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Abstract

In industrial processes (Industry 4.0) and other �elds in our lives like the energy or health

sector, the con�dentiality of data becomes increasingly important. In order to protect

con�dential information on critical systems, it is crucial to be able to determine whether

compromisation of a critical system is possible. Therefore, relevant attack paths in di�erent

access-control contexts need to be found in order to compare di�erent architectures

regarding this security aspect. In order to minimize costs, it is important to already

consider potential attack paths in the design phase of the software architecture. There are

already approaches considering the topic of attack path generation. However, often they

do not consider software architecture modeling, which renders the analysis for the purpose

of component-based software modeling more di�cult. Moreover, other approaches do not

consider both vulnerabilities and access control mechanisms. For that purpose, this thesis

presents an approach for �nding all potential attack paths in a software architecture model

considering access control and vulnerabilities. This helps software architects and security

experts to �nd relevant and critical attack paths to a critical element more easily. However,

all attack paths are often to many, so the approach presented here introduces and utilizes

meaningful �lter criteria based on wide-spread vulnerability classi�cation standards. The

purpose of these �lters is to enable the software architect to restrict the resulting attack

paths on only relevant ones. The evaluation for the thesis indicated that the model and

the implemented approach can be mostly used in small scenarios derived from real-world

case studies. Furthermore, it also indicated an e�ort reduction from 35% up to 80% for the

software architect. However, a larger scalability of the approach could not be shown due

to an exponential runtime behavior of the implemented analysis. However, mitigating the

scalability issue is one of the reasons for the usage of �lter criteria.
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Zusammenfassung

In industriellen Prozessen (Industrie 4.0) und anderen Bereichen unseres Lebens wie dem

Energie- oder Gesundheitssektor wird die Vertraulichkeit von Daten zunehmend wich-

tig. Um vertrauliche Informationen auf kritischen Systemen zu schützen, ist es wichtig

zu bestimmen ob die Kompromittierung dieser kritischen Systeme möglich ist. Deshalb

müssen relevante Angri�spfade in verschiedenen Zugri�skontrollkontexten gefunden

werden, um verschiedene Softwarearchitekturen bezüglich dieses Sicherheitsaspekts zu

vergleichen. Um Kosten zu sparen, ist es wichtig potentielle Angri�spfade bereits in der

Entwurfsphase der Softwarearchitektur zu betrachten. Es gibt bereits Ansätze, die das

Thema der Angri�spfadgenerierung adressieren. Allerdings betrachten sie es oft nicht

auf einer Softwarearchitekturmodellierungsebene, was die Analyse für den Zweck der

komponentenbasierten Softwaremodellierung erschwert. Des Weiteren, betrachten an-

dere Ansätze oft nicht sowohl Verwundbarkeiten als auch Zugri�skontrollmechanismen.

Deshalb stellt diese Arbeit einen Ansatz vor, um alle potentiellen Angri�spfade in einem

Softwarearchitekturmodell bezüglich Verwundbarkeiten und Zugri�skontrolle zu �nden.

Das hilft Softwarearchitekten und Sicherheitsexperten relevante und kritische Angri�s-

pfade zu einem kritischen Element leichter zu �nden. Jedoch sind alle Angri�spfade oft zu

viele, sodass der hier präsentierte Ansatz sinnvolle Filterkriterien einführt und verwendet,

welche auf verbreiteten Verwundbarkeitsklassi�kationsstandarts beruhen. Der Grund für

diese Filter ist es, dem Softwarearchitekt zu ermöglichen, die resultierenden Angri�spfade

auf die relevanten zu begrenzen. Die Evaluation der Arbeit deutete an, dass das verwendete

Modell und der implementierte Ansatz in kleinen Szenarien, die aus Fallstudien aus der

echten Welt extrahiert wurden, meistens angewendet werden kann. Außerdem deutete die

Evaluation ebenfalls eine Aufwandsreduktion von 35% bis zu 80% für den Softwarearchi-

tekt an. Allerdings konnte keine größere Skalierbarkeit des Ansatzes gezeigt werden, da

ein exponentielles Laufzeitverhalten festgestellt wurde. Allerdings ist das Abmildern des

Skalierbarkeitsproblem einer der Hauptgründe für das Verwenden der Filterkriterien.
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1 Introduction

As digitization progresses further in several areas in our lives like industrial processes

(Industry 4.0), the energy or health sector, the con�dentiality of data-exchange becomes

increasingly important.

1.1 Motivation

The reason for this is that malicious attackers may steal sensitive, con�dential or even

secret data stored on systems. For that purpose, it is critical to be able to determine relevant

attack paths in di�erent contexts in order to compare di�erent architectures regarding

this security aspect. In order to minimize costs, it is important to already consider this

analysis in the design phase. During the attack path search, the implemented approach

considers the interplay of vulnerabilities and access control. An attack path is the path

an attacker utilizes to reach a certain target point from an entry point in the system.

The overall domain of this thesis is con�dentiality in component-model-based software

architectures. The bene�t of generating attack paths is enabling the software architect

to compare di�erent architectures with each other regarding the aspect of potentially

threatened critical architectural elements.

State-of-the-art access control strategies like Attribute-based access control (ABAC) [25]

are often utilized in order to increase the context-based con�dentiality. However, ABAC

alone hamper attack propagation analysis due to complex access control policies, render-

ing the estimation of con�dentiality properties more di�cult [7]. Especially, �nding the

propagation of an attacker through the system is a rather complicated task. However,

a very important one because a stronger density of connections often means more pos-

sible vulnerabilities and attack vectors. Therefore, it is crucial to consider the question

of attack paths to a critical element. However, a manual search for these paths is often

time-consuming, di�cult and error-prone on complex architectural models. There are

already approaches considering the topic of attack path generation described in Chapter 3.

However, they do not consider a speci�c critical element in a software architecture model

or the interplay of vulnerabilities in the system and access control mechanisms. Hence,

the goal of this thesis is to design and implement an automatic attack path generation

considering access control and vulnerabilities. Since the approach utilizes software archi-

tecture models, the analysis helps software architects and security experts to �nd relevant

and critical attack paths to a critical element more easily.
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1 Introduction

1.2 Approach and Running Example

This thesis presents an approach for an attack path search to a critical software architectural

element taking account of the interplay of vulnerabilities and access control. Moreover, the

approach enables the software architect to utilize di�erent �lter criteria like complexity of

the attack or di�erent attack vectors in order to restrict the resulting attack paths to the

ones that are more crucial for the purpose of analyzing con�dentiality.

Figure 1.1: Component and Deployment View of the Running Example.

Figure 1.1 depicts the component and deployment view of the running example inspired

by a scenario from Al-Ali et al. [3] and adapted by Walter et al. [55]. The scenario takes

place in an environment with two companies (A and B) in an Industry 4.0 setting. The

external maintenance service organization B repairs machines of manufacturing company

A. The access control to that machine is secured with login credentials for the machine, de-

picted by the white lock. Furthermore, the system contains a Terminal as an user interface,

deployed on a TerminalServer. Additionally, there are the ProductionDataStorage for

storing the data of the machine and the ProductStorage for storing drafts. These compo-

nents are deployed on the StorageServer. All the beforementioned devices and other de-

vices inside company A are connected to the local network. Moreover, the TerminalServer

is vulnerable to a low complexity vulnerability enabling an attacker to obtain the login

credentials, depicted by the gold-colored key. In this example, these credentials are needed

for the admin account of the terminal and the StorageServer as depicted by the gold-

colored lock. Some of the other devices have only high complexity vulnerabilities or no
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1.3 Contribution

vulnerabilities at all. Starting from the terminal, an attack path search with a �lter for

only low complexity attacks �nds a path consisting of the terminal server and the storage

server and the respective contained components as resulting compromised elements.

1.3 Contribution

The contribution of this thesis consists of two parts. The �rst one is the extension and

adaption of an attacker metamodel in order to enable the analysis approach to a critical

element. The attacker can also be customized with various �lter criteria.

The second contribution of the thesis consists of the design and implementation of

an approach for an automatic attack path search using the aforementioned �lter criteria.

These are there in order to enable software architects and security experts to focus upon

relevant and critical attack paths. Moreover, the automatic search of these paths can

diminish the e�ort in comparison to a manual examination on more complex architectural

models.

1.4 Structure

This thesis is structured as follows. Chapter 2 describes the foundational matters for

the thesis. It is followed by Chapter 3 that explains state-of-the-art approaches that are

not directly used in the approach of the thesis. Thereafter, Chapter 4 gives an overview

about the approach. The next two Chapters 5 and 6 describe respectively the metamodel

adaptions and the actual analysis approach in more detail. Moreover, there is also Chapter

7 describing an overview over the implementation of the prototype tool for the approach

presented in this thesis. Finally, the Chapters 8 and 9 describe respectively the evaluation

and the conclusion and future work of this thesis. The evaluation considered 3 case studies

and a research example in order to evaluate accuracy, e�ort reduction and scalability of

the approach.
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2 Foundation

This chapter presents the foundation of the approach presented in this thesis. Section

2.1 presents the classi�cation schema for vulnerabilities used in this thesis. Thereafter,

the Palladio Component Model (PCM) [5] is presented in Section 2.2 because it is the

foundation for the metamodel on which the automatic search for attack paths will be

based. In Section 2.3 attribute based access control (ABAC) is described. The last Section

2.4 explains the attacker metamodel that is the foundation of the analysis designed and

implemented in this thesis.

2.1 Classification of Vulnerabilities

In order to be able to classify vulnerabilities, this section explains the Common Weakness
Enumeration (CWE) [16] and the Common Vulnerabilities and Exposures (CVE) [14] classes.

CVE vulnerabilities represent concrete attacks like a vulnerability in the courier-authlib
library (CVE-2021-28374) depicted in the running example. In contrast, CWE vulnerabilities

can also be used represent whole attack categories like the usage of weak passwords. All

vulnerabilities have an unique ID in order to render a clear identi�cation possible. Addi-

tionally, CWE IDs can also be hierarchical giving the CWE vulnerabilities the capability of

constituting a categorization of attacks. The CVSS is used in order to assign a scoring from

0.0 to 10.0 to a vulnerability. The scoring assumes the attacker to have already discovered

the vulnerability and represents the criticality of the exploit. There are databases that

are used for storing information about vulnerabilities and how they are classi�ed. One

such database is the widely utilized National Vulnerability Database (NVD) [36] containing

classi�cations for many known vulnerabilities.

Moreover, the classi�cation information from the Common Vulnerability Scoring System
(CVSS) [15] is also used in order to be able to rate vulnerabilities. Inside the CVSS

speci�cation [11], there are two categories of classi�cations of vulnerabilities that are

especially interesting for the approach presented in this thesis. The �rst one is the category

Exploitability with values for Attack Vector, Attack Complexity, Privileges Required and User
Interaction. The second category is the Impact category with values for Con�dentiality
Impact, Integrity Impact and Availability Impact.

Table 2.1 depicts the values for all the beforementioned classi�cation types. For the

Attack Vector exploitability rating, the lowest value is when the attacker is somewhere in

the network (N). The second lowest rating, the attacker needs to be in the same network

(A). The Local (L) rating requires the attacker to be accessing the target system locally

or remotely (e.g. via ssh). The maximum value is P where the attacker needs to be

physically manipulating the vulnerable component. The attack complexity can be low for

an attack that does not require special access conditions, or high if specialized preparations
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2 Foundation

Classi�cation Values from Minimum to Maximum

Attack Vector Network (N), Adjacent Network (A), Local (L), Physical (P)

Attack Complexity Low, High

Privileges Required None, Low, High

User Interaction None, Required

Con�dentiality Impact None, Low, High

Integrity Impact None, Low, High

Availability Impact None, Low, High

Table 2.1: Overview of the Categories in the CVSS [11].

are necessary such as for a man-in-the-middle attack. The required privileges rating

can be using no privileges to using default user privileges (Low) upto requiring high

administrative privileges. The last exploitability rating is about whether user interaction

is required or not. The impact values range from none to high equating to no impact up to

a maximum impact, loosing all con�dentiality or integrity or availability of the a�ected

component. For instance, according to the NVD [36] the vulnerability CVE-2021-28374
depicted in the running example has a Low attack complexity, an attack vector value

Network and it requires no privileges and no user interaction leading to values Low for

these two exploitability metrics. The impact values consist of a High con�dentiality impact

value but no integrity and availabilty impact, rendering these values to the value of None.
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2.2 Palladio Component Model

2.2 Palladio Component Model

This section brie�y describes the Palladio Component Model (PCM) [40]. The PCM is

part of the Palladio simulator for software architecture. It is able to predict several quality

properties of software like performance and reliability. Initially, it has been developed by

Karlsruhe Institute of Technology (KIT), FZI Research Center for Information Technology,

and the University of Paderborn.

The Palladio Component Model (PCM) is a detailed EMF-based (Eclipse Modeling

Framework based) metamodel for examining component-based software [4]. The model

consists of components, interfaces and connectors between those and can be used for

describing software and simulating performance, reliability and con�dentiality aspects of

the system [40, 45].

Figure 2.1: Composition of a Palladio Component Model Instance (Inspired by [5]).

Figure 2.1 depicts the four submodels of the PCM. First, the Repository Model represents

the available components and interfaces. The so-called Service E�ect Speci�cations (SEFFs)

are there in order to represent inner behavior of components as an abstraction from the

actual control �ow. Second, the System Model describes the combination of components

de�ned in the repository, i.e. the structure of the software architecture system. It de�nes

Assembly Contexts representing instantiated repository components in the system. Third,

the Allocation Model represents the allocation of assembly contexts to di�erent Resource
Containers. These represent the devices on which assembly contexts can be allocated. The

contexts for this allocation are called Allocation Contexts. Moreover, the allocation model

also de�nes a Resource Environment describing the connection of resource containers to

Linking Resources. These represent links in a network, connecting di�erent devices with

each other. A resource container may be connected to no, one or several linking resources.

Fourth, there is the Usage Model in order to represent the users’ engagement with the

system [40].
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2 Foundation

2.3 ABAC - Attribute Based Access Control

This section describes the foundation of attribute based access control (ABAC). It uses

attributes in the form of name-value pairs and gives these attributes to di�erent objects and

subjects. These attributes are then used in access control policies to determine whether

access should be granted [26].

A wide-spread implementation of the ABAC concept is the eXtensible Access Control
Markup Language (XACML). The basic structures of the XACML policy language model

for modeling access control are depicted in Figure 2.2. A PolicySet consists of zero or

more Policy instances. Each policy contains one or more Rules combined using a Rule

Combining Algorithm whereas policies are combined with a Policy Combining Algorithm.

Matches are included inside AllOfs that are themselves contained inside AnyOfs. An AllOf

behaves like a logical AND and an AnyOf behaves like a logical OR. The Target consists of

an arbitrary amount of AnyOfs and decides about whether the rule can be applied. If it can

and the optional Condition is met, then the Effect takes place. Moreover, there is also

the concept of Obligations in XACML accomplished by the policy enforcement point (PEP)

that is described later in this Section [49].

Figure 2.2: XACML Policy Language Model [49].

A request in the XACML framework consists of attributes from the categories subject,
resource, environment and action. As Figure 2.3 depicts, the Policy Administration Point
(PAP) controls the Policy Repository used by the Policy Decision Point (PDP). In order to

compute the access control decision, the PDP also utilizes the Policy Information Point
which exists for loading attributes. Furthermore, there is the Policy Enforcement Point
(PEP) actually enforcing the access control decision on the subject and object. The PEP

uses the PDP in order to decide whether access should be granted [49].
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2.4 Attack Metamodel

Figure 2.3: XACML Access Control Decision Structure [25, p. 15].

2.4 Attack Metamodel

This section describes the metamodel [54] that is the basis for the automatic attack path

generation considered in this thesis.

In order to model access control used in the attack propagation the metamodel provides

a context-based modeling of access control policies. The policies are used for determining

whether a certain system element can be successfully attacked by an attacker. The concept

of the metamodel is based on using context-based description of access control policies

[8] in the form of ABAC (see Section 2.3).

Figure 2.4: Simpli�ed Metamodel for Attackers and System Vulnerabilities [55].

Additionally, there is also an attacker model contained in the metamodel [54]. As

depicted in Figure 2.4, there is a metamodel for an attacker’s capabilities and the system

vulnerabilities. Every attacker has a list of UsageSpecifications being used as login

9



2 Foundation

details in the system. Moreover, there is also for each attacker a list of CompromisedData

representing the potentially stolen data. An attacker can compromise the following

Palladio elements: ResourceContainers, LinkingResources, and AssemblyContexts by the

access credentials or by exploiting a Vulnerability in an Attack. The used classi�cation

system for vulnerabilities (CVSS) were already described in Section 2.1 and are modeled as

Vulnerability, AttackCategory and Attack subclasses. Each vulnerability has a unique

id represented by the CVEID and CWEID classes. Since a CWEID represents a category of

attacks, it may also contain other IDs of vulnerability IDs. Both ID classes are subclasses of

the class representing the attack category. Only the CVSS scoring values inside the metric

are reused, not the actual scoring. For the purpose of describing exploitability, these are

attack vector, attack complexity, required privileges and necessary user interaction. In

order to describe the impact, the used metrics are con�dentiality, integrity and availability.

The scoring values are described in Table 2.1. There are also further model elements.

First, an AttackVector that describes a location in the system, i.e. local or somewhere

inside the network. Second, the Privileges enum that describes necessary login details,

this means either None, the one for the element itself (Low) or a Special set of required

credentials (speci�ed by: requiredCredentials). Third, the ConfidentialityImpact that

represents the impact regarding the leaked data: None means no data is leaked, Low means

only directly a�ected data is leaked, High means all data is leaked. Fourth, there is a

gainedPrivilege set describing the potentially newly gained privileges by exploiting the

vulnerability. Lastly, there is a boolean �ag in order to model whether an attacker can

use the vulnerability to take over and compromise an element entirely, for example a

compromised component can then be completely controlled by the attacker. Most parts of

the system are reusable in other systems, only the credentials must be system-speci�cally

de�ned.

10



3 State of the Art

This chapter brie�y addresses the state of the art for managing access control in Section

3.1. Thereafter, model-driven con�dentiality analysis and alternatives to the classi�cation

system are described in Section 3.2. Finally, di�erent attacker modeling approaches are

discussed in Section 3.3.

3.1 Access Control

This section describes di�erent approaches than ABAC (see Section 2.3) for access control

utilized in the �eld.

Two access control methods often used are Discretionary Access Control (DAC) [53] and

Mandatory Access Control (MAC) [17]. DAC and MAC associate access rights directly to

speci�c users and MAC additionally requires a passphrase. However, there are also other

state-of-the-art access control strategies which are described in the following paragraphs.

Role-based access control (RBAC) extends a simple user-based access control system

with roles. This allows the system administrator to de�ne user groups. Each user group

consists of di�erent users that have the same role in the system and can therefore be

granted the same access rights to perform certain operations. Furthermore, RBAC also

allows the de�nition of role hierarchies in order to make sub-groups possible. RBAC

also ensures that all users have exactly the access rights de�ned by their roles [19]. For

example SecureUML [32] uses this access control strategy (see Section 3.2). One problem

with RBAC is its �xed roles that are too static [56] to be able to react to dynamic context

changes often seen in cloud services. At the moment, the approach presented by this thesis

considers a subset of ABAC. This subset is close to role-based access control. However,

there is also the considering of the interplay of vulnerabilities and access control in the

attack path search presented in this thesis.

11



3 State of the Art

Figure 3.1: Structure of Di�erent Context Classes in OrBAC [13].

Organization-based access control (OrBAC) is a context-based access control strategy

that de�nes users and organizations as subjects and roles and contexts for de�ning access

control policies. At the time OrBAC was presented, the context were yet uncategorized

[28]. However, a classi�cation of contexts was added later to the approach. As it can be

seen in Figure 3.1, there are subclasses for temporal, spatial, user-declared, prerequisite and

provisional contexts. The temporal contexts represent a certain time and spatial context

a certain location de�ned by e.g. the user’s IP address. Furthermore, the prerequisite

context provides a possibility for granting access only if a given precondition is met. The

provisional context is de�ned by an action that was triggered by an earlier executed action.

At last, the user-declared context is used to enable users to de�ne further purposes [13].

OrBAC is an alternative to ABAC also de�ning abstract elements like attribute but OrBAC

accomplishes this in a hierarchical way (as can be seen in the �gure) instead of a �at

structure like attributes in ABAC [6].

12



3.2 Model-driven Con�dentiality Analysis

3.2 Model-driven Confidentiality Analysis

As Nguyen et al. [35] state, there are many state-of-the-art techniques with the topic of

model-driven con�dentiality analysis. In this section, a selection of these approaches are

described and brie�y compared to the approach of this thesis.

UMLSec is an UML extension for modeling con�dentiality concerns on the control path.

It ensures secure communication and uses RBAC. Four security requirements are part of

the UMLSec extension. These are fair exchange, con�dentiality, secure information �ow

and a secure communication link. A fair exchange avoid cheating by a communication

partner. Con�dentiality means, that only a receiver that is allowed to obtaining a con�-

dential information may receive this information. Secure information �ow ensures that

no information is leaked, not even partially. A secure communication link represents a

link that is secure regarding a given attacker model [27].

SecureUML is also an UML extension allowing modelers to de�ne permissions, roles and

users in an UML diagram. For that purpose, annotations are used. These annotations can

be added to any UML element. So, every element may be used as an resource containing

security information. An automatic generation of access control policies is also possible.

The SecureUML approach can also be seen as an extension of a RBAC system with OCL in

order to add more dynamic ways of de�ning accesss control policies [32].

The following paragraphs describe the con�dentiality analyses concerning information

�ow security. Katlakov et al. present the IFlow [29] approach. It enables model developers

to automatically generate code and a formal model from an UML model of an application

where a secure information �ow is relevant. The generated code may be adapted but can

always be checked against the formal model so that the user is not obliged to trust the

programmer.

Tuma et al. [51] present an approach based on a Security Data Flow Diagram (SecDFD).

The idea of this approach is to add security-relevant information to �ow diagrams using

labels. Each node represents a part of code which takes some input and generates output

from it. The nodes have di�erent types with di�erent contracts. There are Join, Copy,

Encrypt and Decrypt contracts. The contracts result respective in the highest of the input,

the same, a low and the same labels on the output as on the input �ow.

Gerking and Schubert [21] present another approach for information �ow security.

It is component-based and can be used to re�ne a macro-level security model to more

�ne-grained micro-level policies used in microservice architectures.

Kramer et al. [31] present an approach that models con�dentiality information on a

component-based architecture. The approach also provides and attacker intrusion analysis.

For the purpose of representing the attack, the approach uses con�dentiality de�nitions

and adversary models. It can then infer whether con�dential information was leaked. All

this happens on a high-level architectural modeling level, which improves the usability

and reusability of certain components in other systems.

As opposed to the approach presented in this thesis, the approaches mentioned in

this section do not examine the attacker’s propagation with respect to the interplay of

vulnerabilities and access control in the system.
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3 State of the Art

3.3 Attacker Modeling

Schneier [44] presented the general idea of attack trees already in 1999. Mauw and

Oostdijk [34] provided the formal foundation of attack trees and their semantics and

analysis. This paragraph brie�y presents the idea and semantics of attack trees. The most

important reasons for using attack modeling in general and attack trees especially are

recognizing attack goals and probable attacks in order to be able to protect a system more

e�ciently. Attack trees typify attacks and defenses in a tree-like structure. The root node

is the attacker’s goal whereas each leaf node represents an attack. It is also possible to

combine goals with an AND so that both goals must be ful�lled or an OR so that one of the

goals must be ful�lled. Moreover, there is also the possibility to enhance the nodes with

boolean values like possible or impossible. Continuous node values are also possible [44].

Nevertheless, attack trees only model the actions an attacker performs but they do not

consider interconnection of di�erent systems or even attacker propagation. An example

for an approach using an extended version of attack trees is presented by Gadyatskaya et

al. [20] who provide a modeling approach for attack-defense trees. This means, trees that

not only model the attacker but also the defender. In their approach they also use timed

automata in order to be able to apply model checking.

Kordy et al. [30] present in their survey DAG-based approaches for modeling attack

and defense scenarios. There are two di�erent classi�cation models for attack and defense

modeling. The �rst dimension represents whether an approach models only the attack,

only the defense or both aspects. The second dimension represents whether an approach

models only static aspects or also sequential time-based or order-based information. An

example for static attack modeling is an attack tree. In order to model more complex

attacks and defenses, di�erent more complex DAGs are used like cryptographic DAGs or

Bayesian networks for security. The rest of this section explains approaches directly based

on DAGs.

This paragraph is about the Cyber Security Modeling Language (CySeMoL) [48]. It is

a modeling language for describing computer systems in order to be able to calculate

probabilities for successful attacks. The CySeMoL approach is based upon probabilistic
relational models (PRM) de�ning attributes being discrete random variables and reference

slots which represent relationships to other classes. The PRM is used in order to be able to

compute the di�erent probabilities of certain element properties inside an architectural

instance. CySeMoL utilizes a PRM framework for obtaining probabilities of di�erent attack

path. Thereby, it does not only cover attacks against but also defenses of the system.

However, there are some limitations to the defense modeling due to the construction of

the PRM which should be as complete as possible whilst remaining usable for an average

security manager. For instance, the PRM has limitations concerning threats against the

con�dentiality.

Polatidis et al. [39] present an approach for generating attack graphs in order to predict

future attacks. The attack graphs used in this paper represent every path that can be used

by attackers to increase the amount of privileges they have. Before the approach can be

applied, four activities must be done. First, the user identi�es starting points from where the

attack begins. Second, the user identi�es target points by selecting critical target systems.

Third, attacker pro�les need to be identi�ed in order to de�ne the attacker’s potential.
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Last, the approach generates vulnerability chains in order to enable the possibility for

attacks with multiple steps. The actual attack prediction consists of a �ltering method

using parameters and the sorting of a certain amount of nearest neighbors. However,

the �ltering only considers the vulnerabilities whereas the approach presented here also

contains a �lter about access control and one for de�ning a maximum path length.

Aksu et al. [1] present approaches for rule-based and machine learning-employed

models used for automatic attack graph generation. The general approach utilizes a graph

containing pairs of a device and the associated privilege information as nodes. These

information can be used as pre- and postconditions, which eases the generation of the

attack graph. The database used for obtaining possible vulnerabilities is the NVD [36]

already described in Section 2.1. However, this database does not provide the necessary

information for deriving the privileges directly, so the approach presents two kinds of

automatic generation of privileges, namely a rule-based one and a machine-learning-based

one.

Yuan et al. [57] propose an approach based on attack graphs using a graph database

storing the network’s topological information. Then, the approach utilizes the graph

database for generating a BFS-based algorithm in order to create all attack paths that are

possible. The structure of the graph database and the used query language facilitates a fast

implementation of the approach. However, the relatively new concept of graph databases

has some disadvantages regarding usage and security in comparison to the more time-

tested relational databases. In contrast to the approach of this thesis, the approach does

not consider access control or more precisely the interplay of vulnerabilities and access

control, e.g. obtaining credentials for other architectural elements by using a vulnerability.

Deloglos et al. [18] present an attacker modeling approach for cyber-physical systems
(CPS) in order to make a prediction about the attacker’s probability of succeeding. For

that purpose, the approach utilizes a simulation of common attack behaviors derived from

vulnerability databases. Additionally to the already described classi�cation databases in

Section 2.1, the approach also uses the Common Attack Pattern Enumeration and Classi�ca-
tion (CAPEC) [10] and the Common Platform Enumeration (CPE) [12] database. In order to

model the attack propagation, an attack state is used containing knowledge about the CPS

nodes. Once a node is compromised the attack can continue with attacking adjacent nodes.

Thus, the approach considers the attack propagation but it takes place in a cyber-physical

system and not in a more general component-based system on an architectural level.

Moreover, the approach does not consider access control an hence the e�ects of this aspect

on the attack propagation are not examined.

To sum up, the di�erent other state-of-the-art approaches do not consider the interplay

of access control and vulnerabilities or they are not set in an model-based environment.

The approaches that use �ltering mechanisms do not consider �ltering based on initial

access control information.
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4 Concept Overview

This chapter presents an overview of the concept of this Master’s Thesis. The analysis takes

place in the software architecture modeling environment Palladio [40] and the respective

model PCM and the Architectural Attack Propagation Metamodel [54]. The purpose of the

analysis is the �nding of all relevant attack paths to a �xed critical architectural element,

such as an assembly context or a resource container.

The attack path search considers all paths to a certain critical element. At the moment, it

is possible to use a resource container or an assembly contexts as a critical element. There

is always exactly one critical element during one search. The attacker inside the analysis

references the critical element. Moreover, the analysis can make use of �lter criteria for

which there is an example in this chapter and more detailed descriptions in the following

chapters.

Figure 4.1: Running Example.

Figure 4.1 depicts the running example described in the introduction. If one considers

the assembly ProductionDataStorage as the critical assembly, the attack path search �nds

paths to that critical assembly. One of these paths is the one using the vulnerability
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annotated to the TerminalServer gaining the login credentials that can be reused in this

example for the StorageServer to �nally also the critical assembly due to its allocation on

the newly compromised resource container. Without the usage of �lters, there are also

other attack paths including ones utilizing the high vulnerability.

Figure 4.2: Overview of the Attack Path Search.

Figure 4.2 depicts an overview of the approach. For the purpose of starting the analysis,

it is necessary that the software architect de�nes critical elements and annotates vulnera-

bilities and necessary credentials to the architectural model. Optionally, �lter criteria can

be added. The resulting output consists of the �tting found attack paths.

For instance, in the context of the running example (see Figure 4.1) one could decide to

only search for low complexity attacks, which would result in �nding only the relevant

path to the StorageServer. The other devices without low complexity vulnerabilities do

not need to be regarded in this example. For the purpose of �nding the attack path, the

simulated attacker would utilize the vulnerability on the terminal server in order to obtain

the login credentials. In the next step, the attacker could try to use the login credentials on

other devices and is able to compromise the storage server as well due to the same login

data on it. Other vulnerabilities would not be looked at because of the �lter criterion of

only low complexity vulnerabilities.

Since a naive brute-force approach of �nding all possible attack paths does not scale

and is often not really meaningful, a selection based on certain �lter criteria can take place

in order to render the attack path generation useful. For that purpose, �lter criteria are

derived from properties of vulnerabilities, credentials and attack paths. In order to achieve

this, the metamodel needs to be adapted as the following Chapter 5 describe in more detail.

The Chapter 6 describes the concept of the attack path search.

The attack surface of a system is de�ned as the possible ways an attacker can gain

access to the system in order to cause damage [33]. The approach presented in this thesis

is called Surface Attacker Analysis because it exists in order to �nd all possible attack paths

to a critical element. This can be considered an approach in order to minimize the attack

surface to that critical element when the critical element is seen as the �nal exit point and

all components as possible entry points.
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5 Surface Attacker Modeling

This chapter describes additions and adaptions to the metamodel. In order to be able to

perform a successful attack path search matching the requirements of the considered use

cases and in order to add more extensibility in the future, there need to be adaptions to

the metamodel. As a basis for selecting relevant paths there needs to be an extension

to the metamodel describing the target elements considered critical in a given scenario.

Especially, the �ltering is important for more complex future usages of the metamodel

and the analysis. Moreover, there is also an addition of the CVSS ratings (see Section 2.1)

that are not present in the former metamodel.

Figure 5.1: Additions and Adaptions of the Attacker Metamodel.
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The class diagram in Figure 5.1 depicts the additions and adaptions to the metamodel.

The light-gray classes are the added metamodel elements and the dark-gray class is an

adapted one. The classes shown in white already existed in the base attacker model

described in Section 2.4.

Additionally to the Attacker, there needs to be given a SurfaceAttacker as input.

It references a critical element which is contained inside a DefaultSystemIntegration.

Moreover, it contains di�erent �lter criteria which are explained in more detail in the next

paragraph. The output model references the di�erent AttackPaths that contain a path,

i.e. a list of SystemIntegrations in order to also output the causes of compromisation of

the elements on the path. A SystemIntegration exists for integrating vulnerabilities into

the system and enabling outputting of architectural elements. For the purpose of having

an easier overview over the used vulnerabilities and the initially necessary credentials

each AttackPath also stores a list of vulnerabilities and credentials (UsageSpecification).

The pcmIntegration package contains the di�erent SystemIntegrations. The base class

was adapted in order to enable copying SystemIntegration instances and getting the

Identifier of the cause, i.e. the Vulnerability or UsageSpecification. Furthermore, the

metamodel now also contains a CredentialSystemIntegration for annotating necessary

credentials to model elements and integrating usage of credentials in the attack path.

Another important aspect to the surface attack analysis is the usage of �lter criteria. Each

FilterCriterion is explained here in detail. The abstract base class de�nes two operations:

the isElementFiltered and the isFilteringEarly operation, both returning a boolean

value. The �rst operation determines whether an element is �ltered, considering the actual

element inside a SystemIntegration, the SurfaceAttacker itself and the temporary attack

path at the moment of the �ltering. The second operation defaults to true and determines

whether the �ltering can take place early in the analysis or only at the end. At the moment

only the InitialCredentialFilterCriterion can only be used at the end. It is used to

prohibit credentials to be used in the beginning, for example the root credentials. Another

important �lter criterion is the MaximumPathLengthFilterCriterion that �lters a path if

its length is higher than the positive maximumPathLength value. If this value is negative,

no path is �ltered. It is important that the path contains also the attack start. This means

that attack path length is one element longer than just the path itself. For the purpose of

restricting the usable vulnerabilities, there is an abstract VulnerabilityFilterCriterion

with subclasses for �ltering with respect to impact and exploitability of the vulnerability.

The base class de�nes another operation named isVulnerabilityInRange determining

whether the vulnerability is in range. A VulnerabilitySystemIntegration is �ltered

i� its vulnerability is not in range. For the ImpactVulnerabilityFilterCriterion the

minimum value for con�dentiality, integrity and availability are given and each vul-

nerability with higher values in each category is considered in range. Whereas for the

ExploitabilityVulnerabilityFilterCriterion the maximum value for the attack vector,

the attack complexity, the privileges and the user interaction is set in the �lter. Each vul-

nerability with lower values in all categories is considered in range. For an exact overview

over the di�erent values for classifying vulnerabilities and which ones are lower and

higher, see Section 2.1.
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The di�erent added vulnerability �lter criteria are added using a wide-spread standard

CVSS [11] so that a software architect can easily rely on a standardized approach when

modeling instances of the metamodel. It is also possible during the modeling process that

open databases are used in order to determine classi�cations for vulnerabilities (see Section

2.1). The �lter criterion for initial credentials is used in order to prohibit certain initial

credentials for the attacker to have because it is unrealistic that an attacker has for example

root access from beginning on. The maximum path length �lter is added in order to restrict

the search to shorter paths, which is meaningful in order to prohibit too complex paths

that are considered not realistic because they are too long. The �lter criteria metamodel is

designed to be extensible in the future with further �lter criteria. Moreover, the usage of

all the elements in the metamodel is possible at design time because the software architect

can know all the relevant information or use wide-spread online databases, for instance to

look up the concrete exploitability and impact values for vulnerabilities.
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6 Design of the Surface Attacker Analysis

This chapter describes how the surface attacker analysis is designed. First, a conceptual

overview about the general idea of the surface attacker analysis is presented. Thereafter,

there are detailed descriptions of the most important aspects of the analysis.

The analysis makes use of a directed graph in order to represent the architecture model

in a more abstract way. The reason for this is that it allows the usage of considering each

architectural element as a node independently of its concrete type. The following example

is used to describe how the graph is structured and how the attack paths are found inside

it.

Figure 6.1: Example of a Graph and a Resulting Attack Path from the Analysis for the

Running Example.
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In the upper half, Figure 6.1 depicts an important part of the graph generated by the

analysis for the running example. Moreover, it depicts one of the output paths in the lower

half of the �gure.

The graph has nodes representing the di�erent architectural elements like resource

containers and assembly contexts. The edges of the graph represent the possible ways an

attack can take place. The attack may come from other resource container in the same

network (i.e. connected to the same linking resource) or from local or remote (allocated in

connected resource containers inside the same network) assembly contexts. The edges are

directed against the direction of the attack and can store information about the causes of

the attack. The reason for the direction to be against the attack direction is that the graph

has only one root node, namely the critical element, and is therefore more easily to traverse.

In the example depicted here, the critical element StorageServer node is connected to

the resource container nodes MachineControler, other device, TerminalServer and the

node for the local assembly context ProductStorage allocated on the critical element.

Moreover, the TerminalServer has a self-edge representing the attack with the vulner-

ability CVE-2021-28374. There are further connections in the graph which are left out

here so that the �gure remains well-arranged. Additionally, there is an edge with a cause

compromising the storage server with the gained login credentials. The analysis adds this

cause after having gained the credentials due to the attack to the terminal server using the

vulnerability.

The lower half of Figure 6.1 depicts an attack path resulting from the graph. It is

the attack path already described in the last paragraph inside the graph. The attack

path consists of the TerminalServer as the attack start, compromising itself with the

vulnerability, thereby gaining the login credentials. These are then used in the next step

in order to take over the StorageServer which is the critical element in this scenario.

The causes are stored in the output model using the respective SystemIntegrations, i.e.

a CredentialSystemIntegration for credentials or a VulnerabilitySystemIntegration

for vulnerabilities. Furthermore, there are two more lists in the attack path output to the

output model. The �rst one is the initially necessary credentials of which there are none

in this example because no credentials are initially needed for this attack. It outputs the

credentials that are necessary at the beginning of the attack path in order to successfully

use this path. The second one is the list storing the vulnerabilities used on the attack path.

In this example this list only contains the vulnerability CVE-2021-28374 because only this

vulnerability is used on the path. This list helps the software architect to see the utilized

vulnerabilities at �rst sight.

24



Algorithm 1 Overview of the Main Procedure BDA 5 024�CC02:4A�=0;~B8B ()
Require: correct PCM, context and attacker models with a SurfaceAttacker containing a

critical element 42A8C and a correct attacker, [optionally �lter criteria]

Ensure: output model containing all attack paths ;8BC?0CℎB to 42A8C
1: 6 : �A0?ℎ,8Cℎ�'>>C�;4<4=C storing the attack status of elements

2: 6← 6 + 42A8C ⊲ add the critical element as the root of the graph

3: ;8BC4;4<4=C ← ∅
4: 2ℎ0=643 ← CAD4

5: while 2ℎ0=643 do
6: D=E8B8C�;; (6) ⊲ Set all nodes in the graph unvisited

7: 4 ← 42A8C
8: 2ℎ0=643 ← 5 0;B4

9: while 4 ≠ =D;; do
10: 2 ← =D;;

11: if ¬8B�8;C4A43 (4) then
12: ;8BC2>==42C43 ← 64C*=E8B8C43�>==42C43�;4<4=CB (4)
13: ;8BC4;4<4=C ← ;8BC4;4<4=C + ;8BC2>==42C43
14: for all 42 ∈ ;8BC2>==42C43 do
15: 2ℎ0=643 ← 2ℎ0=643 ∨ 0CC02:� 5 *=5 8;C4A43 (6, 42, 4)
16: end for
17: ;8BC4;4<4=C ≠ ∅ → (2 ← ;8BC4;4<4=C .A4<>E4 (0))
18: end if
19: E8B8C (4)
20: 4 ← 2

21: end while
22: end while
23: ;8BC?0CℎB ← 5 8=3�;;�CC02:%0CℎB (6)
24: return ;8BC?0CℎB

The pseudo-code Algorithm 1 describes an overview of the surface attacker analysis.

The approach utilizes a directed graph with a root element that is the critical element.

The attacker tries to propagate towards that critical element until no further attacks can

be accomplished on the way to this element (see line 5). The graph is built during the

attacker propagation by adding edges, silently adding also nodes to the graph. In each

iteration the nodes in the graph are visited again as one can see in line 6. Each iteration

searches the graph determined by the input models starting from the critical element

(see line 7). The element e can be �ltered if at least one of the �lter criteria is �ltering

early and the element is �ltered by this �lter criterion. An attack and further propagation

does not take place in this case (see line 11). However, if the element is not �ltered the

unvisited connected elements, i.e. all elements allocated on it or connected via connectors,

are added at the end of the list of elements next to be visited (see line 13). These unvisited

connected elements are used as attack sources for attacking e (see lines 14-16). Note that

the or inside the formula in line 15 is non-short-circuiting, this is the case for all following

pseudo-codes. The next element is determined as the �rst element of the element list if
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6 Design of the Surface Attacker Analysis

available (see line 17). If none is available, the inner iteration ends. If the propagation

does not yield any changes anymore, the outer iteration ends and in the end the attack

paths are found using the built graph g (see line 23). The pseudo-code algorithms for the

procedures attackIfUnfiltered and findAllAttackPaths are described in the following

paragraphs in more detail.

Algorithm 2 The Procedure 0CC02:� 5 *=5 8;C4A43 (6, 4B>DA24, 4C0A64C )
Require: 6 : �A0?ℎ,8Cℎ�'>>C�;4<4=C

Require: 4B>DA24 : �;4<4=C

Require: 4C0A64C : �;4<4=C

Ensure: ¬8B�8;C4A43 (4B>DA24) → 4364C0A64C,B>DA24 added or updated to / in 6 with informa-

tion about the attack if it is possible

1: 2ℎ0=643 ← 5 0;B4

2: if ¬8B�8;C4A43 (4B>DA24) then
3: for all 0CC02:�0=3;4A ∈ {+D;=4A018;8C~�0=3;4A,�>=C4GC�0=3;4A } do
4: 2ℎ0=643 ← 2ℎ0=643 ∨ 0CC02:�0=3;4A .0CC02: (6, 4B>DA24, 4C0A64C )
5: end for
6: end if
7: return 2ℎ0=643

The pseudo-code Algorithm 2 describes the attackIfUnfiltered procedure in more

detail. The procedure exists for the purpose of attacking an element from an attack

source element and in doing so adding an edge from the attack target to the attack source

containing the cause of the attack. Note that the edge is reversed in respect to the attack

paths generated in the end. This is implemented this way because it eases the traversal of

the graph which has in this case exactly one root element, namely the critical element for

the analysis. As one can see in line 2 an attack only takes place if the source element is

not �ltered. If the source element is not �ltered there are two possible ways of attacking it.

These methods are by using a vulnerability or by using credentials obtained by a former

attack on the path. For each of this methods there is an attack handler that takes care of

the actual attack (see lines 3-5). The procedure of the actual attack is explained in more

detail in the next paragraph.
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Algorithm 3 The Procedure 0CC02:�0=3;4A .0CC02: (6, 4B>DA24, 4C0A64C )
Require: 6 : �A0?ℎ,8Cℎ�'>>C�;4<4=C

Require: 4B>DA24 : �;4<4=C

Require: 4C0A64C : �;4<4=C

Ensure: 4364C0A64C,B>DA24 added or updated to / in 6 with information about the attack if it

is possible

1: 2ℎ0=643 ← 5 0;B4

2: 4364C0A64C,B>DA24 ← 64C$A�A40C4�364 (6, C0A64C, B>DA24)
3: ⊲ Edge from target element to source element since graph is inverted

4: 0CC02:�0DB4 ← ED;=4A018;8C~ ∨ 2A434=C80;B ∨ =D;;
5: ⊲ for respective handler or =D;; i� no attack is possible

6: if 0CC02:�0DB4 ≠ =D;; ∧ ¬4364C0A64C,B>DA24 .2>=C08=B (0CC02:�0DB4) then
7: 4364C0A64C,B>DA24 .033�0DB4 (0CC02:�0DB4)
8: 2ℎ0=643 ← CAD4

9: end if
10: 6← 6 + 4364C0A64C,B>DA24
11: ⊲ add or update edge to graph, silently adding potentially missing node for source

element

12: return 2ℎ0=643

The pseudo-code Algorithm 3 describes the attack procedure of the di�erent attack

handlers. As one can see in line 2 and 3, an edge from the target to the source is taken

from the graph or created if it is not yet contained in the graph. Thereafter, the attack

cause is identi�ed. It can be a vulnerability or a usage of credentials formerly obtained

contingent upon the attack handler type (see lines 4-5). If there is a new attack cause found

it is added to the edge and the changed value is set to true (see lines 6-9). Afterwards,

the edge is added to the graph if not existing or updated otherwise (see lines 10-11). The

approach di�erentiates an attack in order to steal credentials form a complete taking over

of a node. There are three possibilities of taking over a node. The �rst one takes place if

a vulnerability is used that enables the attacker to take over the annotated element, i.e.

the vulnerability must have the takeOver �ag set. The second one uses already gained

credentials to take over a node annotated with a CredentialSystemIntegration allowing

the takeover with the gained credentials. The third one is the taking over of allocated

assembly contexts if the containing resource container is already taken over. Attacks that

do not take over a node but only steal credentials from a node are stored anyway inside the

attack cause in order to be able to use them later on the attack path. Finally, the changed
value is returned in order to inform the caller whether a new attack actually took place.
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Algorithm 4 The Procedure 5 8=3�;;�CC02:%0CℎB (6)
Require: 6 : �A0?ℎ,8Cℎ�'>>C�;4<4=C

Require: 6 already �lled with nodes and edges from the analysis and critical element 42A8C
Ensure: all attack paths ;8BC?0CℎB to 42A8C

1: D=E8B8C�;; (6) ⊲ Set all nodes in the graph unvisited

2: ;8BC?0CℎB ← ∅
3: for all 4 ∈ 6 do
4: 0CC02:�;4<4=C, 8Cℎ�=8C80;;~#424BB0A~�A434=C80;B (4) ⊲ attack all nodes in graph

with initially necessary credentials

5: end for
6: for all 4 ∈ 6.=>34�C4A01;4 () do ⊲ sorted by edge/attack relevancy

7: if ¬8B+ 8B8C43 (4) ∧ 8B�CC02:43 (4) then
8: for all 2 ∈ 2ℎ8;3A4=(4) do
9: if e.isAttackedBy(c) then

10: ;8BC=4F�CC02:%0CℎB ← all �tting add. paths incl. the new attack edge excl.

paths that are �ltered out by the maximum path length �lter

11: ;8BC?0CℎB ← ;8BC?0CℎB + ;8BC=4F�CC02:%0CℎB
12: end if
13: end for
14: end if
15: E8B8C (4)
16: end for
17: ;8BC?0CℎB ← 5 8;C4A'4BD;C (;8BC?0CℎB)
18: return ;8BC?0CℎB

The pseudo-code Algorithm 4 describes the findAllAttackPaths procedure mentioned

in the overview pseudo-code. This procedure has the purpose of �nding the attack paths in

the attack graph and handle the propagation with initially necessary credentials. Therefore,

to begin with, all elements in the graph are tried to be attacked with initially necessary

credentials before actually creating the attack paths (see lines 3-5). Thereafter, the nodes

are iterated in an order determined by �rstly closeness to the critical element and secondly

attack relevancy of the respective attack edge, i.e. reverse edge (see line 6). An attack is

considered more relevant if there are more attack causes stored in the respective edge.

Of course, new paths are only added if the considered element is not yet visited and if

it is actually attacked, i.e. it is either taken over or at least one of the credentials are

extracted (see line 7). In this case, all children c of the element e attacking the element e

are considered as new attack edges (c -> e) yielding new attack paths (see line 9). For

this edge, all paths �tting with this edge in the beginning are added to the list of possible

paths (see l.10-11). An path and an edge are �tting when the resulting path is not too long

and the �rst element of the path matches the element e, i.e. the target of the attack edge.

In the end, there are some �lters applied for �ltering out duplicate and invalid paths which

may be created by the algorithm (see line 17). Finally, the list of distinct valid paths are

returned to the caller (see line 18) for the purpose of writing them to the output model.
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The implementation of the concept is an Eclipse plugin written in Java 11 because it is a

widespread language and compatible with the EMF metamodel. During the process of the

implementation, the version control system git was used. Moreover, the test framework

JUnit5 was used in order to test the functional correctness of the implementation. The

�nal version of the metamodel and the implementation of the analysis prototype tool is

available here
1
. The following paragraphs of this chapter describe an overview over the

architecture of the implementation of the prototype tool implemented for the approach.

Figure 7.1: Overview of the Architecture of the Implemented Prototype Tool.

1https://doi.org/10.5281/zenodo.6475682
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7 Implementation

Figure 7.1 depicts an overview of the architecture of the implementation of the ap-

proach. The class structure is similar to the tool implemented by Walter et al. [55]. The

di�erence is that an internal attack graph is used already described in the chapters before.

There are Change classes for representing attack propagations coming from the respec-

tive architectural elements, i.e. an AssemblyContextChange for assembly contexts and

ResourceContainerChange for resource containers. Each of these classes has subclasses

for context and vulnerability propagations in order to add extensibility in the future.

Every implemented propagation change implements a propagation interface, in the case

of assembly contexts an AssemblyContextPropagation. For handling the actual attacks,

there are attack handlers for di�erent architectural elements and subclasses of them for

the di�erent attack kinds, namely attacks via contexts (credentials) and via vulnerabilities.

The changes and the attack handlers utilize the graph package depicted in the lower

half of the class diagram. It contains the AttackGraph that consists of nodes and edges.

Internally, the Google Common Graph2
framework is used. The nodes use instances of

AttackStatusNodeContent as content in order to ease comparison of nodes. It implements

the NodeContent interface, binding the generic parameter to be an Entity. Moreover, it

has a PCMElementType that stores the type of the wrapped entity. As already described

in Chapter 6, the edges contain the information about the attack. These information are

stored in the causes set inside the AttackStatusEdgeContent. For the purpose of creating

the attack paths, instances of AttackStatusEdge are used to create an AttackPathSurface

instance that can then be used in order to create the actual output AttackPaths for the

output model.

2https://guava.dev/releases/30.1-jre/api/docs/com/google/common/graph/package-summary.html
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8 Evaluation

This Chapter describes the outline of the design of the evaluation in the form of a Goal-
Question-Metric-Plan (GQM-Plan) [9] in Section 8.1. Thereafter, the design and use cases

for the evaluation are described in Section 8.2. The following Section 8.3 presents the

results of the evaluation. Moreover, the threats to validity are discussed in Section 8.4 and

the limitations of the approach are discussed in Section 8.5.

8.1 Evaluation GQM-Plan

In this Section the GQM-Plan of the evaluation for accuracy, e�ort reduction and scalability

are presented. Hence, there are these evaluation goals:

• EG-1: Evaluate the accuracy of the attack path search in order to consider functional

correctness.

• EG-2: Evaluate the e�ort reduction of the automatic attack path search to a manual

search.

• EG-3: Evaluate the scalability of the implemented approach.

In order to evaluate the accuracy of the approach, scenarios from the Subsection 8.2 are

used to answer the following questions.

(Q-1.1) How accurate is the attack path search able to accurately �nd a critical attack

path that could be found with a manual analysis?

(M-1.1 & M-1-2) As a metric the widespread precision and recall (PR & RC) [50] metric

is used, consisting of the formulae:

%' =
)%

)% + �%

'� =
)%

'%�

where TP is the number of true positives and FP the one of false positives. RPA is the

total number of expected positives. Here, a true positive means if an actual attack path

is also found by the automatic generation. A false positive is a wrongly detected alleged

attack path, that is not really one, wrongly found by the automatic generation. In order to

determine which paths are considered a true positive, the expected paths are described

in the next Section 8.2. The PR & RC metrics are used due to their widespread usage

for evaluating the accuracy in other similar investigations such as [41], [23] and [3]. For

(M-1.1) and (M-1.2) higher values are better.
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For the evaluation scenarios from the Section 8.2 are used to answer the following

question:

(Q-2.1) How much does the attack path search reduce the e�ort in comparison to a

manual analysis?

In order to evaluate the e�ort reduction of the approach, the e�ort needs to be de�ned

independently of the architect’s experience. Walter et al. [55] present such an evaluation

metric. Hence, this metric is used for evaluating e�ort reduction. In this metric, the e�ort

is de�ned as the number of elements that need to be considered. Each element the analysis

already detected inside an attack paths saves e�ort for the software architect. Moreover,

for the purpose of calculating another propagation step, the software architect is also

obliged to check each connected elements to the a�ected elements on the attack path.

(M-2.1) As a �rst metric for determining the amount of reduced e�ort (�'1), the evalu-

ation examines the ratio of a�ected elements (40) in each path to the number of connected

elements (42 ):

�'1 =
40

40 + 42
(M-2.2) As a second metric for determining the amount of reduced e�ort (�'2), the

evaluation examines the ratio of a�ected elements (40) in each path to all elements (=):

�'2 = 1 − 40
=

For (M-2.1) and (M-2.2) higher values are better.

The scalability is evaluated using a larger scenario in order to estimate the runtime

requirements of the implemented approach. Therefore, this questions is considered:

(Q-3.1) How does the runtime behavior of the implementation of the approach develeop

with respect to the number of resource containers?

(Q-3.2) How does the runtime behavior of the implementation of the approach develeop

with respect to the number of assembly contexts?

(M-3.1) In order to evaluate the time scalability of the approach, the time (C ) is considered

in relation to the number of architectural elements (=) as the following formula shows.

(C8<4 =
C

=

The architectural elements considered are assembly contexts and resource containers.

The number of assembly contexts is used due to the component-based nature of the

metamodel and assembly contexts are instantiated components. The resource containers

are considered because assembly contexts are often allocated on many di�erent resource

containers. Therefore, scaling a model with respect to resource containers is also an

important question to investigate. The metric (M-3.1) is used for answering both questions

and lower value are better.
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8.2 Evaluation Design

This Section presents the design of the evaluation including scenarios from case studies

used during the evaluation process. However, some of the following scenarios cannot be

directly used and therefore need to be adapted in order to enable modeling the scenario

in Palladio. The evaluation uses three case studies and one research example. These

are described here in detail. The research example is based on the TravelPlanner [45]

architecture for the purpose of evaluating some of the added functionality not evaluated in

the other scenarios. The other three scenarios are taken from real-world attacks described

in case studies. As van den Berghe et al. [52] describe case studies are superior to using

illustrative examples because it evaluates an approach in a real-world environment. This

is helpful because it indicates usability and accuracy in reality and not only in constructed

examples.

The �rst case study is a cloud storage scenario described by Alhebaishi et. al [2]. The

study describes an overview of the considered architecture and also some attack paths

described as text. The paper also presents an attack path analysis. However, it does not

consider �lter criteria and is not located in a software architecture modeling environment.

In order to enable the evaluation of the implemented approach, the architecture was

partially modeled in Palladio and relevant attack paths were determined. Only paths

relevant for the scope of this thesis are considered. The attack paths are extracted manually

from the information presented in the case studies. The case studies describe paths the

attacker probably used in order to propagate through the architecture. These paths are

then expected to be found by the analysis.

Figure 8.1 depicts the architecture of the cloud system as it is modeled for the use cases

presented here. The network architecture consists of three network layers represented by

the three network clouds, i.e. linking resources, with connections to several devices. The

virtual machines are modeled as components and the actual servers are represented by

resource containers. The networks are connected with network bridges represented as

resource containers connected to two linking resources. There are three devices connected

to the �rst network layer namely the users, the cloud tenant and an “OpenStack” authenti-

cation server. The second network layer consists of servers for ftp, http, an application VM

and a database VM. Layer three contains a management device for the storage device and

the storage device itself. For the purpose of analyzing di�erent attack paths the database

VM server and the storage device are modeled in more detail. The database VM server

contains a hypervisor and a source VM with vulnerabilities. The DB-VM is connected to the

source VM and the target VM. The vulnerabilities in the scenarios are CVE-2012-3515 and

CVE-2013-4344 which enable stealing the credentials for the server. The next paragraphs

describe the di�erent expected attack paths in the cloud storage attack scenario.

The �rst two paths are described in the example 1 in the original case study. The �rst

considered path is the path from the data base virtual machine (DB-VM) via the hypervisor

using CVE-2013-4344 taking over the DB VM Server with the gained hypervisor creden-

tials. In the next step the target VM can then be compromised. The second path uses

CVE-2012-3515 on the Source VM to gain the credentials in order to compromise �rst the

DB VM Server and the Target VM afterwards.
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Figure 8.1: Overview over the Modeled Architecture of the Cloud Storage System.

Example 2 describes a path taking over the storage device with root credentials attacking

from the Nexus 7000 management machine additionally also to the contained Stored VMs

assembly as a variation in the critical element.

Path 1 is adapted because compromising linking resources was not implemented. That is

why, there are now two paths considered inside the evaluation. The �rst one is an instance

of path 3 described in the next paragraph and example 1. Thereafter, the stored VM data

is obtained using the getData interface. The second one is a path from the Bridge 2-3 to

the the storage device. Since compromising linking resources was not implemented, it is

assumed that this bridge is already compromised. The path represents then the attacking

of the storage device starting from the Bridge 2-3 instead of attacking the stored VMs

from the hypervisor.

Path 3 is also slightly adapted and splitted into two path searches in order to compromise

the Application VM Server explicitly as an critical element. The �rst path compromises

the http VM Server and then the application server, the second one starts from the appli-

cation server and attacks the ftp VM Server. The reason for this adaption is because both

elements themselves can be considered critical element, so a software architect would also

examine paths to both elements.

Path 4 simply consists of getting root for the ftp VM Server. With the use of example

1 and calling getData via FTP from the stored VMs the critical data of the VMs can be

obtained.
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For the following two case studies there already were Palladio models from the analysis

of Walter et al. [55]. I adapted the models in order to �t the metamodel changes and enable

the attack surface analysis to run.

The second case study takes place in an Ukrainian power distribution company in 2015.

Booz Allen Hamilton and E-ISAC reviewed the attack in reports [22, 46]. The attack used

the BE3 malware in order to steal credentials that were then used to attack the corporate

network and the industrial control systems (ICS) network.

Figure 8.2: Overview over the Modeled Architecture of the Power Grid Corporate and ICS

Network.

Figure 8.2 depicts the architecture modeled in order to analyze relevant attack paths in

this scenario. The corporate network contains six modeled resource containers and a VPN

bridge to the ICS network. The servers are a DomainControllerServer, two workstations,

a CallCenter, a DataCenter and an external VPN bridge. Each resource container contains

an application modeled as a component. The di�erent resource containers are secured with

a credentials of the BackofficeAdmin. This credential and also other relevant credentials

can be obtained using the vulnerability CVE-2014-1761. Moreover, there is the ICS Network

containing the document management server (DMS Server) and the respective client (

DMSClientApplication). The application resource container is secured with credentials of

the ICSUser. Several elements can be considered as a critical element in di�erent attack

path searches. There are 4 paths considered for analysis and one path with two variants.

The next paragraphs describe these expected attack paths in the power grid attack scenario.
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The �rst attack path considers the storage application as the critical element and has

two variants. The �rst step of the attack path consists of attacking the assembly allocated

on the Workstation02 from the Workstation02 resource container with the annotated

vulnerability. The �rst variant does not use the stolen credentials on the Workstation02

itself whereas the second variant also compromises the workstation. Thereafter, the stolen

credentials are used in order to compromise the DataCenter and with that the attacker

compromises the allocated StorageApplication too. The reason for the two variants is

that the attacker can either also attack the workstation or do not use the credentials on it.

The variant described by the case study is the one where the credentials are also used on

the workstation itself. However, the other variant is also important because it puts the

focus rather on the actual attacking of the critical element rather then the compromised

elements on the path.

The second attack path considers the call-center application as the critical element

whereas the third path �nally attacks the external VPN bridge. These paths di�er from

the �rst path by the resource containers and assemblies that are attacked in the end of

the path. The case study also describes and depicts these paths too, so they need to be

considered here as well.

The fourth attack path models the propagation of the attack to the ICS network. In

this path, the attacker �rst uses the vulnerability attached to the assembly allocated on

Workstation02 in order to steal the ICSUser credentials and the ones for the VPNBridge

to the ICS network. Thereafter, the attacker propagates to the DMSClientApplication

resource container, compromising it with the stolen credentials. The taking over of the

container also triggers the taking over of the allocated assembly that is considered the

critical element in this path because it can be used to compromise data inside the DMS

via calling the respective service. This path is also described in the case study and it is

especially important because the attacker also propagates here across boundaries of a

network via a network bridge.
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The third case study considers the Target Data Breach which happened in the end of

2013. The scenario is based on the case studies by Shu et al. [47] and Plachkinova et al.

[38]. The scenarios considered in this use case contain CWE vulnerabilities related to

weak and default passwords and improper privilege management. These vulnerabilities

can be used to compromise the elements to which they are annotated. For future analyses

there are also explicitly modeled credentials.

Figure 8.3: Overview over the Modeled Architecture of the Target Business Network.

Figure 8.3 depicts the part of the Target business network necessary for modeling attack

paths extracted from the case study. The Intranet contains three Point of Sale (PoS) ter-

minals (POS) and the StorageServer hosting an ftp server. On each POS, a POSComponent

is deployed. The �rst and the second PoS component use a default password, the third

one a weak password CWE vulnerability. The SupplierMachine and the BusinessServer

are connected via the internet. However, the BusinessServiceComponent has a vulner-

ability of the category improper privilege management and the server is also connected

to the intranet and especially to the FTPComponent allocated on the StorageServer via

an assembly connector. Furthermore, the business service component has an assembly

connection to the ExternalSupplier assembly allocated on the SupplierMachine. The

following paragraphs describe the expected attack paths to the business service component

and the ftp component in order to extract critical data from it.
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The �rst attack path consists of the use of the vulnerability annotated to the business

service component coming from the external supplier. The initial breach into the system

of Target came from an attacker that compromised a machine of the external supplier

Fazio. This path represents the initial entry path of the attacker described into the in-

tranet of Target. That is why, this path is part of the expected path when examining the

BusinessServiceComponent as a critical element. It is crucial to examine this element as a

critical element because it is the connection to the internet and requires a service from an

external supplier on the internet. Therefore, it is a possible entry point to the intranet in

order to perform more complex attacks inside it.

The variants of the second attack path consider attacks from the business service com-

ponents via the PoS components to the ftp component using the respective vulnerabilities.

Since there are three PoS components, there are three attack paths considered as variants

of this path. Once, the business service component is compromised, the attacker spreads

inside the intranet network as described in the case study. The reason for examining this

path is that it depicts approaches of attacking the critical storage element once the attacker

has initial access to an assembly on a resource inside the network.

The third attack path is also examined as three variants, one for each PoS terminal. The

attack path starts from the external supplier assembly and then attacks the business service

component in order to compromise the POS component and �nally also the FTP component.

These paths represent the complete attack path to the critical storage component, starting

from the external supplier. The reason for this is that this path represents the approach

the actual attacker took described in the case study.
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The fourth case study is the research example TravelPlanner [45] used for evaluating the

functionality of adding �lter criteria to the surface attacker and also di�erent combinations

of �lter criteria.

Figure 8.4: Overview of the TravelPlanner Architecture.

Figure 8.4 shows the architecture of the TravelPlanner case study. It consists of a Mobile

device, a travel agency server (TA Server) and an Airline Server with the depicted

assembly contexts and connectors. Furthermore, the TA Server is considered the critical

element. The TravelAgency has a vulnerability of the category weak password that enables

the attacker to obtain the root credentials for the TA Server, depicted by the golden key.

v Filter / Filter > Root Credentials usable Root credentials unusable

Vulnerabilities usable no �lters, max. path length 2/3/∞ max. path length 2/3/∞
Vulnerabilities unusable (avail. impact) max. path length 2/3/∞ all paths �ltered

Vulnerabilities unusable (attack vector) max. path length 2/3/∞ all paths �ltered

Table 8.1: The Evaluation Design Overview for the Evaluation of the Filter Criteria.

In order to evaluate the additional functionality, not investigated in the other case studies

used for the evaluation, combinations of �lter criteria are investigated on the TravelPlanner
system annotated with vulnerabilities and credentials. Table 8.1 shows the overview about

the evaluated combinations. There are 15 scenarios for the combinations of root credentials

usable or unusable combined with vulnerabilities usable and unusable due to availability

impact or attack vector. For each combination there are three scenarios, respectively with

path length �lters set to 2,3 or deactivated (∞) except for the cases in which all paths

are already �ltered out by the vulnerability and credential �lters. Additionally, there is a

scenario with no �lters activated.
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Fur the purpose of evaluating e�ort reduction, the values necessary for applying the

metric described in the Section 8.1 are obtained by counting the elements that ful�ll the

described properties. The evaluation uses the aforementioned models extracted from the

�rst three case studies described in this section. An a�ected element is an element on an

examined attack path. A connected element to an a�ected element, is an allocated assembly

context or a resource container in the same network in the case of a resource container

element. In the case of an assembly context, only assemblies connected to the assembly via

an assembly connector and the resource container the assembly is allocated on is considered

a connected element. For counting all elements, only assembly contexts and resource

containers are considered because linking resources were not directly incorporated in the

analysis. Furthermore, only ina�ected elements are counted as connected elements and

no element is counted multiple times.

In order to evaluate scalability, a synthetic example is used and more attackable resource

containers and assembly contexts are added to it automatically and then the analysis is

run. It is then possible to see how the runtime behavior of the analysis is developing for

larger models with more attackable elements. For the purpose of simulating larger models,

a simple model is adapted by copying an element. The simple model consists of a initial

resource container containing a resource container selectable as the critical element and

an initial assembly context with a provided interface allocated on it, also selectable as

a critical element. Moreover, another resource container middle is linked via a linking

resource with the initial resource container. An assembly context named middle is allocated

on the resource container with the same name. That assembly context has a provided

and a required interface in order to be able to be chained. In the case of the assembly

scalability evaluation the assemblies are chained, made attackable by a test vulnerability

and then allocated with pooled resource containers, i.e. on di�erent resource containers

connected to the same linking resource. For resource container scalability evaluation, there

was also another kind of chaining, namely chaining the resource containers with a new

linking resource for each added resource container. For both kinds of evaluation, there

are measurements for running the complete analysis and for running only the respective

propagation, i.e. resource to resource propagation or assembly to assembly propagation.

Since paths longer than the number of elements are not meaningful a path length �lter of

this length is added.

The results were obtained with a warmup value of two and ten repetitions. Except

for the evaluation of 20 added elements, there were only two repetitions for time rea-

sons. The resulting time value was then determined as the average of the measured time

values for the number of repetitions. The system used for the scalability evaluation is

the notebook NHx0DB,DE running Linux Ubuntu 20.04.1LTS with an Intel(R) Core(TM)

i5-10300H CPU @ 2.50GHz CPU with 4 cores and 8 threads and 32 GB SD-4 RAM. The Java

and Eclipse versions are Java 11 (openjdk 11.0.14.1 2022-02-08) and Eclipse Modeling

Tools 2021-12 (4.22.0).
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8.3 Evaluation Results and Discussion

This section presents and discusses the results of the evaluation of the analysis. First, there

will be a summary of the results for the accuracy evaluation and a discussion about these

results. Second, the results of the evaluation for e�ort reduction are described. Finally, the

scalability of the approach is examined and discussed.

Table 8.2 show the results for accuracy the implemented prototype for the presented

approach achieved. It summarizes the results for each case studies. The �rst column shows

the di�erent case studies and one last summary row for the whole accuracy evaluation.

The TP column shows the true positives, i.e. the correctly found paths. The next column

RPA shows the expected positives, i.e. the paths expected by the respective reference

set. The fourth column shows the false positives. The next column depicts the result

for precision and the last column for recall. All path variants were considered in the

evaluation. All expected paths were found except one path variant in the Target Breach

case study, probably due to an issue related to node order in attack path �nding. Overall,

the accuracy evaluation resulted in a precision (PR) value of 1.0 and a recall (RC) value of

0.97.

Case Study TP RPA FP Result PR Result RC

Cloud Storage 8 8 0 1.0 1.0

Power Grid 5 5 0 1.0 1.0

Target Breach 6 7 0 1.0 0.86

Travel Planner 15 15 0 1.0 1.0

Q-1.1 34 35 0 1.0 0.97

Table 8.2: The Accuracy Evaluation Result for the Implemented Prototype Tool.

The next investigated evaluation question is about the e�ort reduction. Table 8.3 depicts

the results of this evaluation. The �rst column shows the di�erent examined paths. The

next three columns depict the values necessary for the calculation of the metrics and the

last two columns show the results of the metrics. Although, the �rst metric with an overall

result value of 34% is not very high, the second metric of the e�ort reduction evaluation

achieved a value of 80%. This means that e�ort can be rather reduced in relation to the

complete number of elements rather than the number of connected elements for a�ected

elements on the path. Since the approach searches a path to a critical element this is an

acceptable result because it is more important to reduce the e�ort of manually checking all

model elements than to reduce it with respect to connected elements to a�ected elements

on the path. However, also for this metric an e�ort reduction of 34% can be achieved

regarding the considered scenarios.
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Case Study and Path 40 42 = �'1 �'2

Cloud Storage example 1.1 4 8 16 0.33 0.75

Cloud Storage example 1.2 3 9 16 0.25 0.81

Cloud Storage example 2 container 2 2 16 0.50 0.87

Cloud Storage example 2 assembly 3 1 16 0.75 0.81

Cloud Storage path 1.2 3 7 16 0.30 0.81

Cloud Storage path 3.1 2 5 16 0.29 0.87

Cloud Storage path 3.2 2 5 16 0.29 0.87

Cloud Storage path 4 1 5 16 0.16 0.94

Power Grid path 1a 4 5 18 0.44 0.78

Power Grid path 1b 4 5 18 0.44 0.78

Power Grid path 2 4 5 18 0.44 0.78

Power Grid path 3 4 5 18 0.44 0.78

Power Grid path 4 5 9 18 0.36 0.72

Target Breach path 1 2 7 13 0.22 0.85

Target Breach path 2a 3 8 13 0.27 0.77

Target Breach path 2b 3 8 13 0.27 0.77

Target Breach path 2c 3 8 13 0.27 0.77

Target Breach path 3a 4 6 13 0.40 0.69

Target Breach path 3b 4 6 13 0.40 0.69

Q-2.1 60 114 296 0.34 0.80

Table 8.3: The E�ort Reduction Evaluation Result for the Approach.

The last evaluation goal examined the scalability of the approach. The following dia-

grams show the results of the di�erent scalability evaluation setups. The �rst Figure 8.5

depicts the runtime scalability with respect to assembly contexts whereas the second Figure

8.6 depicts the runtime scalability with respect to resource containers. The third Figure

8.7 depicts the runtime behavior of the chained resource containers scalability evaluation.

The x-axis shows the number of added assembly contexts or resource containers whereas

the y-axis depicts the consumed runtime for running the analysis and is a logarithmic

scale. The blue dots always represent the runtime of the analysis only for the respective

element type whereas the red dots present the results for the complete analysis. The black

and orange lines are the respective exponential reference lines.
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Scalability Diagram of pooled assembly contexts.
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Figure 8.5: Results of the Analysis for Assembly Contexts Runtime Scalability Evaluation.
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Figure 8.6: Results of the Analysis for Pooled Resource Containers Runtime Scalability

Evaluation.
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Scalability Diagram of chained resource containers.
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Figure 8.7: Results of the Analysis for Chained Resource Containers Runtime Scalability

Evaluation.

As the results indicate, the runtime scalability behavior is exponential in the number

of added architectural elements. The reason this is the case, is because the generated

models lead to an exponentially increasing number of possible attack paths because it

is possible for an attacker to move in both directions along a assembly connector or a

link. Another reason for the exponential runtime behavior is the properties of the added

elements. Since each element is attackable, there is no direction in which an attack stops

propagating. Moreover, no �lters except a path length �lter for the number of elements

are applied. However, for the scalability scenario for chained resource containers and the

one for pooled assembly contexts regarding only the assembly propagation are usable for

a number of added elements of 15 or for assemblies 17 elements runtime values of under

70 seconds are achieved. For the other cases a value of seven added elements achieved a

runtime from under 40 seconds. Nevertheless, the scalability of the approach is the main

weakness of it and path �nding in general as the evaluation results for 20 added elements

show in the cases this evaluation was done. Therefore, it is necessary that the software

architect use a wise set of �lters in order to obtain a result in a reasonable time. Moreover,

rendering the analysis more scalable for larger scenarios needs to be examined in future

work. In general, graph algorithm for �nding even all paths between two nodes have

exponential runtime behaviors because the number of paths are exponential. In the case

of the analysis presented in this thesis it is even required to �nd all paths to the critical

element from arbitrary start nodes, which worsens the situation even more. However, a

meaningful selection of �lter criteria can render the approach more scalable and allows

the software architect to restrict the output paths to relevant ones.
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8.4 Threats to Validity

8.4 Threats to Validity

This section describes the concept of how to lower the risk of threats to validity. The

categorization and description of these threats were described by Runeson and Höst [43]

and consist of Construct Validity, Internal Validity, External Validity and Reliability. The

following subsections describe these four categories and how these threats are addressed.

The Construct Validity is about whether the intended investigation by the goal and

questions is operationally well represented. This means that the examined characteristics,

in this case the metrics are relevant for achieving the respective goals. For that purpose,

for the accuracy evaluation similar metrics like precision and recall are used as in other

architectural model-based approaches. For example, the KAMP approach [24, 42] and

the approach presented by Walter et al. [55] use these metrics. For the evaluation of the

e�ort reduction there is also usage of a similar metric. Using similar metrics decreases

the overall risk. Thereby, the threat to Construct Validity is reduced. For scalability, a

higher number of tested elements could lower the risk of obtaining wrong results but

the considered number of element already indicated the issues with scalability rendering

�ltering necessary.

The facet of Internal Validity is about causal relations and in�uences of one factor on

another. If this is the case and not regarded by the research, there is a high probability

that other factors are also not considered and hence, the internal validity is threatened.

Since the attack path search is very dependent upon the selected scenario models and the

manually created output for comparison, there should be a strategy to reduce the risk

for threats to Internal Validity. For that purpose, the scenarios are selected such that all

aspects of the implemented approach are examined. Especially, this is accomplished with

the usage of the TravelPlanner evaluation (see Sections 8.2 and 8.3) for examining newly

implemented functionality not examined by the other case studies. Moreover, each model

element type is considered in at least one of the scenarios used in the evaluation of the

approach. Furthermore, the considered attack paths for the reference output are selected

as described inside the considered case studies. Therefore, the threat to internal validity

can also be assumed to be reduced.

The facet of External Validity considers the portability to other use cases in order to

universalize the research results. Moreover, it is also investigated whether the results are

useful to other researchers. In order to reduce the risk of threats to the External Validity,

external case studies are used. However, there are some limitations to the approach that

could be a threat to this kind of validity, for example the scalability of the approach. These

threats should be considered in future work by the investigation of further case studies

and the consultation of security experts. The limitations are described and discussed in

the next Section 8.5.

Reliability is about the reproducibility of the results. Clearly de�ning and providing the

scenario models and using well-de�ned statistical metrics enables future researchers to

reproduce the results and thereby reduces the risk of threats to Reliability. Moreover, there

are automatic tests for the accuracy and scalability evaluation enabling other researchers

to reproduce the results. Furthermore, the code, the metamodel and the models are also

published in order to ease reproduction of the results.
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8 Evaluation

8.5 Limitations

This section presents the limitations of the approach and its implementation. There are

some conceptional limitations regarding the kind of attacker considered by the approach.

For instance, an attacker requiring user interaction of a regular user during the attack

cannot be analyzed. Moreover, it is also crucial that the vulnerabilities in the system are

known so that they can be modeled by the software architect and then considered by

the analysis. However, it is often possible to at least know attack categories and use a

CWE vulnerability, for example provided by utilizing OWASP [37]. Another conceptional

limitation of the approach is that it does not consider complex mitigation strategies or

defense mechanisms. Nevertheless, the approach is usable in order to enable the software

architect to �nd elements where additional security measures could be meaningful in

order to render a found attack path impossible.

Due to insu�cient time, some initially planned functionality could not be implemented.

The �rst limitation is the attack propagation to other architectural elements than assembly

contexts and resource containers such as linking resources and services. Therefore, some

more detailed attack scenarios cannot be considered, for example if an attack takes place

via a service rather than a whole assembly context. Another limitation is that at the

moment only a simpli�ed version of the initially planned access control mechanisms is

implemented. Namely, only simple attributes, i.e. login credentials are considered at the

moment. Moreover, there are limitations to the scalability of the approach that should be

considered in future work.
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9 Conclusion and Future Work

This chapter concludes the �ndings of this thesis. Furthermore, it points out possible

future work.

To conclude, the thesis adapted the attack metamodel (see Chapter 5) in order to then

present and implement the approach for an attack path search described in Chapter 6.

The adaptions to the metamodel consists of adding �lter criteria and an attacker with a

reference to a critical element. The analysis utilizes the adapted metamodel in order to

analyze instances of the metamodel with respect to �nding all attack paths to a critical

element. The �lter criteria presented are derived from widespread standards and are

therefore easily capable of being integrated.

The evaluation indicated a high accuracy of 97 % for the implemented approach in

scenarios taken from real-world case studies. Moreover, it indicated an e�ort reduction

of 34 % up to 80 %. The scalability of the implemented approach was also considered but

indicated a exponential runtime. However, adding �lter criteria to the analysis can render

the approach more scalable and helps to restrict the output paths to more relevant ones.

The main contribution of this thesis is an approach for �nding all attack path in models

inside a component-based architectural environment with �lter criteria. It enables software

architects and security experts to model software architectures also with respect to con�-

dentiality and �nd relevant attack paths to a critical element in these architectures. This

can lead to the addition of additional defensive mechanisms in the considered architectures

rendering them more secure.

This paragraph describes ideas for future work concerning the subject of this thesis.

The �rst necessary future work is the implementation of the unimplemented features

described in Section 8.5. Additionally, if an attacker performs data extraction is also not

yet considered. Adding this feature to the analysis may take place in the future. Moreover,

it is important to render the approach more scalable in the future. This could be done

by adding further �lter criteria in order to restrict the search-space. Additionally, this is

also meaningful in order to restrict the output attack paths to match the requirements of

software architects even more. Other important future work consists of examining larger

scenarios and use cases derived from case studies.
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