neutrino sector.)

During these developments, another radiochemical neutrino experiment, similar to the
original Homestake one was under development. First suggested by Kuzmin in 1965 [134],
the experiment used 71Ga as a neutrino target (instead of 37Cl). Thus one can measure pp
neutrinos, the most intense neutrino flux, owing to the low energy threshold of gallium.
Two such experiments were undertaken: one at Gran Sasso called GALLEX (Gallium
European Experiment) and another at Baksan Valley called SAGE (Soviet American
Gallium Experiment). Both were very ambitious, as at the time of development, the
required amount of gallium needed was several times the total annual production [127].
The European group used gallium in solution, whereas the Soviet group used metallic
gallium; both used a similar method of radiochemical extraction, calibrated by injecting a
low artificial amount of 71Ge which was then extracted; the detector efficiency is calibrated
with an intense 51Cr source (see [109, §11] and references therein for a detailed overview
of the experimental technique).

SAGE first published confirmation of the solar-neutrino deficit in 1991 [135]; GALLEX
followed in 1992 [136,137], which bolstered confidence that the deficit was not due to an
error in the calculations of Bahcall, as the pp neutrinos were directly related to solar
luminosity, therefore being insensitive to the details of the internal dynamics of the sun.

The final proof that solar neutrinos were oscillating (instead of more exotic physics),
came from the Sudbury Neutrino Observatory (SNO), which aimed to observe all solar
neutrinos using the flavour-blind neutral-current disintegration of the deuterium nucleus
by a neutrino, as proposed by Chen in 1985 [139]. The neutron emitted from the disin-
tegrated nucleus would be captured by deuterium in the detector and release a 6.25 MeV
photon. In 2002, SNO confirmed a total neutrino flux, consistent with Bahcall’s calcu-
lations as well as other solar neutrino observatories, thereby unequivocally proving that
solar neutrinos oscillated [140].

2.5 Atmospheric Oscillations
Atmospheric neutrinos are produced in the same manner as accelerator neutrinos:

p(cosmic ray) + air → π±(K±) + X

π±(K±) → µ± + νµ/νµ

µ± → e± + νe/νe + νµ/νµ,

(2.39)
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Figure 2.6: SNO charged-current (red), neutral-current (blue), electronic recoil (green)
and the Super Kamiokande electronic recoil (grey) measurements, and their combination
(solid contours), compared with the Standard Solar Model prediction (dotted contour);
courtesy of [138].

high-energy cosmic protons (and heavier nuclei) smash onto target nuclei in the atmo-
sphere, creating mesons (mostly pions and kaons), which decay into muons and neutrinos.
The basic detection technique, using a large water Cerenkov detector, with a veto layer
to discard Cerenkov radiation from passing cosmic muons, was suggested already in the
early 1960s [141,142]. The first (indirect) detection of atmospheric neutrinos occurred in
the Kolar Gold Field Mine, South India, in 1965, which used plastic scintillator plates to
detect horizontal muons, produced from charged-current interactions of the muon neu-
trino with rock [143, 144] (the direction of the muon excludes the possibility that it was
produced from cosmic rays, as muons do not have such a long penetration depth through
rock — the mine acted as a veto); and also in the East Rand Proprietary Gold Mine,
South Africa, also in 1965, using walls of mineral-oil liquid scintillators [145].

Similar experiments were undertaken in the decades following, with some reporting
deficits compared to Monte Carlo calculations (see the references in [10, §11], from which
I draw much of the history), most notably the nucleon-decay experiments in the late
’80s and early ’90s: Kamiokande [146] and IMB [147, 148], for whom the atmospheric
neutrinos were merely a background. This was called the atmospheric neutrino anomaly.
However other experiments based on scintillating iron plates like NUSEX [149, 150] and
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Fréjus [151,152] observed no deficit. The parameters relevant for solar neutrino oscillation
were not relevant for the energies and propagation lengths of neutrinos created from
cosmic rays in the atmosphere, leading to the possibility that a deficit be due to νµ ↔ ντ

oscillations — furthermore, no experiment observed a deficit of electron neutrinos.
Atmospheric oscillations were definitively confirmed by the Super Kamiokande ex-

periment, a much larger 50 kiloton version of Kamiokande, located in the same mine,
with more than 11 000 photomultiplier tubes. In 1998, SuperK published its results,
where they could successfully explain the angular dependence of the neutrino flux by
oscillations. Since the propagation length depends on the zenith angle the could also
demonstrate sinusoidal dependence of the atmospheric neutrino flux with L/Eν [153].
The MACRO experiment at Gran Sasso, which consisted of a box of ten layers of con-
crete sandwiched between thin tracking layers, surrounded by liquid scintillators [154],
simultaneously released similar results, albeit at a much lower significance [155].

The deficit was also confirmed in 1999 by Soudan 2, Soudan Minnesota, [156], a 963-
ton fine-grained tracking calorimeter; the detector consisted of tubes of argon gas sand-
wiched between high-voltage copper-foil electrodes and corrugated steel sheets. Charged
particles ionised the argon gas, and the ions would drift to the electrodes, registering a
signal [157,158]. Later in 2003 it also observed a zenith-angle dependence of the neutrino
flux, and oscillations in L/Eν [159].

2.6 Entering the Precision Era of Neutrino Oscilla-
tions

As one has seen from the history, it took many decades to establish that neutrinos do
indeed oscillate. Because they interact so weakly, large detectors with long exposure
times need to be built. Since neutrino experiments are generally statistics limited, it
is crucial to combine the datasets of different experiments to determine the oscillation
parameters (of the standard PMNS parameterisation eq. (2.17)) most precisely. Already
in 1980, there were attempts to combine data from nuclear reactors (which are an intense
source of antineutrinos) [160], as well as reconciling their data with those from the deep-
mine experiments that measured atmospheric neutrinos, and Homestake’s solar-neutrino
data [161,162].

As more and more data from different experiments accumulated, it became possible
to make quantitative statements on the oscillation parameters. To do so, one introduces
a parameter χ2 with known statistical properties, in order to characterise how well a
model reproduces data. In the early 1990s, an approximate two-flavour oscillation prob-
ability was used, with the two parameters ∆m2 and sin2 2θ. When there was no spectral
information on the solar neutrinos, the statical parameter was defined as

χ2(∆m2, sin2 2θ) =
∑
ij

(Ri
data −Ri

pred)V −1
ij (Rj

data −Rj
pred), (2.40)

where the indices i, j run over the three observations from the Homestake, Gallium and
Kamioka experiments. The covariance matrix V determines the correlated statistical
properties of the ratios Ri, due to statistics, experimental systematics, and theoretical
systematics of the solar model. Under certain conditions, the quantity ∆χ2 ≡ χ2 − χ2

min,
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Figure 2.7: KamLAND confirms the large-angle MSW solution in 2003 [166] with Kam-
LAND allowed regions in blue and solar data in red (left); and latest 2013 data from
KamLAND showing neutrino oscillations [167] (right). Note that KamLAND was the
first experiment to measure geoneutrinos, which are emitted from naturally occurring
238U and 232Th [168].

will be distributed as the chi-squared distribution with two degrees of freedom (known as
Wilks’ theorem [163]), although a more detailed discussion of the nuances of statistics is
dealt in chapter 4. In 1994, for a mass-squared splitting ∆m2

sol ∼ 10−5 eV2, both small-
and large-angle solutions could explain the data [164]; furthermore, if the mass splitting
were to be extremely small, the MSW resonance would cease to operate, and one could
obtain the vacuum-oscillation solution for ∆m2

sol ∼ 10−10 eV2 and sin2 2θ ∼ 1 [165].
Due to the large propagation distance, it is not possible to observe actual oscillations

in energy of the solar neutrino spectrum, which is why the solar data was so ambiguous.
To observe spectral oscillations, the Kamioka Liquid scintillator Anti-Neutrino Detector
(KamLAND) was proposed. At the site of the Kamioka observatory it observed neutrinos
from 53 nuclear power plants in Japan (as well as a few outside Japan) at distances from
80–800 km, and an average distance of ∼ 180 km. By 2003, KamLAND confirmed the
large-angle MSW solution [166], and since then has seen oscillations in L/Eν fig. 2.7
(right).

Due to the wide energy range and propagation lengths of atmospheric neutrinos, the
Super Kamiokande data was much richer and could determine the oscillation parameters
roughly, with a best fit (χ2 minimum) at ∆m2

atm = 2.2 · 10−3 eV2, sin2 2θ = 1, in the two-
neutrino νµ ↔ ντ oscillation framework. The long-baseline accelerator experiment K2K
(KEK to Kamiokande) [169] was designed to confirm these oscillations, using neutrinos
generated from the KEK laboratory. At KEK, a 12 GeV proton beam is focused onto
an aluminium target. The resulting mesons are allowed to decay until a beam dump of
iron and concrete, which stops all charged particles except muons with E > 5.5 GeV.
The resulting muon beam is monitored to check its direction, which is important because
the far detector (Super Kamiokande) is located 250 km away; a precision of 0.01 mrad
is required for the beamline, which was achieved using GPS, and the muon beam itself
must have milliradian stability. A near detector is located 300 m away, shielded from
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non-neutrino beam products by 70 m of dirt. The near detector is a smaller one-kiloton
version of the SuperK water Cerenkov detector, equipped with 680 photomultiplier tubes.
The neutrino beam resulting from muon decay has an average energy of 1.3 GeV. Since
neutrino interactions at GeV energies depend on the complex nuclear structure (due to
the larger four-momentum transfer), the near detector must be used to calibrate the
Monte Carlo prediction for the far detector. Analysis of the data during the first phase of
SuperK was reported in 2003 [170], which was consistent with atmospheric oscillations.
During the upgrade of SuperK, an implosion destroyed a majority of photomultiplier
tubes, which resulted in reduced coverage for SuperK II [171]. The analysis of the final
data was published in 2005, which confirmed atmospheric oscillations at the 4σ level,
with a best-fit at ∆m2

atm = 2.2 · 10−3 eV2, sin2 2θ = 1 [172].
MINOS was a follow-up experiment, which used higher-energy protons of 120 GeV on

graphite at the NuMI beam at Fermilab to produce a 1–3 GeV muon-neutrino beam. It
had a near detector 1 km away, as well as a 5.4 kton far detector 735 km away, located
in the Soudan mine, where the original atmospheric-neutrino experiment was hosted.
MINOS first reported results in 2007 [173] and operated until 2013 [174], providing very
precise measurements of the atmospheric oscillation parameters.

Due to the lower energies, MINOS and K2K were only able to observe a deficit of
muon-neutrino events at their far detectors, as the tau neutrinos can only be observed with
the production of a heavy tau. The OPERA experiment, which first started operation
in 2006 [175], aimed to do this, using 400 GeV protons from the CERN SPS beam on a
graphite target to produce a νµ beam of average energy 17 GeV. The detector, located
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Figure 2.8: Reactor experiments plotted
against their exposure and baseline — note
how the short-baseline experiments have a
reduced exposure, as it is difficult to build
large detectors very close to the reactor;
courtesy of [176].

730 km away at the Gran Sasso Labora-
tory, comprised of two 900 ton super mod-
ules, made of alternating layers of lead and
emulsion film, called an emulsion cloud
chamber. OPERA reported its first can-
didate event in 2010 [177], and published
its final analysis of the 2008 – 2012 data in
2015 [178], reporting five candidate events,
corresponding to a 5σ discovery of tau
neutrinos in a muon-neutrino beam due to
oscillations.

The CHOOZ and Palo Verde experi-
ments were reactor experiments proposed
to test νµ ↔ νe oscillations at ∆m2

atm ∼
10−3eV2 with a baseline of L ∼ 1 km,
which translates to a bound on θ13 in the
three-flavour framework. CHOOZ oper-
ated in France near its border with Bel-
gium, and reported its first bound in 1998
[179], whilst Palo Verde operated in Ari-
zona of the United States and reported
its first bound in 2000 [180]. Many other
short-baseline experiments operated dur-
ing this time, probing smaller baselines
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Figure 2.9: Visual representations of the two mass hierarchies.

and ∆m2, which are shown in fig. 2.8. See [10, §12.2] and the references therein for
an overview of these reactor experiments. The efforts to pin down θ13 would be carried
on by the reactor experiments Daya Bay (China) [181], Double Chooz (France) [182] and
RENO (Korea) [183], which all announced in 2012 observations of non-zero θ13. I shall
cover the current status of the global fit of three-neutrino oscillations in chapter 3.

The history I have just outlined focused exclusively on the two-flavour framework,
which is adequate for analysing the results of a single experiment. However, in order to
combine results to obtain a consistent global fit of all parameters, one needs the full three-
flavour framework. Because of the hierarchy ∆m2

sol ≪ ∆m2
atm, the mass states mainly

involved solar oscillations have much more similar masses than the third mass state:
fig. 2.9. One typically makes the identifications ∆m2

sol = ∆m2
21, ∆m2

atm = |∆m2
32| ≈

|∆m2
31|, where the sign of ∆m2

31 depends on the mass ordering. It is possible to understand
analytically how the different mixings probed by experiments in the two-flavour scheme
relate to one another, by exploiting the hierarchy of mass-squared splittings. These details
are examined in chapter 3, which details my contribution to the NuFit project of global
fits to neutrino-oscillation parameters.

Direct mass measurements Oscillation experiments are not sensitive to the absolute
neutrino mass, and in particular, there is no lower bound for the lightest state: it could be
massless. Two types of experiments are being performed to probe the absolute neutrino
mass: precise measurements of the end-point of the beta-decay spectrum; and attempts
to observe neutrinoless double beta decay. The distortion of the end-point spectrum of
beta decay due to the neutrino mass, and the possibility of measuring the neutrino mass
with it, was discussed in Fermi’s seminal 1934 paper,

“Wir wollen zuerst diskutieren, wie diese Form [des kontinuierlichen β-Spektrums] von
der Ruhemasse µ des Neutrinos abhängt, um von einem Vergleich mit den empirisichen
Kurven diese Konstante zu bestimmen.” [15]

The principle is quite simple: the maximum kinetic energy of the electron if the
neutrino is massless is the Q-value for the decay, i.e. the mass difference of the initial
and final nuclear state and electron mass, Tmax = Qβ ≡ Mi −Mf −me. If the neutrino is
massive, it will shift to Tmax = Qβ − mν . For the case of multiple mass eigenstates, the
differential decay spectrum is

dΓ
dT ∝

∑
i

|Uei|2 Eν

√
E2

ν −m2
i ≈ Eν

√
Eν −m2

β, where m2
β =

∑
i

|Uei|2 m2
i (2.41)

and Eν ≡ Qβ − T . (The sum is incoherent over the mixing Uei, as in the diagram
for the decay rate, the neutrino is a final-state asymptotic particle.) Working on the
foundations of the Troitsk (1982–1998) [184] and Mainz (1991–2001) [185], the KATRIN
experiment at Karlsruhe has published world-leading bounds on the absolute neutrino
mass scale of mν < 0.8 eV (90% CL) by measuring the end-point spectrum of tritium
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beta-decay [186]. Tritium was chosen for its low Q-value of 18.574 keV. The electron
kinetic-energy spectrum is measured with a MAC-E-filter, which uses a strong magnetic
field to collimate the emitted electrons, and an electrostatic field to filter out low-energy
electrons. This method can also be used to constrain light sterile neutrinos, by scanning
the spectrum at energies Qβ −m4, which will be discussed in chapter 4.

UeiW−

UeiW−

n

n

p

p

m2β

e−

e−

νk

νk

∑
i

Figure 2.10: A Feynman diagram
for neutrinoless double-beta (0ν2β)
decay. Without the Majorana-mass
insertion, two neutrinos would be
emitted.

If neutrinos have Majorana masses, then the
lepton-number violating, neutrinoless double-beta
decay is allowed (fig. 2.10). A Majorana mass al-
lows one to connect the opposite-helicity neutri-
nos emitted in a 2ν2β decay. Searches are made
by choosing radioactive elements, for whom single-
beta decay is energetically forbidden. Therefore,
the only SM background is 2ν2β decay, which can
be distinguished from the spectrum of the total ki-
netic energy of the emitted electrons being continu-
ous, rather than a line. The Majorana phases enter
into the relation between the effective decay mass
m2β ∝ ∑

i U
2
eimi. For more details, see [10, §14.3].

Due to the process being second-order in GF , life-
times are very long ∼ 1019 years.

2.7 Light Sterile Neutrino
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Figure 2.11: Constraint from νµ

disappearance data (black) and al-
lowed region by LSND (red), cour-
tesy of [187].

The early studies of both solar and atmospheric os-
cillations considered the possibility that oscillations
could occur between SM neutrinos and a light sterile
neutrino (a SM singlet, so as to not disturb the mea-
surement of the invisible Z width). A host of short-
baseline accelerator experiments were undertaken
starting from the 1980s (see the references in [10,
Table 12.1]), which were sensitive to larger ∆m2

oscillations, which must come from a light sterile
neutrino. In the LSND experiment (1993–1998),
an excess of electron-like events was detected in a
muon-neutrino beam, generated by a 0.8 GeV pro-
ton beam on varying targets; the excess, interpreted
as ν̄µ → ν̄e oscillations, was marginally compatible
with other experiments [188]. A subsequent exper-
iment, MiniBooNE (2002–2019) was undertaken to
verify the anomaly, using 8 GeV protons on a beryllium target to create a muon-neutrino
beam; MiniBooNE also saw an excess at high significance, consistent with oscillations
for ∆m2 < 1 eV2 [189]. However, if there were new oscillations for muon neutrinos, one
should also see a deficit in data from MINOS and IceCube, which observe the disappear-
ance channel νµ → νµ; no such evidence was found, contradicting the neutrino-oscillation
interpretation of the LSND+MiniBooNE anomaly (see fig. 2.11) [187].
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Alternative explanations to the MiniBooNE were proposed, such as that by Gninenko
in 2009 [190], which exploited the poor particle discrimination of MiniBooNE to explain
the excess as single-photon emission from a decaying heavy neutral lepton generated
from neutrino upscattering — the so-called neutrino dipole portal. The MicroBooNE
experiment was proposed, which uses a liquid-argon time projection chamber, which
can reconstruct tracks of neutrino interactions with high resolution, thereby allowing
excellent particle discrimination. Whilst MicroBooNE disfavours the electron-like nature
of the MiniBooNE excess [191–194], issues regarding background modelling do not yet
rule it out [195]. In chapter 5, we examine how the neutrino dipole portal can be tested
at DUNE, the upcoming long-baseline accelerator experiment.

In addition to the experimental anomalies in the short-baseline accelerator experi-
ments, there have also been anomalies present in the short-baseline reactor experiments,
as well as radiochemical experiments, originating from the gallium solar-neutrino ex-
periments. The gallium anomaly originates from the calibration of the solar-neutrino
experiments GALLEX (1994–1995) [196] and SAGE (1994–1995) [197], which exposed
their gallium detectors to an artificial 51Cr source, whose activity was calibrated via
calorimetric measurements. Chromium-51 was chosen for its simple decay scheme, which
allows a simple conversion from calorimetric to neutrino activity. Chromium-51 decays
to the ground or excited state of vanadium-50; the excited state decays into the ground
state via the emission of a 320 keV gamma ray, which is the main source of heat. These
decays are associated with Auger electrons and X-rays due to the alteration of the elec-
tronic energy levels as the nuclear charge changes. These measurements (in addition to a
later measurement using 37Ar by SAGE in 2004 [198]) yielded a deficit compared to the
expected number from the capture cross section of gallium, which could be interpreted as
evidence for a sterile neutrino [199,200]. Most recently, the Baksan Experiment on Sterile
Transitions (BEST) has confirmed the gallium anomaly with very high significance [201],
and will be addressed in chapter 4.

The efforts to measure θ13 at short-baseline reactor experiments led to major theoreti-
cal efforts to calculate the reactor antineutrino spectrum. Two approaches were published
in 2011 by Mueller et al. [202] and Huber [203]. Nuclear fuel contains four main isotopes
involved in the burning process: 235U, 238U, 239Pu and 241Pu, whose abundances vary
over time. Each isotope has thousands of decay branches, into hundreds of possible fi-
nal states. Whilst Mueller et al. use all branches directly to get a prediction, Huber
phenomenologically parameterises the decay spectrum of each isotope with 30 virtual
branches. Both methods yield similar results, and crucially resulted in a 6% deficit com-
pared to the measured reactor flux (fig. 2.12), which was dubbed the reactor antineutrino
anomaly [204], and could be interpreted as evidence for a sterile neutrino. The Huber-
Mueller predictions used data from various measurements at the Institute Laue-Langevin
during the 1980s, which also determined the relative normalisation of the flux from the
different isotopes. Since then, efforts have been made to determine whether the origin
of the anomaly comes from some mismodelling of the isotopic neutrino flux, including
a remeasurement of the ratio between the 235U and 239Pu flux [205] and improved flux
models (see [206] for a recent analysis). For a more in-depth overview, with relevant
references of important developments, see the reviews [207,208].
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Figure 2.12: The reactor antineutrino anomaly from the Huber-Mueller flux, from [206].

2.8 Neutrinos in Cosmology and Astrophysics
Neutrinos play an important role in the cosmology of the early universe, as they formed
a large portion of the relativistic (and total) energy density in the early universe. For
temperatures Tν ≳ 1.5 MeV, neutrinos are in thermal equilibrium with the primordial
plasma via weak interactions (muon and tau neutrinos decouple earlier), after which they
decouple, free streaming and cooling; for an overview of cosmology see [209, 210]. The
first discussions of cosmic relic neutrinos dates back to Marx and Menyhárd in 1960 [211],
who discussed their detection in the context of the steady-state universe, and Pontecorvo,
Smorodinskii and Zel’dovich in 1962 [212, 213], who discussed them in the context of an
expanding universe. With the discovery of the cosmic microwave background (CMB), with
a temperature ∼ 3 K, by Penzias & Wilson in 1965 [214, 215], Gamow’s 1946 suggestion
that the early universe was hot and facilitated big-bang nucleosynthesis (BBN) — the
creation of light nuclei in the early universe — was vindicated [216]. Based on these
developments, Gershtein and Zel’dovich in 1966 calculated the relic number density of
cosmic neutrinos, and using upper limits on the cosmic energy density derived an upper
bound for a neutrino mass state of 400 eV [217]. (Their bound was weak partly because
their age of the universe was estimated lower than today’s value [218].) BBN is also
sensitive to the number of light neutrinos, first observed by Hoyle and Tayler in 1964 [219],
although serious bounds would have to wait till the modern era. For an historical and
thorough review of neutrino cosmology, see Dolgov’s 2002 report [218].

The second source of extraterrestrial neutrinos to be detected was SN1987A, a super-
nova burst in the Large Magellanic Cloud that was first detected optically on 24 February
1987. Kamiokande had only recently been upgraded, so it was very fortunate to find neu-
trino events, whose directions and timing were consistent with the SN1987A source [133].
The length of the neutrino burst can be used to determine the energy released, which can
in turn be used to constrain weakly interacting particles, which can be emitted during the
burst and increase energy loss if they do not scatter with the imploding matter [220,221].
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IceCube is a dedicated ice Cerenkov neutrino observatory, built in the Antarctic by
drilling into the ice and installing strings of photomultiplier tubes. The distance be-
tween strings was chosen to optimise the volume of 1 km3 and sensitivity to high-energy
neutrinos, with energies > TeV. IceCube began operating in 2007, and in 2013 they
published their first Eν ∼ 1 PeV events, which were highly likely to be of astrophysical
origin [222]. By today, IceCube has definitively established the existence of an all-sky
high-energy neutrino flux of unknown extraterrestrial origin and has measured parts of
its spectrum [223]. Furthermore, in 2021 IceCube published the observation of a 6 PeV
event, consistent with the Glashow resonance, where a neutrino creates an on-shell W
boson via electron scattering, which then decays hadronically [224].

Two other sources of neutrinos that have not been measured are the diffuse neutrino
supernova background, which is the weak MeV glow of the accumulation of neutrinos from
all supernovae in our past light cone [225], which could be detected at the next-generation
experiments: DUNE (United States), Hyper-Kamiokande (Japan) and JUNO (China)
[226]; and thermally emitted keV solar neutrinos (like Bremsstrahlung for neutrinos) [227].
The entire spectrum of neutrinos from meV to EeV is sometimes called the grand unified
neutrino spectrum [228].
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Chapter 3

Status of Global Three-Neutrino Fit

In the previous chapter 2, I presented a cursory overview of the Standard Model and
neutrino oscillations, presenting historical developments of both electroweak theory and
neutrino oscillations as well as mass models, and the gradual build-up of evidence for
solar and atmospheric oscillations in the two-flavour framework.

In this chapter, I will present the current status of the Standard Model neutrino-
oscillation parameters in the three-flavour framework, based on the global analysis pre-
sented in [229]. This work was done as a part of the NuFit collaboration1, as such a
venture is most efficiently pursued via teamwork. My contribution to the global fit fo-
cused on updating the reactor analysis, building on the code base by the previous PhD
candidate Álvaro Hernández-Cabezudo [230].

3.1 Three-Neutrino Oscillation Phenomenology
From eq. (2.19), by noting that swapping i and j is equivalent to taking the complex
conjugate of the summand, and adding and subtracting∑i,j U

∗
αiUαjUβiU

∗
βj, one can deduce

the expression for flavour transitions να → νβ

Pαβ(L,E) = δαβ − 4
∑
i>j

ℜ
[
U∗

αiUαjUβiU
∗
βj

]
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

ℑ
[
U∗

αiUαjUβiU
∗
βj

]
sin

(
∆m2

ijL

2E

)
,

(3.1)

and the expression for ν̄α → ν̄β can be obtained by making the transformation E 7→ −E.
The second term describes CP violation, as it is the only term that flips sign under the
ν 7→ ν̄ transformation; this term is determined up to sign by the Jarlskog invariant, which
under the parameterisation eq. (2.17) is,

J ≡
∣∣∣ℑ (U∗

αiUαjUβiU
∗
βj

)∣∣∣ = s12c12s13c
2
13s23c23 sin δCP (α ̸= β). (3.2)

The CP-violating phase δCP is the least determined oscillation parameter, and is being
sought after by current experiments. Furthermore notice how the second term is not sen-
sitive to the mass ordering, as it is invariant under the transformation ∆m2

3j 7→ −∆m2
3j.

1http://www.nu-fit.org/
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For this reason, the mass ordering is still undetermined, like δCP — particularly because
a background of matter (which contains no antimatter) can mimic CP violation.

Solar oscillations The (vacuum) survival probability in the three-flavour framework
for electron neutrinos and antineutrinos is

Pee = 1 − c4
13 sin2 2θ12 sin2 ∆21 − sin2 2θ13

[
c2

12 sin2 ∆31 + s2
12 sin2 ∆2

32

]
, (3.3)

where, ∆ij ≡ ∆m2
ijL

4E
. For terrestial experiments sensitive to ∆21 oscillations, the oscil-

lations in ∆3j will be smeared out by the finite energy resolution (see section 3.2 for a
discussion), and so sin2 ∆3j 7→ 1

2 . By using the relation 1 = (s2
13 + c2

13)2, we can write

P 12
ee = c4

13P12 + s4
13, where P12 ≡ 1 − sin2 2θ12 sin2 ∆21 (3.4)

is the effective two-flavour probability. Thus, we see the three-flavour framework vertically
shifts and scales the two-flavour probability with θ13, which is known to be small. This can
be used to constrain θ13 with experiments sensitive to ∆21 oscillations, like KamLAND
[231]. Since effects due to θ13 are small, one should also take into account matter effects;
for a reactor experiment like KamLAND, one can expand to leading order, ignoring
effects due to both matter and θ13, in that one only considers matter effects on θ12 by
using the two-flavour framework with constant density for P12, however replacing the
electron density with Ne cos2 θ13 (see [232, eq. 22]).

For oscillations of solar neutrinos, matter effects are significant due to the MSW
resonance. The survival probability must be modified to include the mixing parameters in
matter, discussed briefly in the two-flavour framework at the end of section 2.1. With the
assumption of adiabaticity (that the solar density varies slowly), the survivial probability
of solar neutrinos is [242]

P sol
ee =

∑
j

∣∣∣Um
ej (n0)

∣∣∣2 |Uej|2 = c2
13 (cm

13)
2 P ad

2 + s2
13 (sm

13)
2 ,

where P ad
2 = s2

12 + cos 2θ12 (cm
12)

2 ,

(3.5)

where we have ignored the neutrino phases, due to loss of coherence; Um
ej (n0) is the mixing

angle at the production point, with electron density n0; and sm
13, cm

13, cm
12 are the sine and

cosine of the mixing angles in matter with electron density n0. The explicit expressions
for the matter mixings can be found in [242, eqs. 16 – 19]. Thus, similar bounds on θ13
can also be made using solar neutrinos, taking into account the matter mixings [231,232].

Atmospheric oscillations Because there is a degeneracy of the two other splittings
∆m2

31 ≈ ∆m2
32 ≈ ∆m2

atm, the relation between the two- and three-flavour framework
is more complicated for atmospheric oscillations than solar oscillations. Following [233],
define the effective mass-squared splitting as a weighted average between ∆m2

31 and ∆m2
32:

∆m2
αα = (1 −x)∆m2

31 +x∆m2
32 = ∆m2

31 −x∆m2
21. The survival probability in the three-

neutrino framework takes the form

Pαα = 1 − 4 |Uα3|2 Uα1|2 sin2 ∆31 − 4 |Uα3|2 |Uα2|2 sin2 ∆32 − 4 |Uα2|2 |Uα1|2 sin2 ∆21. (3.6)

32



Using the relations ∆31 = ∆αα + x∆21, ∆32 = ∆αα + (x − 1)∆21 and sin2(a + b) =
sin2 a+ cos 2a · sin2 b+ sin 2a · sin 2b/2, we have the exact relation

Pαα = 1 − 4 |Uα3|2
(
1 − |Uα3|2

)
sin2 ∆αα

−4 |Uα3|2
[ {

|Uα1|2 sin2 (x∆21) + |Uα2|2 sin2 ((x− 1)∆21)
}

cos 2∆αα

+ 1
2
{
|Uα1|2 sin (2x∆21) + |Uα2|2 sin (2(x− 1)∆21)

}
sin 2∆αα

]
− 4 |Uα2|2 |Uα1|2 sin2 ∆21.

(3.7)

By choosing

x = 1
2∆21

arctan
(

|Uα2|2 sin 2∆21

|Uα1|2 + |Uα2|2 cos 2∆21

)
= |Uα2|2

1 − |Uα3|2
+ O

(
∆2

21

)
, (3.8)

the coefficient of sin 2∆αα is zero and the coefficient of cos 2∆αα is minimised. For atmo-
spheric oscillations, we can expand in the small parameter ∆21,

P atm
αα = 1 − 4 |Uα3|2

(
1 − |Uα3|2

)
sin2 ∆αα + O

(
∆2

21

)
, (3.9)

where
∆m2

αα = ∆m2
31 − |Uα2|2

1 − |Uα3|2
∆m2

21 = m2
3 − |Uα2|2 m2

2 + |Uα1|2 m2
1

|Uα1|2 + |Uα2|2
. (3.10)

The second equality above gives us physical insight into the effective splitting: it is the
mass-squared difference between m3 and a flavour-weighted average of the first and second
mass eigenstates.

For the atmospheric neutrinos and long-baseline accelerator experiments, oscillations
are observed via a deficit of muon neutrinos,

P atm
µµ = 1 − c2

13

(
1 + s2

13t
2
23

)
sin2 2θ23 · sin2 ∆µµ, (3.11)

where tij ≡ tan θij and

∆m2
µµ = ∆m2

31 +
(
cos δCPs13t23 sin 2θ12 − c2

12

)
∆m2

21. (3.12)
For a realistic analysis, matter effects should also be taken into account, whose effects are
larger than effects from ∆m2

21: see [234] for an early example of a three-neutrino analysis
of atmospheric neutrino data from SuperK.

Reactor experiments, which are sensitive to electron-neutrino disappearance due to
oscillations from ∆m2

3j, can also provide another measurement of ∆m2
atm (in addition to a

precise measurement of θ13). The vacuum survival probability in the atmospheric regime
is

P atm
ee = 1 − sin2 2θ13 sin2 ∆ee, where ∆m2

ee = ∆m2
31 − s2

12∆m2
21. (3.13)

The two different measurements of ∆m2
atm (from reactors via ν̄e disappearance, and via

accelerators or atmospheric neutrinos from ν̄µ disappearance) is actually sensitive to the
mass ordering, as first recognised by [233]. Since the magnitude of ∆m2

31 dominates
∆m2

21, the sign of ∆m2
31 will determine the sign of ∆m2

ee and ∆m2
µµ. So,

|∆m2
µµ, ee| = +∆m2

µµ, ee (NO), |∆m2
µµ, ee| = −∆m2

µµ, ee (IO), (3.14)
whence,

|∆m2
ee| − |∆m2

µµ| = ±∆m2
21 (cos 2θ12 − cos δCPs13t23 sin 2θ12) , (3.15)
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Figure 3.1: A schematic example of the so-
called bievent plot. Each point on an oval
of a mass ordering represents predictions
for a specific δCP value.

where the positive sign is for the normal
ordering (NO) case, and the negative sign
for the inverted ordering (IO) case. This
synergy between reactor and accelerator ex-
periments is important for the global three-
neutrino fit, as it provides an independent
method (in addition to the appearance chan-
nel of the long-baseline accelerator experi-
ments, covered below) to determine the mass
ordering. (On a technical note, other effec-
tive mass-squared splittings were suggested,
which have L/E dependence, which is com-
pared in [235]; they are all equivalent in the
regime when atmospheric oscillations domi-
nate.)

CP violation and matter effects The
previous discussion focused on vacuum oscil-
lation, which is adequate for short-baseline
experiments like reactor neutrinos. However
the long-baseline accelerator experiments (particularly NOνA), which are the leading ex-
periments to determine the CP-violating phase, are sensitive to matter effects. The
long-baseline accelerator experiments T2K and NOνA measure electron-neutrino ap-
pearance in a muon-neutrino beam. To understand how this oscillation channel af-
fects the three-neutrino parameters, we use the analytic approximations developed in
the past [236–238], expanding the probability of νµ → νe oscillations to second order in
s13 and α ≡ ∆m2

21/∆m2
31 assuming constant electron density,

Pµe = α2 sin2 2θ12 c
2
23

sin2(∆A)
A2 + 4s2

13s
2
23

sin2[∆(A− 1)]
(A− 1)2

+2α s13 sin 2θ12 sin 2θ23 cos (∆ + δCP) sin(∆A)
A

sin[∆(A− 1)]
A− 1 ,

(3.16)

where A ≡ 2Eν

(√
2GFNe

)
/∆m2

31 and ∆ ≡ ∆31. To obtain the probability for the
antineutrino channel, one makes the transformation A 7→ −A and ∆ 7→ −∆. Following
[239], let us make the approximation, appropriate for the long-baseline experiments T2K
and NOνA, that we are near the oscillation maximum, ∆ = π/2+δ∆ and expand to first
order in A, ignoring solar oscillations α2∆2 = ∆2

21 (noting that α2 < s13α),

Pµe ≈ 4s2
13s

2
23(1 + 2A) − C(1 + A) sin (δCP + δ∆) ,

Pµ̄ē ≈ 4s2
13s

2
23(1 − 2A) + C(1 − A) sin (δCP − δ∆) ,

(3.17)

where C ≡ ∆21 sin 2θ12 sin 2θ13 sin 2θ23, and where I have used 2s13 ≈ sin 2θ13 to first
order to be consistent with our publication [229]. In the plane (Pµe, Pµ̄ē), for each mass
ordering, an oval is drawn as δCP is varied; the sign of A determines the mass hierarchy,
and shifts the centre of the oval; an example is shown in fig. 3.1.
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Due to the large amount of data from the new accelerator experiments, the atmo-
spheric data does not have a significant impact on the global fit , however the impact
of matter effects on atmospheric neutrinos and the oscillating parameters can be found
in [240, 241]. Analytical simplifications are more involved due to the wide range of en-
ergies and baselines that atmospheric neutrinos probe (both for the disappearance and
appearance channels).

3.2 Overview of Experiments and their Simulation
At the Neutrino 2020 conference, new data for the most relevant neutrino-oscillation ex-
periments were presented, which prompted a major update for the NuFit global analysis.
A full list of the data used in the latest NuFit global fit can be found in [229]. Data
from solar experiments, reviewed in section 2.4, (Homestake, GALLEX, SAGE, SuperK,
SNO) as well as from the most recent running Borexino experiment provide the strongest
constraint on θ12, whereas KamLAND provides the best constraint of ∆m2

21. The solar
sector was handled by Michele Maltoni, and the details of the evolution of the neutrinos
through the sun and then the Earth can be found in his 2016 article with Smirnov [242].

The parameters of the atmospheric sector are constrained mainly by two sets of ter-
restrial experiments: medium-baseline reactor experiments (Daya Bay, Double Chooz
and RENO), and long-baseline accelerator experiments (MINOS, NOνA and T2K). The
principles underlying reactor experiments are the same as reviewed in section 2.2. The
current accelerator experiments use an off-axis beam, where the far detector is displaced
from the beam axis, which yields a neutrino beam sharply peaked around a specific en-
ergy (see fig. 3.2). (For an explanation see [10, §12.3.3].) Due to the difficulty describing
meson-production cross sections from proton scattering on a nucleus, a near detector is
used to measure the neutrino flux [243,244].
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Figure 3.2: Left: demonstration of the off-axis effect, tuning and sharpening the energy
spectrum to the oscillation maximum; courtesy of [243]. Right: Neutrino flux at NOνA,
including other flavours intrinsic to the beam from rare meson decays; from [245].

At the reactor experiments, a near detector is also used to avoid assuming the ab-
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solute flux, which had a long-standing anomaly (see discussion on the reactor anomaly
in section 2.7), and unexplained features such as the 5 MeV bump (first reported by
RENO [246, 247] and subsequently by the other θ13 experiments Daya Bay [248] and
Double Chooz [249]). The bump persists till today (see fig. 3.3), although various pos-
sible explanations have been proposed, and the origin of the bump, whether it is due to
all or a single isotope, is also being investigated (see [250] and the references therein for
a non-exhaustive list).
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Figure 3.3: Most recent RENO data (2900 days), demonstrating the anomalous 5 MeV
bump; data extracted from [251].

The experimental collaborations’ analyses of their data is a complicated process. The
accelerator experiments require involved Monte Carlo simulations, which are tuned with
near-detector data, due to, e.g., the complexity of hadronic physics for neutrino-nucleus
scattering at GeV energies. The calibration of the detector, which are complicated de-
vices, is also very involved, and collaborations make various cuts of the data, whereby
events that do not satisfy some metric are removed, to reduce background. These com-
plexities, which members outside the collaboration are not privy to, can be simplified
into a reconstruction matrix R (Erec;Eν), which determines the probability density of
reconstructing the energy of a neutrino event to be Erec, if the energy of the neutrino is
Eν , which is taken to be a normal distribution,

R (Erec;Eν) ≡ 1√
2σE (Eν)Eν

exp
[
− 1

2σ2
E (Eν)

(
Eν − Erec

Eν

)2]
, (3.18)

where σ (Eν) is the detector energy resolution at energy Eν , which is normally given by
the collaboration. The detector does not usually detect events with different energies
with the same efficiency, so the detector efficiency ε (Eν) is also needed.

Data from the collaboration are usually presented as events binned in energy intervals
[Ei−1, Ei]. Our simplified prediction for bin i with flavour type α takes the form

Nα
i = Nbkg

i +
∫ Ei

Ei−1
dErec

∫ ∞

0
dEν R (Erec;Eν) ε (Eν)

∑
β

dΦβ

dEν

Pνβ→να (Eν)σα (Eν) , (3.19)

where Nbkg
i are the predicted background events (as determined by the collaboration),

σα (Eν) is the cross section for neutrino flavour α on the detector, and dΦβ/dEν is the
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flux for neutrino flavour β. The possible flavours for accelerator experiments are α, β ∈
{νe, νµ, ν̄e, ν̄µ}; the flux and cross sections are supplied by the collaboration, which are
based on tuned Monte Carlo models. The oscillation terms in the probability have the
form sin2

(
∆m2L

4Eν

)
= 1

2 − 1
2 cos

(
∆m2L

2Eν

)
. In the event that the phase is very large, the cosine

term will average out to zero, in that by making the transformation ∆m2L
2Eν

= ωx − 2nπ,
where ω ≡ 2nπ ≡ ∆m2L

2E
(n)
ν

, splitting the energy integration into the intervals
[
E(n)

ν , E(n+1)
ν

]
,

the integral takes the form
∫ 2π

ω

0
f(ωx+ 2nπ) cos(ωx)dx =

∫ 1
n

0
f(2nπ) cos(ωx)dx+ O

( 1
n

)
= O

( 1
n

)
. (3.20)

Thus we see that the oscillations average out for large ∆m2L
2Eν

.
The analysis of accelerator experiments was handled by the then PhD candidate Iván

Esteban [252]. Since this thesis will focus on reactor neutrinos, I will focus on this case,
where α = β = ν̄e. For reactor neutrinos, the differential cross section is given by the
calculation by Vogel & Beacom [253], which is an expansion in the inverse nucleon mass
1/M , and includes the zeroth- and first-order terms; integrating the angular distribution
given in [253] over cos θ yields the total cross section for inverse beta decay as a function
of neutrino energy. The flux is given by the Huber-Mueller model [202, 203], which
parameterises the flux of each isotopic component of the nuclear fuel as,

dΦ
dEν

=
∑
iso
f isoϕiso (Eν) , where ϕiso (Eν) ≡

5∑
k=0

αiso
k Ek

ν (3.21)

and iso ∈ {235U,239 Pu,238 U,241 Pu}; the time-averaged effective fission fractions f iso are
provided by the collaboration: for RENO they can be found in [254]; for Daya Bay
and RENO, non-equilibrium corrections are also applied to the Huber-Mueller model, as
detailed in [255, §2.6].

The detector for RENO, which is similar to Daya Bay and Double Chooz, is shown
in fig. 3.4 (right) and consists of four cylindrical layers. The innermost layer is a vessel
made of transparent acrylic plastic, containing gadolinium-doped liquid scintillator; the
positron from an inverse-beta-decay event loses energy by emitting scintillation photons
until pair annihilation on an electron, whilst the neutron is captured on a Gd nucleus. The
next layer is the γ catcher, which is a liquid scintillator contained in another acrylic vessel,
which is meant to catch any 511 keV gammas, which escape the inner layer. The buffer
layer contains photomultiplier tubes immersed in non-scintillating mineral oil, whilst
the veto layer helps reject events due to external radiation (cosmic rays, neutrons from
radiative decays in the rock). The whole device is surrounded by 40 cm concrete. For
more information, see [256, §3].

The term prompt energy, as labelled in fig. 3.3, refers to the total recorded photon en-
ergy from pair-annihilation photons, which is (assuming perfect detection of the photons)
Epr = 2me + Te+ , where Te+ is the kinetic energy of the positron. (Here we assume that
the electron, on which the positron decays, is stationary.) If we had a perfect detector, the
prompt energy can be easily related to the neutrino energy, as Te+ = Eν̄e +mp −En −me,
where mp is the proton mass, and En is the neutron energy. Since the neutron mass
∼ 1 GeV is orders of magnitude larger than nuclear energies O(MeV), we can assume the
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neutron is non-relativistic, and therefore ignore its kinetic energy (typically ∼ 10 keV).
However, the energy deposited by the gamma rays has a non-linear relation with its
emitted energy [257], due to quenching of the photon energy in the liquid scintillator;
we denote this effect by the function f( · ). In practice we use the non-linear detector
response provided by the Daya Bay collaboration [258] for both RENO and Daya Bay,
as RENO does not provide their absolute energy calibration; this still reproduces ade-
quate results for RENO: see fig. 3.5. Then the relation between the prompt energy and
reconstructed neutrino energy is

Eν̄e = f(Epr) +mn −mp −me. (3.22)

The energy resolution is taken from [257, fig. 11].

Figure 3.4: Left: layout of RENO reactors and detectors, modified from [256, fig. 1.2].
The six reactors span an array of 1280 m. Right: sketch of the RENO detector, consisting
of four cylindrical layers; courtesy of ibid. fig. 1.9.

The Daya Bay and RENO experiments use multiple reactors at different distances
as neutrino sources; since only the oscillation probability has baseline dependence in the
integrand, we need to make the substitution

Pνβ→να (Eν) 7→
∑

r

1
L2

r

Pνβ→να (Eν , Lr) , (3.23)

where r labels the reactor sources. At RENO, six reactors in roughly a line act as neutrino
sources, in the geometry shown in fig. 3.4. The baselines for each detector-reactor pair
was taken from [256, tab. 1.2]. The integrals are then normalised to reproduce the total
number of Monte Carlo events from the collaboration. The integrals are precomputed
for each bin, on a discrete grid of the parameter ∆m2L, noting that we can decompose
the integral into a sum of terms like const ×

∫ ∑
L f(E) sin2 ∆m2L

4E
dE, where we have ex-

tracted the mixing angles from the integrals. Noting that only the reconstruction matrix
R(Erec;Eν) participates in the integral over Erec, this integral is converted into the error
function.
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3.3 Construction of the Test Statistic
Due to the aforementioned anomalies in the reactor spectrum, we construct our test
statistic as a function of the far-to-near ratio Ri ≡ (Ni−Nbkg

i )far/(Ni−Nbkg
i )near, which is

insensitive to the normalisation of the total reactor flux. The ratio also has the advantage
of being less sensitive to defects due to detector mismodelling; for example, if an error
in the reconstruction matrix caused us to overestimate events in a bin, we would expect
this to occur in both near and far detectors (which have identical design), resulting in
partial cancellation in the ratio. Specifically, denoting Si ≡ Ni − Nbkg

i as shorthand for
the signal (3.19),

Ri = (Si + ϵ)far
(Si + ϵ)near

= Ri

[
1 + (ϵfar − ϵnear) + O

(
ϵ2
)]
, (3.24)

whence the first-order corrections cancel (albeit not exactly). If we ignore systematic
errors, the test statistic for an experiment is defined

χ2
no syst =

∑
i,j

(OR − R)i V stat
ij (OR − R)j , (3.25)

where the sum occurs over the bins, and OR defines the ratio calculated from the ob-
served data. The covariance matrix of statistical correlations V stat, is defined under the
assumption that bin events Ni are distributed normally (which is valid in the limit of
large numbers, c.f. the central limit theorem), using the Poissonian variance Ni,

V stat
ij =

∑
i

∑
d=near,far

∂Ri

∂Nd
i

∂Rj

∂Nd
i

Nd
i . (3.26)

The global test statistic without systematics would be the sum of the χ2
no syst for each

experiment. Each experiment, however, has its own set of systematics that must be
implemented individually. In the reactor sector, only the RENO experiment needed
updating from new data at NU2020, so I will concentrate on that. Details on Daya Bay
and the other experiments can be found in the appendices of [259] and the theses [230,252].

Systematic errors Systematic errors occur due to a lack of knowledge on certain
quantities in the experiment. There are three types of systematics for RENO, which were
implemented by the previous PhD candidate Álvaro Hernández-Cabezudo: uncertainty on
the relative detection efficiency εfar/εnear, uncertainty on the energy scale, and uncertainty
on the 9Li-8He background. (Other systematics can be neglected; for a total list, see
[260].) The systematic for relative detection efficiency is implemented with the simple
substitution Ri 7→ (1 + ε)Ri. The energy-scale uncertainty refers to systematic errors
related to the reconstructed energy, implemented by rescaling Erec 7→ (1 + ηd)Erec, where
the near and far detectors have independent rescaling d ∈ {near, far}. Its effect is to
change the integration limits in eq. (3.19), Ei 7→ (1 + ηd)Ei.

Cosmic muons scattering on carbon in dirt can create the radioactive isotopes 8He and
9Li, which decay into an electron and neutron, which results in an irreducible background
for reactor detectors [256, §6.6.3]. The production cross section for cosmogenic helium
and lithium is not precisely known; this uncertainty modifies the background Nbkg

d,i 7→
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Nbkg
d,i + βdN

LH
d,i , where NLH

d,i is the 9Li-8He background component. Note that its effect in
the χ2 expression eq. (3.25) is in changing OR,

Osyst
R =

Ofar
i −Nbkg

far,i − βfarN
LH
far,i

Onear
i −Nbkg

near,i − βnearNLH
near,i

, (3.27)

where Od
i are the observed number events in bin i for detector d. Additional pull terms

are added to the test statistic, which penalise non-zero systematics (for more information
about the pull method see [261]). The test statistic is defined as,

χ2
syst = min

β,η,ε

∑
i,j

[OR (β) − (1 + ε)R (η)]i V stat
ij [OR (β) − (1 + ε)R (η)]j

+
(
ε

σε

)2
+
∑

d

(βd

σd
β

)2

+
(
ηd

ση

)2
 , (3.28)

where β ≡
(
βfar βnear

)T
, η ≡

(
ηfar ηnear

)T
, and σε = 0.22%, σfar,near

β = 5.61%, 3.26%,
ση = 0.15% are the uncertainties for each systematic, taken from [260]. I tuned some of
the central values and uncertainties of the systematics to match the collaboration’s χ2

contours, namely 1 + ε 7→ 1.001 + ε, σε 7→ 1.6σε, and ση 7→ 0.45ση. By Wilks’ theorem,
χ2

syst is distributed as a chi-squared with n− p degrees of freedom, where n is the number
of bins, and p is the number of systematics.

Denoting the summand of the first term in eq. (3.28) as fij(ε,β,η), the minimisation
is done by expanding fij to first order in all systematics. The first-order partial derivative
in ε, βfar,near is relatively straightforward; for the energy-scale systematic, we note that

∂

∂η

∫ (1+η)Ei

(1+η)Ei−1
dErecR(Erec, Eν)

∣∣∣∣∣
η=0

= R(Ei, Eν)Ei −R(Ei−1, Eν)Ei−1, (3.29)
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Figure 3.5: A comparison of my contours (red)
compared to the collaboration’s results (blue),
extracted from [251].

using the Leibniz integral rule. A com-
parison of my ∆χ2 contours, compared
with the results from RENO as presented
at NU2020 [251] is presented in fig. 3.5.

3.4 Results
In this section, I present the results of
our global analysis. These were obtained,
by constructing χ2 tables for each ex-
periment, and using them as input in a
pre-written routine for NuFit, which was
done by others. In fig. 3.6, an overview of
the 2σ contours of the main experiments
are shown in the parameter space they
are most sensitive to. In the left panels,
the accelerator experiments T2K, NOνA
and MINOS, as well as atmospheric neu-
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trino data from IceCube (DeepCore) and SuperK are shown in the space of atmospheric
oscillation parameters, (s2

23,∆m2
31) for normal ordering, and (s2

23,∆m2
32) for inverted or-

dering. For the normal ordering, ∆m2
31 is the mass-squared splitting between the heaviest

and lightest neutrino mass state; therefore, in inverted ordering, the corresponding split-
ting would be ∆m2

32, as ν2 becomes the heaviest mass state (see fig. 2.9). A prior is
included on θ13 for the non-global analysis, and θ13 is marginalised over. In the right
panels, the reactor experiments Daya Bay, Double Chooz and RENO are shown in the
(s2

13,∆m2
3ℓ) plane are shown, where ℓ = 1 for NO and ℓ = 2 for IO. For all experiments,

the contours are defined with respect to the global minimum of both orderings, and solar
and KamLAND data is included to constrain ∆m2
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Figure 3.6: Overview of 2σ contours for experiments sensitive to atmospheric oscillations
with their combination in dark grey, and reactor experiments sensitive to s13 with their
combination in black, courtesy of [229]. See text for details.

For the SuperK atmospheric data, a neural network was used for their event recon-
struction, which was designed to boost SuperK’s sensitivity to the mass ordering and
CP violation. Due to the lack of public information, it is not possible to reproduce their
analysis (see [262, §3.3] for a discussion). Our analysis uses the χ2 map provided by the
collaboration [263], which emerged after the publication of [229].
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CP violation and mass ordering In fig. 3.7, we see the ∆χ2 profile as a function of
δCP, where the other oscillation parameters have been left free. As explained in section 3.1,
the appearance channel of neutrinos and antineutrinos for atmospheric oscillations can
be sensitive to the mass ordering and CP violation. In the top panels, only accelerator
data is used, with a prior on θ13. We can see that T2K data (red) has a slight preference
for normal ordering, and in both orderings strongly prefers δCP ∼ 3π/2. On the other
hand, we can see that NOνA data does not have strong preference for either ordering,
but disfavours δCP ∼ 3π/2 in the normal ordering and favours it in the inverted ordering.
In dotted and dashed lines we have also plotted the ∆χ2 profile using only the NOνA
data from neutrinos and antineutrinos, respectively. We can see that the NOνA neutrino
appearance data dominates ∆χ2 at δCP ∼ 3π/2, and leads to a slight tension with T2K
at normal ordering. The combined data (blue) shows that the accelerator data prefers
inverted ordering and δCP ∼ 3π/2, due to the tension in δCP in normal ordering.

As explained in section 3.1, the interplay between the disappearance measurement of
the atmospheric mass-squared splitting in the muon flavour ∆m2

µµ, via accelerator data,
and in the electron flavour ∆m2

ee, via reactor neutrinos, is sensitive to the mass ordering.
The lower panels of fig. 3.7 show ∆χ2(δCP) when we include reactor data in the fit. The
result is that inverted ordering is disfavoured by the inclusion of reactor data, and the
global minimum occurs at δCP ∼ π at NO, avoiding the tension from NOνA data at
δCP ∼ 3π/2.

Statistical consistency Given the opposing tendencies of the various data sets in the
global fit, an important question becomes whether the data sets are consistent with one
another. An internal inconsistency in the global fit would make it invalid, as the best-fit
values for the oscillation parameters would merely be a result of the fit attempting to
resolve a tension between two sets of data, indicating that something is wrong with the
physical model of our data.

The classic goodness-of-fit test is simply χ2, which is distributed as a chi-squared
with n − p degrees of freedom, where n is the number of bins and p are the number
of systematics. This is used by experimental collaborations to determine whether their
detector models and calibrations correctly describe their data. However, in a global fit we
do not wish to determine whether our fit is good at the level of individual bins, but at the
level of statistically independent datasets (i.e. the different experiments). The parameter
goodness-of-fit test statistic χ2

PG was first introduced in [264] to do precisely this job. It
is defined as the difference between the χ2 at the global minimum and the sum of the χ2

minima of the individual datasets,

χ2
PG = χ2

global min −
∑

dataset
χ2

dataset min, (3.30)

and is distributed as a chi-squared with

n =
∑

dataset
ndataset − nglobal (3.31)

degrees of freedom (see [265] for a proof). Here, ndataset is the number of oscillation
parameters of χ2

dataset, and likewise for nglobal.
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data sets NO IO
χ2

P G/n p-value #σ χ2
P G/n p-value #σ

T2K vs. NOνA (θ13 free) 6.7/4 0.15 1.4 3.6/4 0.46 0.7
T2K vs. React. 0.3/2 0.87 0.2 2.5/2 0.29 1.1
NOνA vs. React. 3.0/2 0.23 1.2 6.2/2 0.045 2.0
T2K vs. NOνA vs. React. 8.4/6 0.21 1.3 8.9/6 0.18 1.3
T2K vs. NOνA (θ13 fixed) 6.5/3 0.088 1.7 2.8/3 0.42 0.8
T2K vs. NOνA vs. React. 7.8/4 0.098 1.7 7.2/4 0.13 1.5

Table 3.1: The values of the parameter goodness-of-fit test statistic χ2
PG and the corre-

sponding statistical significance for various combinations of data sets. “React” refers to
Daya Bay, RENO and Double Chooz. Both combinations in the last two lines have fixed
θ13. Solar parameters are fixed in all cases; courtesy of [229].

The results of the parameter goodness-of-fit test for various combinations of datasets
is shown in table 3.1. We have separated the normal and inverted orderings into two
cases, such that the χ2 minimisation is restricted to a given ordering. Furthermore, the
solar parameters are fixed to their global best-fit values. For the last two lines of the table,
both combinations have s2

13 = 0.0224 fixed. The purpose of fixing s2
13 is to prevent a large

reduction of tension between the T2K and NOνA datasets due to a large fluctuation of
s2

13. As can be seen, there is no significant tension, with the most significant occurring
between NOνA and the reactor datasets in inverted ordering.

Solar sector In the previous NuFit paper [259], there was a ∼ 2σ tension between
the KamLAND value of ∆m2

21 and that of the solar data. The origin of this tension is
visualised in fig. 3.8; the green data points from SuperK cause there to be a preference
for lower ∆m2

21. The day-night variation also played a role in driving the tension. With
the update from NU2020, the new SuperK data is no longer in tension with KamLAND,
as shown in fig. 3.9.

Summary The best-fit values and 3σ ranges for the three-neutrino oscillation parame-
ters, both with and without the tabulated SuperK atmospheric χ2 map (364.8 kton years)
are shown in table 3.2. We show the global ∆χ2 profiles for each oscillation parameter
(marginalising over the others) in fig. 3.10.
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 2.6)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.269 → 0.343 0.304+0.012

−0.012 0.269 → 0.343

θ12/
◦ 33.44+0.77

−0.74 31.27 → 35.86 33.45+0.77
−0.74 31.27 → 35.87

sin2 θ23 0.573+0.018
−0.023 0.405 → 0.620 0.578+0.017

−0.021 0.410 → 0.623

θ23/
◦ 49.2+1.0

−1.3 39.5 → 52.0 49.5+1.0
−1.2 39.8 → 52.1

sin2 θ13 0.02220+0.00068
−0.00062 0.02034 → 0.02430 0.02238+0.00064

−0.00062 0.02053 → 0.02434

θ13/
◦ 8.57+0.13

−0.12 8.20 → 8.97 8.60+0.12
−0.12 8.24 → 8.98

δCP/
◦ 194+52

−25 105 → 405 287+27
−32 192 → 361

∆m2
21

10−5 eV2 7.42+0.21
−0.20 6.82 → 8.04 7.42+0.21

−0.20 6.82 → 8.04

∆m2
3ℓ

10−3 eV2 +2.515+0.028
−0.028 +2.431 → +2.599 −2.498+0.028

−0.029 −2.584 → −2.413
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 7.0)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.012
−0.012 0.269 → 0.343 0.304+0.013

−0.012 0.269 → 0.343

θ12/
◦ 33.45+0.77

−0.75 31.27 → 35.87 33.45+0.78
−0.75 31.27 → 35.87

sin2 θ23 0.450+0.019
−0.016 0.408 → 0.603 0.570+0.016

−0.022 0.410 → 0.613

θ23/
◦ 42.1+1.1

−0.9 39.7 → 50.9 49.0+0.9
−1.3 39.8 → 51.6

sin2 θ13 0.02246+0.00062
−0.00062 0.02060 → 0.02435 0.02241+0.00074

−0.00062 0.02055 → 0.02457

θ13/
◦ 8.62+0.12

−0.12 8.25 → 8.98 8.61+0.14
−0.12 8.24 → 9.02

δCP/
◦ 230+36

−25 144 → 350 278+22
−30 194 → 345

∆m2
21

10−5 eV2 7.42+0.21
−0.20 6.82 → 8.04 7.42+0.21

−0.20 6.82 → 8.04

∆m2
3ℓ

10−3 eV2 +2.510+0.027
−0.027 +2.430 → +2.593 −2.490+0.026

−0.028 −2.574 → −2.410

Table 3.2: Three-neutrino oscillation parameters from our global fit. The left column
column represents the best-fit values relative to the global minimum at normal ordering,
and the right-column relative to the local minimum at inverted ordering. For NO ∆m2

3ℓ ≡
∆m2

31 > 0 and for IO ∆m2
3ℓ ≡ ∆m2

32 < 0. The upper part of the table excludes SuperK
atmospheric data, whereas the lower part includes it.
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Chapter 4

Reactor Experiments and a Fourth,
Sterile Neutrino

As reviewed in chapter 2, the idea of oscillations between a Standard Model neutrino
and a fourth, light, sterile neutrino state, has a long history, with this being an alterna-
tive hypothesis to the solar and atmospheric neutrino anomaly during their early days.
With advancements in the prediction of the reactor spectrum revealing a deficit between
prediction and experiments figs. 2.8 and 2.12, including the gallium anomaly, numerous
studies have investigated the global significance of the interpretation of this deficit as
neutrino oscillations [266–271].

This chapter is based on my work published in [272], which builds on previous global
analyses of the evidence for sterile oscillations. The work was sparked by the announce-
ment by Neutrino-4 of evidence for neutrino oscillations at NU2020 [273], and later, the
confirmation of the gallium anomaly by the Baksan Experiment on Sterile Transitions
(BEST) [201], which provided further impetus for our work. When Neutrino-4 announced
its results at NU2020, they claimed evidence for sterile oscillations at > 3σ. However this
was based on Wilks’ theorem, which is inapplicable for sterile-oscillation searches. The
intuitive reason for this is that one can always fit a high-frequency low-amplitude pat-
tern to random noise (Neutrino-4’s best-fit point occurred at relative large ∆m2 ∼ 7 eV2)
leading to a bias due to a false signal (see also the discussion in [274]). Using Monte
Carlo simulations to derive the correct distribution of χ2, Coloma, Huber and Schwetz
derive only 2.6σ evidence for new oscillations [274]. A reevaluation of the analysis by the
collaboration also found a statistical significance of 2.7σ [275].

Using a robust statistical method is important for correctly interpreting the bounds
and signals found in reactor experiments. The correct way to construct exclusion curves,
particularly for our case, in which a parameter like sin2 2θ is bounded in the interval
[0, 1], is to use the prescription developed by Feldman and Cousins in 1998 [276]. In
such a prescription, the statistical distribution of χ2 is calculated via the Monte Carlo
method for each point in parameter space. This is computationally expensive, but gives
statistically correct results. In this chapter, I cover the details of my work constructing
fast χ2 routines for the relevant reactor experiments, which needed to be written in the
programming language C++ and heavily optimised; I also cover the details of the FCMC
(Feldman-Cousins Monte-Carlo) statistical analysis, which needed the high-performance
computing facilities at the KIT for reasonable computation times.
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4.1 Reactor Experiments
In this section I will give an overview of the relevant reactor experiments that we used
in the global analysis, and an overview of our implementation of each experiment’s χ2

routine. (For a concise overview of the relevant reactor experiments, see [277]). All the
experiments have extremely short baselines, 10 – 20 m, and as mentioned previously, this
provides numerous challenges for such an experiment, limiting the detector size and in
addition to safety concerns due to the radiation from the reactor itself; because of the close
proximity to the reactor, some detectors cannot use a liquid scintillator. Furthermore,
due to the small size of the detector, there will be more complicated detector physics
regarding energy reconstruction, due to escaping gamma rays, and also finite-size effects
of the source and detector. For all experiments, I am grateful to the GNU Scientific
Library [278], whose routines I have benefited from.

4.1.1 DANSS

❄19.6

❄10.7

❄6.6

❄0.0

DANSS

Core of the
reactor:
⊘ 3.12 m
h 3.55 m

Reservoirs
with
technological
liquids

Figure 4.1: Sketch of nuclear reac-
tor and DANSS detector, courtesy
of [279].

The DANSS (Detector of AntiNeutrino based on Solid
Scintillator) experiment, is a 1 m3 highly segmented
plastic-scintillator detector at the Kalinin Nuclear
Power Plant, located between Moscow and St Peters-
burg [279]. The detector does not use a liquid scin-
tillator, due to safety concerns regarding the prox-
imity to the reactor, which has a thermal power of
3.1 GW. The detector’s plastic scintillator strips are
coated with gadolinium for neutron capture, as well as
to contain scintillation light. The detector is mounted
on a movable platform underneath the industrial re-
actor at Kalinin (fig. 4.1).

The detector measured the neutrino flux over five
years (2016 – 2021) at three baselines: bottom, middle
and top, λ ≡ B,M,T, at distances 10.9, 11.9 and 12.875 m [280, p. 24].1 Their data [280, p.
17] is reported with the ratios

Ri
1 ≡ ni

B
ni

T
Ri

2 ≡ ni
M√

ni
Bn

i
T

, where ni
λ ≡ N i

λ −Bi
λ

∆tλ
(4.1)

and i labels the energy bin; N i
λ, Bi

λ labels the absolute number of events, background,
respectively, and ∆tλ is the exposure period, extracted from [280, p. 12]. The reconstruc-
tion matrix is taken to be of form eq. (3.18), with energy resolution taken from [281, fig.
5], but increased by 10% (to better match the results of the collaboration),

σE(Eν)
Eν

= 0.352 + 2.44 · 10−2 Eν

MeV − 0.148 ·
√

Eν

MeV + 4.04 · 10−2√
Eν/MeV

. (4.2)

Because the baseline is so short, the finite size of the reactor core and detector needs
to be taken into account, as opposed to the medium-baseline experiments like RENO

1However, I added 0.05 m to all baselines to better match the collaboration’s results.
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and Daya Bay, where the assumption of a point-like neutrino detector and source was
sufficient. To simplify the calculation, I make the assumption that the neutrino source
is a collimated beam, and neutrinos are produces homogeneously throughout its volume,
thus reducing the geometry to one dimension. The detector is assumed to be a 1 m3

cube [279], and the relevant reactor size is taken to be 4.5 m, which is set slightly higher
than the value quoted in [280] to better match the results of the collaboration. I assume
that this is due to diagonally travelling neutrinos having a longer path length. Then, the
no-oscillation prediction is

N i
0,λ =

∫ Lλ+0.5

Lλ−0.5
dℓ
∫ ℓ+2.25

ℓ−2.25

dL
L2

∫ Ei

Ei−1
dErec

∫ ∞

0
dEν σ(Eν) dΦ

dEν

R(Eν , E
rec). (4.3)

As previously mentioned, the baselines are Lλ ≡ 10.95, 11.95 and 12.925 m, for λ = B,M
and T, respectively. The integral over Eν is restricted to [Ei−1 − 3σ(Ei−1), Ei + 3σ(Ei)],
and the integral over the 1/L2 geometric suppression is done analytically. The fission
fractions for the flux can be found in [280, p. 5]. The predicted number of events with
oscillations is

N i
λ = N i

0,λ

[
1 − sin2 2θ · Ωi

λ

(
∆m2

)]
, (4.4)

where

Ωi
λ

(
∆m2

)
≡ 1
N i

0,λ

∫ Lλ+0.5

Lλ−0.5
dℓ
∫ ℓ+2.25

ℓ−2.25
dL

∫ Ei

Ei−1
dErec

∫ ∞

0
dEνσ(Eν) dΦ

dEν

R(Eν , E
rec)

sin2 ∆m2L
4E

L2

 (4.5)

is the oscillating part of the integral; I tabulate Ωi
λ on a grid of ∆m2 values for fast

χ2 evaluation. Note that by integrating the sin2 x/x2 term by parts, the L integral is
converted to trigonometric functions and the special function Si(x) =

∫ x
0 sin(t)/t (also

known as the Sine integral).
My prediction for the ratios is defined by rescaling the collaboration’s no-oscillation

prediction, extracted from [280, p. 17],

P i
1 = R3ν

1
ρi

B
ρi

T
, P i

2 = R3ν
2

ρi
M√
ρi

Bρ
i
T

, where ρi
λ ≡ N i

λ

N i
0,λ

. (4.6)

For each energy bin i, the two ratios have statistical correlations, defined by the 2 × 2
covariance matrix (with indices a, b ∈ [1, 2]),

V i
ab ≡

∑
λ=B,M,T

∂Ri
a

∂N i
λ

∂Ri
b

∂N i
λ

σ2
N i

λ
=

∑
λ=B,M,T

∂Ri
a

∂ni
λ

∂Ri
b

∂ni
λ

ni
λ

∆tλ
, (4.7)

where I have neglected the background for simplicity. (This will have the effect of in-
creasing the statistical significance, however since the background only represents ∼ 2%
of the events, its effect is small.) The full expression of the covariance matrix is given in
appendix A.1.1.
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There are two pulls, κ1,2, which represent the systematic uncertainty of the relative
efficiencies of each ratio Ri

1,2, which have a common error σsys ≡ 0.2% [280, p. 18]. The
χ2 function for DANSS is then defined as

χ2
DANSS = min

κ1,κ2


36∑

i=1

2∑
a,b=1

[
Di

a − (1 + κa)P i
a

]
(V i)−1

ab

[
Di

b − (1 + κb)P i
b

]
+ κ2

1 + κ2
2

σ2
sys

. (4.8)

The 36 energy bins used in the analysis span energies between 1.5 – 6 MeV; here Di
a

denotes the observed ratios, from the data in [280, p. 17]. The minimisation over the
pulls is done analytically, as outlined in appendix A.1.2. In fig. 4.2, I compare my χ2

map with the collaboration’s.

Figure 4.2: Left: our χ2(4ν) − χ2(3ν) map plotted with the same colour scale, overlaid
on the collaboration’s results [280]. Right: the collaboration’s results.

4.1.2 NEOS
The NEOS experiment is located in reactor unit five of the Hanbit Nuclear Power Com-
plex, in Yonggwang, Korea, which is part of the same reactor complex used by RENO.
The reactor core has an active size of 3.1 m in diameter and 3.8 m in height, and a thermal
power of 2.8 GW. The detector is a cylindrical tank of 1008 L, filled with 0.5% Gd-doped
liquid scintillator, with photomultiplier tubes at the ends of the tank. The detector is
placed at a distance of roughly 23.7 m away from the detector. The detector operated for
180 days with the reactor on and 46 days with the reactor off, with data being recorded
in the years 2015 – 2016. NEOS measured 1976.7 ± 3.4 events/day (with prompt energies
between 1 – 10 MeV) during the reactor-on period, and 85.1 ± 1.4 events in the reactor-off
period. Their data is reported in [282, fig. 3a]; the black points are assumed to be back-
ground subtracted, normalised to the quoted total signal rate, 1976.7 − 85.1 = 1891.6
events/day. Note: this number does not include the last 3 MeV-wide energy bin; it is the
signal rate for 1 – 7 MeV.

The analysis for NEOS is complicated by the fact that they do not have a movable
detector or near detector, and the small size of their detector, which complicates the
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energy reconstruction2. Because of the anomalies in the reactor spectrum, NEOS uses
the reactor antineutrino spectrum, weighted by cross section, extracted from the Daya
Bay experiment [255], and applies corrections due to the different isotopic fission fractions
of the nuclear fuel with the Huber-Mueller flux, namely[

σ
dΦ
dEν

]3ν

NEOS
=
[
σ

dΦ
dEν

]3ν

DB
+ σ(Eν)

∑
iso

(
f iso

NEOS − f iso
DB

)
ϕiso(Eν). (4.9)

The superscript 3ν denotes that the Daya Bay weighted flux was extracted assuming
three-neutrino oscillations; since Daya Bay is sensitive to three-neutrino oscillations, these
had to be folded out (along with energy-reconstruction effects). However, under the
assumption of four-neutrino oscillations, the folding-out procedure should be modified.
The baselines of Daya Bay range between 350 – 2000 m, at which any oscillations due to
a fourth eV-scale neutrino will average out. Therefore, to remove sterile oscillations, it is
enough to divide the Daya Bay weighted flux by 1 − (sin2 2θ) /2. In order to disentangle
the mixing from the mass-squared splitting, I ignore the fact that the Huber-Mueller
correction should not be divided by this. Explicitly, for m4 ∼ O(1 eV)[

σ
dΦ
dEν

]4ν

DB
=
(

1 − sin2 2θ
2

)−1 [
σ

dΦ
dEν

]3ν

DB
=⇒

[
σ

dΦ
dEν

]4ν

NEOS
≈
(

1 − sin2 2θ
2

)−1 [
σ

dΦ
dEν

]3ν

NEOS
.

(4.10)

Due to the smallness of the baseline, we have to consider the finite size of the reactor
and detector. Fortunately, the distribution of baselines ρ(L) is provided by the collabora-
tion in [284, p. 8]. As previously mentioned, this requires us to define a baseline-averaged
neutrino-oscillation probability

〈
Pee

L2

〉
(sin2 2θ,∆m2, Eν) =

∫ Lmax

Lmin
Pee

(
sin2 2θ, ∆m2L

Eν

)
ρ(L)
L2 dL . (4.11)

Another complication is in the reconstruction matrix. As mentioned previously, we
need to consider the non-linear response of the detector. Since NEOS does not publish
this information, I use the following based on Daya Bay’s non-linear response f( · ), from
the supplementary material of [258],

Ep = 1.01 · Ee+f(0.41 · Ee+ − 0.05), where Ee+ = Eν − ∆np +me, (4.12)

me is the electron mass, and ∆np the neutron-proton mass difference. This form was
established by making the ansatz aEe+f(bEe+ + c), and tuning the parameters a, b, c, to
match the results of the collaboration.

The reconstruction matrix consists of two contributions, due to two important physical
effects. The first I take from [250] which takes the standard normal distribution, and

2Whilst RENO published a re-analysis using RENO data as an additional baseline [283], alleged
in-fighting in the collaboration resulted in the decision not to follow this work. The preprint remains
unpublished at the time of writing this thesis.
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modifies it to taken into account escaping positrons, which only deposit energy due to
scintillation and do not have a prompt signal from pair annihilation,

Re+(Erec, Eν) =


Z +

(
1√

2πσ(Ep)
− Z

)
exp

{
−(Erec − Ep)2

2σ2(Ep)

}
if Erec < Ep ,

1√
2πσ(Ep)

exp
{

−(Erec − Ep)2

2σ2(Ep)

}
if Erec > Ep ,

(4.13)

where Z = 0.01. The second contribution is due to escaping 511-keV gamma rays after
pair annihilation, with a relative height of 0.5, as per [284, p. 15],

Rγ(Erec, Eν) = 0.5 × 1√
2πσ(Ep)

exp
{

−(Erec +me − Ep)2

2σ2(Ep)

}
. (4.14)

The energy resolution is taken from [285, fig. 3], which I parameterised as

σE(E) =
√

2 · 10−2 + 1.2 · 10−3 E

MeV + 2 · 10−4
(

E

MeV

)2
. (4.15)

The final reconstruction matrix R(Erec, Eν) is the sum of the two contributions eqs. (4.13)
and (4.14). However, I found that this approach does not reproduce the last bin, as the
reconstruction matrix shown in the inset of [282, fig. 3a] shows different behaviour for the
last bin. For the last bin, I estimate the reconstruction matrix as a piecewise constant (as
a function of Eν), so that the ratio in the last bin of [282, fig. 3c] is correctly reproduced.
As per previous sections, the integral over Erec is done with the error function,

Ri(Eν) =
∫ Ei

Ei−1
R (Erec, Eν) dErec . (4.16)

My prediction is then defined as

Predi

(
sin2 2θ,∆m2

)
=
(

1 − sin2 2θ
2

)−1 ∫
Ri(Eν)

[
σ

dΦ
dEν

]3ν

NEOS

〈
Pee

L2

〉
dEν . (4.17)

However due to all the unknown details of detector effects, I rescale the collaboration’s
no-oscillation prediction NEOS3ν

i using my prediction, to minimise the effect of detector
mismodelling,

Pi ≡ NEOS3ν
i

Predi (sin2 2θ,∆m2)
Predi (sin2 2θ = 0) . (4.18)

To construct the test statistic, I first define the covariance matrix, following [282], as
Vij = V stat

ij + V syst
ij ; the first term V stat accounts for statistical errors,

V stat
ij = δij

[
Di +Bi

∆ton
+ Bi

∆toff

]
, (4.19)

where δij is the Kronecker delta symbol; Di is the background-subtracted events/day for
bin i obtained from data (the black points in [282, fig. 3a]), measured during the reactor-
on period of ∆ton days; Bi corresponds to the background events/day (the yellow bars of
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ibid.), measured during the reactor-off period of ∆toff days. In eq. (4.19) the first term is
the Poisson error for the event rate, and the second is the Poisson error of the measured
background rate, which is not known exactly.

The second contribution to the covariance matrix V syst accounts for systematic errors
from the Daya Bay weighted flux; the covariance matrix for the weighted flux VDB(Eν , E

′
ν)

is provided in [255, tab. 13]. I make the simplifying assumption that experimental un-
certainties dominate the Daya Bay covariance matrix, such that I do not need to do any
rescaling to remove sterile oscillations in the covariance matrix. (In fact, due to the un-
folding procedure, it is impossible to separate theoretical and experimental uncertainties,
the former being sensitive to the oscillation model.) I make VDB a continuous function
by bicubic interpolation; then I fold in the NEOS energy response,

V syst
ij = N 2

∫∫
V DB(Eν , E

′
ν)Ri(Eν)Rj(E ′

ν) dEνdE ′
ν , (4.20)

where the normalisation is determined to be

N =
∑

i NEOS3ν
i∑

i Predi (sin2 2θ = 0)

∫ Lmax

Lmin

ρ(L)
L2 dL . (4.21)

The χ2 function is defined as

χ2
NEOS = min

ξ

61∑
i,j=1

(Di − ξPi)V −1
ij (Dj − ξPj), (4.22)

where the sum runs over the 61 energy bins. The free normalisation ξ does not have a
pull term, as the NEOS analysis seeks to be independent of the flux normalisation. As
mentioned previously, we make the simplifying assumption that V syst is dominated by
experimental uncertainties, which should be independent of the flux normalisation ξ. The
minimisation is done analytically, and the relevant formulae are detailed in appendix A.2.

In fig. 4.3 (left), I compare 90% exclusion curve (red) with the collaboration’s (blue),
which was calculated by the raster-scan method (see [282] for details, particularly eq. (4)).
This method assumes that the unnormalised probability distribution for a fixed ∆m2 is
exp(−∆χ2/2). My curve has extremely good agreement in the range 1 – 2 eV2, but at
lower ∆m2 my oscillations are smaller than the collaboration’s, and at larger ∆m2 they
are larger. I attribute this to mismodelling the detector response. I tuned my detector
response aEe+f(bEe+ + c) until it reproduced the χ2(3ν) value, and the quasi-degenerate
islands at (∆m2

41, sin2 2θ14) = (0.05, 1.73 eV2) and (0.04, 1.30 eV2) as best possible. Away
from them, the deviations are expected to be larger (due to say quadratic corrections
in the argument of f( · )). The position of my global minimum also differs from NEOS’,
but my χ2

min value is similar to the collaboration’s (7.4 vs. 6.5). Whilst the collaboration
reports two degenerate minima at (∆m2, sin2 2θ) = (0.05, 1.73 eV2) and (0.04, 1.30 eV2),
my ∆χ2 map has more such islands (see fig. 4.3 (right)). At NEOS’ two degenerate
minima, my fit yields a higher χ2 by approximately two units, see table 4.1. I assume
this to be due to the unknown detector response, combined with the impact of systematic
uncertainties (e.g., energy scale), which are technically difficult to implement outside the
collaboration.
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Figure 4.3: Left: a comparison of my exclusion curve (red) with the collaboration’s (blue),
extracted from [282]. Right: my ∆χ2 map, showing multiple quasi-degenerate islands.

NEOS My Fit χ2 Collab. χ2 ∆m2 sin2 2θ
Minimum 1 59.73 ∼ 57.5 1.30 eV2 0.04
Minimum 2 59.60 57.5 1.73 eV2 0.05

Table 4.1: Comparison of our χ2 to the values obtained by the collaboration at their
quasi-degenerate global minima.

4.1.3 PROSPECT

1

1

1

2

3

3

1

1

1

2

3

4

2

2

4

5

3

4

5

2

2

3

4

5

5

6

7

3

4

5

6

6

7

8

4

5

6

7

7

8

4

6

7

8

8

9

9

5

6

7

8

10

6

8

9

9

7

8

9

9

9

10

10

10

9

10

10

10

10

10

1

2

3

4

5

6

7

8

9

10

11

Y
 s

e
g
m

e
n
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14
X segment

Excluded Non-Fiducial

Figure 4.4: Map of detector segments, both
operable and inoperable, and the groupings
of the operable ones; courtesy of [286].

PROSPECT (the Precision Reactor Os-
cillation and Spectrum Experiment) is lo-
cated at the Oak Ridge National Labora-
tory, using a research reactor with 85 MW
of thermal power, consisting of highly en-
riched 235U (> 99% fission fraction). The
detector, located 7.9 m away, consists of
four tons of liquid scintillator, doped with
6Li at a mass fraction of 0.08%. The
scintillator is divided into 154 14.5 cm ×
14.5 cm × 117.6 cm segments arranged in
a 11 × 14 grid (fig. 4.4), optically isolated
by reflecting panels. We used data from
the supplementary material of [286], which
corresponds to 183 days of data taking, 105
days with the reactor on, and 78 with the
reactor off, collected in 2018. The resulting exclusion curve is not as strong as those from
the commercial-reactor experiments, due to the much lower thermal power, but also be-
cause the PROSPECT detector had defects: 64 of 154 detector segments were inoperable,
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resulting in a loss of 42% of the detector volume (most of which is fiducial).
As shown in fig. 4.4, the segments are grouped into ten clusters of similar base-

line. The data is reported as ten energy spectra (one for each cluster), with sixteen
energy bins from 1 – 7 MeV. The χ2 routine was developed by Jeffrey Berryman with
the GLoBES software [287,288]. In the supplementary material of [286], the collaboration
publishes segment-level efficiencies ϵs and detector-response matrices Rs

ij, where s labels
the detector segment, i labels the reconstructed prompt energy, and j labels the true
neutrino energy (binned in 82 0.1-MeV intervals from 1.8 – 10 MeV). For the prediction,
the segment-level detector properties were converted into baseline-level objects, labelled
by l ∈ {1 . . . 10}. Within GLoBES, the detector mass (defined in the Abstract Experiment
Definition Language (AEDL) file), associated with baseline l, is set to the sum of the
relative efficiencies of the segments contained in that baseline. The baseline distribution
ρs(L) for each segment s is constructed by randomly selecting points in the reactor core
and detector segment to form a density histogram (the segment map provided by the
collaboration determines the detector geometry, while the reactor core is modelled as a
cylinder of height 51 cm and radius 22 cm). The effective baseline is then calculated by
adding the contribution of each segment, weighted by its relative efficiency ws = ϵs∑

s
ϵs

,

〈 1
L2

〉
l
=
∑

s

ws

〈 1
L2

〉
s
, with

〈 1
L2

〉
s

=
∫

dL ρs(L)
L2 . (4.23)

The four-neutrino oscillation probability for a given bin l and neutrino energy Eν is
computed as

P l
ee

(
sin2 θ,

∆m2

4Eν

)
= 1 − sin2 2θ · Πl

(
∆m2

4Eν

)
, (4.24)

where for each baseline bin l we define

Πl(q) =
[∑

s

ws

〈
sin2(qL)
L2

〉
s

]/〈 1
L2

〉
l

(4.25)

with 〈
sin2(qL)
L2

〉
s

=
∫

dL ρs(L) sin2(qL)
L2 . (4.26)

The effective detector-response matrix Rl
ij for bin l is given by

Rl
ij =

∑
s

WsR
s
ij, where Ws = ws ⟨L−2⟩s

⟨L−2⟩l

. (4.27)

The weights Ws account for the relative expected rates in the segments. In principle,
these vary as a function of the sterile-neutrino parameters, but we assume that these
differences are negligible. At a given baseline bin l and energy bin i, the predicted event
rate for a set of oscillation parameters is proportional to

Predl,i

(
sin2 2θ,∆m2

)
=
∑

j

Rl
ij

∫ Ej

Ej−1
dEν σ(Eν)dΦ235U

dEν

· P l
ee

(
sin2 2θ, ∆m2

4Eν

)
. (4.28)
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Following eq. (4.18), we define our prediction by rescaling the collaboration’s three-
neutrino prediction,

Pl,i ≡ PROSPECT3ν
l,i

Predl,i (sin2 2θ,∆m2)
Predl,i (sin2 2θ = 0) . (4.29)

We calculate χ2 as per [286, eq. (11)],

χ2
PROSPECT =

10∑
l,m=1

16∑
i,j=1

(
Dl,i − Pl,i

Di

Pi

)
V −1

(l,i)(m,j)

(
Dm,j − Pm,j

Dj

Pj

)
, (4.30)
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Figure 4.5: A comparison of my exclusion
curve (red) with the collaboration’s (blue),
extracted from [286, fig. 45].

where V is the 160 × 160 covariance ma-
trix provided by the collaboration, which in-
cludes both statistical and systematic uncer-
tainties; and we define

Di ≡
∑

l

Dl,i and Pi ≡
∑

l

Pl,i . (4.31)

In fig. 4.5, I compare our exclusion curve
with the collaboration’s. The curve is cal-
culated using the CLs method (see [289]).
This method requires creating two additional
∆χ2 maps: one labelled H0 uses the three-
flavour prediction as pseudo data and the
four-flavour prediction as the prediction, and
another labelled H1, which uses the four-
flavour prediction as pseudo data and the
three-flavour prediction as the prediction.
These are then used in eq. (33) of ibid. (see
also [286, eq. (17)]) to construct CLs and the exclusion curve defined by CLs < 0.05.

4.1.4 STEREO

Figure 4.6: A cross section of the STEREO
detector, showing the six cells, bookended
by gamma catchers; from [290, fig. 2].

The STEREO experiment is an experiment
similar to PROSPECT, located at the Insti-
tut Laue-Langevin in Grenoble, France. It
uses a research reactor with 58 MW of ther-
mal power consisting of highly enriched 235U
(93% fission fraction). The detector, located
10 m away, consists of six optically isolated
369 mm × 892 mm × 918 mm cells filled with
Gd-doped liquid scintillator, corresponding
to a total volume of roughly 1800 L, and
is surrounded by a gamma catcher, to de-
tect gamma rays escaping the fiducial vol-
ume (fig. 4.6). We used the data published
with [290] (available at [291]), corresponding to 179 reactor-on days, and 235 reactor-off

57



days, collected during the years 2016 – 2018. The data is divided into two phases, between
which the reactor underwent maintenance: for each cell, phase-I data are reported with
ten 0.5-MeV energy bins between prompt energies of 1.625 – 6.625 MeV, while phase-II
data are reported with eleven 0.5-MeV bins between 1.625 – 7.125 MeV. The collaboration
publishes the event rates normalised to their three-neutrino prediction (after minimisa-
tion over their pulls). We follow this procedure to calculate our prediction, using the pull
values from [290, fig. 31].

The prediction routine was implemented by Jeffrey Berryman like PROSPECT in
GLoBES. However, the STEREO analysis uses forty pulls, which needed to be highly
optimised for the FCMC analysis; the optimisation of the χ2 routine was done by myself.
For each cell l ∈ {1 . . . 6}, we calculate the effective baseline and oscillation probability in
a similar fashion to PROSPECT (described in section 4.1.3), according to the geometry
described in [290]. We assume each cell is perfectly isolated and independent from one
another, ignoring any possible leakage of light from one cell to another. The detector
response matrix Rl,λ is distinct for each phase λ = I, II and cell l. We take them be
normally distributed with energy resolution extracted from [292, fig. 2.19] for phase I,
and from [290, fig. 11] for phase II, parameterised as

σλ(E)
E

= aλ + bλ

E/MeV , where
aI = 0.031, bI = 0.059;
aII = 0.043, bII = 0.050;

(4.32)

and the non-linear detector response Ep = Ee+

[
1 + fλ

l (Ee+)
]
, extracted from the same

references, as

fλ
l (E) = cλ

l + dλ
l

E

MeV + eλ
l

(
E

MeV

)2
, (4.33)

where the coefficients can be found in table 4.2. The response matrix Rλ,l
ij is built from

Phase I Phase II
l cI

l [%] dI
l [%] eI

l [%] cII
l [%] dII

l [%] eII
l [%]

1 2.2 −0.97 0.092 −0.23 0.25 −0.029
2 1.7 −0.98 0.10 −0.054 0.043 −0.010
3 1.1 −0.69 0.074 −0.11 0.22 −0.027
4 1.65 −0.96 0.01 0.15 −0.076 0.0026
5 2.0 −0.99 0.10 −0.10 0.095 −0.020
6 1.2 −0.70 0.070 0.35 −0.38 0.022

Table 4.2: STEREO non-linearity coefficients (eq. (4.33) for each cell l, as obtained from
a quadratic fit to the points shown in ref. [292, fig. 2.19] for phase I, and from ref. [290, fig.
10] for phase II.

the normal distribution, using the energy resolution and non-linear response functions,
where i labels the energy bin (integrated over prompt energy), and j labels true neutrino
energy, binned in 70 intervals between 1.85 – 7.95 MeV.

The predicted event rate is proportional to

Predλ
l,i

(
sin2 2θ,∆m2

)
=
∑

j

Rλ,l
ij

∫ Ej+1
ν

Ej
ν

dEν σ(Eν)dΦ235U

dEν

P l
ee

(
sin2 2θ, ∆m2

4Eν

)
. (4.34)
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As already mentioned, the collaboration normalised their rates with their three-neutrino
prediction, minimised over the pulls. Two types of pulls are introduced for each baseline
and phase: one for energy-scale uncertainty ηλ

l , and another for normalisation uncer-
tainty ζλ

l . In addition to these two, a cell-correlated pull ξλ for energy-scale uncertainty
is also introduced. The implementation of the energy-scale uncertainty is discussed in
appendix A.3.6. Our prediction, then, is

P λ
l,i =

(
1 + ζλ

l

)
Predλ

l,i

[
ηλ

l + ξλ
]

(
1 + ζ̃λ

l

)
Predλ

l,i (sin2 2θ = 0)
[
η̃λ

l + ξ̃λ
l

] , (4.35)

where η̃λ
l , ξ̃

λ
l , ζ̃

λ
l are provided in [290, fig. 31]. , The χ2 function for STEREO is computed

by adding the contributions from the two phases. Following [290, eqs. (15, 19)], we
introduce a set of free flux normalisations for each energy bin, ϕi, common to the two
phases (eleven in total), as well as a relative normalisation uncertainty for the first phase,
ΦI, common to all bins, to account for a possible difference in reactor power, or baseline
difference, after the reactor maintenance. Therefore, we have

χ2
STEREO = min

ηI,II
l

, ξI,II,

ζI,II
l

, ϕi, ΦI


Ncells∑
l=1

N I
Ebins∑
i=1

(
DI

l,i − ΦIϕiP
I
l,i(ηI

l + ξI, ζI
l )

σI
l,i

)2

+
Ncells∑
l=1

N II
Ebins∑
i=1

(
DII

l,i − ϕiP
II
l,i(ηII

l + ξII, ζII
l )

σII
l,i

)2

+
Ncells∑
l=1

λ=I,II

(ηλ
l

σλ
η

)2

+
(
ζλ

l

σλ
ζ

)2
+

∑
λ=I,II

(
ξλ

σλ
ξ

)2
,

(4.36)
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Figure 4.7: Our CLs exclusion curve (red)
vs the collaboration’s (blue), from [290].

where Dλ
l,i is the data, and σλ

l,i its statistical
errors, obtained from [291]; and the system-
atic errors for the pulls are:

σI
η = 1.06%, σII

η = 1.02%,
σI

ξ = 0.35%, σII
ξ = 0.30%,

σI
ζ = 1.18%, σII

ζ = 1.18%.
(4.37)

(Note that the first phase only has ten bins,
so ϕ11 only enters the second-phase sum.)
In order to optimise the minimisation pro-
cedure, we make the following transforma-
tions,

αλ
l = ηλ

l + ξλ,

ΦI
(
1 + ζI

l

)
= 1 + βI

l ,
(4.38)

and for consistency βII
l = ζII

l . This isolates
the dependence of ξλ, ΦI in the quadratic pull terms, which we can analytically min-
imise. We numerically minimise the remaining pulls with a non-linear conjugate-gradient
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algorithm [293]. The details of the minimisation procedure is covered in appendix A.3.
In fig. 4.8 I compare the ∆χ2 contours of our fit and the collaboration, and in fig. 4.7, I
compare our 95% CLs exclusion curve with the collaboration’s.
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Figure 4.8: I compare our fit’s ∆χ2 = 11.8, 19.3 curves (corresponding to 3 and 4σ
significance under Wilks’ theorem with two degrees of freedom) with the collaboration’s,
from their χ2 map provided by [291].

4.1.5 Neutrino-4
The Neutrino-4 experiment is conducted at Dimitrovgrad, Russia, using a highly compact
research reactor with 90 MW of thermal power, consisting of highly enriched 235U, and
a 1.8 m3 detector, consisting of 5 × 10 225 mm × 225 mm × 850 mm segments, filled to
a height of 70 cm with liquid scintillator with 0.1% gadolinium [294]. The first and last
rows of the ten rows (each containing five segments) are used as veto, with the resulting
fiducial volume being 1.42 m3. The detector is mounted on a movable platform, which
allows the baseline to be adjusted between 6 – 12 m. The experiment collected data with
the reactor on for 720 days between June 2016 to July 2019, after which the reactor was
turned off and the background was measured. We use the data presented in fig. 47 of the
second version of the arXiv preprint of [275] with 417 days of the reactor off, however the
published version of the article uses reactor-off data until October 2020, corresponding
to 860 days. The reason for the discrepancy is due to a long review process, due to
criticism of not only their statistical method (as already mentioned) but also concerns
due to background (lack of pulse-shape discrimination) and their treatment of energy
resolution [295, §4] (see also [296]), as well as concerns regarding the finite-size of the
detector (baseline smearing) and escaping gamma photons due to the small size of the

60



detector [297, 298]. Our Neutrino-4 analysis is based on the previous work done by co-
authors Pilar Coloma, Patrick Huber and Thomas Schwetz [274], which was finished
before the publication of the finalised Neutrino-4 results, which is why we follow the
older version of the Neutrino-4 analysis, albeit accounting for the various criticisms.

Neutrino-4 bins their data into nine 0.5-MeV energy bins and twenty-four 0.235-m
baseline bins from 6.25 – 11.89 m. The resulting 24 × 9 bins in L/E are used to form the
ratios, following [275, eq. (2)],

Robs
ik = NikL

2
k∑24

k=1 NikL2
k/24 and Rpred

ik =

〈dΦ235U
dEν

Pee(Lk/Eν)
〉

i∑24
k=1

〈dΦ235U
dEν

Pee(Lk/Eν)
〉

i

/
24
, (4.39)

where Nik denotes the observed number of events in energy bin i and baseline bin k; and
where Rpred

ik denotes the prediction, with implicit dependence of the survival probability
Pee on ∆m2 and sin2 2θ, and where the average ⟨ · ⟩i is over the energy bin [Ei−1, Ei). Note
that the prediction does not include any response matrix, which is one of the criticisms of
the collaboration’s analysis. Following the collaboration, we make the assumption that
the energy dependence of the flux can be neglected in the average ⟨ · ⟩i, whence the flux
dΦ235U/dEν cancels in the ratio. Our prediction is therefore

Predik =
1 − sin2 θ

〈
sin2 ∆m2Lk

4Eν

〉
i

1 −∑24
i=1 sin2 θ

〈
sin2 ∆m2Lk

4Eν

〉
i

/
24
, where (4.40)

〈
sin2 ∆m2Lk

4Eν

〉
i

=
∫ +∆E/2

−∆E/2
sin2

[
∆m2Lk

4 (Ei + δEν)

]
d (δEν)

∆E . (4.41)

This is only an approximation, as a realistic detector response matrix is not available,
which would involve a normally distributed energy response with an energy resolution
that depends on the true neutrino energy. Furthermore, we approximate the baseline
smearing by increasing ∆E to the effective value

∆Eeff = E
√

(∆L/L)2 + (∆E/E)2, (4.42)

where ∆E = 0.5 MeV and ∆L = 0.48 m.
The integral in eq. (4.41) can be transformed via integration by parts to〈

sin2 ∆m2Lk

4Eν

〉
i

= E+
i sin2 ω+

i − E−
i sin2 ω−

i − ∆m2Lk

4
[
Si
(
ω+

i

)
− Si

(
ω−

i

)]
, (4.43)

where E±
i = Ei ±∆E/2 and ω±

i = ∆m2Lk/(4E±
i ). The values of Lk/Ei are then arranged

in increasing order, Lk1/Ei1 < Lk2/Ei2 < · · · < Lk216/Ei216 , and then the data and
prediction are then averaged over groups of consecutive eight bins, leading to a total of
27 data points,

Dj =
8j∑

n=8j−7

Robs
inkn

8 and Pj =
8j∑

n=8j−7

Predinkn

8 , (4.44)
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although in our analysis we only use the 19 blue-triangle data points in fig. 47 of the
version-two arXiv preprint. The χ2 function is then

χ2
Neutrino-4 =

19∑
j=1

(
Dj − Pj

σj

)2

, (4.45)

where the statistical uncertainties are extracted from the same fig. 47 of ibid. A compar-
ison of our results with the collaboration is shown in fig. 4.9.
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Figure 4.9: The ∆χ2 = 15.2 contour of
our fit (red) compared with the collabora-
tion’s (blue), extracted from fig. 45 from the
version-two arXiv preprint of [275].

Figure 4.10: Two-zone gallium vessel of
BEST with the chromium-51 source at
the centre, taken from [201].

4.2 Gallium and Solar Data
In this section, I will overview the analysis of data from the gallium experiments and
solar-neutrino observations. The χ2 routines were initially implemented by my supervisor,
Thomas Schwetz, which I then optimised using modern C++ features.

4.2.1 Gallium data
As already mentioned in section 2.7, calibration measurements for the solar-neutrino
experiments GALLEX and SAGE using 51Cr (and one measurement by SAGE using
37Ar) found a deficit compared to the theoretical prediction (using the Bahcall cross
section) [196–198,299], which had a combined significance of 3σ [200].

The BEST experiment recently confirmed this anomaly at very high > 5σ signif-
icance [201]. The experiment uses an artificial, highly intense, 3.4-MCi 51Cr neutrino
source, manufactured by exposing 50Cr to thermal neutrons from a reactor, whose heat
output is precisely measured [300, 301]. The calorimetric measurement of heat is con-
verted to neutrino activity, by using the nuclear tables, containing the decay channels
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and branching ratios [302]. The source was chosen due to its simple electron-capture de-
cay scheme, allowing for a simple conversion between thermal power and neutrino activity
(unlike reactor sources, whose set of possible decays is enormous). The source was then
placed in a cylindrical vessel, shielded with 3-cm-thick tungsten alloy, which is located
in a two-zone vessel containing liquid gallium. The vessel contains an inner spherical
volume with 7.5 t of Ga, and an outer cylindrical volume with 40 t of Ga (fig. 4.10).
Exposure to the neutrino source began in July, 2019, and after nine-day intervals, the
71Ge, produced from charged-current neutrino scattering, was extracted, purified and its
radioactivity measured. At the beginning of each exposure period, ≈ 250µg of Ge carrier
was artificially added to the gallium volume, which ensured the validity of the extraction
procedure.

Following [201], the rate of germanium production can be written as

r = nσA
∫∫∫

V

∑
i fiPee

(
sin2 2θ, ∆m2|r⃗|

4Ei

)
4π|r⃗|2

dr⃗, (4.46)

where n is the gallium number density, σ is the neutrino cross-section on gallium, A is
the source activity,

∫∫∫
V is an integral over the detector volume, i denotes the neutrino

line with branching ratio fi, and Ei is the energy of the emitted neutrino. The analysis
is done in terms of the capture rate, normalised to the no-oscillation prediction,

D = robs

r (sin2 2θ = 0) and P = r (sin2 2θ)
r (sin2 2θ = 0) . (4.47)

Note that the denominator in both ratios are predictions, so the analysis is not flux free,
unlike in the reactor experiments. There are multiple calculations for the cross section,
and the ratios D obtained from the collaborations are reported using the 1997 Bahcall
calculation [303], however we also considered more recent calculations by Kostensalo
et al. [304] and Semenov [305], which requires the ratios for each experiment D to be
rescaled. In tables 4.3 and 4.4, I reproduce the table of D and cross sections from our
paper [272].3

GALLEX [299] GALLEX [299] SAGE [197] SAGE [197] BEST [201] BEST [201]
(inner) (outer)

0.953 ± 0.11 0.812 ± 0.10 0.95 ± 0.12 0.791 ± 0.084 0.791 ± 0.044 0.766 ± 0.045

Table 4.3: The ratios of the observed-to-expected production rates for the gallium exper-
iments. The quoted 1σ errors include statistical and uncorrelated experimental errors.
The SAGE measurement [198] in the fourth column uses an 37Ar source; all other mea-
surements are from a 51Cr source. The ratios are based on the Bahcall cross section [303].

The neutrino branches for the source can be found in [306]. (Note how we have
implicitly made the approximation of using the same effective cross section for each branch
in eq. (4.46), which is justified as the cross section between branches is very similar.) The
detector geometry for GALLEX can be found in [307], which we model as a cylinder

3Note that there is a technical inconsistency in the quoted ground-state cross section for Kostensalo
et al. ; see our paper [272] for details.
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Reference σ(Cr) σg.s.(Cr) σ(Ar) σg.s.(Ar)
Bahcall [303] 58.1 ± 2.1 55.2 70.0 ± 4.9 66.2
Kostensalo et al. [304] 56.7 ± 1.0 55.3 ± 0.7 68.0 ± 1.2 66.2 ± 0.9
Semenov [305] 59.38 ± 1.16 55.39 ± 0.19 71.69 ± 1.47 66.25 ± 0.23

Table 4.4: Cross section for νe scattering on gallium, weighted by the branching ratios
for the neutrino branches of the source, chromium-51 or argon-37, for three cross-section
models. Units are 10−46cm2. The ground-state contribution is also displayed.

of height 5 m and radius 1.9 m, with the source located at a height of 2.7 m; note the
second GALLEX experiment located their source 32 cm lower [196]. The SAGE detector
geometry is taken to be a cylinder of radius 0.7 m and height 1.47 m, with the source
located at height 0.72 m [306]. For both SAGE and GALLEX the source size (regulating
the integral for small |r⃗|) is taken to be 1 cm (specifically, we set the minimum radius in
cylindrical coordinates to be 1 cm). For BEST, the geometry is taken from [201], the inner
vessel being a sphere of radius 66.75 cm and the outer vessel being a cylinder of height
2.345 m and radius 1.09 m, with the source at the centre, having a radius of 4.3 cm.4
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Figure 4.11: The 1, 2, 3σ (Wilks 2 dof) con-
tours of our fit (red) compared with (blue),
extracted from fig. 3 of [201].

We define the χ2 function as χ2
gall =

min
ξ


6∑

j=1

[Dj − f(ξ)Pj]2

σ2
j

+ ξ2

 , (4.48)

where the sum j runs over the exper-
imental ratios of table 4.3, from which
the uncertainties σj are taken with rele-
vant rescaling. The systematic ξ is asso-
ciated with the uncertainty in the cross
section, which is fully correlated across
experiments. The function f(ξ) is defined
to take into account that the ground-
state contribution of the cross-section is
known more precisely than the total cross-
section, and the exited-state contribution
can only increase the cross section, so that
when f(ξ)σ < σg.s., we use the ground-
state cross section’s uncertainty,

f(ξ) =
1 + εξ if ξ ≥ ξ∗

σg.s./σ + εg.s.(ξ − ξ∗) otherwise
, where (1 + εξ∗)σ = σg.s., (4.49)

ε ≡ ∆σ/σ, εg.s. ≡ ∆σg.s./σ, and ∆σ and ∆σg.s. are the error of the total cross section σ
and ground-state contribution σg.s., respectively, given in table 4.4. Note that both ε and
εg.s. are defined relative to the total cross section. In fig. 4.11 I compare our results with
the collaboration’s.

4Note that the integral for the outer vessel excludes the inner vessel.
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4.2.2 Solar data
The solar χ2 is based on a simplified analysis of solar data that my supervisor constructed
in collaboration with Michele Maltoni [308]. The idea is that the solar data (see fig. 3.8)
are clustered in the low-energy (≲ 1 MeV) and high-energy (≳ 7 MeV) regions, where the
effective survival probability is approximately constant in energy. Therefore, the analysis
is done in terms of the effective probabilities(

P LE
ee , P

HE
ee , P LE

ex , PHE
ex

)
, (4.50)

where Pex = Peµ + Peτ , and
P LE ≡ P (Eν → 0) ,
PHE ≡ P (Eν → ∞) .

(4.51)

Assuming that the neutrino states arrive incoherently, so that all phase information is
lost, the prediction is defined as

Peα =
4∑

k=1
|Um

ek|2|Uαk|2, where U =


c14 0 0 −s14
0 0 0 0
0 0 0 0
s14 0 0 c14

U3ν
PMNS, (4.52)

and U3ν
PMNS is the SM three-flavour mixing matrix but with an extra row and column of

zeroes appended. We have made the approximation that θ24 = θ34 = 0, and we define

sm
12 = s12 (low energy) and sm

12 = 1 (high energy), (4.53)

to take into account the energy-dependent nature of the MSW resonance. In the analysis,
we fix s13 to the global best-fit value. See [308] for more details.

The observed values Dj of the effective probabilities, their uncertainties and corre-
lation matrix are reproduced in table 4.5 from [308], which are tuned to reproduce the
full global solar-neutrino fit. The correlation matrix includes both experimental and the-
oretical systematics from the solar model; we use the GS98 solar model, which is less
constraining then the AGSS09 model [309].

Dj σj correlation matrix
P LE

ee 0.5585 0.0440 +1.000 +0.104 −0.635 +0.475
PHE

ee 0.3444 0.0397 +0.104 +1.000 +0.296 +0.498
P LE

ex 0.6512 0.2233 −0.635 +0.296 +1.000 −0.274
PHE

ex 0.7526 0.1116 +0.475 +0.498 −0.274 +1.000

Table 4.5: Effective solar-data values for the observations Dj, their 1σ uncertainty σj,
and their correlation matrix ρ, corresponding to the GS98 solar model [309].

The χ2 function is defined as

χ2
(
s2

12, s
2
14

)
=

4∑
i,j=1

(Di − Pi)V −1
ij (Dj − Pj), (4.54)
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where the sum is over the four probabilities in eq. (4.50) and

V −1
ij =

S−1
ij

2

[
1
Di

1
Dj

+ 1
Pi

1
Pj

]
, where Sij = ρij

σi

Di

σj

Dj

(no sum over indices) (4.55)

and S−1 is the matrix inverse of S.
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Figure 4.12: A comparison of our four-point
solar fit with the full solar fit.

This definition is in fact merely an ap-
proximation of the correct covariance ma-
trix Vij = Sij/2 · (DiDj + PiPj), whose
full inverse depends on the oscillation pa-
rameters, which is computationally ex-
pensive. A ∆m2-independent constraint
on s2

14 can be obtained by using

χ2
solar = min

s2
12

χ2(s2
12, s

2
14). (4.56)

A comparison of our simplified four-point
fit with the full solar fit is shown in
fig. 4.12. Note that in this subsection,
we have used the parameter s2

14 instead
of sin2 2θ14, which is what we used for the
other terrestrial experiments and for the
next sections. As can be seen from fig. 4.12, the best-fit value of s2

12 does not change
significantly as a function of s2

14, so we fix s2
12 = 0.3125 in the global FCMC analysis. I

checked that this does not change the FCMC bounds on s2
14 for the solar analysis.

4.3 Feldman-Cousins Analysis
As already mentioned, Wilks’ theorem breaks down when searching for new neutrino
oscillations, which prompted Feldman and Cousins to develop a more rigorous statistical
approach [276]. The reasons given by Feldman and Cousins for the breakdown are:

1. the bounded nature of the physical region for sin2 2θ ∈ [0, 1]; considering χ2 values
outside this region, it is possible for a minimum to occur outside the interval [0, 1],
which violates the assumptions of Wilks’ theorem;

2. the oscillatory nature of the χ2 contours, which can cause a global minimum to
occur in a local island, which does not contain the true oscillation parameters;

3. non-constant degrees of freedom: for some regions in parameter space, the degrees
of freedom become one, e.g. sin2 2θ = 0, or for large ∆m2, when oscillations average
out and χ2 is only sensitive on the mixing sin2 2θ.

Therefore, for each point in parameter space, we calculate the statistical distribution of
∆χ2 (sin2 2θ,∆m2) via Monte Carlo simulations. The procedure for this, roughly, is to
use the prediction as the mean for the statistical distribution of the binned data, and to
inject statistical fluctuations on top of the mean using the relevant distribution provided
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by the collaboration: the covariance matrix and relevant pulls. Using this pseudo data,
we then calculate the quantity

∆χ2
(
sin2 2θ,∆m2

)
= χ2

(
sin2 2θ,∆m2

)
− χ2

min. (4.57)

We then repeat this process with pseudo data with new fluctuations for a large number
of iterations, until a large dataset of ∆χ2 values is obtained, whose histogram gives an
estimate for its true statistical distribution.

4.3.1 Pseudo-data generation
For the pulls with a given uncertainty, we generate normally distributed fluctuations
with the given uncertainty on top of the mean value as reported by the collaboration.
For the free flux normalisations, we set them to the values that provide the best fit to
the real data. (In this scheme we are treating the two systematics differently, as the
free normalisations are introduced merely to make our analysis independent on absolute
normalisation; whereas setting the constrained pulls to their best-fit value would yield a
biased χ2, which would not reproduce Wilks’ theorem for non-pathological cases). For a
discussion on these assumptions, see appendix B.1,3 of our paper [272]. The procedure I
used to generate pseudo is (reproduced from our paper):

(i) choose the parameters ∆m2, sin2 2θ for the hypothesis of new oscillations;

(ii) calculate the free flux normalisations {ηmin}, which provide the best fit to the ob-
served data for the assumed hypothesis;

(iii) generate fluctuations for the pulls,

ξpseudo
k = ξk + σξk

δk , (4.58)

where δk are standard-normal fluctuations and ξk is the mean value provided by the
collaboration;

(iv) compute the prediction for the assumed hypothesis, applying the fluctuated nuisance
parameters and calculated flux normalisations, and set this as the mean for the
generation of pseudo data,

D
pseudo
i = Pi

(
∆m2, sin2 2θ; {ξpseudo}, {ηmin}

)
; (4.59)

(v) if the χ2 function contains a covariance matrix V , first recalculate it (if necessary)
by replacing all data with D

pseudo
i in V ;

(vi) calculate the Cholesky decomposition L of V pseudo (note if χ2 does not contain a
covariance matrix, then L is diagonal with the standard deviations of each bin as
the diagonal entries);

(vii) inject fluctuations around the pseudo-data mean with L, i.e.,

Dpseudo
i = D

pseudo
i +

∑
j

Lijδj, (4.60)

where δj are standard-normal fluctuations.
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Remarks on individual experiments For DANSS, we generate the pseudo data not
at the level of ratios, but at the level of the absolute rates for each baseline. However,
the predicted ratios are used to set the pseudo-data mean,〈

ni
T

〉
= ni,obs

T ,
〈
ni

M

〉
= ni,obs

T P i
2

√
P i

1,
〈
ni

B

〉
= ni,obs

T P i
1, (4.61)

where P i
1,2 are given in eq. (4.6). The statistical fluctuations are then normally distributed

with standard deviation σi
λ =

√
⟨ni

λ⟩ /∆tλ.
For NEOS, I merely remark that the pseudo data replaces Di in V stat in eq. (4.19).

For STEREO, since the uncertainties of some bins are large, this introduces occasional
negative values after statistical fluctuations. If this occurs for a dataset per phase, I
throw away the dataset for that phase and redraw fluctuations. Negative values only
occur for the last or penultimate bin, for which Dλ

l,i/σ
λ
l,i ∼ 2.2. For the solar analysis, I

merely remark that in the case of generation of pseudo data, we use the covariance matrix
Vij = ρijσiσj, which is based on its original definition, given below eq. (4.55).

In fig. 4.13, I compare our Feldman-Cousins exclusion curves with the curves provided
by PROSPECT and STEREO. Possible reasons for some of the deviations in the case
of STEREO are given in appendix A.4 of our paper [272]. Furthermore, sometimes my
grid spacing does not resolve the peaks in the exclusion curve for STEREO. In fig. 4.14,
I compare the distribution of my best-fit points with the collaboration for STEREO.
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Figure 4.13: Comparison of our 95% FC curve for PROSPECT (left) and STEREO
(right) to the collaboration [286,291], evaluated with 104 pseudo experiments; from [272].

4.3.2 Minimisation algorithm
An important part of the FCMC analysis is computational speed. After optimising
the χ2 routines for each experiment (for which the tools perf and valgrind are very
useful), and using useful compilation flags such as -O3 -ffast-math -funroll-loops
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Figure 4.14: My fit’s distribution of null-hypothesis best-fit points overlaid (2 · 104 runs)
on the collaboration’s (left) and the collaboration’s distribution (5 · 103 runs) (right).

-march=cascadelake5 as well as multithreading, I tuned the algorithm to find the min-
imum for a given pseudo dataset, which is a leading factor determining computing time.
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Figure 4.15: Plot of ∆χ2 profile, minimised
over sin2 2θ, as a function of ∆m2. The χ2

function used is the sum of reactor experi-
ments and the solar analysis (I do not include
gallium for this plot).

The first part of the strategy to find
the minimum was to exploit the fact that
χ2 profiles for fixed ∆m2 (as a function
of sin2 2θ) have a parabolic shape and a
unique minimum. The algorithm to min-
imise χ2(sin2 2θ) for a fixed ∆m2 was to
use repeated parabolic interpolation, with
occasional bisections, and is detailed in
appendix A.4.

The second part of the minimisation
algorithm was to take into consideration
the oscillatory nature of the χ2 profile
once minimised over sin2 2θ, i.e.

min
sin2 2θ

[χ2(sin2 2θ,∆m2)].

An example profile is shown in fig. 4.15,
which shows the existence of multiple
parabolic-like minima. We also see noise-
like features, which are probably numeri-
cal artefacts due to the imperfect pull-minimisation procedure for STEREO. The profile
is flat for ∆m2 > 10 eV2.

Recall that the ∆m2 dependence of the prediction, and therefore the χ2 function, is
discretised on a grid. This grid is made to be very fine, with intervals of 10−3 eV2 for
∆m2 ∈ [0.1, 1) eV2, 10−2 eV2 for ∆m2 ∈ [1, 10) eV2, and 0.1 eV2 for ∆m2 ∈ [10, 30] eV2;
the result is a total of 2000 grid points. In order to optimise minimisation, I do not

5The last of these options is specific to the computing cluster I worked on, whose CPU architecture
was Intel Cascadelake. This architecture had in-built vector operations, which allowed for multiple scalar
operations to be executed in a single CPU instruction.
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scan every single grid point, but rather use larger steps (which are tuned depending on
whether we include gallium or not) and use parabolic interpolation on the discrete grid
when I encounter a local minimum. More details can be found in appendix A.4.

4.4 Results
In this section, I present the results of our FCMC analysis, which can also be found in our
paper [272]. The results in this section are based on computations on the KIT Kalinka5
cluster, which contains several Intel Xeon Gold 6230 processors. Each processor contains
twenty cores and can run forty threads. Using 100 – 200 threads, I could obtain results
for a full parameter-space scan on a grid with roughly 6000 points in 10 – 20 hours.

4.4.1 Best-fit points and p0 value
In table 4.6, I show a comparison of our fit’s best-fit points with the collaborations’ in the
middle three columns, which show reasonable agreement in all cases. (The discrepancy
for the best-fit parameters for NEOS and our fit is explained in section 4.1.2; see also
table 4.1.) Note that for NEOS and PROSPECT, there is a different number of degrees
of freedom between our analysis and the collaborations’, due to the different number
of pulls used. In the last four columns, I show the ∆χ2 value for the null hypothesis
(sin2 2θ = 0) of our fit and the collaborations (again with good agreement); also shown
is p0: the p value for the null hypothesis, calculated from Monte Carlo simulations of
the test statistic ∆χ2

3ν . Because of the high significance of gallium, the p0 value could
not be calculated via MC simulations, and instead an estimated range of its value was
calculated. The estimated range is based on two extrapolations of the survival function,
which is explained in the next section 4.4.2.

In the last two columns, I show the number of standard deviations of a standard
normal distribution that corresponds to p0, and also the number of standard deviations
when assuming Wilks’ theorem, i.e. assuming ∆χ2

3ν is distributed like χ2(2 dof). As can
be seen, Wilks’ theorem consistently overestimates the significance by 0.6 – 1.1σ, and the
global reactor data is compatible with the hypothesis of no new oscillations.

4.4.2 Null-hypothesis ∆χ2 distribution
In this section, I present the distributions of the ∆χ2 test statistic at the null hypothesis
for the different combinations of datasets. In fig. 4.16, I show the ∆χ2

3ν probability dis-
tribution function (PDF) and the survival function (SF) for

√
∆χ2

3ν , for the combination
of all reactor experiments, as well as the same functions for the χ2(2 dof) distribution.
It is clear that Wilks’ theorem does not hold, and the χ2(2 dof) distribution drastically
underestimates the p0 value.

In fig. 4.16 (left), I have also plotted the maximum-Gauss distribution, which was
introduced in the paper by the coauthors Coloma, Huber and Schwetz [274], as a semi-
analytic approximation for the ∆χ2

3ν distribution of. As previously mentioned, one can
always fit a high-frequency oscillating signal to a set of normally distributed residuals.
The Fourier transform of a set of normally distributed random variables is also normally
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χ2
min/dof ∆m2

min sin2 2θmin ∆χ2
3ν p0 #σ #σ(W )

DANSS 1.3 eV2 0.014 3.2 1.3
Our Fit 77.6/70 1.32 eV2 0.011 3.6 43.8% 0.8 1.4
NEOS 57.5/59 1.73 eV2 0.05 6.5 22% 1.2 2.1
Our Fit 59/58 2.95 eV2 0.16 7.4 19.4% 1.3 2.2
PROSPECT 119.3/142 1.78 eV2 0.11 4.0 57% 0.6 1.5
Our Fit 118.1/158 1.75 eV2 0.11 4.3 63.3% 0.5 1.6
STEREO 128.4/112 8.95 eV2 0.63 9.0 9% 1.7 2.5
Our Fit 128.6/112 8.72 eV2 0.59 7.8 15.8% 1.4 2.3
Nu-4 14.7/17 7.26 eV2 0.38 15.3 3.5
Our Fit 16.1/17 7.31 eV2 0.38 12.6 1.5% 2.4 3.1
REACTORS 428/421 8.86 eV2 0.26 7.3 27.4% 1.1 2.2
W/ Solar 432/425 1.30 eV2 0.014 6.6 17.8% 1.3 2.1
W/ Gallium 433/427 8.86 eV2 0.32 38.8 (0.14 →

1.4)×10−7
5.7 → 5.3 5.9

Table 4.6: Comparison of our fit results with the collaborations’ (where available) for
DANSS [280, p. 17], NEOS [282], PROSPECT [286, §VIII.C], STEREO [290, table 5]
and Neutrino-4 [275, §21 of v2 of arXiv preprint]; reproduced from [272]. The middle
three columns contain the global-minimum χ2 value, and the corresponding oscillation
parameters. The last four columns contain the ∆χ2 value of the null hypothesis, the
p value of the null hypothesis calculated from MC simulations (p0), and its equivalent
number of normal standard deviations, #σ. In the last column is the number of standard
deviations when Wilks’ theorem is assumed (with two degrees of freedom). We also show
our combined results for all reactors, as well as reactors with solar, and reactors with
gallium data. The gallium analysis uses the Kostensalo et al. cross section [304]. Due to
the very low p0 value for gallium, the range given is an estimate (see section 4.4.2).

distributed, and the maximum value of the Fourier-transformed variables will determine
the pseudo-signal strength of the pseudo oscillations. Therefore, the test statistic

T ≡
(

max
k

ak

)2
, where k ∈ {1 . . . n}, (4.62)

and its distribution, which I denote as Gau„max(n), approximates ∆χ2
3ν and its distribu-

tion. The parameter n is an effective number of degrees of freedom, which is tuned to
match the MC distribution. Deviation from maximum Gauss, which assumes that bins
are statistically independent, can be traced to correlations between bins in the reactor
dataset, as well as other simplifying assumptions such as equal bin size of all data.

In fig. 4.17, I show the survival function (at the null hypothesis) for
√

∆χ2
3ν for the

reactor data combined with solar as well as with gallium. The functions are almost
identical, implying that the reactor data dominates and determines the null-hypothesis
distribution. The two extrapolations shown as dotted dashed lines, a linear one in cyan
and a maximum-Gauss one in purple, are used to estimate the p0 value, given in table 4.6.
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Figure 4.16: Survival function (SF, left) and probability distribution function (PDF,
right) of

√
∆χ2

3ν , and ∆χ2
3ν , respectively, for all reactor experiments for 105 simulations

(blue), compared with the χ2(2 dof) SF and PDF (red), as well as the maximum-Gauss
distribution for n = 80, 120, see text for details; reused from [272].

The linear extrapolation is based on fitting a line to the tail of the survival function,
and represents an upper limit for p0, as the survival function has negative curvature.
The maximum-Gauss extrapolation is tuned using n as the free parameter to roughly
match the survival function in the interval

√
∆χ2

3ν ∈ [3.5, 4.5]. As can be seen from
figs. 4.16 and 4.17, the maximum-Gauss distribution generically decays faster than the
MC distribution, and so the maximum-Gauss extrapolation represents a lower limit on
p0. The Gau„max(60) curve, extended to

√
T ∼ 6.5 was calculated on four NVIDIA Tesla

K40c GPUs using CUDA, using 1.15 · 1010 simulations, taking roughly one to two hours.

4.4.3 FCMC exclusion curves
In fig. 4.18, I show the FCMC exclusion curves for each individual reactor experiment, as
well as their combination, as bands. The corresponding curves under the assumption of
Wilks’ theorem with two degrees of freedom are also plotted with thin lives. Comparing
the bands with lines of the same colour, we see that the true significance is reduced by
roughly one standard deviation, similar to the null-hypothesis case.

The bands signify the 99% confidence spread due to statistical fluctuations of the MC
simulations. Namely, for N MC trials, the number n of pseudo datasets with ∆χ2

pseudo >
∆χ2

obs is distributed as a binomial distribution, with parameters N and p, where p is
the true p value. We can define the distribution of p values calculated via Monte Carlo
simulations as f(q) = N · B(n;N, p), where q = n/N is the MC-calculated p value, and
B( · ; · , · ) is the binomial PDF. The α = 99% confidence interval [q0, q1] is estimated
using f( · ) by using the obtained p value via MC simulations as an estimate for the true
p value in f( · ), and defining q0,1 to satisfy

F (p) − F (q0)
F (p) − F (0) = α,

F (q1) − F (p)
F (1) − F (p) = α, (4.63)
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Figure 4.17: The survival function of
√

∆χ2
3ν for reactor data combined with solar (green)

or with gallium (blue), for 106 runs, from [272]. The corresponding distribution for
χ2(2 dof) is shown for comparison (red), as well as extrapolations with a line (cyan) and
the max-Gauss distribution (purple) with n = 60, which are used to estimate p0.

where F ( · ) is the CDF of f( · ) and p ≡ nMC/N . Note that for very small p values, the
distribution f( · ) is highly skewed. Parameter points that lie in a band of confidence level
pCL are defined so that pCL lies in the confidence interval [q0, q1] at that parameter point.

In fig. 4.19 (left), I show the results for our gallium analysis, which combines the
data from GALLEX, SAGE and BEST. Because the relevant regions for gallium lie far
away from the boundaries of parameter space, and because of their high significance, the
Feldman-Cousins analysis does not significantly differ from the equivalent contours under
Wilks’ theorem, shown in dash dotted. In fig. 4.19 (right), the 2σ regions for gallium,
reactor data, solar data are shown, as well as from other data such as νe scattering on
12C from LSND and KARMEN [310, 311], as well as from KATRIN [312]. (Note that I
have updated the KATRIN curve to the latest 2022 data, whereas our publication uses
the old 2020 data.) The LSND and KARMEN limits come from searching for charged-
current electron-neutrino scattering in a muon-neutrino beam; whereas the KATRIN
bound comes from searching for spectral distortions in the near-endpoint spectrum of
tritium decay. As can be seen, gallium is compatible with all data except for the solar
data, whose tension will be quantified in section 4.4.4. Note that the LSND and KAR-
MEN data is only marginally relevant for ∆m2 ≤ 10 eV2, where most of the parameter
space is already excluded by reactor data. Also note that for the KATRIN curve, the
collaboration ignores the lightest neutrino mass; marginalising over this would lead to
slightly less stringent bounds.

Because of the gallium-solar tension, it is statistically unsound to combine the two
datasets, as explained in section 3.4. Therefore, I only show the reactor+solar (left) and
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reactor+gallium (right) combined FCMC confidence regions in fig. 4.20. Whereas for
the reactor+solar data, the best-fit is at ∆m2 ∼ 1 eV2 and sin2 2θ ∼ 10−2, the gallium
data drastically changes the confidence regions, with a best-fit at ∆m2 ∼ 9 eV2, which is
determined by the Neutrino-4 data, and large mixing sin2 2θ ∼ 0.3, determined by the
gallium data.

4.4.4 Quantifying the gallium-solar tension
Similar to the three-neutrino global fit in section 3.4, we use the parameter goodness-
of-fit test statistic, χ2

PG, defined in eq. (3.30) to quantify the gallium-solar tension. In
table 4.7, the χ2

PG values for the different combinations of the datasets (reactors, solar
and gallium), as well as the number of degrees of freedom n, as defined by eq. (3.31).
As proven in [265], under certain conditions, χ2

PG is distributed as χ2(n dof), which I
also refer to as Wilks’ theorem. In table 4.7, I also provide the p value and equivalent
normal standard deviations under the assumption of Wilks’ theorem, as well as a p value
calculated from MC simulations, where the pseudo data is generated with mean defined
by the prediction at the best-fit point of the combined dataset. Note that a truly rigorous
p value would consider its value at all parameter points (calculated using MC simulations)
and take the maximum value, which would yield the most conservative result. Since this
is too computationally expensive, taking the best-fit point to be the parameter point of
least tension is intuitively a reasonable approximation.

Data set χ2
PG/ dof p(W ) #σ(W ) pb.f. #σb.f.

Reactor vs Solar 0.65/1 0.42 0.8 0.39 0.9
Reactor vs Gallium 1.4/2 0.50 0.67 0.62 0.5
Solar vs Gallium 13.0/1 3.1 · 10−4 3.6 1.6 · 10−3 3.2
Reactor vs Solar vs Gallium 15.6/3 1.4 · 10−3 3.2 5.1 · 10−3 2.8

Table 4.7: In the second column are the values of the parameter goodness-of-fit test
statistic and its number of degrees of freedom, for different combinations of the datasets.
In the middle columns, its significance is evaluated under the assumption of Wilks’ theo-
rem. The final two columns show its significance derived from MC simulations, generating
pseudo-data fluctuations around the best-fit (b.f.) prediction. Courtesy of [272].

We can see that the significance of the χ2
PG test statistic is less than one sigma for the

reactor and solar datasets, as well as the reactor and gallium datasets. However the solar
and gallium datasets are in tension at the ∼ 3σ level, and the total dataset of reactors,
solar, and gallium, also has a tension slightly less than 3σ.

4.5 Discussion of the Gallium-Solar Tension
In this section I will discuss possibilities that I considered to alleviate the tension between
the gallium and solar data. The two possibilities presented are, firstly, the possibility of
experimental errors or unknown systematics in the technique of the gallium experiment;
and secondly the possibility of introducing new physics to evade the solar bound. Un-
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fortunately, neither options look promising, which is why they were never published,
however perhaps others may find inspiration.
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Figure 4.18: Confidence regions at 68.27%, 95.45%, 99.73% CL (1, 2, 3σ, respectively) for
the individual reactor experiments, and all reactors combined (bottom right), from [272].
The bands correspond to the Feldman-Cousins analysis, where their width indicates the
99% confidence spread due to statistical fluctuations from MC simulations (see text).
The thin curves correspond to Wilks’ theorem with two degrees of freedom.
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Figure 4.19: Left: confidence regions at 68.27%, 95.45%, 99.73% CL (1, 2, 3σ, respec-
tively) for the Feldman-Cousins analysis (bands), where the bands indicate the 99%
confidence spread of the contour (see text), for 105 runs, from [272]. Dash-dotted curves
are obtained under the assumption of Wilks’ theorem with two degrees of freedom. Right:
FC confidence regions for gallium, reactor, and solar data at 2σ. (Dash-dotted lines are
extrapolations assuming constant sensitivity in the mixing.) In addition, the 95% exclu-
sion limit from the KATRIN collaboration [312] is shown (this curve fixes the lightest
neutrino mass to zero) and the Wilks’ 95% exclusion limit (2 dof) from νe-12C scattering
from the LSND and KARMEN experiments [310,311], taken from [267].

4.5.1 Gallium systematics
It is difficult to envisage explaining the deficit from the detection side of the experi-
ment. This is because the germanium-extraction technique has been highly developed
over decades, with the miniscule amount of artificially added carrier germanium being
able to be extracted to validate the extraction procedure. Furthermore, the ground-state
cross section on gallium provides a lower bound on the production rate, and this compo-
nent is constrained by experimental data — theoretical uncertainties on the calculated
excited-state contribution cannot explain a deficit.

There is a slim possibility that there are unknown systematics regarding the source
calibration. The conversion from heat output to neutrino activity requires precise knowl-
edge of the amount of heat released per decay. For the source 51Cr, the electron-capture
decay scheme is quite simple: the nucleus can decay into the ground state of 51V, with
branching ratio 90.09%; or it can decay into its excited state, after which the nucleus
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Figure 4.20: Confidence regions at 68.27%, 95.45%, 99.73% CL (1, 2, 3σ, respectively)
for reactor+solar data (left), and reactor+gallium data (right), from [272]. The bands
correspond to the Feldman-Cousins analysis, where the width of the bands indicates the
99% confidence spread of the contour for 104 runs (see text). The thin curves are obtained
under the assumption of Wilks’ theorem.

decays to its ground state via the emission of a 320 keV gamma ray, with branching ratio
9.91%. Thus, on average, the gamma rays contribute 32 keV of heat per decay. After the
nuclear decay, the electronic energy levels change, leading to Auger electrons and X-rays,
which contribute roughly 5 keV to the heat. For a full list, see [300, tab. 1].

Since the subleading excited-state decay contributes the majority of heat, a 1% abso-
lute change in its branching ratio would yield a 10% shift in expected production rate.
(Measurement of the photon spectrum of 51Cr eliminates the possibility of a new decay
channel with a branching ratio of 1% and high-energy gamma-ray emission [301, fig. 10].)
The different measurements of the excited-state branching ratio can be found in the com-
mentary of the nuclear table for 51Cr [313]. Of the modern experiments (after 1980),
there is an outlier (with a larger branching ratio), which turns out to be the only modern
measurement using neutron counting instead of measuring the Auger electrons, done by
Fisher and Herschberger in 1984 [314]. The authors remark on the discrepancy,

“Since the earlier 7Be and 51Cr measurements were both made by looking at Auger
electrons, a possible conclusion that may be drawn is that there is a systematic difference
between these recent measurements and those which look at Auger electrons.”

I was not able to find any follow-up measurements using neutron counting for 51Cr.
If neutron-counting measurements consistently yield larger branching ratios, this would
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put into question the significance of the gallium anomaly. However, the measurement by
Fisher & Herschberger only yields a branching ratio of 10.30%, which is only marginally
larger.

Most of the modern measurements, e.g. [315, 316], use the 4π(X,A)-γ coincident
counting method to determine the absolute activity (instead of neutron counting). The
coincidence method is used because the efficiencies of the detector are not known. Fol-
lowing [317], consider a radioactive source whose decay emits an electron and gamma
photon simultaneously. Then, assuming the efficiency of measuring a coincident electron
and photon is simply the product of the efficiencies of measuring each particle individu-
ally, the radioactive-source activity A can be measured without knowing the efficiencies,

A = Nβ ·Nγ

Nc
, (4.64)

where Nβ is the electron count, Nγ is the photon count, and Nc is the number of coincident
events. In the decay scheme for 51Cr, every decay emits an Auger electron or X-ray, but
only Pγ proportion of events emit a 320-keV photon. This idea can be extended, but it
requires one to evaluate NXANγ/Nc at different efficiencies, and extrapolating the result
to large efficiency (see [318]). For some non-chromium examples, see [319]. I could
not find any such extrapolation curves for 51Cr. Whilst the examples in [319] show a
high degree of precision, given that the method requires extrapolation, the possibility of
hidden systematic effects seem plausible. However, such a systematic effect would require
a 10% shift in order to affect the gallium result by 10%, as it would change the absolute
normalisation of the branching ratio.

I also found an old 1985 paper from an analytical biochemistry journal [320], which
reported anomalous liquid scintillation for a 51Cr solution, like that used for the absolute
activity measurement. However, the effect only becomes significant after a few days.

4.5.2 Relaxing the solar constraint
Another option to reduce the gallium-solar tension is to introduce new neutrino inter-
actions to relax the solar constraint. Here I will consider neutrino decay, such that the
heavier fourth neutrino decays back into Standard Model neutrinos during propagation
from the Sun to the Earth.

Neutrino decay in the context of the Majoron model was considered in the 1980s as
a possible solution to the solar-neutrino deficit; in this model, neutrinos interact with a
complex scalar like ν̄sνsϕ. (Interactions with the other weak eigenstates are forbidden
by gauge invariance). However, it was noticed in 1989 that decay from neutrino to anti-
neutrino is permitted [321]. Nowadays, solar data can constrain this scenario due to the
absence of a sizeable anti-neutrino signal [322].

The authors of [322] considered parity-violating scalar interactions in order to forbid
the decays of neutrinos to anti-neutrinos. Parity violation occurs at the level of the
mixing matrices VL ̸= VR, by choosing

νR
s = νR

1 and νL
s = cosϑ |ν4⟩ − sinϑ

∣∣∣ν3ν
e

〉
, (4.65)

where ∣∣∣ν3ν
e

〉
= c13 [c12 |ν1⟩ − s12 |ν2⟩] − s13 |ν3⟩ . (4.66)
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The states νL,R
i are the chiral mass eigenstates, where VL,R diagonalise the Dirac mass

term. The scalar interactions are

L = gϕ

4∑
i=1

(VL)∗
si (ν̄iPRν1)ϕ+ h. c. (4.67)

In order to avoid producing anti-neutrinos from ϕ decay, I will assume that mϕ is small
enough to ignore decays of ϕ.

It turns out that energy threshold effects are important. For simplicity, I will use
Borexino’s energy thresholds [323] of 0.19 MeV – 2.93 MeV for the low-energy neutrinos
and 3.2 MeV – 16 MeV for the high-energy neutrinos. Based on [324, tab. 6], we see that
for the low-energy neutrinos, the dominant contributions are pp and 7Be, and for high-
energy neutrinos 8B dominates. The 7Be neutrinos are emitted as lines due to electron
capture on beryllium. There are two lines due to the two possible final states: ground-
and exited-state of lithium, the former having the larger energy, with probabilities 89.56%
and 10.44%, respectively [325,326].

The differential decay width in the relativistic limit can be written as [327]

dΓ
dE1

= Γtot
E1

E2
4
, where Γtot =

m2
4g

2
ϕ sin2 ϑ

32π . (4.68)

Assuming that E4 ≤ Ehigh
thresh, the proportion of final-state SM neutrinos with energies

larger than the lower threshold E1 > Elow
thresh is

1 −
(
Elow

thresh
E4

)2

. (4.69)

For 8B neutrinos, the peak of the flux distribution occurs at ∼ 6.4 MeV = 2Elow, which
means that there is actually a suppression of ∼ 75% due to neutrinos decaying to an
energy below the experimental threshold. Define

I(m4geff) =
∫ Ehigh

Elow

∑
a

dΦa

dE4

(
1 − e−Γ·1 AU

) [
1 −

(
Elow

E4

)2]
dE4/(∫ Ehigh

Elow

∑
a

dΦa

dE4
dE4

)
,

(4.70)

to be the proportion of neutrinos which decay into energies above the threshold, where
geff = gϕ sinϑ. Similarly, define

J (m4geff) =
∫ Ehigh

Elow

∑
a

dΦa

dE4
e−Γ·1 AUdE4

/(∫ Ehigh

Elow

∑
a

dΦa

dE4
dE4

)
, (4.71)

to be the neutrinos which do not decay. Then,

Pee =
3∑

k=1
|Um

ek|2|Uek|2 + |Um
e4 |2

(
I|Ue1|2 + J |Ue4|2

)
(4.72)

Pex =
3∑

k=1
|Um

ek|2
∑

α=µ,τ

|Uαk|2 + |Um
e4 |2

(
I
∑

α=µ,τ

|Uα1|2 + J
∑

α=µ,τ

|Uα4|2
)
, (4.73)
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however note that Uα4 = 0 for α = µ, τ . Explicitly,

P LE
ee = cos4 ϑ · P SM

ee + sin2 ϑ
(
cos2 ϑ · c2

12c
2
13 · ILE + sin2 ϑ · JLE

)
, (4.74)

PHE
ee = cos4 ϑ

(
s2

12c
4
13 + s4

13

)
+ sin2 ϑ

[
cos2 ϑ · c2

12c
2
13 · IHE + sin2 ϑ · JHE

]
, (4.75)

P LE
ex = cos2 ϑ

(
1 − P SM

ee

)
+ sin2 ϑ

(
1 − c2

12c
2
13

)
ILE, (4.76)

PHE
ex = cos2 ϑ

(
1 − s2

12c
4
13 − s4

13

)
+ sin2 ϑ

(
1 − c2

12c
2
13

)
IHE. (4.77)

To do the calculation, I parameterise the dependence of I on model parameters like so

Γ · (1 AU) = 0.754
(
geff

10−5

)2 (m4

eV

)2
/

E4

MeV

= 0.754 × x

E4/MeV ,

(4.78)
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Figure 4.21: Solar exclusion curve under
the partial-decay model for Wilks signifi-
cance 2σ for two degrees of freedom com-
pared to the gallium curve at 2σ using the
Feldman-Cousins procedure.

where x ≡ (geff/10−5)2 (m4/eV)2. I tabu-
lated I, J on discrete points of x.

Results

Results for different values of gϕ compared
to the 2σ FC gallium curve are shown in
fig. 4.21. Note that the solar results will now
depend on ∆m2

41 ≈ m2
4, so the degrees of

freedom are two. This is why I compare the
gallium curve to ∆χ2

sol = 6.18, which is 2σ
under Wilks’ theorem. One can see the ef-
fect of decay saturating for gϕ = 5 · 10−5 and
∆m2 > 20 eV2 in fig. 4.21. The combined
best-fit point for gϕ = 5 · 10−5 is still at low
∆m2: (∆m2, sin2 2θ) = (1.2 eV2, 0.23), and
the test statistic for parametric goodness of
fit is χ2

PG = 9.1 ∼ 2.6σ. Regrettably, taking
the gallium-solar tension from Wilks’ theo-
rem, this is only a 1σ reduction in tension.

Unfortunately, cosmology sets extremely
stringent constraints on gϕ sinϑ. This is be-
cause the Majoron model introduces neu-
trino self-interactions, which violates the free
streaming of the neutrino fluid. Because the
free streaming allows neutrino perturbations to travel at the speed of light, and faster
than the speed of sound, at which perturbations in the tightly coupled baryon-photon
fluid travel, there is a unique phase shift of the CMB acoustic oscillations [328], which
provides extremely stringent constraints [329,330],

gϕ sinϑ ≲ 10−7 – 10−6. (4.79)

Thus, it is clear that any such mild relaxation of the solar bound via neutrino decay will
be in severe tension with cosmology.
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4.5.3 Conclusion
In conclusion, I have presented my FCMC analysis of global reactor spectral data, in
combination with gallium data and solar data, separately. Due to the low sensitivity
for ∆m2 ∼ 9 eV2, the Neutrino-4 results are not in tensions with the other reactor ex-
periments. Reactor data alone do not shown any preference of new oscillations. When
combined with the gallium data, there is a strong preference for new oscillations, with
the mass-squared splitting being determined by Neutrino-4, and the mixing by gallium
data. However, this is in tension (3.2σ) with the solar data. It is difficult to find any
possibility of experimental errors to reduce the gallium anomaly, or new neutrino inter-
actions to reduce the solar bound. The gallium anomaly, therefore, remains a puzzling
result, with the Neutrino-4 result making it particularly intriguing.
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Chapter 5

Testing the Neutrino Dipole Portal
at DUNE

In this chapter, I cover the work that I did investigating the neutrino dipole portal at
DUNE. The project started as an investigation of a signal from tau-sterile mixing at
DUNE and T2HK with then Masters student, Mahmoud Al-Awashra, for which there is
an unexcluded region in parameter space at low mass and large mixing (see [331, fig. 3]).
Such a signal, whose results can be found in our paper [332], is only marginally relevant
compared to existing constraints, and uncompetitive compared to future constraints. My
supervisor suggested that we then turn our attention to the neutrino dipole portal, which
turned out to be more relevant. I wrote up my results in the publication [332], which
I wrote with my supervisor and his postdoc Jing-Yu Zhu, the latter assisting me in
some theoretical aspects of the calculation, and constructing the set of exclusion curves
from other experiments. I am also grateful to the well-constructed integration routines
provided by the GNU Scientific Library [278].

5.1 The Neutrino Dipole Portal

νi νj

νi νj

W+

W+

γ

γ

ℓ−a

ℓ−a

Figure 5.1: Magnetic moment of
SM ν at one-loop level.

As already mentioned in section 2.4, the neutrino dipole
was already considered as an explanation of the so-
lar deficit in 1971 by Cisneros and Werntz [119]. In
1979, Kunitomo Sakurai published an article that stud-
ied possible periodic temporal variations of the neutrino
flux from the eleven years of data by Homestake [333],
in which he found evidence for a quasi-biennial varia-
tion in the Homestake data (see also [334, fig. 2]). Al-
though Bahcall, Field and Press in 1987 would later do
a robust statistical analysis to show that it had low
statistical significance [335], Voloshin, Vysotskĭı and
Okun’ [336–339] suggested that a neutrino magnetic
moment could explain this variation, where a tempo-
rally varying magnetic field within the sun would cause
temporally varying spin precession from left- to right-
handed neutrinos. This sparked numerous investiga-
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tions on how to generate large neutrino magnetic mo-
ments.

Within the Standard Model, the neutrino does in fact obtain a magnetic moment, but
it is tiny due to suppression from the neutrino and W-boson mass d ∝ mν/m

2
W [340,341].

One suggestion by Fukugita and Yanagida in 1987 [342] simply replaces the W boson with
a new charged scalar, such as that from the Zee model, which yields d ∝ mℓ/m

2
η, where mℓ

is the mass of the associated charged lepton, and mη is the mass of the new scalar. (Babu
and Mathur also simultaneously published a similar paper, using a charged Higgs [343],
and Stefanov incorporated this idea into a model that naturally suppressed the lepton-
flavour violating decay µ → eγ in 1988 [344].) One issue with generating a large neutrino
magnetic moment, is that it can generate large neutrino masses at one-loop (recognised
in 1988 by Barbieri and Fiorentini [345]); one-loop corrections to the neutrino mass in
the Fukugita-Yanagida model was considered in [346]. In 1988, Voloshin hypothesised an
approximate SU(2)ν symmetry, under which νL and νc

L transform as a doublet [347]; the
neutrino mass term transforms as a triplet under this symmetry, whereas the magnetic
moment transforms as a singlet, allowing one to give a symmetry reason for disentangling
the relation between magnetic moment and mass for the neutrino. In 1989, Babu and
Mohapatra implemented a version of this idea where instead of νL and νc

L, one considers
νe and νµ (and therefore a transition magnetic moment between them), calling the SU(2)H
an approximate horizontal symmetry [348]. More recently, these ideas have been revived
by Babu, Jana and Lindner [349] by the XENON1T low-energy excess [350], which could
be explained by a neutrino magnetic moment. (They also investigate explaining the muon
g − 2 anomaly [351] simultaneously [352].)
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Figure 5.2: Courtesy of [190].
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Figure 5.3: Courtesy of [353].

However, in this chapter we shall be concerned
not with a neutrino magnetic moment, but the neu-
trino dipole portal, where the magnetic-moment op-
erator connects the SM neutrino with a new heavy
neutral lepton (HNL), which I call ν4,

L = dαν̄αLσ
µνν4Fµν + h. c. (5.1)

Here, να is a left-handed SM neutrino field of flavour
α = e, µ, τ , Fµν is the photon field-strength ten-
sor, and σµν = i

2(γµγν −γνγµ) is the antisymmetric
combination of gamma matrices. We shall be inter-
ested in the simplified scenario, where we consider
the effects of one de,µ,τ at a time, setting the others
to zero. I will not discuss model building, which
would require us to determine the charges of ν4 un-
der a larger gauge group, as well as specifying its
mass generation; see [354, § IV] for some discus-
sion. As mentioned in section 2.7, the dipole portal
was considered by Gninenko in 2009 [190] to explain
the MiniBooNE anomaly. His original suggestion
created HNLs via mixing with muon neutrinos and
neutral-current (NC) scattering, which then decayed via the dipole operator (fig. 5.2).

In 2018, Magill, Plestid, Pospelov and Tsai published a global evaluation of the neu-
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trino dipole portal [353], as well as considering LSND and MiniBooNE. In their analysis,
they use the dipole operator to produce the HNL and its decay (fig. 5.3). They analysed
existing collider data, as well as the SN1987A neutrino burst to place bounds on the
dipole parameter space. One important aspect of the collider bounds, which operate at
energies about the electroweak symmetry-breaking scale, is that the bounds depend on
the UV completion, as the dipole operator eq. (5.1) is not electroweak gauge-invariant.
The low-energy dipole coupling to the photon should be a combination of couplings to the
Aµ, Bµ fields (eq. (2.3)), which induces couplings to the W and Z bosons; but without a
complete model, the exact induced couplings are not known, so there is some dependency
of the collider bounds on the UV completion. They also analysed possible bounds that
could be attained with SHiP, a proposed experiment at the beam dump of the CERN
Super Proton Synchrotron.

Hypothesis Factor χ2/9ndf
NC ∆ → Nγ 3.18 10.0

External Event 5.98 44.9
νe from K0

L Decay 7.85 14.8
νe from K± Decay 2.95 16.3
νe from µ± Decay 1.88 16.1

Other νe & ν̄e 3.21 12.5
NC π0 Background 1.75 17.2

Best Fit Oscillations 1.24 8.4

Table 5.1: Log-likelihood shape-only fits
of background to the radial distribution in
neutrino mode, assuming only statistical
errors, extracted from [189].

In 2020, MiniBooNE published an up-
dated analysis of its data, which reported
a 4.8σ excess, and also studied possibili-
ties of background mismodelling. Beam tim-
ing information and the radial distribution
of events (namely the excess is less near
the border of the fiducial volume) strongly
disfavours the excess originating from out-
side the detector (second row of table 5.1).
Other beam backgrounds, including π0 emis-
sion from NC scattering, which then de-
cays into an unresolved photon pair (mimick-
ing single-photon emission), are mildly dis-
favoured compared to the oscillation hypoth-
esis (table 5.1). However, notice that single-
photon emission from the ∆ resonance (first row of table 5.1) is the second-best possibility,
albeit the SM prediction for ∆ production must be increased by more than a factor three.
The dipole-portal explanation could mimic this. Furthermore, the MicroBooNE experi-
ment, which has excellent particle discrimination, searched for such ∆ → Nγ events, and
found no excess [355].

5.2 The Deep Underground Neutrino Experiment
DUNE (the Deep Underground Neutrino Experiment) is an accelerator experiment, cur-
rently under construction, whose primary goal is to measure the CP-violating phase δCP
in the neutrino mixing matrix. The neutrino beam is generated at Fermilab, using a
proton beam with a wide energy band of 60 – 120 GeV. The beam will deliver 1.1 · 1021

POT (protons on target) per year. The near and far detectors, like MicroBooNE, will be
liquid-argon time-projection chambers, whose sub-centimetre detector resolution allows
for extremely good particle discrimination [356], which provides a major advantage com-
pared to MiniBooNE, which could not distinguish photons from electrons. A comparison
of tracks from MicroBooNE and NOνA is shown in fig. 5.4. As is clear, the MicroBooNE
tracks can be resolved to a much higher resolution than NOνA, which allows for much
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better particle discrimination.
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Figure 5.4: Tracks from MicroBooNE (top) [357] and NOνA (bottom) [358].

In the lower panel of fig. 5.4, one can see a NC π0 event in NOνA with two photon
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tracks; if the decay was highly asymmetric, such that the angle between the two photons
were smaller, the photons would look like a single track, which could be misinterpreted as
a single EM shower from an electron or photon. For comparison, the cell size for NOνA
is 3.9 cm × 6.6 cm [245].

The DUNE far detector (FD) is planned to be in an on-axis configuration, so will
be exposed to the wide-band neutrino beam. There will be four detector modules, each
holding 17.5 kt of liquid argon, although the fiducial mass per module is 10 kt (40 kt
total), with a size 12 m × 14 m × 58.2 m [356, tab. 3.1]. The near detector (ND) is located
574 m away from the beam target, 6 m wide, 3 m deep, and 2 m high, with a fiducial mass
of 50 t [359, §2.7]. The ND layout with respect to the beam line is shown in fig. 5.5.

Figure 5.5: Layout of the near detector with respect to the proton beam [356, fig. 1.2].

Originally, the goal of the project was to exclude dτ , as in general, the properties
of the tau neutrino are not well constrained (like a mixing to a sterile neutrino), as
it is difficult to produce an intense beam of tau neutrinos. The DUNE FD is located
1300 km away from the beam, at the Sanford Underground Research Facility in South
Dakota, at the oscillation maximum for atmospheric oscillations. Thus, due to flavour
oscillations, copious numbers of tau neutrinos will be present around the far detector.
Later, in conversation with Ryan Plestid, who had attempted a similar calculation, I
realised a similar calculation could be done at the near detector with the intrinsic muon
and electron neutrinos.

5.3 Dipole-Portal Signal at the DUNE
The two classes of events for dτ at the far detector are shown in fig. 5.6, where I have
ignored the spatial separation from the beam and near detector, which is less than half
a kilometre. The first class of events, which were originally the only ones considered,
are the outside events, where tau neutrinos upscatter off target particles in the Earth’s
crust or upper mantle: either off individual nucleons (incoherent scattering), electrons,
or off the whole nuclei, coherently. The upscattering creates an HNL, which can travel
to the detector and decay inside it. The project originally only considered these outside
events at the far detector, where the detector geometry can be ignored. However, I
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also discovered that in some areas of parameter space, this assumption was violated: in
these areas, inside events dominate, where upscattering and decay both occur inside the
detector. In conversation with Ryan Plestid, we realised that the same calculation could
be done for the near detector, at which de and dµ can be constrained, except without any
oscillations and with a different geometry.

FD

Inside ev.

Upscatt. outside ev.

νµ ντ

ND
ν4

LFD

Target

γ

ντ

ν4

γ

ντ

FD

Figure 5.6: Cartoons of the upscattering production and decay signal for dτ in the far
detector, reproduced from [332].

Although in this work we will treat all events on an equal footing, in reality an
experimental collaboration would have to distinguish between the different signals that
would be created in the detector:

• outside event: since the upscattering occurs outside the detector, the signal is a
single-photon event from HNL decay;

• inside event, coherent: the coherent scattering on the nucleus leaves a recoil of
low energy, which is difficult to detect (however there have been efforts to make this
possible [360,361]); otherwise the signal is a single-photon event from HNL decay;

• inside event, incoherent: also called double-bang events [362], the incoherent
scattering on the nucleon leads to a NC-like event, or a free electron if the scattering
is on an electron; then a displaced single-photon event from the decay.

Neither do I do a background analysis in this work, although I shall provide a band
of possible exclusion, depending on the background rate. As already mentioned, the
DUNE detector has excellent particle discrimination, and so will not suffer from the
inability to distinguish electrons and photons [363–365], unlike MiniBooNE. Therefore,
the relevant SM backgrounds from the neutrino beam are single-photon processes like
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NC1γ, and extremely asymmetric NCπ0 decays (like MiniBooNE), where the two pho-
tons, even in DUNE, cannot be distinguished. The NC1γ cross section is negligibly small,
∼ 10−41cm2/nucleon [366–368], and so I expect the main background to be from misre-
constructed NCπ0 photons (see [364,365] for studies of NCπ0 in liquid argon). A rigorous
study would involve detector simulation, cuts of data, and background modelling, which
are beyond the scope of this work, so I concentrate on predicting the signal, which I take
simply to be a single photon, with reconstruction efficiency, provided in [369, fig. 4.26].
Effects such as detector resolution are ignored.

In this work, the differential event rate dN/dE is calculated, in a manner similar to
the oscillation studies, where E is either the energy of the SM neutrino Eν , or of the
HNL E4, depending on which option is more convenient to calculate. Consider an HNL
produced at location x⃗p, which then decays at x⃗d inside the detector. The event spectrum
is calculated by evaluating the integral

dN
dE = Nmod

∑
T

∫∫∫
d3x⃗p

∫∫
dΩs

L2
ND

|x⃗p|2
d2Φ

dΩdEν

dEν

dE · Posc · ρT(x⃗p)dσT

dΩs
· Pdec · ε(p4), (5.2)

where Nmod = 4 is the number of detector modules; the sum ∑
T is over the targets (elec-

trons, protons, neutrons, and nuclei); the integral
∫∫∫

d3x⃗p is over the HNL-production
point; the solid-angle integral

∫∫
dΩs is over the directions of the final-state HNL from up-

scattering, (x⃗d −x⃗p)/|x⃗d −x⃗p|, which point in the direction of the detector; the differential
flux d2Φ/(dΩdEν) of SM neutrinos is evaluated at the distance LND (the near-detector
baseline), whence L2

ND/|x⃗p|2 is the geometric suppression, and dEν/dE is the density of
states for the particle with energy E (either the neutrino energy, in which case the factor
is just one, or the HNL energy); Posc is the neutrino oscillation probability; ρT(x⃗p) is
the target density, normalised per nucleon, at x⃗p; dσT/dΩs is the cross section for a SM
neutrino upscattering on target T; Pdec is the probability for the HNL to decay inside
the detector, whose precise functional form depends on the geometrical simplifications
made; and ε(p4) is the reconstruction efficiency for HNL momentum p4. Note that here
we have ignored the dependence of ε( · ) on the direction of the photon, produced from
HNL decay.

I use the two-flavour effective vacuum probability for Posc,

Posc = 0.943 · sin2
(

∆m2|x⃗p|
4Eν

)
, where ∆m2 = 2.523 · 10−3 eV2, (5.3)

which speeds up the computation compared to the full three-flavour formula; matter
effects alter the probability only at the O(1%) level. Note that for the near detector,
oscillations can be neglected, so I set PND

osc = 1. I assume an homogeneous density for all
cases, ρT(x⃗p) = const. The dipole cross section dσT/dΩs can be found in [353, 354], and
is presented explicitly in appendix B.1. The decay width γ due to the dipole operator is

γ ≡ M4

p4
Γ0, where Γ0 = |dα|2M3

4
4π (5.4)

is the decay width in the HNL’s rest frame (also found in ibid.). The reconstruction
efficiency ε(p4) is constructed by transforming the photon reconstruction efficiency εγ(pγ)
via the procedure described in appendix B.2, for which I am grateful to Jing-Yu Zhu. In
the following sections, I detail the specific assumptions used in the cases of the outside
and inside event rates, based on their different geometries.
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5.3.1 Outside event rate
The outside event rate requires us to integrate over the possible production points in the
Earth, which are located mostly on the off-axis parts of the neutrino beam. I obtained
spectra of the flux at various off-axis angles from Laura Fields’ personal webpage [370].
Unfortunately, the website is no longer publicly available, but plots of the off-axis flux
can be found in [356, fig. 5.4]. In the original files provided by Fields, the spectrum of
the largest angle had an extremely large number of events at very low energies. I did not
use these data, and took θmax

b = 62.72 mrad as the maximum beam angle. Incidentally,
this is also the largest angle of ibid. I used GSL’s bilinear-interpolation routine to obtain
the differential flux as a continuous function of beam angle and neutrino energy.

Kinematics Since it is much easier to evaluate the SM neutrino’s energy as a function
of the HNL energy Eν(E4), than the other way around, E4(Eν), the spectrum is evaluated
with E = E4 in eq. (5.2), namely dN/dE4. Simple energy-momentum conservation for
two-to-two scattering, where the target particle is at rest, yields

Eν(E4) = MTE4 −M2
4/2

MT − E4 + p4 cos θs
, (5.5)

where MT is the target particle’s mass. In addition, the cross section dσT/dΩs has to be
converted to the form dσT/dQ2, expressions for which are provided in appendix B.1. The
factor dEν/dE4 can be combined with the cross section to yield the convenient expression

dσT

dΩs
· dEν

dE4
= 1

2π
dσT

dQ2
dQ2

dEν

dEν

d cos θs

dEν

dE4
= 1

2π
dσT

dQ2 · 2MTE
2
νp4

MTE4 −M2
4/2

, (5.6)

where (2π)−1 is the probability density for the φs angle. (Note that a rigorous derivation
would use the triple product rule, as the variables Eν , E4 and cos θs are not independent
variables, however the difference is only an overall sign, which is presumably related to
flipping the boundary conditions.)

Also note that Eν depends on the target’s mass MT. This means that each quantity
containing Eν , like the flux or oscillation probability, needs to be evaluated separately for
each target. In order to make this computationally efficient, I precomputed the quantities
depending only on kinematics, such as the cross section and decay probability, in a table
of values at fixed Eν and Q2.

FD geometry I took the Earth’s mass density to be 2.9 g/cm3, which is roughly the
surface density, although for the lowest depths reached by the neutrinos at θmax

b , the
density can reach 3.375 g/cm3 [371]. To evaluate the integral over the point of production
x⃗p, we use spherical coordinates, where rp ≡ |x⃗p|, θb is the polar angle (with respect to
the beam axis), and φb is the azimuthal angle. Let the beam axis, shown in fig. 5.7 (left),
be the X axis; let the perpendicular Y axis lie in the horizontal plane containing the X
axis; let the Z axis be vertical; here, the origin lies at the beam source, at the surface
of the Earth, and at X = 1297 km is the far detector, also at the surface of the Earth.
Note that the lines in shown in fig. 5.7 (left) do not represent latitudes and longitudes,
and the Z axis is not parallel to the north-south axis.
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Figure 5.7: Left: 3D geometry of the outside event-rate integral for the far detector.
Right: cross section of the Earth, showing the integral limits for φb. Reused from [332].

With the approximations made, the integrand of eq. (5.2) is independent of φb, which
means there is a partial cylindrical symmetry that is broken by the boundary conditions
imposed by the Earth (outside of which I take the mass density to be zero). Therefore,
consider a specific radius rp and polar angle θb, which defines the coordinate (X, Y ) =
rp ·(cos θb, sin θb) at Z = 0. The integral over φb is simply the angular size ∆φb = 2(π−Φ)
that is contained in the Earth. The definition of Φ is shown in fig. 5.7, which is a cross
section perpendicular to the beam axis at X. I have defined h =

√
R2

⊕ − (LFD/2)2 to be
the height of the horizontal plane at Z = 0, where R⊕ = 6371 km is the Earth’s radius; Y
is simply the coordinate Y = rp sin θb; and ϱ =

√
R2

⊕ − (X − LFD/2)2 is the radius of the
circular boundary of the Earth within the cross-sectional plane. (Note that |X−LFD/2| is
the perpendicular distance of the cross-sectional plane to the centre of the Earth.) From
these quantities, one obtains

∆φFD
b (rp, θb) = 2 arccos

(
Y 2 + h2 − ϱ2

2hY

)
. (5.7)

Note that this assumes the existence of the triangle shown in fig. 5.7 (right), which is not
the case for Y = 0, in which case ∆φb = 2π if X ∈ [0, LFD]; if the argument of arccos
is larger than one, then the blue circle lies entirely within the Earth (the brown circle),
whence ∆φb = 2π; and if the argument of arccos is less than minus one, then the blue
circle resides outside the Earth, and ∆φb = 0.

ND geometry The above comments for calculating eq. (5.7) do not apply for the near
detector, for which ∆φND

b = 2π, as even at the maximum beam angle θmax
b , the SM-

neutrino path lies within the Earth, taking the ND depth to be 62 m (fig. 5.5). Note that
the neutrinos come from meson decay in the decay pipe, which has a non-trivial extent;
this violates my assumption of a point-like source, however since I assume an effective
point source at the target (MCZero), which is behind the decay pipe, accounting for the
physical extent of the decay pipe will only increase the flux. However, I exclude the
region around the decay pipe, setting rmin

p = 270 m, as the 1/r2
p geometric factor for the

flux will not hold in that region.

90



Since the ND is so close to the Earth’s surface, the density of the soil and rock is less
than 2.9 g/cm3, the value we used for the FD analysis. The Earth’s crust has a mass
density of 2.6 g/cm3 [371], however soil has a density of 1.1 – 1.6 g/cm3 [372], so I took an
estimated average density of 2 g/cm3.

Targets For both near and far detectors, I used the nuclei abundances in the crust
from [373, §14.17], the most significant being oxygen, silicon, aluminium, iron, calcium,
sodium, magnesium, potassium, and titanium. Note that the coherent scattering on
nuclei attains an enhancement factor of Z2/A, where Z is the proton number and A is
the atomic mass. Therefore, heavy elements of low abundance can still be relevant due
to this enhancement.

Solid-angle integral For the outside events, we make the approximation that the
detector can be treated as a point, ignoring its geometry. To justify this approximation,
consider incoming HNLs from the perspective of the far detector. If an HNL is created
at a distance ℓ away from the detector, it has a survival probability of e−γℓ. If we ignore
the variation of flux and cross section, then the number of HNLs created at a distance
ℓ away from the detector scales as ℓ2. Therefore, the number of incoming HNLs from a
distance ℓ is roughly ℓ2e−γℓ, which has a maximum at ℓmax = 2/γ. For energies of the
GeV order, and for parameter values relevant for the outside-event exclusion curve, we
have ℓmax ∼ 100 km, which provides a rough value for the typical distance an HNL travels
before decaying inside the far detector. The detector size takes values 10 – 60 m, whence
the angular size of the far detector from a newly created HNL is 10 m/100 km ∼ 10−4 rad.
For the far detector, this approximation is valid. For the near detector, these arguments
do not work due to the small baseline; however even using the same approximations,
the outside events only marginally improve the exclusion curve, so my results would not
drastically change if we ignored outside events at the near detector.

When we make the approximation of a point-like detector, this also assumes that
variations of the cross section, with respect to the different HNL trajectories originating
from x⃗p, can be neglected. Furthermore, it ignores the varying path lengths of the HNL
inside the detector, which determine the locations of possible decay. The integral over
the solid angle is then replaced with the solid angle

∆Ωs = sin θs∆θs∆φs = sin θs · 4 arctan
(
Ld

2ℓ

)
arctan

(
Lh

2ℓ

)
, (5.8)

where Ld = 58.2 m is the depth of the detector, Lh = 12 m is its height, and ℓ is the
distance to the detector from production point x⃗p. Elementary trigonometry yields

ℓ =
√
L2

BL + r2
p − 2LBLrp cos θb, (5.9)

where the baseline LBL = LFD,ND, depending on whether we are considering the near or
far detector. The decay probability is

Pdec = e−γℓ
(
1 − e−γLw

)
, (5.10)

where Lw = 14 m is the width of the detector, which I have taken to be the characteristic
HNL path length inside the detector. Note that in the limit of large ℓ and small γLw
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(i.e. when we are far away from the detector, and have a long decay length with respect
to the detector size),

Pdec · ∆Ωs = e−γℓ sin θsγLwLdLh/ℓ
2 ∝ Vdet/ℓ

2, (5.11)

whence we see the signal scales with the detector volume and its angular size ∝ ℓ−2. The
angle θs can be determined as

cos θs = LBL cos θb − rp

ℓ
, (5.12)

although the expression can violate the condition | cosx| ≤ 1, due to numerical artefacts
resulting in the denominator being slightly smaller than the numerator; in this case I set
cos θs to the sign of the numerator.

Other approximations The oscillation probability contains fast wiggles at low HNL
energies E4, as this also implies low Eν . This can slow the integrator, which has to
scan at fine intervals of rp to resolve the peaks and troughs of the sin2(ωrp) oscillation
probability. Assuming Eν ∼ E4, I set Posc to its averaged value of 1/2, when

E4 <
1

4π · ∆m2LBL

4 , (5.13)

which is the fourth trough of the oscillation probability. The interval to the next trough
is 1

4·5·π
∆m2LBL

4 ∼ 6.6 · 10−2 GeV.
Finally, for larger masses, which I define to be M4 > 10−2 GeV, I restrict the boundary

values of rp, as for these masses the decay length is smaller, and the HNL production
occurs for ℓ < 10/γ; otherwise I simply set rmin

p = 0 and rmax
p = 1.5 · LBL. The explicit

expressions for rmin
p and rmax

p can be found in our paper [332], eq. (C.6), however note
that there is a typo: ℓ̂ should be defined as 10/(LBLγ), as ℓmax = 10/γ. I also exclude
the interior of the detector, namely when Y < 15 m, |X − LBL| < Ld.

Final expression and result The final expression of the approximated integral for
the outside-event spectrum is

dN
dE4

=NmodρN

∫ θmax
b

0
sin θbdθb

∫ rmax
p

rmin
p

L2
NDdrp×

∑
T

[
d2Φ

dΩbdEν

Posc

(
rp

Eν

) ∆φb

2π · αT
dσT

dQ2
2MTE

2
νp4

MTE4 −M2
4/2

· Pdec∆Ωsε(p4)
]
,

(5.14)

where ρN is the nucleon number density of the Earth’s surface, and αT is the abundance
of target T. Note that for nucleons, αT = 1/2 is already contained in eq. (B.3). A few
example spectra for various masses M4 are shown in fig. 5.8. The dashed lines indicate
when the probability is replaced with its averaged-out value. Note the sharp peak at low
energies for the lowest mass M4 = 10−3 GeV is due to the 1/Q2 factor in the cross section.
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Figure 5.8: Some example spectra for outside events at the far detector, reused from [332].
The spectra have been normalised so that their peak value is at 1.

5.3.2 Inside event rate
For the inside events, I make the assumption that the flux inside the detector is colli-
mated, as the size of the detector is very small compared to the distance to the neutrino
source. This entails ignoring variations with the production point x⃗p of the flux inside the
detector. Similarly, I ignore variations in the oscillation probability, by setting |x⃗p| = LBL.
This makes the flux and oscillation probability independent of the production point x⃗p;
if we calculate the spectrum as a function of Eν , we can then factorise the flux and
oscillation probability outside of the integral,

dN
dEν

= Nmod
L2

ND
L2

BL

d2Φ
dΩdEν

Posc

(
LBL

Eν

)
ρN
∑
T

∫∫∫
d3x⃗p

∫∫
dΩsαT

dσT

dΩs
· Pdec · ε(p4). (5.15)

Just like for the outside events, I assume the detector density is homogeneous; ρN is the
nucleon number density of the detector, which is calculated by dividing the fiducial mass
by the detector volume and atomic mass unit: ρN = Mfid/(VdetuAMU). The mass density
obtained this way differs slightly from the density of liquid argon, presumably due to
the presence of electronics in the detector. The possible targets for this case are only
electrons, nucleons, and Argon nuclei. This abundance of argon is assumed to be one:
αAr = 1.

Kinematics Since we are evaluating the cross section at fixed Eν , the kinematic re-
lations have to be altered. By evaluating Q2 = −(pν − p4)2 = −(pi

T − pf
T)2, we can

obtain
(Eν +MT)E4 − (MTEν +M2

4/2) = Eνp4 cos θs. (5.16)
Squaring both sides yields a quadratic equation, which can be solved to obtain E4(Eν).
Defining

A± = MT + Eν(1 ± cos θs), B = MTEν +M2
4/2, E0

4 = B/A−,

∆ = (M4/B)2A+A−, C =
√

1 − ∆, E4 = E0
4 [1 − (1 − C)Eν cos θs/A+] ,

(5.17)

where E0
4 is the HNL energy in the ultrarelativistic limit E4 = p4. One can then obtain
Q2

2MT
= Eν − E4(Eν) = E2

ν(1 − cos θs) −M2
4/2

A−
+ B(1 − C)

A+A−
Eν cos θs, (5.18)
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where the RHS is used in the calculation, as Eν − E4 is numerically unstable for small
four-momentum transfer Q2 ≪ 1, when cos θs ∼ 1. The derivative may be calculated as

dQ2

d cos θs
= −2MT

dE4

d cos θs
= 2MTEν

A+

[
2E4Eν cos θs

A−
+ E0

4C + (M4Eν cos θs)2

A−BC

]
. (5.19)

Note that I require M4 < E4 < Eν and ∆ ≥ 0, otherwise no such final-state energy
exists. Furthermore, in the ultrarelativistic limit, there will be small quantities such as
∆ in 1 − C, which needed to be expanded to ensure numerical stability. With these
expressions, we can calculate

dσT

dΩs
= 1

2π
dσT

dQ2
dQ2

d cos θs
. (5.20)

Detector geometry To simplify the integration, I model the detector as a cylinder,
and use cylindrical coordinates (ρ, z, θ). There is a cylindrical symmetry, as the integrand
of eq. (5.15) does not depend on θ. The integral over the production point becomes then∫∫∫

d3x⃗p = 2π
∫∫
ρdρdz, where z ∈ [0, Ld] and ρ ∈ [0, rd], where rd is an effective radius

for the detector, which is chosen so that the area of the cylinder’s cross section is the
same as the detector’s, Adet = πr2

d = LwLh. The probability to decay inside the detector
is then

Pdec(γℓ) = 1 − exp(−γℓ), (5.21)

where ℓ is the length of the HNL’s path inside the detector. This is depicted in fig. 5.9.

z

ρ

(z, ρ) θs

ℓ

Figure 5.9: An incoming neutrino scatters at (ρ, z) in a cylindrical detector module. In
blue are two possible paths for the sterile neutrinos, at constant scattering angle θs. In
red is the trajectory of the neutrino, had it not scattered. Modified from our paper [332].

The path length ℓ depends on both scattering angles θs and φs, as well as the pro-
duction point (ρ, z). In order to simplify the integral, I will use the value of ℓ at ρ = 0,
ℓ0 ≡ ℓ(ρ = 0), which allows the ρ and φs integrals do be factorised out. (The integral over
ρ will just yield the detector cross-sectional area Adet.) This approximation is actually
exact if the HNL path intersects the end of the detector, instead of the side (like the
paths shown in fig. 5.9), in which case ℓ = (Ld − z) sec θs for the right-hand end, and
ℓ = z sec θs for the left-hand end. To investigate the validity of this approximation, let
us consider the case when the HNL path intersects the sides of the detector, as shown in
fig. 5.9. In this case, ℓ is defined by the equation

(ℓ sin θs cosφs + ρ)2 + ℓ2 sin2 θs sin2 φs = r2
d. (5.22)
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Solving this yields, assuming θs ∈ (0, π),

ℓ = ℓ0

[√
1 − x2 sin2 φs − x cosφs

]
, where x ≡ ρ/rd, ℓ0 = rd cosec θs. (5.23)

Averaging over φs,
⟨ℓ⟩ =

∫ 2π

0
ℓ
dφs

2π = ℓ0
2
π
E(x), (5.24)

where E( · ) is the complete elliptic integral of the second kind,

E(k) =
∫ π/2

0

√
1 − k2 sin2 θdθ. (5.25)

In the limit of small γℓ, the decay probability simply becomes γℓ, and we can use the
above result to calculate the ratio of the exact result to our approximation,

Π (γℓ → 0) = 2
π

∫ 1

0
2xE(x)dx ≈ 0.8. (5.26)

To improve on this, I define a penalty term

Π (γℓ0) = ⟨Pdec(γℓ)⟩
⟨Pdec(γℓ0)⟩

=
[∫ 1

0

∫ 2π

0

(
1 − e−γℓ

) dφs

2π 2xdx
]/(

1 − e−γℓ0
)
, (5.27)

which I multiply with the decay probability, which reduces it due to the detector geometry.
I precomputed the integral and used a parameterisation for Π( · ), given in appendix B.3.
Note that in the limit of a large decay width, Π(γ → ∞) → 1, which implies that detector
geometry becomes irrelevant for small decay length. This make intuitive sense, as the
HNL decays immediately after creation, and does not probe the detector boundary.

Also note that I have calculated Π( · ) with the assumption that the HNL path ends
at the side of the detector; however, note that Π = 1 if the HNL path ends at the ends
of the detector, whence we only underestimate the signal. Finally, we must calculate ℓ0,
taking into account the boundary conditions of the cylinder. This can simply be done by
calculating the path length in both cases, when the path ends at the side of the detector,
and when it ends at the end, and taking the smaller value; explicitly,

ℓ0 =
min [rd cosec θs, (Ld − z) sec θs] if cos θs ≥ 0

min (rd cosec θs, z| sec θs|) if cos θs < 0.
(5.28)

Final expression and result The final expression of the approximated integral for
the inside-event spectrum is

dN
dEν

=Nmod
L2

ND
L2

BL

d2Φ
dΩdEν

Posc

(
LBL

Eν

)
ρNAdet×

∑
T

∫ Ld

0
dz
∫ 1

−1
d cos θs · αT

dσT

dQ2
dQ2

d cos θs
· Pdec(γℓ0)Π(γℓ0) · ε(p4).

(5.29)

A few example spectra are shown in fig. 5.10. The dashed lines indicate when I replaced
the oscillation probability with its averaged-out value, although this is only done for
aesthetics in the case of the inside events, and the full expression is used for the calculation
of the exclusion curve.
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Figure 5.10: Some example spectra for inside events at the far detector, reused from [332].
The spectra have been normalised so that their peak value is at 1.

5.4 Results
In fig. 5.11, I show which types of interactions (on electrons, nucleons, or coherently on
nuclei) are relevant in each area of parameter space for probing dτ at the far detector.
In dashed lines are the curves for six outside-events per year; and in solid are the curves
for six inside-events per year. For the inside events, we see that coherent scattering on
nuclei dominates for masses M4 < 0.7 GeV, whilst for larger masses, incoherent scattering
on nucleons dominates. I attribute this to the fact that larger M4 leads to a larger Q2,
which will be suppressed by the nuclear form factor. However, the nucleon curve sharply
decreases for M4 > 1 GeV, due to the lack of SM neutrinos with a high enough energy
to produce the HNL. For the electron, upscattering is kinematically allowed for low M4
only, owing to its lightness, which is why the curve cuts off at M4 ∼ 0.08 GeV. The
grey curve denotes the parameter points, where an HNL with energy 1 GeV has a decay
length of 1 cm. Since the detector only has sub-centimetre resolution, parameter points
to the right of this curve will not be able to resolve the unique double-bang signature
of a nuclear recoil and a displaced photon. For the outside events, we see that coherent
scattering always dominates, however we also see that for large moments dτ or mass M4,
the curve disappears. This is because, as the typical decay length ℓ decreases, the allowed
volume of HNL production points (such that the HNL does not decay before reaching
the detector) will decrease, naïvely as ℓ−3, until the number of events become negligible.
Note that our approximations break down before this, as the HNLs would be able to
resolve the detector geometry. In cyan, I have plotted the curve when an HNL of energy
1 GeV has a decay length of 20 m, which is roughly the size of the far detector. As we
can see, it roughly matches with the upper part of the outside-events curve.

In fig. 5.12, I compare the projected sensitivity at the DUNE FD with that of SHiP.
The SHiP curve was calculated by Magill, Plestid, Pospelov and Tsai [353]; the labels
ECC and main refer to two types of detectors: an emulsion cloud chamber (ECC) close
to the beam target, and the “main” detector. Their curve corresponds to the 95% CL
sensitivity after five years of running, assuming 100 background events. The DUNE FD
curves would then correspond to 10, 30, and 100 events after five years, which equate
to 25, 225, and 2500 background events at 95% CL, respectively, using the relation
signal /

√
background = 2. It’s difficult to have a full comparison of these results, without
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Figure 5.11: The curves for six outside- and inside-events per year, dashed and solid,
respectively, at the far detector. The different colours correspond to the different types
of target particles, shown in the legend. The cyan and grey lines define the points, where
the typical decay length is 20 m and 1 cm, respectively, for an HNL with E4 = 1 GeV. I
have reused the plot in our paper [332].
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Figure 5.12: Two-, six-, and twenty-events/yr curves at the DUNE FD (orange, red,
purple, respectively); and the 95% CL projected sensitivity at SHiP, from [353].
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a proper background analysis as whilst DUNE will have better particle discrimination,
owing to liquid argon, the beam operates at a higher POT/yr, compared with SHiP [374].
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Figure 5.13: Comparison of my results (red band indicating 2 – 20 events/year) for the
DUNE ND, probing de (top) and dµ (bottom) with existing bounds in solid, and projected
or estimated ones as dashed curves (see text for details); reused from our paper [332].
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Figure 5.14: Comparison of my results (red band indicating 2 – 20 events/year) with ex-
isting bounds in solid, and projected or estimated sensitivities as dashed curves (see text
for details); figure reused from our paper [332].

In fig. 5.14, I show my results as a red band in the space of exclusion curves, where the
band represents the region with 2 – 20 events/year. At 95% CL, this would correspond to
25 – 2500 background events over five years. Projected sensitivities of future experiments
are plotted with a dashed curve (except for our results), as well as estimated sensitivities,
which do not have a rigorous background analysis (and other experimental details like
selection efficiency), and are based only on a signal rate. I am grateful to Jing-Yu Zhu for
doing a literature search for all the exclusion curves, and extracting them and creating
the graphics. As one can see, whilst astrophysical and cosmological probes constrain
much of the parameter space at low M4, for larger masses, only the collider bounds exist,
which are relatively weak. Note that the IceCube curve is only for one event in six years
of data analysed, which only corresponds to an exclusion of 1 − e−1 ≈ 63%, assuming
no background and 100% selection efficiency. The SN1987A and LEP bounds (which are
dependent on the UV completion; see the discussion in section 5.1), as well as the SHiP
sensitivity are taken from [353]; Xenon1T, Borexino, BBN and 4He-abundance bounds
are from [354]; the estimated IceCube sensitivity (from double-bang events) is taken from
[362]; the DONUT bound is actually on the SM tau-neutrino magnetic moment [375], but
was reinterpreted as a bound on the transition moment at low HNL masses by [362]; the
estimated sensitivity for Borexino+SK from upscattering of solar neutrinos (which partly
inspired the current work) comes from [376]; and the projected sensitivity at SuperCDMS
comes from [377]. The dashed lines for Borexino and Xenon1T are extrapolations of the
original curves to arbitrarily large moments.

In fig. 5.13, I show my results for the sensitivity to de,µ at the DUNE ND (red band),
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compared with the constraints from existing data, and projections or estimations of sen-
sitivities from other experiments, the references being the same as the dτ case, addition-
ally with LSND, MiniBooNE, and projections for MicroBooNE and SBND from [353];
NOMAD, originally considered in [378], and reevaluated in [353]; and the bound from
CHARM-II [379], derived from the induced scattering of the muon neutrino on an elec-
tron, from [362]. As expected, the sensitivity at DUNE is much stronger for muon
neutrinos, due to their dominating presence in the neutrino beam. In both cases, DUNE
would be able to exclude currently unconstrained parameter space.

5.5 Conclusion and Outlook
In conclusion, the neutrino dipole portal is an interesting scenario, which may be able
to explain the MiniBooNE anomaly, and which can be probed at DUNE, using both its
intrinsic neutrinos at the near detector, and oscillated tau neutrinos at the far detector.
DUNE can probe the transition moment for HNL masses as low as a few MeV, to a GeV.
As I have already mentioned, a detailed experimental analysis for the background and
selection efficiency is needed for a truly rigorous sensitivity curve. However, my results
show that probing the dipole portal at DUNE is a promising venture. In addition, I did
not consider HNLs that are directly produced from meson decay in the decay pipe. (This
was done for the case of pure sterile-neutrino mixing for DUNE by Coloma et al. [380].)
For example, the dipole transition moment induces HNL production from pion decay,
as shown in fig. 5.15. This contribution was included in the analysis of Magill, Plestid,
Pospelov and Tsai [353] via analytic methods, however a more accurate calculation would
use mesons from an event generator, simulating the proton interactions on the target,
and propagate them through the decay pipe, to ensure all HNLs are produced in the
direction of the detector, in a calculation similar to that done here. This is the subject
of ongoing work.

π0

γ

γ∗

ν4

νSM

π+

µ+

νSM

γ

ν4

Figure 5.15: Possible decays of pions into HNLs from the dipole transition moment.
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Chapter 6

Summary and Conclusion

With the completion of the theoretical development of the Standard Model of particle
physics, there has been much attention and speculation on what kind of new physics
lie beyond it. The phenomenon of neutrino oscillations require that the neutrinos have
mass, whose generation is unknown. This work has covered phenomenological analyses of
existing and future experiments in the context of neutrino oscillations and possible new
physics in the neutrino sector, which I undertook during my PhD under the supervision
of Prof. Thomas Schwetz-Mangold.

In chapter 3, I presented the current status of the global fit for the three-neutrino
oscillation parameters. My contribution was to update the reactor analysis, using the
existing code base from the previous PhD candidate Álvaro Hernández-Cabezudo. The
global dataset consists of multiple opposing tendencies, with T2K and NOνA prefer-
ring different δCP values in normal ordering, thus leading to their combination preferring
inverted ordering, whilst the reactor data prefers normal ordering, leading to a “com-
promise” CP-conserving value of δCP ≈ π. Despite this, the tensions within the global
data set, between different experiments, are still ≤ 2σ, using the parameter goodness-of-
fit test statistic χ2

PG. Whilst no significant tension is currently present, these opposing
tendencies have continued since the previous NuFit update, and time will tell if these
develop into serious tensions.

In chapter 4, I presented my work in the global FCMC statistical analysis of the sterile-
neutrino hypothesis. The FCMC method is needed to evaluate the statistical significance
of the sterile-neutrino hypothesis, as Wilks’ theorem is violated. This method is compu-
tationally expensive, and the χ2 routines had to be highly optimised, where analytical
minimisation of pulls must be done where possible, and numerical minimisation requires
a high degree of optimisation. The technical details of these aspects were presented in ap-
pendix A. In this analysis, we used the set of recent sterile-neutrino reactor experiments,
as well as the limit set on the sterile mixing from solar data, to investigate the global
significance of the claimed signal of new oscillations from the Neutrino-4 experiment. We
found that the global significance of new oscillations is low, but that, due to the large
∆m2 of the Neutrino-4 signal, it is compatible with the other reactor experiments, but
exists in a region of parameter space that is particularly difficult to probe. The CL of the
exclusion curves for each experiment are generically reduced by roughly 1σ compared to
the Wilks’ theorem, indicating the importance of using a rigorous statistical method.

An analysis including the recent results from BEST, which confirmed the gallium
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anomaly at > 5σ significance, was done with reactor data; BEST drives the significance
of the evidence under the sterile-neutrino hypothesis, with it determining the mixing,
and Neutrino-4 determining the mass-squared splitting. However, the gallium anomaly
is in strong tension with the solar data, which is not easy to resolve. In section 4.5, I
discussed possible sources of new systematic errors in the gallium experiments, which
could reduce the best-fit mixing value, thus reducing the tension with solar; and also
whether new physics could alleviate the solar bound. Neither avenue seems promising.
With the measured ground-state gallium-neutrino cross section being highly constrained
by experimental data, and with the excited-state contribution only being able to increase
the theoretical prediction, relieving the gallium-solar tension remains an open question.
However, there may be a case for confirming the precision of the efficiency-extrapolation
method used to determine the absolute activity of the 51Cr source with more direct
methods that calibrate the detector efficiency and directly probe the absolute activity.

Finally, in chapter 5, I presented my results probing the neutrino dipole portal at
DUNE. The dipole portal is interesting, as it provides an alternative explanation of
the MiniBooNE anomaly, which is unlikely to be explained via new oscillations, as the
disappearance channels from other experiments like MINOS and IceCube place strong
constraints on new muon-neutrino flavour oscillations. The analysis is done assuming the
domination of a single-flavour dipole transition coupling dα of a SM neutrino of flavour α
with a heavy neutral lepton. I find that DUNE will be able to explore currently uncon-
strained areas of the dipole parameter space, particularly at masses of hundreds of MeV,
and will be competitive with other proposed experiments such as SHiP. Whilst a rigorous
sensitivity curve requires a detailed analysis of experimental details like background and
selection efficiency, my results show that such a search at DUNE would provide useful
results. The analysis, however, ignores HNL production from meson decay in the decay
pipe, and this is a future project that will explore the full potential of the DUNE ND to
the dipole portal.
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Appendix A

Formulae for the global FCMC
sterile-neutrino analysis

A.1 DANSS

A.1.1 Covariance matrix
The explicit formula for the covariance matrix, defined in eq. (4.7), and its inverse, are

V i
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1
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and
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These expressions were derived with the help of the symbolic calculator SymPy. As men-
tioned in the main text, these expressions are derived in the approximation of neglecting
the background. In this approximation, the size of V i is set by ni

T. For the 36 bins
between 1.5 – 6 MeV, the total events per day at the top baseline is ∑36

i=1 n
i
T = 4132.6

events/day.
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A.1.2 Minimisation over systematics
Let
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and ∆i ≡ Di − Pi. We can then write
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The minimisation over systematics can be done analytically by recognising that the prob-
lem is to minimise the degree-two multinomial∑
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and χ2
0 is the value of the χ2 without pulls (κ1 = κ2 = 0). Then,
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The minimum occurs at
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A.2 NEOS
The minimisation over the flux normalisation ξ is a simple quadratic minimisation,

χ2 = min
ξ

(D − ξP)TV −1(D − ξP) = c− b2

a
= χ2

ξ=1 − (b− a)2

a
, (A.13)

a = PTV −1P, b = PTV −1D, c = DTV −1D, χ2
ξ=1 = (D − P)TV −1(D − P). (A.14)

The value of ξ at which χ2 is minimal (required to generate pseudo data) is

ξmin = b

a
= 1 + PTV −1(D − P)

PTV −1P
. (A.15)
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A.3 STEREO

A.3.1 Minimising ξI,II

With the pull transformation eq. (4.38), P (α, ζ) no longer depends on ξ, whence the ξ
dependence is isolated to the pull term,
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The ξI,II-dependent part of the χ2 function is the quadratic function
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The quadratic function ax2 − 2bx + c = a(x − b/a)2 + c − b2/a has a minimum value of
c− b2/a; this means the new pull terms for αI,II
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and
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Equation (A.18) suffers from loss of precision in floating-point arithmetic. If we denote
the pull-term for the αλ

l by gλ( · ), then
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preserves precision better than eq. (A.18), where ⟨ · ⟩ represents taking the average over
index l, i.e. 1

Ncells

∑Ncells
l=1 .

A.3.2 Minimising ΦI

With the pull transformation eq. (4.38), the ΦI-dependent part is
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whence
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Substituting this, we have the partially minimised pull-term
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This term suffers from loss of precision; to derive a form more amenable to floating-point
arithmetic, first note the second term can be written as Ncells(1+ ⟨β⟩)2/(1+2 ⟨β⟩+ ⟨β2⟩).
Defining this pull term as hI( · ),
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We note that
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which is a good sanity check that after minimising analytically over ΦI, our χ2 value is
indeed lower than it would have been otherwise.

A.3.3 Minimising ϕi

After the above minimisations,
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where we define hII
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As I will discuss in the following sections, the energy-scale pull will change the binned
prediction, by shifting the rescaled bins to the left or right. It can occur that the rescaled
bins are shifted more than a bin width, in which case rescaled bins for fixed i can have a
value of zero for all λ and l. In this case eq. (A.28) is no longer valid, as the denominator
of the definition of ϕi will be zero. In this case, I simply set ϕi = 0.
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A.3.4 Numerical minimisation of αλ
i and βλ

i

It is not possible to minimise αλ
i , βλ

i analytically, because βλ
i now contains the free

normalisation ΦI, and the energy-scale pull αλ
i can be large (shifting the energy spectrum

over one bin), preventing any simplification via series expansion. Therefore, I use a
numerical algorithm, called the non-linear conjugate-gradient algorithm [293]. This is a
more advanced version of the steepest decent method.

To initialise the algorithm, I set the starting point in the parameter space of pulls
p0 to be the location of the previous pull minimum, evaluated at the previous os-
cillation parameters p0 ≡ pmin

(
sin2 2θ′,∆m2′

)
, or if running χ2 for the first time,

p0 ≡
(
αI

l = σI
α/2 βI

l = σI
β/2 αII

l = σII
α /2 βII

l = σII
β /2

)T
; and I set the direction of steep-

est descent s0 = −∇χ2 to be the minimisation direction. Then, a cubic one-dimensional
minimiser is used to minimise the function f(t) = χ2 (p0 + t · ŝ) (see appendix A.3.5 for
details), where ŝ ≡ s/|s| is defined to be the unit vector in the direction of s. One-
dimensional minimality occurs when the direction of steepest descent is orthogonal to
the path of minimisation, ∇χ2(p0 + tmin · ŝ) · ŝ ≈ 0. Then a new direction s′ is chosen
using the Polak-Ribière method,

s′ ≡ −∇χ2 (pmin) + β · s where β = [∇χ2 (pmin) − ∇χ2 (p0)] · ∇χ2 (pmin)
|∇χ2 (p0)|2

(A.29)

and pmin ≡ p0 + tmin · ŝ. Then the algorithm repeats the line minimisation in the new
direction s′, starting at the parameter point p′

0 ≡ pmin.
For a quadratic function f(x) of n variables, if the one-dimensional minimisation

is exact, then the conjugate-gradient algorithm will terminate at the minimum after at
most n iterations. (This is very useful for quadratic functions with many variables, as the
direct method of solving the linear equations ∇f(x) = 0 involves the inversion of a large
matrix, which is numerically unstable and computationally expensive.) For non-quadratic
functions, like our χ2(p), there is no guarantee of convergence. I follow the suggestion
by Fletcher’s textbook [293], to reset the search direction s to the direction of steepest
descent −∇χ2 (p0) after n = 4Ncells iterations (n being the dimension of the vector of
pulls p). After ten reset cycles (40Ncells iterations), I exclusively use the direction of
steepest descent, and after 1000 iterations I terminate the algorithm.

A.3.5 One-dimensional cubic minimiser
The non-linear conjugate-gradient algorithm requires one-dimensional line minimisation
of the function f(t) = χ2 (p0 + t · ŝ). I first search for an interval [t0, t1] such that
f ′(t0) < 0 and f ′(t1) > 0, which guarantees that there is a local minimum in the interval.
This is done by iterating over Tk = − sign[f ′(0)] ·2k for positive integer k. Once a suitable
k is found, I set t0 = Tk−1 and t1 = Tk.

I then use the function values yi ≡ f(ti), and their derivatives di ≡ f ′(ti), for i = 0, 1,
to uniquely define a cubic function F (t − t0), whose minimum I take as an estimate for
the minimum. With x ≡ t− t0, let

F (x) = αx3 + βx2 + γx+ δ. (A.30)
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We then have F (0) = δ = y0, F ′(0) = γ = d0, and
F (∆t) = α∆t3 + β∆t2 + d0∆t+ y0 = y1, F ′(∆t) = 3α∆t3 + 2β∆t+ d0 = d1, (A.31)

where ∆t ≡ t1 − t0. Thence, one can obtain

α = 1
∆t2

[
∆d− 2

(
∆y
∆t − d0

)]
, β = 1

∆t

[
3
(

∆y
∆t − d0

)
− ∆d

]
. (A.32)

By solving the quadratic equation F ′(x) = 0, one can obtain the extrema

x± = t± − t0 = − b

3a ±

√√√√( b

3a

)2

− c

3a. (A.33)

From geometric considerations, (see fig. A.1), when α > 0, the minimum is to the right,
hence we take the solution with the plus sign x+; and when α < 0, the minimum is to the
left, and we take x− as the minimum. In the case when 3αγ ≪ β2, the cubic becomes
approximately quadratic, with the minimum at

x = − γ

2β

[
1 + O

(
3αγ
β2

)]
. (A.34)
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Figure A.1: Sketch of two cubics with α > 0 (left) and α < 0 (right) and their minima.

Having ascertained the cubic minimum’s location t∗min, I calculate the derivative
f ′ (t∗min), in order to find out if it should replace t0 or t1. However, I do an additional
check before replacement, as after several iterations, the cubic interpolation can become
trapped in a cycle, and not converge to the real minimum, or convergence becomes slow.
If I could have done better with bisection rather than cubic interpolation, I do an addi-
tional bisection. Explicitly, if f ′ (t∗min) < 0 and |t∗min − t0| < |∆t|/2, or if f ′ (t∗min) > 0 and
|t∗min − t1| < |∆t|/2, then I do a bisection after replacement.

In the former case, when the derivative at t∗min is negative, I replace t0 by t∗min; and in
the latter case, when the derivative is positive, I replace t1 by t∗min. If I could have done
better doing a bisection, I then set t∗ ≡ (t0 + t1)/2 and replace t0 with t∗ if f ′(t∗) < 0,
and replace t1 with t∗ if f ′(t∗) > 0.
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A.3.6 Implementing the energy-scale pull
We cannot do a series expansion in the energy-scale pull, because αEi can have a mag-
nitude similar to the bin width ∆E. Therefore, instead of implementing the energy-
scale pull in the integral over Erec (implicit in Rλ,l

ij in eq. (4.34)), which would re-
quire recalculating computationally expensive integrals, I instead rebin the prediction
Predλ

l,i. I do so by first defining a function for the energy spectrum Sλ
l (x), where

x ≡ (Erec − E0) /∆E ∈
[
0, Nλ

Ebins

]
labels the bin as dimensionless integers, such that

∫ i

i−1
Sλ

l (x) dx =
Predλ

l,i

∆E , and Sλ
l (x) ≥ 0, ∀x ∈ R. (A.35)

Rescaling the energy scale Erec 7→ (1 + α)Erec modifies the index as

Ii(α) = Ei(1 + α) − E0

∆E = i+ α
(
i+ E0

∆E

)
, (A.36)

whence
Predλ

l,i

(
αλ

l

)
≡
∫ Ii(αλ

l )
Ii−1(αλ

l )
Sλ

l (x) dx. (A.37)

In the implementation of GLoBES, the function Sλ
l ( · ) is taken to be piecewise constant. I

found, however, that the conjugate-gradient algorithm failed to converge with this choice,
as ∇χ2 contains the function Sλ

l ( · ); therefore if Sλ
l is discontinuous, so is ∇χ2, which

causes problems for numerical minimisation. I therefore created a procedure to create
a function Sλ

l , which interpolated between constant bin values with linear functions to
create continuity, whilst still preserving non-negativity and the values in each bin as
per eq. (A.35). In addition to non-negativity and area preservation, any reasonable
interpolation should be monotonic between bins, so as to not introduce new local extrema
(which could introduce a fake oscillation signal).

In the section below, I give the details of the interpolation procedure. Note that it
is also important that not only the interpolator is continuous, but that the interpolation
as a function of parameters is also continuous. This means that when the interpolation
rule must change to ensure non-negativity, area preservation or monotonicity, it must be
done in a continuous way.

Interpolation procedure

In this part, I will drop the indices λ and l, which are not crucial for this discussion. I
define the interpolated spectrum S( · ) piecewise in each bin,

S(x) =


S0(x) if x < 0
Si[x− (i− 1)] if x ∈ [i− 1, i), for i ∈ {1 . . . N}
SN+1(x−N) if x ≥ N

(A.38)

where N is the total number of energy bins. Note that I have shifted each piece Si( · ) so
as to be defined on the interval [0, 1). The energy-scale pull is implemented as

Predi(α) = T [Ii(α)] − T [Ii−1(α)] where T (x) =
∫ x

0
S(x′)dx′; (A.39)
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I calculate T ( · ) analytically for fast χ2 calculation.
Below I present blocks of pseudocode, with additional explanatory remarks as bullet

points. Within a pseudocode block, text enclosed in braces {. . . } are comments. The
pseudocode is only meant to be representative of my actual code.

Pseudocode block 1 First bin i = 1

let S1(1) = Pred1 + Pred2

2
{Note that this guarantees the endpoint of S1( · ) to be non-negative.}
let L1( · ) be the line whose endpoint L1(1) = (Pred1 + Pred2)/2, and whose integral,∫ 1

0
L1(x)dx = Pred1.

{Explicitly L1(x) = mx+ b where m = Pred2 − Pred1 and b = Pred1 −m/2.}
if L1(0) ≥ 0 then

set S1 to be L1

set T1(x) =
∫ x

0
L1(x′)dx′

else
let K1(x) = m(x− x0) be defined such that K1(1) = (Pred1 + Pred2)/2 and∫ 1

x0
K1(x)dx = Pred1.

{Explicitly, m = K1(1)/(1−x0) and (1−x0)K1(1)/2 = Pred1 =⇒ x0 = −b/K1(1).}

set S1(x) =
0 if x ≤ x0

K1(x) if x > x0
and T1(x) =

0 if x ≤ x0
m
2 (x− x0)2 if x > x0

(A.40)

end if
{Notice that in the boundary case L1(0) = 0, for the else statement, we would have
x0 = 0 and L1 = K1, as required by continuity.}

Pseudocode block 2 Middle bins 1 < i < N (part i: prelude)
define the function Li( · ) to start at Li(0) = Si−1(1) (the endpoint of the previous
spectrum), end at Li(1) = (Predi + Predi+1)/2 (the midpoint of the current and next
bin), and let it be constant in the interval [0.1, 0.9], such that its integral on the interval
[0, 1] is equal to Predi,

Li(x) =


m0x+ b0 if x < 0.1
Y if x ≤ 0.9
m1x+ b1 otherwise

, where Y = Predi − 0.05 · [Li(0) + Li(1)]
0.9 . (A.41)

Remarks to pseudocode block 2

• Note that fixing the start and end points of Li with the condition of continuity fixes
m0,1, b0,1 for a definite Y , and area preservation fixes Y .
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• Non-negativity is only guaranteed heuristically, because for non-pathological cases,
Predi > 0.05 · [Li(0) + Li(1)].

• Furthermore, monotonicity is not guaranteed and can be violated, which is dealt in
the if statements in the following pseudocode block 3.

Preliminary remarks to pseudocode block 3

• Pseudocode block 3 deals with the case when the bin i is in a monotonic region,
Predi−1 < Predi < Predi+1 or Predi−1 > Predi > Predi+1, but when the function
Li( · ) is not monotonic, Y > Li(0), Li(1) or Y < Li(0), Li(1).

• Each Si( · ) is defined such that it starts and ends at the midpoint between bins,

Si(0) = Predi−1 + Predi

2 Si(1) = Predi + Predi+1

2 (A.42)

• If the bin i is a local maximum, Predi > Predi±1, I assume that Li( · ) also has a
local maximum Y > Li(0), Li(1). This is based on the assumption that for non-
pathological cases, Y ∼ Predi > Li(1) and Y ∼ Predi > Si−1(1) = Li(0). Analo-
gous reasoning applies for the case of a local minimum. Therefore the following if
statements handle the cases when Li has an extremum, but Predi is monotonic.

• When changing our interpolation rule, it must be done in a continuous fashion. Let
us consider how a local maximum is formed. First define L> = max [Li(0), Li(1)]
to be the higher of the two endpoints and L< = min [Li(0), Li(1)] the lower. A
local maximum forms when we increase Y until Y > L>. The boundary between
monotonicity and local maximum occurs when Y = L>, at which, the function
Li( · ) is constant on an interval of length 0.9 (instead of 0.8). Instead of increasing
Y , we can fix Y = L> and increase the interval over which the function is constant,
which equivalently increases its area.

• Analogous comments apply to the formation of a local minimum: instead of de-
creasing Y we can fix it to Y = L< and increase the interval of constancy. If we
define Ξ to be the length of the interval of constancy, then the area formula for the
case of Li( · ) being maximum and minimum, respectively, is

L> + L<

2 + L> − L<

2 · Ξ and L> + L<

2 − L> − L<

2 · Ξ. (A.43)

• Recall that I construct the interpolation to start and end at the vertical mid-
point between bins. Since we are dealing with the case when bin i is in a mono-
tonic region, this means that L> > Predi and L< < Predi. From eq. (A.43), we
see area (Ξ = 1) = L> > Predi for the maximum case, which implies area (Ξ) =
Predi =⇒ Ξ < 1. Similar for the minimum case, we have area (Ξ = 1) = L< <
Predi, which implies area (Ξ) = Predi =⇒ Ξ < 1. This is an important sanity
check for our construction, as if Ξ > 1, the interval of constancy encroaches on the
next bin; and if Ξ = 1 the whole interval is constant, violating continuity.
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• We can see that Ξ > 0.9 heuristically, as when Ξ = 0.9, the construction is equiva-
lent to Li( · ), and for Ξ < 0.9, the algorithm would have chosen Li( · ), which would
satisfy the condition of monotonicity.

• The cases handled in pseudocode block 3 are displayed schematically in the four
panels of fig. A.2, which regard the cases of minimum and maximum, as well as
when L< = Li(0) and L< = Li(1).

Li( · ) max

L> = Li(0)

Li( · ) max

L> = Li(1)

Li( · ) min

L< = Li(0)

Li( · ) min

L< = Li(1)

Figure A.2: The possible ways Li( · ) can violate monotonicity (red) and the possible
replacement interpolations (blue), to scale. The start and end points of each case have
height 1 or 0.1; for the first two images, Y = 1.025, Predi = 0.9775 and Ξ = 0.95, and
for the latter two Y = 0.08, Predi = 0.127 and Ξ = 0.94.

Pseudocode block 3 Middle bins 1 < i < N (part ii: monotonicity)
if Predi is monotonic and [(Li( · ) has max and L> = Li(1)) or (Li( · ) has min and
L< = Li(1))] then

let X = 2(Li(1) − Predi)/[Li(1) − Li(0)] {In the code X ≡ 1 − Ξ.}
let m = [Li(1) − Li(0)]/X

set Si(x) =
Li(0) +mx if x < X

Li(1) otherwise
, Ti(x) =

i−1∑
j=1

Predj +
∫ x

0
Si(x′)dx′ (A.44)

else if Predi is monotonic and [(Li( · ) has max and L> = Li(0)) or (Li( · ) has min
and L< = Li(0))] then

let X = 2(Li(0) − Predi)/[Li(0) − Li(1)]
let m = [Li(1) − Li(0)]/X

set Si(x) =
Li(0) if x < Ξ
Li(0) +m(x− Ξ) otherwise

where Ξ = 1 −X (A.45)

set Ti(x) =
i−1∑
j=1

Predj +
∫ x

0
Si(x′)dx′

end if

Remarks on the overflow bins In the case when α > 0, IN(α) > N ; and when α < 0,
I0(α) < 0. This requires interpolation for two overflow bins, one before the first bin, and
one after the last bin, S0,N+1( · ). Due to the simplicity of S0,N+1( · ), I will not present
any pseudocode. They are simply defined to interpolate the start and end points of the
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spectrum to zero on an interval of length 0.1. Explicitly,

S0(x) =
S1(0) · (10x+ 1) if − x < 0.1

0 otherwise

SN+1(x) =
SN(1) · (1 − 10x) if x < 0.1

0 otherwise

(A.46)

and

T0(x) =
−5 · S1(0) · x2 if − x < 0.1

−0.05 · S1(0) otherwise

TN+1(x) =

∑N

i=1 Predi + SN(1) · x(1 − 5x) if x < 0.1∑N
i=1 Predi + 0.05 · SN(1) otherwise

(A.47)

Conclusion In this way I implemented an interpolation of the energy spectra, which
respected the following four principles:

1. Continuity; regarding both the continuity of the interpolating function, and the
continuity of the interpolation procedure as a function of the underlying binned
spectrum.

2. Area preservation; the integral of the interpolating function of each bin should give
the same result of the corresponding bin of the original spectrum.

3. Monotonicity; the interpolation should not introduce new local extrema into the
spectrum.

4. Non-negativity; the interpolation must never be negative.

In fig. A.3 I give an example of my interpolation procedure versus the binned spectrum.
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Figure A.3: Binned prediction (blue) versus interpolating function (orange).
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A.3.7 Calculating ∇χ2

In this section I detail the relevant formulae for calculating the gradient ∇χ2. Let us
denote the terms of the first line in eq. (A.27) fλ

(
αλ

l , β
λ
l

)
, so that

χ2
(
αλ

l , β
λ
l

)
=

∑
λ=I,II

[
fλ

(
αI,II

l , βI,II
l

)
+ gλ

(
αλ

l

)
+ hλ

(
βλ

l

)]
. (A.48)

To simplify the notation, let us define D̃λ
l,i ≡ Dλ

l,i/σ
λ
l,i, and similarly P̃ λ

l,i ≡ P λ
l,i/σ

λ
l,i. In fλ,

the dependence on αI,II
l can be isolated within ϕi and P̃ λ

l,i, where ϕi

(
P I,II

l,i

)
is defined in

eq. (A.28). Thus,

∂χ2

∂αI
l

=
N I

Ebins∑
i=1

∂fI

∂P̃ I
l,i

∂P̃ I
l,i

∂αI
l

+ ∂fI

∂ϕi

∂ϕi

∂αI
l

+ ∂fII

∂ϕi

∂ϕi

∂αI
l

+ ∂gI

∂αI
l

=
N I

Ebins∑
i=1

∂fI

∂P̃ I
l,i

∂P̃ I
l,i

∂αI
l

+ ∂gI

∂αI
l

∂χ2

∂αII
l

=
N II

Ebins∑
i=1

∂fI

∂ϕi

∂ϕi

∂αII
l

+ ∂fII

∂P̃ II
l,i

∂P̃ II
l,i

∂αII
l

+ ∂fII

∂ϕi

∂ϕi

∂αII
l

+ ∂gII

∂αII
l

=
N II

Ebins∑
i=1

∂fII

∂P̃ II
l,i

∂P̃ II
l,i

∂αII
l

+ ∂gII

∂αII
l

,

(A.49)

where we have used that ∂fλ/∂ϕi = 0 by the definition of ϕi( · ), by virtue of having
already analytically minimised over it in eq. (A.28). The partial derivatives can be
calculated as

∂fλ

∂P̃ λ
l,i

= −2ϕi

(
D̃λ

l,i − ϕiP̃
λ
l,i

)
,

∂gλ

∂αλ
l

= 2(
σλ

η

)2

[
αλ

l − ⟨α⟩
1 + ϑλ/Ncells

]
, (A.50)

and
∂P̃ λ

l,i

∂αλ
l

= 1
σλ

l,i

·
1 + βλ

l,i(
1 + ζ̃λ

l

)
Predλ

l,i (sin2 2θ = 0)
[
η̃λ

l + ξ̃λ
l

] ·
∂Predλ

l,i

∂αλ
, where (A.51)

∂Predλ
l,i

∂αλ
l

=
(
i+ 1 + E0

∆E

)
S
[
Ii+1

(
αλ

l

)]
−
(
i+ E0

∆E

)
S
[
Ii

(
αλ

l

)]
= S(Ii+1) +

(
i+ E0

∆E

)
[S(Ii+1) − S(Ii)] ,

(A.52)

is calculated from differentiating eq. (A.37) using Leibniz’s rule.
By the same reasoning, the dependence on βI,II

l in fλ can be isolated within ϕi and
P̃ λ

l,i; the derivative with respect to ϕi is zero be definition, whence,

∂χ2

∂βλ
l

=
Nλ

Ebins∑
i=1

∂fλ

∂P̃ λ
l,i

∂P̃ λ
l,i

∂βλ
l

+ ∂hλ

∂βλ
l

, where ∂hII

∂βII
l

= 2βII
l(

σII
ζ

)2 , (A.53)

∂hI

∂βI
l

= 2(
σI

ζ

)2

∑Ncells
m=1

(
1 + βI

m

)
∑Ncells

m=1 (1 + βI
m)2

∑Ncells
m=1

(
1 + βI

m

)
∑Ncells

m=1 (1 + βI
m)2

(
1 + βI

l

)
− 1



= 2(
σI

ζ

)2

∑Ncells
m=1

(
1 + βI

m

)
[∑Ncells

m=1 (1 + βI
m)2

]2 Ncells∑
m=1

(
βI

l − βI
m

) (
1 + βI

m

) (A.54)
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(the latter equation is less prone to loss-of-precision, but the second sum has to be
computed for each bin; whereas in the former, the sums can be precomputed), and

∂P̃ λ
l,i

∂βλ
l

=
Predλ

l,i

(
αλ
)
/σλ

l,i(
1 + ζ̃λ

l

)
Predλ

l,i (sin2 2θ = 0)
[
η̃λ

l + ξ̃λ
l

] . (A.55)

A.4 Minimising χ2

Pseudocode block 4 Minimising χ2(sin2 2θ) for fixed ∆m2

Input variables: ∆m2; sin2 2θ1,2,3; χ2
1,2,3; ε

Require: sin2 2θ1 < sin2 2θ2 < sin2 2θ3 and sin2 2θ2 is a local minimum: χ2
2 < χ2

1, χ
2
3

repeat
set ∆y1 = χ2

2 − χ2
1, ∆y2 = χ2

3 − χ2
2

set ∆x1 = sin2 2θ2 − sin2 2θ1, ∆x2 = sin2 2θ3 − sin2 2θ2
{Sometimes a discontinuity from numerical aberrations will prevent the conditions
|∆y1,2| ≤ ε from being satisfied; exit the loop if the mixing interval is small.}
if |∆x2| < 10−3 and |∆x1| < 10−3 then exit loop
{If one of ∆x1,2 is much larger than the other, bisect the larger interval; otherwise
use parabolic interpolation.}
if 10∆x1 < ∆x2 then

set sin2 2θnew = (sin2 2θ3 + sin2 2θ2) /2
else if ∆x1 > 10∆x2 then

set sin2 2θnew = (sin2 2θ2 + sin2 2θ1) /2
else

let ax2 + bx+ c be the parabola that interpolates the points (sin2 2θ, χ2)1,2,3
set sin2 2θnew = −b/(2a)
{If sin2 2θnew is unphysical, bisect the larger interval.}
if sin2 2θnew < 0 or sin2 2θnew > 1 then

if ∆x1 < ∆x2 then
set sin2 2θnew = (sin2 2θ3 + sin2 2θ2) /2

else
set sin2 2θnew = (sin2 2θ2 + sin2 2θ1) /2

end if
end if

end if
set χ2

new = χ2
pseudo (∆m2, sin2 2θnew)

update point (see pseudocode block 5)
if number of iterations > 100 then

exit loop {Sometimes the algorithm does not converge, due to numerical aberra-
tions. Typically, after 100 iterations, the local minimum is isolated well enough.}

end if
until |∆y2| ≤ ε and |∆y1| ≤ ε

In pseudocode block 4, I present my minimisation algorithm of χ2
pseudo(sin2 2θ) for

a fixed ∆m2. The algorithm takes a set of three graph points (sin2 2θ, χ2)1,2,3 = p1,2,3,
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where the middle graph point is a local minimum, and reduces the size of the interval
to isolate the local minimum. It is broken up into two parts: the first selects a new
parameter point (pseudocode block 4), and the second updates the set of three points
(sin2 2θ, χ2)1,2,3 = p1,2,3 (pseudocode block 5). At termination, χ2

2 is the minimum.

Pseudocode block 5 Update the parameter points (sin2 2θ, χ2)1,2,3 = p1,2,3

if χ2
new < χ2

2 {The new point is lower than the existing local minimum.} then
if sin2 2θnew = 0 {The minimum is near sin2 2θ = 0.} then

set p1 = pnew
{Check if the minimum is at sin2 2θ = 0}
while sin2 2θ2 > 10−4 and χ2

2 > χ2
1 do

set sin2 2θ2 = 0.1 · sin2 2θ2, χ2
2 = χ2

pseudo (∆m2, sin2 2θ2)
end while {Ensure the middle parameter point is the minimum.}
if χ2

1 < χ2
2 then set p2 = p1

exit loop
else if sin2 2θnew < sin2 2θ1 {New minimum lies outside the interval.} then

set p3 = p2, p2 = pnew, p1 = (0, χ2
3ν)

else if sin2 2θnew < sin2 2θ2 {New minimum lies between p1,p2.} then
set p3 = p2, p2 = pnew

else if sin2 2θnew < sin2 2θ3 {New minimum lies between p2,p3.} then
set p1 = p2, p2 = pnew

else if sin2 2θnew < 1 {New minimum lies outside the interval.} then
set p1 = p2, p2 = pnew, p3 =

(
1, χ2

pseudo[∆m2, 1]
)

else if sin2 2θnew = 1 then
set p3 = pnew
{Check if the minimum is at sin2 2θ = 1}
while sin2 2θ2 < 0.99 and χ2

2 > χ2
3 do

set sin2 2θ2 = (1 + sin2 2θ2)/2, χ2
2 = χ2

pseudo (∆m2, sin2 2θ2)
end while
{Ensure the middle parameter point is the minimum.}
if χ2

3 < χ2
2 then set p2 = p3

exit loop
end if {Update edges of interval, as pnew is larger than minimum.}

else if sin2 2θnew < sin2 2θ2 then
set p1 = pnew

else
{sin2 2θnew > sin2 2θ2}
set p2 = pnew

end if

The pseudocode presented above requires the initial graph points p1,2,3 to enclose a
local minimum, where p2 is the local minimum of the three. Below, I present pseudocode
to find a local minimum of χ2

pseudo(sin2 2θ). There are two versions presented; one is used
for the global analysis, where best-fit points occur near sin2 2θ = 0, and another for the
gallium analysis, where best-fit points occur for non-zero mixings.
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Pseudocode block 6 Find local minimum of χ2(sin2 2θ), optimised for sin2 2θmin = 0
Input variables: ∆m2; sin2 2θguess {Usually sin2 2θguess is the previous minimum.}
let f(x) = χ2

pseudo(∆m2, x)
if sin2 2θguess ≤ 0.01 then

set p1 = (0, f(0)); p2 = (0.01, f(0.01)) ; p3 = (0.1, f(0.1))
if p1 is minimal {Minimum is at f(0)} then

goto Auxiliary 1 in pseudocode block 8
else if p3 is minimal then

goto Auxiliary 4 in pseudocode block 8
end if

else if sin2 2θguess ≥ 0.75 then
set p1 = (0.5, f(0.5)); p2 = (0.75, f(0.75)) ; p3 = (1, f(1))
if p1 is minimal then

goto Auxiliary 2 in pseudocode block 8
else if p3 is minimal {Minimum is at f(1)} then

goto Auxiliary 3 in pseudocode block 8
end if

else
set p1 = (0.75 · sin2 2θguess, f(0.75 · sin2 2θguess)); p2 = (sin2 2θguess, f(sin2 2θguess)) ;
set p3 = (1.25 · sin2 2θguess, f(1.25 · sin2 2θguess))
if p1 is minimal then

goto Auxiliary 2 in pseudocode block 8
else if p3 is minimal then

goto Auxiliary 4 in pseudocode block 8
end if

end if
run minimiser in pseudocode block 4 with (sin2 2θ, χ2)1,2,3 = p1,2,3
set sin2 2θmin = sin2 2θ2; χ2

min = χ2
2

exit routine

Pseudocode block 7 Find local minimum of χ2(sin2 2θ), optimised for gallium
Input variables: ∆m2; sin2 2θguess {Usually sin2 2θguess is the previous minimum.}
let f(x) = χ2

pseudo(∆m2, x)
set p1 = (0, f(0)); p3 = (1, f(1)) {Now we are sensitive to the whole interval, rather
than focusing around a small part of it.}
if sin2 2θguess < 0.1 then set p2 = (0.1, f(0.1))
else if sin2 2θguess > 0.9 then set p2 = (0.9, f(0.9))
else set p2 = (sin2 2θguess, f(sin2 2θguess))
if p1 is minimal then goto Auxiliary 1 in pseudocode block 8
else if p3 is minimal then goto Auxiliary 4 in pseudocode block 8
run minimiser in pseudocode block 4 with (sin2 2θ, χ2)1,2,3 = p1,2,3
set sin2 2θmin = sin2 2θ2; χ2

min = χ2
2

exit routine
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Pseudocode block 8 Auxiliary pseudocode for pseudocode block 6
Auxiliary 1
while p1 is minimal do

if sin2 2θ2 < 10−4 then set sin2 2θmin = 0; χ2
min = f(0) and exit routine

else set p3 = p2; sin2 2θ2 = 0.1 · sin2 2θ2; χ2
2 = f (sin2 2θ2)

end while
Auxiliary 2
while p1 is minimal do

if sin2 2θ1 < 0.01 then
if χ2

1 < f(0) then set p2 = p1; p1 = (0, f(0)) and exit loop
else set sin2 2θmin = 0; χ2

min = f(0) and exit routine
end if
set p3 = p2; p2 = p1; sin2 2θ1 = sin2 2θ1/2; χ2

1 = f (sin2 2θ1)
end while
Auxiliary 3
while p3 is minimal do

if sin2 2θ2 > 0.99 then set sin2 2θmin = 1; χ2
min = f(1) and exit routine

else set p1 = p2; sin2 2θ2 = (1 + sin2 2θ2)/2; χ2
2 = f (sin2 2θ2)

end while
Auxiliary 4
while p3 is minimal do

if sin2 2θ3 > 0.99 then
if χ2

3 < f(1) then set p2 = p3; p3 = (1, f(1)) and exit loop
else set sin2 2θmin = 1; χ2

min = f(1) and exit routine
end if
set p1 = p2; p2 = p3; sin2 2θ3 = (1 + sin2 2θ3)/2; χ2

3 = f (sin2 2θ3)
end while

As already mentioned in section 4.3.2, I do a coarse scan of the ∆m2 grid, searching
for local minima of the function

F (xi) = min
sin2 2θ

χ2
(
xi, sin2 2θ

)
. (A.56)

The coarse step size is determined heuristically, depending on the dataset, and on the
grid size ∆m2

i −∆m2
i−1, which increases as the order of magnitude ⌊log10 ∆m2⌋ increases.

Once a local minimum is found, a routine similar to pseudocode block 4 is implemented,
but for the function F ( · ) where the x values are discretised. The only differences are:

1. the boundaries of the x values are set by the extent of the grid, x1 and xN ;

2. parabolic interpolation and bisection has to map to the nearest grid point xi;

3. the routine must end when the interval has minimal extent ∆m2
1,2,3 = xi−1, xi, xi+1.

In the vicinity of the pseudo parameters
(
∆m2

pseudo, sin2 2θpseudo
)
, I also do a minimisation

scan as it is likely that the best-fit point lies nearby it.
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Appendix B

Formulae for neutrino dipole at
DUNE

B.1 Cross Section
I took the cross-section expressions from [353, App. A] and [354, eqs. (4,5)],

dσ(ναe
− → ν4e

−)
dQ2 = αQED

(
|dα|

GeV−1

)2 [ 2
Q2 − 1

meEν

+ M2
4

2meQ2E2
ν

×(
Er −me − 2Eν +M2

4
Er −me

Q2

)]
× 3.894 · 10−28 cm2/nucleon

≡ X(me);

(B.1)

dσnucleon

dQ2 = dσ(ναp → ν4p)
dQ2 + dσ(ναn → ν4n)

dQ2 ; (B.2)

dσ(ναp/n → ν4p/n)
dQ2 = F 2

1,p/nX
(
mp/n

)
+ αQED

(
|dα|

GeV−1

)2

µ2
N×F p/n

2
Eν

2 [
2(2Eν − Er)2 − 2Q2 + M2

4
mp/n

(
Er − 4Eν + M2

4
Er

)]

×3.894 · 10−28 cm2/nucleon;

(B.3)

dσ(ναN → ν4N)
dQ2 = 2Z2

A
F 2

nucleusX(MN) (B.4)

where Er ≡ Q2

2MT
is the recoil energy and µN ≡ e

2mp
≈ 0.16/GeV is the nuclear magneton.

Note that I have normalised the cross sections per nucleon, not nucleus. For the incoherent
cross sections, I have assumed there is, on average, one proton and one neutron for every
two nucleons. Also note that compared to other publications, I use d ≡ 2µtr. The
difference here is in the definition of the magnetic moment in the Lagrangian.The relevant
form factors are

F p
1 =

(
1 + η

1 + η
ap

)
GD, F n

1 = η

1 + η
anGD, F

p/n
2 = ap/n

1 + η
GD, (B.5)
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where

GD =
(

1 + Q2

0.71 GeV2

)−2

, ap = µp − 1, an = µn, η ≡ Q2

4M2
T

, (B.6)

for the nucleon, where ap/n the anomalous magnetic moments of the proton/neutron:
1.793 and −1.913, respectively; note how F n

1 is suppressed by η, unlike F p
1 , as the neutron

only interacts magnetically. And finally the form factor for the nucleus is

Fnucleus = 3j1(QRnucleus)
QRnucleus

exp
[
−(Qs)2

2

]
,

Rnucleus =
√(

1.23 3
√
A− 0.6

)2
+ 7

3(πa)2 − 5s2 fm, where

s = 0.9 fm and a = 0.52 fm

(B.7)

taken from [381, §4]. These expressions have been reproduced from appendix A of our
publication [332], which I wrote.

B.2 Reconstruction Efficiency
The reconstruction efficiency for photons at DUNE, εγ, can be found in [369, fig. 4.26].
If we assume the distribution of the photon momenta in the rest frame on the HNL is
isotropic, then we can boost this into the lab frame to obtain the function pγ(θ0; p4,M4),
where θ0 is the polar angle of the photon momentum in the rest frame. The reconstruction
efficiency is, then,

ε(p4,M4) =
∫ 2π

0
εγ [pγ(θ0; p4,M4)] dθ0 . (B.8)

Note that it is possible for the assumption of isotropy in the rest frame to be violated
[382, 383], however it requires the HNL to have non-zero electric and magnetic dipole
moments, and it does not significantly affect our results, so we neglect its effect. A
piecewise polynomial interpolation was used to parameterise the efficiency, which was
provided to me by Jing-Yu Zhu.

B.3 Penalty term
I use a parameterisation of Π( · ):

Π (λ) =



(I0 − I1)
∣∣∣∣∣1 − λ

λ0

∣∣∣∣∣
2.33

+ I1;
λ ∈ [0, λ0]
λ0 = 1.58

I0 = Π(0)
I1 = Π(λ0)

5∑
k=0

ckλ
k; λ ∈ [λ0, 10]

1 −
[
C0 − C1e

− 1
(λ−10)

]
λ− 1
λ2 ; λ ∈ [10,∞];

C0 = 0.705
C1 = 0.042

(B.9)

c5,4,3,2,1,0 = −8.71 · 10−6, 2.98 · 10−4,−3.86 · 10−3,

2.22 · 10−2,−3.49 · 10−2, 8.23 · 10−1.
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The asymptotic form of Π(λ → ∞) is determined by evaluating eq. (5.27) in the limit of
large γℓ0. In this limit, the denominator is estimated to be one, and we restrict the integral
to near x = 1, as the integrand has non-negligible contributions only when the exponent is
small. The exponent (eq. (5.23)) can be expanded around x = 1−δx, assuming cos2 φs ≫
2δx sin2 φs, which yields δx/ cosφs for cosφs > 0, and 2| cosφs| + δx cos(2φs)/ cosφs for
cosφs < 0. Since we want the exponent to be small, namely ∝ δx, we ignore the
latter case. Therefore, the integrand has the form (1 − δx)e−a·δx, where a = λ/ cosφs.
Approximating cosφs ∼ 1 and integrating from δxmin = 0 to δxmax = 10/λ,

Π(λ → ∞) = 1 − const ·λ− 1
λ2 , (B.10)

where const is determined by the averaging over cos2 φs. Technically, the coefficient of λ
should vary slightly from one, but the difference is negligible. I approximated const as
an arbitrary slowly-varying constant. In fig. B.1 I show a plot of Π( · ).

10−3 10−2 10−1 100 101 102

λ

0.80

0.85

0.90

0.95

1.00

Π
(λ

)

Figure B.1: A plot of Π(λ).
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