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CHAPTER 1

Introduction

1.1. Overview and Motivation

Probability distributions, along with directly related concepts like probability measures and
random variables, are the most essential objects in the field of stochastics. Thus, being able to
describe them as concisely as possible is of utmost importance for both probability theory and
statistics. That description can either be in absolute terms or relative to other distributions.
The most common tools to achieve this in a rigorous way are stochastic orders and measures,
both of which focus on specific features or characteristics instead of the distribution as a
whole.

The nature of these characteristics is dependent upon the set on which the probability
distributions are defined. If we associate a distribution P with a random variable X, P

describes how likely it is that X takes on certain values. The set of all possible values of X

is the set on which the probability distribution P is defined. If X describes the outcome of
a dice toss, that set could be written as {1, 2, 3, 4, 5, 6}; if X describes the filling level of a
one meter high barrel, it could be written as [0, 1]. Note that it is not always possible to
describe all potential outcomes of a random experiment with the natural or the real numbers.
For example, if the location of a particle at a given time is described, the outcomes are
multivariate. However, in this work, we restrict ourselves to probability distributions on the
real line and subsets thereof.

The most basic characteristic of a distribution on the real line is its location. As the most
popular measures of (central) location, the mean and the median were used as tools long
before they were considered as concepts themselves, for example in ancient Greek mathematics
(see Bakker and Gravemeijer, 2006). The usual stochastic order, which is both the most basic
stochastic order and a location order, was introduced much later by Mann and Whitney (1947,
p. 50). Subsequently, the usual stochastic order was used to define measures of location
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in general (see Bickel and Lehmann, 1975b, p. 474, or Doksum, 1975, p. 11). If X and Y

are random variables, X precedes Y in the usual stochastic order (in short: X ≤st Y ), if
F (t) ≥ G(t) for all t ∈ R, where F and G denote the cumulative distribution functions (cdf’s)
of X and Y , respectively. Now the crucial property of a measure of central location ν is that
ν(X) ≤ ν(Y ) holds if X ≤st Y . Verbally, ν is required to preserve any ordering between two
distributions given by ≤st. In this context, a random variable, its probability distribution, and
the corresponding cdf are all used interchangeably. Note that it is possible for two random
variables X and Y to satisfy neither X ≤st Y nor Y ≤st X. The other property a measure
of central location ν is required to fulfil, concerns the behaviour of ν under affine linear
transformations of a random variable. Specifically, ν(a · X + b) = a · ν(X) + b for all a, b ∈ R.

Another quantity that is frequently associated with the central location of a distribution
is its mode, i.e. the point that maximizes the likelihood over the given distribution, which
is sometimes difficult to handle, e.g. for multimodal distributions. Furthermore, there are
variations of mean and median such as trimmed means or generalized quantiles. Of the latter
family, the most well known and useful representatives are expectiles, which were introduced
by Newey and Powell (1987). Expectiles can be understood as quantiles of a transformed
and thereby smoothed distribution (see Jones, 1994), so that they are always unique. It has
been shown that the p-expectile for p ∈ (0, 1) preserves the usual stochastic order (see Bellini,
2012) and, as a special case, the mean is included as the 1

2 -expectile. So, while this does
not result in a new measure of central location, it is another useful way to characterize a
distribution that conserves a number of desirable properties of quantiles while also offering
some advantages. A helpful way to think of expectiles is that they are to quantiles what the
mean is to the median.

The monographs of Shaked and Shanthikumar (2006), Müller and Stoyan (2002) and
Belzunce et al. (2015) contain numerous properties of the usual stochastic order that are
useful in different stochastic fields. In particular, the two latter references discuss in some
detail what F ≤st G graphically means for two cdf’s F and G. They state that F ≤st G is
equivalent to the corresponding P-P-plot lying below the 45°-diagonal and, similarly, to the
Q-Q-plot lying above the 45°-diagonal (see p. 4 in Müller and Stoyan, 2002 or pp. 35-36 in
Belzunce et al., 2015). If F and G are continuous, the graph of the P-P-plot corresponds to
that of the function G ◦ F −1; if F and G are strictly increasing, the graph of the Q-Q-plot
corresponds to that of the function G−1 ◦ F . The latter statement is contrary to Müller and
Stoyan (2002, p. 4), who require F and G to be continuous. However, this error is rectified in
Proposition 6.1 of this thesis. Here, F −1 and G−1 denote the corresponding quantile functions
for which the usual definition

F −1(p) = inf{t ∈ R : F (t) ≥ p}, p ∈ (0, 1)

is used. Further treatments of the usual stochastic order on discrete distributions are rare in
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the literature. Examples include Klar et al. (2010) and Klenke and Mattner (2010), which
discuss the use of different measures of central location and equivalent characterizations of
the stochastic order for a number of discrete distribution families.

Beside measures of central location, measures of dispersion are often among the first topics
in an introductory statistics course. As the most popular such measure today, the standard
deviation, along with the closely related variance, has been used at least since the beginning
of the 19th century (see Kourkoulos and Tzanakis, 2010). Their first uses were mostly in the
context of applications in the field of physics, using the method of least squares. However, a
historically more relevant measure was the so-called ’probable error’, which is closely related
to the presently used interquartile range (see Hald, 1998, p. 360). Further popular dispersion
measures include the mean absolute deviation and Gini’s mean difference.

The first stochastic order with respect to dispersion was proposed by Birnbaum (1948) as an
order of ’peakedness’, which considers dispersion around a fixed point. Bickel and Lehmann
(1976, 2012) differentiate between ’dispersion’ in symmetric distributions and ’spread’ in
asymmetric distributions. In the latter work (first published in 1976), they defined what
was later coined the dispersive order by Lewis and Thompson (1981). This stochastic order
of dispersion, which is the most basic order of this kind, is reminiscent of an equivalent
characterization of the usual stochastic order. Note that F ≤st G holds if and only if
F −1(p) ≤ G−1(p) for all p ∈ (0, 1). In a similar way, F is said to precede G in the dispersive
order (in short: F ≤disp G), if

F −1(p1) − F −1(p0) ≤ G−1(p1) − G−1(p0) ∀ 0 < p0 ≤ p1 < 1.

Two previously published papers, which both utilize a preprint of the paper by Lewis and
Thompson (1981), apply this order to specific distribution families (Saunders and Moran,
1978) and to point process theory (Saunders, 1978).

A number of properties of the dispersive order can be found in the monographs of Shaked
and Shanthikumar (2006), Müller and Stoyan (2002) and Belzunce et al. (2015). Here, the
fact that ≤disp is stronger than other orders of dispersion like the dilation order ≤dil is of
particular interest (see Shaked and Shanthikumar, 2006, p. 154). X precedes Y in the dilation
order if E[φ(X − E[X])] ≤ E[φ(Y − E[Y ])] holds for all convex functions φ for which the
expected values exist. Overall, under some regularity conditions, the dispersive order is the
strongest commonly used order of dispersion.

Since measures of dispersion are one of the most widely used statistical concepts that is also
frequently used in more applied scientific disciplines, their definition must not exhibit any lack
in rigour. This definition is analogous to the definition of measures of central location with
the crucial condition being that any dispersion measure τ preserves an order of dispersion.
The canonical choice for the dispersion order to be used in that definition is the dispersive
order ≤disp because, as the strongest sensible order, it imposes a minimal requirement on
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any measure to correctly identify differences in dispersion. Furthermore, the dilation order
as the other major dispersion order, by definition, favours expectation- and moment-based
measures of dispersion, whereas the dispersive order is solely based on a pointwise comparison
between two cdf’s. The dispersive order is often used as this kind of foundational order in the
literature, e.g. by Bickel and Lehmann (1976) and Oja (1981). Oja also shows that a number
of the previously mentioned popular dispersion measures preserve the dispersive order.

Most detailed treatments of the dispersive order assume throughout that all involved
distributions are sufficiently regular, meaning that their supports are intervals and that
the corresponding cdf’s are (absolutely) continuous (see, e.g., Oja, 1981, Shaked, 1982 and
Belzunce et al., 2015 in most results). However, Müller and Stoyan (2002, p. 41) prove that
not only do a number of properties of ≤disp not hold for discrete distributions, but the order
itself is virtually useless. Their seemingly minor result states that range(G) ⊆ range(F ) is a
necessary condition for F ≤disp G. Since the ranges of all discrete cdf’s only consist of atoms,
all discrete distributions that are not closely related to each other are not accounted for by
the dispersive order. This implication even seems to surprise Müller and Stoyan themselves,
who contradict their own result by falsely stating on p. 63 that the geometric distribution is
generally compatible with the dispersive order. Thus, there exists no rigorous foundation for
the use of traditional dispersion measures on discrete distributions as they are not known to
preserve a fundamental order of dispersion. Although measures like the standard deviation of
discrete distribution families are still standardly included in introductory textbooks and used
for the evaluation and comparison of empirical distributions, virtually no literature addressing
this problem can be found. An exception is posed by a paper by Oja (1983) treating the
’scatter’ of multivariate empirical distribution.

A number of parallels can be found between the quantification methods of (central) location
and dispersion, both in terms of stochastic orders and in terms of measures. First, the arguably
most popular measures for both characteristics are constructed similarly. The mean is just
the first moment while the standard deviation is the square root of the centralized second
moment. Here, the centralization acts as a standardization with respect to the location, which
is measured by the mean. A consequent continuation of this concept is to consider the third
root of the third moment, which is standardized both with respect to location and dispersion.
The resulting quantity

3

√√√√E
[(

X − µ

σ

)3
]
,

where µ and σ denote the mean and the standard deviation of X, was first considered by
Pearson (1895) as a measure of skewness. As opposed to the central location (’Where does
the centre of the distribution lie?’) and dispersion (’How spread out is the distribution?’), the
concept of the skewness of a distribution is slightly less easy to grasp. However, as Arnold
and Groeneveld (1993) put it, ’skewness is asymmetry, plain and simple.’ These concepts are
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Figure 1.1.: Illustration of the zeroth to third convex characteristics through the densities of
five distributions. In each panel, the corresponding characteristic is lowest in the
blue distribution and highest in the red distribution.

illustrated in the upper left three panels of Figure 1.1.
Besides the moment-based measures, the popular quantile-based measures of central location,

i.e. the median, and dispersion, i.e. the interquartile range, can also be continued in a similar
fashion. Instead of the zeroth and the first order differences, the second order difference(

F −1(3
4) − F −1(1

2)
)

−
(
F −1(1

2) − F −1(1
4)
)

= F −1(3
4) − 2F −1(1

2) + F −1(1
4)

can be considered. This quantity, divided by the interquartile range, was proposed as a
skewness measure by Bowley (1901) and later generalized by David and Johnson (1956), who
substituted 1

4 and 3
4 for α ∈ (0, 1

2) and 1 − α. The division by the interquartile range or a
generalization thereof is done to standardize with respect to dispersion. It is structurally
obvious that this quantile-based skewness measure centres the distribution around the median
and compares its right side up to a certain quantile to the corresponding left side in order to
analyze for asymmetries.

The concept of skewness can also be obtained in the form of an ordering by continuing
the ideas of orders of location and dispersion. There are two possible ways of doing this,
based on the two major orders of dispersion ≤disp and ≤dil, and resulting in two different
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orders of skewness. For this, we assume F and G to be two cdf’s with interval support
that are sufficiently often continuously differentiable. The usual stochastic order can now be
equivalently characterized by ∆F G(t) ≥ 0 for all t ∈ supp(F ), where ∆F G(t) = G−1(F (t)) − t

and supp(F ) denotes the support of F (see Oja, 1981, p. 156). For other values of t, F (t)
takes values outside of the interval (0, 1), on which the quantile function G−1 is not defined.
The function ∆F G was considered extensively by Oja (1981) and is closely related to the
probability integral transform. The latter states that if X ∼ F and U is uniformly distributed
on the unit interval (or U ∼ U([0, 1]) for short), then F (X) ∼ U([0, 1]) and F −1(U) ∼ F

hold under some regularity conditions (see Ferguson, 1967, p. 216 or Rüschendorf, 1981,
p. 331). Thus, for X ∼ F , G−1(F (X)) ∼ G follows, so that ∆F G(X) is the difference of
an F -distributed and a G-distributed random variable, implying that the function ∆F G is
perfectly fit for the comparison of F and G. Functions of the form G−1 ◦ F were termed
relative inverse distribution functions (RIDF’s) by Müller and Stoyan (2002, p. 41), ∆F G can
be seen as a modified version of this. Alternatively to G−1 ◦ F , which is associated with the
Q-Q-plot, one can also compare two distributions using functions of the form G ◦ F −1, which
are associated with the P-P-plot. The latter function is related to the so-called Lorenz curve,
which is used to measure inequality (of wealth, income, etc.); a theoretical treatment with
applications in social sciences can be found in Handcock and Morris (1998, 1999).

Similarly to the usual stochastic order, the dispersive order can also be rewritten in
terms of ∆F G. To be precise, F ≤disp G is equivalent to ∆F G(s) − ∆F G(t) ≥ 0 for all
t, s ∈ supp(F ), t < s, which is equivalent to ∆F G being increasing on the support of F

(see Müller and Stoyan, 2002, p. 41). Utilizing the ideas about general convexity put forth
by Karlin and Novikoff (1963) and Karlin (1968) and applied to this topic by Oja (1981),
non-negativity is equivalent to convexity of order zero and being increasing is equivalent to
convexity of order one. Hence, F should precede G in a skewness order if ∆F G is convex
of order two. Since a function is convex of order k ∈ N0 if and only if its k-th derivative is
non-negative, provided that derivative exists, convexity of order two is just usual convexity
(see Karlin, 1968, p. 23). The idea to consider G at least as skewed as F , if ∆F G is convex, has
merit, as it was developed independently of location and dispersion orders by van Zwet (1964).
This so-called convex transformation order, denoted by ≤c or ≤2, has since been the most
popular and fundamental order of skewness in the literature (see, e.g., Oja, 1981, MacGillivray,
1986 or Arnold and Groeneveld, 1993). The three cited papers also propose numerous of
further skewness orders that are weaker than the convex transformation order. Most of them
utilize concrete measures of location or dispersion in order to standardize the distributions in
some way, which is undesirable for a fundamental order. One notable weakening is defined by
the existence of an affine linear transformation G̃ of G such that F − G̃ changes sign exactly
twice, from ’+’ to ’−’ to ’+’ (see Oja, 1981, p. 162). Based on an underlying result by Karlin
(1968, p. 281-282), this kind of weakening also exists for other orders that are defined via
convexity of order k ∈ N0 of ∆F G.
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An equivalent characterization of the stochastic order that is more reminiscent of the dilation
order reads as follows: X ≤st Y , if and only if E[φ(X)] ≤ E[φ(Y )] for all increasing functions
φ for which the expectations exist. Recall that X ≤dil Y is defined by E[φ(X − E[X])] ≤
E[φ(Y − E[Y ])] for all convex functions φ. This concept can also be continued one order of
convexity higher by considering Y at least as skewed as X, if

E
[
φ

(
X − µX

σX

)]
≤ E

[
φ

(
Y − µY

σY

)]
for all functions φ that are convex of order three. This latter order is seldom explicitly
considered as a skewness order in the literature. However, a general result by Klar (2002, p.
13) implies that it is a weakening of the convex transformation order, which suggests that it
may be used in that capacity. Furthermore, orders of this kind were considered by Fishburn
(1976, 1980), Rolski (1976), and Rolski and Stoyan (1974) in the context of queuing theory; a
brief summary can be found in Müller and Stoyan (2002, pp. 37–40).

Overall, a tight connection between notions of location, dispersion and skewness of a
distribution can be found both in measure- and order-based quantification methods. Both
considered types of orders connect these characteristics of a distribution to the concept of
convexity of different orders. A connection from convex functions to the moment-based
measures is made by van Zwet (1964) while a connection to the quantile-based measures
can be founded on the interplay between higher-order convexity and the concept of divided
differences, considered by Mühlbach (1973), among others. Since this thesis is mostly focused
on orders like ≤st, ≤disp and ≤c, one might refer to the location of a distribution as its zeroth
convex characteristic, to the dispersion as its first convex characteristic and to skewness as
its second convex characteristic. So, is there also a third convex characteristics and are all
aforementioned concepts generalizable one order higher?

This third characteristic is commonly referred to as kurtosis and it was first considered by
Pearson (1895) in the form of the standardized fourth moment

E
[(

X − µ

σ

)4
]

.

Compared to the lower-order characteristics, it is much more difficult to pinpoint what exactly
is described by the notion of kurtosis. Consequently, this question has been controversially
debated in the literature over the years. There exist a number of papers advocating for
kurtosis to be understood as the peakedness (see, e.g., Crack, 2019) of the density of a
unimodal distribution while others dispute this by stating that kurtosis has much more to
do with tailweight (see, e.g., Westfall, 2014). A sensible compromise is found by Balanda
and MacGillivray (1988, p. 116), who state that an increase in kurtosis corresponds to ’the
location- and scale-free movement of probability mass from the shoulders of a distribution
into its center and tails’ (see bottom right panel of Figure 1.1).
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Numerous works discussing the meaning of kurtosis understand that notion to be synonymous
to the standardized fourth moment (see, e.g., Crack, 2019; Darlington, 1970; DeCarlo, 1997;
Westfall, 2014). However, since this is analogous to identifying the notion of the central
location of a distribution with its mean, kurtosis should be understood in a broader sense. In
concurrence with this observation, other kurtosis measures as well as an underlying order-based
approach have been proposed in the literature.

Most alternative measures of kurtosis are quantile-based and are constructed in a similar
way as the quantile-based measure of skewness mentioned earlier. First, one might simply
use the third-order difference of quantiles in the numerator and standardize it with some
interquantile distance in the denominator, giving

F −1(1 − α) − 3F −1(1 − β) + 3F −1(β) − F −1(α)
F −1(1 − α) − F −1(α) . (1.1)

For specific values of 0 < α < β < 1
2 , this measure was proposed by Jones et al. (2011).

Ruppert (1987) proposed the ratio of two different interquantile distances as a kurtosis measure,
which is easily shown to be an equivalent measure to (1.1), see Section 4.3.2. This fits a more
general approach by Bickel and Lehmann (1975a), who state that a kurtosis measure is a
ratio of two suitable measures of dispersion without going into more detail. Another similarly
constructed quantile-based measure was given by Moors (1988) with all of these measures
being summarized in a general formula by Jones et al. (2011). Further proposals for kurtosis
measures are rare in the literature, with a measure based on so-called L-moments by Hosking
(1989, 1990) posing a notable exception.

Measures of dispersion usually contain some standardization with respect to location
whereas measures of skewness are standardized with respect to location and dispersion. This is
particularly apparent in the corresponding standardized moments, but can also be observed in
the popular quantile-based measures. Overall, measures of the k-th convex characteristic are
standardized with respect to all previous convex characteristics in order to not interfere with
the intended measurement. However, all mentioned kurtosis measures are only standardized
with respect to location and dispersion, but not with respect to skewness. While location can
be shifted by addition of a constant to the random variable in question and dispersion can be
rescaled by multiplication, there is no arithmetic operation to manipulate the skewness of a
random variable. On one hand, this means that skewness, kurtosis and even higher convex
characteristics are more intrinsic to the shape of a distribution. On the other hand, it means
that, generally, kurtosis measurements remain entangled with skewness. This problem also
becomes apparent in the well known inequality β2 ≥ β2

1 + 1 connecting the third and fourth
standardized moments β1 and β2 (see Pearson, 1916, p. 432). Attempts to rid kurtosis measures
of skewness effects were made in the literature by Blest (2003) for moment-based measures
and, in a more general way, by Jones et al. (2011) for quantile-based measures. Among other
things, Jones et al. (2011) used the family of so-called sinh-arsinh distributions, defined by



1.1. Overview and Motivation 9

Jones and Pewsey (2009), in which skewness and kurtosis can be varied independently from
each other. Generally, however, the problem persists, also in the order-based foundation of
kurtosis measures.

The first kurtosis order in the literature was proposed by van Zwet (1964) along with the
convex transformation order and was only defined for symmetric distributions. That order,
denoted by ≤s, deems G more kurtotic than F if the RIDF G−1 ◦ F is concave for arguments
smaller than the center of symmetry and convex for arguments larger than the center of
symmetry. Van Zwet also proved that the standardized fourth moment preserves ≤s. A
number of other kurtosis orders were given in the literature since, see Arnold and Groeneveld
(1993), Balanda and MacGillivray (1988, 1990), MacGillivray and Balanda (1988), and Oja
(1981). Some of these works also restrict their attention to symmetric distributions while others
do include asymmetric distributions. The mostly used approach to cope with asymmetries
is to artificially centre the comparison of two distributions with respect to kurtosis around
some value, usually the median. Balanda and MacGillivray (1990) do this by introducing
the so-called spread function and using it as a substitute for the cdf. This spread function is
obtained by folding the two parts left and right of the median together and then adding them
up. In this way, a new, symmetric distribution is obtained to be analyzed with respect to
kurtosis.

Since the most fundamental orders of the zeroth, first and second convex characteristics are
all constructed in the same way, a canonical candidate for a kurtosis order is obtained by using
the same principle. Then, G is deemed more kurtotic than F if G−1 ◦ F is convex of order
three. Although this seems to be an obvious consideration, this order is barely considered in
the literature. While Hosking (1989, p. 6) uses it to show the validity of his kurtosis measure
based on L-moments, Oja (1981, p. 168) mentions it briefly, only to dismiss it because of its
lack of transitivity. In spite of that observation, the apparent lack of further papers treating
this order is surprising.

As mentioned before, the concepts of location and dispersion are much easier to grasp
and also much more well known than the higher order characteristics skewness and kurtosis.
While it is often very useful that probability distributions can easily be standardized with
respect to location and dispersion, this also means that these two characteristics can be
seen as not particularly intrinsic to the distribution. Contrarily, both the skewness and
the kurtosis of a distribution are representative of it in a way that cannot be changed by
a simple transformation. This is why skewness and kurtosis have often been used as the
critical parameters for categorizing distributions with respect to their shape. The oldest
and most well known of these attempts are the Pearson families of distributions proposed
in Pearson (1895, 1901, 1916). These families cover the entirety of the so-called skewness-
kurtosis-plane, which contains all possible combinations of values of the standardized third
and fourth moments (see, e.g., Rhind, 1909, Johnson et al., 1994, pp. 15–25 and Lahcene,
2013). Unlike the skewness-kurtosis-plane in Figure 1.2, the x-axis usually describes the square
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Figure 1.2.: Skewness-kurtosis-plane for a number of well-known distribution families. The
skewness and kurtosis values represented by the grey area cannot be attained by
any distribution.

of the standardized third moment in historical representations. Since the pioneering work by
Pearson, a number of further distribution families have been proposed, which parametrize
their shape via skewness and kurtosis. Examples include the skew-normal distributions by
Azzalini and subsequent skew-t distributions (Azzalini, 1985; Azzalini and Capitanio, 2003),
Tukey’s g-and-h or g-and-k distributions (Hoaglin, 1985; MacGillivray and Cannon, 1997;
Tukey, 1977) and the sinh-arsinh distributions (Jones and Pewsey, 2009).

The categorization of distributional shape via skewness and kurtosis is used in a variety of
applications including finance, physics and other disciplines of science (see, e.g., Corrado and
Su, 1996, Cristelli et al., 2012 or Martins, 1965). It can also be used to quantify how close an
observed distribution is to known theoretical distributions. An example is given by a test of
a given sample on normality, which is possible since the normal distributions only vary in
location and dispersion (see, e.g., D’Agostino et al., 1990 or Hopkins and Weeks, 1990). In
the vast majority of these applications, the moment-based measures of skewness and kurtosis
are used.
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1.2. Outline of the Thesis

This thesis is structured around two main parts, which cover two gaps in the literature
identified in the overview given above. Their topics are the quantification of dispersion for
discrete distributions and the quantification of kurtosis for asymmetric distributions. Before
getting to these main parts, Chapter 2 introduces a number of general concepts that are
of particular relevance for the subsequent considerations. These concepts range from basic
knowledge and notation in stochastic order relations over the foundations of convex functions
and convex characteristics to expectiles. A particular focus is laid on the order of the k-th
convex characteristic and corresponding criteria. While Oja (1981) systematically analyzed
these orders for k ∈ {0, 1, 2}, this methodology is generalized to k ∈ N in this thesis.

Chapters 3, 4 and 5 then comprise Part I in which we restrict ourselves to the consideration
of sufficiently regular absolutely continuous distributions. This restriction yields a number of
helpful simplifications in the description and handling of the involved orders and measures.

Since the convex characteristics hierarchically build on one another, the quantification
of location, dispersion and skewness is discussed in Chapter 3 ahead of the first main part
on kurtosis in Chapter 4. A number of approaches to measure these first three convex
characteristics are presented. These include well established measures based on moments
and quantiles, less prominent approaches like the so-called L-moments, and new classes of
measures like the density-based measures in Section 3.1.3. The separate Section 3.2 is devoted
to expectile-based ways of quantifying these characteristics, which includes both orders and
measures. These are mostly defined analogously to quantile-based orders and measures. A
number of results are proved, which clarify the relationship between these new ideas and
traditional approaches.

The following Chapter 4 is the first of two main parts of the thesis. After starting with a
brief summary of the discussion on the meaning of kurtosis in the literature, different kurtosis
orders are considered. It is confirmed that ≤3, the order of the third convex characteristic,
is indeed generally not transitive, as noted by Oja (1981, p. 168). However, the notion
of transitivity sets is then introduced, describing sets of distributions on which the order
≤3 is transitive. All of the derived transitivity sets have in common that they contain
distributions that have the same skewness in some sense. In particular, the set S of all
symmetric distributions is also a transitivity set. Since the concept of kurtosis is usually
only analyzed for symmetric distributions, this invalidates the dismissal of ≤3 as a suitable
kurtosis order. This observation is subsequently strengthened by the fact that concave-convex
orders, which are the most popular kurtosis orders in the literature, have worse transitivity
properties than ≤3. Furthermore, the definition of the concave-convex orders ≤s and ≤a from
the literature (see van Zwet, 1964 and MacGillivray and Balanda, 1988) are modified to be
more adaptive to asymmetric distributions. We then apply both kinds of kurtosis orders
to a number of well known distribution families, which vary in both skewness and kurtosis.
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Particular emphasis is put on the sinh-arsinh distributions proposed by Jones and Pewsey
(2009), which have four parameters for the first four convex characteristics. It is shown that
the behaviour of both considered types of kurtosis orders is only dependent on the kurtosis
parameters of the distributions and not on the skewness parameters.

The disentanglement of skewness and kurtosis also plays a central role in the analysis of
several kurtosis measures in Section 4.3. The notion of kurtosis measures is used in a rather
loose sense because the lack of transitivity of the underlying kurtosis orders can be used to
show that no such measure exists in the traditional sense. Mappings that were identified
as kurtosis measures in the literature or that arise from corresponding measures of location,
dispersion and skewness in Section 3 are analyzed. Many of them preserve the order ≤3, if
they are restricted to some transitivity set like the symmetric distributions. Some families
of measures, in particular those based on densities, also offer further insights on how large
values and differences in skewness obscure the measurement of kurtosis.

Part I is concluded by Chapter 5, which summarizes the findings and points out arising
questions that could possibly be analyzed in future research. Among other topics, this concerns
the specific nature of convex characteristics of higher order than kurtosis and whether one of
them is associated with bimodality.

Part II of the thesis, which consists of Chapters 6, 7 and 8 and some supplementary material
in Appendix A, deals with the behaviour of orders of convex characteristics on discrete
distributions as well as suitable replacements. The necessity to explore this topic in depth
is established in Chapter 6. While the stochastic order in Section 6.1 only exhibits minor
irregularities in RIDF-based characterizations for discrete distributions, the shortcomings of
the dispersive order that are discussed in Section 6.2 are much more severe. Essentially, it is
shown to not be a meaningful order of dispersion for discrete distributions, leaving the entire
concept of dispersion without foundation.

Chapter 7 seeks to rectify this shortcoming through proposals of modifications of the
dispersive order that are more suitable to discrete distributions. We carefully construct
discrete dispersive orders from two major starting points. One is an equivalent characterization
of the original dispersive order at the edge of its applicability for discrete distributions, and
the other is a discrete analogue of how the dispersive order works on continuous distributions.
The derivation of these discrete orders contains a number of examples, which are used to
ensure that they are meaningful. Furthermore, a number of helpful relations and criteria are
introduced in the process. Finally, we obtain two candidates for discrete dispersive orders
and subsequently examine whether they fulfil the same properties as the original dispersive
order ≤disp. Two crucial properties are transitivity and whether the discrete version coincides
with the original version on their joint area of applicability. Each candidate for the discrete
dispersive order satisfies only one of these two properties. Numerous other properties of the
original dispersive order can subsequently be replicated for both candidates.

In the final two sections of Chapter 7, the compatibility of the discrete orders with popular
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dispersion measures and with popular families of discrete distributions is analyzed. The first
part is of particular importance, because it implies whether dispersion measures are suitable
to be applied to discrete distributions. Here, we show that the interquantile range is not a
meaningful dispersion measure for discrete distributions. The results of the application of
the discrete dispersive orders to specific discrete distributions in Section 7.5 are satisfactory:
the distributions are ordered in the direction that is heuristically plausible, but a certain
difference between the parameter values of the considered distribution families is required.

The concluding Chapter 8 of Part II is subdivided into three sections. First, we discuss
a number of alternative approaches to the development of a discrete dispersive order. Most
of these approaches can be dismissed, while one of them seems to have enough merit to be
pursued further. Second, a discrete skewness order is proposed using a similar approach as in
Chapter 7. The fact that this is similarly necessary as for dispersion was demonstrated in
Eberl and Klar (2019) and is also fairly obvious from the observations in Chapter 6. Finally,
the general techniques that are employed to handle discrete distributions throughout Chapter
7 are discussed. Their merit is evaluated and open questions are posed.

The discussion of discrete distributions in Part II is complemented by Appendix A. Here, the
concept of RIDF’s, i.e. of functions of the form G−1 ◦ F , where F and G are cdf’s, is evaluated
for discrete distributions. Similarly to the dispersive order, it is not meaningful for a large set
of discrete distributions. We then examine the exact limits of the meaningful applicability of
RIDF’s and subsequently propose a possible generalization. While the obtained generalization
is only partially successful in replicating the properties of RIDF’s, interesting information
about probability integral transforms is revealed in the process.





CHAPTER 2

General Concepts

2.1. Probability Distributions and Stochastic Orders

Let (Ω, A,P) be our underlying probability space, which is assumed to be rich enough to carry
all random objects in this thesis. A random variable X is defined as a measurable mapping
X : Ω → R as, for the purposes of this thesis, all random variables are real-valued. The
probability distribution or probability measure of X is defined as PX = P ◦ X−1, where X−1

denotes the inverse image function, which maps a (Borel-)measurable subset of R onto a set
in A. The set of all real-valued probability distributions is denoted by P. The cumulative
distribution function (cdf) of X is denoted by F and is defined by

F : R → [0, 1], t 7→ P(X ≤ t).

Analogously, the cdf of a random variable Y is denoted by G. For any random variable Z

other than X and Y , the corresponding cdf is denoted by HZ . Since there exists a one-to-one
relationship between real-valued probability distributions and cdf’s, we use these two notions
interchangeably (see Kallenberg, 2021, pp. 42, 84). This means that a set Q ⊆ P of probability
distributions can also interpreted as the set of the corresponding cdf’s and vice versa. The
fact that X is distributed according to F or PX is denoted by X ∼ F or X ∼ PX .

The support of the probability distribution of X is defined by as the smallest closed subset
supp(PX) ⊆ R such that P(X ∈ supp(PX)) = 1 (see Bogachev, 2007, p. 77). Furthermore,
define supp(F ) = supp(X) = supp(PX). Heuristically, the support is the closure of the set of
all points with positive probability mass on them. We also define the interval

DF = R \ F −1({0, 1}) = {t ∈ R : F (t) ∈ (0, 1)},

as well as D′
F = DF ∪ {sup(DF )}. Sets of this kind were also considered by van Zwet (1964,
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p. 6), who denoted it by I, and by Oja (1981, p. 155), who denoted it by SF . The distinction
between DF and D′

F is useful for discrete F .
According to Lebesgue’s decomposition theorem (see Hewitt and Stromberg, 1975, p. 337),

each probability measure PX can be uniquely decomposed as

PX = aac · PX
ac + asc · PX

sc + ad · PX
d , (2.1)

where PX
ac is an absolutely continuous probability measure (with respect to the Lebesgue

measure), PX
sc is a singular continuous probability measure, PX

d is a discrete probability
measure and the coefficients aac, asc, ad ∈ [0, 1] satisfy aac + asc + ad = 1. Because of their
limited relevance in applications, we disregard singular continuous measures for the purposes
of this thesis. Absolutely continuous and discrete distributions are considered separately in
the two Parts I and II. Any mixture of these two kinds of distributions can then be obtained
as a linear combination using (2.1). X is an absolutely continuous random variable, if it has a
Lebesgue density f such that

P(X ∈ A) =
∫

A
f(t) λ1(dt) =

∫
A

f(t) dt

holds for all measurable sets A ⊆ R, where λ1 denotes the one-dimensional Lebesgue measure.
In that case, F ′ = f holds almost everywhere, so the density function f is the derivative of
the corresponding cdf F . If F is differentiable on DF , f denotes that version of the density.
X is a discrete random variable, if supp(PX) is at most countable. In that case, X has a
probability mass function (pmf) f that satisfies f(t) = 0 for t /∈ supp(PX) and

P(X ∈ A) =
∫

A
f(s)

 ∑
t∈supp(PX)

δt

 (ds) =
∑

t∈supp(PX)
f(t) · δt(A),

where δt(A) evaluates the Dirac-measure and is equal to 1 if t ∈ A and 0 otherwise. The pmf
f is also characterized by f : R → [0, ∞), t 7→ P(X = t). The density function (pmf) of an
absolutely continuous (discrete) random variable Y is denoted by g. Note that P(X ∈ A) is
given as an integral over f in both cases: with respect to the Lebesgue measure for absolutely
continuous X, and with respect to a suitable counting measure for discrete X. In the following,
we define a number of subsets of the set P of all real-valued probability distributions.

Definition 2.1. Let F ∈ P be a cdf and k ∈ N. We define:

a) F ∈ S, if F is symmetric, i.e., if there exists a t0 ∈ R such that F (t0 − t) = 1 − F (t0 + t)
holds for all t ∈ R.

b) F ∈ D, if F is discrete, i.e., if supp(F ) is at most countable.

c) F ∈ C, if F is absolutely continuous with respect to the Lebesgue measure.
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d) F ∈ Pk, if F ∈ C and F is k times differentiable on DF .

e) F ∈ PI , if F ∈ C and F has interval support, i.e., if supp(F ) = DF .

f) F ∈ Pk
I , if F ∈ C, F is k times differentiable on DF and F has interval support.

g) F ∈ Lk, if E[|X|k] < ∞ for X ∼ F .

Note that, for k ∈ N, the inclusions Pk+1
I ⊆ Pk+1 ⊆ Pk ⊆ P1 ⊆ C hold, the last one by

definition. Furthermore, Pk
I = Pk ∩ PI and D ∩ C = ∅. By definition of absolute continuity,

all F ∈ C are continuous.
For F ∈ D, DF = [inf(supp(F )), sup(supp(F ))) and D′

F = [inf(supp(F )), sup(supp(F ))]
follows. Thus, P(X ∈ DF ) < 1 and supp(F ) ⊂ D′

F hold in that case. For F ∈ C, it follows
that DF = (inf(supp(F )), sup(supp(F ))). If the assumption is strengthened to F ∈ PI ,
DF = int(supp(F )) holds.

The quantile function of a cdf F ∈ P is defined by

F −1 : (0, 1) → R, p 7→ inf{t ∈ R : F (t) ≥ p}. (2.2)

If necessary, the quantile function can be extended to the domain of the closed interval [0, 1].
In that case, the value F −1(1) = sup(supp(F )) = sup(DF ) is obtained. For quantile functions
evaluated at zero, we establish the convention F −1(0) = inf(DF ). However, using the domain
(0, 1) is usually more practical. Note that, if F ∈ PI , F is bijective on DF , yielding that F −1

matches the inverse function of F restricted to the interval DF .
A possible, more general characterization of the p-quantile Qp

F , p ∈ (0, 1), is that at least
p · 100% of the probability mass lies on values no larger than Qp

F and at least (1 − p) · 100%
of the probability mass lies on values no smaller than Qp

F . In short,

P(X ≤ Qp
F ) ≥ p and P(X ≥ Qp

F ) ≥ 1 − p (2.3)

(see Georgii, 2013, p. 231). A necessary condition for either inequality being strict is P(X =
Qp

F ) > 0. If F is strictly increasing on DF , all quantiles of F are unique. However, if F

constantly assumes the value p ∈ (0, 1) on some interval, all definitions of the p-quantile within
that interval

[inf{t ∈ R : F (t) ≥ p}, sup{t ∈ R : F (t) ≤ p}]

satisfy characterization (2.3) (see, e.g., Artzner et al., 1999, p. 216). Therefore, there is more
than one possible definition of the quantile function for discrete distributions. We mostly use
the convention (2.2), denoted by F −1(p); quantiles in the sense of (2.3) are denoted by Qp

F

and are discussed further in Section 2.3. Finally, note that the quantile function of F and the
inverse image function of F are both denoted by F −1. If the function argument is a number,
the quantile function is being evaluated; if the function argument is a set, the inverse image
function is being evaluated.
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For F, G ∈ P, the relative inverse distribution function (RIDF) from F to G is given by

RF G : DF → R, t 7→ (G−1 ◦ F )(t) = G−1(F (t))

(see Müller and Stoyan, 2002, p. 3, or Oja, 1981, p. 155). While this definition is sensible for
absolutely continuous distributions, the usage of supp(F ) or D′

F as alternative domains of
RF G is sometimes useful, e.g. for discrete distributions. The behaviour of RIDF’s for discrete
distributions is analyzed in detail in Chapter 6 and Appendix A. If necessary, the domain can
also be extended to R: for t > sup(DF ), we then have RF G(t) = G−1(1) = sup(DG) and for
t < inf(DF ), we have RF G(t) = G−1(0) = inf(DG). The crucial property of a RIDF is that
RF G(X) ∼ G, if F, G ∈ C (see van Zwet, 1964, p. 48, Rüschendorf, 1981, p. 331). Verbally,
the RIDF from F to G transforms an F -distributed random variable into a G-distributed
random variable. Note that the exact domain of RF G is not relevant for this property as long
as it almost surely contains all possible values of X. The assumption for this crucial property
can be weakened according to Proposition A.3. The RIDF can be modified to

∆F G : DF → R, t 7→ RF G(t) − t,

yielding that ∆F G(X) is the difference of an F -distributed random variable and a G-distributed
random variable. The ability of the function ∆F G to compare two random variables is expanded
upon in Section 2.2.

A stochastic order ≤o is defined as a binary relation on a suitable subset Q ⊆ P of all
probability distributions on the real line. We only refer to such a relation as a stochastic
order if its purpose is to order distributions with respect to some characteristic, but this is no
formal requirement. We sometimes apply stochastic orders to random variables instead of
cdf’s or distributions, so X ≤o Y for X ∼ F and Y ∼ G means F ≤o G.

The main use of stochastic orders in the context of this thesis is to define measures of a
certain characteristic of probability distributions. For example, the usual stochastic order
≤st is used the definition of location measures and the dispersive order ≤disp is used in the
definition of dispersion measures. If ≤o denotes an order of a specific characteristic, the crucial
property in the definition of a measure ν of this characteristic is given as follows: if F ≤o G

holds for two cdf’s F and G, then ν is required to satisfy ν(F ) ≤ ν(G). In that case, we say
that ν preserves the order ≤o.

A stochastic order ≤o induces two further binary relations on the same underlying set Q of
distributions. First, it induces the strict version <o of itself, which is defined by

F <o G, if F ≤o G and G ̸≤o F (2.4)

for F, G ∈ Q, where G ̸≤o F simply denotes the negation of G ≤o F . Second, it induces
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equivalence =o with respect to itself, which is defined by

F =o G, if F ≤o G and G ≤o F (2.5)

for F, G ∈ Q.

There are two major desirable properties of stochastic orders. Since we generally formulate
these orders in a non-strict way, they should be reflexive, i.e., F ≤o F should hold for all
F ∈ Q. The most crucial property of stochastic orders is transitivity, i.e., that F ≤o G

and G ≤o H implies F ≤o H for all F, G, H ∈ Q. Transitive orders generally behave more
intuitively and are more easy to handle. Furthermore, lack of transitivity makes it virtually
impossible that a measure ν that preserves the order in question exists. Note that values
of ν for different distributions are compared via the transitive ’≤’. Therefore, ≤o not being
transitive poses a problem for the existence of measures ν that preserve the order ≤o. This
issue is discussed in more detail for the specific order ≤3 in Section 4.2.1.

On the other hand, there are also properties that cannot or should not be satisfied by most
stochastic orders. The first property of this kind is totality, meaning that all pairs (F, G) ∈ Q2

satisfy F ≤o G or G ≤o F . This property is usually undesirable because, for most underlying
characteristics, there exist pairs of distributions that cannot be ordered unambiguously with
respect to that characteristic. This is exemplified in the following for the characteristic of
dispersion.

Example 2.2. Let X ∼ N (0, 1) and Y = 0.725Ỹ with Ỹ ∼ t3, where t3 denotes Student’s
t-distribution with 3 degrees of freedom. The densities of both X and Y are depicted in Figure
2.1. From the plot, it is not obvious which distribution is more dispersed. While the density
of Y has fatter tails and therefore more dispersion far away from the centre, the density of X

is smaller around the centre, but larger for about |t| ∈ (0.45, 2), so it seems more dispersed
close to the centre.

As examples for popular dispersion measures, we consider the standard deviation (SD), the
mean absolute deviation (MAD) and the interquartile distance (IQR). While the MAD’s of X

and Y are approximately equal (difference < 0.1%), the SD of Y is about 25% larger than
that of X, and the IQR of X is about 22% larger than that of Y . Overall, neither random
variable is unambiguously more dispersed than the other.

The final property to be discussed here is antisymmetry, meaning that F ≤o G and G ≤o F

implies F = G for all F, G ∈ Q. However, if a cdf F is merely shifted to obtain F̃ = F (· − a)
for some a ∈ R, a dispersion order ≤D should still treat F and F̃ as the same. Therefore, the
reflexivity dictates F ≤D F̃ and F̃ ≤D F although F = F̃ is obviously not true. A similar
argument can be used for orders of other characteristics.
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Figure 2.1.: Visualization of Example 2.2.

2.2. Generalized Convexity and Orders of Convex
Characteristics

The characteristics of location, dispersion, skewness and kurtosis are related in multiple ways.
The connection between basic orders of these characteristics can be established via generalized
convex functions. Thus, the representatives of the arising family of orders are dubbed orders
of convex characteristics.

The concept of generalized convexity is closely related to that of total positivity, both of
which are discussed at length by Karlin (1968), among others. The special case of generalized
convexity that is relevant for this thesis corresponds to the concept considered in Oja (1981).
Accordingly, we begin with the following definition, derived from Karlin (1968, pp. 280–281)
and Oja (1981, p. 155).

Definition 2.3. Let k ∈ N0 and let D ⊆ R have at least k + 1 elements. Furthermore, let
φ : D → R be a function.

a) For x0, x1, . . . , xk ∈ D, define the (k + 1) × (k + 1)-matrix Ξk
φ(x0, x1, . . . , xk) =

(ξi,j)i,j=1,...,k+1 by

ξk+1,j = φ(xj−1), j = 1, . . . , k + 1,

ξi,j = xi−1
j−1, j = 1, . . . , k + 1, i = 1, . . . , k.

b) φ is said to be convex of order k or k-convex on D, if

det
(
Ξk

φ(x0, x1, . . . , xk)
)

≥ 0 (2.6)

holds for all x0, x1, . . . , xk ∈ D with x0 < x1 < . . . < xk. Moreover, φ is said to be
strictly convex of order k on D, if inequality (2.6) is strict.
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It is shown in the following example that k-convexity corresponds to well-known concepts
for small values of k.

Example 2.4. a) For k = 0, the matrix from Definition 2.3a) reduces to Ξ0
φ(x0) = φ(x0).

It follows that the 0-convexity of φ : D → R corresponds to φ(x0) ≥ 0 for all x0 ∈ D.
Hence, a function is 0-convex / strictly 0-convex, if and only if it is non-negative /
positive.

b) For k = 1, we obtain

Ξ1
φ(x0, x1) =

(
1 1

φ(x0) φ(x1)

)
.

Thus, the 1-convexity of φ is equivalent to φ(x1) − φ(x0) ≥ 0 for all x0, x1 ∈ D with
x0 < x1, so it is equivalent to φ being increasing.

c) For k = 2, Definition 2.3a) yields

Ξ2
φ(x0, x1, x2) =


1 1 1
x0 x1 x2

φ(x0) φ(x1) φ(x2)

 .

Hence, the 2-convexity of φ is equivalent to

det(Ξ2
φ(x0, x1, x2)) = x1φ(x2) + x2φ(x0) + x0φ(x1) − x1φ(x0) − x2φ(x1) − x0φ(x2)

= φ(x0)(x2 − x1) + φ(x1)(x0 − x2) + φ(x2)(x1 − x0)

≥ 0

for all x0, x1, x2 ∈ D with x0 < x1 < x2. That inequality can be transformed to

φ(x1) ≤ x2 − x1
x2 − x0

φ(x0) + x1 − x0
x2 − x0

φ(x2).

The substitution λ = x2−x1
x2−x0

∈ (0, 1) yields

φ(λx0 + (1 − λ)x2) ≤ λφ(x0) + (1 − λ)φ(x2).

It follows that 2-convexity is equivalent to convexity in the usual sense.
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d) For k ≥ 3, we have

Ξk
φ(x0, x1, . . . , xk) =



1 1 1 · · · 1 1
x0 x1 x2 · · · xk−1 xk

x2
0 x2

1 x2
2 · · · x2

k−1 x2
k

...
...

... . . . ...
...

xk−1
0 xk−1

1 xk−1
2 · · · xk−1

k−1 xk−1
k

φ(x0) φ(x1) φ(x2) · · · φ(xk−1) φ(xk)


.

The definition of higher-order convexity is rather complex because of the correspond-
ing determinant. Hence, it is usually preferable to utilize other characterizations or
implications of k-convexity. The concept of 3-convexity is explored further in Chapter 4.

If the function φ is smooth enough, its k-convexity is equivalently characterized via its k-th
derivative (see Karlin, 1968, p. 281 or Popoviciu, 1933, p. 41). We denote the first, second and
third derivative of a univariate function φ by φ′, φ′′ and φ′′′; the k-th derivative is denoted by
φ(k), k ∈ N0.

Proposition 2.5. Let D ⊆ R be an open interval and φ : D → R be k times differentiable.
Then, the k-convexity of φ is equivalent to φ(k)(x) ≥ 0 for all x ∈ D.

Especially for larger values of k, Proposition 2.5 is not only helpful for working with
k-convex functions, but also for visualizing what k-convexity means. The same is true for
the intersection characterization, which is noted in the following. We start with a slightly
modified definition by Karlin (1968, p. 20). Preliminarily, we define the sign function as

sgn : R → {−1, 0, 1}, x 7→ 1(0,∞)(x) − 1(−∞,0)(x) =


−1 , if x < 0,

0 , if x = 0,

1 , if x > 0.

Definition 2.6. a) For n ∈ N, the function

S−
n : Rn → {0, . . . , n−1}, (x1, . . . , xn)⊤ 7→ |{i ∈ {1, . . . , n − 1} : sgn(xi · xi+1) = −1}|

counts the number of direct sign changes in a given n-dimensional vector.

b) Let D ⊆ R be an interval and let M(D,R) denote the set of all mappings with domain
D and codomain R. Then, the function

S− : M(D,R) → N0, φ 7→ sup{S−
n (φ(x1), . . . , φ(xn)) : n ∈ N, (x1, . . . , xn)⊤ ∈ Dn}

counts the number of sign changes of a function.
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For the following result, we use the convention that the polynomial that is constantly equal
to zero has degree −∞.

Theorem 2.7. Let k ∈ N0, let D ⊆ R be an open interval and φ : D → R be a continuous
function. Then, φ is k-convex, if and only if φ is a polynomial of degree ≤ k − 1 or both of
the following conditions are satisfied:

(i) S−(φ − π) ≤ k for all polynomials π of degree ≤ k − 1.

(ii) For all polynomials π of degree ≤ k − 1 with S−(φ − π) = k, the first non-zero value of
φ − π has sign (−1)k.

Proof. First, note that the set of the zeroth to the (k − 1)-th monomial, {m0, . . . , mk−1},
constitutes a so-called Tchebycheff system or T-system (see Karlin, 1968, pp. 24–26). With
that in mind, Theorem 2.1 on pages 281 and 282 in the same reference gives the result.

The concept of k-convex functions is now applied to modified RIDF’s. Therefore, let
F, G ∈ P and let ∆F G be defined as in Section 2.1. Using the k-convexity of that function, the
notion of the k-th convex characteristic of a distributions shall be introduced as rigorously as
possible. This is done based on a fundamental ordering with respect to that characteristic. As
mentioned in Section 2.1, ∆F G(X) is the difference of an F -distributed random variable and a
G-distributed random variable, and is therefore well suited to compare these two distributions.
This is the basis of the approach by Oja (1981), who uses the k-convexity of ∆F G as a
foundation for comparing distributions with respect to the k-th convex characteristic.

However, the distributional result concerning ∆F G(X) is only true under the assumption
G(DG) ⊆ F (DF ), as proved in Proposition A.3. Thus, a sufficient condition is given by
F, G ∈ C. In order to establish the convex characteristics as general as possible, we do not
require ∆F G to be k-convex for comparison with respect to the k-th convex characteristic,
but instead give the following definition.

Definition 2.8. Let k ∈ N0 and F, G ∈ P.

a) For p0, p1, . . . , pk ∈ (0, 1), define the (k + 1) × (k + 1)-matrix Ξ̃k
F −1,G−1(p0, p1, . . . , pk) =(

ξ̃i,j

)
i,j=1,...,k

by

ξ̃k+1,j = G−1(pj−1) − F −1(pj−1), j = 1, . . . , k + 1,

ξ̃i,j =
(
F −1(pj−1)

)i−1
, j = 1, . . . , k + 1, i = 1, . . . , k.

b) We say that F precedes G in the order of the k-th convex characteristic, denoted by
F ≤k G, if

det
(
Ξ̃k

F −1,G−1(p0, p1, . . . , pk)
)

≥ 0 (2.7)

holds for all 0 < p0 < p1 < . . . < pk < 1.
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This definition does not use the function ∆F G and, therefore, is not dependent upon the
necessary and sufficient condition G(DG) ⊆ F (DF ) for its crucial property. Instead, the two
quantile functions of F and G are compared. This is generally more complex to deal with
because the interplay of two functions needs to be considered instead of just one function.
However, since ≤k just compares two quantile functions in a pointwise way, no assumptions
are necessary. The following result connects the two approaches.

Proposition 2.9. Let k ∈ N0, F ∈ PI and G ∈ P. Then, F ≤k G holds, if and only if ∆F G

is k-convex on DF .

Proof. Note that DF is an open interval because of F ∈ PI . We proceed to compare the
two (k × k)-matrices Ξk

∆F G
(x0, x1, . . . , xk) = (ξi,j)i,j=1,...,k+1 and Ξ̃k

F −1,G−1(p0, p1, . . . , pk) =(
ξ̃i,j

)
i,j=1,...,k

.
For each xℓ ∈ DF , ℓ = 0, . . . , k, there exists a unique pℓ ∈ (0, 1) such that xℓ = F −1(pℓ).

Hence, for j = 1, . . . , k + 1, i = 1, . . . , k, we have

ξk+1,j = ∆F G(xj−1) = ∆F G(F −1(pj−1)) = G−1(F (F −1(pj−1))) − F −1(pj−1)

= G−1(pj−1) − F −1(pj−1) = ξ̃k+1,j ,

ξi,j = xi−1
j−1 =

(
F −1(pj−1)

)i−1
= ξ̃i,j .

Note that F ◦F −1 = id = F −1 ◦F , where id denotes the identity function, follows from F ∈ PI ,
since both F and F −1 are strictly increasing. It follows that, for each choice x0, . . . , xk ∈ DF

with x0 < . . . < xk, there exist 0 < p0 < . . . < pk < 1 such that Ξk
∆F G

(x0, x1, . . . , xk) =
Ξ̃k

F −1,G−1(p0, p1, . . . , pk). This proves that F ≤k G implies the k-convexity of ∆F G on DF .
Conversely, for each pℓ ∈ (0, 1), ℓ = 0, . . . , k, F ∈ PI yields the existence of a unique

xℓ ∈ DF such that pℓ = F (xℓ). Hence, for j = 1, . . . , k + 1, i = 1, . . . , k, we have

ξ̃k+1,j = G−1(pj−1) − F −1(pj−1) = G−1(F (xj−1)) − F −1(F (xj−1))

= G−1(F (xj−1)) − xj−1 = ∆F G(xj−1) = ξk+1,j ,

ξ̃i,j =
(
F −1(pj−1)

)i−1
=
(
F −1(F (xj−1))

)i−1
= xi−1

j−1 = ξi,j .

It follows that, for each choice 0 < p0 < . . . < pk < 1, there exist x0, . . . , xk ∈ DF with
x0 < . . . < xk such that Ξk

∆F G
(x0, x1, . . . , xk) = Ξ̃k

F −1,G−1(p0, p1, . . . , pk). This proves that the
k-convexity of ∆F G on DF implies F ≤k G.

Hürlimann (2002, p. 10) also considered the family of orders ≤k, k ∈ N0, calling the k-th
representative the ’degree k relative inverse convex order’. Like Oja (1981), he restricted
attention to PI and defined the orders using the characterization in Proposition 2.9. As
opposed to that characterization, Definition 2.8b) matches the usual definitions in the literature
for special cases exactly. This is shown in the following example.
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Example 2.10. a) For k = 0, the matrix from Definition 2.8a) reduces to Ξ̃0
F −1,G−1(p0) =

G−1(p0) − F −1(p0). Hence, F ≤0 G holds, if and only if

F −1(p0) ≤ G−1(p0) ∀p0 ∈ (0, 1). (2.8)

Since this is an equivalent characterization of the usual stochastic order (see Belzunce
et al., 2015, p. 30), it follows that F ≤0 G is equivalent to F ≤st G. Müller and Stoyan
(2002, p. 4) note that F ≤st G is generally not equivalent to the 0-convexity of ∆F G,
which is the same as the non-negativity of ∆F G (see Example 2.4a)). This issue is
explored further in Section 6.1 and specifically in Proposition 6.1.

b) For k = 1, we have

Ξ̃1
F −1,G−1(p0, p1) =

(
1 1

G−1(p0) − F −1(p0) G−1(p1) − F −1(p1)

)
,

yielding that F ≤1 G is equivalent to

F −1(p1) − F −1(p0) ≤ G−1(p1) − G−1(p0) ∀ 0 < p0 < p1 < 1. (2.9)

This matches the definition of the dispersive order (see Müller and Stoyan, 2002, p. 40),
meaning that F ≤1 G is equivalent to F ≤disp G. The fact that this is not equivalent to
∆F G being increasing is proved with the use of counterexamples in Example 6.5.

c) The matrix Ξ̃2
F −1,G−1(p0, p1, p2) is given by


1 1 1

F −1(p0) F −1(p1) F −1(p2)
G−1(p0) − F −1(p0) G−1(p1) − F −1(p1) G−1(p2) − F −1(p2)

 .

It follows that F ≤2 G is equivalent to

det
(
Ξ̃2

F −1,G−1(p0, p1, p2)
)

= F −1(p0)(G−1(p1) − F −1(p1)) − F −1(p0)(G−1(p2) − F −1(p2))

+ F −1(p1)(G−1(p2) − F −1(p2)) − F −1(p1)(G−1(p0) − F −1(p0))

+ F −1(p2)(G−1(p0) − F −1(p0)) − F −1(p2)(G−1(p1) − F −1(p1))

= G−1(p0)(F −1(p2) − F −1(p1)) + G−1(p1)(F −1(p0) − F −1(p2))

+ G−1(p2)(F −1(p1) − F −1(p0))

= (G−1(p2) − G−1(p1))(F −1(p1) − F −1(p0))

− (G−1(p1) − G−1(p0))(F −1(p2) − F −1(p1)) ≥ 0 (2.10)
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for all 0 < p0 < p1 < p2 < 1. This, in turn, is equivalent to

F −1(p2) − F −1(p1)
F −1(p1) − F −1(p0) ≤ G−1(p2) − G−1(p1)

G−1(p1) − G−1(p0) (2.11)

for all 0 < p0 < p1 < p2 < 1 with F −1(p0) < F −1(p2) and G−1(p0) < G−1(p2). Here,
we allow division by zero and assign the value ∞ in that case.

Note that if G−1(p0) = G−1(p1) holds, both (2.10) and (2.11) are trivially satisfied; if
F −1(p0) = F −1(p1) holds, each inequality is satisfied if and only if G−1(p0) = G−1(p1).
If F −1(p0) = F −1(p2) or G−1(p0) = G−1(p2) holds, (2.10) holds as both sides of the
inequality are zero.

The commonly used fundamental skewness order in the literature is the convex transfor-
mation order by van Zwet (1964, p. 48), denoted by ≤c. It is usually only considered for
F, G ∈ PI or under even stronger assumptions and F ≤c G is defined by the convexity
of ∆F G on DF . Under this assumption, the definition by van Zwet is equivalent to
F ≤2 G, according to Proposition 2.9.

It is shown in Lemma 3.9 that F ≤2 G can also be characterized via a uniform ordering
of second differences of F −1 and G−1.

Due to the observations in Example 2.10, we formally define the three well-known orders in
the following way.

Definition 2.11. Let F, G ∈ P . The usual stochastic order ≤st, the dispersive order ≤disp and
the convex transformation order ≤c are defined as the order of the zeroth convex characteristic
≤0, first convex characteristic ≤1 and second convex characteristic ≤2, respectively.

Note that the usual stochastic order is usually defined differently: F ≤st G, if G(t) ≤ F (t)
for all t ∈ R. However, this is easily seen to be equivalent to (2.8) (see, e.g., Belzunce et al.,
2015, p. 30).

For the order of the k-th convex characteristic, k ∈ N0, Propositions 2.5 and 2.9 yield the
following corollary.

Corollary 2.12. Let k ∈ N0 and F, G ∈ Pk
I . Then, F ≤k G holds, if and only if ∆(k)

F G(x) ≥ 0
for all x ∈ DF . If k ≥ 2, F ≤k G is also equivalent to R

(k)
F G(x) ≥ 0 for all x ∈ DF .

Proof. Since G ∈ Pk
I implies that G is continuous and strictly increasing on DG, its quantile

function G−1 coincides with its inverse function. Furthermore, G−1 inherits from G that it is
k times differentiable on (0, 1). As a composition of k times differentiable functions, ∆F G is
also k times differentiable. The first statement then follows from Propositions 2.5 and 2.9.

For k ≥ 2, we have
∆(k)

F G(x) = R
(k)
F G(x) − id(k)(x) = R

(k)
F G(x)

for all x ∈ DF .
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Note that the strict version of the order ≤k is not defined via the strict version of inequality
(2.7). Instead, it is defined via the general construction principle given in (2.4). These two
definitions, in general, do not yield the same strict order. This is analyzed in more detail for
the order of the third convex characteristic at the end of Section 4.2.1.

Another characterization of the order of the k-th convex characteristic is obtained by
employing divided differences, a concept that is related to generalized convexity (see, e.g.,
Mühlbach, 1973). The recursive definition of divided differences is given in the following (cp.
Nørlund, 1926, p. 1).

Definition 2.13. Let φ : D → R be a function with D ⊆ R, |D| ≥ k + 1, and let
x0, x1, . . . , xk ∈ D with x0 < x1 < . . . < xk for some k ∈ N0. Then, the zeroth and
k-th divided difference, respectively, of φ at x0, . . . , xk is defined by

[x0|φ] = φ(x0),

[x0, . . . , xk|φ] = [x1, . . . , xk|φ] − [x0, . . . , xk−1|φ]
xk − x0

.

The following result connects divided differences to the concept of k-convexity.

Proposition 2.14. Let k ∈ N0, let φ : D → R be a function with D ⊆ R and let F ∈ PI ,
G ∈ P.

a) For any choice of x0, . . . , xk ∈ D with x0 < . . . < xk, the identity

[x0, . . . , xk|φ] =
det

(
Ξk

φ(x0, . . . , xk)
)

det
(
Ξk

mk
(x0, . . . , xk)

) ,

holds, where mk : D → R, x 7→ xk denotes the k-th monomial.

b) φ is k-convex, if and only if [x0, . . . , xk|φ] ≥ 0 for all x0, . . . , xk ∈ D with x0 < . . . < xk.

c) The following statements are all equivalent:

(i) F ≤k G,

(ii) [x0, . . . , xk|∆F G] ≥ 0 for all x0, . . . , xk ∈ DF with x0 < . . . < xk,

(iii) [F −1(p0), . . . , F −1(pk)|∆F G] ≥ 0 for all 0 < p0 < . . . < pk < 1.

Proof. a) See Mühlbach (1973, p. 165) or Nørlund (1926, p. 2). Note that the ratio of de-
terminants is well defined because the denominator, which is known as the Vandermonde
determinant, is given by

det
(
Ξk

mk
(x0, . . . , xk)

)
=

∏
0≤i<j≤k

(xj − xi) > 0

for all x0, . . . , xk ∈ D with x0 < . . . < xk (see, e.g., Horn and Johnson, 2013, p. 37).
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b) Follows directly from part a) and Proposition 2.9.

c) The equivalence of (i) and (ii) follows from Proposition 2.9 and part b). The equivalence
of (ii) and (iii) follows from the fact that the function F −1 is a bijective and strictly
increasing mapping from (0, 1) to DF .

In the following, the characterization from Proposition 2.14c) is explored for the order of
the second convex characteristics. Here, the divided quantile differences are calculated via the
recursion formula. For the order of the third convex characteristic, it is explored in Section
4.3.2.

Example 2.15. Let k = 2, F ∈ PI , G ∈ P and 0 < p0 < p1 < p2 < 1. By definition, the
corresponding divided difference of ∆F G at F −1(p0), F −1(p1), F −1(p2) is given by

[F −1(p0), F −1(p1), F −1(p2)|∆F G] = [F −1(p1), F −1(p2)|∆F G] − [F −1(p0), F −1(p1)|∆F G]
F −1(p2) − F −1(p0)

=
G−1(p2)−G−1(p1)
F −1(p2)−F −1(p1) − G−1(p1)−G−1(p0)

F −1(p1)−F −1(p0)
F −1(p2) − F −1(p0)

Overall, Corollary 2.14c)(iii) yields the same characterization of F ≤2 G as before, namely
(2.11).

The intersection characterization for k-convex functions, given in Theorem 2.7, also yields
a necessary condition for the order of the k-th convex characteristic.

Corollary 2.16. Let k ∈ N0 and F, G ∈ PI . F ≤k G holds, if and only if there exists a
polynomial π0 of degree ≤ k −1 such that F = G◦ (id+π0), or both of the following conditions
are satisfied:

(i) S−(F − (G ◦ (id + π))) ≤ k for all polynomials π of degree ≤ k − 1.

(ii) For all polynomials π of degree ≤ k − 1 with S−(F − (G ◦ (id + π))) = k, the first
non-zero value of F − (G ◦ (id + π)) has sign (−1)k.

Proof. First, note that G◦G−1 = id holds because of G ∈ PI . The statement of the corollary
follows directly from Theorem 2.7 and Proposition 2.9, if F − (G ◦ (id + π)) is substituted by
∆F G − π. Since only the signs of the function ∆F G − π are relevant for that statement, the
equivalences

∆F G(x) − π(x) >=
<

0 ⇔ G−1(F (x)) − x − π(x) >=
<

0

⇔ G−1(F (x)) >=
<

x + π(x)

⇔ F (x) = G(G−1(F (x))) >=
<

G(x + π(x)) = (G ◦ (id + π))(x)
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for all x ∈ DF justify that substitution.

Another result concerning the number of sign changes of the difference of two cdf’s was
proved by MacGillivray (1985) and is given in the first part of the following proposition. It
connects the number of sign changes to the moments of the distributions. The second part of
the proposition is a direct implication.

Proposition 2.17. Let k ∈ N0 and let the first k moments of F, G ∈ PI , F ̸= G, be finite.

a) If E[Xj ] = E[Y j ] holds for all j ∈ {1, . . . , k}, then the following two statements are true:

(i) S−(F − G) ≥ k.

(ii) If S−(F −G) = k and the last non-zero value of F −G is positive, then E[Xk+2ℓ−1] <

E[Y k+2ℓ−1] holds for all ℓ ∈ N such that the moments exist.

b) If F ≤k G and E[Xj ] = E[Y j ] holds for all j ∈ {1, . . . , k}, then S−(F − G) = k follows,
the last non-zero value of F − G is positive and E[Xk+2ℓ−1] < E[Y k+2ℓ−1] holds for all
ℓ ∈ N such that the moments exist.

Proof. a) See MacGillivray (1985, p. 413).

b) The statement S−(F − G) = k follows directly from part a)(i) and Corollary 2.16(i) for
π ≡ 0. Furthermore, it follows from Corollary 2.16(ii) that the first non-zero value of
F − G has sign (−1)k. Since F − G has exactly k sign changes, the last non-zero value
of F − G has sign (−1)2k = +1. Part a)(ii) then yields the asserted inequality of the
higher moments.

Another family of stochastic orders that is based upon the concept of k-convex functions
are the k-convex orders. The following definition and equivalent characterization can be found
in Müller and Stoyan (2002, p. 39). For x ∈ R, let x+ = max{0, x} and x− = max{0, −x}
denote its positive part and negative part, respectively.

Definition 2.18. Let k ∈ N and F, G ∈ P. Then, F is said to precede G in the k-convex
order, denoted by F ≤k−cx G, if E[φ(X)] ≤ E[φ(Y )] holds for all k-convex functions φ for
which the expectations exist.

Proposition 2.19. Let k ∈ N≥2 and F, G ∈ Lk−1. Then, F ≤k−cx G holds, if and only if the
following two conditions are satisfied:

(i) E[Xj ] = E[Y j ] for all j ∈ {1, . . . , k − 1},

(ii) E[(X − t)k−1
+ ] ≤ E[(Y − t)k−1

+ ] for all t ∈ R.
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Through the assumption of equal moments, the k-convex order is connected to the order of
the k-th convex characteristic by the following result. The first part can be found in Klar
(2002, p. 13) or Rolski (1976, p. 16), the second part follows directly with Proposition 2.17b).

Proposition 2.20. Let k ∈ N0 and let the first k moments of F, G ∈ PI , F ̸= G, be finite
and satisfy E[Xj ] = E[Y j ] for all j ∈ {1, . . . , k}.

a) If S−(F −G) = k holds and the last non-zero value of F −G is positive, then F ≤(k+1)−cx

G follows.

b) If F ≤k G, then F ≤(k+1)−cx G follows.

For k ∈ N0, if the first k moments of two distributions are equal, the (k+1)-convex order is a
weakening of the order of the k-th convex characteristic. Hence, for k ∈ N, the k-convex order
compares two distributions with respect to (k − 1)-th convex characteristic, if the moment
conditions are fulfilled.

Example 2.21. a) Let F, G ∈ P. F ≤1−cx G holds, if and only if E[φ(X)] ≤ E[φ(Y )] is
satisfied for all increasing functions φ for which the expectations exist. It can be shown
that this is equivalent to F ≤st G (see, e.g., Belzunce et al., 2015, pp. 31–32). Hence,
the statement of Proposition 2.20b) can be improved in the case k = 0, as F ≤0 G

and F ≤1−cx G are equivalent. Overall, this confirms that the 1-convex order indeed
compares with respect to the zeroth convex characteristic, which means that it is a
order of location. The characterization from Proposition 2.19 is not applicable for the
1-convex order.

b) Since 2-convexity coincides with the usual notion of convexity, the 2-convex order ≤2−cx

is also simply called the convex order and denoted by ≤cx. We proceed to consider the
characterization of F ≤cx G given by Proposition 2.19. In order to circumvent dealing
with the requirement of equal expectation, it often makes sense to instead consider the
random variables that are standardized with respect to their expectations. The order
arising from this is called the dilation order and is denoted by ≤dil. For F, G ∈ L1,
F ≤dil G is said to hold, if

πX(t + E[X]) = E[(X − E[X] − t)+] ≤ E[(Y − E[Y ] − t)+] = πY (t + E[Y ]) (2.12)

is satisfied for all t ∈ R, where πZ : R → [0, ∞), t 7→ E[(Z − t)+] denotes the so-called
stop-loss transform of a random variable Z. Note that ≤dil and ≤cx are not the same
order since E[X] = E[Y ] is a necessary condition for F ≤cx G but not for F ≤dil G.
Both the convex order and the dilation order are widely used in financial and actuarial
mathematics as orders of dispersion.

c) The situation for the 3-convex order is similar to that for the 2-convex order, although
the 3-convex order is not as widely used. One can define an equivalent to the dilation
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order, which we call the 3-dilation order, by standardizing the random variables not only
with respect to the expectation but also with respect to the standard deviation, which
corresponds to the second moment. Hence, for F, G ∈ L2, F ≤3−dil G is said to hold, if

E

(X − E[X]√
V(X)

− t

)2

+

 ≤ E

(Y − E[Y ]√
V(Y )

− t

)2

+


is satisfied for all t ∈ R. The usage of this order in queuing theory is summarized by
Müller and Stoyan (2002, pp. 37–40), see also Rolski (1976). The 3-dilation order is
seldom explicitly considered as a order of skewness although it can be regarded as such.

d) For k-convex orders with k ≥ 4, the corresponding k-dilation order cannot be defined
in the same way as for k = 2 and k = 3. This is due to the fact that a random
variable cannot be standardized with respect to its third moment, as opposed to the
first two. This observation makes the characterization in Proposition 2.19 as well as the
corresponding k-convex order much less useful. Therefore, these orders are not explored
any further here.

2.3. Generalized Quantiles and Expectiles

The most widely used definition of quantiles, which we mostly use in this thesis, is given
in (2.2). Furthermore, (2.3) gives a more general characterization of quantiles that is not
unique for all p ∈ (0, 1), if the corresponding cdf F is not strictly increasing on DF . The
latter characterization also arises, if quantiles are not defined as in (2.2), but as the solution
of a minimization problem. For p ∈ (0, 1) and any integrable random variable X ∼ F ∈ P,

QF
p = argmin

t∈R
{pE[(X − t)+] + (1 − p)E[(X − t)−]}

coincides with the characterization in (2.3) (see Ferguson, 1967, p. 51 with solution, or Koenker,
2005, pp. 5–6). This concept can be generalized by applying arbitrary convex loss functions
to the positive and the negative part of (X − t). If ϕ1, ϕ2 : [0, ∞) → [0, ∞) are convex and
strictly increasing functions with ϕ1(0) = ϕ2(0) = 0 and ϕ1(1) = ϕ2(1) = 1, any thereby
obtained minimizer

argmin
t∈R

{pE[ϕ1((X − t)+)] + (1 − p)E[ϕ2((X − t)−)]}

is called a generalized p-quantile, p ∈ (0, 1), following Bellini et al. (2014, p. 42). They also
proved that the generalized p-quantile is unique for all choices of p ∈ (0, 1), if ϕ1 and ϕ2 are
strictly convex.

If ϕ1(x) = ϕ2(x) = x2, x ∈ [0, ∞), the generalized p-quantile is called the p-expectile, which
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was first discussed by Newey and Powell (1987). This specific kind of generalized quantile has
a number of desirable properties, e.g., it arises from the only choice of ϕ1 and ϕ2 for which
a coherent risk measure is obtained (see Bellini et al., 2014, p. 44). Furthermore, the strict
convexity of ϕ1 and ϕ2 directly implies that all expectiles are unique, which is particularly
noteworthy for discrete distributions. For X ∈ L2 and p ∈ (0, 1), the corresponding p-expectile
is defined as

eX(p) = argmin
t∈R

{E[ℓp(X − t)]} ,

where

ℓp(x) =

px2, if x ≥ 0,

(1 − p)x2, if x < 0.

As before, we use cdf’s and correspondingly distributed random variables interchangeably, i.e.
eF = eX . The assumption can be weakened to X ∈ L1 by instead defining

eX(p) = argmin
t∈R

{E[ℓp(X − t) − ℓp(X)]}

(see Newey and Powell, 1987, p. 823). The p-expectile is also uniquely characterized by the
first order condition

pE[(X − eX(p))+] = (1 − p)E[(X − eX(p))−]. (2.13)

This directly implies the useful property that the 1
2 -expectile is equal to the expected value.

So, heuristically, the relationship between a p-expectile and the p-quantile is similar to the
much more tangible relationship between the mean and the median. There are a number of
further characterizations of expectiles, most of which can be found in Bellini et al. (2014)
and Bellini et al. (2018a). Here, we limit ourselves to mentioning that the p-expectile eX(p),
p ∈ (0, 1), is the p-quantile of the suitably transformed cdf

F̆ (t) = E[(X − t)−]
E[|X − t|] , t ∈ R (2.14)

(see Jones, 1994, pp. 149–150). Finally, the following proposition states a number of properties
of expectiles, collected from Newey and Powell (1987), Bellini et al. (2014) and Bellini et al.
(2018a).

Proposition 2.22. Let F ∈ L1 and p ∈ (0, 1). Then:

a) eX+a(p) = eX(p) + a for all a ∈ R,

b) eλX(p) = λeX(p) for all λ > 0,

c) eX(p) is strictly increasing with respect to p,
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d) eX(p) is continuous with respect to p,

e) e−X(p) = −eX(1 − p),

f) if F is continuous, eX has the derivative

e′
X(p) = E [|X − eX(p)|]

(1 − p)F (eX(p)) + p (1 − F (eX(p))) .





PART I

Continuous Setting





CHAPTER 3

Quantification of Location, Dispersion and
Skewness

In the entirety of Part I, we only consider distributions within the set PI . Generally, let
F, G ∈ PI . The purpose of this chapter to utilize the fundamental orders of location, dispersion
and skewness established in Chapter 2.2 to define measures of these characteristics. This is
done using the general approach by Oja (1981). Subsequently, multiple different families of
measures are considered. Moment-based and quantile-based measures, the topics of Sections
3.1.1 and 3.1.2, are widely used in the literature as well as in applications. The density-based
measures introduced in Section 3.1.3 do not lend themselves particularly well to applications,
but they are closely connected to the fundamental orders. Thus, they can be used as a tool to
better understand the orders themselves. Measures based on the mode are then mentioned
rather briefly in Section 3.1.4, mainly to be referenced in Chapter 4.

Finally, expectile-based orders and measures are considered in Section 3.2. The measures can
be treated in a similar way as quantile-based measures, but bring some additional advantages
to the table. However, while quantile-based measures are closely related to the underlying
orders of the convex characteristics, the foundation for expectile-based measures is more
difficult to establish. This is why we also consider a number of expectile-based orders and
their relationship with the traditional orders.

We only discuss theoretical properties of the considered measures. For results concerning
the asymptotic and empirical properties of most of the skewness measures, we refer to Eberl
and Klar (2020, 2022a, pp. 384–393).

3.1. Measuring Location, Dispersion and Skewness

We start out by formally defining measures of location, dispersion and skewness, using the
approach by Oja (1981, pp. 157, 159, 163). Recall the convention X ∼ F , Y ∼ G.
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Definition 3.1. Let Q ⊆ PI .

a) A mapping ν : Q → R is said to be a measure of central location, if the two following
properties are satisfied:

(L1) ν(aX + b) = a · ν(X) + b for all a, b ∈ R and F ∈ Q.

(L2) ν(F ) ≤ ν(G) for all F, G ∈ Q such that F ≤st G.

b) A mapping τ : Q → R is said to be a measure of dispersion, if the two following
properties are satisfied:

(D1) τ(aX + b) = |a| · τ(X) for all a, b ∈ R and F ∈ Q.

(D2) τ(F ) ≤ τ(G) for all F, G ∈ Q such that F ≤disp G.

c) A mapping γ : Q → R is said to be a measure of skewness, if the two following properties
are satisfied:

(S1) γ(aX + b) = sgn(a) · τ(X) for all a, b ∈ R and F ∈ Q.

(S2) γ(F ) ≤ γ(G) for all F, G ∈ Q such that F ≤c G.

Note that part a) only defines measures of central location and not measures of location
generally. A measure of non-central location is defined as in Definition 3.1a), but (L1) is only
required to hold for all a > 0 instead of for all a ∈ R. Additionally, one might require the
existence of an F ∈ Q such that ν(−X) ̸= −ν(X). This ensures that any measure of central
location is not also a measure of non-central location. The most well-known example of a
measure of non-central location is the p-quantile for p ∈ (0, 1)\{1

2}. This can easily be verified
using Lemma 3.5d). It can be shown in a similar way that the p-expectile is also a measure
of non-central location for p ∈ (0, 1) \ {1

2}. The idea that other characteristics may also be
measured in a non-central way is not formally defined, but exemplified in a note following
Corollary 3.13.

That the first condition in all three parts of Definition 3.1 dictates the behaviour of a
corresponding measure under affine transformations, thereby only covering closely related
distributions. Hence, in all three definitions, the crucial property is the second one. Since
these properties are based on the three orders ≤st, ≤disp and ≤c, we discuss the meaning and
some properties of these orders before coming back to the measures. According to Corollary
2.12, the following equivalences hold:

F ≤st G ⇔ ∆F G(t) ≥ 0 ∀t ∈ DF ⇔ RF G(t) ≥ t ∀t ∈ DF ,

F ≤disp G ⇔ ∆′
F G(t) ≥ 0 ∀t ∈ DF ⇔ R′

F G(t) ≥ 1 ∀t ∈ DF , (3.1)

F ≤c G ⇔ ∆′′
F G(t) ≥ 0 ∀t ∈ DF ⇔ R′′

F G(t) ≥ 0 ∀t ∈ DF . (3.2)

For the validity of (3.1) and (3.2), the additional assumption F, G ∈ P1
I and F, G ∈ P2

I is
needed, respectively.
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Figure 3.1.: Illustration on how pieces of probability mass are redistributed by RF G, if F ≤st G
(order of location), F ≤disp G (order of dispersion) or F ≤c G (order of skewness)
holds. Each piece of probability mass is uniquely identified by the colour of the
corresponding area.

In order to see that the behaviour of these orders coincides with heuristic ideas of location,
dispersion and skewness, we consider how a piece of probability mass of F is transformed by
RF G and what requirements the orders ≤st, ≤disp and ≤c impose on that transformation. Let
the unit interval be partitioned by 0 = p0 < p1 < . . . < pn−1 < pn = 1 for some sufficiently
large n ∈ N. We consider the intervals [F −1(pi−1), F −1(pi)], i = 1, . . . , n. On the i-th interval,
100 · (pi − pi−1)% of the probability mass of F is located. If F ≤st G holds, it follows that
G−1(pi) ≥ F −1(pi) for all i ∈ {1, . . . , n − 1}. Thus, the transformation RF G shifts all intervals
and therefore also all considered pieces of probability mass to the right. This corresponds
to the fact that F precedes G with respect to location. The two panels on the left side of
Figure 3.1 illustrate this for specific distributions by dividing the probability mass of F into
areas of equal width and showing the location and shape of the same pieces for G. In order to
visualize probability mass as areas under the curve, the densities of F and G are plotted.

If F ≤disp G holds, G−1(pi−1)−G−1(pi) ≥ F −1(pi−1)−F −1(pi) follows for all i ∈ {2, . . . , n−
1}. Thus, the transformation RF G increases the width of the considered pieces of probability
mass. This means that the cdf G is more stretched out, i.e., more dispersed than F . An
illustration using the densities of specific distributions is given in the two panels in the middle
of Figure 3.1.
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Finally, F ≤c G implies

G−1(pi+1) − G−1(pi)
G−1(pi) − G−1(pi−1) ≥ F −1(pi+1) − F −1(pi)

F −1(pi) − F −1(pi−1)

for all i ∈ {2, . . . , n−2}. As for dispersion, RF G increases the length of all considered intervals.
This time, however, it does so relative to the length of the interval before instead of extending
it in an absolute sense. The larger the values on which the probability mass lies, the more
stretched out this probability mass becomes when it is transformed from F to G. This is
illustrated in the two panels on the right side of Figure 3.1. Thus, F ≤c G states that G is
more skewed to the right than F , meaning that the right tail of G is longer than the left tail,
relative to the corresponding tail ratio in F .

A number of basic properties of the three orders are given in the following results.

Proposition 3.2. The orders ≤st, ≤disp and ≤c are all reflexive and transitive.

Proof. The transitivity of is shown separately for each order by Oja (1981, pp. 156, 157,
161). The reflexivity follows from the fact that the function ∆F F = (F −1 ◦ F ) − id ≡ 0 is
non-negative, increasing and convex.

Proposition 3.3. a) F =st G is equivalent to F = G.

b) F =disp G is equivalent to the existence of an a ∈ R such that F (t) = G(t + a) for all
t ∈ R.

c) F =c G is equivalent to the existence of a > 0, b ∈ R such that F (t) = G(a · t + b) for
all t ∈ R.

Proof. Part a) follows directly from the definition of ≤st. For parts b) and c), see Oja (1981,
pp. 157, 161).

Proposition 3.4. a) If F is symmetric around t0 ∈ R, then ν(F ) = t0 follows for all
measures ν of central location.

b) τ(F ) ≥ 0 holds for all dispersion measures τ .

c) If F is symmetric, then γ(F ) = 0 follows for all skewness measures γ.

Proof. a) Consider the cdf F̃ of X̃ = X − t0, which is symmetric around zero. Because of
F̃ (t) = 1 − F̃ (−t) = P(X̃ ≥ −t) = P(−X̃ ≤ t) = H−X̃(t) for all t ∈ R, X̃ and −X̃ have
the same distribution. Hence, ν(X̃) = ν(−X̃) = −ν(X̃) follows from (L1). This implies
0 = ν(X̃) = ν(X − t0), yielding ν(X) = t0.

b) Let HZ be the cdf of Z with P(Z = 0) = 1 and let F ∈ P. It follows that the
quantile function H−1

Z is constant and its first-order difference is constantly zero. Hence,
HZ ≤disp F holds. By (S1), this implies 0 = τ(0 · X) = τ(Z) ≤ τ(X).
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c) Consider X̃ as defined in the proof of a) and note that γ(X) = γ(X̃) follows from (S1).
Furthermore, γ(X̃) = γ(−X̃) = −γ(X̃) yields γ(X̃) = 0.

The statements of Proposition 3.4 were noted by Oja (1981, pp. 157, 159, 163), but not
explicitly proved. Part c) is sometimes considered as an additional requirement in the definition
of a skewness measure (see, e.g., Groeneveld and Meeden, 1984, p. 393), which is shown to be
redundant by the above result.

Proposition 3.4 states that the value of central location and skewness measures is fixed
for symmetric distributions, but, as opposed to dispersion measures, they can take negative
values. Specifically, since F ≤c G means that G is more skewed to the right than F , any
skewness measure γ is positive for right-skewed distributions and negative for left-skewed
distributions. One might say that location and skewness are asymmetric characteristics while
dispersion is a symmetric characteristic. In fact, early works on dispersion by Bickel and
Lehmann (1976, 2012) treat dispersion of symmetric distributions as a different concept from
dispersion of asymmetric distributions, which Bickel and Lehmann termed ’spread’.

If any dispersion measure τ is also required to preserve the strict version <disp of the
dispersive order, so that F <disp G implies τ(F ) < τ(G), the statement of Proposition 3.4b)
can be improved. Then, τ(F ) = 0 holds, if and only if all probability mass of F is concentrated
on one point, and τ(F ) > 0 holds for all other cdf’s F .

For the specific measures considered in the following subsections, this basic result is helpful
for proving the properties (L1), (D1) and (S1).

Lemma 3.5. Let F ∈ PI and a, b ∈ R.

a) If a ̸= 0, then Ha·X+b(t) =


F

(
t − b

a

)
, if a > 0,

1 − F

(
t − b

a

)
, if a < 0

 holds for all t ∈ R.

b) If a ̸= 0, then ha·X+b(t) = 1
|a|f

(
t−b
a

)
holds for all t ∈ R.

c) If a ̸= 0 and F ∈ Pk+1
I , then h

(k)
a·X+b(t) = 1

|a|·ak f (k)
(

t−b
a

)
holds for all t ∈ R and all

k ∈ N0.

d) H−1
a·X+b(p) =

a · F −1(p) + b, if a ≥ 0,

a · F −1(1 − p) + b. if a ≤ 0

 for all p ∈ (0, 1).

Proof. a) For all t ∈ R, it holds that

Ha·X+b(t) = P(a · X + b ≤ t) =

P
(
X ≤ t−b

a

)
= F

(
t−b
a

)
, if a > 0,

P
(
X ≥ t−b

a

)
= 1 − F

(
t−b
a

)
, if a < 0.
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b) Almost everywhere, F is differentiable and its derivative coincides with its density (see
Kallenberg, 2021, pp. 42–43); the same is true for Ha·X+b by part a). In the following,
we only consider the t ∈ R in which F is differentiable; for all other values of t, the two
densities can be chosen to be equal. In the case F ∈ P1

I , they are unique. We have

ha·X+b(t) = H ′
a·X+b(t) = d

dt
F

(
t − b

a

)

=


1
a

f

(
t − b

a

)
, if a > 0,

− 1
a

f

(
t − b

a

)
, if a < 0

 = 1
|a|

f

(
t − b

a

)
.

c) Since the densities are unique and sufficiently often differentiable, the assertion follows
directly from b).

d) Because of F ∈ PI and part a), the quantile functions coincide with the corresponding
inverse functions. In the case a = 0, a · X + b = b holds almost surely, meaning that
H−1

a·X+b ≡ 0. Now, let a ̸= 0 and p ∈ (0, 1). Then, there exists a unique t ∈ R such that
p = Ha·X+b(t). With part a), it follows that

H−1
a·X+b(p) = H−1

a·X+b(Ha·X+b(t)) = t = a · t − b

a
+ b = a · F −1

(
F

(
t − b

a

))
+ b

=

a · F −1 (Ha·X+b(t)) + b = a · F −1(p) + b, if a > 0,

a · F −1 (1 − Ha·X+b(t)) + b = a · F −1(1 − p) + b, if a < 0.

3.1.1. Moment-Based Measures

The most popular and well-known measures of central location, dispersion and skewness are
based on moments. More specifically, they are given by the first, second and third standardized
moment. All of them preserve the order of the corresponding convex characteristic.

Theorem 3.6. a) The mapping

νM : L1 → R, F 7→ E[X] =
∫
R

t dF (t)

is a measure of central location. It is also denoted by µX = νM (X).

b) The mapping

τM : L2 → [0, ∞), F 7→
√
V(X) =

√
E[(X − µX)2]

is a measure of dispersion. It is also denoted by σX = τM (X).
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c) The mapping

γM : L3 → R, F 7→ E
[(

X − µX

σX

)3
]

is a measure of skewness.

Proof. a) This follows directly from the representation E[X] =
∫ 1

0 F −1(p) dp and the
linearity of the expectation, see Oja (1981, p. 157).

b) Oja (1981, p. 159) proved the chain of implications F ≤disp G ⇒ F ≤dil G ⇒ τM (F ) ≤
τM (G), this proves (D2). (D1) again follows from the linearity of the expectation and
the fact that

√
x2 = |x| for any x ∈ R.

c) (S2) was proved directly by van Zwet (1964, pp. 10–15). Oja (1981, pp. 163–164) offered
a proof for an intersection-based skewness order that was shown to be weaker than ≤c

on page 162. (S1) follows similarly to before by using part b).

Properties (L2), (D2) and (S2) for parts a), b) and c), respectively, can also be proved
directly using Proposition 2.17b).

Of course, µX is called the expected value of X and σX is called the standard deviation
of X. A historically popular notation for the moment skewness γM is β1 (see, e.g., Pearson,
1895). Note that without the square root in the definition of τM , one would not obtain a
measure of dispersion. While the crucial property (D2) would still be satisfied because the
root functions are monotone on [0, ∞), property (D1) would then by violated. In contrast,
3
√

γM is also a measure of skewness.
Although these moment-based measures are the most widely used measures for their

respective characteristic, they have a number of disadvantages. First, they are very sensitive
to the tails of distributions. This implies that the measures do not exist for sufficiently heavy-
tailed distributions like the Cauchy distribution. The severity of this problem increases for
higher moments, so γM is affected the most out of the three measures considered here. To this
end, Eberl and Klar (2020, pp. 9–11) noted that, compared to other skewness measures, γM

takes significantly larger values on markedly skewed distributions with bigger tails. Hosking
(1990, p. 110) observed that γM ’is so sensitive to [...] extreme tails [...] that it is difficult to
estimate in practice when the distribution is markedly skew’. This is confirmed by simulation
results in Eberl and Klar (2020, pp. 11–14, 2022, pp. 390–393), where the empirical version of
γM performs particularly bad for heavy-tailed distributions. While empirical and asymptotic
properties are not explicitly considered in this thesis, these are still arguments against the use
of γM in applications, at least for some distributions. To this end, νM , τM and γM are also
not robust as empirical measures, meaning that they are sensitive to outliers in the data.

Hosking (1989, 1990) proposed measures of central location, dispersion and skewness that
are based on so-called L-moments instead of traditional moments. A corresponding measure
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of kurtosis was also proposed, and is discussed in Chapter 4.3.1 of this thesis. L-moments are
specific linear combinations of the order statistic of an iid sample. Many of the disadvantages
of traditional moments are not exhibited by the corresponding L-moments: all of them exist,
if the expected value exists, and they are more robust and less sensitive to heavy tails and
outliers (see Hosking, 1990, pp. 105–107). Furthermore, any distribution with finite mean
is uniquely characterized by its L-moments (see Hosking, 1990, pp. 107–108). The same
statement is not true for traditional moments.

Let k ∈ N, F ∈ L1 and let X1:k ≤ . . . ≤ Xk:k be the order statistic of X1, . . . , Xk
iid∼ F .

Then, the k-th L-moment is defined as

λF
k = 1

k

k−1∑
j=0

(−1)j

(
k − 1

j

)
E[Xk−j:k].

Since the expectation of the j-th component of an order statistic of sample size k is given by

E[Xj:k] = k!
(j − 1)!(k − j)!

∫ ∞

−∞
t · (F (t))j−1 · (1 − F (t))k−j dF (t),

the k-th L-moment can also be written as

λk =
∫ 1

0
F −1(p) · P ∗

k−1(p) dp,

where P ∗
k (p) = ∑k

j=0(−1)k−j
(k

j

)(k+j
j

)
pj , p ∈ (0, 1), denotes the k-th shifted Legendre polyno-

mial.
The first two L-moments correspond to well-known measures of central location and

dispersion. It follows directly from the definition that λF
1 = E[X] holds, i.e., the first L-

moment is equal to the first traditional moment, the mean. For the second L-moment, it
holds that

λF
2 = 1

2E[X2:2 − X1:2]

= 1
2 (P(X1 > X2) · E[X1 − X2|X1 > X2] + P(X2 > X1) · E[X2 − X1|X2 > X1])

= 1
2E[|X1 − X2|],

where X1, X2
iid∼ F . There exist a few different names for the quantity E[|X1 − X2|]; we

call it Gini’s mean difference. Note that, because of the symmetry between X1 and X2,
λF

2 = 1
2E[X1 − X2|X1 > X2] also holds.

As stated by the following result, the first three L-moments can be used to measure location,
dispersion and skewness.

Theorem 3.7. a) The mapping νLM : L1 → R, F 7→ λF
1 is a measure of central location.

b) The mapping τLM : L1 → [0, ∞), F 7→ λF
2 is a measure of dispersion.
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c) The mapping γLM : L1 → R, F 7→ λF
3

λF
2

is a measure of skewness.

Proof. a) Note νLM = νM and see Theorem 3.6a).

b) For (D2), see Oja (1981, p. 160). For (D1), let a, b ∈ R. It follows that

τLM (a · X + b) = 1
2E[|(a · X1 + b) − (a · X2 + b)|] = |a| · τLM (X).

c) For (S2), see Hosking (1989, pp. 6–7). For (S1), let a, b ∈ R. It follows that

λa·X+b
3 = 1

3E[(a · X3:3 + b) − 2(a · X2:3 + b) + (a · X1:3 + b)]

= a · λX
3 .

Note that, if the affine transformation is applied to the order statistic in the case a < 0,
X1:3 and X3:3 swap roles. The above equation holds in that case because the third
L-moment is symmetric in these two random variables. The assertion now follows with
part b).

While the central location measure and the dispersion measure based on L-moments are
equal to the L-moments themselves, the skewness measure γLM is only obtained after division
by λF

2 . Otherwise, it would not be a skewness measure. Compared to γM , γLM has the
advantage that it is normalized. Specifically, −1 < γLM (F ) < 1 holds for all F ∈ L1 (see
Hosking, 1990, p. 108).

By definition, γLM uses two different order statistics: one of sample size three and one of
sample size two. This implies that γLM exhibits a lack of intuitiveness and interpretability.
However, Hosking (1990, p. 110) rectified this problem by using an identity by Sillitto (1951,
p. 378) to show

γLM (F ) = E[X3:3] − 2E[X2:3] + E[X1:3]
E[X3:3] − E[X1:3]

for any cdf F ∈ L1, where X1:3 ≤ X2:3 ≤ X3:3 is the order statistic of X1, X2, X3
iid∼ F .

3.1.2. Quantile-Based Measures

The most well-known examples of quantile-based measures of convex characteristics are
the median as a measure of central location and the interquartile distance as a measure of
dispersion. A similarly constructed quantile-based measure of skewness dates back to Bowley
(1901). The dispersion measure and the skewness measure can both be generalized by replacing
the lower and upper quartiles with the α- and the (1 − α)-quantile for an α ∈ (0, 1

2). All of
these measures satisfy the corresponding properties given in Definition 3.1.

Theorem 3.8. Let α ∈ (0, 1
2).
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a) The mapping νQ : PI → R, F 7→ F −1(1
2) is a measure of central location.

b) The mapping τα
Q : PI → [0, ∞), F 7→ F −1(1 − α) − F −1(α) is a measure of dispersion.

c) The mapping

γα
Q : PI → R, F 7→

F −1(1 − α) − 2F −1(1
2) + F −1(α)

F −1(1 − α) − F −1(α)

is a measure of skewness.

Proof. Parts a) and b) follows directly from the definitions of ≤st and ≤disp. For part c),
Groeneveld and Meeden (1984, pp. 393–394) proved (S1) generally and (S2) under some
differentiability assumptions. However, the fact that (S2) is also satisfied without these
assumptions follows from (2.11) in Example 2.10c) and the following Lemma 3.9.

The following lemma gives an equivalent characterization of the convex transformation
order based on quantities similar to γα

Q. For reference in the discrete Part II of this thesis, it
is proved for general cdf’s in P instead of only PI .

Lemma 3.9. Let F, G ∈ P. Then, F ≤c G is equivalent to

F −1(p2) − 2F −1(p1) + F −1(p0)
F −1(p2) − F −1(p0) ≤ G−1(p2) − 2G−1(p1) + G−1(p0)

G−1(p2) − G−1(p0) (3.3)

for all 0 < p0 < p1 < p2 < 1 with F −1(p0) < F −1(p2) and G−1(p0) < G−1(p2).

Proof. If F −1(p0) < F −1(p1) < F −1(p2) holds as well as G−1(p0) < G−1(p1) < G−1(p2), the
identity

F −1(p2) − 2F −1(p1) + F −1(p0)
F −1(p2) − F −1(p0)

= (F −1(p2) − F −1(p1)) − (F −1(p1) − F −1(p0))
F −1(p2) − F −1(p0)

=
(

F −1(p2) − F −1(p0)
F −1(p2) − F −1(p1)

)−1

−
(

F −1(p2) − F −1(p0)
F −1(p1) − F −1(p0)

)−1

=
(

1 + F −1(p1) − F −1(p0)
F −1(p2) − F −1(p1)

)−1

−
(

1 + F −1(p2) − F −1(p1)
F −1(p1) − F −1(p0)

)−1

proves that (2.11) and (3.3) are equivalent via the increasing transformation (0, ∞) →
(−1, 1), t 7→ (1 + t−1)−1 − (1 + t)−1. In the cases F −1(p1) = F −1(p2) and G−1(p0) = G−1(p1),
both (2.11) and (3.3) are always true (and therefore equivalent) as the left hand sides take the
minimal possible values and the right hand sides take the maximal possible values, respectively.

Two cases remain to be considered: F −1(p0) = F −1(p1) and G−1(p1) = G−1(p2). If
F −1(p0) = F −1(p1) holds, then the left hand side of (2.11) is infinite and the inequality
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is satisfied if and only if G−1(p0) = G−1(p1). In the same case, the left hand side of (3.3)
is equal to 1, so the inequality is satisfied if and only if the right side is also equal to 1,
which is equivalent to G−1(p0) = G−1(p1). The proof of the assertion in the remaining case
of G−1(p1) = G−1(p2) is analogous as both right hand sides are minimal. Consequently,
both (2.11) and (3.3) are equivalent to the left sides being minimal, which is equivalent to
F −1(p1) = F −1(p2) for both inequalities.

In addition to its contribution to the proof of Theorem 3.8c), Lemma 3.9 states that the
mapping

γα
QA : PI → [0, ∞], F 7→

F −1(1 − α) − F −1(1
2)

F −1(1
2) − F −1(α)

also preserves property (S2) for skewness measures. It does, however, not satisfy (S1) since
γα

QA(F ) = 1 holds for F ∈ S, which contradicts the necessary condition from Proposition
3.4c).

The measures νQ, τα
Q and γα

Q are directly connected to the definitions of ≤st, ≤disp and ≤c

from Example 2.10 and Definition 2.11. In the case of γα
Q and ≤c, this connection is made

by Lemma 3.9. However, the three measures can also be understood as differences of zeroth,
first and second order of the quantile function. The evaluation points of these differences are
always chosen symmetrically around 1

2 . Since νQ is the difference of zeroth order, it arises
from just one evaluation of F −1 at 1

2 , so the evaluation point is fixed and there is no parameter
α to be varied. The dispersion measure τα

Q is the first order difference, meaning that the
two evaluation points have equal distance to 1

2 and can be varied in α ∈ (0, 1
2). The second

order difference used for measuring skewness constitutes the numerator of the corresponding
measure γα

Q and is given by

(F −1(1 − α) − F −1(1
2)) − (F −1(1

2) − F −1(α)) = F −1(1 − α) − 2F −1(1
2) + F −1(α).

This difference is then divided by the corresponding dispersion measure τα
Q in order to obtain

a measure that is invariant to dispersion. The fact that the limit of the suitably normalized
k-th order difference of a function (k ∈ N0) is the k-th derivative of the same function, which
is directly connected to the k-th convex characteristic, is discussed in Section 3.1.3.

The three quantile-based measures from Theorem 3.8 are structurally very similar to the
L-moment-based measures from Theorem 3.7, which can be written as

νLM (F ) = E[X1:1],

τLM (F ) = E[X2:2] − E[X1:2],

γLM (F ) = E[X3:3] − 2E[X2:3] + E[X1:3]
E[X3:3] − E[X1:3] .

The basic shape of the L-moment-based measures is the same and can also be characterized
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via k-th order differences, k = 0, 1, 2. The only difference is that the lower, middle and
upper quantiles are replaced by the expected values of corresponding lower, middle and upper
components of an order statistic. This structural similarity of the skewness measures also
explains that, just like γLM , γα

Q is normalized, since −1 ≤ γα
Q ≤ 1 was shown to hold for all

α ∈ (0, 1
2) by Groeneveld and Meeden (1984, p. 394).

The dependence of the measures τα
Q and γα

Q on the parameter α ∈ (0, 1
2) has both negative

and positive consequences. On the negative side, one is required to choose a specific value for
α in order to utilize the measures, specifically in applications. This can be circumvented by
integrating with respect to α over all possible choices. For the dispersion measure, we obtain

τIQ(F ) =
∫ 1

2

0
τα

Q(F ) dα =
∫ 1

2

0
(F −1(1 − α) − F −1(α)) dα

=
∫ 1

1
2

(F −1(α) − F −1(1
2)) dα +

∫ 1
2

0
(F −1(1

2) − F −1(α)) dα

=
∫ 1

0
|F −1(α) − F −1(1

2)| dα

= E[|X − F −1(1
2)|], (3.4)

i.e., the mean absolute deviation from the median, a well known dispersion measure in the
literature. The fact that τIQ is a measure of dispersion as specified in Definition 3.1b) follows
directly from Theorem 3.8 and the linearity of the integral. This result can also be found in
the literature (see, e.g., Hürlimann, 2002, p. 15). Integrating the skewness measure γα

Q in
the same way obviously also yields another skewness measure. However, the corresponding
quantity is considered in a preprint by Arachchige and Prendergast (2019) and does not have
a closed form, which it is not very appealing. Instead, Groeneveld and Meeden (1984, p. 392)
have proposed integrating the numerator and the denominator separately, which leads to the
much more accessible quantity

γIQ(F ) =
∫ 1

2
0 (F −1(1 − α) − 2F −1(1

2) + F −1(α)) dα∫ 1
2

0 (F −1(1 − α) − F −1(α)) dα

=
∫ 1

0 F −1(α) dα − F −1(1
2)

τIQ(F )

=
E[X] − F −1(1

2)
E[|X − F −1(1

2)|]
. (3.5)

It was originally proven to be a skewness measure by Groeneveld and Meeden (1984, p. 394)
and again by Eberl and Klar (2019, p. 271) under weakened assumptions. Note that the
similar quantity

E[X] − F −1(1
2)

σX
, (3.6)
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proposed by Pearson (1895, p. 370) and Yule (1911, p. 150), does not satisfy (S2) and is
therefore not a measure of skewness. A discrete counterexample was given by van Zwet (1964,
pp. 16–17), for continuous examples see Groeneveld and Meeden (1984, p. 396, using the
gamma distribution) or Eberl and Klar (2019, p. 275, using the Weibull distribution). The
results concerning the integrated quantile measures are summarized in the following theorem.

Theorem 3.10. a) The mapping τIQ : L1 → [0, ∞), F 7→ E[|X − F −1(1
2)|] is a measure of

dispersion.

b) The mapping γIQ : L1 → R, F 7→ E[X]−F −1( 1
2 )

E[|X−F −1( 1
2 )|] is a measure of skewness.

The fact that, by varying α, γα
Q identifies a whole family of quantile-based skewness measures

also has a positive effect. By considering the entire family {γα
Q : α ∈ (0, 1

2)}, an equivalent
characterization for the symmetry of a distribution is obtained.

Proposition 3.11. γα
Q(F ) = 0 for all α ∈ (0, 1

2) is equivalent to F ∈ S.

Proof. Since γα
Q(X) is invariant under shifts of X, we assume without restriction that

F −1(1
2) = 0. Thus, F ∈ S is equivalent to F (t) = 1 − F (−t) for all t ∈ R.

For each p ∈ (0, 1), there exists a t ∈ R such that p = F (t), yielding

F −1(1 − p) = F −1(1 − F (t)) = F −1(F (−t)) = −t = −F −1(p),

if F is symmetric. Conversely, F −1(1−p) = −F −1(p) for all p ∈ (0, 1) implies F (t) = 1−F (−t)
for all t ∈ DF in a similar way, as well as F (t) = 0 for t < inf(DF ) and F (t) = 1 for
t > sup(DF ). Overall, the equivalence

F ∈ S ⇔ F −1(1 − p) = −F −1(p) ∀p ∈ (0, 1) (3.7)

holds.
Note that, for α ∈ (0, 1

2), γα
Q(F ) = 0 is equivalent to F −1(1 − α) = −F −1(α). The assertion

now follows from equivalence (3.7) by choosing p = α for p ∈ (0, 1
2) and p = 1 − α for

p ∈ (1
2 , 1).

This kind of result does not and cannot hold for γM , because it requires a family of skewness
measures instead of just a single measure. While one implication is true for all skewness
measures due to Proposition 3.4c), counterexamples for the other implication are given by
Johnson et al. (1980) and Ramberg et al. (1979) using the generalized lambda distribution
and by Klar (2015) using the gamma difference distribution.

3.1.3. Density-Based Measures

As stated in Corollary 2.12, the order of the k-th convex characteristic can be equivalently
described using the k-th derivative of the modified RIDF ∆F G, if F and G are sufficiently
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smooth. In that case, the corresponding derivative of ∆F G can be written using the derivatives
of F and G. Since their first derivatives are their densities, this representation usually involves
f and g and derivatives thereof. If the F -terms and the G-terms in the k-th derivative of
∆F G can be disentangled in a symmetric way, a measure of the k-th convex characteristic
based on densities is obtained.

Throughout Section 3.1.3 and whenever density-based measures are considered within Part
I of this thesis, we assume the densities of all considered distributions to be strictly positive
on the interior of their supports. This additional assumption is required because evaluations
of the densities appear in denominators of density-based measures.

Theorem 3.12. a) The mapping νD : PI → R, F 7→ F −1(1
2) is a measure of central

location.

b) The mapping
τD : P1

I → [0, ∞), F 7→ 1
f(F −1(1

2))

is a measure of dispersion.

c) The mapping

γD : P2
I → R, F 7→ −

f ′(F −1(1
2))

(f(F −1(1
2)))2

is a measure of skewness.

Proof. a) Note that νD = νQ and see Theorem 3.8a).

b) Using
R′

F G(t) = (G−1)′(F (t)) · f(t) = f(t)
g(G−1(F (t))) = f(t)

g(RF G(t))

for all t ∈ supp(F ), we obtain that the following equivalences hold for F, G ∈ P1
I :

F ≤1 G ⇔ ∆′
F G(t) ≥ 0 ∀t ∈ supp(F ) ⇔ R′

F G(t) ≥ 1 ∀t ∈ supp(F )

⇔ f(t)
g(RF G(t)) ≥ 1 ∀t ∈ supp(F ) ⇔ 1

g(G−1(p)) ≥ 1
f(F −1(p)) ∀p ∈ (0, 1).

Thus, τD satisfies (D2). For (D1), let a, b ∈ R and p ∈ (0, 1). Then, Lemma 3.5 yields
for all F ∈ P1

I that

1
ha·X+b(H−1

a·X+b(p))
=


1

1
|a| f

(
a· F −1(p)−b

a
+b

) = |a| · 1
f(F −1(p)) , if a ≥ 0,

1
1

|a| f

(
a· F −1(1−p)−b

a
+b

) = |a| · 1
f(F −1(1−p)) , if a ≤ 0

holds. Note that, for p ∈ (0, 1), p = 1 − p is equivalent to p = 1
2 .



3.1. Measuring Location, Dispersion and Skewness 51

c) Let F, G ∈ P2
I . Because of

R′′
F G(t) = f ′(t) · (g(RF G(t)))2 − f2(t) · g′(RF G(t))

(g(RF G(t)))3

for all t ∈ supp(F ), the equivalences

F ≤2 G ⇔ R′′
F G(t) ≥ 0 ∀t ∈ supp(F )

⇔ f ′(t) · (g(RF G(t)))2 ≥ f2(t) · g′(RF G(t)) ∀t ∈ supp(F )

⇔ f ′(t)
f2(t) ≥ g′(RF G(t))

(g(RF G(t)))2 ∀t ∈ supp(F )

⇔ − g′(G−1(p))
(g(G−1(p)))2 ≥ − f ′(F −1(p))

(f(F −1(p)))2 ∀p ∈ (0, 1)

hold, proving that (S2) is satisfied. (S1) can be shown similarly to (D1) in b), using the
identity

−
h′

a·X+b(H
−1
a·X+b(p))

(ha·X+b(H−1
a·X+b(p)))2

=

− |a|2
|a|·a · f ′(F −1(p))

(f(F −1(p)))2 = sgn(a) ·
(
− f ′(F −1(p))

(f(F −1(p)))2

)
, if a ≥ 0,

− |a|2
|a|·a · f ′(F −1(1−p))

(f(F −1(1−p)))2 = sgn(a) ·
(
− f ′(F −1(1−p))

(f(F −1(1−p)))2

)
, if a ≤ 0,

which is true for all a, b ∈ R and all p ∈ (0, 1).

The proof of Theorem 3.12 also implies two further results.

Corollary 3.13. Let p ∈ (0, 1).

a) The mapping νp
D : PI → R, F 7→ F −1(p) satisfies (L2). It satisfies (L1), if and only if

p = 1
2 .

b) The mapping
τp

D : P1
I → [0, ∞), F 7→ 1

f(F −1(p))

satisfies (D2). It satisfies (D1), if and only if p = 1
2 .

c) The mapping

γp
D : P2

I → R, F 7→ − f ′(F −1(p))
(f(F −1(p)))2

satisfies (S2). It satisfies (S1), if and only if p = 1
2 .

Obviously, we have ν
1/2
D = νD, τ

1/2
D = τD and γ

1/2
D = γD. Note that the statements of

Corollary 3.13 are stronger than those of Theorem 3.12. As noted after Definition 3.1, νp
D is a
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measure of non-central location for p ̸= 1
2 . Similarly, one might say that τp

D and γp
D measure

dispersion and skewness in a non-central way for p ̸= 1
2 .

Corollary 3.14. a) Let F, G ∈ PI . F ≤st G holds, if and only if νp
D(F ) ≤ νp

D(G) for all
p ∈ (0, 1).

b) Let F, G ∈ P1
I . F ≤disp G holds, if and only if τp

D(F ) ≤ τp
D(G) for all p ∈ (0, 1).

a) Let F, G ∈ P2
I . F ≤c G holds, if and only if γp

D(F ) ≤ γp
D(G) for all p ∈ (0, 1).

The statements of Corollary 3.14 are also stronger than those of Theorem 3.12 concerning
the properties (L2), (D2) and (S2). Specifically, equivalent conditions for the fundamental
orders of location, dispersion and skewness are given, using measures of these characteristics
as well as the closely related quantities τp

D and γp
D.

A result similar to Corollary 3.14 is also true for the quantile-based measures given in
Theorem 3.8. Suppose that the evaluation points there are not chosen symmetrically around 1

2
and are instead arbitrary but still ordered. Then, one just obtains the definitions of the three
orders ≤st, ≤disp and ≤c given in Example 2.10 and Definition 2.11. However, while these
definitions require up to three evaluation points of the quantile function for each choice of
parameters, all equivalent characterizations in Corollary 3.14 only consider one evaluation of
the corresponding measure. This reduction of evaluation points is reflected in the equivalent
characterization of the order of the k-th convex characteristic via the k-th derivative of the
(modified) RIDF, given in Corollary 2.12. To this end, it is shown in the following that the
density-based measures can also be obtained as limiting values of the quantile-based measures
in the form of derivatives of the quantile function. This is only done for the measures of
dispersion and skewness since νQ = νD holds.

Remark 3.15. a) Let F ∈ P1
I . Obviously, limα↗ 1

2
τα

Q(F ) = 0 holds. In order to obtain a
derivative, we multiply with a factor that only depends on α and not on F itself, which
vanished for α ↗ 1

2 . This yields

lim
α↗ 1

2

1
1 − 2α

· τα
Q(F ) = lim

α↗ 1
2

F −1(1 − α) − F −1(α)
(1 − α) − α

=
(
F −1

)′
(1

2

)
= 1

f(F −1(1
2))

= τD(F ).

b) Let F ∈ P2
I . After multiplying with a similar α-dependent factor as before, we now

obtain the limiting value for α ↗ 1
2 by rewriting the resulting term as the ratio of a

second-order and a first-order difference quotient

lim
α↗ 1

2

4
1 − 2α

· γα
Q(F ) = 4 · lim

α↗ 1
2

F −1(1−α)−2F −1( 1
2 )+F −1(α)

(1−2α)2

F −1(1−α)−F −1(α)
1−2α

=
(
F −1)′′ (1

2)
(F −1)′ (1

2)
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= −
f ′(F −1(1

2))
(f(F −1(1

2)))2 = γD(F ),

where we used that

(
F −1

)′′
(p) =

( 1
f(F −1(p))

)′
= − f ′(F −1(p))

(f(F −1(p)))3

for p ∈ (0, 1). Hence, the density-based skewness measure is a limiting value of a
(rescaled) quantile-based skewness measure, analogous to the dispersion measures. The
representation of γD(F ) using the derivatives of F −1 is of a familiar structure. All
skewness measures considered this far consist of a quantity measuring skewness in the
numerator and a dispersion measure in the denominator for standardization. Since
(F −1)′(1

2) is a dispersion measure (see part a)), this structure can also be found in γD

with (F −1)′′(1
2) being the part that actually measures skewness.

While the use of a single evaluation point is a positive in Corollary 3.14, it is more of a
negative, when the density-based measures νD, τD and γD are utilized. While they are very
robust, they only consider the distribution at one point, which is often not representative
enough. One approach to rectify this is by utilizing the generalized quantities from Corollary
3.13. Since they also satisfy (L2) / (D2) / (S2), aggregating them in a way that is symmetric
around 1

2 should generally yield another measure of the corresponding characteristic. This is
done in the following remark by using integration.

Remark 3.16. Let µ be a symmetric, finite measure on the set (0, 1).

a) Let F ∈ PI and define νµ
ID(F ) =

∫ 1
0 νp

D(F ) µ(dp). Because of the monotonicity of the
integral, νµ

ID inherits property (L2) from νp
D. Concerning (L1), note that, for all a < 0,

b ∈ R,

νµ
ID(aX + b) =

∫ 1

0
νp

D(aX + b) µ(dp) = a ·
∫ 1

0
F −1

X (1 − p) µ(dp) + b

= a ·
∫ 1

0
F −1

X (p) µ(dp) + b = a ·
∫ 1

0
νp

D(X) µ(dp) + b = a · νµ
ID(X) + b

holds because of the symmetry of µ. Since the same identity is obviously true in the
case a ≥ 0, νµ

ID satisfies (L1) and, therefore, is a measure of central location. Specific
versions of νµ

ID(F ) include the mean E[X] for µ = U(0, 1) and the α-truncated mean
E[X|[F −1(α),F −1(1−α)]] for U(α, 1 − α), α ∈ (0, 1

2). Note that there are also discrete
versions of νµ

ID, e.g. the median F −1(1
2) = ν

1/2
D for µ = δ1/2 or the arithmetic mean over

any number of symmetrically chosen quantiles.

b) Let F ∈ P1
I and define τµ

ID(F ) =
∫ 1

0 τp
D(F ) µ(dp). With analogous reasoning to a), τµ

ID

satisfies both (D1) and (D2), implying that it is a measure of dispersion. The most
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notable family of examples is obtained by choosing µ = U(α, 1 − α) for α ∈ [0, 1
2), then

τµ
ID(F ) =

∫ 1−α

α

1
f(F −1(p)) dp =

∫ F −1(1−α)

F −1(α)

1
f(t) · f(t) dt = F −1(1 − α) − F −1(α)

follows. In the particular cases α = 0 and α = 1
4 , τµ

ID is the absolute range of the
distribution and its interquartile range, respectively.

c) Let F ∈ P2
I . Similarly to parts a) and b), one can proof that the mapping γµ

ID(F ) =∫ 1
0 γp

D(F ) µ(dp) is a skewness measure. To the knowledge of the author, no skewness
measure of this kind has been mentioned in the literature so far. While the method of
obtaining the measures in parts a) and b) also seems to be new, the thereby obtained
measures are most certainly not. Since the special case µ = U(α, 1−α) yields well-known
measures for central location and dispersion in the previous parts, we also consider it
here and obtain

γµ
ID(F ) = −

∫ 1−α

α

f ′(F −1(p))
(f(F −1(p)))2 dp = −

∫ F −1(1−α)

F −1(α)

f ′(t)
(f(t))2 · f(t) dt

= log(f(F −1(α))) − log(f(F −1(1 − α)))

= log
(

f(F −1(α))
f(F −1(1 − α))

)
.

In the examples from Remark 3.16 that integrate with respect to the measure µ = U(α, 1−α),
α acts as a trade-off parameter. For small α, the resulting measure is less robust but takes
the tails of the distribution more into account; for large α, the opposite is the case. This is
exemplified by νµ

ID, which is the mean for α ↘ 0, the median for α ↗ 1
2 , and a trimmed mean

in between.

3.1.4. Measures Based on the Mode

The mode of a distribution is the value that maximizes its likelihood. It is often only defined
for unimodal distributions, meaning that the density or pmf of the distribution has a unique
local maximum. In order to avoid unclear definitions, we assume F ∈ P2

I,um throughout
Section 3.1.4, where P2

I,um denotes the set of all unimodal cdf’s in P2
I . Now, we define the

mode of an F ∈ P2
I,um, denoted by MF , as the unique local maximum of F .

The mode is often associated with the mean and the median and it is usually assumed
to also be a measure of central location or central tendency. It does, however, not satisfy
condition (L2) and is therefore neither a measure of central location nor of non-central location
in the sense of Definition 3.1a) and the subsequent remarks.

Theorem 3.17. The mapping M· : P2
I,um → R, F 7→ MF does not satisfy (L2) and is not a

measure of central location.



3.1. Measuring Location, Dispersion and Skewness 55

Proof. We construct a counterexample from a beta distribution and a log-normal distribution.
Let X be symmetrically beta distributed with shape parameter 2, so it has the density
f(t) = 1

6 t2(1− t)2 ·1[0,1](t), t ∈ R. Furthermore, let Y be standard log-normally distributed, so
Y = exp(Z) with Z ∼ N (0, 1). Then, X ≤st Y can be confirmed numerically as F (t) ≥ G(t)
holds for all t ∈ R (see lower panel of Figure 3.2)). The mode of X is given by MF = 1

2 because
of its symmetry while the mode of Y can be calculated by differentiating the log-normal
density and is given by MG = exp(−1) ≈ 0.368. Thus, MG < MF holds (see upper panel of
Figure 3.2), which contradicts (L2).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

Densities

MFMG

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cdf’s

Figure 3.2.: Illustration of the counterexample
from the proof of Theorem 3.17.

Note that a counterexample could also be
constructed using two cdf’s with the same
support. For that, one could simply remove
a bit of probability mass from the peak of f

and remodel it in the form of a long, thin tail
on the interval (1, ∞).

Although the mode does not qualify as a
measure of location, it also finds use in mea-
sures for other characteristics, specifically for
skewness. A number of results have been
published on how skewness is represented in
the relationship between mean, median and
mode. The classical statement on this topic is
that, for a right-skewed cdf F , the inequalities
MF ≤ F −1(1

2) ≤ E[X] hold (see Runnenburg
(1978) for a historical overview). The reverse
chain of inequalities E[X] ≤ F −1(1

2) ≤ MF

was proven to hold by van Zwet (1979), if the
condition

F (F −1(1
2) − t) + F (F −1(1

2) + t) ≥ 1 ∀t ∈ R

is fulfilled. Van Zwet also gives a stronger sufficient condition based on the convex transforma-
tion order, namely that F ≤c F̃ , where F̃ is the mirrored cdf given by F̃ (t) = 1 −F (−t), t ∈ R.
Both conditions can be interpreted as F being skewed to the left in some sense with the
first one being notably weaker. There are also publications opposing this classical rule by
citing counterexamples (see Abadir, 2005 and von Hippel, 2005). However, the former paper
uses a narrow definition of skewness by identifying it with the measure γM , and the latter
paper mostly relies on discrete examples. The fact that the convex transformation order ≤c

is virtually useless for discrete distributions is demonstrated in Eberl and Klar (2019) and
is briefly discussed in Section 8.2 of this thesis, leaving the concept of skewness without a
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foundation. The problems that arise when quantile-based measures are applied to discrete
distributions are discussed for dispersion in Sections 7.4 and 7.5.

A skewness measure based on the mode was proposed by Pearson (1895, p. 370) and Yule
(1911, p. 150), who considered

E[X] − MF

σX
(3.8)

in the same context as the quantity in (3.6). However, Arnold and Groeneveld (1995, p. 34)
proved that (3.8) does not satisfy property (S2) and, therefore, is not a skewness measure.
They instead proposed another quantity based on the mode, which indeed qualifies as a
measure of skewness according to Definition 3.1.

Theorem 3.18. The mapping γMode : P2
I,um → R, F 7→ 1−2F (MF ) is a measure of skewness.

Proof. See Arnold and Groeneveld (1995, p. 35).

Like a number of other skewness measures, γMode is normalized in the sense that it only takes
values in the interval [−1, 1]. Note that γMode(F ) increases as the difference F −1(1

2) − MF

between the median and the mode increases; the same is true for γIQ(F ) and the difference
E[X] − F −1(1

2) between the mean and the median. The fact that both γMode and γIQ satisfy
(S1) and (S2) and, therefore, measure skewness in a well-founded way further supports the
classical connection between skewness on one side and mean, median and mode on the other.

3.2. Orders and Measures Based on Expectiles

Expectiles are a specific family of generalized quantiles that possess a number of desirable
properties. They are formally introduced and subsequently discussed in Section 2.3. Since the
expectiles of a cdf F are only defined in the case F ∈ L1, this is assumed to be true throughout
Section 3.2. Expectiles can occupy a similar role in measuring convex characteristics as L-
moments: they offer a sensible compromise between the robustness of quantile-based measures
and the more holistic perspective of moment-based measures.

Obvious choices for expectile-based measures are obtained by replacing each quantile in the
measures νQ, τα

Q and γα
Q by the corresponding expectile. However, while the quantile-based

measures preserve the order of the corresponding convex characteristic by definition, this is
not as simple for expectile-based measures of the same structure. In order to bridge this gap,
it is convenient to define expectile-based orders of location, dispersion and skewness. The
relationships between these orders and more traditional orders also shed some light on how
the quantification of these characteristics via expectiles differs from the approaches discussed
in Section 3.1.
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3.2.1. Location

The only location order considered in this thesis so far is the usual stochastic order ≤st,
where F ≤st G is defined by F −1(p) ≤ G−1(p) for all p ∈ (0, 1). A straightforward expectile
version of this order has been introduced by Bellini et al. (2018a, p. 859) and is defined in the
following.

Definition 3.19. For F, G ∈ L1, F is said to precede G in the expectile order, denoted by
F ≤e G, if eF (p) ≤ eG(p) holds for all p ∈ (0, 1).

Bellini (2012, p. 2020) proved that the expectile order is weaker than the usual stochastic
order by using an order-theoretic comparative static approach. In the following, a rather
elementary proof for the same result is given.

Theorem 3.20. Let F, G ∈ L1. Then F ≤st G implies F ≤e G.

Proof. As introduced in Example 2.21b), let πX(t) = E[(X − t)+] and πY (t) = E](Y − t)+]
denote the stop-loss transforms of X and Y . Then,

lim
t→∞

πX(t) = 0 and lim
t→−∞

(πX(t) + t) = E[X],

and analogously for Y (see, e.g., Müller and Stoyan, 2002, p. 20, Thm. 1.5.10). Hence,

lim
t→−∞

(πY (t) − πX(t)) = E[Y ] − E[X]. (3.9)

Now, assume X ≤st Y . This holds, if and only if the function t 7→ πY (t) − πX(t) is decreasing
(see Müller and Stoyan, 2002, p. 22, Thm. 1.5.13). In particular,

πX(t) ≤ πY (t) ∀t ∈ R. (3.10)

Bellini et al. (2018a, p. 860) proved that

πX(t) (t − E[Y ]) ≤ πY (t) (t − E[X]) ∀t ∈ R (3.11)

is a sufficient condition for X ≤e Y . Since X ≤st Y , we have E[X] ≤ E[Y ], and (3.11) is
obviously satisfied for E[X] ≤ t ≤ E[Y ]. For t > E[Y ], t − E[X] ≥ t − E[Y ] > 0, and (3.11)
holds by (3.10). Next, consider the case t < E[X]. Then, (3.11) is equivalent to

πX(t) (E[Y ] − t) ≥ πY (t) (E[X] − t) ∀t ∈ R

or
πX(t) (E[Y ] − E[X]) ≥ (πY (t) − πX(t)) (E[X] − t) ∀t ∈ R. (3.12)
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Since t → πY (t) − πX(t) is decreasing, πY (t) − πX(t) ≤ E[Y ] − E[X] holds by (3.9). On the
other hand, Jensen’s inequality implies

(E[X] − t) ≤ (E[X] − t)+ ≤ E[(X − t)+] = πX(t)

and (3.12) follows. Hence, (3.11) is valid for all t ∈ R, which completes the proof.

Since the stochastic order is the fundamental location order, this result also puts the
expectile order in the category of location orders. Furthermore, it implies that the p-expectile
satisfies condition (L2) for all p ∈ (0, 1). However, it follows from Proposition 2.22 that (L1)
is satisfied, if and only if p = 1

2 . Therefore, the p-expectile is a measure of non-central location
for all p ∈ (0, 1) \ {1

2}, just like the corresponding p-quantile. The 1
2 -expectile coincides with

the mean and is therefore already known to be a measure of central location. For the sake of
consistency, we define νE(F ) = eF (1

2) = µF , F ∈ L1.
Further results concerning the relationship between ≤st and ≤e were proved by Bellini

et al. (2018a): a counterexample for the reverse implication of Theorem 3.20 using Lomax
distributions is given on page 869, while the two orders are shown to be equivalent for normal
distributions on page 861.

The expectile order and the result from Theorem 3.20 can be rewritten in terms of the
transformed expectile cdf given in (2.14), which is the inverse function of the expectile function.
Namely, F ≤e G is equivalent to eG(F̆ (t)) ≥ t for all t ∈ R. The function R̆F G = RF̆ Ğ = eG◦F̆

may be called the expectile RIDF from F to G. Theorem 3.20 connects the modified expectile
RIDF ∆̆F G = R̆F G − id to the usual modified RIDF ∆F G by stating that the non-negativity
of ∆F G implies the non-negativity of ∆̆F G.

3.2.2. Dispersion

We start this subsection by defining a straightforward definition of an expectile dispersive
order. However, since obtaining results on that order is difficult, we also define a suitable
weakening along with the same weakening of the traditional dispersive order.

Definition 3.21. a) F is said to precede G in the weak dispersive order, denoted by
F ≤w−disp G, if

F −1(p1) − F −1(p0) ≤ G−1(p1) − G−1(p0) ∀ 0 < p0 < 1
2 < p1 < 1.

b) For F, G ∈ L1, F is said to precede G in the expectile dispersive order, denoted by
F ≤e−disp G, if

eF (p1) − eF (p0) ≤ eG(p1) − eG(p0) ∀ 0 < p0 < p1 < 1.
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c) For F, G ∈ L1, F is said to precede G in the weak expectile dispersive order, denoted by
F ≤we−disp G, if

eF (p1) − eF (p0) ≤ eG(p1) − eG(p0) ∀ 0 < p0 < 1
2 < p1 < 1.

The weak dispersive order is known in the literature: F ≤m
1 G was defined in MacGillivray

(1986, p. 1002, Def. 2.6) by

F −1(p) − F −1(1
2) ≥

≤ G−1(p) − G−1(1
2) ∀p

≤
≥

1
2 (3.13)

is easily seen to be equivalent to F ≤w−disp G. Before that, Bickel and Lehmann (1976,
p. 499) defined the same order only for symmetric distributions by |X − F −1(1

2)| ≤st |Y −
G−1(1

2)|. If all quantiles are replaced by expectiles and ≤st is replaced by ≤e, both alternative
characterizations are also applicable to the weak expectile dispersive order ≤we−disp. Note
that the notion ’weak dispersive order’ is also used for another order in Part II of this thesis
(defined on p. 182 without specific notation).

It is obvious that the two implications F ≤disp G ⇒ F ≤w−disp G and F ≤e−disp G ⇒
F ≤we−disp G hold. Furthermore, a dispersive analogue of Theorem 3.20 would be that the
dispersive order implies the expectile dispersive order. While this could not be proved so
far, the following example shows that the reverse implication is not true. Contrary to the
general setting in Part I of this thesis, the example is constructed using discrete distributions.
However, the statement of this example remains valid, if the distributions of both X and Y

are sufficiently closely approximated by continuous distributions (e.g. by linear interpolation).

Example 3.22. Let pX , pY ∈ (0, 1), pX ̸= pY and 0 < aX < aY . Furthermore, let X̃ ∼
Bin(1, pX), Ỹ ∼ Bin(1, pY ) and X = aX · X̃ and Y = aY · Ỹ . It follows directly that F and G,
the cdf’s of X and Y , are not comparable with respect to ≤disp since range(F ) ⊆ range(G) is
a necessary condition for F ≤disp G (Müller and Stoyan, 2002, p. 41, Thm. 1.7.3). Specifically,

F −1(1 − pX + ε) − F −1(1 − pX − ε) = aX > 0 = G−1(1 − pX + ε) − G−1(1 − pX − ε)

holds for ε > 0 sufficiently small. Further, a simple calculation yields πX(t) = pX(aX − t) for
t ∈ [0, aX ]. It follows that

F̆ (t) = t(1 − pX)
pXaX + t(1 − 2pX) and eF (α) = αpXaX

(1 − α) + pX(2α − 1)

for t ∈ [0, aX ] and α ∈ (0, 1) with analogous results for Y . Overall,

R̆F G(t) = (eG(F̆ (t)) = pY (1 − pX)aY t

pX(1 − pY )aX + t(pY − pX)

for t ∈ [0, aX ]. Note that F ≤e−disp G is equivalent to F̆ ≤disp Ğ and that F̆, Ğ ∈ P∞
I holds.
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According to Corollary 2.12, F ≤e−disp G is also equivalent to ∆̆′
F G ≥ 0 or R̆′

F G ≥ 1. Because
of limpX→pY R̆F G(t) = aY

aX
t for all t ∈ [0, aX ], X ≤e−disp Y holds if the difference between pX

and pY is sufficiently small.

In order to obtain a positive result that connects traditional dispersive orders and their
expectile-based counterparts, we move to the weak expectile dispersive order. The proof of
the following result uses the idea from the proof of Theorem 14 by Arab et al. (2022, p. 6).

Theorem 3.23. For F, G ∈ L1, F ≤we−disp G is equivalent to F ≤dil G.

Proof. Define X̃ = X −E[X], Ỹ = Y −E[Y ]. Then, X ≤dil Y is equivalent to X̃ ≤cx Ỹ , and
therefore to πX̃(t) ≤ πỸ (t) for all t ∈ R. This is equivalent to πX̃(t)

|t| ≤ πỸ (t)
|t| for all t ̸= 0, and

hence to
πX̃(t)

t
≥

πỸ (t)
t

∀t < 0 and πX̃(t)
t

≤
πỸ (t)

t
∀t > 0. (3.14)

Note that, using the properties of the stop-loss transform (Müller and Stoyan, 2002, p. 20,
Thm. 1.5.10), πX̃(t)

t ≤ −1 for t < 0, and πX̃(t)
t ≥ 0 for t > 0. Now, applying the transformation

h(x) = (x + 1)/(2x + 1), x ̸= −1/2, which is decreasing for x < −1/2 as well as for x > −1/2,
to both sides of the inequalities shows that (3.14) is equivalent to

H̆X̃(t) ≤ H̆Ỹ (t) ∀t < 0 and H̆X̃(t) ≥ H̆Ỹ (t) ∀t > 0. (3.15)

In turn, (3.15) is equivalent to

eX̃(p) ≥ eỸ (p) ∀p < 1
2 and eX̃(p) ≤ eỸ (p) ∀p > 1

2 .

This means that

eX(p) − E[X] ≥ eY (p) − E[Y ] ∀p < 1
2 and eX(p) − E[X] ≤ eY (p) − E[Y ] ∀p > 1

2 ,

which is equivalent to X ≤we−disp Y via the representation of the weak dispersive order in
(3.13).

One of the implications of Theorem 3.23 can also easily be derived from a result by Bellini
(2012, p. 2020). His Theorem 3(b) proves that X ≤cx Y implies eX(p) ≥ eY (p) for all p ≤ 1

2
and eX(p) ≤ eY (p) for all p ≥ 1

2 . These statements combined then imply X ≤we−disp Y .
However, the proof given by Bellini is not as elementary as that of Theorem 3.23.

The equivalence of ≤dil and ≤we−disp is heuristically plausible as both are dispersion orders
that are centred around the expectation, which coincided with the 1

2 -expectile. Still, because
the two orders are weakenings of the dispersive order and the expectile dispersive order,
respectively, Theorem 3.23 bridges the gap between traditional and expectile-based orders of
dispersion. Because ≤dil is a weakening of ≤disp (see Proposition 2.20b) and Example 2.21b)),
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the result also strengthens ≤disp in its role as foundational order of dispersion. Although it is
defined using quantiles, it is not fixed on such and also implies expectile-based orders.

Corollary 3.24. a) For F, G ∈ L1, F ≤disp G implies F ≤we−disp G.

b) Let α ∈ (0, 1
2). The mapping τα

E : L1 → [0, ∞), F 7→ eF (1 − α) − eF (α) is a measure of
dispersion.

Proof. a) This follows from Theorem 3.23 and Proposition 2.20b).

b) (D2) follows directly from a) and (D1) follows from Proposition 2.22a), b), e).

Corollary 3.24b) states that the expectile equivalent of the interquantile range is a measure
of dispersion. We call τE the interexectile range. The evaluation points of the expectile
function are restricted to symmetric choices for (D1) to be satisfied.

Analogously to how the limiting value of the interquantile range is considered in Remark
3.16a), we can consider the same limit for the interexpectile range. In doing so, we invoke
Proposition 2.22f) to obtain

lim
α↗ 1

2

1
1 − 2α

τα
E(F ) = lim

α↗ 1
2

eF (1 − α) − eF (α)
(1 − α) − α

= (eF )′
(1

2

)
=

E[|X − eF (1
2)|]

(1 − 1
2)F (eF (1

2)) + 1
2(1 − F (eF (1

2)))
= 2E[|X − µX |], (3.16)

i.e., double the mean absolute deviation from the mean (MAD). In the following, we disregard
the factor two. It inherits properties (D1) and (D2) directly from τα

E , which yields the following
corollary. Note that τ̃α

E = τα
E

1−2α is also a measure of dispersion for all α ∈ (0, 1
2).

Corollary 3.25. The mapping τEL : L1 → [0, ∞), F 7→ E[|X −µX |] is a measure of dispersion.

This result can also be found in the literature, see, e.g., Hürlimann (2002, p. 15). The
notation is chosen this way for the sake of consistency throughout Part I, with the index
meaning that the measure is obtained as the limiting value of the expectile-based measure.
A downside of expectile-based measures is that they are less intuitive and more difficult to
interpret that other, more traditional measures like τEL. For values of α that are sufficiently
close to 1

2 , τα
E is known to be close to the more accessible measure τEL. This observation is

generalized by the following result, which rescales τEL to obtain lower and upper boundaries
for τα

E in dependence of α.

Proposition 3.26. For all α ∈ (0, 1
2),

1 − 2α

1 − α
τEL(X) < τα

E(X) <
1 − 2α

α
τEL(X)
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holds.

Proof. For any p ∈ (0, 1) \ {1
2}, the first order condition (2.13) for the p-expectile can be

rewritten as

E[(X − eX(p))+] = 1 − p

1 − 2p
(µX − eX(p)), (3.17)

E[(X − eX(p))−] = p

1 − 2p
(µX − eX(p)). (3.18)

The representation
E[(X − t)+] =

∫ ∞

t
(1 − F (z)) dz

shows that t 7→ E[(X − t)+] is strictly decreasing on {t ∈ R : F (t) < 1}. Similarly, t 7→
E[(X − t)−] is strictly increasing on {t ∈ R : F (t) > 0}. Since, by Proposition 2.22c),
eX(α) < µX < eX(1 − α), we obtain

E[(X − eX(1 − α))+] < E[(X − µX)+] < E[(X − eX(α))+], (3.19)

E[(X − eX(α))−] < E[(X − µX)−] < E[(X − eX(1 − α))−]. (3.20)

Adding the terms in (3.19) and (3.20), and using equations (3.17) and (3.18) then yields

α

1 − 2α
(eX(1 − α) − eX(α)) < E[|X − µX |] <

1 − α

1 − 2α
(eX(1 − α) − eX(α)) ,

or

1 − 2α

1 − α
E[|X − µX |] < eX(1 − α) − eX(α) <

1 − 2α

α
E[|X − µX |].

Note that the difference between the bounds given in Proposition 3.26 is decreasing in α:
for α = 1

4 , we have 2
3τEL(X) < τα

E(X) < 2τEL(X); and for α ↘ 0, the lower bound converges
to τEL(X) and the upper bound diverges. For α ↗ 1

2 , all three quantities converge to zero.
However, if the result is reformulated in terms of τ̃α

E = τα
E

1−2α , we obtain

1
1 − α

τEL(X) < τ̃α
E(X) <

1
α

τEL(X),

and these bounds both converge to 2τEL(X) for α ↗ 1
2 .

The interquantile range τα
Q is another dispersion measure that is closely related to τα

E . A
general statement that connects the two measures in a similar way as in Proposition 3.26
could not be obtained here. However, if attention is restricted to symmetric distributions
with log-concave densities, Corollary 7 and the preceding statements by Arab et al. (2022, p.
4) directly yield the following result.
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Proposition 3.27. Let F ∈ S with a log-concave density, i.e., it satisfies f(λs + (1 − λ)t) ≥
f(s)λf(t)1−λ for all s, t ∈ supp(F ) and all λ ∈ (0, 1). Then, τα

E(F ) < τα
Q(F ) holds for all

α ∈ (0, 1
2).

A well-known example of a symmetric distribution with a log-concave density is any normal
distribution. Hence, any interexpectile range of a normal distribution is smaller than the
corresponding interquantile range.

3.2.3. Skewness

As for location and dispersion, the most obvious candidate for an expectile-based skewness
measure is obtained by replacing all quantiles in the quantile-based measure γα

Q by expectiles.
Thus, for F ∈ L1 and α ∈ (0, 1

2), we have

γ̃α
E(F ) =

eF (1 − α) − 2eF (1
2) + eF (α)

eF (1 − α) − eF (α) = eF (1 − α) − 2µF + eF (α)
eF (1 − α) − eF (α) .

The discussion of the properties (S1) and (S2) is postponed to later in this section since it is
aided by the definition of expectile-based skewness orders.

Most of the skewness measures considered so far are normalized to the interval [−1, 1].
This is also true for γ̃α

E because its numerator is the difference of the two positive quantities
eF (1−α)−eF (1

2) and eF (1
2)−eF (α) and its denominator is the sum of the same two quantities.

However, these boundaries can be improved and the actual range of γ̃α
E(F ) is considerably

smaller.

Proposition 3.28. Let α ∈ (0, 1
2). Then, −1 + 2α < γ̃α

E(F ) < 1 − 2α holds for all F ∈ L1

and both bounds cannot be improved.

Proof. We reuse the idea from the proof of Proposition 3.26. Plugging equations (3.17) and
(3.18) into the outer parts of inequalities (3.19) and (3.20) yields

α(eX(1 − α) − µX) < (1 − α)(µX − eX(α)),

α(µX − eX(α)) < (1 − α)(eX(1 − α) − µX).

This can be rearranged into

eX(1 − α) − µX

µX − eX(α) <
1 − α

α
,

eX(1 − α) − µX

µX − eX(α) >
α

1 − α
.

By applying the increasing transformation (0, ∞) → (−1, 1), t 7→ (1 + t−1)−1 − (1 + t)−1 as
in the proof of Lemma 3.9, the first inequality yields the upper bound for γ̃α

E and the second
yields the lower bound.
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Let now X ∼ Bin(1, p) for some p ∈ (0, 1). Some calculations yield

γ̃α
E(X) = (2α − 1)(2p − 1).

Hence, γ̃α
E(X) → 1 − 2α for p → 0 as well as γ̃α

E(X) → 2α − 1 for p → 1. Both inequalities are
sharp since this discrete distribution can be approximated arbitrarily closely by distributions
in P1

I .

Based on this result we redefine our expectile-based skewness measure as

γα
E = 1

1 − 2α
γ̃α

E , α ∈ (0, 1/2).

Then, −1 < γα
E(F ) < 1 holds, and both inequalities are sharp for all α ∈ (0, 1/2) and F ∈ L1.

Note that this factor is the same as the one used to obtain the limiting expectile-based
dispersion measure τEL in (3.16). This factor again allows us to determine the limiting value
for α ↗ 1

2 . Assuming F ∈ P1
I , Proposition 2.22f) yields that the corresponding expectile

function eF is twice differentiable. Then, we can rewrite γα
E as a ratio of first- and second-order

difference quotients

γα
E(F ) = 1

2

eF ( 1
2 +β)−2eF ( 1

2 )+eF ( 1
2 −β)

β2

eF ( 1
2 +β)−eF ( 1

2 −β)
β

,

where β = 1
2 − α. Splitting the central difference in the denominator into a forward and a

backward difference yields the limit

lim
α↗ 1

2

γα
E(F ) = lim

β↘0
γα

E(F ) =
e′′

F (1
2)

4e′
F (1

2)
.

We have already seen that e′
F (1

2) = 2τEL(F ) = 2E[|X − µX |]. For the calculation of e′′
X(1/2),

we denote numerator and denominator of e′
X(α) in Proposition 2.22f) by u(α) and v(α),

respectively. Then, limα↗ 1
2

u(α) = τEL(F ) and limα↗ 1
2

v(α) = 1
2 as well as

u′(α) = e′
F (α)(2F (eF (α)) − 1) → e′

F (1/2)(2F (µF ) − 1), (3.21)

v′(α) = (1 − 2F (eF (α))) + (1 − 2α)f(eF (α))e′
F (α) → 1 − 2F (µF ), (3.22)

for α ↗ 1/2. By combining these results, it follows

e′′
X(1/2) = lim

α↗ 1
2

u′(α)v(α) − u(α)v′(α)
(v(α))2 = 8τEL(F )(2F (µF ) − 1), (3.23)

which overall yields
γEL(F ) = lim

α↗ 1
2

γα
E(F ) = 2F (µF ) − 1.
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Using γEL to measure skewness is not a new idea. It has already been introduced as such by
Tajuddin (1999) and the quantity F (µ) is the theoretical counterpart of the test statistic of
the sign test for symmetry with estimated center (see Gastwirth, 1971). Similarly to γIQ in
(3.5), the measure γEL exploits the idea that the difference between mean µF and median
F −1(1

2) indicates the skewness of the underlying distribution. Since a substitution of the
mean by the median in γEL(F ) always results in the value 0 for F ∈ PI , a positive value of
µF − F −1(1

2) yields a positive value of γEL(F ) and thus right-skewness and vice versa. A
similar principle is used by the skewness measure γMode based on the mode, given in Theorem
3.18.

Since the measure γEL has a much simpler structure than its ’parent’ γα
E , it is also much

simpler to prove that it fulfils the properties (S1) and (S2).

Theorem 3.29. The mapping γEL : L1 → R, F 7→ 2F (µF ) − 1 is a measure of skewness.

Proof. Property (S1) follows directly from Lemma 3.5a) and the linearity of the expectation.
For property (S2), let F, G ∈ L1 with F ≤c G, so RF G is convex. Then, the following
equivalences hold:

γEL(F ) ≤ γEL(G) ⇔ F (µF ) ≤ G(µG) ⇔ RF G(E[X]) ≤ E[Y ].

The assertion follows by Jensen’s inequality and Y
D= G−1(F (X)) = RF G(X).

Just like for the expectile-based dispersion measure, we can use the limiting value for α ↗ 1
2

as a way to make the expectile-based measure γα
E more accessible. For that, consider the

following result.

Proposition 3.30. For F ∈ P3
I , limα↗ 1

2

d
dαγα

E(F ) = 0 holds.

Proof. By Proposition 2.22f), it follows from F ∈ P3
I that eF is four times differentiable.

First, we differentiate γα
E(F ) with respect to α, which yields

d
dα

γα
E(F ) = 2

e′
F (α)(eF (1 − α) − eF (1

2)) − e′
F (1 − α)(eF (1

2) − eF (α))
(1 − 2α)(eF (1 − α) − eF (α))2

+ 2
eF (1 − α) − 2eF (1

2) + eF (α)
(1 − 2α)2(eF (1 − α) − eF (α))

for α ∈ (0, 1
2). Using the notation β = 1

2 − α, this can once again be rewritten as a
composition of difference quotients. Now, using Taylor expansions for each of them such that
the remainders are of order O(β3) in the numerators as well as in the denominators yields
after some computations

d
dα

γα
E(F ) = 1

4
−e′

F (1
2)e′′

F (1
2)β + O(β3)

(e′
F (1

2))2β2 + O(β3)
+ 1

4
e′′

F (1
2) + 1

12e
(4)
F (1

2)β2 + O(β3)
e′

F (1
2)β + O(β3)
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= 1
4

O(β3)
e′

F (1
2)β2 + O(β3)

,

where we used for the second equality that e′
F (1

2) > 0 by Proposition 2.22c). Then, taking the
limit β ↘ 0 yields the asserted result limα↗1/2

d
dαγα

E(F ) = limβ↘0
d

dαγα
E(F ) = 0.

The fact that d
dαγα

E(F ) converges to zero as α tends to 1
2 means that γα

E(F ) flattens out
towards γEL(F ). Thus, at least for values of α close to 1

2 , γEL(F ) is close to and thereby
representative for a range of values of γα

E(F ) without the need of a specific choice of the
parameter α.

In order to show that γα
E also is a measure of skewness, we define two further orders of

skewness to bridge the gap between the expectile-based measure and ≤c. For the remainder
of this chapter, F̃ : R → [0, 1], t 7→ F (τEL(F ) · t + µF ) denotes the version of F that is
standardized with respect to the mean and the MAD, which is denoted by τEL. G̃ is defined
analogously.

Definition 3.31. Let F, G ∈ L1.

a) G is more skewed with respect to the mean and the MAD than F , denoted by F ≤MAD
µ G,

if S−(F̃ |(−∞,0) − G̃|(−∞,0)) = 1, S−(F̃ |(0,∞) − G̃|(0,∞)) = 1 and F̃ (0) ≤ G̃(0).

b) F precedes G in the s-order, denoted by F ≤s G, if
∫ t

−∞
F̃ (x) dx ≥

∫ t

−∞
G̃(x) dx ∀t ≤ 0,

and ∫ ∞

t
(1 − F̃ (x)) dx ≤

∫ ∞

t
(1 − G̃(x)) dx ∀t ≥ 0.

The first order ≤MAD
µ is closely related to the intersection characterization given in Propo-

sition 2.17b) for k = 2, only with the MAD instead of the standard deviation. The additional
condition that the two intersections are on either side of zero follows from the standardization
with the MAD, see the proof of the first implication in Theorem 3.32a).

The s-order ≤s is not to be confused with the order of kurtosis for symmetric distributions,
which is introduced in Definition 4.14a) using the same notation. The order ≤s as defined in
Definition 3.31 can be reformulated in terms of the convex order. For standardized cdf’s F̃

and G̃ with X̃ ∼ F̃ and Ỹ ∼ G̃, X̃ ≤cx Ỹ is equivalent to∫ ∞

t
(1 − F̃ (x)) dx = πX̃(t) ≤ πỸ (t) =

∫ ∞

t
(1 − G̃(x)) dx ∀t ∈ R.

This implies that F ≤s G is equivalent to

X̃+ ≤cx Ỹ+ and Ỹ− ≤cx X̃−
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(see Arab et al., 2022, p. 5). Thus, F ≤s G means that the probability mass on the right side
of G is more stretched out than for F and that the probability mass on the left side of F

is more stretched out than for G. This intuitively corresponds to G being more skewed to
the right than F . A rigorous argument for both ≤MAD

µ and ≤s to be considered as skewness
orders is given in the first part of the following result.

Theorem 3.32. Let F, G ∈ L1. Then:

a) F ≤c G =⇒ F ≤MAD
µ G =⇒ F ≤s G.

b) F ≤s G ⇐⇒ F̃ ≤e G̃.

Proof. a) We start with the first implication. Using the representations

E[X] =
∫ ∞

0
(1 − F (t)) dt −

∫ 0

−∞
F (t) dt

and
E[|X|] =

∫ ∞

0
(1 − F (t) − F (−t)) dt

we obtain

E[X] − E[Y ] =
∫ ∞

−∞
(G − F )(t) dt, (3.24)

E[|X|] − E[|Y |] =
∫ ∞

0
(G − F )(t) dt −

∫ 0

−∞
(G − F )(t) dt.

By applying this to the standardized distributions, we obtain∫ ∞

−∞
(G̃ − F̃ )(t) dt = 0, (3.25)∫ ∞

0
(G̃ − F̃ )(t) dt =

∫ 0

−∞
(G̃ − F̃ )(t) dt. (3.26)

Due to Corollary 2.16, F ≤c G implies that F̃ and G̃ cross each other at most twice.
Since µF̃ = µG̃, it follows from (3.24) (and is well-known) that F̃ and G̃ are either
identical or cross each other at least once.

Now, assume that F̃ ̸= G̃. Then, RF̃ G̃ is not linear and Jensen’s inequality implies
RF̃ G̃(0) < 0, resulting in F̃ (0) < G̃(0) (see van Zwet, 1964, p. 10).

Assume that the function G̃ − F̃ has exactly one root x1, where x1 ≤ 0. Put x0 =
−∞, x2 = 0, x3 = ∞, and

Ai =
∫ xi

xi−1
(G̃ − F̃ )(t) dt, i = 1, 2, 3.



68 Chapter 3. Quantification of Location, Dispersion and Skewness

From (3.25) and (3.26), we obtain

A1 + A2 + A3 = 0, A1 + A2 = A3.

Hence, A3 = 0, which implies that F̃ (x) = G̃(x) for x ≥ 0, a contradiction to F̃ (0) <

G̃(0). Since an analogous reasoning excludes a single root x1 > 0, it follows that F̃ and
G̃ cross each other exactly twice, with G̃ − F̃ changing sign from negative to positive to
negative, and (G̃ − F̃ )(0) > 0.

The proof of the second implication is a modification of the proof of Theorem 13.2. by
Arab et al. (2022, p. 6). We denote the cdf of X̃+ and Ỹ+ by F̃+ and G̃+, respectively,
and use the same notation for the negative parts. Then, F ≤MAD

µ G implies that
G̃+ − F̃+ changes sign exactly once, from positive to negative. Now, using Theorem
3.A.44 by Shaked and Shanthikumar (2006, p. 133), we infer X̃+ ≤cx Ỹ+. Analogously,
F ≤MAD

µ G also implies that G̃− − F̃− changes sign exactly once, from negative to
positive. The same result as before then yields Ỹ− ≤cx X̃−.

b) See Theorem 14 by Arab et al. (2022, p. 6).

As mentioned in the proof, the implication F ≤c G ⇒ F ≤s G was already shown by Arab
et al. (2022, p. 6). Part b) is proved in a similar way as Theorem 3.23. It states that the
location order ≤e is equivalent to the skewness order ≤s for suitably standardized distributions.
The standardization is crucial to understand that statement. If central location and dispersion
are fixed in the sense of a single measure, an increase with respect to ≤e means that the
probability mass on the left side is condensed close to the centre of the distribution and that
the probability mass on the right side is stretched out away from the centre. This corresponds
to an increase in (right-)skewness.

The approach to measure skewness with ≤s can also be used to construct another family of
expectile-based skewness measures. Theorem 3.32 implies that these new measures as well as
the measures γα

E are indeed skewness measures according to Definition 3.1.

Theorem 3.33. a) For all α ∈ (0, 1
2), the mapping

γα
E : L1 → R, F 7→ 1

1 − 2α

eF (1 − α) − 2µF + eF (α)
eF (1 − α) − eF (α)

is a measure of skewness.

b) For all t > 0, the mapping

γt
EA : L1 → R, F 7→ γ̃

τEL(F )·t
EA (F ),
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where
γ̃t

EA : L1 → R, F 7→ 1
t

∫ µF +t

µF −t
F (x) dx − 1

is a measure of skewness.

Proof. a) (S1) follows in the same way as for γα
Q because of the parallels between Propo-

sition 2.22a), b), e) and Lemma 3.5d). This can be used in the proof of (S2) because
γα

E(F ) ≤ γα
E(G) is equivalent to γα

E(F̃ ) ≤ γα
E(G̃). By Theorem 3.32, F ≤c G implies

F̃ ≤e G̃, i.e. eF̃ (α) ≤ eG̃(α) for all α ∈ (0, 1). A straightforward computation shows
that γα

E(F̃ ) ≤ γα
E(G̃) is equivalent to

eG̃(1 − α)eF̃ (α) ≤ eF̃ (1 − α)eG̃(α) ∀α ∈ (0, 1
2)

(by using the increasing transformation from the proof of Lemma 3.9 and noting
µF̃ = µG̃ = 0). This, in turn, is equivalent to

eG̃(1 − α) |eF̃ (α)| ≥ eF̃ (1 − α) |eG̃(α)| ∀α ∈ (0, 1
2). (3.27)

Because of eG̃(1 − α) ≥ eF̃ (1 − α) and |eF̃ (α)| ≥ |eG̃(α)| for α ∈ (0, 1
2), inequality (3.27)

holds.

b) For (S1), let a > 0, b ∈ R. Then,

γ̃t
EA(aX + b) = 1

t

∫ aµX+b+t

aµX+b−t
F

(
x − b

a

)
dx − 1

= a

t

∫ µX+ t
a

µX− t
a

F (x) dx − 1 = γ̃
t/a
EA(X).

Now we can assume without restriction that µX = 0 and we obtain

γ̃t
EA(−X) = 1

t

∫ t

−t
1 − F (x) dx − 1 = 1 − 1

t

∫ t

−t
F (x) dx = −γ̃t

EA(X).

Thus, for a, b ∈ R,

γt
EA(aX + b) = γ̃

τEL(aX+b)·t
EA (aX + b) = sgn(a) · γ̃

|a|τEL(X)·t/|a|
EA (X) = sgn(a) · γt

EA(X).

For (S2), assume F ≤c G, which implies F ≤s G. Because (S1) holds, we can consider
F̃ and G̃ instead of F and G. By definition, F̃ ≤s G̃ entails∫ t

−∞
(F̃ − G̃)(x) dx ≥ 0 ∀t ≤ 0 and

∫ ∞

t
(F̃ − G̃)(x) dx ≥ 0 ∀t ≥ 0.
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Thus, ∫ t

−t
(F̃ − G̃)(x) dx ≤ 0 ∀t > 0,

which is equivalent to γt
EA(F ) ≤ γt

EA(G) for all t > 0.

It is easy to see that both γ̃t
EA and γt

EA are standardized to the interval [−1, 1] because∫ µF +t
µF −t F (x) dx ∈ [0, 2t]. γt

EA measures skewness in a similar way to how it is quantified by the
order ≤s, which is obvious from the proof of (S2) in Theorem 3.33b). A skewness measure of
a similar structure has been proposed in the literature by Arnold and Groeneveld (1993, p.
19), who considered ∫ α

0
F −1(1

2 + u) + F −1(1
2 − u) du

for α ∈ (0, 1
2). While this quantity is centred around the median, γt

EA is centred around the
mean.

It can be shown that γt
EA and γEL belong to a common family of expectile-based skewness

measures. To see this, let Ut ∼ U(µF − t · τEL(F ), µF − t · τEL(F )) and note that

γt
EA(F ) = 2E[F (Ut)] − 1. (3.28)

For t ↘ 0, the entire probability mass of Ut is concentrated in µF and we obtain U0 = µF

almost surely. The dominated convergence theorem implies

lim
t↘0

γt
EA(F ) = γEL(F )

for all F ∈ L1. The random variable Ut in (3.28) can also reasonably be replaced by any other
random variable that has a unimodal density and is symmetric around µF , e.g. a normal
distribution with mean µF .

Finally, we examine the connection between γα
E and γt

EA more closely. Both represent an
entire family of skewness measures and the former is highly similar to γα

Q. Thus, the question
arises whether these families characterize symmetry as the quantile-based measures are shown
to in Proposition 3.11. This is answered by the following result.

Theorem 3.34. Let F ∈ L1.

a) γt
EA(F ) ≥

≤ 0 holds for all t > 0, if and only if γα
E(F ) ≥

≤ 0 holds for all α ∈ (0, 1
2).

b) The following three statements are all equivalent:

(i) F ∈ S,

(ii) γα
E(F ) = 0 for all α ∈ (0, 1

2),

(iii) γt
EA(F ) = 0 for all t > 0.
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Proof. a) We only prove the equivalence between the ’≥’-inequalities; the reasoning for
the reverse inequalities is entirely analogous.

In order to connect the two families of skewness measures, we use the so-called Omega
ratio, which has been introduced by Keating and Shadwick (2002) as

ΩX(t) = E[(X − t)+]
E[(X − t)−] , t ∈ R.

Then, the first order condition (2.13), which identifies the p-expectile uniquely, can be
written as

ΩX(eX(p)) = 1 − p

p
, p ∈ (0, 1). (3.29)

This gives the following one-to-one relation between expectiles and Omega ratios:

eX(p) = Ω−1
X

(1 − p

p

)
∀p ∈ (0, 1), ΩX(t) = 1 − e−1

X (t)
e−1

X (t)
∀t ∈ R

(see Rémillard, 2013, pp. 128–129).

γα
E(F ) ≥ 0 for all α ∈ (0, 1

2) is obviously equivalent to

eX(1 − α) − µX ≥ µX − eX(α) ∀α ∈ (0, 1
2),

which, in turn, is equivalent to

eX−µX
(α) ≥ e−(X−µX)(α) ∀α ∈ (1

2 , 1)

(see Proposition 2.22a), e)). For α ∈ (1
2 , 1), choose β = 1−α

α ∈ (0, 1). Using (3.29), the
condition e−(X−µX)(α) ≤ eX−µX

(α) is equivalent to

Ω−(X−µX)(x) = β, ΩX−µX
(y) = β ⇒ x ≤ y. (3.30)

Since Ω−(X−µX)(0) = ΩX−µX
(0) = 1 and since Ω−(X−µX) and ΩX−µX

are strictly
decreasing, (3.30) holds for all β ∈ (0, 1), if and only if

Ω−(X−µX)(t) ≤ ΩX−µX
(t) ∀t > 0. (3.31)

Using ΩX−µX
(t) = ΩX(µX + t) and Ω−(X−µX)(t) = 1

ΩX(µX−t) , we finally obtain that
(3.31), and, hence, the initial statement that γα

E(F ) ≥ 0 for all α ∈ (0, 1
2), is equivalent

to
ΩX(µX + t) · ΩX(µX − t) ≥ 1 ∀t > 0. (3.32)
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The Omega ratio, in turn, is closely related to the stop-loss transform: from

E[(X − t)−] = t − E[X] + E[(X − t)+]

we immediately get
ΩX(t) = πX(t)

t − µX + πX(t) . (3.33)

Plugging (3.33) into condition (3.32) gives

πX(µX + t) · πX(µX − t) ≥ (t + πX(µX + t)) · (−t + πX(µX − t)) ∀t > 0,

which is equivalent to

1
t (πX(µX + t) − πX(µX − t)) + 1 ≥ 0 ∀t > 0. (3.34)

It remains to be shown that the left side of inequality (3.34) is equal to γ̃t
EA(X) because

γ̃t
EA(X) ≥ 0 for all t > 0 is equivalent to γt

EA(X) ≥ 0 for all t > 0. For this, let t > 0
and note that

γ̃t
EA(X) = 1

t

∫ µX+t

µX−t
F (x) dx − 1

= 1 − 1
t

∫ µX+t

µX−t
(1 − F (x)) dx

= 1
t

(∫ ∞

µX+t
(1 − F (x)) dx −

∫ ∞

µX−t
(1 − F (x)) dx

)
+ 1.

b) The equivalence between (ii) and (iii) follows by combining the two statements from
part a). For the equivalence between (i) and (ii), note that F ∈ S is equivalent to
X − µX

D= µX − X because the centre of a symmetric distribution coincides with its
mean (see Proposition 3.4a) and Theorem 3.6a)). Note that a cdf F ∈ L1 is uniquely
determined by its expected value and its stop-loss-transform (see Müller and Stoyan,
2002, p. 20). Thus, F is uniquely determined by its expectile function, which implies
that F ∈ S is equivalent to eX−µX

(p) = eµX−X(p) for all p ∈ (0, 1). Using Proposition
2.22a), e), this is equivalent to

eX(1 − α) − µX = µX − eX(α) ∀α ∈ (0, 1
2),

which, in turn, is equivalent to (ii).

Part b) of this result states that the two families {γα
E : α ∈ (0, 1

2)} and {γt
EA : t > 0}

of skewness measures both characterize symmetry. Part a) states that the two families
additionally interpret skewness both to the left and to the right in the same way.



CHAPTER 4

Quantifying Kurtosis Irrespective of Symmetry

4.1. What is Kurtosis?: Existing Literature and
Preliminary Remarks

There has been much discussion in the literature concerning the question of what kurtosis
describes exactly. In particular, a number of articles have been published both advocating
its interpretation as ’peakedness’ of a distributions and opposing it. See Crack (2019) and
Westfall (2014) for examples of either position and Fiori and Zenga (2009) for a more neutral
historical review. The heuristic notion of peakedness (as opposed to flat-toppedness) describes
how sharp the peak of the density of a unimodal distribution is.

Balanda and MacGillivray (1988, p. 116) provide a critical review of the literature concerning
kurtosis and, based on that, aptly describe an increase in kurtosis as ’the location- and scale-
free movement of probability mass from the shoulders of a distribution into its center and tails’.
This heuristic, as is usually the case for kurtosis, is applied solely to unimodal symmetric
distributions. In accordance with this observation, many of the publications, which are critical
of the association of kurtosis with peakedness, justify this by stating that kurtosis is not only
characterized by peakedness but also by fat tails.

While the author generally concurs with the heuristic of kurtosis given by Balanda and
MacGillivray (1988), there is a major issue in the literature concerning kurtosis that needs to
be addressed: the notion of kurtosis is almost exclusively limited to symmetric distributions.
Most publications about kurtosis just assume the considered distributions to be symmetric
without giving any justification (see, e.g., van Zwet, 1964, Oja, 1981 or Groeneveld and
Meeden, 1984). A number of articles also claim that ’kurtosis is essentially a property of
symmetric distributions’ (Tracy and Doane, 2005, p. 272) or nearly symmetric distributions
(see McAlevey and Stent, 2018, p. 122 or Crack, 2019, p. 64). However, all of the latter cited
articles do so by citing either Pearson (1902, p. 275) or MacGillivray and Balanda (1988),
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both of which merely state that certain interpretations of kurtosis are simpler if symmetric
distributions are used. Overall, there seems to be no convincing reason to only apply the
notion of kurtosis to symmetric distributions. Instead, it seems to be rather difficult to
untangle the notions of skewness and kurtosis in asymmetric distributions (see also Balanda
and MacGillivray, 1990, p. 20). If only symmetric distributions are considered, their skewness
is fixed and their location and spread can be standardized, leaving kurtosis as their major
distinguishing characteristic. A prime example of this would be Students t-distribution for
varying degrees of freedom with the normal distribution being the lower limit in terms of
kurtosis.

Since shape categorization, which is often done using the skewness-kurtosis-plane, considers
combinations of skewness and kurtosis, the notion of kurtosis needs to be applied to all
distributions, irrespective of symmetry. It is, however, not clear, how the notions of skewness
and kurtosis can be untangled in order to consider ’pure’ kurtosis. Contrary to (central)
location and dispersion, distributions cannot simply be standardized with respect to skewness.
Two major attempts were made in the literature to define a kurtosis order for asymmetric
distributions, one of which was made by MacGillivray and Balanda (1988) by coining the
term anti-skewness. For cdf’s F and G, they define F ≤a G to hold, if RF G is concave on
[inf(supp(F )), F −1(1

2)] and convex on [F −1(1
2), sup(supp(F ))]. Although the a in the index

of the order stands for anti-skewness, ≤a is defined as a generalization of the kurtosis order
≤s, defined by van Zwet (1964) and reused, among others, by Oja (1981). The order ≤s was
only ever defined as a kurtosis order for symmetric distributions and, on this restricted class
of distributions, its definition coincides with that of ≤a. In most publications on kurtosis,
≤s is the strongest considered order. One major problem with ≤a is that it artificially
centres the kurtosis comparison of the two considered distributions around their medians.
While this is appropriate for symmetric distributions as well as pairs of distributions, the
asymmetries of which cancel each other out in a certain way, it is too restrictive in general.
This shortcoming is made more obvious in Section 4.2.2, where ≤a is compared to other
kurtosis orders that are more adaptive to asymmetries. In a nutshell, ≤a seeks to welcome
asymmetric distributions into the quantification of kurtosis without opening up its framework
for subsequent irregularities.

The other major approach to define a kurtosis order for asymmetric distributions utilizes
the so-called spread function. This approach, along with a number of weaker orders and
further references, is discussed in detail by Balanda and MacGillivray (1990). For a cdf F ,
they define the spread function by

SF (α) = F −1(1
2 + α) − F −1(1

2 − α), α ∈ [0, 1
2),

which can be interpreted as one half of a symmetrized quantile function of F . Heuristically,
the distribution is again artificially centred around the median by folding it around the median
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and averaging out the two overlaying halves of the distributions. If the resulting half of a
distribution is then mirrored at the median, a symmetric distribution is obtained, which can
be ordered with respect to kurtosis using ≤s. This methodology is equivalent to defining the
’symmetrized’ kurtosis order ≤S by

F ≤S G ⇔ SG ◦ S−1
F is convex.

This definition of a kurtosis order is fairly easy to use and theoretically applicable to all
univariate distributions. It does, however, have significant downsides, especially if it is
intended to be used as a foundational order that establishes what is meant by the notion of
kurtosis. This was in part noted by Balanda and MacGillivray (1990, p. 29) themselves. First,
a significant amount of information is lost in just combining the two ’sides’ (with respect
to the median) of the distribution. Contrary to the strongest and most basic orders for
the lower order characteristics of location, dispersion and skewness, the order ≤S does not
compare two cdf’s in a pointwise manner. These basic orders require the function ∆F G to be
0-convex, 1-convex or 2-convex on its entire domain. In contrast, the order ≤S theoretically
allows arbitrarily large deviations from the desired concavity or convexity on one side, if they
are compensated by the other side. This kind of behaviour is not desirable for these basic
orders. The second downside becomes apparent, if distributions are considered that are not
supported by the entire real numbers and that are significantly skewed. In that case, e.g. for
the exponential distribution, the support ends close to the median on one side and might even
be infinite on the other side. The idea of folding this kind of distribution around the median
does not make much sense and the symmetrized version is not representative of the original
distribution.

Overall, both major approaches to define a kurtosis order for asymmetric distributions in
the literature are unsatisfactory in general. Both of them artificially centre the comparison
with respect to kurtosis around the medians of the considered distributions. One could of
course modify these orders to be centred around any other measure of central location, but
this does not solve the underlying problem.

To the author, the most intuitive approach is to follow the pattern that can be observed
for the basic orders of location, dispersion and skewness. This pattern was laid out in great
detail by Oja (1981). There, the strongest and therefore most foundational order is always
the order of the corresponding convex characteristic as it is generally defined in Definition
2.8b). Since Oja required all distributions to be sufficiently regular, he equivalently defined
the order of the k-th convex characteristic, k ∈ N0, via the k-convexity of the modified RIDF
∆F G (see Proposition 2.9). A hierarchical structure of the characteristics is represented by the
order of the convexity of said function. With location, dispersion and skewness, the first three
of these convex characteristics are discussed in Chapter 3. In keeping with the work of Oja
(1981), the fundamental orders used there are ≤0 (which is equivalent to ≤st), ≤1 (which is
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Figure 4.1.: Graph of the function ϕ(x) = x3 for three different ranges of x-values on a linear
scale to illustrate the perceived changes in curvature as opposed to the constant
theoretical change in curvature.

equivalent to ≤disp) and ≤2 (which is equivalent to ≤c). This makes ≤3, which is characterized
by the 3-convexity of the modified RIDF ∆F G, the canonical choice for the foundational
kurtosis order. This order has the additional advantage of being naturally applicable to all
distributions, including asymmetric ones. Oja (1981), however, instead restricts his attention
to symmetric distributions and defined the previously mentioned ≤s as his foundational
kurtosis order. The order ≤3 is only briefly mentioned in the closing remarks of the paper
with lack of transitivity stated as its only major drawback.

While pointing out the fact that ≤3 is not generally transitive as its most notable deficiency
is a flawed argument (as shown in Sections 4.2.1 and 4.2.2), the order does have downsides.
For the orders of the three previous convex characteristics, it is sufficient to draw the Q-Q-plot
of two given distributions to see whether they are ordered with respect to the corresponding
characteristic. This is simply due to the fact that non-negativity, monotonicity and convexity
of a function are all properties that are easy to detect graphically. However, third order
convexity is a considerably less intuitive property. While it is easy to see whether a function
has positive or negative curvature, it is a lot more difficult to quantify curvature and therefore
also to grasp gradients in curvature. As an example, consider the function ϕ(x) = x3 with
constant third derivative and, therefore, with constant increase in curvature. If the scale is kept
linear, the increase in curvature is obvious if the gradient of the function is small, but almost
non-detectable if the gradient of the function is higher (see Figure 4.1). Hence, the visually
most striking feature of a prototypical 3-convex function is that it also is concave-convex.

Overall, there are a number of arguments for using ≤3 as a basis of the notion of kurtosis
for symmetric and asymmetric distributions. Since the concave-convex order ≤s is standardly
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used in the literature, we analyze both orders in more detail in Section 4.2. A particular
focus is put on their transitivity, especially for ≤3. For ≤s, a more suitable generalization to
asymmetric distributions than ≤a is proposed. Subsequently, a number of different approaches
to measuring kurtosis are presented and their compatibility with the kurtosis orders is
discussed.

Throughout Chapter 4, we assume all cdf’s to be three times differentiable and to have
interval support, i.e. we assume them to fulfil F ∈ P3

I . Note that this assumption is not
necessary in order to define the kurtosis orders we consider in the following. However, the first
three derivatives of the involved cdf’s are needed to utilize the characterization of ≤3 given in
Corollary 2.12 for k = 3, which is essential for numerous results. Furthermore, we assume
the densities of all cdf’s to be strictly positive on the interiors of their supports because they
appear in denominators multiple times throughout the chapter.

4.2. Kurtosis Orders on Asymmetric Distributions

4.2.1. The Order of the Third Convex Characteristic

The order of the third convex characteristic ≤3 is formally defined in Definition 2.8b). We start
out by listing a number of equivalent characterizations from Section 2.2 for easier reference
throughout this chapter.

Corollary 4.1. Let F, G ∈ P3
I . Then, all of the following statements are equivalent:

(i) F ≤3 G,

(ii) det
(
Ξ̃3

F −1,G−1(p0, p1, p2, p3)
)

≥ 0 for all 0 < p0 < p1 < p2 < p3 < 1,

(iii) the function ∆F G is 3-convex,

(iv) the function RF G is 3-convex,

(v) ∆′′′
F G(t) ≥ 0 for all t ∈ DF ,

(vi) R′′′
F G(t) ≥ 0 for all t ∈ DF .

Characterizations (ii), (iii) and (iv) are, by definition, based on the determinants of matrices
and are therefore all fairly similar. Condition (iv) can be written in the most compact
way and it is fulfilled, if det

(
Ξ3

RF G
(t0, t1, t2, t3)

)
≥ 0 holds for all t0, t1, t2, t3 ∈ DF with

t0 < t1 < t2 < t3, where

Ξ3
RF G

(t0, t1, t2, t3) =


1 1 1 1
t0 t1 t2 t3

t2
0 t2

1 t2
2 t2

3
RF G(t0) RF G(t1) RF G(t2) RF G(t3)

 .
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This inequality is equivalent to

− RF G(t0)(t2 − t1)(t3 − t1)(t3 − t2) + RF G(t1)(t2 − t0)(t3 − t0)(t3 − t2)

− RF G(t2)(t1 − t0)(t3 − t0)(t3 − t1) + RF G(t3)(t1 − t0)(t2 − t0)(t2 − t1) ≥ 0.

Putting F (t0) = p0, F (t1) = p1, F (t2) = p2 and F (t3) = p3 shows that

− G−1(p0)
(
F −1(p2) − F −1(p1)

) (
F −1(p3) − F −1(p1)

) (
F −1(p3) − F −1(p2)

)
+ G−1(p1)

(
F −1(p2) − F −1(p0)

) (
F −1(p3) − F −1(p0)

) (
F −1(p3) − F −1(p2)

)
− G−1(p2)

(
F −1(p1) − F −1(p0)

) (
F −1(p3) − F −1(p0)

) (
F −1(p3) − F −1(p1)

)
+ G−1(p3)

(
F −1(p1) − F −1(p0)

) (
F −1(p2) − F −1(p0)

) (
F −1(p2) − F −1(p1)

)
≥ 0 (4.1)

for all 0 < p0 < p1 < p2 < p3 < 1 is equivalent to F ≤3 G. Inequality (4.1) gives the
impression that it can not be rewritten in a symmetric way, involving only G−1 and F −1

on either side of the inequality. If this is true, then there does not exist a family of scalar
measures that characterizes the order ≤3. To proof this claim, we first give a simple example
showing that the ordering ≤3 is generally not transitive, a fact that was already mentioned
by Oja (1981, p. 168). For the example and the subsequent considerations, we mainly use the
derivative-based characterization of ≤3 given in Corollary 4.1(vi). It is easier to use than the
result (4.1) of the matrix-based characterizations, which are considered more in the context of
quantile-based kurtosis measures in Section 4.3.2.

Example 4.2. Define by

F : [0, 1] → [0, 1], t 7→ t3,

G : [0, 1] → [0, 1], t 7→ t,

H : [0, 1] → [0, 1], t 7→ 1 − 3√1 − t

three infinitely often differentiable cdf’s on the unit interval. Considering H−1(t) = (t − 1)3 +
1, t ∈ [0, 1], we obtain the relative inverse distribution functions

RF G : [0, 1] → [0, 1], t 7→ G−1(F (t)) = F (t) = t3,

RGH : [0, 1] → [0, 1], t 7→ H−1(G(t)) = H−1(t) = (t − 1)3 + 1,

RF H : [0, 1] → [0, 1], t 7→ H−1(F (t)) = H−1(t3) = (t3 − 1)3 + 1

(see Figure 4.2). Furthermore,

R′
F G(t) = 3t2 , R′′

F G(t) = 6t , R′′′
F G(t) = 6 ≥ 0 ∀t ∈ [0, 1],

R′
GH(t) = 3(t − 1)2, R′′

GH(t) = 6(t − 1), R′′′
GH(t) = 6 ≥ 0 ∀t ∈ [0, 1]
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Figure 4.2.: Graphs of the three cdf’s (left panel) and the three RIDF’s from Example 4.2.

yields F ≤3 G as well as G ≤3 H. However, since

R′
F H(t) = 3(t3 − 1)2 · 3t2 = 9(t8 − 2t5 + t2),

R′′
F H(t) = 18(4t7 − 5t4 + t),

R′′′
F H(t) = 18(28t6 − 20t3 + 1),

substituting t3 and applying the quadratic formula yields that

R′′′
F H(t) < 0 for t ∈

(
3
√

5−3
√

2
14 ,

3
√

5+3
√

2
14

)
≈ (0.378, 0.871) ⊆ [0, 1].

This contradicts F ≤3 H and, thus, the transitivity of ≤3.

This negative result yields directly the following corollary, since an order based on the
comparison between κ(F ) and κ(G), where κ : P3

I → R is a mapping and potentially a kurtosis
measure, would always be transitive.

Corollary 4.3. There does not exist a family {κι : P3
I → R | ι ∈ I} of mappings such that

κι(F ) ≤ κι(G) ∀ι ∈ I

is equivalent to F ≤3 G.

Note that for the orders ≤0, ≤1 and ≤2, there exist families of mappings that characterize
the order in the way stated above, e.g. the corresponding density-based measures (see Corollary
3.14). This is just one example that underlines the importance of transitivity as a property
of a fundamental order of a distributional characteristic. For that reason and since lack of
transitivity has been identified as a major drawback of ≤3 by Oja (1981), we examine it more
closely in the following. Specifically, we look for conditions or sets of distributions that allow
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transitivity of ≤3. As a starting point, all pairs of distributions that are ordered with respect
to ≤3 are divided into two mutually exclusive categories.

Remark 4.4. Let F ≤3 G. Since R′′′
F G(t) ≥ 0 for all t ∈ DF , R′′

F G is non-decreasing. Now,
exactly one of the following statements holds:

(i) F and G are skewness-comparable with respect to ≤2, i.e., F ≤2 G or G ≤2 F ,

(ii) F and G are not skewness comparable. In that case, RF G has an inflection point at a
tF G ∈ DF = int(supp(F )) with R′′

F G(t) ≤ 0 ∀t ≤ tF G and R′′
F G(t) ≥ 0 ∀t ≥ tF G. More

specifically, there exist values tℓ, tr ∈ DF with tℓ < tF G < tr such that R′′
F G(tℓ) < 0 and

R′′
F G(tr) > 0.

The inflection point at tF G in (ii) is, in general, not unique since RF G can be linear on a
given non-degenerate interval. However, any inflection point of RF G can be uniquely identified
by the value pF G = F (tF G) ∈ (0, 1).

Note that (i) can be viewed as a limiting case of (ii) with tF G = inf DF or tF G = sup DF ,
yielding pF G = 0 or pF G = 1, respectively. So in order to obtain the most general setting, we
allow tF G ∈ DF = supp(F ).

Definition 4.5. Let F and G be two cdf’s satisfying F ≤3 G. A value pF G ∈ [0, 1] is said to
be an inflection value of F and G, if R′′

F G(t) ≤ 0 for all t ≤ F −1(pF G) and R′′
F G(t) ≥ 0 for all

t ≥ F −1(pF G). The set of all inflection values of F and G is denoted by ΠF G.

With this definition, a pair F, G of cdf’s can fall into case (i) in Remark 4.4 and still have
an inflection value pF G ∈ (0, 1). This holds, if and only if there exists a t0 ∈ DF such that
RF G is linear on (inf DF , t0) or (t0, sup DF ).

As stated in Remark 4.4, any pair F, G satisfying F ≤3 G has at least one inflection value.
Requiring R′′′

F G(t) > 0 for all t ∈ DF is sufficient for the inflection value pF G to be unique.
With this in mind, we analyze more closely why ≤3 is not transitive. Let F, G and H satisfy

F ≤3 G and G ≤3 H. Then,

RF H(t) = H−1(F (t)) = H−1(G(G−1(F (t)))) = RGH(RF G(t)),

and, consequently,

R′
F H(t) = R′

GH(RF G(t)) · R′
F G(t),

R′′
F H(t) = R′′

GH(RF G(t)) · (R′
F G(t))2 + R′

GH(RF G(t)) · R′′
F G(t), (4.2)

R′′′
F H(t) = R′′′

GH(RF G(t)) · (R′
F G(t))3 + R′

GH(RF G(t)) · R′′′
F G(t)

+ 3R′′
GH(RF G(t)) · R′

F G(t) · R′′
F G(t) (4.3)

holds for all t ∈ DF . Note that any RIDF is increasing as a composition of two increasing
functions. Hence, the first two summands on the right side of equation (4.3) are non-negative
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and
R′′

GH(G−1(p)) · R′′
F G(F −1(p)) ≥ 0 ∀p ∈ (0, 1)

is a sufficient condition for F ≤3 H. By assumption, the sets ΠF G and ΠGH are both non-
empty. If the intersection of these two sets is also non-empty, i.e., if there exists a p0 ∈ [0, 1]
such that p0 ∈ ΠF G and p0 ∈ ΠGH , the signs of R′′

F G(F −1(p)) and R′′
GH(G−1(p)) coincide for

all p ∈ (0, 1) since they are both non-positive for p < p0 and both non-negative for p > p0.
Otherwise, if the intersection of ΠF G and ΠGH is empty, choose a representative from each set
such that their difference is minimal. Assuming without restriction that pF G < pGH , where
pF G ∈ ΠF G and pGH ∈ ΠGH , and it follows that

R′′
GH(G−1(p)) · R′′

F G(F −1(p)) < 0 ∀p ∈ (pF G, pGH).

We summarize our results thus far in the following proposition.

Proposition 4.6. Let p0 ∈ [0, 1] and let F0 be a set of cdf’s such that any pair F, G ∈ F0

with F ≤3 G has p0 as an inflection value. Then, the order ≤3 is transitive on F0.

We now study the structure of the sets mentioned in Proposition 4.6 or suitable subsets
thereof. First, we assume that F and G with F ≤3 G have an inflection value pF G ∈ (0, 1) (so
F and G could e.g. satisfy case (ii) from Remark 4.4). The fact that pF G = F (tF G) ∈ (0, 1) is
an inflection value of the pair F, G is equivalent to R′′

F G(tF G) = 0. Denoting by f and g the
density functions of F and G, respectively, we get

R′
F G(t) = f(t)

g(RF G(t)) , (4.4)

R′′
F G(t) = f ′(t) · (g(RF G(t)))2 − f2(t) · g′(RF G(t))

(g(RF G(t)))3 (4.5)

for all t ∈ DF . Hence, pF G is an inflection value of F and G, if and only if

f ′(tF G) · (g(RF G(tF G)))2 = (f(tF G))2 · g′(RF G(tF G))

⇐⇒ f ′(tF G)
(f(tF G))2 = g′(RF G(tF G))

(g(RF G(tF G)))2

⇐⇒ f ′(F −1(pF G))
(f(F −1(pF G)))2 = g′(G−1(pF G))

(g(G−1(pF G)))2 . (4.6)

Hence, any pair that is ordered with respect to ≤3 out of a given set of cdf’s has the same
inflection value p0 ∈ (0, 1), if and only if the term f ′(F −1(p0))

(f(F −1(p0)))2 coincides for all cdf’s F in that
set. The following result is obtained by combining this observation with Proposition 4.6.

Proposition 4.7. Let p0 ∈ (0, 1) and let F0 be a set of cdf’s such that the value of the term
f ′(F −1(p0))

(f(F −1(p0)))2 coincides for all F ∈ F0. Then, all pairs F, G ∈ F0 with F ≤3 G have p0 as an
inflection value and, by Proposition 4.6, the order ≤3 is transitive on F0.
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The situation in which pF G ∈ {0, 1} is the sole inflection value of F and G with F ≤3 G

remains to be considered. For these edge cases, (4.4) and (4.5) are not valid because the
densities f and g are not uniquely defined at the edges of their respective supports. A
necessary condition for pF G = 0 is F ≤2 G and a necessary condition for pF G = 1 is G ≤2 F .
Thus, ≤3 is transitive on any subset of T ⊆ P3

I such that the implication F ≤3 G ⇒ F ≤2 G

holds for all F, G ∈ T . The same is true for the implication F ≤3 G ⇒ G ≤2 F . However,
since these sets are much more difficult to handle than the sets described in Proposition 4.7,
they are not pursued any further.

For p ∈ (0, 1), the quantities γp
D(F ) = f ′(F −1(p))

(f(F −1(p)))2 have already been defined in Section
3.1.3. They satisfy the crucial condition (S2) for skewness measures for all p ∈ (0, 1), but
p = 1

2 is the only choice for which γp
D is a skewness measure (see Corollary 3.13). By defining

the set
T t

D,p = {F ∈ P3
I : γp

D(F ) = t}

for all p ∈ (0, 1) and all t ∈ R and defining T t
D = T t

D, 1
2
, we can rephrase Proposition 4.7 in the

following way.

Theorem 4.8. For any t ∈ R and any p ∈ (0, 1), the kurtosis order ≤3 is transitive on the
set T t

D,p.

The fact that ≤3 is transitive, if a suitable skewness measure is constant, suggests that the
non-transitivity of ≤3 on the set of all cdf’s is because pairs of cdf’s with differing degrees of
skewness lack comparability with respect to kurtosis. Although this statement can only be
applied to the sets T t

D, t ∈ R, it is also true to a certain extent for T t
D,p, t ∈ R, p ∈ (0, 1) \ {1

2},

since the corresponding mappings γp
D also satisfy (S2). Because (S2) is the crucial property

for determining whether a mapping measures skewness ’correctly’, the mappings γp
D, p ∈

(0, 1) \ {1
2}, can be thought of as asymmetric or non-central skewness measures (see remarks

after Corollary 3.13). Concerning this interpretation, it is also notable that, for all p ∈ (0, 1),
p is an inflection value of all pairs F, G ∈ T t

D,p with F ≤3 G. Thus, the inflection values for
cdf’s in T t

D,p lie in the centre of the unit interval, if and only if p = 1
2 .

As opposed to the first two convex characteristics, location and dispersion, a distribution
cannot be standardized with respect to skewness by an arithmetic operation like addition
for location and scalar multiplication for dispersion. Thus, in order to obtain a transitive
kurtosis order without interference caused by skewness, attention has to be restricted to
sets of constant skewness. Note that, for all p ∈ (0, 1), the sets T t

D,p, t ∈ R, constitute an
(uncountable) partition of the entire underlying set P3

I of distributions. ⋃t∈R T t
D,p = P3

I holds
because all distributions are assigned a value by the measure γp

D, and T t
D,p ∩ T s

D,p = ∅ holds
for all s, t ∈ R, s ≠ t, because one distribution cannot be assigned multiple values by that
measure. Thus, each F ∈ P3

I lies within a subset of P3
I on which ≤3 is transitive.

These observations beg the question whether there exist other skewness measures that
induce transitivity sets analogous to Theorem 4.8. To that end, note that a simple sufficient
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condition for the term f ′(F −1(p0))
(f(F −1(p0)))2 to coincide is to require f ′(F −1(p0)) = 0 for all cdf’s F in

the given set. Hence, for each p0 ∈ (0, 1), ≤3 is transitive on the set of all cdf’s, the density
of which has a stationary point at the p0-quantile. One well known point, at which this
commonly occurs, is the mode of a distribution.

For the following considerations in which the mode is utilized, we assume that all distributions
are unimodal. Recall that the mode of a cdf F is denoted by MF . If the mode lies in the
interior of the support, the differentiability assumptions on F directly yield f ′(MF ) = 0 since
MF maximizes f . It follows that, for any p ∈ (0, 1) (or for any p̃ ∈ (−1, 1), where p̃ = 1 − 2p),

f ′(F −1(p))
(f(F −1(p)))2 = 0 holds for all cdf’s F in the set

T p̃
Mode = {F : MF = F −1(p)} = {F : 1 − 2F (MF ) = p̃}.

This observation in combination with Proposition 4.7 yields the following result.

Theorem 4.9. For any p̃ ∈ (−1, 1), the kurtosis order ≤3 is transitive on the set T p̃
Mode.

For any p̃ ∈ (−1, 1) and any pair of cdf’s F, G ∈ T p̃
Mode with F ≤3 G, the corresponding

inflection value is given by p = p̃+1
2 . Since it was shown by Arnold and Groeneveld (1995,

p. 35) and noted in Theorem 3.18 that γMode(F ) = 1 − 2F (MF ), F ∈ P3
I , is a measure of

skewness, the transitivity of ≤3 on the sets T p̃
Mode has a similar interpretation to before: for

≤3 to be transitive, the skewness of the involved distributions needs to be constant in some
sense.

For distributions with modes at the edges of their interval supports, the above transitivity
property does not hold, i.e., ≤3 is not generally transitive on T −1

Mode and T 1
Mode. The crucial

result in Proposition 4.7 does not hold in these edge cases. For the set T 1
Mode, a specific

counterexample can be constructed using Weibull distributions and their conditions for being
ordered with respect to ≤3, which are given in (4.10), (4.11) and (4.12). Note that all Weibull
distributions are supported by [0, ∞) and their mode is zero for values of the shape parameter
in (0, 1].

Thus, while ≤3 is transitive on sets where γMode is constant on a value in (−1, 1), the same
is not true for the values −1 an 1, i.e., if the distributions are too skewed in either direction.
Particularly, the sets T p̃

Mode, p̃ ∈ (−1, 1), do not provide a partition of the set of all (sufficiently
regular) probability distributions on the real numbers as the ones obtained for the sets T t

D,p.
Note that the notion of a mode can be generalized without losing the transitivity of ≤3 on

the corresponding set of cdf’s. Specifically, Theorem 4.9 still holds, if f only attains a local
maximum at MF , no longer assuming F to be unimodal. However, Arnold and Groeneveld
(1995) only proved γMode to be a skewness measure under the assumption of unimodality.

The transitivity sets found thus far and their relationships are summarized in the following
remark.

Remark 4.10. a) Let F ∈ S. According to Proposition 3.4c), the fact that γD and
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γMode are skewness measures in the sense of Definition 3.1 directly implies γD(F ) =
γMode(F ) = 0. It follows S ⊆ T 0

Mode and S ⊆ T 0
D.

Now let F ∈ T 0
Mode. This means that 2F (MF ) − 1 = γMode(F ) = 0 or, equivalently,

MF = F −1(1
2). Since the median of any continuous distribution lies in the interior of

its support and it maximizes the continuous density f of F , we obtain f ′(F −1(1
2)) = 0,

and therefore γD(F ) = f ′(F −1( 1
2 ))

(f(F −1( 1
2 )))2

= 0. Overall, it follows S ⊆ T 0
Mode ⊆ T 0

D.

b) Part a) can be generalized to asymmetric distributions in the following way. Let
p̃ ∈ (−1, 1) and F ∈ T p̃

Mode. It follows that MF = F −1(p), where p = p̃+1
2 ∈ (0, 1). Since

that lies within the interior of the support of F , we obtain f ′(F −1(p)) = 0 and therefore
γp

D(F ) = f ′(F −1(p))
(f(F −1(p)))2 = 0. Thus, the inclusion T p̃

Mode ⊆ T 0
D,p holds for all p ∈ (0, 1) with

p̃ = 2p − 1.

Since ≤3 is transitive on T 0
D, it is also transitive on the set of all symmetric cdf’s. Oja

(1981), as the only paper with a significant mention of the order ≤3 in the literature, dismissed
it and instead focussed on the previously mentioned concave-convex order. The only given
reason is that ≤3 is not transitive. Oja, however, restricted all of his considerations concerning
kurtosis to symmetric distributions and therefore also only proved the transitivity of the
concave-convex order on this class. Since ≤3 is also transitive on symmetric distributions,
Oja’s argument for dismissing it is refuted. This observation therefore strengthens the order
of the third convex characteristic in its role as the fundamental kurtosis order.

Equivalence With Respect to ≤3

The concept of equivalence with respect to a stochastic order is generally introduced in (2.5).
Applied to the order of the third convex characteristic, F =3 G, if R′′′

F G ≥ 0 and R′′′
GF ≥ 0. To

better understand what that means, we rewrite the second condition. Since RGF = R−1
F G, the

first three derivatives of RGF are given by

R′
GF (t) = 1

R′
F G(RGF (t)) ,

R′′
GF (t) = − R′′

F G(RGF (t))
(R′

F G(RGF (t)))3 , (4.7)

R′′′
GF (t) = 3(R′′

F G(RGF (t)))2

(R′
F G(RGF (t)))5 − R′′′

F G(RGF (t))
(R′

F G(RGF (t)))4

= 3(R′′
F G(RGF (t)))2 − R′′′

F G(RGF (t)) · R′
F G(RGF (t))

(R′
F G(RGF (t)))5 .

It follows that

G ≤3 F ⇔ R′′′
GF (t) ≥ 0 ∀t ∈ DG
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⇔ 3(R′′
F G(t))2 − R′′′

F G(t) · R′
F G(t)

(R′
F G(t))5 ≥ 0 ∀t ∈ DF

⇔ R′′′
F G(t) ≤ 3(R′′

F G(t))2

R′
F G(t) ∀t ∈ DF .

The fact that G ≤3 F is not equivalent to R′′′
F G ≤ 0 and therefore F =3 G is not equivalent to

R′′′
F G ≡ 0 is notable as it systematically differs from what can be observed with the orders

≤0, ≤1 and ≤2. Equivalence with respect to any of these orders occurs if and only if the
corresponding derivative of the RIDF is constantly zero (see Proposition 3.3). However,
F =3 G is equivalent to RF G satisfying

0 ≤ R′′′
F G(t) ≤ 3(R′′

F G(t))2

R′
F G(t)

for all t ∈ DF . Obviously, an analogous condition applies to RGF . Hence, we have the
following result.

Proposition 4.11. F =3 G holds, if and only if RF G satisfies the differential inequality

0 ≤ φ′′′(t) ≤ 3(φ′′(t))2

φ′(t) ∀t ∈ DF .

Recalling that F =2 G, if and only if there exist a > 0, b ∈ R such that F (·) = G(a · +b),
one might guess that F =3 G holds for quadratic transforms. The following example shows
that this is indeed true.

Example 4.12. Let RF G(t) = tp, 0 < t < 1, for some p > 0, p ̸= 1. This RIDF arises, for
example, for F (t) = t, G(t) = t1/p or for F (t) = tp, G(t) = t. For p /∈ {1, 2}, F ≤3 G is
equivalent to

0 ≤ R′′′
F G(t) = p(p − 1)(p − 2)tp−3 ∀t ∈ (0, 1) ⇔ p /∈ (1, 2).

Because of R′′′
F G ≡ 0 for p ∈ {1, 2}, F ≤3 G is generally equivalent to p /∈ (1, 2). Conversely,

for p /∈ {1, 2}, G ≤3 F is equivalent to

p(p − 1)(p − 2)tp−3 = R′′′
F G(t) ≤ 3(RF G(t)′′)2

R′
F G(t) = 3p(p − 1)2tp−3 ∀t ∈ (0, 1) ⇔ p /∈ (1

2 , 1).

Since the inequality is obviously satisfied for p ∈ {1, 2}, G ≤3 F is equivalent to p /∈ (1
2 , 1) in

general. Overall, F =3 G is satisfied, if and only if

p ∈ (0, 1/2] ∪ {1} ∪ [2, ∞).

In particular, F (t) = t, t ∈ (0, 1), and G(t) = t2, t ∈ (0, 1), are equivalent with respect to ≤3.

Note that R′′′
F G ≡ 0 and therefore also F =3 G holds, if RF G is any polynomial of degree
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≤ 2. This result can also easily be obtained using Corollary 2.16. While F =2 G is equivalent
to RF G being a polynomial of degree ≤ 1, the fact that RF G is a polynomial of degree ≤ 2 is
only a sufficient, but not a necessary condition for F =3 G.

The result of Example 4.12 can also be obtained by checking R′′′
F G(t) ≥ 0 and R′′′

GF (t) ≥ 0
for t ∈ (0, 1), but the advantage of using Proposition 4.11 is that only the derivatives of one
of the two functions must be known. This is illustrated by the following example.

Example 4.13. Let F be the cdf of a symmetric beta distribution with parameter p = q > 0
and let G(t) = t, t ∈ (0, 1). For p ∈ (0, ∞) \ {1, 2}, the derivatives of the corresponding RIDF
are given by

R′
F G(t) = tp−1(1 − t)p−1

B(p, p) ,

R′′
F G(t) = (p − 1)tp−2(1 − t)p−2(1 − 2t)

B(p, p) ,

R′′′
F G(t) = (p − 1)tp−3(1 − t)p−3 ((4p − 6)t2 − (4p − 6)t + p − 2

)
B(p, p) , (4.8)

where B(·, ·) denotes the beta function. The quadratic formula can be applied to obtain that
the non-negativity of (4.8) for all t ∈ (0, 1) is equivalent to p ≤ 1. Since p = 1 implies R′′′

F G ≡ 0
and p = 2 implies R′′′

F G ≡ −1
3 , F ≤3 G is overall equivalent to p ≤ 1.

For the reverse statement G ≤3 F , again let p ∈ (0, ∞) \ {1, 2} and consider

3(R′′
F G(t))2

R′
F G(t) = 3(p − 1)2tp−3(1 − t)p−3(1 − 2t)2

B(p, p) , t ∈ (0, 1).

By combining this with (4.8), the right inequality in Proposition 4.11 boils down to

(p − 1)
(
(8p − 6)(t2 − t) + 2p − 1

)
≥ 0 ∀t ∈ (0, 1),

which is true for p ≥ 1. Furthermore, the same inequality is easily shown to be true for
p ∈ {1, 2}. Overall, G ≤3 F holds, if and only if p ≥ 1. Hence, the only symmetric beta
distribution that is equivalent to the uniform distribution with respect to ≤3 is the uniform
distribution itself.

4.2.2. Concave-Convex Orders

We start out by recalling two definitions from the literature (see van Zwet, 1964, p. 65 and
MacGillivray and Balanda, 1988, p. 326).

Definition 4.14. a) Let F, G ∈ S. Then, F is said to be less kurtotic than G in the convex
sense, denoted by F ≤s G, if RF G is convex on DF ∩ [F −1(1

2), ∞).
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b) F is said to be less kurtotic than G in the anti-skewness sense, denoted by F ≤a G, if
RF G is concave on DF ∩ (−∞, F −1(1

2)] and convex on DF ∩ [F −1(1
2), ∞).

Since the centre of symmetry of a symmetric distribution is equal to its median, it is easy
to see that the order ≤s is equivalent to the anti-skewness order ≤a on the set S.

The following holds for the kurtosis order ≤a: since it requires the RIDF to switch from
negative to positive curvature at F −1(1

2), it immediately follows that the RIDF has an
inflection point with corresponding inflection value 1

2 . Thus, the order is a priori only able to
compare two cdf’s in terms of their kurtosis if they have 1

2 as an inflection value. While this is
always the case for symmetric cdf’s (see Remark 4.10), there is no reason to assume that this
is a prerequisite for two cdf’s to be ordered with respect to kurtosis. Particularly, the more
fundamental order ≤3 is able to order pairs of cdf’s irrespective of their inflection value. It
follows that ≤3 does generally not imply the anti-skewness order ≤a. A valid counterexample
would be the cdf’s F and G from Example 4.2 as they are two cdf’s that can be ordered
with respect to ≤3 but do not have 1

2 as an inflection value. Instead, their inflection value is
pF G = 0. Oja (1981) already noted that ≤3 does indeed imply ≤a as an extension of ≤s, if we
restrict ourselves to symmetric cdf’s. In fact, this class of cdf’s can even be extended to T 0

Mode,
T 0

D or any other class of cdf’s such that any pair within has inflection value 1
2 . Formally,

F ≤3 G with 1
2 ∈ ΠF G implies F ≤a G.

As a possible solution, we define our own concave-convex kurtosis order that is flexible in
terms of the inflection value.

Definition 4.15. F is said to be less kurtotic in the concave-convex sense than G, denoted
by F ≤gs G, if there exists a pF G ∈ [0, 1] such that RF G is concave on DF ∩ (−∞, F −1(pF G))
and convex on DF ∩ (F −1(pF G), ∞).

This more general definition has a much more straight forward relationship to the order of
the third convex characteristic.

Proposition 4.16. F ≤3 G implies F ≤gs G whereas the reverse implication does not hold
in general.

Proof. F ≤3 G is equivalent to R′′′
F G(t) ≥ 0 for all t ∈ DF and, therefore, to R′′

F G being
increasing on DF . It follows that either R′′

F G ≤ 0, R′′
F G ≥ 0, or R′′

F G changes its sign once
from negative to positive at some point tF G ∈ DF . All the cases imply F ≤gs G, in the
first case with inflection value pF G = 1, in the second with pF G = 0 and in the third with
pF G = F (tF G) ∈ (0, 1).

In order to see that the reverse implication is not true in general, consider the following
counterexample:

F (t) = − 3
14 t5 + 5

7 t3 + 1
2 , t ∈ [−1, 1] and

G(t) = t, t ∈ [0, 1]
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Figure 4.3.: Graph of the function RF G = F and its second derivative from the counterexample
disproving that F ≤gs G implies F ≤3 G (given in the proof of Proposition 4.16).

(see Figure 4.3). Note that F is indeed a cdf as

F (−1) = 0, F (1) = 1, F ′(t) = 15
14

(
2t2 − t4

)
≥ 0 ∀t ∈ [−1, 1].

Furthermore, because of RF G = F , we obtain

R′′
F G(t) = 30

7 (t − t3)

≤ 0 for − 1 ≤ t ≤ 0,

≥ 0 for 0 ≤ t ≤ 1,

R′′′
F G(t) = 30

7 (1 − 3t2)

≤ 0 for t ≤ − 1√
3 , t ≥ 1√

3 ,

≥ 0 for − 1√
3 ≤ t ≤ 1√

3 .

It follows that F ≤gs G holds (with pF G = 1
2) whereas F ̸≤3 G.

Note that the cdf F in the above counterexample does not fit the formal assumptions made
at the beginning of Chapter 4 because its derivative satisfies f(0) = 0. Thus, f is not strictly
positive on DF . However, this can easily be solved by slightly increasing the value f(0) and
slightly decreasing the absolute value of the slope of f throughout. This does not change the
nature of the example, but complicates the necessary computations.

The counterexample given in the proof of Proposition 4.16 nicely captures the difference
between the two orders ≤3 and ≤gs. The RIDF RF G in the example has three distinct
inflection points at −1, 0 and 1, which would not be possible with F ≤3 G holding. Between
the first two, R′′

F G has a local minimum and between the latter two, it has a local maximum.
Once again, this would not be possible with F ≤3 G holding because then, R′′

F G would be
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Figure 4.4.: Graphs of the cdf’s F and G from Example 4.17 in the left panel and of the
corresponding RIDF’s in the right panel with ε = 1

10 .

required to be increasing. In a nutshell, if we move from F ≤3 G to F ≤gs G, the property of
being increasing gets replaced by the property of switching from being non-positive to being
non-negative at a certain point.

As a more conceivable analogue, one can define corresponding orders for dispersion instead
of kurtosis, since dispersion is the only symmetric lower order convex characteristic. The sole
difference is that the two aforementioned properties are applied to the function ∆F G = RF G−id
instead of R′′

F G. The analogue to F ≤3 G would be to require ∆F G to be non-decreasing,
which is equivalent to F ≤1 G or F ≤disp G, i.e. the dispersive order. The analogue to
F ≤gs G, however, would be to require ∆F G to be non-positive up to a certain point and
non-negative from that point on. This latter analogue is very similar to the so-called ’more
dangerous’-order ≤D (see Müller and Stoyan, 2002, p. 23). Specifically, F ≤D G is defined
by the existence of a t0 ∈ R such that ∆F G(t) ≤ 0 for t ≤ t0 and ∆F G ≥ 0 for t ≥ t0, and
the additional requirement E[X] ≤ E[Y ]. The ’more dangerous’-order is equivalent to the
convex order ≤cx, if the additional requirement is strengthened to E[X] = E[Y ] (see Müller
and Stoyan, 2002, pp. 17, 23). Recall from Example 2.21b) that ≤cx orders distributions with
respect to dispersion. The following example illustrates that we do not obtain a meaningful
dispersion order without the additional condition concerning the expectations.

Example 4.17. Let ε ∈ (0, 1
2) and define

F (t) = t, t ∈ [0, 1],

G(t) =
(1 − ε

ε
t + 1 − ε

)
1[−ε,0](t) +

(
ε

1 + ε
t + 1 − ε

)
1(0,1+ε](t), t ∈ [−ε, 1 + ε]

(see Figure 4.4). The corresponding RIDF is given by
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RF G(t) = G−1(t) =


ε

1−ε t − ε, if t ∈ (0, 1 − ε],
1+ε

ε t − 1−ε2

ε , if t ∈ (1 − ε, 1),

∆F G(t) = G−1(t) − t =


2ε−1
1−ε t − ε, if t ∈ (0, 1 − ε],
1
ε t − 1−ε2

ε , if t ∈ (1 − ε, 1).

First, we have ∆F G(t) < 0 for t ∈ (0, 1 − ε] since limt↘0 ∆F G(t) = −ε and since the function
is decreasing on (0, 1 − ε] because of ∆′

F G(t) = 2ε−1
1−ε < 0. Furthermore, ∆F G is continuous

in 1 − ε because of ∆F G(1 − ε) = 2ε − 1 − ε = ε − 1 = ε2−ε
ε = limt↘1−ε ∆F G(t) and from

there, it linearly approaches its limiting value limt↗1 ∆F G(t) = 1
ε − 1−ε2

ε = ε. Overall, since
∆F G(1 − ε2) = 0, we have ∆F G(t) < 0 for t ∈ (0, 1 − ε2) and ∆F G(t) > 0 for t ∈ (1 − ε2, 1). It
follows that F is less dispersed than G with respect to the dispersion analogue of the kurtosis
order ≤gs.

However, for ε ↘ 0, G converges towards the cdf of a degenerate distribution with all of
the probability mass concentrated in 0. Since that limiting distribution exhibits no dispersion
at all, there should exist an ε0 ∈ (0, 1

2) such that G is less dispersed than F , or at least that
F is not less dispersed than G. This is supported by the behaviour of popular measures of
dispersion like the standard deviation and the interquartile range. Their values for the cdf G

drop below their values of F at some point if ε ↘ 0.

The fact that its analogue dispersion order is not meaningful also casts doubt upon the
suitability of ≤gs as an order of kurtosis. Oja (1981, p. 158) defined another similar dispersion
order to the one considered in Example 4.17, which has no additional requirements on
the expectations. Specifically, he defined F ≤∗

1 G, if there exists a t0 ∈ DF such that
∆F G(t) ≤ E[Y ] − E[X] for t ≤ t0 and ∆F G(t) ≥ E[Y ] − E[X] for t ≥ t0. Just like the ’more
dangerous’-order, it turns into the order considered in Example 4.17 as a special case, if both
involved distribution have the same expected value. This dispersion order is shown to be
weaker than ≤1 but it is still preserved by, e.g, the standard deviation (see Oja, 1981, p.
159). The former result follows from Proposition 2.17b) being applied to the centralized cdf’s
F (· − E[X]) and G(· − E[Y ]). Additionally, if F ≤∗

1 G holds, it is also guaranteed that ∆F G

assumes the value E[Y ] − E[X] at some point. The same cannot be said about the value 0,
which is used in the place of E[Y ] − E[X] in Example 4.17.

Overall, it is fairly clear that ≤gs is not a suitable kurtosis order for analogous reasons,
namely that 0 is an somewhat arbitrary threshold for the second derivative of the RIDF.
While the results of Oja (1981) demonstrate that 0 is a suitable threshold for symmetric
distributions, it is not if there is a notable difference in skewness between the two involved
distributions. Consider the case in which F ≤2 G holds, so if G is more skewed to the right
than F : there can still exist a notable difference in shape beyond skewness between F and G,
however, this could not be detected by ≤gs as, in this case, F =gs G holds. The solution is to
change the threshold, so that even a strictly convex RIDF can be under the threshold for its
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second derivative up to some point and over it from that point on.

Definition 4.18. Let t0 ∈ R. Then, F is said to be less kurtotic than G in the concave-convex
sense with threshold t0, denoted by F ≤t0

gs G, if there exists a pt0
F G ∈ [0, 1] such that R′′

F G(t) ≤ t0

holds for all t ∈ DF ∩ (−∞, F −1(pt0
F G)) and R′′

F G(t) ≥ t0 holds for all t ∈ DF ∩ (F −1(pt0
F G), ∞).

Note that F ≤0
gs G ⇔ F ≤gs G. While the order ≤t0

gs is theoretically defined for all
t0 ∈ R, its imposed requirement is only meaningful, if t0 ∈ int(R′′

F G(DF )). Otherwise, it is
obvious that either R′′

F G(t) ≤ t0 or R′′
F G(t) ≥ t0 holds for all t ∈ DF . Hence, all thresholds

t0 ∈ int(R′′
F G(DF )) are said to be reasonable. The only exception to this rule is the case that

the set of reasonable thresholds is empty, which is equivalent to R′′
F G being constant. In this

rather uninteresting case with respect to kurtosis, the sole value of R′′
F G is the only candidate

for a reasonable threshold.
Because a cdf cannot be standardized with respect to skewness, a reasonable threshold

cannot be obtained in the same way as for ≤∗
1. However, another specific choice for a reasonable

threshold t0 is considered in the following example.

Example 4.19. Define the specific threshold

t0,D = R′′
F G(F −1(1

2)) = τD(G)
τD(F )2 (γD(G) − γD(F )) ,

where τD and γD are defined as in Theorem 3.12. Obviously, this threshold is meaningful
in the sense that t0,D ∈ R′′

F G(DF ). The only case in which t0,D is not reasonable is if R′′
F G

is constant on DF ∩ (−∞, F −1(1
2)] of DF ∩ [F −1(1

2), ∞), but not on its entire domain DF .
Furthermore, note that the corresponding concave-convex kurtosis order ≤t0,D

gs is equivalent to
the original concave-convex order ≤gs if we restrict ourselves to equally skewed distributions
with respect to the skewness measure γD. This verifies our previously established intuition
that non-zero thresholds are necessary, if there is a significant difference in skewness between
the two distributions to be compared in terms of kurtosis.

Analogously to how no intersection of the third derivative with the zero-function (i.e.
F ≤3 G) implies one intersection of the second derivative of ∆F G with a suitable constant
function (i.e. F ≤t0

gs G), we can further infer that the first derivative intersects a suitable
linear function twice (with according sign changes). However, this second implication is not
pursued any further here since it requires even more constants to be determined. It is desirable
for a fundamental order to be as independent as possible from specific constants in order to
be as general as possible and to not favour some measures over others. For these reasons, we
limit ourselves to the kurtosis orders ≤3 and ≤t0

gs, t0 ∈ R. The relationship between these two
orders is given in the following.

Theorem 4.20. The following three statements are equivalent:

(i) F ≤3 G,
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(ii) F ≤t0
gs G for all t0 ∈ R,

(iii) F ≤t0
gs G for all t0 ∈ int(R′′

F G(DF )).

Proof. The implication (i)⇒(iii) is shown analogously to the proof of Proposition 4.16. For
the reverse implication, let t1 ∈ DF . If t1 lies within an interval, on which R′′

F G is constant,
R′′′

F G(t1) = 0 follows. Otherwise, it follows that t0 = R′′
F G(t1) ∈ int(R′′

F G(DF )). Now

R′′′
F G(t1) = lim

ε↘0

R′′
F G(t1 + ε) − R′′

F G(t1 − ε)
2ε

≥ 0

holds because of R′′
F G(t1 + ε) ≥ t0 and R′′

F G(t1 − ε) ≤ t0 by assumption. The assertion follows
since t1 was chosen arbitrarily.

The equivalence between (ii) and (iii) holds because either R′′
F G(t) ≤ t0 or R′′

F G ≥ t0 is true
by construction for all unreasonable thresholds t0 /∈ int(R′′

F G(DF )).

Corollary 4.21. Let t0 ∈ R. Then, F ≤3 G implies F ≤t0
gs G whereas the reverse implication

does not hold in general.

In the following, we examine the concave-convex kurtosis orders with respect to transitivity.
First, the following result states that ≤t0

gs is generally not transitive and therefore not superior
to ≤3 in that respect.

Proposition 4.22. For all t0 ∈ R, the kurtosis order ≤t0
gs is not generally transitive.

Proof. A counterexample for the transitivity of ≤t0
gs can be obtained for all t0 ∈ R by again

reusing Example 4.2 and slightly modifying the cdf H. For c > 0, let

H : [0, c] → [0, 1], t 7→ 1 − 3

√
c − t

c
.

This implies that the functions RGH and RF H as well as all of their derivatives are multiplied
by the factor c. So, additionally to F ≤3 G, R′′′

GH(t) = 6c ≥ 0 holds for all t ∈ [0, 1] and,
thus, G ≤3 H. Corollary 4.21 states that both F ≤t0

gs G and G ≤t0
gs H hold for all t0 ∈ R. In

contrast, we have

R′′
F H(t) = 18c(4t7 − 5t4 + t)


< 0 for t ∈ (2− 2

3 , 1),

= 0 for t ∈ {0, 2− 2
3 , 1},

> 0 for t ∈ (0, 2− 2
3 ).

It follows that, for any t0 > 0, there exists a c > 0 such that R′′
F H first takes values smaller

than t0, then larger, and finally smaller again. For any t0 < 0, there exists a c > 0 such
that R′′

F H first takes values larger than t0, then smaller and finally larger again. For t0 = 0,
we obtain R′′

F H(t) ≥ 0 for t ≤ 2− 2
3 and R′′

F H(t) ≤ 0 for t ≥ 2− 2
3 . All three cases pose a

contradiction to F ≤t0
gs G.
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Remark 4.23. a) For symmetric cdf’s F and G, RF G always has an inflection point at
F −1(1

2). Thus, ≤gs is equivalent to ≤s on S and therefore also transitive on S (see Oja,
1981, p. 165). The situation for ≤t0

gs, t0 ≠ 0, is different because the critical switch from
R′′

F G(t) ≤ t0 to R′′
F G(t) ≥ t0 cannot occur at F −1(1

2) due to the point symmetry of RF G.

b) The specific order ≤gs (or, equivalently, ≤0
gs) can be altered slightly to become transitive

on the more general sets T p̃
Mode, p̃ ∈ (−1, 1), and T t

D,p, t ∈ R, p ∈ (0, 1). For two cdf’s
F and G, we say that F <gss G holds, if there exists a pF G ∈ [0, 1] such that R′′

F G is
strictly negative on DF ∩ (−∞, F −1(pF G)) and strictly positive on DF ∩ (F −1(pF G), ∞).
Note that <gss is not equivalent to <gs since the latter is defined by

F <gs G ⇔ F ≤gs G and F ̸=gs G ⇔ F ≤gs G and G ̸≤gs F,

as generally stipulated by 2.4. To see that <gss is transitive, let p ∈ (0, 1) and F, G, H ∈
T t

D,p with F <gss G and G <gss H. By the line of reasoning used to prove Proposition
4.7 and Theorem 4.8, R′′

F G(F −1(p)) = 0 = R′′
GH(G−1(p)) then holds. Since, by definition

of <gss, there exists at most one t ∈ DF and one s ∈ DG such that R′′
F G(t) = 0 and

R′′
GH(s) = 0, t = F −1(p) and s = G−1(p) follows. Considering (4.2) for t = F −1(p)

along with the fact that RGH is increasing, this yields R′′
F H(F −1(q)) < 0 for q < p and

R′′
F H(F −1(q)) > 0 for q > p. Overall, F <gss H follows.

The transitivity of <gss on the sets T p̃
Mode, p ∈ (−1, 1), now follows from T p̃

Mode ⊆ T 0
D,p,

where p = p̃+1
2 .

The order ≤gs cannot be shown to be transitive on the given sets in the same way as
<gss. This is because if we only assume F ≤gs G, R′′

F G(F −1(p)) = 0 for any p ∈ (0, 1) is not
sufficient to infer that p is an inflection value. Because the concavity and the convexity of
RF G on either side of the actual inflection value is not assumed to be strict, the RIDF could
be convex on both sides of F −1(p) or concave on both sides.

Further problems arise if the transitivity of ≤t0
gs or <t0

gss on any of the above transitivity sets
is considered for t0 ̸= 0. (Naturally, F <t0

gss G is defined by R′′
F G < t0 holding up to a certain

point and R′′
F G > t0 from that point onward.) Note that the notion of an inflection value was

chosen in such a way that the second derivative of the RIDF in question is zero at the point
associated with that inflection value. This is the natural choice as it associates the inflection
value with actual inflection points of the RIDF. Through (4.2) this only results in implications
concerning the points, at which R′′

F H is equal to zero. However, it remains unclear, if and at
which points R′′

F H is equal to (or smaller/larger than) the threshold t0. In order to circumvent
this problem, one could propose to generalize the notion of a inflection value and, consequently,
of the transitivity sets. Particularly, one could associate it with the second derivative of the
RIDF in question passing the value t0. Considering (4.2), the behaviour of RF H with respect
to the order ≤t0

gs would then also dependent on certain values of the first derivatives R′
F G and
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R′
GH , if t0 ≠ 0. In the opinion of the author, this would further complicate the transitivity

structure of ≤t0
gs to a point that renders it essentially useless. For this reason, we will not

examine said structure further at this point.

Equivalence With Respect to Concave-Convex Orders

Let t0 ∈ R. Because of (4.7), G ≤t0
gs F is equivalent to

∃tGF ∈ DG : R′′
GF (t) ≤ t0 ∀t ≤ tGF and R′′

GF (t) ≥ t0 ∀t ≥ tGF

⇔ ∃tGF ∈ DG : R′′
F G(RGF (t)) ≥ −t0 · (R′

F G(RGF (t)))3 ∀t ≤ tGF and

R′′
F G(RGF (t)) ≤ −t0 · (R′

F G(RGF (t)))3 ∀t ≥ tGF

⇔ ∃t̃GF ∈ DF : R′′
F G(t) ≥ −t0 · (R′

F G(t))3 ∀t ≤ t̃GF and

R′′
F G(t) ≤ −t0 · (R′

F G(t))3 ∀t ≥ t̃GF .

In the case t0 = 0, this leads to a fairly simple structure for F =t0
gs G (which, then, is equivalent

to F =gs G), namely

∃tF G, t̃GF ∈ DF : R′′
F G(t) ≤ 0 ∀t ∈ DF : t ≤ tF G ∨ t ≥ t̃GF and

R′′
F G(t) ≥ 0 ∀t ∈ DF : t ≥ tF G ∨ t ≤ t̃GF (4.9)

If tF G = t̃GF , it directly follows that R′′
F G ≡ 0. tF G < t̃GF yields R′′

F G(t) ≥ 0 for t ∈ (tF G, t̃GF )
and R′′

F G(t) = 0 otherwise. Similarly, t̃GF < tF G yields R′′
F G(t) ≤ 0 for t ∈ (t̃GF , tF G) and

R′′
F G(t) = 0 otherwise. In any case, F and G are skewness-comparable with respect to

≤2. Conversely, any skewness-comparable pair F, G of cdf’s satisfies (4.9) by choice of
tF G = inf DF , t̃GF = sup DF if F ≤2 G and tF G = sup DF , t̃GF = inf DF if G ≤2 F . Overall,
we have

F =gs G ⇔ F ≤2 G or G ≤2 F.

Note, however, that t0 = 0 is only a meaningful threshold if 0 ∈ R′′
F G(DF ). If the set R′′

F G(DF )
has positive Lebesgue-measure, the threshold should indeed lie in its interior so that R′′

F G

is strictly smaller than t0 at one point and strictly larger than t0 at another point. Since,
for t0 = 0, this contradicts F <2 G as well as G <2 F , F =gs G is practically equivalent to
F =2 G and, therefore, to RF G being linear. Oja (1981, p. 165) already showed this to be
true for F =s G, which is equivalent to F =gs G for F, G ∈ S.

The situation becomes more complicated in the case t0 ̸= 0 in which F =t0
gs G is equivalent

to

∃tF G, t̃GF ∈ supp(F ) : R′′
F G(t)
t0

≤ 1 ∀t ≤ tF G,
R′′

F G(t)
t0

≥ 1 ∀t ≥ tF G,

R′′
F G(t)
t0

≥ −(R′
F G(t))3 ∀t ≤ t̃GF and R′′

F G(t)
t0

≤ −(R′
F G(t))3 ∀t ≥ t̃GF .
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Figure 4.5.: Graphs of R′′
F G with F and G being the cdf’s of t-distributions with k and ℓ

degrees of freedom, respectively.

Similarly to the equivalence with respect to ≤3, this is difficult to verify based only on one of
the two RIDF’s (or its second derivative).

4.2.3. Application to Specific Distributions

Student’s t-Distribution

The most popular example of a distribution class with changing kurtosis as its major charac-
teristic probably is the class of Student’s t-distributions. All of the distributions are symmetric
around zero and exhibit only minor differences in spread. It is popular knowledge that the
kurtosis of the distributions declines for increasing degrees of freedom. This behaviour is
exemplified by the moment-based kurtosis measure (i.e. the standardized fourth moment),
which is equal to 6

k−4 , if k > 4 holds for the number k of degrees of freedom.
Two t-distributions with different numbers of degrees of freedom can only be compared

numerically with respect to the kurtosis orders ≤3 and ≤gs as there is no explicit representation
of its quantile function and, therefore, of the corresponding RIDF. Let X ∼ tk with cdf F

and let Y ∼ tℓ with cdf G. The second derivative of the corresponding RIDF RF G is plotted
in Figure 4.5 for a number of different parameter values 0 < ℓ < k.

Overall, the steepness of the curves declines with increasing degrees of freedom. While
R′′

F G(t) is increasing for values of t around zero for all considered combinations of k and ℓ, the
behaviour for larger absolute values of t seems to depend on the ratio between k and ℓ. For
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Figure 4.6.: Graphs of R′′
F G (left panels) and R′′′

F G (black graphs in the right panels) with
F and G being the cdf’s of t-distributions with k and ℓ degrees of freedom,
respectively. The red graphs in the right panels are of the function t 7→ 3 (R′′

F G(t))2

R′
F G(t) .

k < 2ℓ, the curve has a negative slope for |t| large enough while the curve is strictly increasing
for k ≥ 2ℓ. However, for k = 2ℓ, the curve flattens for large values of |t|, seeming to converge
to a horizontal line. We conclude that, while F ≤gs G holds for all 0 < ℓ < k, F ≤3 G only
holds if 2ℓ ≤ k.

The case 0 < k < ℓ is obviously symmetric. Nonetheless, we consider the second and third
derivative of RF G for selected parameter values in order to see what can be inferred about
the validity of G ≤gs F or G ≤3 F . Here, we use the results from the end of Section 4.2.1
for ≤3 and from the end of Section 4.2.2 for ≤gs. The corresponding graphs can be found in
Figure 4.6.

Varying the parameter values essentially only changes the steepness of the curves, the
basic shape of the graphs stays the same. Since t0 = 0 is a reasonable threshold for the
concave-convex order ≤t0

gs, the considerations from the end of Section 4.2.2 yield G ≤gs F

for all 0 < k < ℓ because the second derivatives are all positive for negative values of t and
negative for positive values of t. Graphical results with respect to the order ≤3 are more
difficult to obtain as G ≤3 F is not simply equivalent to R′′′

F G ≤ 0, but to R′′′
F G(t) ≤ 3 (R′′

F G(t))2

R′
F G(t)

(see Proposition 4.11). Therefore, the graph of the right side of that inequality (red) is plotted
alongside the third derivative (black) in the right panels of Figure 4.6. The resulting plots
confirm our observations from Figure 4.5 as the red graph drops below the black graph for
ℓ < 2k and large values of |t|. For ℓ = 2k, the red graph seems to converge towards the black
graph for |t| → ∞.
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Weibull Distribution

We now move on to asymmetric distributions, which are a particular focus of the approaches
to quantifying kurtosis in this thesis. A rare example of a skewed distribution family with
explicit representations of both the cdf and the quantile function is the Weibull distribution.
We fix the scale parameter at value 1, so that the cdf and the quantile function are given by

F (t) = 1 − exp(−tk), t > 0, and F −1(p) = (− log(1 − p))1/k, p ∈ (0, 1).

Now, let k, ℓ > 0 and let X ∼ Weib(k) with cdf F and let Y ∼ Weib(ℓ) with cdf G. The
corresponding RIDF is then given by

RF G(t) = (− log(1 − (1 − exp(−tk))))1/ℓ = tk/ℓ

for t > 0. It follows directly from Example 4.12 that F ≤3 G is equivalent to k
ℓ /∈ (1, 2)

and that G ≤3 F is equivalent to k
ℓ /∈ (1

2 , 1). Now let t0 ∈ int(R′′
F G(DF )). Due to Corollary

4.21, F ≤t0
gs G and G ≤t0

gs F hold under the same conditions, respectively. Since R′′
F G is

decreasing for k
ℓ ∈ (1, 2), F ̸≤t0

gs G follows directly. Analogously, RF G(t) = tℓ/k, t > 0, implies
that G ̸≤t0

gs F holds for k
ℓ ∈ (1

2 , 1). Our results concerning the Weibull distribution can be
summarized by the following distinction by cases:

(i) If k

ℓ
∈
(1

2 , 1
)

, then F ≤3 G and F ≤t0
gs G, (4.10)

(ii) If k

ℓ
∈ (1, 2), then G ≤3 F and G ≤t0

gs F, (4.11)

(iii) If k

ℓ
∈
(

0,
1
2

]
∪ {1} ∪ [2, ∞), then F =3 G and F =t0

gs G, (4.12)

where t0 is always chosen as a reasonable threshold. Cases (i) and (ii) remain true if the
non-strict order ≤3 and ≤t0

gs are replaced by their respective strict versions <3 and <t0
gs.

This distinction by cases allows us to construct another counterexample for the transitivity
of both ≤3 and ≤t0

gs. For all k > 0, denote the cdf of X ∼ Weib(k) by Fk. Then, e.g.,

Fk ≤3 F1.5k =3 F0.7k

holds. Now ≤3 being transitive is contradicted by Fk ̸≤3 F0.7k.

Gamma Distribution

We consider the family of gamma distributions with the scale (or rate) parameter fixed to 1
with the density function

f(t) = tk−1e−t

Γ(k) , t > 0,
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Figure 4.7.: Graphs of R′′
F G with F and G being the cdf’s of gamma distributions with shape

parameter values k and ℓ, respectively.

where k > 0 denotes the shape parameter and Γ(·) denotes the gamma function. Now let
X ∼ Γ(k) with cdf F and Y ∼ Γ(ℓ) with cdf G, where k, ℓ > 0. As for the t-distribution, the
RIDF RF G does not have a explicit representation in this case and we therefore rely solely on
graphical considerations. For any parameter choice 0 < k < ℓ, the second derivative R′′

F G is
a strictly negative, increasing and concave function with its gradient tending towards 0 for
increasing t (see left panels of Figure 4.7). It follows directly that F ≤3 G holds as well as
F ≤t0

gs G for all reasonable thresholds t0.
The behaviour of R′′

F G in the case 0 < ℓ < k is dependent upon a further distinction (see
right panels of Figure 4.7). If k < 2ℓ, then the second derivative is decreasing and convex; if
k > 2ℓ, then it starts out by increasing, reaches a maximum and decreases towards 0 for large
values of t. In both cases, the function is strictly positive. Additionally, both cases directly
contradict both F ≤3 G and F ≤t0

gs G for any t0 ∈ int(R′′
F G(DF )).

Overall, if t0 is chosen to be a reasonable threshold, F ≤3 G is equivalent to both F ≤t0
gs G

and k < ℓ. Furthermore, if we exclude the case F = G, it is also equivalent to both F ̸≤2 G

and G ≤2 F (see van Zwet, 1964, pp. 60–61).

Sinh-Arsinh Distribution

The family of sinh-arsinh distributions was introduced by Jones and Pewsey (2009). It is
dependent upon four parameters, which can be associated with location, dispersion, skewness
and kurtosis (although Jones and Pewsey state throughout their work that the fourth parameter
is associated with tailweight). Here, we consider a simplified two-parameter family by fixing
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the location and spread parameters to zero and one, respectively. A random variable X is
said to be sinh-arsinh-distributed with skewness parameter ν ∈ R and kurtosis parameter
τ > 0, denoted by X ∼ SAS(ν, τ), if the random variable

Z = Sν,τ (X) = sinh(τ · arsinh(X) − ν)

is standard normal. Skewness to the right increases with increasing ν and kurtosis decreases
with increasing τ . More specifically, F ≤2 G if νF ≤ νG, τF = τG and F ≤gs G if νF =
νG = 0, τF ≤ τG (see Jones and Pewsey, 2009, pp. 763, 765, 766). One can directly infer the
corresponding cdf F = Φ ◦ Sν,τ and quantile function F −1 = S−1

ν,τ ◦ Φ−1 = S− ν
τ

, 1
τ

◦ Φ−1 of X.
Here, Φ denotes the cdf of the standard normal distribution and the generally valid identity
S−1

ν,τ = S− ν
τ

, 1
τ

for the inverse transformation was used. The corresponding density also has a
(slightly more complex) explicit representation (see Jones and Pewsey, 2009, p. 762).

There exist multiple other distribution families with four parameters that are associated
with the first four convex characteristics of location, dispersion, skewness and kurtosis (or,
alternatively, peakedness or tailweight). Examples include the skew-normal distributions by
Azzalini and subsequent skew-t distributions (Azzalini, 1985; Azzalini and Capitanio, 2003)
and Tukey’s g-and-h or g-and-k distributions (Hoaglin, 1985; MacGillivray and Cannon, 1997;
Tukey, 1977). However, these other examples do not have similarly explicit representations
of their cdf’s, quantile functions, densities and RIDF’s. Furthermore, while the skew-t
distributions do include the standard normal distribution, it only appears as a limiting case
and not as a standard case as for the sinh-arsinh distributions. Finally, the sinh-arsinh
transformation can also be applied to (symmetric) base distributions other than the standard
normal. For example, Rosco et al. (2011) applied it to Student’s t-distribution.

Let X ∼ SAS(νF , τF ) with cdf F and Y ∼ SAS(νG, τG) with cdf G. Then, the corresponding
RIDF is given by

RF G(t) = G−1(F (t)) = (S−1
νG,τG

◦ Φ−1 ◦ Φ ◦ SνF ,τF )(t) = S− νG
τG

, 1
τG

(SνF ,τF (t))

= sinh
(arsinh(sinh(τF · arsinh(t) − νF )) + νG

τG

)
= sinh

(
τF

τG
· arsinh(t) − νF − νG

τG

)
= S νF −νG

τG
,

τF
τG

(t).

Note that the fulfilment of F ≤t0
gs G and F ≤3 G is solely dependent on this RIDF. Hence,

the ordering of F and G in terms of kurtosis is only dependent upon two parameters instead
of four. Particularly, it is independent of the concrete values of the skewness parameters
and instead only depends on their difference. Define ν̃ = νF −νG

τG
and τ̃ = τF

τG
as well as

Cν,τ (t) = cosh(τ · arsinh(t) − ν) for ν, t ∈ R, τ > 0 and note that C2
ν,τ − S2

ν,τ ≡ 1 for
all ν ∈ R, τ > 0. The following result gives equivalent conditions on when sinh-arsinh
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distributions are ordered with respect to the kurtosis orders ≤3 and ≤gs.

Theorem 4.24. Let F ̸= G.

a) F ≤3 G is equivalent to τF ≥ 2τG

Now, let t0 ∈ int(R′′
F G(DF ))

b) If t0 ̸= 0, then F ≤t0
gs G is also equivalent to τF ≥ 2τG.

c) If t0 = 0, F ≤t0
gs G is equivalent to τF > τG.

Proof. In order to prove both a) and b), we assume t0 ∈ int(R′′
F G(DF )) \ {0} and we prove

the chain of implications F ≤t0
gs G ⇒ τF ≥ 2τG ⇒ F ≤3 G. Since F ≤3 G ⇒ F ≤t0

gs G holds
due to Corollary 4.21, all three statements are then equivalent, which corresponds to parts a)
and b). Note that the first three derivatives of the RIDF are given by

R′
F G(t) = τ̃(1 + t2)−1/2Cν̃,τ̃ (t),

R′′
F G(t) = τ̃(1 + t2)−3/2

[
τ̃
√

1 + t2Sν̃,τ̃ (t) − tCν̃,τ̃ (t)
]

,

R′′′
F G(t) = τ̃(1 + t2)−5/2

[
−3τ̃ t

√
1 + t2Sν̃,τ̃ (t) +

(
(τ̃2 + 2)t2 + τ̃2 − 1

)
Cν̃,τ̃ (t)

]
.

First, we show the implication F ≤t0
gs G ⇒ τF ≥ 2τG by contradiction. In order to obtain the

asymptotic behaviour of Sν̃,τ̃ (t), we rewrite it as follows

Sν̃,τ̃ (t) = sinh(τ̃ · log(t +
√

1 + t2) − ν̃)

= 1
2

[
exp

(
τ̃ · log(t +

√
1 + t2) − ν̃

)
− exp

(
−τ̃ · log(t +

√
1 + t2) + ν̃

)]
= 1

2

[
(t +

√
1 + t2)τ̃

eν̃
− eν̃

(t +
√

1 + t2)τ̃

]
.

Since τ̃ > 0, the second summand converges to zero as t → ∞. The first summand is obviously
positive and diverges; asymptotically it behaves like (2t)τ̃ /eν̃ . Overall, Sν̃,τ̃ (t) ∼ 2τ̃−1e−ν̃ |t|τ̃

for t → ∞. For the asymptotic behaviour as t → −∞, note that t +
√

1 + t2 behaves for
t → −∞ as

√
1 + t2 − t = (

√
1 + t2 − t)(

√
1 + t2 + t)√

1 + t2 + t
= 1√

1 + t2 + t
∼ (2t)−1

behaves for t → ∞. With similar reasoning as before, we obtain Sν̃,τ̃ (t) ∼ −2τ̃−1eν̃ |t|τ̃ for
t → −∞. The relationship between the hyperbolic functions now gives Cν̃,τ̃ (t) ∼ Sν̃,τ̃ (t) for
t → ∞ and Cν̃,τ̃ (t) ∼ −Sν̃,τ̃ (t) for t → −∞. Overall, we infer

R′′
F G(t) ∼ τ̃ |t|−3 [τ̃ |t|Sν̃,τ̃ (t) − tCν̃,τ̃ (t)] ∼ τ̃(τ̃ − 1)Sν̃,τ̃ (t)

|t|2
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∼

τ̃(τ̃ − 1)2τ̃−1e−ν̃ |t|τ̃−2 for t → ∞,

−τ̃(τ̃ − 1)2τ̃−1eν̃ |t|τ̃−2 for t → −∞,
(4.13)

if τ̃ ̸= 1. In the case τ̃ = 1, the asymptotically leading summands of
√

1 + t2Sν̃,τ̃ (t) and
tCν̃,τ̃ (t) cancel out and, therefore, a closer investigation is required. Specifically,

τ̃
√

1 + t2Sν̃,τ̃ (t) − tCν̃,τ̃ (t)

=
√

1 + t2

2

[
(t +

√
1 + t2)τ̃

eν̃
− eν̃

(t +
√

1 + t2)τ̃

]
− t

2

[
(t +

√
1 + t2)τ̃

eν̃
+ eν̃

(t +
√

1 + t2)τ̃

]

= 1
2

√
1 + t22 − t2

eν̃
− (t +

√
1 + t2)eν̃

t +
√

1 + t2


= 1 − e2ν̃

2eν̃

yields

R′′
F G(t) = 1 − e2ν̃

2eν̃
(1 + t2)−3/2 ∼ 1 − e2ν̃

2eν̃
|t|−3 (4.14)

for τ̃ = 1. Now, assuming τ̃ < 2, it follows that R′′
F G(t) |t|→∞→ 0. If t0 > 0, R′′

F G(tu) < t0 follows
for tu large enough. However, since t0 lies in the interior of the image of R′′

F G, there also exists
a tℓ < tu such that R′′

F G(tℓ) > t0. This contradicts F ≤t0
gs G. If t0 < 0, R′′

F G(sℓ) > t0 follows
for sℓ small enough and, by assumption, there also exists an su > sℓ such that R′′

F G(su) < t0,
thus also contradicting F ≤t0

gs G.

We now prove the implication τF ≥ 2τG ⇒ F ≤3 G and therefore assume τ̃ ≥ 2. F ≤3 G is
equivalent to

[(τ̃2 + 2)t2 + τ̃2 − 1]Cν̃,τ̃ (t) ≥ 3τ̃ t
√

1 + t2Sν̃,τ̃ (t) (4.15)

holding for all t ∈ R. Because of Cν̃,τ̃ (t) ≥ 0 and (τ̃2 + 2)t2 + τ̃2 − 1 ≥ 6t2 + 3 > 0, the
left hand side of inequality (4.15) is positive for all t. Hence, substituting both sides of the
inequality with their squares gives a sufficient condition. We obtain[

(τ̃2 + 2)t2 + (τ̃2 − 1)
]2

C2
ν̃,τ̃ (t) ≥ 9τ̃2t2(1 + t2)(C2

ν̃,τ̃ (t) − 1) ∀t ∈ R

⇔
[(

(τ̃2 + 2)2 − 9τ̃2
)

t4 +
(
2(τ̃2 + 2)(τ̃2 − 1) − 9τ̃2

)
t2 + (τ̃2 − 1)2

]
C2

ν̃,τ̃ (t)

+ 9τ̃2t2(1 + t2) ≥ 0 ∀t ∈ R.

The second summand on the left hand side is obviously non-negative. It is now sufficient
to show that all coefficients of the polynomial, with which C2

ν̃,τ̃ (t) is multiplied, are non-
negative. For the constant (τ̃2 − 1)2, this is obvious. The coefficient of t2 is equal to
2τ̃4 − 7τ̃2 − 4 = (τ̃2 − 4)(2τ̃2 + 1), which is non-negative since τ̃ ≥ 2 was assumed. The same
is true for the coefficient of t4, which is equal to τ̃4 − 5τ̃2 + 4 = (τ̃2 − 4)(τ̃2 − 1).
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It remains to prove part c), so let now t0 = 0. Note that the sign of R′′
F G(t) corresponds

to the sign of h(t) = τ̃
√

1 + t2Sν̃,τ̃ (t) − tCν̃,τ̃ (t), t ∈ R. Using (4.13), (4.14) as well as
h(t) = (1+t2)3/2

τ̃ R′′
F G(t), t ∈ R, we obtain that

h(t) ∼

(τ̃ − 1)2τ̃−1e−ν̃ |t|τ̃+1 for t → ∞,

−(τ̃ − 1)2τ̃−1eν̃ |t|τ̃+1 for t → −∞,
(4.16)

for τ̃ ̸= 1 and

h(t) = 1 − e2ν̃

2eν̃
, t ∈ R,

for τ̃ = 1. From the latter, we infer that either R′′
F G ≥ 0 (in the case ν̃ < 0) or R′′

F G ≤ 0 (in
the case ν̃ > 0) holds. (Note that the case ν̃ = 0 is excluded due to the assumption F ̸= G.)
While this yields F ≤0

gs G for τ̃ = 1, the threshold t0 = 0 does not satisfy t0 ∈ int(R′′
F G(DF )),

which is assumed in the result. Continuing under the assumption τ̃ ̸= 1, (4.16) yields

lim
t→±∞

h(t) =

±∞ for τ̃ > 1,

∓∞ for τ̃ < 1.
(4.17)

Considering S′
ν̃,τ̃ (t) = τ̃(1 + t2)−1/2Cν̃,τ̃ (t) and C ′

ν̃,τ̃ (t) = τ̃(1 + t2)−1/2Sν̃,τ̃ (t), the derivative
of h is given by

h′(t) = τ̃ t(1 + t2)−1/2Sν̃,τ̃ (t) + τ̃(1 + t2)1/2S′
ν̃,τ̃ (t) − Cν̃,τ̃ (t) − tC ′

ν̃,τ̃ (t)

= τ̃ t(1 + t2)−1/2Sν̃,τ̃ (t) + τ̃2Cν̃,τ̃ (t) − Cν̃,τ̃ (t) − τ̃ t(1 + t2)−1/2Sν̃,τ̃ (t)

= (τ̃2 − 1)Cν̃,τ̃ (t).

for t ∈ R. Because of Cν̃,τ̃ (t) > 0, we have h′ > 0 for τ̃ > 1 and h′ < 0 for τ̃ < 1. Combined
with (4.17), it follows that h has exactly one root, at which its sign changes from ’−’ to ’+’
if τ̃ > 1 and from ’+’ to ’−’ if τ̃ < 1. Since the sign of R′′

F G coincides with the sign of h, it
follows directly that F ≤0

gs G holds for τ̃ > 1 and that the same does not hold for τ̃ < 1.

Remark 4.25. It follows from F ̸= G that int(R′′
F G(DF )) ̸= ∅, so that parts b) and c) of

Theorem 4.24 are not statements concerning the empty set. We prove this by contradiction
and therefore assume int(R′′

F G(DF )) = ∅. Since R′′
F G is continuous, this occurs if and only

if R′′
F G is constant. Defining the function h(t) = τ̃

√
1 + t2Sν̃,τ̃ (t) − tCν̃,τ̃ (t), t ∈ R, as in the

proof of Theorem 4.24, this is equivalent to the existence of a constant c ∈ R such that
h(t) = c(1 + t2)3/2, t ∈ R. The case c = 0 is equivalent to F = G as h is not constant for τ̃ ̸= 1
and non-zero for τ̃ = 1 and ν̃ ̸= 0. In the case c ̸= 0, we either obtain limt→±∞ h(t) = ∞ (for
c > 0) or limt→±∞ h(t) = −∞ (for c < 0), which contradicts (4.17) in combination with the
fact that h is constant for τ̃ = 1.

Since the orders used in the equivalent conditions in Theorem 4.24 are transitive, the



4.2. Kurtosis Orders on Asymmetric Distributions 103

−4 −2 0 2 4

−
0

.0
4

0
.0

0
0

.0
4

ν~ = − 1,τ~ = 0.1

t

R
F

G
’’(

t)

−4 −2 0 2 4

−
0

.0
4

0
.0

0
0

.0
4 ν~ = 0,τ~ = 0.1

t

R
F

G
’’(

t)

−4 −2 0 2 4

−
0

.0
6

0
.0

0
0

.0
4

ν~ = 1,τ~ = 0.1

t

R
F

G
’’(

t)

−4 −2 0 2 4

0
.0

0
.4

0
.8

ν~ = − 1,τ~ = 0.9

t

R
F

G
’’(

t)

−4 −2 0 2 4
−

0
.0

6
0

.0
0

0
.0

6

ν~ = 0,τ~ = 0.9

t

R
F

G
’’(

t)
−4 −2 0 2 4

−
1

.0
−

0
.6

−
0

.2

ν~ = 1,τ~ = 0.9

t

R
F

G
’’(

t)

−4 −2 0 2 4

0
.0

0
.4

0
.8

1
.2

ν~ = − 1,τ~ = 1

t

R
F

G
’’(

t)

−4 −2 0 2 4

−
1

.0
0

.0
0

.5
1

.0

ν~ = 0,τ~ = 1

t

R
F

G
’’(

t)

−4 −2 0 2 4

−
1

.2
−

0
.8

−
0

.4
0

.0

ν~ = 1,τ~ = 1

t

R
F

G
’’(

t)

Figure 4.8.: Graphs of R′′
F G with F and G being the cdf’s of X ∼ SAS(νF , τF ) and Y ∼

SAS(νG, τG), respectively.

following result is directly implied.

Corollary 4.26. Let t0 ∈ int(R′′
F G(DF )). Then, the orders ≤3 and ≤t0

gs are both transitive
on the set {F ∈ P3

I : ∃ν ∈ R, τ > 0 : F = SAS(ν, τ)}.

For a number of choices of ν̃ and τ̃ , the function R′′
F G is plotted in Figures 4.8, 4.9 and 4.10.

Additionally, a number of properties are summarized in Table 4.1. It is obvious from (4.13)
and (4.16) that R′′

F G asymptotically always behaves like a monomial, where the exponent is
linearly increasing in τ̃ (except for the case τ̃ = 1). The exponent reaches the value 0 for
τ̃ = 2, which corresponds to the fact that F ≤3 G is equivalent to τ̃ ≥ 2. Furthermore, the
function has exactly one root for τ̃ ̸= 1 with the direction of the sign change switching for
τ̃ = 1. The graph of R′′

F G is point symmetric around the origin for ν̃ = 0. For ν̃ < 0, the side
with the positive values of R′′

F G is scaled up and the other side is scaled down. Additionally,
the sole root of the function shifts to the side with the scaled-down values. The reverse is
true for ν̃ > 0 with the extent of the rescaling and the shift exponentially depending on the
absolute value of ν̃.

In the symmetric case of ν̃ = 0, a number of special cases stand out, which are also singled
out in Table 4.1. First, for τ̃ = 1, R′′

F G ≡ 0 obviously holds since F = G and, therefore, RF G

is the identity function (see lower central panel of Figure 4.8). Then, for τ̃ = 2, the rather
simple form RF G(t) = 2t

√
t2 + 1 is obtained, yielding the second derivative R′′

F G(t) = 4t3+6t
(t2+1)3/2 ,

which converges to 4 as t → ∞ and to −4 as t → −∞ (see lower central panel of Figure 4.9).
Finally, for τ̃ = 3, the RIDF is given by RF G(t) = 4t3 + 3t, which leads to the linear second
derivative R′′

F G(t) = 24t (see central panel of Figure 4.10).
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Figure 4.9.: Graphs of R′′
F G with F and G being the cdf’s of X ∼ SAS(νF , τF ) and Y ∼

SAS(νG, τG), respectively.
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Figure 4.10.: Graphs of R′′
F G with F and G being the cdf’s of X ∼ SAS(νF , τF ) and Y ∼

SAS(νG, τG), respectively.
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R′′
F G(t)

Values of τ̃ Sign change? Monotonicity? limt→±∞ F ≤3 G? F ≤t0
gs G?

τ̃ ∈ (0, 1) ’+’ to ’−’ No 0 No No
τ̃ = 1 No No* 0 No** No**

τ̃ ∈ (1, 2) ’−’ to ’+’ No 0 No Iff t0 = 0
τ̃ = 2 ’−’ to ’+’ Increasing ±4 Yes Yes

τ̃ ∈ (2, 3) ’−’ to ’+’ Increasing ±∞
sub-linear growth Yes Yes

τ̃ = 3 ’−’ to ’+’ Increasing ±∞
linear growth Yes Yes

τ̃ ∈ (3, ∞) ’−’ to ’+’ Increasing ±∞
super-linear growth Yes Yes

Table 4.1.: Behaviour of the second derivative of the RIDF and kurtosis orders for cdf F of
X ∼ SAS(νF , τF ) and cdf G of Y ∼ SAS(νG, τG). *: Constant if ν̃ = 0. **: Yes if
ν̃ = 0.

Heuristically, Theorem 4.24 states that, within the family of sinh-arsinh distributions,
comparisons in terms of kurtosis are skewness-invariant. This is due to the fact that equivalent
characterizations for both major kurtosis orders are independent of both νF and νG, which
are skewness parameters by construction and also in the sense of ≤2 for τF = τG (see Jones
and Pewsey, 2009, p. 763). Moreover, the characterizations from Theorem 4.24 not only stay
the same for equally skewed asymmetric distributions, but also for pairs of distributions with
arbitrarily big differences in skewness (within the bounds of the distribution family). Also
note that these results can be generalized to families of sinh-arsinh distributions that arise
from symmetric base distributions other than the normal one since the RIDF’s only depend
on the transformations and not on the specific base distribution. This observation serves as a
strong argument for considering the notion of kurtosis irrespective of skewness, in particular
using the two kurtosis orders used in Theorem 4.24.

The skewness-invariance of the sinh-arsinh distribution in terms of kurtosis was noted by
Jones et al. (2011, pp. 91–92). Specifically, they showed that quantile-based kurtosis measures
that are constructed from symmetric differences of the form F −1(1 − α) − F −1(α), α ∈ (0, 1

2),
are invariant under changes of the skewness parameter ν. Theorem 4.24 generalizes this
skewness-invariance from a specific family of kurtosis measures to the underlying kurtosis
orders. Quantile-based kurtosis measures are discussed along with other types of measures in
Section 4.3. However, the focus there is laid on the transitivity sets established in Sections
4.2.1 and 4.2.2.

4.2.4. Graphical Interpretation of the Kurtosis Orders

In conclusion of our discussion of the different kurtosis orders, we look at how they detect
gradients in kurtosis between two distributions and how this is compatible with heuristic
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Figure 4.11.: Illustration of three pairs of distributions that are compared with respect to
kurtosis in Section 4.2.4.

ideas of what kurtosis is. Consider Figure 4.11 for three examples. These are illustrated in
the same way as the notions of location, dispersion and skewness are illustrated in Figure 3.1.
The density f of F is depicted in the upper panel and the x-axis is divided in equidistant
intervals. The x-axis of the density g of G in the lower panel is also divided into intervals,
which are chosen in such a way that the probability mass on each interval is the same as the
probability mass on the corresponding interval of f . This interval bounds for g are obtained
by plugging the interval bounds of f into the RIDF RF G.

Recall the basic ideas behind the transformations for the first three convex characteristics:
for location, all interval bounds are shifted to the right; for dispersion, all intervals are
stretched out; and for skewness the lengths of the intervals increases from left to right.

On the left side of Figure 4.11, we compare the density f of the standard normal distribution
with the density g of the t2-distribution. The intervals, which are equidistant for f , are rescaled
for g: they are longer for large values on the x-axis and shorter if they are close to the centre
of the distributions. As discussed in Section 4.2.3, both N (0, 1) ≤3 t2 and N (0, 1) ≤gs t2 hold.
Since all t-distributions are symmetric, t0 = 0 is the canonical choice for the threshold of
the concave-convex order. Note that F ≤2 G, which is equivalent to R′′

F G ≥ 0, implies that
the length of the intervals for g increases from left to right. F ≤3 G, which is equivalent to
R′′′

F G ≥ 0, implies that the rate, at which the length of the intervals increases, is increasing
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from left to right. If the length of the j-th interval in the lower left panel of Figure 4.11
is divided by the length of the (j − 1)-th interval, that ratio increases from left to right.
Furthermore, F ≤gs G means that the lengths of the intervals decreases up to zero and
increases from there on out.

The densities in the central panels of Figure 4.11 are from the counterexample from the proof
of Proposition 4.16 with g being rescaled to obtain the same support for both distributions.
Here, F ≤gs G obviously holds again because the intervals for g decrease in length up to zero
and increase from there on out. However, it is also obvious that the ratio between the lengths
of the fourth and the third interval is smaller that the ratio between the lengths of the second
and the first interval. These ratios can therefore not be increasing and F ≤3 G does not hold.
This illustrates in which way ≤gs and ≤t0

gs are weaker than ≤3.
The panels on the right side of Figure 4.11 show the densities of two Weibull distributions

for which F ≤3 G and F ≤t0
gs G holds for all reasonable thresholds t0 (see Section 4.2.3).

Since the two Weibull distributions are skewness-comparable in the sense of G ≤2 F , the
lengths of the intervals for g are decreasing. Thus, F ≤gs G holds, but the statement is not
meaningful because 0 /∈ (−∞, 0) = int(R′′

F G(DF )) is not a reasonable threshold. F ≤3 G also
holds because the ratio between two neighbouring intervals, while being negative throughout,
still increases. Contrary to ≤t0

gs, the fact that the order ≤3 holds is always meaningful since it
is not dependent on any parameter. Any threshold t0 ∈ R for the order ≤t0

gs can be converted
into a threshold for the ratios between two neighbouring intervals. Thus, for all reasonable
thresholds t0 ∈ int(R′′

F G(DF )), the ratio is smaller than the corresponding converted threshold
up to some point and larger than the threshold from that point onward. This yields F ≤t0

gs G.
We can conclude that both ≤3 and ≤gs make sense as orders of kurtosis for symmetric

distributions. However, for asymmetric distributions, there is no canonical threshold for the
order ≤t0

gs, making it difficult to use and interpret. Therefore, using ≤3 for general distributions
is advisable.

4.3. Kurtosis Measures on Asymmetric Distributions

Contrary to kurtosis orders, measures of kurtosis are often used on arbitrary distributions
without ensuring that they are symmetric or nearly symmetric, particularly in practice (see,
e.g., Wheeler, 1975 or Hanook et al., 2013). Measures are mostly chosen based on historical
relevance and on how easy they are to use and interpret. Since this practice obviously lacks
rigour, we start out by giving a general framework for the definition of kurtosis measures. Let
Q ⊆ P3

I be the subset of all cdf’s that are sufficiently regular for a given kurtosis measure
candidate to be defined. Oja (1981) proposed for a mapping κ : Q → R to be said to be a
measure, if satisfies the following two properties:

(K1) κ(aX + b) = κ(X) for all a ∈ R \ {0}, b ∈ R and F ∈ Q,
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(K2) κ(F ) ≤ κ(G) for all F, G ∈ Q such that F ≤K G for some kurtosis order ≤K .

This definition is in line with that of measures of central location, dispersion and skewness
from Definition 3.1. Usually, the crucial property is the one requiring the measure preserve a
certain order with respect to the relevant characteristic, so in this case (K2). However, as
discussed in the previous sections, no suitable proposal for a kurtosis order that is applicable to
both symmetric and asymmetric distributions has been explicitly considered in the literature
so far. Consequently, the usage of kurtosis measures on asymmetric distributions lacks any
kind of foundation.

In Section 4.2, we concluded that the order of the third convex characteristic is, in general,
superior to the concave-convex order for two major reasons. First, while ≤3 is unambiguous,
≤t0

gs depends on the used threshold t0 for which there is no obvious preferred choice if the
distribution is not symmetric. Second, ≤3 is stronger than ≤t0

gs for any threshold t0, meaning
that the former imposes a more basic requirement on corresponding kurtosis measures. ≤3 is
also the kurtosis analogue of the fundamental orders ≤st, ≤disp and ≤c for the lower convex
characteristics. However, by reusing Example 4.2, we observe that even this most basic
requirement cannot be satisfied in a meaningful way.

Theorem 4.27. a) There exists no mapping κ : P3
I → R such that F ≤3 G implies

κ(F ) ≤ κ(G) and F <3 G implies κ(F ) < κ(G) for all F, G ∈ P∞
I .

b) Let t0 ∈ int(R′′
F G(DF )). There exists no mapping κ : P3

I → R such that F ≤t0
gs G implies

κ(F ) ≤ κ(G) and F <t0
gs G implies κ(F ) < κ(G) for all F, G ∈ P3

I .

Proof. a) As mentioned before, we consider the three cdf’s from Example 4.2:

F : [0, 1] → [0, 1], t 7→ t3,

G : [0, 1] → [0, 1], t 7→ t,

H : [0, 1] → [0, 1], t 7→ 1 − 3√1 − t.

Note that all three cdf’s are three times differentiable and have interval support as
well as strictly positive densities, i.e. F, G, H ∈ P3

I . As already shown in Example 4.2,
F ≤3 G and G ≤3 H holds, but also F ̸≤3 H. Note that this does not imply H ≤3 F as
≤3 is not a total relation, which means that for two cdf’s F and H it is possible that
neither F ≤3 H nor H ≤3 F .

Now we assume that there exists a mapping κ : P3
I → R that preserves the order ≤3. It

follows that κ(F ) ≤ κ(G) ≤ κ(H). We now contradict this by showing H ≤3 F , which
then implies H <3 F and κ(H) < κ(F ). To this end, it holds

RHF (t) : [0, 1] → [0, 1], t 7→ F −1(H(t)) = 3
√

1 − 3√1 − t =
(
1 − (1 − t)1/3

)1/3
.



4.3. Kurtosis Measures on Asymmetric Distributions 109

It follows for t ∈ [0, 1]

R′
HF (t) = 1

9

(
1 − (1 − t)1/3

)−2/3
(1 − t)−2/3,

R′′
HF (t) = 2

27

(
1 − (1 − t)1/3

)−2/3
(1 − t)−5/3 − 2

81

(
1 − (1 − t)1/3

)−5/3
(1 − t)−4/3,

R′′′
HF (t) = 10

81

(
1 − (1 − t)1/3

)−2/3
(1 − t)−8/3 − 4

81

(
1 − (1 − t)1/3

)−5/3
(1 − t)−7/3

+ 10
729

(
1 − (1 − t)1/3

)−8/3
(1 − t)−2,

and then

H ≤3 F ⇔ R′′′
HF (t) ≥ 0 ∀t ∈ [0, 1]

⇔ 10
81

(
1 − (1 − t)1/3

)2
− 4

81

(
1 − (1 − t)1/3

)
(1 − t)1/3 + 10

729(1 − t)2/3 ≥ 0

∀t ∈ [0, 1]

⇔ (1 − t)2/3 − 27
17(1 − t)1/3 + 45

68 ≥ 0 ∀t ∈ [0, 1]

⇔
(
(1 − t)1/3 − 27

34

)2
≥ −

(
3
17

)2
∀t ∈ [0, 1].

Since the last inequality is obviously true for all t ∈ [0, 1] because the left side is
non-negative and the right side is negative, this concludes the proof.

b) Let Fi denote the cdf of a Weibull distributed random variable with shape parameter
i > 0 and consider the triple (Fj , Fk, Fℓ) with 2ℓ < k and ℓ ∈ ( j

2 , j). It follows that
the conditions j /∈ (k, 2k), k /∈ (ℓ, 2ℓ) and ℓ ∈ ( j

2 , j) are satisfied. According to the
consideration of the Weibull distribution in Section 4.2.3, these three conditions are, in
order, equivalent to Fj ≤t0

gs Fk, Fk ≤t0
gs Fℓ and Fℓ <t0

gs Fj , thus concluding the proof by
contradiction.

Note that the triple of cdf’s used for the proof of part b) can also be used to prove part a)
since the statements F ≤3 G and F ≤t0

gs G are equivalent if F and G are Weibull distributed
and the same equivalence is true for the corresponding strict orders.

Obviously, the statement of Theorem 4.27 is also valid if the set P3
I is replaced by any other

set of cdf’s that includes the three cdf’s used for the counterexample in the proof or any other
triple of cdf’s that poses an analogous contradiction.

Since there is an additional assumption made in Theorem 4.27, we cannot generally conclude
that there is no kurtosis measure candidate that satisfies property (K2) on a sufficiently rich
set of cdf’s. This, however, is due to the fact that one can define a trivial kurtosis measure by
just defining the constant mapping κT ≡ k for some k ∈ R. It is easy to verify that this defines
a kurtosis measure in the sense that it satisfies both properties (K1) and (K2). The mapping
κT ≡ 0 is also a measure of central location, dispersion and skewness, mainly due to the fact
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that the crucial properties of all these definitions are always stated using the non-strict version
of the corresponding order. One way to exclude this special case would be to just assume that
the kurtosis measure candidate is not constant on the given set of cdf’s. This, however, would
be very difficult to deal with since the existence of a kurtosis measure with these properties
heavily depends on the considered set of cdf’s and its structure. Showing that any kurtosis
measure is constant on certain families like the Weibull family would be fairly easy. Whether
different kurtosis values could be assigned to different distribution families would depend
upon their interconnectedness in terms of the kurtosis order. Since this variant for defining
kurtosis measures seems to be very convoluted, we will not analyze it here any further.

Another variant that excludes the trivial measure without exhibiting said transferability
issue is the one used in Theorem 4.27: requiring the measure to preserve both the strict
and the non-strict version of the underlying order. This variant comes with its own set of
drawbacks, most notably that the strict order needs to be considered separately from the
usually used non-strict one. For example, the fact that the non-strict order ≤3 implies the
non-strict order ≤t0

gs does not mean that the same implication holds for the corresponding
strict orders <3 and <t0

gs. However, the latter implication can indeed be proved similarly to
the former one (see Theorem 4.16 and Corollary 4.21). So, if property (K2) is extended to

(K2′) κ(F ) ≤ κ(G) for all F, G ∈ Q such that F ≤K G and
κ(F ) < κ(G) for all F, G ∈ Q such that F <K G for some kurtosis order ≤K with strict

version <K

in the definition of kurtosis measures, Theorem 4.27 proves that there exist no kurtosis
measures based on the kurtosis orders ≤3 or ≤t0

gs. Furthermore, we can conclude that there
exist no kurtosis measures based on any kurtosis order, which is weaker than ≤3 in both the
strict and non-strict version. Since ≤3 is the strongest kurtosis order that can be found in the
literature, this result deems the definition of kurtosis measures via (K1) and (K2′) to be too
strong and therefore unusable.

Since the proof of Theorem 4.27 is based upon the fact that ≤3 is not transitive, the
question of how candidates for kurtosis measures behave on the transitivity sets of ≤3 arises.
However, that question needs to be addressed separately for each candidate and also for each
kind of transitivity set. The three major kinds of transitivity sets found in Section 4.2 are
T t

D,p, t ∈ R, p ∈ (0, 1) (see Theorem 4.8), T p̃
Mode, p̃ ∈ (−1, 1) (see Theorem 4.9), and the set

of all sinh-arsinh distributions (see Corollary 4.26). Candidates for kurtosis measures are
discussed in the following subsections. There, we focus on the fulfilment of (K2) for the order
of the third convex characteristic and the concave-convex order. The modified requirement
(K2′) was mainly defined to obtain Theorem 4.27. If the measure is constructed in a symmetric
way, the property (K1) usually follows easily by using Lemma 3.5 or Proposition 2.22.
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4.3.1. Moment-Based Approaches to Measuring Kurtosis

The Standardized Fourth Moment

The earliest attempt at measuring kurtosis is attributed to Pearson (1895) and is given by
the standardized fourth moment

κM : L4 → R, X 7→ E
[(

X − µX

σX

)4
]

(denoted by β2 by Pearson). Ever since, the concept of kurtosis and what it describes has
been much discussed. However, its oldest measure is still its most prominent one and often
understood as synonymous with the notion of kurtosis itself (see, e.g., McAlevey and Stent,
2018 or Crack, 2019). The utilization of κM as a kurtosis measure is in line with that of the
first three (standardized) moments as measures of central location, dispersion and skewness,
respectively. The fourth moment is, however, the first one that cannot be standardized with
respect to an earlier moment, namely the third one. The fact that κM is not invariant to
skewness (in terms of the standardized third moment γM ) is represented in the generally valid
inequality

κM (X) ≥ (γM (X))2 + 1, F ∈ L4 (4.18)

(see Pearson, 1916, p. 432). The inequality essentially states that any distribution that is
notably skewed in either direction is necessarily higher in kurtosis than less skewed distributions.
For example, consider a normally distributed random variable Z. Since it satisfies κM (Z) = 3,
it is less kurtotic with respect to κM than any random variable that is sufficiently skewed
to satisfy |γM (X)| >

√
2 (like, e.g., X ∼ Exp(λ), λ > 0, with γM (X) = 2). Hence, similarly

to the kurtosis orders, distributions are generally not comparable with respect to κM if they
exhibit a notable difference in skewness. In the particular case of symmetric distributions, the
measure κM was shown to preserve the order ≤s by van Zwet (1964, pp. 20-21). The fact
that ≤gs is generally weaker than ≤3 and equivalent to ≤s for symmetric distributions gives
the following result.

Theorem 4.28. If the mapping κM is restricted to the domain S, it satisfies property (K2)
for the kurtosis orders ≤3 and ≤gs.

In fact, the result by van Zwet includes more than that: it states that every even stan-
dardized moment except for the second satisfies property (K2) if it is restricted to symmetric
distributions. This seems to be related to the fact that the 2k-th moment, k ≥ 2, can only be
standardized with respect to the first two moments and not with respect to the third up to the
(2k − 1)-th moment. Analogously, it is easy to show that the generalization of the standard
deviation to 2k

√
E[(X − µX)2k] is a measure of dispersion for all k ≥ 1, since the dispersion

is not standardized out of the measure. (This can be seen by replicating the proof that the
standard deviation is a measure of dispersion from Oja (1981, p. 159). The crucial property
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here is that x 7→ x2k is convex for all k ≥ 1.) Because there is no known way of standardizing
with respect to kurtosis, the difference in terms of kurtosis keeps on being represented in
higher-order even standardized moments. If one wanted to meaningfully compare two random
variables X and Y with respect to a higher convex characteristic like, e.g., the fifth, X and Y

would have to be sufficiently similar with respect to all lower convex characteristics.
This vague concept can be made more concrete by switching from the order of the k-th

convex characteristic ≤k, k ∈ N0, to the k-convex order ≤k−cx, k ∈ N. Recall Proposition
2.20, which states that, for k ∈ N0, F ≤k G implies F ≤(k+1)−cx G, if E[Xj ] = E[Y j ] holds for
all j ∈ {1, . . . , k}. As noted before, ≤k−cx orders distributions with respect to their (k − 1)-th
convex characteristic. So, for k = 2 it is a dispersion order, for k = 3 a skewness order and
for k = 4 a kurtosis order. However, for the order ≤k−cx to hold at all, all lower convex
characteristics are required to be standardized (see Proposition 2.19). The fact that the same
condition is required for ≤k−1 to be stronger than ≤k−cx suggests that the standardization
with respect to lower convex characteristics is not intrinsic to the orders ≤k of the k-th convex
characteristic, contrary to the k-convex orders ≤k−cx.

If the condition E[Xj ] = E[Y j ] for all j ∈ {1, . . . , k − 1} in the characterization of the
k-convex order ≤k−cx (condition (i) in Proposition 2.19), in which the standardizing takes
place, is omitted, we obtain the order ≤k−icx. Its most popular representative is the increasing
convex order ≤icx, which is obtained for k = 2. This order is very popular in mathematical
finance and risk analysis and quantifies location as well as dispersion of a distribution (see,
e.g., Whitt, 1980, p. 1063). Thus, the additional requirement E[X] = E[Y ] is indeed necessary
to obtain the pure dispersion order ≤cx.

A Kurtosis Measure Using L-Moments

Along with the measures for location, dispersion and skewness discussed in Section 3.1.1,
Hosking (1989, 1990) also introduced a kurtosis measure based on L-moments, a class of
alternative moments that are also formally introduced in Section 3.1.1. Analogously to the
skewness measure, the kurtosis measure is defined as the fourth L-moments divided by the
second L-moment, which is a dispersion measure:

τLM : L1 → R, F 7→ λF
4

λF
2

.

Hosking (1989, pp. 6–7, Theorem 4) claims that τLM preserves the order ≤3 for symmetric
distributions, but does not explicitly prove it. To the knowledge of the author, this is the only
place in the literature except for Oja (1981), where the order ≤3 is used. In the following, it
is proved explicitly that τLM preserves both ≤3 and ≤gs for symmetric distributions.

Theorem 4.29. If the mapping κLM is restricted to the domain S, it satisfies property (K2)
for the kurtosis orders ≤3 and ≤gs.
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Proof. Let F, G ∈ S. Hosking (1989, pp. 3–4) showed that the k-th L-moment can also be
written as

λF
k = 1

k − 1

∫
DF

F (t) (1 − F (t)) Qk−2(F (t)) dt, k ≥ 2,

where Qk(p), p ∈ (0, 1), is the Jacobi polynomial P
(1,1)
k (2p − 1). Consequently,

λF
2 =

∫ 1

0

p (1 − p)
f(F −1(p)) dp, λF

4 = 1
3

∫ 1

0

p (1 − p)
f(F −1(p)) · Q2(p) dp,

where Q2(p) = 3(5p2 − 5p + 1), p ∈ (0, 1), and

λG
2 =

∫ 1

0
p(1 − p) ·

(
G−1

)′
(p) dp =

∫ 1

0
p(1 − p) · R′

F G(F −1(p)) ·
(
F −1

)′
(p) dp

=
∫ 1

0

p(1 − p)
f(F −1(p)) · R′

F G(F −1(p)) dp,

λG
4 = 1

3

∫ 1

0

p(1 − p)
f(F −1(p)) · Q2(p) · R′

F G(F −1(p)) dp.

Since the integrand is symmetric around 1
2 in the above representations of all four L-moments,

each of them is equal to twice the same integral from 0 to 1
2 . Because of

κLM (G) − κLM (F ) = λG
4 λF

2 − λF
4 λG

2
λF

2 λG
2

,

κLM (F ) ≤ κLM (G) is equivalent to

∫ 1
2

0
φ(p) · Q2(p) · R′

F G(F −1(p)) dp ·
∫ 1

2

0
φ(p) dp

≥
∫ 1

2

0
φ(p) · Q2(p) dp ·

∫ 1
2

0
φ(p) · R′

F G(F −1(p)) dp, (4.19)

where φ(p) = p(1−p)
f(F −1(p)) , p ∈ (0, 1), is a positive function. Now, the fact that both Q2 and

R′
F G ◦ F −1 are decreasing on (0, 1

2) lets us invoke Chebyshev’s generalized inequality for
integrals (see Theorem 10 in Mitrinović, 1970, p. 40), which states that (4.19) holds.

4.3.2. Quantile-Based Approaches to Measuring Kurtosis

In order to establish a connection between quantiles and convexity of any order, it is useful to
consider difference-based characterizations of convexity instead of considering derivatives. More
specifically, Proposition 2.14b) states that the k-convexity of a function can be equivalently
characterized using divided differences. In this section, we consider multiple quantile-based
approaches for measuring kurtosis, which are driven by that observation in the case k = 3.
All of the approaches do not need the general requirement F ∈ P3

I , it is only kept for the sake
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of consistency throughout Chapter 4.
According to Proposition 2.14c), F ≤3 G is equivalent to

[F −1(p0), . . . , F −1(p3)|∆F G] ≥ 0 ∀ 0 < p0 < . . . < p3 < 1.

Using the recursive formula for divided differences from Definition 2.13 and the results of
Example 2.15, where this is done for the skewness order ≤2, we obtain that F ≤3 G holds, if
and only if

G−1(p3)−G−1(p2)
F −1(p3)−F −1(p2) − G−1(p2)−G−1(p1)

F −1(p2)−F −1(p1)
F −1(p3) − F −1(p1) −

G−1(p2)−G−1(p1)
F −1(p2)−F −1(p1) − G−1(p1)−G−1(p0)

F −1(p1)−F −1(p0)
F −1(p2) − F −1(p0) ≥ 0 (4.20)

for all 0 < p0 < p1 < p2 < p3 < 1. Just like the equivalent condition (4.1), this inequality
seems like it can not be rewritten in a way that is symmetric in F and G without any further
assumptions. This conjecture is confirmed in Corollary 4.3.

Now, assume that F is a symmetric cdf, and choose 0 < α < η < 1/2. Further, put
p0 = α, p1 = η, p2 = 1−η, p3 = 1−α, and define c = F −1(η)−F −1(α) = F −1(1−α)−F −1(1−η)
and d = F −1(1 − η) − F −1(η). Then, (4.20) takes the specific form

1
c

(
G−1(1 − α) − G−1(α)

)
−
(2

d
+ 1

c

)(
G−1(1 − η) − G−1(η)

)
≥ 0.

This is equivalent to

F −1(1 − α) − F −1(α)
F −1(1 − η) − F −1(η) ≤ G−1(1 − α) − G−1(α)

G−1(1 − η) − G−1(η) . (4.21)

As a consequence, for 0 < α < η < 1/2, the mapping

κα,η
Q : P3

I → R, F 7→ F −1(1 − α) − F −1(α)
F −1(1 − η) − F −1(η)

preserves the order ≤3 on the subset S ⊆ P3
I of symmetric distributions. The same is true for

the alternative mapping

κα,η
QA : P3

I → R, F 7→ F −1(1 − α) − 3F −1(1 − η) + 3F −1(η) − F −1(α)
F −1(1 − η) − F −1(η) ,

as (4.21) is equivalent to

κα,η
QA(F ) ≤ κα,η

QA(G),

which can be seen by subtracting 3 on either side of (4.21). Even more can be shown, as
stated in the following result.
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Theorem 4.30. Let 0 < α < η < 1/2. If the mappings κα,η
Q and κα,η

QA are restricted to the
domain S, they both satisfy property (K2) for the kurtosis orders ≤3 and ≤gs.

Proof. Let F, G ∈ S satisfy F ≤gs G. It is now sufficient to show κα,η
Q (F ) ≤ κα,η

Q (G). Since
RF G is antisymmetric, it is concave on supp(F ) ∩ (−∞, 0] and convex on supp(F ) ∩ [0, ∞).
Additionally, F −1(1

2) = 0 holds. Analogous to the equivalence of F ≤2 G and (2.11) in
Example 2.10, it follows that

G−1(p2) − G−1(p1)
F −1(p2) − F −1(p1) − G−1(p1) − G−1(p0)

F −1(p1) − F −1(p0)

≤ 0 , if 0 < p0 < p1 < p2 ≤ 1
2 ,

≥ 0 , if 1
2 ≤ p0 < p1 < p2 < 1.

(4.22)

Because of the symmetry of F and G, one of the two inequalities is redundant and we limit
ourselves to the upper inequality. By applying p0 = α, p1 = η, p2 = 1

2 to the upper part of
(4.22), we obtain

F −1(1 − α) − F −1(α)
F −1(1 − η) − F −1(η) =

F −1(1
2) − F −1(α)

F −1(1
2) − F −1(η)

= F −1(η) − F −1(α)
F −1(1

2) − F −1(η)
+ 1

≤ G−1(η) − G−1(α)
G−1(1

2) − G−1(η)
+ 1 =

G−1(1
2) − G−1(α)

G−1(1
2) − G−1(η)

= G−1(1 − α) − G−1(α)
G−1(1 − η) − G−1(η)

The outer identities follow from the symmetry of F and G, which yields F −1(1−α)−F −1(1
2) =

F −1(1
2) − F −1(α) (and the same if F is replaced by G or α is replaced by η).

In fact, Theorem 4.30 is still true, if only the less kurtotic distribution F is assumed to
be symmetric. This is already clear for ≤3 from the derivation of (4.21), but the following
explanation for ≤gs offers more insight into how that relates to the relationship between
kurtosis and skewness.

Let 0 < α < η < 1
2 and F ∈ S, G ∈ P3

I with F ≤gs G. Then, (4.22) still holds. By choosing
p0 = α, p1 = η, p2 = 1

2 in the upper case of (4.22) and choosing p0 = 1
2 , p1 = 1 − η, p2 = 1 − α

in the lower case, we obtain

G−1(1
2) − G−1(α)

G−1(1
2) − G−1(η)

≥
F −1(1

2) − F −1(α)
F −1(1

2) − F −1(η)

=
F −1(1 − α) − F −1(1

2)
F −1(1 − η) − F −1(1

2)
≤

G−1(1 − α) − G−1(1
2)

G−1(1 − η) − G−1(1
2)

. (4.23)

Since κα,η
Q (F ) and κα,η

Q (G) are weighted averages of the one-sided quantities in (4.23), it
follows that

κα,η
Q (F ) ≤ min

{
G−1(1

2) − G−1(α)
G−1(1

2) − G−1(η)
,
G−1(1 − α) − G−1(1

2)
G−1(1 − η) − G−1(1

2)

}
(4.24)
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≤
G−1(1

2) − G−1(η)
G−1(1 − η) − G−1(η)

G−1(1
2) − G−1(α)

G−1(1
2) − G−1(η)

(4.25)

+
G−1(1 − η) − G−1(1

2)
G−1(1 − η) − G−1(η)

G−1(1 − α) − G−1(1
2)

G−1(1 − η) − G−1(1
2)

= κα,η
Q (G).

Inequality (4.24) is basically the same inequality that was used to prove Theorem 4.30 and
its tightness is influenced by both F and G. However, the tightness of inequality (4.25) only
depends on G and it becomes an equation if G is symmetric, suggesting that an increase of
asymmetry for G tends to decrease the tightness of the inequality κα,η

Q (F ) ≤ κα,η
Q (G). This

can be made more concrete if (4.25) is analyzed more closely.
If we additionally assume F <2 G,

G−1(η) − G−1(α)
F −1(η) − F −1(α) <

G−1(1
2) − G−1(η)

F −1(1
2) − F −1(η)

<
G−1(1 − η) − G−1(1

2)
F −1(1 − η) − F −1(1

2)
<

G−1(1 − α) − G−1(1 − η)
F −1(1 − α) − F −1(1 − η)

follows. Since F is symmetric, we obtain that

G−1(1
2) − G−1(α)

G−1(1
2) − G−1(η)

<
G−1(1 − α) − G−1(1

2)
G−1(1 − η) − G−1(1

2)

and

G−1(1
2) − G−1(η)

G−1(1 − η) − G−1(η) <
G−1(1 − η) − G−1(1

2)
G−1(1 − η) − G−1(η) .

This means that the two quantities in the minimum in (4.24) are not equal and that the
weighted average in (4.25) is dominated by the larger of the two quantities. Hence, the
inequality (4.24) is strict and its tightness is low if G is markedly skewed. If we assume
G <2 F instead of F <2 G, the situation is analogous with the roles of the two quantities in
the minimum in (4.24) swapped.

These observations for the quantile-based kurtosis measures are reminiscent of inequality
(4.18) for the moment-based kurtosis measure. Both state that the kurtosis measure value of
markedly skewed distributions tends to be higher than the kurtosis measure value of symmetric
distributions.

The measures κα,η
Q and κα,η

QA have appeared quite often in the literature, see Ruppert (1987),
Balanda and MacGillivray (1988), and Jones et al. (2011), where further references can be
found. Specific choices of the parameters in the literature are η = 1

4 and α = 0.05 or α = 0.01.
Alternative parameter choices can be obtained through equidistant evaluation of the quantile
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function. For example, the quintile-based measure κ
1/5,2/5
QA was introduced in Jones et al.

(2011, p. 90), motivated by the analogy to Bowley’s skewness measure γ
1/4
Q , which takes second

differences instead of third ones. Furthermore, Moors (1988, p. 26) defined the octile-based
measure

M =
F −1(7

8) − F −1(5
8) + F −1(3

8) − F −1(1
8)

F −1(6
8) − F −1(2

8)
.

Noting that

M = κ
1/8,2/8
Q − κ

3/8,2/8
Q = κ

1/8,2/8
Q −

(
κ

2/8,3/8
Q

)−1
,

it follows that M preserves the orders ≤3 and ≤gs for symmetric distributions as well.

A Kurtosis Functional for Asymmetric Distributions

All quantile-based kurtosis measures discussed so far are tailored to symmetric distributions.
In order to obtain an easy to use kurtosis functional that preserves the order ≤3 for general
distributions, we start again from (4.20). Given α ∈ (0, 1

2), we set again p0 = α, p3 = 1 − α.
Now, we choose p1 and p2 in such a way that d equals c; this leads to

pF,α
1 = F

(2
3F −1(α) + 1

3F −1(1 − α)
)

, pF,α
2 = F

(1
3F −1(α) + 2

3F −1(1 − α)
)

.

With this choice, (4.20) boils down to

G−1(1 − α) − 3G−1(pF,α
2 ) + 3G−1(pF,α

1 ) − G−1(α) ≥ 0.

After dividing by the outer interquantile range τα
Q(G) to obtain a scale invariant functional,

we end up with the kurtosis functional

κα
QF (F, G) = G−1(1 − α) − 3G−1(pF,α

2 ) + 3G−1(pF,α
1 ) − G−1(α)

G−1(1 − α) − G−1(α) , 0 < α <
1
2 . (4.26)

Note that the functional is not symmetric in its two arguments F and G. Summing up, we
have the following result.

Proposition 4.31. If F, G ∈ P3
I satisfy F ≤3 G, then κα

QF (F, G) ≥ 0.

This kurtosis functional has the advantage over κα,η
Q and κα,η

QA that it can be applied to
all distributions without any requirement concerning symmetry. However, this comes along
with the disadvantage that it can only quantify kurtosis of a pair of distributions and not of
individual distributions. While this is also true for kurtosis orders, the functional κα

QF returns
a number for any pair of distributions and therefore offers a more specific statement than the
kurtosis orders.
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4.3.3. Density-Based Approaches to Measuring Kurtosis

A different approach to quantify skewness and kurtosis than the ones presented in this Section
was made by Critchley and Jones (2008). However, the utilized quantities at times bear a
certain resemblance.

Density-based measures of location, dispersion and skewness are discussed in Section 3.1.3
These measures are obtained from the conditions ∆F G(t) ≥ 0, ∆′

F G(t) ≥ 0 and R′′
F G(t) ≥ 0

for all t ∈ DF . Since F ≤3 G is equivalent to R′′′
F G(t) ≥ 0 for all t ∈ DF , we start out by

calculating that third derivative based on (4.5), yielding

R′′′
F G(t) =

( 1
g(RF G(t))

)5
·
[
f ′′(t)(g(RF G(t)))4 − 3f(t)f ′(t)(g(RF G(t)))2g′(RF G(t))

+ 3(f(t))3(g′(RF G(t)))2 − (f(t))3g(RF G(t))g′′(RF G(t))
]
.

Based on this, we find

F ≤3 G ⇔ f ′′(t)(g(RF G(t)))4 − (f(t))3g(RF G(t))g′′(RF G(t))

≥ 3
[
f(t)f ′(t)(g(RF G(t)))2g′(RF G(t)) − (f(t))3(g′(RF G(t))2)

]
∀t ∈ DF

⇔ f ′′(t)
(f(t))3 − g′′(RF G(t))

(g(RF G(t)))3 ≥ 3 f ′(t)
(f(t))2

g′(RF G(t))
(g(RF G(t)))2 − 3(g′(RF G(t)))2

(g(RF G(t)))4

∀t ∈ DF

⇔ f ′′(F −1(p))
(f(F −1(p)))3 − g′′(G−1(p))

(g(G−1(p)))3

≥ 3 g′(G−1(p))
(g(G−1(p)))2

(
f ′(F −1(p))

(f(F −1(p)))2 − g′(G−1(p))
(g(G−1(p)))2

)
∀p ∈ (0, 1).

(4.27)

By plugging in the definition of γp
D, p ∈ (0, 1), F ≤3 G is equivalent to

f ′′(F −1(p))
(f(F −1(p)))3 − g′′(G−1(p))

(g(G−1(p)))3 ≥ 3γp
D(G)(γp

D(F ) − γp
D(G)) ∀p ∈ (0, 1).

If we now assume that both F and G are symmetric, γ
1/2
D (F ) − γ

1/2
D (G) = 0 holds for the

specific choice of p = 1
2 . In that case, F ≤3 G implies

− f ′′(F −1(p))
(f(F −1(p)))3 ≤ − g′′(G−1(p))

(g(G−1(p)))3 .

This suggests that a reasonable choice for a density-based kurtosis measure is obtained as the
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special case p = 1
2 from the following class of mappings

κp
D : P3

I → R, F 7→ − f ′′(F −1(p))
(f(F −1(p)))3 ,

where p ∈ (0, 1). As for the other density-based measures, we introduce the short hand
κD = κ

1/2
D . Finally, this means that F ≤3 G is equivalent to

κp
D(G) − κp

D(F ) ≥ 3γp
D(G)(γp

D(F ) − γp
D(G)) ∀p ∈ (0, 1). (4.28)

Additionally, swapping the roles of F and G yields that G ≤3 F is equivalent to

κp
D(G) − κp

D(F ) ≤ 3γp
D(F )(γp

D(F ) − γp
D(G)) ∀p ∈ (0, 1). (4.29)

Now, if κp
D is heuristically understood to measure kurtosis (without specifying exactly what

that means) and γp
D is heuristically understood to measure skewness, this statement can be

interpreted as follows: if two distributions are equally skewed, the right sides of both (4.28)
and (4.29) vanish, meaning that the kurtosis comparison between F and G is centred around
zero. G exhibits more kurtosis than F , if κp

D(G) ≥ κp
D(F ), and vice versa, with both cdf’s

being equivalent in terms of kurtosis, if the two quantities are equal. This behaviour can be
summarized as follows.

Theorem 4.32. Let t ∈ R and p ∈ (0, 1). If F, G ∈ T t
D,p satisfy F ≤3 G, then κp

D(F ) ≤
κp

D(G).

Similarly to the proof of (S1) for γD, it can easily be shown that κp
D satisfies (K1), if and

only if p = 1
2 . Thus, for any t ∈ R, κD = κ

1/2
D restricted to the set T t

D is a measure of kurtosis
in the sense of (K1) and (K2). Note that T 0

D is a superset of other transitivity sets like T 0
Mode

and S (see Remark 4.10a)).
However, the situation gets more complex if F and G differ in terms of skewness. Define

ℓp
F G = 3γp

D(G)(γp
D(F ) − γp

D(G)) as the lower limit for F ≤3 G and up
F G = 3γp

D(F )(γp
D(F ) −

γp
D(G)) as the upper limit for G ≤3 F , both for all p ∈ (0, 1). Because of

up
F G − ℓp

F G = 3(γp
D(F ) − γp

D(G))2 ≥ 0,

the centre of their comparison in terms of skewness extends to an interval of length 3(γp
D(F ) −

γp
D(G))2. So, the bigger the difference in skewness is between the two distributions, the larger

the interval that is associated with equivalence with respect to the kurtosis order ≤3. The
aforementioned centre of the kurtosis comparison not only extends to an interval but also
shifts, depending on the concrete values of γp

D(F ) and γp
D(G) and, more specifically, on their

signs. It is easy to see from their definitions that ℓp
F G and up

F G have the same sign, if and only
if γp

D(F ) and γp
D(G) have the same sign. Note that ℓp

F G and up
F G having the same sign means
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that κp
D(F ) = κp

D(G) for all p ∈ (0, 1) implies F <3 G if said sign is negative and G <3 F if
said sign is positive. Furthermore, 0 is contained in the interval [ℓp

F G, up
F G], around which the

kurtosis comparison is centred, if and only if γp
D(F ) and γp

D(G) have differing signs (including
the case that either is zero).

The interplay of the difference of kurtosis measures and the upper and lower limits with
respect to the order ≤3 is considered for specific asymmetric distributions in the following
example.

Example 4.33. a) Let X ∼ Weib(1) with cdf F and let Y ∼ Weib(k) with cdf G for
k > 0, where the Weibull distribution is defined as in Section 4.2.3. The difference
κp

D(G) − κp
D(F ) for p = 1

2 is plotted in the left panel of Figure 4.12 as a function of the
distributional parameter k. The same panel additionally shows in red the lower and
upper limits ℓ

1/2
F G and u

1/2
F G of the ’centre of kurtosis comparison’ between F and G from

(4.28) and (4.29). All three graphs are obviously zero at k = 1 since F = G holds in
that case. For 1 < k < 2, we have κD(G) − κD(F ) > u

1/2
F G. This observation is in line

with F <3 G holding for exactly those values of k as mentioned in (4.10) as F ≤3 G is
equivalent to κp

D(G) − κp
D(F ) ≥ ℓp

F G for all p ∈ (0, 1). Note the equivalence

F <3 G ⇔ κp
D(G) − κp

D(F ) ≥ ℓp
F G ∀p ∈ (0, 1) and (4.30)

∃p0 ∈ (0, 1) : κp0
D (G) − κp0

D (F ) > up0
F G.

In this case, the latter inequality holds for p0 = 1
2 . The observation κD(G)−κD(F ) < ℓ

1/2
F G

for 1
2 < k < 1 is in accordance with (4.11) in a similar way. This is not immediately

obvious from Figure 4.12, but can be validated by rescaling the plot window. The fact
that κD(G) − κD(F ) ∈ [ℓ1/2

F G, u
1/2
F G] holds for k < 1

2 and k > 2 is an implication of (4.12).
Since F =3 G holds in that case, κp

D(G) − κp
D(F ) ∈ [ℓp

F G, up
F G] follows for all p ∈ (0, 1).

Note that the family of Weibull distributions decreases in skewness with respect to ≤2

as k increases. Hence, the sign change of both ℓ
1/2
F G and u

1/2
F G at k = 1 stems from the

fact that γD(G) − γD(F ) changes its sign from positive to negative. The additional sign
change of ℓ

1/2
F G at k ≈ 3.26 stems from γD(G) changing sign. The Weibull distribution

changes from right-skewed to left-skewed around that value of k with the exact value
being determined by the utilized skewness measure.

b) Let X ∼ Γ(1) with cdf F and Y ∼ Γ(k) with cdf G for k > 0, where the gamma
distribution is defined as in Section 4.2.3. The same quantities as for the Weibull
distribution are plotted in the right panel of Figure 4.12. It suggests that κD(G) −
κD(F ) > u

1/2
F G for k > 1 and κD(G) − κD(F ) < ℓ

1/2
F G for k < 1. This would be

perfectly in line with the observations in Section 4.2.3, namely F <3 G for k > 1
and G <3 F for k < 1. Exploration of the graphs outside the plot window yields
κD(G) − κD(F ) ∈ [ℓ1/2

F G, u
1/2
F G] for k > 25.5 and for k < 0.24. This, however, does not
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Figure 4.12.: Graphs of the differences of density-based kurtosis measures. Left panel: F and
G cdf’s of the Weib(1)- and the Weib(k)-distributions respectively. Right panel:
F and G cdf’s of the Γ(1)- and the Γ(k)-distributions respectively.

contradict the observations on the gamma distribution from Section 4.2.3 because of
the equivalent characterisation of F <3 G in (4.30).

The interpretation of (the signs of) ℓ
1/2
F G and u

1/2
F G is fairly straightforward: Both γD(F )

and γD(G) take positive values throughout, but their difference changes sign at k = 1
as the Gamma distributions decrease in skewness with respect to ≤2 as k increases.

A analogous result to Theorem 4.32 cannot be obtained for the family of orders ≤t0
gs, t0 ∈ R.

However, the slightly altered version <gss of ≤gs, which is defined in Remark 4.23 is indeed
preserved by κp

D on a corresponding density-based transitivity set T t
D,p, t ∈ R. Since <gss is a

strict order, it also implies that the kurtosis measures are ordered in a strict sense.

Theorem 4.34. Let t ∈ R and p ∈ (0, 1). If F, G ∈ T t
D,p satisfy F <gss G, then κp

D(F ) <

κp
D(G).

Proof. Recalling the equivalences in (4.6), F, G ∈ T t
D,p implies R′′

F G(F −1(p)) = 0. Further-
more, Remark 4.23b) states that F <gss G implies the existence of a pF G ∈ (0, 1) such that
R′′

F G(t) < 0 for t < F −1(pF G) and R′′
F G(t) > 0 for t > F −1(pF G). Obviously, pF G = p holds.

This implies

R′′′
F G(F −1(p)) = lim

ε↘0

R′′
F G(F −1(p) + ε) − R′′

F G(F −1(p) − ε)
2ε

> 0,

because of R′′
F G(F −1(p) + ε) > 0 and R′′

F G(F −1(p) − ε) < 0 for all ε > 0 small enough to
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satisfy F −1(p) ± ε ∈ DF . By replicating the equivalences (4.27) for strict inequalities, we
obtain that R′′′

F G(F −1(p)) > 0 is equivalent to

κp
D(G) − κp

D(F ) > 3γp
D(G)(γp

D(F ) − γp
D(G)).

Because of F, G ∈ T t
D,p, γp

D(F ) = t = γp
D(G) holds, which concludes the proof.

Note that this result is not valid if <gss is replaced by ≤gs. The latter order is not strong
enough to ensure the identity pF G = p, which is a crucial point in the proof of Theorem 4.34.

A major drawback present in all four density-based measures (for location, dispersion,
skewness and kurtosis) is the fact that they are only based on one single evaluation of the
quantile function, the density function and its derivatives. A possible solution using integration
is given in Remark 3.16 for location, dispersion and skewness measures. The same idea is
applied to kurtosis in the following.

Remark 4.35. Let µ be a symmetric, finite measure on the set (0, 1). Because of the
symmetry of µ, the mapping κµ

ID(F ) =
∫ 1

0 κp
D(F ) µ(dp), F ∈ P3

I , can easily be shown to
satisfy the kurtosis property (K1). The crucial property (K2) (with respect to ≤3) cannot be
inherited as easily as for the integrated density-based measures in Remark 3.16 because the
set on which (K2) is fulfilled differs based on p. Thus, for any function t : (0, 1) → R, p 7→ t(p),
κµ

ID fulfils (K2), if it is restricted to the set ⋂p∈(0,1) T t(p)
D,p . However, it is unclear whether

there exists such a function t for which the given set is non-empty.
For the exemplary measure µ = U(α, 1 − α), α ∈ [0, 1

2), used in Remark 3.16, we obtain

κµ
ID(F ) =

∫ 1−α

α
− f ′′(F −1(p))

(f(F −1(p)))3 dp = −
∫ F −1(1−α)

F −1(α)

f ′′(t)
(f(t))2 dt.

As opposed to the corresponding measures of location, dispersion and skewness, this cannot
be expressed explicitly and is therefore no viable candidate for a kurtosis measure.

Overall, (4.28) and (4.29) suggest that the comparison of distributions in terms of kurtosis
has to account for possible differences in skewness. The same observation is made in Sections
4.3.1 and 4.3.2. In the first case, the evidence comes in the form of the well-known inequality
(4.18). In the second case, it is shown that the tightness of the inequality κα,η

Q (F ) ≤ κα,η
Q (G)

is reduced if F or G are markedly skew or if they exhibit a large difference in skewness.
A similar statement can be made about the density-based measurement of kurtosis in this

section. However, compared to the ideas from Section 4.3.2, the inequalities (4.28) and (4.29)
represent the influence of skewness on the measurement of kurtosis in a more precise way.
Since these inequalities also characterize the kurtosis order ≤3, this helps to heuristically
understand why it is difficult to meaningfully apply the order to distributions with a significant
difference in skewness.
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An alternative to kurtosis measures in the traditional form is given by the kurtosis functional
κα

QF defined in (4.26). It requires two cdf’s F and G as arguments and returns a scalar that
represents the difference in kurtosis between F and G. In Proposition 4.31, it is shown to
preserve the order ≤3 in the sense that F ≤3 G implies κα

QF (F, G) ≥ 0. Analogously, a
density-based kurtosis functional can be defined by

κp
DF (F, G) = κp

D(G) − κp
D(F ) − 3γp

D(G) (γp
D(F ) − γp

D(G))

for all p ∈ (0, 1). An advantage κp
DF has over κα

QF is that it characterizes the order ≤3 in the
sense that F ≤3 G is equivalent to κp

DF (F, G) ≥ 0 for all p ∈ (0, 1). However, neither κp
DF

nor κα
QF is symmetric in their two arguments F and G.

Another connection between density-based measures and quantile-based measures of lower
convex characteristics is discussed in Remark 3.15. More specifically, it is shown that density-
based measures can be interpreted as limiting values of quantile-based measures. In the
following remark, this is replicated for measures of kurtosis.

Remark 4.36. The quantile-based kurtosis measure that seems to be most closely related
to τα

Q and γα
Q is κα,η

QA, since it has a higher-order difference in its numerator. Because κα,η
QA

is dependent upon two parameters 0 < α < η < 1
2 , further assumptions have to be made

to calculate a meaningful limit. In order to obtain a natural continuation of the previous
limits, α and η are chosen in such a way that the evaluation points of the quantile function
are equidistant. Hence, we choose η = 1

2 − β and α = 1
2 − 3β for an β ∈ (0, 1

6), meaning that
the distance between to neighbouring evaluation points is fixed to 2β. After slightly altering
the rescaling factor used in Remark 3.15, the following limit is obtained for β ↘ 0

lim
β↘0

2
β2 · κ

1
2 −3β, 1

2 −β

QA (F ) = 8 · lim
β↘0

F −1( 1
2 +3β)−3F −1( 1

2 +β)+3F −1( 1
2 −β)−F −1( 1

2 −3β)
(2β)3

F −1( 1
2 +β)−F −1( 1

2 −β)
2β

=
(
F −1)′′′ (1

2)
(F −1)′ (1

2)
= −

f ′′(F −1(1
2))

(f(F −1(1
2)))3 + 3

(
f ′(F −1(1

2))
(f(F −1(1

2)))2

)2

= κ
1/2
D (F ) + 3(γ1/2

D (F ))2. (4.31)

In contrast to the two parts of Remark 3.15, we do not obtain the already known density-based
measure as limiting value. However, if the limit above is defined as an alternative density-based
kurtosis measure, most of the results concerning κD can be replicated.

Particularly, if we define

κp
DA : P3

I → R, F 7→ κp
D(F ) + 3(γp

D(F ))2,
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we obtain that F ≤3 G is equivalent to

κp
DA(G) − κp

DA(F ) ≥ 3γp
D(F )(γp

D(G) − γp
D(F )) ∀p ∈ (0, 1). (4.32)

This lower bound coincides with ℓp
GF , so the lower bound for the corresponding difference of

measures κp
D with the roles of F and G reversed. Therefore, κp

DA also preserves the order ≤3,
if F and G are equally skewed in the sense of γp

D(F ) = γp
D(G), or if one of the cdf’s (in this

case F ) is symmetric and p = 1
2 .

The fact that κp
DA is more closely related to the quantile-based kurtosis measures than κp

D

can also be seen in another way. In Section 4.3.2, it is shown that the symmetry of the less
kurtotic cdf F is sufficient for κα,η

Q to preserve the order ≤3. The same statement for κp
DA

follows directly from (4.32). However, the symmetry of F is not sufficient for κp
D to preserve

≤3, as evidenced by (4.28). Instead, a sufficient condition is given by the symmetry of the
more kurtotic cdf G.

4.3.4. Expectile-Based Approaches to Measuring Kurtosis

For any cdf F ∈ L1, we define an expectile-based kurtosis measure by

κα,η
E (F ) = eF (1 − α) − 3eF (1 − η) + 3eF (η) − eF (α)

eF (1 − η) − eF (η) , 0 < α < η <
1
2 .

We use the analogue to κα,η
QA instead of the equivalent analogue to κα,η

Q because the former
is better suited for determining its limiting value, as noted in Remark 4.36. In contrast to
the expectile-based measures considered in Section 3.2, the expectile kurtosis κα,η

E has the
major problem that it is not known whether preserves any kurtosis order on some subset
of distributions like S. Thus, its limiting value is needed to draw a connection to kurtosis
orders. Recall that, for the expectile skewness γα

E , its limiting value for α ↗ 1
2 , given by

γEL(F ) = 2F (µF ) − 1, is much simpler and easier to handle. Specifically, the proof that γEL

is a skewness measure in Theorem 3.29 is very simple. In order to proceed analogously for the
expectile kurtosis, we consider the same limit as in (4.31) and replace the quantile function
with the corresponding expectile function, yielding

lim
β↘0

2
β2 · κ

1
2 −3β, 1

2 −β

E (F ) = 8 · lim
β↘0

eF ( 1
2 +3β)−3eF ( 1

2 +β)+3eF ( 1
2 −β)−eF ( 1

2 −3β)
(2β)3

eF ( 1
2 +β)−eF ( 1

2 −β)
2β

=
(eF )′′′ (1

2)
(eF )′ (1

2)
. (4.33)

The first two derivatives of the expectile function eF , evaluated at 1
2 , are given by

e′
F (1

2) = 2τEL(F ),

e′′
F (1

2) = 8τEL(F ) · (2F (µF ) − 1),
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where τEL(F ) = E[|X − µF |] denotes the mean absolute deviation from the mean (see (3.16)
and (3.23)). To shorten the following calculations, we use the abbreviation δF = τEL(F ). The
third derivative at 1

2 can be calculated similarly to the second, which utilizes the general form
of the first derivative from Proposition 2.22f), given by

e′
F (α) = E[|X − eF (α)|]

(1 − α)F (eF (α)) + α (1 − F (eF (α))) , α ∈ (0, 1).

If we denote the numerator and the denominator by u(α) and v(α), respectively, we obtain

e′′′
F (1

2) = lim
α↗ 1

2

u′′(α)(v(α))2 − 2u′(α)v′(α)v(α) + 2u(α)(v′(α))2 − u(α)v′′(α)v(α)
(v(α))3 .

This can be calculated using

u(α) = E[|X − eF (α)|]
α→ 1

2→ δF ,

u′(α) = e′
F (α)(2F (eF (α)) − 1)

α→ 1
2→ e′

F (1
2)(2F (µF ) − 1) = 2δF γEL(F ),

u′′(α) = e′′
F (α)(2F (eF (α)) − 1) + 2(e′

F (α))2f(eF (α))
α→ 1

2→ 8δF

(
(γT (F ))2 + δF f(µF )

)
and

v(α) = (1 − α)F (eF (α)) + α(1 − F (eF (α)))
α→ 1

2→ 1
2 ,

v′(α) = (1 − 2F (eF (α))) + (1 − 2α)f(eF (α))e′
F (α)

α→ 1
2→ −γEL(F ),

v′′(α) = (1 − 2α)f ′(eF (α))(e′
F (α))2 + (1 − 2α)f(eF (α))e′′

F (α) − 4f(eF (α))e′
F (α)

α→ 1
2→ −8f(µF )δF

(see also (3.21) and (3.22)). Hence,

e′′′
F (1

2) = 8
[
2δF

(
(γEL(F ))2 + δF f(µF )

)
+ 2δF (γEL(F ))2 + 2δF (γEL(F ))2 + 4f(µF )δ2

F

]
= 48δF

(
δF f(µF ) + (γEL(F ))2

)
.

By plugging this into (4.33), we obtain the limiting expectile-based kurtosis measure

lim
β↘0

2
β2 · κ

1
2 −3β, 1

2 −β

E (F ) =
(eF )′′′ (1

2)
(eF )′ (1

2)
= 48δF

(
δF f(µF ) + (γEL(F ))2)

2δF

= 24
(
δF f(µF ) + (γEL(F ))2

)
.
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We disregard the factor of 24 for the sake of simplicity and define the mapping

κEL : L1 → R, F 7→ τEL(F ) · f(µF ) + (γEL(F ))2.

If we restrict that mapping to symmetric distributions, the second summand vanishes as then,
γT (F ) = 0. In that case, κEL satisfies the requirements for a kurtosis measure.

Theorem 4.37. If the mapping κEL is restricted to the domain S, it is a kurtosis measure in
the sense that it satisfies (K1) and (K2) for the kurtosis orders ≤3 and ≤gs.

Proof. Let F ∈ S. We start out by showing that κEL satisfies (K1) in two steps, first
κEL(aX + b) = κEL(X) for all a > 0 and b ∈ R. To this end, consider τEL(aX + b) = aτEL(X)
and

faX+b(E[aX + b]) = 1
a

f

(E[aX + b] − b

a

)
= 1

af(µF ).

For (K1), it remains to be shown that κEL(−X) = κEL(X), which is implied by τEL(−X) =
τEL and f−X(E[−X]) = f(−E[−X]) = f(µF ).

Now, assume F, G ∈ S such that F ≤gs G. Furthermore, assume µF = µG = 0 and
f(µF ) = g(µG), which poses no restriction because κEL is invariant under shifts and rescaling
since it satisfies (K1). It follows from F ≤gs G as well as F, G ∈ S that RF G is concave on
(−∞, 0] ∩ DF and convex on [0, ∞) ∩ DF . Thus, R′

F G(t) = f(t)
g(RF G(t)) , t ∈ DF , is decreasing

for t ≤ 0 and increasing for t ≥ 0. So, the function R′
F G reaches its global minimum

f(µF )
g(µG) = f(0)

g(0) = 1 at 0. (Since both F and G are symmetric, their medians and means coincide,
yielding RF G(0) = 0.) It follows that R′

F G(t) ≥ 1 for all t ∈ DF , which is equivalent to
F ≤disp G. Since τEL is a dispersion measure, τEL(F ) ≤ τEL(G) holds, thus concluding the
proof.

In fact, the result above holds for any mapping κ : S → R, F 7→ τ(F )f(ν(F )), where ν is
an arbitrary measure of central location and τ is an arbitrary measure of dispersion. The
second generalization is valid because the fact that τEL is a dispersion measure is the only
property of τEL that is utilized in the proof of Theorem 4.37. The mean can be replaced by
any other location measure since all location measures are equal on a symmetric distribution
according to Proposition 3.4a).

We make use of this flexibility by centring the kurtosis measure around the median instead
of around the mean. The resulting mapping

κEM : L1 → R, F 7→ τIQ(F ) · f(F −1(1
2)),

where τIQ(F ) = E[|X − F −1(1
2)|] denotes the mean absolute deviation around the median

(see (3.4)), preserves the order ≤3 under weaker assumptions.
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Theorem 4.38. Let t ∈ R. If F, G ∈ T t
D satisfy F ≤3 G, then κEM (F ) ≤ κEM (G).

Proof. Since κEM is invariant to affine linear transformations (for analogous reasons as κEL on
S), we can assume without restriction that F −1(1

2) = G−1(1
2) = 0 and f(F −1(1

2)) = g(G−1(1
2)).

According to Proposition 4.7, 1
2 ∈ ΠF G holds for all pairs F, G ∈ T t

D with F ≤3 G. It follows
that RF G is concave on (−∞, F −1(1

2)] ∩ supp(F ) and convex on [F −1(1
2), ∞) ∩ supp(F ).

Noting F −1(1
2) = 0 and that the mapping τIQ is also a dispersion measure, the remainder of

the proof is analogous to that of Theorem 4.37.

4.3.5. Ratios of Dispersion Measures as Measures of Kurtosis

One of the first attempts at describing kurtosis measures in a general way was made by Bickel
and Lehmann (1975a, pp. 469–470). They defined a kurtosis measure as a ’suitable’ ratio of
two (possibly rescaled) dispersion measures. Of the measures we have discussed in Section 4.3
thus far, several fit this description.

The most obvious instance is the quantile-based measure κQ, which is defined as a wider
interquantile range divided by a more narrow interquantile range. Any interquantile range is
by definition a measure of dispersion (see Theorem 3.8b)). The situation is similar for the
expectile kurtosis κE , which is equivalent to a ratio of two interexpectile ranges τE . While
any interexpectile range is a dispersion measure according to Theorem 3.24, the ratio could
not be shown to preserve the order ≤3 on any notable subset of distributions.

Another example is the expectile limit measure around the median, which can be rewritten
as κEM (F ) = τIQ(F )

τD(F ) . Note that τD(F ) = 1
f(F −1( 1

2 )) is also a dispersion measure according to
Theorem 3.12. Finally, the moment-based measure κM is equivalent to the monotonically
transformed

4
√

κM (F ) =
4
√
E[(X − µF )4]

σF
, F ∈ L4.

(Two measures κ1 and κ2 are said to be equivalent, if κ1(F ) ≤ κ1(G) is equivalent to
κ2(F ) ≤ κ2(G) for all cdf’s F and G, so if one measure can be monotonically transformed
into the other.) Since the generalized standard deviation 2k

√
E[(X − µF )2k] is shown to be

a dispersion measure for all k ∈ N in Section 4.3.1, 4
√

κM is also a ratio of two dispersion
measures. All other kurtosis measure candidates in this work have no apparent representation
as a ratio of two dispersion measures. Hence, while the rather vague definition from Bickel
and Lehmann (1975a) obviously does have some merit, it does not seem to coincide with the
order-based approach at defining kurtosis measures.

A pattern can be observed in the kurtosis measures that are the ratio of two dispersion
measures. In all cases, the dispersion measure in the numerator puts more emphasis on the
tails of the distribution relative to the measure in the denominator, which focuses more on the
centre of the distribution. This begs the question as to why these kinds of constructions tend
to preserve the order ≤3, at least on the subset of symmetric distributions. While the notion
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of ’putting more emphasis on the tails’ seems to be too vague to obtain any general rigorous
result explaining this behaviour, the proof of Theorem 4.37 is fairly instructive for this kind
of situation. If F, G ∈ S, F ̸= G satisfy F ≤gs G, then the function R′

F G is decreasing up
to 0 and increasing from there on out. We now assume the more centre-focussed dispersion
measures in the denominator τC to be equal, i.e. τC(F ) = τC(G). If τC not only satisfies
(D2) but also its strict version, meaning that F <disp G implies τC(F ) < τC(G), then neither
R′

F G > 1 nor R′
F G < 1 is true. It follows that there exists a t0 ∈ DF ∩ [0, ∞) such that

R′
F G(t) > 1 holds for |t| ≥ t0. If the more tail-focussed dispersion measure in the numerator

τT is sufficiently similar to τC , then τT (F ) ≤ τT (G) follows from the fact that the dispersions
of F and G are similar around the centre (since τC(F ) = τC(G)) and that F is more dispersed
than G on the tails (since R′

F G(t) > 1 for large absolute values of t). Overall, the mapping
F 7→ τT (F )

τC(F ) then preserves the concave-convex order ≤gs and therefore also the order ≤3 of
the third convex characteristic.

This similarity in the construction of a number of kurtosis measures strengthens the
interpretation of the concept of kurtosis by Balanda and MacGillivray (1988) that is noted at
the beginning of Section 4.1. The density of a typical symmetric and unimodal distribution
that is very kurtotic has a sharp peak in the centre, declines steeply away from it, and has
fat tails. Thus, the dispersion of the distribution mostly lies far away from its centre. If a
distribution exhibits little kurtosis, the shoulders of its density are very prominent compared
to its centre and tails. Here, the dispersion of the distribution is mostly close to the centre.
Both graphical intuitions are illustrated in the lower right panel of Figure 1.1. Overall, a
centre-focussed dispersion measure τC tends to take larger values for distributions with less
kurtosis, and a tail-focussed dispersion measure τT tends to take larger values for more kurtotic
distributions.



CHAPTER 5

Conclusion and Outlook

As evidenced in Chapter 3, the quantification of location, dispersion and skewness of sufficiently
regular continuous probability distributions is well-founded through the literature. Specifically
Sections 3.1.1 and 3.1.2, where the most popular measures are discussed, mostly consist of
already known results without any major gaps. There is widespread agreement on what
the fundamental underlying orders of these characteristics are and their usage is usually
unproblematic.

The largest contribution of novel results concerning these three most basic characteristics
within Chapter 3 comes in the form of expectile-based methods in Section 3.2. The usage
of expectiles to describe distributions and their characteristics may seem unappealing at
first because they are less intuitive than more well-established quantities like quantiles or
moments. However, along with their rising popularity in actuarial and financial mathematics,
Theorem 3.23 provides a convincing argument for expectiles to be considered an important
tool for the description of probability distributions. That result states that the dilation order,
which is one of the most utilized orders of dispersion, can be equivalently characterized using
expectiles. If the expectiles in that characterization are replaced by quantiles, the so-called
weak dispersive order ≤w−disp is obtained. An open question for future research is to analyze
the exact relationship between that order ≤w−disp and the dilation order ≤dil, which coincides
with the weak expectile dispersive order ≤we−disp. The answer to that question should also
shed some light on whether centring a distribution around some central location measure
like the mean or the median can be reversed and switched to another choice of centre. Since
most measures of convex characteristics higher than location utilize some sort of centring of
the distribution, this is a quite interesting question. Of course, it only affects asymmetric
distributions since otherwise, all location measures coincide (see Proposition 3.4a)). A hint
is given by Bellini et al. (2018b, p. 1852), who suggest that the interquantile range, as a
dispersion measure centred around the median, does not preserve the dilation order, which is
centred around the mean.



130 Chapter 5. Conclusion and Outlook

The majority of novel results for continuous distributions in this thesis is given in Chapter
4 concerning the characteristic of kurtosis. It is already known from the literature that the
theory underlying the quantification of kurtosis fundamentally differs from all lower convex
characteristics. More specifically, the lack of transitivity of underlying orders was mentioned by
Oja (1981) and the intrinsic entanglement of kurtosis and skewness for asymmetric distributions
was pointed out and tackled in different ways by several publications (see, e.g., MacGillivray
and Balanda, 1988, Balanda and MacGillivray, 1990, Blest, 2003 or Jones et al., 2011).
However, no prior publication has analyzed ≤3, which seems like the canonical choice for a
fundamental kurtosis order, with respect to these ideas.

At first glance, ≤3 exhibits the same problems that have already been documented for the
quantification of kurtosis in general. However, closer inspection reveals the transitivity sets
that are developed over the course of Section 4.2.1. The restriction of attention to subsets of
distributions that are comparable in terms of skewness acts as a substitute for standardization,
which is not possible via an arithmetic operation for skewness.

A class of kurtosis orders, which has received much more attention in the literature, is
given by the concave-convex orders. The corresponding order ≤s is generalized to asymmetric
distributions in Section 4.2.2 in a more flexible and adaptive way than through the antiskewness-
order ≤a by MacGillivray and Balanda (1988). While statements by Oja (1981) give the
impression that this kind of order is superior to ≤3, our considerations do not prove this to
be true. The generalized concave-convex order is also not transitive in general and while
it does also have transitivity sets, they are more difficult to find and less plentiful than for
≤3. Overall, ≤3 is concluded to be the superior order of kurtosis, also considering that it is
preserved by more candidates for kurtosis measures, sometimes under weaker assumptions.

A notable exception concerning the entanglement of kurtosis and skewness is posed by the
class of sinh-arsinh-distributions introduced by Jones and Pewsey (2009). These distributions
depend on four parameters associated with location, dispersion, skewness and kurtosis. The
already known result that certain quantile-based kurtosis measures are invariant to the
skewness parameter of this class of distributions (see Jones et al., 2011) is generalized to the
underlying orders in Theorem 4.24. It states the following: whether two distributions can be
ordered with respect to either ≤3 or a generalized concave-convex order ≤t0

gs is solely dependent
on their kurtosis parameters and, in particular, independent of their skewness parameters.
Since any legitimate measure of kurtosis should preserve at least one of these orders, this
property is inherited by any such measure. This result makes the sinh-arsinh-distributions
much more appealing than other four-parameter distribution families that include the normal
distributions. Thus, it is an interesting topic for future research.

For distributions outside of that specific class, skewness and kurtosis remain entangled and
the subsequent problems persist. However, Section 4.3.3 on density-based kurtosis measures
provides explicit formulas on the structure of that entanglement, which arise from an equivalent
characterisation of the order ≤3. They suggest that a small difference of a kurtosis measure
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for two distributions is meaningless, if one distribution is sufficiently left-skewed and the
other is sufficiently right-skewed. The larger the difference in skewness is, the larger the
difference in the kurtosis measure needs to be in order to have any merit. If the kurtosis
measure takes two values that are too close to each other, then that result is meaningless.
Heuristically, one might say that a difference in skewness blurs the view on their comparison
with respect to kurtosis. Furthermore, if the two distributions are both differently skewed in
the same direction, then the same value of a kurtosis measure for both distributions no longer
means that they are equally kurtotic. When talking about the difference of the two kurtosis
measure values, the comparison is no longer centred around zero. If the distributions are both
right-skewed, the centre is a positive value of that difference; and if they are both left-skewed,
the centre is a negative value of that difference.

It is important to note that all of these rather vague and heuristic statements rest upon
results for density-based measures. Similarly explicit results for other classes of kurtosis
measures could not be obtained. Almost all considered candidates for kurtosis measures
satisfy the crucial property (K2) for symmetric distributions, which can be seen as a kind
of minimal requirement. Stronger results hold for κEM (F ) = E[|X − F −1(1

2)|] · f(F −1(1
2)),

which satisfies (K2) for cdf’s F in the more general transitivity sets T t
D, t ∈ R; and for the

quantile-based measures κα,η
Q and κα,η

QA, which already satisfy (K2) if only the less kurtotic
cdf F is symmetric with no further requirement on the other cdf G. The proof of (K2) for
the quantile-based measures also contains some heuristic information on how asymmetries
make a comparison with respect to kurtosis difficult. It is similar, but less explicit than the
information obtained from density-based measures.

However, most other kurtosis measures are much better suited to be used in applications
than the density-based measures. Because the densities and especially their derivatives are
virtually impossible to estimate with sensible accuracy, the density-based measures are only
useful in a theoretical context.

Convex characteristics of order four and higher have seldom been considered in the literature.
In his concluding remarks, Oja (1981, p. 168) stated that the interpretation of the orders
≤4, ≤5, . . . are an open question. Oja argues that an increase with respect to ≤5 could be
associated with ’more tendency to bimodality’. Other publications have presented arguments
for interpreting kurtosis as a lack of tendency to bimodality (see Darlington, 1970, Chissom,
1970, Hildebrand, 1971 or Balanda and MacGillivray, 1988, pp. 113–114). This is somewhat
plausible when recalling the interpretation of Balanda and MacGillivray (1988, p. 116) that
an increase in kurtosis comes with less probability mass on the ’shoulders’ of the distribution
and more on the centre and the tails. Thus, a distribution with minimal kurtosis has its
entire probability mass on its shoulders and practically none in the centre or the tails, which
intuitively gives the image of a bimodal distribution with small tails.

There are a number of patterns than can be observed in the zeroth to third convex
characteristic. Continuing these in a straightforward way may shed some light on the nature
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of higher-order characteristics. By using the derivative-based characterization of ≤k, one can
generalize the idea that suggests ≤s to be a suitable kurtosis order. For that, let F and G

be two sufficiently regular cdf’s that are not overly asymmetric. Then, F ≤k G is equivalent
to ∆(k)

F G ≥ 0, which often implies the existence of a t0 ∈ DF such that ∆(k−1)
F G (t) ≤ 0 for

t ≤ t0 and ∆(k−1)
F G (t) ≥ 0 for t ≥ t0. Thus, an increase in the k-th convex characteristic can

prototypically be characterized by a decrease in the (k − 1)-the convex characteristic on the
left side and an increase in the (k − 1)-th convex characteristic on the right side. For k = 1, a
decrease in location on the left side and an increase in location on the right side yields an
increase in dispersion; analogous statements can be made for k = 2 and k = 3. This means
that an increase in the fourth convex characteristic is associated with asymmetry that is
located in the shoulder on the left side and asymmetry that is located in the tail on the right
side. However, this description becomes fuzzy for larger values of k.
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Figure 5.1.: Illustration of how an increase in the k-th convex characteristic can be interpreted
for different values of k.

Another possible approach is based on the quantile-based measures. For k ∈ {0, 1, 2, 3}, the
numerator of the measure of the k-th convex characteristic is given by a k-th order difference
of quantiles. Heuristically, one can imagine the distribution to be divided into k + 1 parts
and each part is represented by one evaluation of the quantile function. The sign of the
rightmost evaluation is positive and it alternates for the subsequent evaluations. For k = 0,
an increase in location means that the single evaluation of the quantile function becomes
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larger. This is represented in the two leftmost panels of Figure 5.1. The first panel depicts
the density of the reference distribution F and the second panel depicts the density of the
transformed distribution G. For k = 1, an increase in dispersion means that the smaller
evaluation decreases and the larger evaluation increases, overall stretching out the distribution.
In the third panel of Figure 5.1, the decrease is represented by the colour red and a downward
arrow and the increase is represented by the colour green and an upward arrow. This heuristic
can be continued for skewness in the fourth panel and kurtosis in the fifth panel; the reference
distribution is always the one in the leftmost panel. Applying this heuristic to the case
k = 5 suggests that Oja (1981, p. 168) might indeed be correct in suggesting that this convex
characteristic is associated with more tendency to bimodality (see rightmost panel of Figure
5.1). Of course, this principle can also be applied to any other k ∈ N0. A pattern that can
be observed is that the k-th convex characteristic is asymmetric in nature for even k and
symmetric in nature for odd k.

The heuristic from Figure 5.1 is also supported by the intersection criterion for the order
of the k-th convex characteristic given in Proposition 2.17b). If F ≤k G holds for a k ∈ N0

and F and G are equal in all lower-order convex characteristics in some sense, then F and
G intersect exactly k times and the last non-zero value of F − G is positive. Thus, both
distributions are divided into k + 1 parts and, in the last part, G−1 − F −1 is positive. So,
in the last part, a G-distributed random variable takes larger values than a F -distributed
random variable. Throughout the rest of the parts, the direction of the transformation from
F to G alternates. This, again, leaves us with the heuristic illustrated by Figure 5.1.

However, the consideration of higher convex characteristics has a major problem. Since dis-
tributions can only be standardized with respect to location and dispersion, all characteristics
of order k ≥ 2 remain entangled, just like skewness and kurtosis are. An indicator for this is
given by results by van Zwet (1964) concerning the (k + 1)-th standardized moment (k ≥ 4),
which is an intuitive candidate for a measure of the k-th convex characteristic. If k + 1 is odd,
that moment is always a measure of skewness because it preserves the order ≤c; and if k + 1
is even, that moment is always a measure of kurtosis for symmetric distributions because it
preserves the order ≤s. This strengthens the conjecture that all higher-order convex charac-
teristics remain entangled and are difficult to separate. A solution we found for the treatment
of kurtosis is to consider it on sets of comparable skewness as a substitute for standardization.
This means that convex characteristics of an order k ≥ 4 can only meaningfully discussed
on sets of distributions on which all characteristics of order 2, 3, . . . , k − 1 are equal in some
sense. It seems highly doubtful that such sets have any merit. Another possible solution
comes in the form of special distribution families like the sinh-arsinh-distributions in which
the characteristics can be separated.

Overall, it is unclear whether the consideration of higher convex characteristics than kurtosis
is sensible. On one hand, they may be helpful in characterizing and categorizing distributional
shape, e.g. by adding further dimensions the skewness-kurtosis-plane. It would also be very
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useful to be able to associate intuitive properties like bimodality with such a characteristic.
On the other hand, its meaningful description and discussion seems more unlikely, the higher
the order of the characteristic.



PART II

Discrete Setting





CHAPTER 6

Basic Orders on Discrete Distributions

In Part I of this thesis, numerous mappings are shown to be measures of central location,
dispersion, skewness and kurtosis. The importance of rigorously assessing their suitability
to measure the corresponding characteristic cannot be understated because these kinds of
measures are often used in applications without being questioned. While most candidates
for measures considered in Part I indeed fulfil the corresponding defining properties, there
are a few exceptions, particularly for the characteristic of skewness (see (3.6) and (3.8)).
Another mapping that does not satisfy the crucial skewness property (S2) was nonetheless
introduced as a measure of skewness or asymmetry by Patil et al. (2012) on the basis of
heuristic observations. However, Eberl and Klar (2021) pointed out multiple examples in
which the proposed measure behaves counterintuitively. It was shown that the quantity
can be better described as a measure of similarity to the exponential distribution. The
order-based definition of measures of characteristics is the best known method to exclude such
misconstructions, while only imposing a basic requirement and leaving the exact interpretation
of the characteristic up to the measures.

All cdf’s considered throughout Part I are assumed to be absolutely continuous and to
have interval support. These assumptions were often made in the literature on this topic, e.g.
by Oja (1981), who formalized and unified the order-based approach to the quantification
of the first four convex characteristics. However, both of these assumptions are not met
by discrete distributions, which is a far too rich class of distributions to not be included
in this fundamental theory. Measures of these characteristics are usually applied to both
continuous and discrete distributions. Besides application to popular lattice distributions like
the binomial, Poisson or geometric distribution, this also includes empirical measures, which
are usually obtained by applying theoretical measures to empirical, and therefore discrete,
distributions. It is the purpose of Part II of this thesis to meaningfully extend the order-based
approach for the quantification of convex characteristics to discrete distributions.

Orders of location and dispersion have been considered without any assumptions on the
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involved distributions in the literature, e.g. by Müller and Stoyan (2002) and Belzunce et al.
(2015). To the knowledge of the author, the concepts of skewness and kurtosis have been
exclusively discussed in a continuous setting, with rare or brief exceptions like Eberl and
Klar (2019) or a counterexample given by van Zwet (1964, pp. 16–17). Another exception is,
of course, posed by the usage of measures of these characteristics on discrete distributions.
Throughout Part II, we mostly focus on location and dispersion because groundwork has been
laid in the literature for these characteristics and they are also easier to handle, as evidenced
in Part I. Ideas concerning a discrete skewness order are briefly discussed in Section 8.2.

We restrict our attention to the orders of the convex characteristics in question, so to ≤st,
≤disp and ≤c. For location and skewness, this choice is fairly straightforward because the
corresponding orders are very basic, do not explicitly favour any kind of measure, and they
are by far the most popular orders of these characteristics. For dispersion, the choice is not
quite as easy because the dilation order ≤dil is also very popular in the literature, maybe
even more so than ≤disp in the financial and actuarial literature. However, it is established in
Section 3.2.2 that ≤dil centres the comparison with respect to dispersion around the mean
and therefore favours dispersion measures that are centred around the mean. It is also known
that ≤dil is a weakening of ≤disp (see Proposition 2.20b) and Example 2.21b) or Müller and
Stoyan, 2002, p. 42), and a more basic order is more suitable for our purposes because it
allows for an interpretation of dispersion that is as general as possible.

6.1. The Usual Stochastic Order

The usual stochastic order ≤st is generally very compatible with discrete distributions. This
is evidenced by the fact that most of its properties and characterizations are valid without
any assumptions of smoothness (see Müller and Stoyan, 2002, pp. 2–7 or Belzunce et al., 2015,
pp. 28–36). Exceptions are, of course, posed by results relating ≤st to other stochastic orders
that are not as compatible with discrete distributions. Furthermore, the stochastic order is
known to be applicable to many important classes of discrete distributions. Müller and Stoyan
(2002, pp. 61, 63) noted that the stochastic order holds within a number of popular lattice
distribution for suitable parameter choices, including the binomial, Poisson and geometric
distributions. Further results of this type were derived by Klar et al. (2010) and Klenke and
Mattner (2010).

The only notable irregularities that the stochastic order exhibits for discrete distributions
concern its characterization via RIDF’s and similar concepts. RIDF’s are among the most
important objects for the comparison of distributions throughout this thesis and they are
connected to the orders of convex characteristics via Proposition 2.9 and Corollary 2.12.
In the case of the stochastic order, they state that, for F, G ∈ PI , F ≤st G is equivalent
to ∆F G(t) ≥ 0 for all t ∈ DF . If this requirement is applied to distributions that are not
absolutely continuous, it makes sense to include the right endpoint of the support of F (if it
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exists), because it may have positive probability mass on it. This extends the requirement
to ∆F G(t) ≥ 0 for all t ∈ D′

F . However, as stated by the following result, an additional
assumption is necessary to obtain equivalence to the stochastic order for arbitrary distributions.

Proposition 6.1. Let F, G ∈ P.

a) ∆F G(t) ≥ 0 for all t ∈ D′
F implies F ≤st G.

b) The reverse implication from a) holds, if and only if there does not exist a non-degenerate
interval I0 ⊆ R and a number p0 ∈ (0, 1) such that F (I0) = G(I0) = {p0}.

Proof. a) Assume ∆F G(t) ≥ 0 for all t ∈ D′
F and assume that there exists a t0 ∈ R such

that G(t0) > F (t0) for a proof by contradiction. This eliminates the case F (t0) = 1;
and F (t0) = 0 yields t0 ≤ G−1(F (t0)) = inf DG, which contradicts G(t0) > 0. Thus,
only the case 0 < F (t0) < 1 is left, which is equivalent to t0 ∈ DF . Furthermore, G

has a jump discontinuity that skips F (t0), since otherwise it would follow t0 > inf{s ∈
R : G(s) ≥ F (t0)} = G−1(F (t0)). Hence, t0 = G−1(F (t0)) holds. Because F is right-
continuous, there now exists a ε > 0 such that F (t0 + ε) < G(t0) ≤ G(t0 + ε). This
yields G−1(F (t0 + ε)) = inf{s ∈ R : G(s) ≥ F (t0 + ε)} = t0 < t0 + ε, which poses a
contradiction to ∆F G(t) ≥ 0 holding for all t ∈ D′

F and thus completes the proof of part
a).

b) First, we assume that G(t) ≤ F (t) holds for all t ∈ R while there exists a t1 ∈ D′
F such

that t1 > G−1(F (t1)) = inf{s ∈ R : G(s) ≥ F (t1)}. This yields G(t) = F (t) = F (t1)
for all t ∈ [G−1(F (t1)), t1]. In particular, there exists a non-degenerate interval I0 =
[G−1(F (t1)), t1] and a p0 = F (t1) such that F (I0) = G(I0) = {p0} holds true.

In order to prove the other asserted implication, we now assume that there exists a non-
degenerate interval I0 ⊆ R and a number p0 ∈ (0, 1) satisfying F (I0) = G(I0) = {p0}. We
choose I0 to be of maximal length. This yields ∆F G(t) = G−1(F (t)) − t = G−1(p0) − t =
inf I0 − t < 0 for all t ∈ I0 \ inf I0. Since I0 is non-degenerate by assumption, the set
{t ∈ D′

F : ∆F G(t) < 0} is not empty. The proof is completed by the fact that the cdf’s
F and G of X ∼ Bin(1, 1

2) and Y = X + 1
2 satisfy the assumption with I0 = [1

2 , 1) and
p0 = 1

2 , and also satisfy F ≤st G (see left and central panel of Figure 6.1).

In particular, F and G having interval support is a sufficient condition for the equivalence
of ∆F G(t) ≥ 0 for all t ∈ D′

F and F ≤st G. Müller and Stoyan (2002, p. 4) noted that this
equivalence does not generally hold, but they gave a wrong sufficient condition by requiring
F and G to be continuous. They also gave an alternative characterization of the stochastic
order using RIDF’s with the advantage that it is generally valid.

Proposition 6.2. For F, G ∈ P, ∆GF (t) ≤ 0 for all t ∈ D′
G is equivalent to F ≤st G.
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Figure 6.1.: Illustration of Example 6.3.

The differences between the three characterizations discussed so far are illustrated in the
following example.

Example 6.3. Let X ∼ Bin(1, 1
2) and Y = Ỹ + 1

2 with Ỹ ∼ Bin(1, 1 − p) and p ∈ (0, 1).
Obviously, X ≤st Y holds, if and only if p ≤ 1

2 (see left panel of Figure 6.1). Furthermore, we
have D′

F = [0, 1], D′
G = [1

2 , 3
2 ] and

RF G(t) =


3
2 , , if p < 1

2 ,

1
2 + 1{1}(t), , if p ≥ 1

2

, RGF (t) =

1{ 3
2 }(t), , if p ≤ 1

2 ,

1, , if p > 1
2

(see the two right panels of Figure 6.1). It follows that

∆GF (t) ≤ 0 ∀t ∈ D′
G ⇔ p ≤ 1

2 ⇔ F ≤st G,

∆F G(t) ≥ 0 ∀t ∈ D′
F ⇔ p < 1

2 .

The difference between the two characterizations in the case p = 1
2 is due to the utilized

definition of the quantile function. If, instead, the definition F −1(q) = sup{t ∈ R : F (t) ≤
q}, q ∈ (0, 1), were used, we would obtain RF G ≡ 3

2 and RGF ≡ 1 in the case p = 1
2 . Hence,

the roles of the two characterizations would then be reversed.

A re-examination of the proofs of Propositions 6.1 and 6.2 yields that, for the alternative
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definition F −1(q) = sup{t ∈ R : F (t) ≤ q}, q ∈ (0, 1), of the quantile function, the roles of
the two characterizations of the stochastic order are generally reversed. This means that
∆F G(t) ≥ 0 for all t ∈ D′

F is then equivalent to F ≤st G. Furthermore, ∆GF (t) ≤ 0 for all
t ∈ D′

G then only implies F ≤st G, and equivalence holds, if and only if the condition in
Proposition 6.1b) is fulfilled.

Relative inverse distribution functions on discrete distributions are discussed in detail in
Appendix A. It is concluded that their use is generally not advisable because of Proposition
A.3. It states that the crucial property of the RIDF from F to G, which is given by
RF G(X) D= Y , holds, if and only if G(DG) ⊆ F (DF ). Since that condition is usually not
fulfilled for two discrete cdf’s F and G, the function ∆F G then does not compare an F -
distributed random variable and a G-distributed random variable. Instead, the second random
variable has the closest cdf to G that can be obtained by (deterministically) transforming
a F -distributed random variable. As a possible solution that is only partially successful,
random transformations are introduced in Appendix A as a substitute. Note that, in these
considerations, the domain of RF G is always restricted to supp(F ). This is done to disregard
all points that are not associated with any probability mass, which are not relevant for the
crucial property of RIDF’s.

The fact that RIDF’s of discrete distributions lose some relevant information can be made
obvious by comparing their graph to the corresponding Q-Q-plot (quantile-quantile-plot).
The Q-Q-plot of two distributions or cdf’s F, G ∈ P is the graphical representation of all
points in the set {(F −1(p), G−1(p)) : p ∈ (0, 1)}. Hence, it is very similar to the graph of the
corresponding RIDF RF G, but without the limitation that each point on the x-axis can only
be assigned one point on the y-axis. This limitation is not relevant for distributions in PI ,
which is why the two plots coincide in that case. For discrete distributions, there are some
discrepancies, which are analyzed exemplarily in the following. Here, the domain of the RIDF
RF G and the modified RIDF ∆F G is restricted to supp(F ) for previously explained reasons.

Example 6.4. We define X and Y as in Example 6.3 and limit ourselves to the consideration
of the RIDF RF G and the corresponding Q-Q-plots. The graphs of the RIDF’s only contain
two points each because their domain is restricted to supp(F ) = {0, 1}. The results are
depicted in Figure 6.2.

Specifically the upper right panel shows that considering the RIDF on the domain supp(F )
yields worse results than on the domain D′

F . It suggests that F ≤st G holds for p > 1
2 because

all points of the RIDF lie above the main diagonal. However, the corresponding Q-Q-plot in
the lower right panel shows that there exists another point that is associated with positive
probability mass and that lies below the main diagonal.

Generally, the fact that all points in the Q-Q-plot lie above or on the main diagonal is
equivalent to F −1(p) ≤ G−1(p) for all p ∈ (0, 1), and therefore to F ≤st G. Thus, the Q-Q-plot
is the optimal graphical tool for the comparison of two distributions with respect to the usual



142 Chapter 6. Basic Orders on Discrete Distributions

p < 0.5 p = 0.5 p > 0.5
R

ID
F

0.0 0.2 0.4 0.6 0.8 1.0

0
.6

0
.8

1
.0

1
.2

1
.4

ϕ(t) = t

0.0 0.2 0.4 0.6 0.8 1.0
0

.6
0

.8
1

.0
1

.2
1

.4

ϕ(t) = t

0.0 0.2 0.4 0.6 0.8 1.0

0
.6

0
.8

1
.0

1
.2

1
.4

ϕ(t) = t

Q
−

Q
−

p
lo

t

0.0 0.2 0.4 0.6 0.8 1.0

0
.6

0
.8

1
.0

1
.2

1
.4

ϕ(t) = t

0.0 0.2 0.4 0.6 0.8 1.0

0
.6

0
.8

1
.0

1
.2

1
.4

ϕ(t) = t

0.0 0.2 0.4 0.6 0.8 1.0
0

.6
0

.8
1

.0
1

.2
1

.4

ϕ(t) = t

Figure 6.2.: Illustration of Example 6.4.

stochastic order. This is also mentioned by Müller and Stoyan (2002, p. 3–4) and Belzunce
et al. (2015, p. 36).

Both of these references also consider the same methodology based on the so-called P-P-plot
(probability-probability-plot), which is the graphical representation of all points in the set
{(F (t), G(t)) : t ∈ R}. It is contained within the set [0, 1] × [0, 1] and, if F, G ∈ PI , it
coincides with the graph of the function G ◦ F −1. This function can be seen as a kind of
alternative RIDF and was extensively considered by Handcock and Morris (1998, 1999),
including applications to social sciences. However, while its graph is easier to overview because
of its boundedness, it does not have the crucial property of the original RIDF based on the
probability-integral-transform. Because this property plays a key role in the use of the RIDF
for comparing distributions, we restrict ourselves to Q-Q-plots and the original RIDF’s. The
results in Propositions 6.1 and 6.2 as well as the subsequent discussion concerning Q-Q-plots
can nonetheless mostly be replicated for P-P-plots and the corresponding alternative RIDF’s.
For this, note that F ≤st G is equivalent to G(t) ≤ F (t) for all t ∈ R and see Müller and
Stoyan (2002, p. 4) and Belzunce et al. (2015, pp. 35–36).
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6.2. The Dispersive Order

The utilization of RIDF’s to compare discrete distributions with respect to the dispersive order
≤disp comes with similar problems as for the stochastic order ≤st. According to Corollary 2.12,
F ≤disp G is equivalent to ∆′

F G(t) ≥ 0 for all t ∈ DF , if F, G ∈ P1
I . This characterization can

be made more suitable for discrete distributions by extending the domain of ∆F G to D′
F and

by reformulating the requirement that the function is increasing: the characterization is then
given by

∆F G(t) − ∆F G(s) ≥ 0 ∀s, t ∈ D′
F with s < t. (6.1)

The following example shows that both supp(F ) and D′
F as choices for the domain of ∆F G

lead to counterintuitive behaviour of an dispersion order based on (6.1) when it is applied to
discrete distributions.

Example 6.5. a) We first consider D′
F as the domain of ∆F G. Let X ∼ U({1, 2}) and

Y ∼ U({1, 2, 3, 4}), so P(X = 1) = 1
2 = P(X = 2) and P(Y = k) = 1

4 for all
k ∈ {1, 2, 3, 4}. Then, it is easy to verify that X ≤disp Y holds. For that, let p0, p1 ∈ (0, 1)
with p0 < p1. If p0, p1 ∈ (0, 1

2 ] or p0, p1 ∈ (1
2 , 1), then F −1(p1) − F −1(p0) = 0, which

directly yields F −1(p1) − F −1(p0) ≤ G−1(p1) − G−1(p0). In the only remaining case
p0 ≤ 1

2 < p1, it follows that F −1(p1) − F −1(p0) = 1 ≤ G−1(p1) − G−1(p0), which overall
proves X ≤disp Y . However, for s, t ∈ [1, 2) ⊂ [1, 2] = D′

F with s < t, we obtain

∆F G(t) − ∆F G(s) = (2 − t) − (2 − s) = s − t < 0.

Thus, although Y is clearly more dispersed than X, which is also recognized by the
dispersive order, the characterization in (6.1) does not come to this conclusion.

b) Now we consider the characterization in (6.1), where D′
F is replaced by supp(F ).

Let X ∼ Bin(1, 1
2) and Y ∼ Bin(1, 1 − π), where π ∈ (1

2 , 1). It is easy to see that
X ̸≤disp Y and Y ̸≤disp X holds, because of F −1(p1)−F −1(p0) = 0 < G−1(p1)−G−1(p0)
for 1

2 < p0 ≤ π < p1 < 1 and G−1(p1) − G−1(p0) = 0 < F −1(p1) − F −1(p0) for
0 < p0 ≤ 1

2 < p1 < π. On the other hand, note that supp(F ) = {0, 1} and

∆F G(1) − ∆F G(0) = (G−1(1) − 1) − G−1(1
2) = (1 − 1) − 0 = 0.

Thus, (6.1) is fulfilled for supp(F ) instead of D′
F , meaning that G is deemed more

dispersed than F . However, this can neither be confirmed intuitively (see left panel of
Figure 6.1), nor by way of the dispersive order ≤disp or popular dispersion measures
like the standard deviation, which gives σF = 1

2 >
√

π(1 − π) = σG. The distribution
of G also converges to a one-point-distribution in zero for π ↗ 1, which exhibits no
dispersion at all.

Other than RIDF’s, Q-Q-plots can again be used to equivalently characterize the dispersive



144 Chapter 6. Basic Orders on Discrete Distributions

order. F ≤disp G holds, if and only if any straight line connecting two points in the
corresponding Q-Q-plot has a slope of at least one. In spite of this graphical characterization,
the dispersive order has a major flaw when it is applied to discrete distribution. The
corresponding result was derived by Müller and Stoyan (2002, p. 41).

Proposition 6.6. Let F, G ∈ P. Then, F ≤disp G implies F (DF ) ⊆ G(DG).

Conversely, this means that, if neither range of two cdf’s is a subset of the range of the other
cdf, the two distributions are not ordered with respect to ≤disp. This does not present an
obstacle for (absolutely) continuous distributions since the range of their cdf’s is always equal
to the entire unit interval. Discrete cdf’s, however, take on at most countable many values.
This means that, if two discrete ranges were picked at random (via independent uniformly
distributed random variables), the probability for the ranges to even coincide in one point
would be zero. This problem persists when we consider specific families of distributions like
the binomial, Poisson or geometric distributions. An exception is given by specific classes of
empirical distributions. In particular, every pair of non-tied empirical distributions with the
same sample size satisfies the condition in Proposition 6.6.

However, it is very easy to find examples where one distribution is unambiguously more
dispersed than the other, but neither F (DF ) ⊆ G(DG) nor G(DG) ⊆ F (DF ) holds, which
means that the two distributions are not comparable with respect to ≤disp. A particularly
simple example is given in the following.

Example 6.7. Let X ∼ U({1, 2}) and Y ∼ U({1, . . . , 5}). We have F (DF ) = {1
2} and

G(DG) = {1
5 , 2

5 , 3
5 , 4

5}, thus, F ̸≤disp G (and G ̸≤disp F ). The situation here is very similar
to that in Example 6.5a), except that Y is stretched out more because its probability mass
is spread onto an additional point. However, X ≤disp Ỹ holds for Ỹ ∼ U({1, 2, 3, 4}), but
X ≤disp Y does not hold. This situation is examined graphically in Figure 6.3.

The pmf’s of X and Y are given in the upper left panel and the pmf’s of X and Ỹ are
given in the upper right panel. It is obvious that both X ≤D Y and X ≤D Ỹ should hold for
any sensible dispersion order ≤D. The difference between X and Y is even larger than that
between X and Ỹ , yet X ̸≤disp Y and X ≤disp Ỹ . The reason for this becomes more obvious
by observing the corresponding Q-Q-plots in the two middle panels of Figure 6.3. The critical
point in both Q-Q-plots is the jump of F −1 from the value 1 to the value 2. On the left side,
the slope between the two corresponding points is zero, which contradicts X ≤disp Y ; on the
right side, the slope between these two points is one, and therefore X ≤disp Ỹ is true.

The difference in the two Q-Q-plots can be explained by the comparison of the cdf’s, which
are depicted in the lower panels of Figure 6.3. It is colour-coded into the cdf’s how the
probability mass is shared between the different points in the supports of both distributions.
Since this is essentially what is represented by the Q-Q-plots, the colours of the points in
the Q-Q-plots correspond to those used for the cdf’s. The reason for the slope of zero in the
Q-Q-plot on the left side is that a smaller jump of G lies in between two larger jumps of
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Figure 6.3.: Different illustrations of the two pairs of distributions considered in Example 6.7:
X ∼ U({1, 2}) and Y ∼ U({1, . . . , 5}) in the left panels; X and Ỹ ∼ U({1, 2, 3, 4})
in the right panels. Upper: barplots of pmf’s; Middle: Q-Q-plots; Lower: colour-
coded cdf’s.
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F . This is not the case on the right side precisely because the condition F (DF ) ⊆ G(DG) is
fulfilled.

The fact that constellations as in Example 6.7 exist, implies that ≤disp does not order
discrete distributions sufficiently well with respect to dispersion. Since the dispersive order is
made out to be the fundamental order of dispersion in Section 3.2.2, this leaves the concept
of dispersion on discrete distributions without a foundation. In particular, the idea that
popular dispersion measures like the ones discussed in Sections 3.1 and 3.2.2 actually measure
dispersion does not have any basis in a discrete setting. Usually, this idea is based on the
preservation of ≤disp, which is not a meaningful dispersion order for discrete distributions.

A possible solution for this would be to replace ≤disp in the role as foundational order by
another order of dispersion, for instance the dilation order ≤dil. However, as discussed in
Section 3.2.2, ≤dil is not well suited for this role. First, it is weaker than ≤disp and therefore
possibly too specific in its interpretation of dispersion. While F ≤disp G means that G is
more dispersed than F in a pointwise fashion, F ≤dil G represents a comparison of averages
that can, e.g., be expressed via the stop-loss transform. Second, ≤dil implicitly centres the
dispersion of any distribution around its mean, which inherently favours this kind of dispersion
measure over others, which are, e.g., centred around the median.

All of the above observations suggest that a rigorous foundation of dispersion for discrete
distributions requires an order that has the properties of the dispersive order but is more
suitable for the discrete setting. Since a concept this widely used should not lack any rigour,
Chapter 7 is dedicated to establishing this kind of order. Several proposals are developed and
discussed and it is subsequently analyzed whether they are suitable discrete versions of the
dispersive order ≤disp. Finally, their behaviour on well known families of discrete distributions
as well as their compatibility with popular measures of dispersion is examined.



CHAPTER 7

Discrete Dispersive Orders

Before starting to develop proposals for a discrete version of the dispersive order, we first
establish our general setting. First, since D contains a number of difficult to handle distri-
butions with virtually no practical use, we limit our considerations to the class of purposive
discrete distributions given in the following definition along with a number of subclasses.

Definition 7.1. Let F ∈ D be a cdf with pmf f and let X ∼ F .

a) The class of purposive discrete distributions D0 ⊆ D is defined by

F ∈ D0 ⇔ supp(F ) is order-isomorphic to a subset of Z with at least two elements

⇔ ∃A ⊆ Z, |A| ≥ 2, bijection φ : supp(F ) → A such that

x ≤ y ⇔ φ(x) ≤ φ(y) ∀x, y ∈ supp(F ).

b) For each n ∈ N≥2, the class of empirical distributions with sample size n, E(n), is defined
by

F ∈ E(n) ⇔ ∃x ∈ Rn such that

P(X = xj) = |{k ∈ {1, . . . , n} : xk = xj}|
n

∀j ∈ {1, . . . , n}

⇔ F (R) ⊆
{

i
n : i ∈ {0, . . . , n}

}
⇔ f(R) ⊆

{
i
n : i ∈ {0, . . . , n}

}
,

if F is additionally non-degenerate. The class of all empirical distributions is defined by
E = ⋃

n∈N≥2
E(n). The vector x in the first characterization is said to be the defining

vector of F or the corresponding distribution.

c) For each n ∈ N≥2, the class of non-tied empirical distributions with sample size n, Ent(n),



148 Chapter 7. Discrete Dispersive Orders

is defined by

F ∈ Ent(n) ⇔ ∃x ∈ Rn with xi ̸= xj for i ̸= j such that

P(X = xj) = 1
n

∀j ∈ {1, . . . , n}

⇔ F (R) =
{

i
n : i ∈ {0, . . . , n}

}
⇔ f(R) = {0, 1

n}.

The class of all non-tied empirical distributions is defined by Ent = ⋃
n∈N≥2

Ent(n).

d) The class of Z-lattice distributions LD(Z) is defined by

F ∈ LD(Z) ⇔ ∃a > 0, b ∈ R such that supp(F ) = aZ + b.

Let n ∈ N≥2. The classes of N-, (−N)- and n-lattice distributions LD(N), LD(−N), LD(n)
are defined analogously by replacing Z by N, −N or {1, . . . , n} in the definition. The
positive number a is said to be the defining distance of F or the corresponding distribu-
tion.

e) The class of lattice distributions LD is defined by

F ∈ LD ⇔ F ∈ LD(N), where N ∈ N≥2 or N ∈ {N, −N,Z}.

This directly implies the inclusions Ent(n) ⊆ Ent ⊆ D0, Ent(n) ⊆ E(n) ⊆ E ⊆ D0 for all
n ∈ N≥2, and LD(N) ⊆ LD ⊆ D0 for all N ∈ N≥2 or N ∈ {N, −N,Z}. Furthermore, note that
there indeed exist non-degenerate discrete distributions in D \ D0, i.e. discrete distributions
that are not order-isomorphic to a subset of the whole numbers. Consider the following
example.

Example 7.2. Let the distribution of the random variable X be defined by

P
(
X = 1

k

)
=
(

1
2

)|k|+1

for all k ∈ Z \ {0}. This constitutes a probability distribution because of

∑
k∈Z\{0}

P
(
X = 1

k

)
= 2 ·

∞∑
k=1

(
1
2

)k+1
=

∞∑
k=1

(
1
2

)k
= 1.

Now assume that there exists a subset A ⊆ Z with |A| ≥ 2 and an order-isomorphism
φ : supp(X) → A. Let j = φ(−1) ∈ A. Then, because φ is an order-isomorphism, φ(− 1

1+k ) ≥
j + k for all k ∈ N. Thus, φ(1) ≥ j + k for all k ∈ N, which poses a contradiction to
φ(1) ∈ A ⊆ Z.
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However, examples of this kind are rather pathological in nature and usually do not appear in
practice. The class D0 particularly contains all lattice distributions and empirical distributions,
which are the most frequently used kinds of discrete distributions.

The following result, which is crucial for the remainder of this thesis, is only valid for
distributions in D0.

Proposition 7.3. Define

I = {Z,N, −N} ∪ {{1, . . . , n} : n ∈ N≥2}

and

SA =
{

(xj , pj)j∈A ⊆ R × (0, 1] : xi < xj for i < j, pj > 0 for j ∈ A,
∑
j∈A

pj = 1
}

for A ∈ I \ Z as well as

SZ =
{

(xj , pj)j∈Z ⊆ R × (0, 1] : xi < xj for i < j, pj > 0 for j ∈ Z,
∑
j∈Z

pj = 1,

inf{j ∈ Z :
∑
i≤j

pi ≥ 1
2} = 0

}
.

For any F ∈ D0, there exists a unique index set A ∈ I that is order-isomorphic to supp(F ),
and there exists a unique sequence (xj , pj)j∈A ∈ SA such that P(X = xj) = pj for all j ∈ A.
This unique association is denoted by F =̂ (A, (xj , pj)j∈A). A is said to be the indexing set of
F and (xj , pj)j∈A is said to be the identifying sequence of F .

Proof. We define a function φ : D0 →
⋃

A∈I SA and show that it is a bijection, which is an
even stronger statement than the assertion. Note that the codomain of φ is a disjoint union of
the sets SA, A ∈ I. The value assignment of φ is now defined by cases. Therefore, let F ∈ D0,
then supp(F ) is order-isomorphic to a subset of Z. Note that since minima and maxima are
defined via the order ≤, this order-isomorphism preserves minima and maxima.

Case 1: min(supp(F )) and max(supp(F )) both exist.
A subset of Z has a minimum and a maximum, if and only if it is finite. Therefore,
supp(F ) is also finite. Let n = |supp(F )| ∈ N≥2. Define x1 = min(supp(F )) and xj =
min(supp(F ) \ {x1, . . . , xj−1}), j = 2, . . . , n. Then, we define φ(F ) = (xj , pj)j∈{1,...,n} ∈
S{1,...,n}, where pj = P(X = xj) > 0, j = 1, . . . , n. Note that all of the steps of the value
assignment in this case are unique, thus ensuring injectivity in this case.

Case 2: min(supp(F )) exists, but max(supp(F )) does not.
The only set within I with existing minimum but non-existing maximum is N. Similarly to
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Case 1, define x1 = min(supp(F )) and xj = min(supp(F ) \ {x1, . . . , xj−1}), j = 2, 3, . . ..
Then, the definition φ(F ) = (xj , pj)j∈N ∈ SN with pj = P(X = xj) > 0, j = 1, 2, . . . , is
once again unique.

Case 3: max(supp(F )) exists, but min(supp(F )) does not.
This is analogous to Case 2 by simply swapping to roles of minima and maxima and
replacing N by (−N).

Case 4: min(supp(F )) and max(supp(F )) both do not exist.
The only set within I with non-existing minimum and non-existing maximum is Z. We
now define

x0 = F −1(1
2) = inf{t ∈ R : F (t) ≥ 1

2} ∈ supp(F ),

xj = min{t ∈ supp(F ) \ {x0, . . . , xj−1} : F (t) ≥ 1
2}, j = 1, 2, . . . ,

xj = max{t ∈ supp(F ) \ {xj+1, . . . , x0} : F (t) < 1
2}, j = −1, −2, . . . .

Defining φ(F ) = (xj , pj)j∈Z ∈ SZ with pj = P(X = xj) > 0, j ∈ Z, now once again leads
to a unique value assignment in this case.

It is ensured in every case separately that φ is well-defined and injective. Now let A ∈ I and
(xj , pj)j∈A ∈ SA. We define a cdf F by P(X = xj) = pj > 0, j ∈ A. It follows directly that
supp(F ) = {xj : j ∈ A} is order-isomorphic to A ⊆ Z with |A| ≥ 2. This implies F ∈ D0 and
following the above value assignment for φ yields φ(F ) = (xj , pj)j∈A. Thus, φ is surjective
and therefore a bijection.

Note that if SZ was of the same structure as SA for A ̸= Z, F could only be uniquely
identified up to an arbitrary index shift of the identifying sequence. The additional condition
in SZ assures that the index 0 relates to the median and thereby fixes the sequence.

Throughout the remainder of this thesis, let F =̂ (A, (xj , pj)j∈A) and G =̂ (B, (yj , qj)j∈B).
Furthermore, we establish the conventions xa = −∞ and F (xa) = 0 for a < min A as well as
xa = ∞ and F (xa) = 1 for a > max A, provided that the minimum and the maximum exist,
respectively.

7.1. Derivation of Discrete Dispersive Orders

The reason for the need for a discrete dispersive order is given by the result of Proposition 6.6
in spite of the existence of situations like Example 6.7. The goal is to construct a dispersion
order that is meaningfully applicable to discrete distributions and therein assumes the same
role as the dispersive order ≤disp has for continuous distribution. This presents us with two
starting points for our derivation. The first is to find a representation of the dispersive order
for continuous distributions that has an easily applicable discrete analogue. The second is
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to find out what exactly is required by the original dispersive order ≤disp at the edge of its
applicability to discrete distributions.

We start out by considering the second starting point, postponing the first one to afterwards.
To this end, the following result refines Proposition 6.6 for discrete distributions as is gives an
equivalent characterization of ≤disp in that case. The one-dimensional Lebesgue measure is
denoted by λ1. Consequently, for any F ∈ D0 and p ∈ F (DF ), λ1(F −1({p})) describes how
long F assumes the value p.

Proposition 7.4. Let F, G ∈ D. Then F ≤disp G is equivalent to

F (DF ) ⊆ G(DG) and λ1(F −1({p})) ≤ λ1(G−1({p})) ∀p ∈ F (DF ).

Proof. We start by proving the implication from left to right. Due to Proposition 6.6, only
the inequality of the Lebesgue measures needs to be shown. This follows immediately as

λ1(F −1({p})) = lim
r↘p

(F −1(r) − F −1(p)) ≤ lim
r↘p

(G−1(r) − G−1(p)) = λ1(G−1({p})) (7.1)

holds for all p ∈ F (DF ) by assumption since F (DF ) ⊆ (0, 1).
For the other implication, let p, q ∈ (0, 1), p < q. Since F is discrete, the difference of its

quantile function at p and q is equal to the summed lengths of all intervals, on which F is
constant at a value between p and q. Thus,

F −1(q) − F −1(p) =
∑

r∈F (DF )∩[p,q)
λ1(F −1({r}))

and analogously for G. By assumption, we obtain(
G−1(q) − G−1(p)

)
−
(
F −1(q) − F −1(p)

)
=

∑
r∈F (DF )∩[p,q)

(
λ1(G−1({r})) − λ1(F −1({r}))

)
+

∑
r∈(G(DG)\F (DF ))∩[p,q)

λ1(G−1({r})).

Since both of these summands are non-negative, the assertion follows.

Using this characterization, the following examples illustrate how the dispersive order
manifests itself specifically on some of the distribution classes given in Definition 7.1.

Example 7.5. a) Let n ∈ N≥2 and F, G ∈ Ent(n). Then there exist x, y ∈ Rn with
xi < xi+1 and yi < yi+1 for all i ∈ {1, . . . , n − 1} such that P(X = xi) = 1

n = P(Y = yi)
for all i ∈ {1, . . . , n}. Because of F (DF ) = G(DG) = { i

n : i ∈ {1, . . . , n − 1}}, the
following equivalence holds

F ≤disp G ⇔ λ1(F −1({ i
n})) ≤ λ1(G−1({ i

n})) ∀i ∈ {1, . . . , n − 1}

⇔ xi+1 − xi ≤ yi+1 − yi ∀i ∈ {1, . . . , n − 1}.
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This means that G is at least as dispersed as F , if and only if the distance between
every pair of neighbouring points in the support of F is smaller than between the
corresponding pair in the support of F . Particularly, yj+1 − yj < xi+1 − xi for i ̸= j

does not contradict F ≤disp G.

b) Let G ∈ Ent(n) for some n ∈ N≥2 like in a) and let F ∈ E(n) \ Ent(n) have exactly
one tie. Hence, there exists a unique i0 ∈ {1, . . . , n − 1} such that xi < xi+1 for
i ≠ i0 and xi0 = xi0+1 holds for the defining vector x ∈ Rn of F . It follows that
F (DF ) = G(DG) \ { i0

n } ⊂ G(DG) and therefore

F ≤disp G ⇔ λ1(F −1({ i
n})) ≤ λ1(G−1({ i

n})) ∀i ∈ {1, . . . , n − 1} \ {i0}

⇔ xi+1 − xi ≤ yi+1 − yi ∀i ∈ {1, . . . , n − 1} \ {i0}.

Once again, the distances between neighbouring pairs of points in the supports of F and
G are compared. Which pairs of points are compared depends on the value that the
corresponding cdf takes on the interval between the points. For example, if i0 ̸= 1, the
difference x2 − x1 is compared to y2 − y1 since F ((x1, x2)) = { 1

n} = G((y1, y2)). Note
that the interval length yi0+1 − yi0 is not compared to any interval length of F .

c) Let F, G ∈ LD both have the same defining distance c > 0. Then there exist a, b ∈ R
and A, B ∈ I such that supp(F ) = cA + a and supp(G) = cB + b. It immediately follows
for all p ∈ F (DF ) = F (supp(F )) \ {1} that

λ1(F −1({p})) = a = λ1(G−1({p})).

Thus, the statement of Proposition 7.4 simplifies to

F ≤disp G ⇔ F (DF ) ⊆ G(DG).

Proposition 7.4 specifies how any pair of discrete distributions can be compared with
respect to dispersion. The dispersive order can only order pairs of cdf’s within the set
{(F, G) ∈ (D0)2 : F (DF ) ⊆ G(DG) or G(DG) ⊆ F (DF )} with respect to dispersion. For the
pairs in this set, the first components of the identifying sequences are arbitrary, while the
second components of the sequence are mostly fixed. We now turn our attention to a class of
distributions, for which the first components of the identifying sequence are mostly fixed while
the second components are arbitrary. Afterwards, the goal is to unite the two methodologies
in some way to enable us to compare two purposive discrete distributions with respect to
their dispersions.

Two discrete cdf’s F and G cannot be ordered with respect to ≤disp, if neither F (DF ) ⊆
G(DG) nor G(DG) ⊆ F (DF ) holds. However, it is not difficult to find an example where
neither inclusion holds but one distribution is unambiguously more dispersed than the other,
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as evidenced by Example 6.7. The basic idea for how to compare F and G with respect to
dispersion in this kind of situation is obtained through one of the starting points discussed at
the beginning of Section 7.1. Specifically, the idea is to modify a characterization of ≤disp

for sufficiently regular continuous distributions in such a way that it is applicable to discrete
distributions.

Corollary 2.12 states that, for F, G ∈ P1
I , F ≤disp G is equivalent to ∆′

F G(t) ≥ 0 for all
t ∈ DF . According to the proof of Theorem 3.12b), this can be rewritten using the Lebesgue
densities f and g of F and G. It is equivalent to

f(F −1(p)) ≤ g(G−1(p)) ∀p ∈ (0, 1). (7.2)

The discrete analogue of Lebesgue densities for absolutely continuous distributions are pmf’s,
which are also densities, only with respect to a suitable counting measure. Our proposed
discrete generalization of the dispersion order is therefore obtained by taking characterization
(7.2) of ≤disp and replacing the Lebesgue densities with the respective pmf’s. Since the values
of a pmf are the jump heights of the corresponding cdf, this gives a requirement concerning
the second components of the identifying sequences in question. Here, we use the convention
F =̂ (A, (xj , pj)j∈A) and G =̂ (B, (yj , qj)j∈B). We mostly fix the first components of the
identifying sequences by assuming

xa − xa−1 ≤ yb − yb−1 ∀a ∈ A \ {min A}, b ∈ B \ {min B}, (7.3)

For any set M with non-existent minimum, we define {min M} := ∅; an analogous rule holds
for maximums. This means that every interval, on which G is constant, is at least as long
as any interval, on which F is constant. Since this puts more distance between the points
in the support of G than between those in the support of F , this intuitively makes G more
dispersed. Condition (7.3) is obviously equivalent to

sup
a∈A\{min A}

(xa − xa−1) ≤ inf
b∈B\{min B}

(yb − yb−1). (7.4)

With the rather strict condition (7.3)/(7.4), we come to our first definition of a discrete version
of the dispersive order. Weakened versions of this order, with respect to the requirements on
the supports, are presented at a later point.

Definition 7.6. Let F, G ∈ D0 have the pmf’s f, g. Then, G is said to be at least as discretely
dispersed as F , denoted by F ≤disc

disp G, if (7.3) is satisfied and

g(G−1(p)) ≤ f(F −1(p)) ∀p ∈ (0, 1). (7.5)

We first apply this definition to the situation in Example 6.7 for which the original dispersive
order is not sufficient. This is done in order to find out whether ≤disc

disp is a suitable idea for its
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intended purpose.

Example 7.7. a) Continuation of Example 6.7: Condition (7.3) is satisfied since xa −
xa−1 = 1 = yb − yb−1 holds for all a ∈ A \ {min A}, b ∈ B \ {min B}. Additionally,
range(F −1) = supp(F ) and range(G−1) = supp(G). Since f is constantly equal to 1

2 on
its support and g is constantly equal to 1

5 on its support, we obtain

g(G−1(p)) = 1
5 ≤ 1

2 = f(F −1(p)) ∀p ∈ (0, 1).

Thus, F ≤disc
disp G holds as anticipated.

b) The first observation from part a) can be generalized to the entire set of lattice distri-
butions. For that, let F, G ∈ LD have the defining distances cF , cG > 0, respectively.
Now, there exist dF , dG ∈ R and sets SF , SG ⊂ Z such that A = dF + cF · SF and
B = dG + cG · SG. Hence,

sup
a∈A\{min A}

(xa − xa−1) = xa − xa−1 = cF ∀a ∈ A \ {min A},

inf
b∈B\{min B}

(yb − yb−1) = yb − yb−1 = cG ∀b ∈ B \ {min B},

yielding that condition (7.3) is equivalent to cF ≤ cG. In particular, (7.3) is satisfied if
the lattice distributions F and G have the same defining distance, so the same distance
between neighbouring points in their respective supports. For counting distributions like
the binomial, Poisson or geometric distribution, this distance is equal to 1. For these
distributions, F ≤disc

disp G holds if (7.5) is fulfilled.

Example 7.7a) is particularly simple because the two pmf’s are constant on their supports.
This somewhat hides the fact that the order ≤disc

disp does not require that all values of f are
compared with all values of g; only the comparison between specific pairs of values are relevant.
Formulated with respect to the cdf’s F and G, the values to be compared are the heights of
their jumps. However, the pairs of jumps to be compared are decided upon by the values of
the cdf’s, so the sum of all jumps up to that point. In the following, we introduce a relation
that specifies which pairs of jumps have to be compared for any pair of purposive discrete
distributions.

Definition 7.8. Let F, G ∈ D0. Then, the relation
F,G

⇋ on the set A × B is defined by

a
F,G

⇋ b ⇔ ∃r ∈ (0, 1) : F −1(r) = xa, G−1(r) = yb

for a ∈ A, b ∈ B. The set R(
F,G

⇋) of all (a, b) ∈ A × B with a
F,G

⇋ b is said to be the set of
(F, G)-dispersion-relevant pairs of indices.
If F and G are fixed, we write ⇋ instead of

F,G

⇋ .
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The definition of ⇋ is directly informed by Definition 7.6. To illustrate, consider the
following result.

Proposition 7.9. Let F, G ∈ D0 satisfy (7.3). Then, F ≤disc
disp G is equivalent to qb ≤ pa for

all (a, b) ∈ R(⇋).

Proof. The following chain of equivalences proves the assertion:

F ≤disc
disp G ⇔ g(G−1(r)) ≤ f(F −1(r)) ∀r ∈ (0, 1)

⇔ g(yb) ≤ f(xa) ∀(a, b) ∈ A × B such that

F −1(r) = xa, G−1(r) = yb for some r ∈ (0, 1)

⇔ g(yb) ≤ f(xa) ∀(a, b) ∈ R(⇋)

⇔ P(Y = yb) ≤ P(X = xa) ∀(a, b) ∈ R(⇋)

⇔ qb ≤ pa ∀(a, b) ∈ R(⇋)

The second equivalence holds due to the fact that range(F −1) = supp(F ) and range(G−1) =
supp(G).

Before putting this new relation to use on our simple example from before, we give an
equivalent characterization that is easier to handle.

Proposition 7.10. Let F, G ∈ D0. For a ∈ A, b ∈ B, we have

a ⇋ b ⇔ (F (xa−1), F (xa)) ∩ (G(yb−1), G(yb)) ̸= ∅.

Proof. Let (a, b) ∈ A × B. Then,

F −1(r) = xa ⇔ r ∈ (F (xa−1), F (xa)],

G−1(r) = yb ⇔ r ∈ (G(yb−1), G(yb)].

So the existence of an r ∈ (0, 1) such that F −1(r) = xa and G−1(r) = yb is equivalent to the
existence of an r ∈ (F (xa−1), F (xa)] ∩ (G(yb−1), G(yb)]. This, in turn, is equivalent to that
set being non-empty.

It remains to be shown that (c1, c2] ∩ (d1, d2] ̸= ∅ implies (c1, c2) ∩ (d1, d2) ̸= ∅ for
c1, c2, d1, d2 ∈ R with c1 < c2, d1 < d2. If that implication is not true, the four constants can
be chosen in such a way that ∅ ≠ (c1, c2] ∩ (d1, d2] ⊆ {c2, d2}. This, however, is contradicted
by the implication

c2 ∈ (c1, c2] ∩ (d1, d2] ⇒ c2 > d1 ∧ c2 ≤ d2

⇒ ∃ε > 0 : c2 − ε > d1 ∧ c2 − ε ≤ d2 ∧ c2 − ε > c1

⇒ ∃ε > 0 : c2 − ε ∈ (c1, c2] ∩ (d1, d2]



156 Chapter 7. Discrete Dispersive Orders

and the analogous implication

d2 ∈ (c1, c2] ∩ (d1, d2] ⇒ ∃ε > 0 : d2 − ε ∈ (c1, c2] ∩ (d1, d2].

Proposition 7.10 states that every pair (a, b) ∈ R(⇋) is associated with a non-empty interval
subset of the unit interval. We define

r(a,b) = λ1((F (xa−1), F (xa)) ∩ (G(yb−1), G(yb))
)

(7.6)

for all (a, b) ∈ A × B as the length of that interval. Note that, due to Proposition 7.10,
r(a,b) > 0 is equivalent to a ⇋ b.

Moreover, there exists a union N of at most countably many atoms in (0, 1) such that

N ∪
⋃

(a,b)∈R(⇋)
(F (xa−1), F (xa)) ∩ (G(yb−1), G(yb)) = (0, 1),

with all of the unions on the left hand side being disjoint. Specifically, N = F (DF ) ∪ G(DG).
For any two pairs (a, b), (α, β) ∈ R(⇋), we say that (α, β) is higher (lower) than (a, b) if γ > c

(γ < c) holds for all γ ∈ (F (xα−1), F (xα)) ∩ (G(yβ−1), G(yβ)) and all c ∈ (F (xa−1), F (xa)) ∩
(G(yb−1), G(yb)). One of these two situations is guaranteed to hold since the interval associated
with (a, b) and the interval associated with (α, β) are disjoint.

Example 7.11. a) We revisit Example 7.7a) in order to explore the relation ⇋. The
indexing sets A and B of F and G are equal to their supports. The identifying sequences
are given by (j, 1

2)j∈{1,2} and (j, 1
5)j∈{1,...,5}, respectively. We now go through the

elements of A one by one, starting with a = 1, which yields

a ⇋ b ⇔ (F (xa−1), F (xa)) ∩ (G(yb−1), G(yb)) ̸= ∅

⇔ (0, 1
2) ∩ ( b−1

5 , b
5) ̸= ∅

⇔ b ∈ {1, 2, 3}

for b ∈ B. Similarly, for a = 2, we obtain

a ⇋ b ⇔ (1
2 , 1) ∩ ( b−1

5 , b
5) ̸= ∅

⇔ b ∈ {3, 4, 5}

for b ∈ B. Since A = {1, 2}, it follows from Proposition 7.10 that

R(⇋) = {(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (2, 5)}.
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This is depicted using the cdf’s in the left panel of Figure 7.1, which is very similar to
the lower left panel of Figure 6.3. In fact, the same jumps have the same colour on
them, the colouring is simply extended to the entire heights of the jumps in Figure 7.1.
In Figure 6.3, the colours in the cdf’s are associated with the Q-Q-plot in the panel
above. This is representative of another characterization of the order ⇋: a ⇋ b holds, if
and only if the point (xa, yb) is part of the corresponding Q-Q-plot. Both formulations
mean that the the same piece of probability mass lies on the point xa in F and on the
point yb in G.
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Figure 7.1.: Visualization of Example 7.11a) in the left panel and of Example 7.11b) in the
right panel. The pairs of jumps, of which the heights are to be compared (and
which are therefore connected by the relation ⇋), are marked with the same
colour.

b) Because of the simple structure of the cdf’s in part a), they are not instructive for
exploring the connection of the relation ⇋ to the discrete dispersion order ≤disc

disp given
in Proposition 7.9. Therefore, we also consider the following pair of cdf’s. Let X ∼ F

and Y ∼ G be defined by

P(X = 1) = 1
4 , P(X = 2) = 3

4 ,

P(Y = 1) = 1
8 , P(Y = 2) = 1

4 , P(Y = 3) = 5
8 .

Note that F, G ∈ LD ⊆ D0 with the same defining distance 1; therefore, condition
(7.3) is satisfied. Once again, the indexing sets A and B of F and G are given by
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their supports. As mentioned ahead of Example 7.11, the sets (0, 1) \ F (DF ) and
(0, 1) \ G(DG) are disjoint unions of intervals of the form (F (xa−1), F (xa)), a ∈ A, and
(G(yb−1), G(yb)), b ∈ B, respectively. Specifically,

(0, 1) \ F (DF ) = (0, 1
4) ∪ (1

4 , 1),

(0, 1) \ G(DG) = (0, 1
8) ∪ (1

8 , 3
8) ∪ (3

8 , 1).

By considering whether the pairwise intersections of these intervals are empty or not,
we obtain

R(⇋) = {(1, 1), (1, 2), (2, 2), (2, 3)}

(see right panel of Figure 7.1). Going back to the definition of F and G, it is obvious that
the first jump of F is at least as high as the first two jumps of G and the second jump
of F is higher than the last two jumps of G. By Proposition 7.9, this yields F ≤disc

disp G.
Note that the third jump of G (height 5

8) is higher than the first jump of F (height 1
4),

represented by the pair (1, 3) ∈ A × B of indices. However, because the jumps do not
overlap, (1, 3) /∈ R(⇋), i.e. the comparison is not relevant to the discrete dispersion
order.

Example 7.11b) shows that requirement (7.5) of the order ≤disc
disp compares the jump heights

of the two involved distributions pointwise as opposed to uniformly. The original dispersion
order ≤disp also compares in an pointwise manner as it just compares the gradient of the
quantile functions at every point in the unit interval. The comparison of the gradient of F −1

at one point to the gradient of G−1 at another point is irrelevant. The meaning of pointwise
comparisons is less obvious in a discrete setting, but as explained above, two jumps are to be
compared if they overlap. As mentioned in Example 7.11a), this occurs, if and only if a point
connecting the two jumps is part of the Q-Q-plot, which means that the two points share a
common piece of probability mass among them. This is different from a uniform comparison
since there are pairs of jumps, whose comparison is irrelevant, just like in the continuous
setting.

With the very strict requirement (7.3), the discrete order ≤disc
disp seems to work fine. However,

without this requirement, the order is not sufficient to capture all relevant aspects of dispersion.
Specifically, the requirement (7.5) only looks at the distribution of the probability mass on
the respective support, but not at the structure of that support, which explains the nature of
the additional requirement (7.3). A simple example, in which (7.5) alone is not sufficient, is
Example 7.5a), where F, G ∈ Ent(n) for some n ∈ N≥2. There, the pmf’s of both distributions
are constantly equal on their respective supports and therefore, the difference in dispersion
depends solely on the structure of the support.

Now, we want to obtain a weaker dispersion order than ≤disc
disp for arbitrary cdf’s F, G ∈ D0

by maintaining the condition (7.5) for how the probability mass is distributed on the support



7.1. Derivation of Discrete Dispersive Orders 159

and weakening the condition (7.3) for how the support is structured. The first condition, i.e.

g(G−1(r)) ≤ f(F −1(r)) ∀r ∈ (0, 1),

can be applied to pairs of cdf’s not satisfying condition (7.3). In the general setting, the
condition is still well-defined and meaningful. While this is also true for condition (7.3), it is
not pointwise, but uniform in nature. A pointwise requirement on the supports of F, G ∈ D0

is given in the equivalent characterization of F ≤disp G in Proposition 7.4 by

λ1(F −1({r})) ≤ λ1(G−1({r})) ∀r ∈ F (DF ). (7.7)

This, however, is not a sensible condition, if the additional requirement F (DF ) ⊆ G(DG) is
not satisfied. To this end, assume that there exists an r0 ∈ F (DF ) \ G(DG) and that (7.7)
holds. This yields

0 < λ1(F −1({r0})) ≤ λ1(G−1({r0})) = 0,

a contradiction. Thus, a modification of condition (7.7) for arbitrary cdf’s F, G ∈ D0 is needed.
If the ranges of F and G do not satisfy F (DF ) ⊆ G(DG), it is reasonable to once again
utilize the relation ⇋ as an indicator for which comparisons are relevant. The subject of the
comparison is (in (7.7) as well as in (7.3)) the distance, over which the cdf’s equal one specific
value. So the condition is given by

xa − xa−1 ≤ yb − yb−1

for whichever pairs (a, b) ∈ A × B of indices are to be compared, but generally not for all
possible pairs. However, since we compare the constant intervals between two jumps and ⇋

relates two jumps to each other, requiring the comparison for all (a, b) ∈ R(⇋) results in
some unreasonable asymmetries. This is exemplified and visualized in the following.

Example 7.12. a) Let F, G ∈ D0. Furthermore, let A = {1, 2, 3}, B = {1, 2, 3, 4} and let
pj = 1

3 for all j ∈ A and qj = 1
4 for all j ∈ B. The set R(⇋) is given by

R(⇋) = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4)} =
⋃

a∈A

{(a, a), (a, a + 1)}.

For the given cdf’s, we have min A = min B = 1, implying x0 = y0 = −∞. Since the
quantities to be compared are xa − xa−1 and yb − yb−1, this leads to a problem in the
case that either a or b are equal to 1. Then, both of the above quantities are infinite
and graphically, we would not compare the length of a constant interval between to
jumps but rather the length of the constant interval before all jumps. Since this is not a
sensible procedure, we instead require

xa − xa−1 ≤ yb − yb−1 ∀(a, b) ∈ R(⇋) ∩ ((A \ {min A}) × (B \ {min B})) . (7.8)
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The remaining pairs of indices to be compared are (2, 2), (2, 3), (3, 3) and (3, 4). Similarly
to Example 7.11, the constant intervals to be compared are illustrated in the left panel
of Figure 7.2 along with the cdf’s. In this example, this seems to be a sensible choice.
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Figure 7.2.: Visualization of Example 7.12a) in the left panel and of Example 7.12b) in the
right panel. The pairs of constant intervals, of which the lengths are deemed to
be compared by ⇋, are marked with the same colour.

b) Let F be defined as in part a) and let G ∈ D0 be defined by B = {1, . . . , 8} and

(q1, . . . , q8)⊤ = 1
16 (4, 1, 1, 2, 2, 1, 1, 4)⊤ ,

yielding
F (DF ) =

{1
3 ,

2
3

}
, G(DG) =

{ 4
16 ,

5
16 ,

6
16 ,

8
16 ,

10
16 ,

11
16 ,

12
16

}
.

Considering 5
16 < 1

3 < 6
16 and 10

16 < 2
3 < 11

16 , we obtain

R(⇋) = {(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (2, 6), (3, 6), (3, 7), (3, 8)}.

Once again, we disregard the first three pairs for the comparisons of the constant
intervals. The comparisons of the remaining pairs are illustrated in the right panel of
Figure 7.2. Here, it becomes apparent that the relation ⇋ is not fit to decide which
pairs of constant intervals are to be compared with respect to their lengths. In spite of
the obvious symmetry of both F and G, their comparison is highly asymmetric. This is
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evidenced by the pairs of indices (2, 2), (3, 8) ∈ (A \ {min A}) × (B \ {min B}), which
are symmetric, but satisfy (3, 8) ∈ R(⇋) ̸∋ (2, 2). An analogous statement is true for
the pairs (3, 3), (2, 5) and the pairs (2, 4), (3, 4).

In Example 7.12b), the constant interval of F we identified with the index a ∈ A \ {min A}
had the length xa −xa−1 and is the interval between the (a−1)-th and the a-th jump of the cdf.
Therefore, it is just as reasonable to identify this interval with the index a − 1 ∈ A \ {max A}
instead of a. So, an alternative method of comparing the lengths of the pairs of constant
intervals of F and G would be

xa+1 − xa ≤ yb+1 − yb ∀(a, b) ∈ R(⇋) ∩ ((A \ {max A}) × (B \ {max B})) . (7.9)

The resulting illustration for this type of comparison in Example 7.12a) is the same as
in the left panel of Figure 7.2. However, the asymmetries in the resulting illustration for
Example 7.12b) are reversed. This relationship is formalized and generalized by the following
proposition.

Proposition 7.13. Let F, G ∈ D0. Define the ’mirrored’ cdf’s F ∗(t) = 1 − F (−t), G∗(t) =
1 − G(−t) for t ∈ R with F ∗ =̂ (A∗, (x∗

j , p∗
j )j∈A∗) and G∗ =̂ (B∗, (y∗

j , q∗
j )j∈B∗). Furthermore,

introduce the short hand ⇋∗ for the relation
F ∗,G∗

⇋ . Then, the following two statements are
equivalent:

(i) xa − xa−1 ≤ yb − yb−1 ∀(a, b) ∈ R(⇋) ∩ ((A \ {min A}) × (B \ {min B})),

(ii) x∗
a∗+1 − x∗

a∗ ≤ y∗
b∗+1 − y∗

b∗ ∀(a∗, b∗) ∈ R(⇋∗) ∩ ((A∗ \ {max A∗}) × (B∗ \ {max B∗})).

Proof. The existence of min(supp(F )) and therefore of min(A) is equivalent to the existence
of max(A∗) with an analogous statement being true for max(A) and min(A∗). Examining the
proof of Proposition 7.3 yields the following relationships between A and A∗:

A = A∗ if A /∈ {N, −N}, A = −A∗ if A ∈ {N, −N}.

Additionally, supp(F ) and supp(F ∗) contain the same elements, only with reversed sign. In
the case A = {1, . . . , n} for some n ∈ N≥2, we define a∗ = n+1−a, which yields xa = −x∗

a∗ for
any a ∈ A = A∗. Since a > 1 = min A, it follows that a∗ = n + 1 − a < n = max A = max A∗,
and we obtain that, for any a ∈ A \ {min A}, there exists an a∗ ∈ A∗ \ {max A∗} such that

xa − xa−1 = x∗
a∗+1 − x∗

a∗ . (7.10)

The cases A = N and A = −N also yield (7.10), if we define a∗ = −a ∈ A∗ \ {max A∗} for all
a ∈ A \ {min A}; the case A = Z yields (7.10), if we define a∗ = −a − 1 ∈ A∗ for all a ∈ A.
Analogous identities are true for G.
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It remains to be shown that for all (a, b) ∈ (A \ {min A}) × (B \ {min B}) and (a∗, b∗) ∈
(A∗ \ {max A∗}) × (B∗ \ {max B∗}), the statement a ⇋ b is equivalent to a∗ ⇋∗ b∗. To this
end, consider

a ⇋ b ⇔ (F (xa−1), F (xa)) ∩ (G(yb−1), G(yb)) ̸= ∅

⇔ 1 − (F ∗(−xa−1), F ∗(−xa)) ∩ 1 − (G∗(−yb−1), G∗(−yb)) ̸= ∅

⇔ (F ∗(−xa), F ∗(−xa−1)) ∩ (G∗(−yb), G∗(−yb−1)) ̸= ∅

⇔ (F ∗(x∗
a∗), F ∗(x∗

a∗+1)) ∩ (G∗(y∗
b∗), G∗(y∗

b∗+1)) ̸= ∅

⇔ a∗ ⇋∗ b∗,

thus concluding the proof.

Note that the proof of this proposition even specifies which pairs of indices are connected
through the equivalence

xa − xa−1 ≤ yb − yb−1 ⇔ x∗
a∗+1 − x∗

a∗ ≤ y∗
b∗+1 − y∗

b∗ .

Hence, we know that the comparisons via (7.8) and via (7.9) both yield asymmetric results
in a perfectly mirrored way. A possible strategy for obtaining a symmetric comparison is to
combine the two methods in such a way that the asymmetries cancel out. There are two
intuitive possibilities for this combination. They can either be combined via a logical and
(∧) or via a logical or (∨). In the following, both possibilities are explored. We start by
defining two new relations that indicate the pairs of constant intervals to be compared for both
proposed methods. For any indexing set A ∈ I, we introduce the short hands A = A\{min A},
A = A \ {max A} and A = A \ {min A, max A}.

Definition 7.14. Let F, G ∈ D0.

a) The relation
F,G

⇋∧ on the set A × B is defined by

a
F,G

⇋∧ b ⇔ (a
F,G

⇋ b) ∧ (a − 1
F,G

⇋ b − 1)

for a ∈ A, b ∈ B. The set R(
F,G

⇋∧) of all (a, b) ∈ A × B with a
F,G

⇋∧ b is said to be the set
of (F, G)-∧-dispersion-relevant pairs of indices.

b) The relation
F,G

⇋∨ on the set A × B is defined by

a
F,G

⇋∨ b ⇔ (a
F,G

⇋ b) ∨ (a − 1
F,G

⇋ b − 1)

for a ∈ A, b ∈ B. The set R(
F,G

⇋∨) of all (a, b) ∈ A × B with a
F,G

⇋∨ b is said to be the set
of (F, G)-∨-dispersion-relevant pairs of indices.

Definition 7.15. Let F, G ∈ D0.
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a) G is said to be at least as discretely dispersed as F with respect to the probability mass,
denoted by F ≤disc

D−pm G, if

qb ≤ pa ∀(a, b) ∈ R(⇋).

b) G is said to be at least as ∧-discretely dispersed as F with respect to the support, denoted
by F ≤∧−disc

D−supp G, if

xa − xa−1 ≤ yb − yb−1 ∀(a, b) ∈ R(⇋∧).

If F ≤disc
D−pm G and F ≤∧−disc

D−supp G hold, G is said to be at least as ∧-discretely dispersed
as F , denoted by F ≤∧−disc

disp G.

c) G is said to be at least as ∨-discretely dispersed as F with respect to the support, denoted
by F ≤∨−disc

D−supp G, if

xa − xa−1 ≤ yb − yb−1 ∀(a, b) ∈ R(⇋∨).

If F ≤disc
D−pm G and F ≤∨−disc

D−supp G hold, G is said to be at least as ∨-discretely dispersed
as F , denoted by F ≤∨−disc

disp G.

Obviously, the orders ≤disc
D−pm and ≤∧−disc

D−supp are a kind of split of the ∧-discrete dispersive
order, where the first ordering acts with respect to the y-axis or the probability mass and the
second ordering with respect to the x-axis or the support of the distribution. The same split
holds for the ∨-discrete dispersive order. Since a ⇋∨ b implies a ⇋∧ b for all (a, b) ∈ A × B,
we have R(⇋∧) ⊆ R(⇋∨). By Definition 7.15, this yields

F ≤∨−disc
disp G =⇒ F ≤∧−disc

disp G

for all F, G ∈ D0, i.e. ≤∧−disc
disp is a weakening of ≤∨−disc

disp . Next, the performance of both orders
is examined using the cdf’s from Example 7.12.

Example 7.16 (Continuation of Example 7.12). a) Consider the cdf’s F and G as defined
in Example 7.12a). Based on the set R(⇋), it follows that

R(⇋∧) = R(⇋∨) = {(2, 2), (2, 3), (3, 3), (3, 4)} = R(⇋) ∩ (A × B).

Hence, all four discussed discrete dispersion orders with respect to the support (≤∧−disc
D−supp,

≤∨−disc
D−supp, (7.8), and (7.9)) yield the same result for this simple example.

Since the pmf’s of F and G are both constant on their supports, we obviously have
F ≤disc

D−pm G. Hence, the validity of F ≤∧−disc
disp G and F ≤∨−disc

disp G depends solely on
four conditions concerning the vectors (x1, x2, x3) and (y1, y2, y3, y4), since |R(⇋∧)| =
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|R(⇋∨)| = 4. To be exact,

F ≤∧−disc
disp G ⇔ F ≤∨−disc

disp G ⇔ x2 − x1 ≤ y2 − y1, x2 − x1 ≤ y3 − y2,

x3 − x2 ≤ y3 − y2, x3 − x2 ≤ y4 − y3.

b) Consider the cdf’s F and G as defined in Example 7.12b). From the set R(⇋) given in
that example, we infer

R(⇋∧) = {(2, 3), (2, 4), (3, 6), (3, 7)},

R(⇋∨) = {(2, 2), (2, 3), (2, 4), (3, 4), (2, 5), (3, 5), (2, 6), (3, 6), (3, 7), (3, 8)}.
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Figure 7.3.: Visualization of Example 7.16b). The pairs of constant intervals, of which the
lengths are to be compared with respect to ⇋∧ (in the left panel) and ⇋∨ (in
the right panel), are marked with the same colour.

The difference in the number of comparisons dictated by ⇋∧ (|R(⇋∧)| = 4) and ⇋∨

(|R(⇋∨)| = 10) is quite large. Examining the structure of both sets suggests that there
is a connection between |R(⇋∧)|, i.e. the number of ∧-comparisons, and |A|, i.e. the
cardinal number of the indexing set of F , the candidate for the less dispersed cdf. For
each element in the latter set, there are two elements in the former set. As depicted
in the left panel of Figure 7.3, the length of every constant interval of F is compared
with the lengths of the two closest constant intervals of G, one from above and one
from below. Since, in this example, B is much larger than A, the constant intervals
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of G connected to the indices 2, 5, 8 ∈ B are not used for any comparison. Hence, the
statement F ≤∧−disc

disp G is completely independent from their lengths. One might say
that the pointwise nature of the comparison via ≤∧−disc

D−supp is dictated by F .

A similar connection can be observed between |R(⇋∨)| and |B|, i.e. the cardinal number
of the indexing set of G, the candidate for the more dispersed cdf. Graphically, this
means that every constant interval of G is compared with the lengths of the closest
constant intervals of F from above and below, provided that the respective intervals
exist. Hence, the pointwise comparison via ≤∨−disc

D−supp seems to be dictated by G.

One might also use this example in combination with part a) to demonstrate that the
order ≤∧−disc

disp already tends to be quite strong, similarly to the fact that ≤disp is a quite
strong order in the continuous setting. To illustrate, let

cx = x2 − x1 = x3 − x2,

cy = y3 − y2 = y4 − y3 = y6 − y5 = y7 − y6

δ = y2 − y1 = y5 − y4 = y8 − y7.

Then, F ≤∧−disc
disp G is equivalent to cx ≥ cy with the value of δ being irrelevant. However,

for δ ≥ cx and cy → 0, the example in part b) turns into the example in part a) with
F, G ∈ LD, cx the defining distance of F and δ the defining distance of G. So in the
limiting case cy → 0, we have F ≤∧−disc

disp G, yet not if we approach that case with some
cy ∈ (0, cx). An approach to solve this inconsistency is presented in Section 8.1.

As noted in Example 7.16, one gets the impression that the pointwise comparisons of
≤∧−disc

disp are dictated by the candidate for the less dispersed cdf F and that the pointwise
comparisons of ≤∨−disc

disp are dictated by the candidate for the more dispersed cdf G. The
following proposition formalizes and generalizes this idea. Preliminarily, we define the set of
(upper and lower) nearest neighbours and prove a helpful lemma.

Definition 7.17. Let F, G ∈ D0 and let a ∈ A. Then, the set of (upper and lower) nearest
neighbours of F in G with respect to a (denoted by NNG

F (a)) is defined as follows.

(i) If G(DG) ∩ (0, F (xa−1)] ̸= ∅ and G(DG) ∩ [F (xa−1), 1) ̸= ∅, define

NNG
F (a) = {sup (G(DG) ∩ (0, F (xa−1)]) , inf (G(DG) ∩ [F (xa−1), 1))} .

(ii) If G(DG) ∩ (0, F (xa−1)] = ∅ and G(DG) ∩ [F (xa−1), 1) ̸= ∅, define

NNG
F (a) = {inf (G(DG) ∩ [F (xa−1), 1))} .
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(iii) If G(DG) ∩ (0, F (xa−1)] ̸= ∅ and G(DG) ∩ [F (xa−1), 1) = ∅, define

NNG
F (a) = {sup (G(DG) ∩ (0, F (xa−1)])} .

Here, it is impossible that both sets are empty since this would imply ∅ = G(DG) ∩ (0, 1) =
G(DG) and thus |supp(G)| = 1, which contradicts G ∈ D0. Furthermore, note that F (xa−1)
is the value that F takes on the interval [xa−1, xa), which is generally associated with the
index a.

Lemma 7.18. Let F, G ∈ D0 satisfy F ≤disc
D−pm G.

a) Let a ∈ A. Then, exactly one of the following two statements holds:

(i) ∃b ∈ B : F (xa−1) < G(yb) < F (xa),

(ii) ∃b ∈ B : F (xa−1) = G(yb−1) and F (xa) = G(yb).

b) For all a ∈ A, there exist b1, b2 ∈ B such that G(yb1) ≤ F (xa) ≤ G(yb2) holds.

Proof. a) We prove the equivalence ¬(i) ⇔ (ii). Note that ¬(i) is equivalent to G(DG) ∩
(F (xa−1), F (xa)) = ∅.

’⇐’: It follows that (F (xa−1), F (xa)) ∩ G(DG) = (G(yb−1), G(yb)) ∩ G(DG) = ∅.

’⇒’: We start by proving that there exists a bu ∈ B such that G(ybu) ≥ F (xa). If
F (xa) < 1, this follows directly from the fact that sup G(supp(G)) = 1. If
F (xa) = 1, sup G(supp(G)) = 1 also implies max G(supp(G)) = 1 since, otherwise,
limβ→∞ G(yβ) − G(yβ−1) = 0 < 1 − F (xa−1) = F (xa) − F (xa−1) along with
limβ→∞ G(yβ) = 1 would contradict F ≤disc

D−pm G. Obviously, there also exists a
bℓ ∈ B ∪ {min B − 1} such that G(ybℓ

) ≤ F (xa−1).

Now, define b ∈ B by G(yb) = min(G(supp(G)) ∩ [F (xa), 1]) ≤ G(ybu), yielding
a ⇋ b. By assumption G(yb−1) ≤ F (xa−1) < F (xa) ≤ G(yb) holds and it follows
that qb ≥ pa. Equality holds, if and only if G(yb−1) = F (xa−1) and G(yb) = F (xa),
which corresponds to (ii). If equality does not hold, F ≤disc

D−pm G is contradicted.

b) Let a ∈ A. The assertion follows by applying part a) to both a and a + 1 ∈ A, and by
considering all four arising cases separately.

The following chain of inequalities follows directly from Lemma 7.18:

inf G(DG) ≤ inf F (DF ) ≤ sup F (DF ) ≤ sup G(DG).

Proposition 7.19. Let F, G ∈ D0 satisfy F ≤disc
D−pm G. Then,

a) R(⇋∧) = ⋃
a∈A

(
{a} × {β ∈ B : G(yβ−1) ∈ NNG

F (a)}
)
,
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b) R(⇋∨) = ⋃
b∈B

(
{α ∈ A : F (xα−1) ∈ NNF

G(b)} × {b}
)
.

Proof. a) First, note that, for all a ∈ A, it follows from Lemma 7.18b) that G(DG) ∩
(0, F (xa−1)] ̸= ∅ and G(DG) ∩ [F (xa−1), 1) ̸= ∅. Thus,

NNG
F (a) = {sup (G(DG) ∩ (0, F (xa−1)]) , inf (G(DG) ∩ [F (xa−1), 1))} .

Because of sup G(supp(G)) = 1 and F (xa−1) < 1, there exists a b ∈ B such that
F (xa−1) ∈ [G(yb−1), G(yb)). It follows that

sup(G(DG) ∩ (0, F (xa−1)]) = max(G(DG) ∩ (0, F (xa−1)])

and, analogously,

inf(G(DG) ∩ [F (xa−1), 1)) = min(G(DG) ∩ [F (xa−1), 1)).

’⊇’: Let a ∈ A. Now b−1 ∈ B (or b ∈ B) is defined uniquely by G(yb−1) = max(G(DG)∩
(0, F (xa−1)]). If follows that G(yb−1) ≤ F (xa−1) < G(yb) and thus, a ⇋ b. The
case G(yb−1) = F (xa−1) is equivalent to

min(G(DG) ∩ [F (xa−1), 1)) = max(G(DG) ∩ (0, F (xa−1)]) = F (xa−1).

Then, there exists an ε > 0 such that

(F (xa−2), F (xa−1)) ∋ F (xa−1) − ε = G(yb−1) − ε ∈ (G(yb−2), G(yb−1)), (7.11)

(F (xa−1), F (xa)) ∋ F (xa−1) + ε = G(yb−1) + ε ∈ (G(yb−1), G(yb)), (7.12)

thus yielding a ⇋∧ b. The case G(yb−1) < F (xa−1) remains to be considered. It
immediately follows that a − 1 ⇋ b. This, combined with a ⇋ b, yields

G(yb) − G(yb−1) ≤ F (xa−1) − F (xa−2), G(yb) − G(yb−1) ≤ F (xa) − F (xa−1)

=⇒ F (xa−2) < G(yb−1) < F (xa−1) < G(yb) < F (xa).

It follows that a − 1 ⇋ b − 1 and a ⇋ b + 1, thus, a ⇋∧ b and a ⇋∧ b + 1. Since
G(y(b+1)−1) = G(yb) = min(G(DG) ∩ [F (xa−1), 1)), this concludes the proof of the
implication from right to left.

’⊆’: Let (a, b) ∈ R(⇋∧) ⊆ A × B.

Case 1: G(yb−1) > F (xa−1)
Under this assumption, Lemma 7.18 states that b − 1 > min B. From a −
1 ⇋ b − 1, we then obtain G(yb−2) < F (xa−1). Consequently, G(yb−1) =
min(G(DG) ∩ [F (xa−1), 1)) ∈ NNG

F (a).
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Case 2: G(yb−1) < F (xa−1)
Similarly to Case 1, we have a ⇋ b, which yields G(yb) > F (xa−1) and
G(yb−1) = max(G(DG) ∩ (0, F (xa−1)]) ∈ NNG

F (a).

Case 3: G(yb−1) = F (xa−1)
It immediately follows that

G(yb−1) = min(G(DG) ∩ [F (xa−1), 1))

= max(G(DG) ∩ (0, F (xa−1)]) ∈ NNG
F (a).

b) ’⊇’: Let b ∈ B. Assume first F (DF ) ∩ [G(yb−1), 1) ̸= ∅. Then, with analogous reasoning
to part a), there exists an a ∈ A such that

F (xa−1) = inf(F (DF ) ∩ [G(yb−1), 1)) = min(F (DF ) ∩ [G(yb−1), 1)).

It follows that F (xa−1) ≥ G(yb−1) > F (xa−2), where it is possible that a − 1 =
min A and therefore, F (xa−2) = 0. Nonetheless, we obtain a − 1 ⇋ b − 1 and thus,
a ⇋∨ b.

Now we assume F (DF ) ∩ (0, G(yb−1)] ̸= ∅ (which can occur simultaneously to
F (DF ) ∩ [G(yb−1), 1) ̸= ∅). Again analogously to part a), there exists an a ∈ A

such that

F (xa−1) = sup(F (DF ) ∩ (0, G(yb−1)]) = max(F (DF ) ∩ (0, G(yb−1)]).

We now infer F (xa−1) ≤ G(yb−1) < F (xa), yielding a ⇋ b and thereby a ⇋∨ b.

’⊆’: Let (a, b) ∈ R(⇋∨) ⊆ A × B.

Case 1: F (xa−1) < G(yb−1)
If a − 1 ⇋ b − 1, it follows G(yb−2) < F (xa−1), which then yields a ⇋ b − 1.
We obtain

F (xa) = F (xa−1) + pa ≥ F (xa−1) + qb−1 > G(yb−2) + qb−1 = G(yb−1).

If a ⇋ b, it follows directly that F (xa) > G(yb−1). Since a ⇋∨ b implies a ⇋ b

or a − 1 ⇋ b − 1, the inequality F (xa) > G(yb−1) holds generally. It yields
F (xa−1) = max(F (DF ) ∩ (0, G(yb−1)]) ∈ NNF

G(b).

Case 2: F (xa−1) > G(yb−1)
If a ⇋ b, it follows G(yb) > F (xa−1), which then yields a − 1 ⇋ b. We obtain

F (xa−2) = F (xa−1) − pa−1 ≤ F (xa−1) − qb < G(yb) − qb = G(yb−1).
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If a − 1 ⇋ b − 1, it follows directly that F (xa−2) < G(yb−1). Thus, the
implication F (xa−1) = min(F (DF ) ∩ [G(yb−1), 1)) ∈ NNF

G(b) generally holds.

Case 3: F (xa−1) = G(yb−1)
Similarly to part a), it immediately follows that

F (xa−1) = min(F (DF ) ∩ [G(yb−1), 1))

= max(F (DF ) ∩ (0, G(yb−1)]) ∈ NNF
G(b).

Since Proposition 7.19 provides a new way of determining which pairs of indices are to be
compared, it implicitly also provides new characterizations of the orders ≤∧−disc

D−supp and ≤∨−disc
D−supp.

Therefore, let F, G ∈ D0 satisfy F ≤disc
D−pm G. For ≤∧−disc

D−supp, this new characterization is then
given by

F ≤∧−disc
D−supp G ⇐⇒ xa − xa−1 ≤ yb − yb−1 ∀(a, b) ∈ R(⇋∧)

⇐⇒ λ1(F −1({F (xa−1)})) ≤ λ1(G−1({G(yb−1)})) ∀(a, b) ∈ R(⇋∧)

⇐⇒ λ1(F −1({F (xa−1)})) ≤ λ1(G−1({q})) ∀q ∈ NNG
F (a) ∀a ∈ A

⇐⇒ λ1(F −1({p})) ≤ λ1(G−1({sup(G(DG) ∩ (0, p])})) and

λ1(F −1({p})) ≤ λ1(G−1({inf(G(DG) ∩ [p, 1))})) ∀p ∈ F (DF ). (7.13)

The third equivalence is true because of Proposition 7.19a). The last equivalence is true
because of the first preliminary of the proof of said proposition, which states that

NNG
F (a) = {sup (G(DG) ∩ (0, F (xa−1)]) , inf (G(DG) ∩ [F (xa−1), 1))}

holds for all a ∈ A, if F ≤disc
D−pm G. The new characterization of ≤∨−disc

D−supp is similarly given by

F ≤∨−disc
D−supp G ⇐⇒ xa − xa−1 ≤ yb − yb−1 ∀(a, b) ∈ R(⇋∨)

⇐⇒ λ1(F −1({F (xa−1)})) ≤ λ1(G−1({G(yb−1)})) ∀(a, b) ∈ R(⇋∨)

⇐⇒ λ1(F −1({p})) ≤ λ1(G−1({G(yb−1)})) ∀p ∈ NNF
G(b) ∀b ∈ B

⇐⇒ ∀q ∈ G(DG) :

λ1(F −1({sup(F (DF ) ∩ (0, q])})) ≤ λ1(G−1({q})), if F (DF ) ∩ (0, q] ̸= ∅, and

λ1(F −1({inf(F (DF ) ∩ [p, 1))})) ≤ λ1(G−1({q})), if F (DF ) ∩ [q, 1) ̸= ∅. (7.14)

These equivalent characterizations (7.13) and (7.14) further strengthen the heuristic idea that
≤∧−disc

D−supp (and thereby ≤∧−disc
disp ) employs a pairwise comparison with respect to F whereas

≤∨−disc
D−supp (and thereby ≤∨−disc

disp ) employs a pairwise comparison with respect to G. Since
Lemma 7.18 states that G(DG) partitions the interval (0, 1) in a finer way than F (DF ), this
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also provides a heuristic explanation of why ≤∧−disc
D−supp is a weakening of ≤∨−disc

D−supp.

We now come back to Example 7.16 in order to further explain the meaning of Proposition
7.19 and to show that it coincides with our hypothesis based on the example.

Example 7.20 (Continuation of Example 7.16). a) Consider Example 7.16a) with A =
{1, 2, 3} and B = {1, 2, 3, 4}. The sets on the right sides of the identities in Proposition
7.19 are given by

⋃
a∈A

(
{a} × {β ∈ B : G(yβ−1) ∈ NNG

F (a)}
)

= {(2, 2), (2, 3)} ∪ {(3, 3), (3, 4)},

⋃
b∈B

(
{α ∈ A : F (xα−1) ∈ NNF

G(b)} × {b}
)

= {(2, 2)} ∪ {(2, 3), (3, 3)} ∪ {(3, 4)}.

Note that the two sets are equal (as expected by combining the results of Example
7.16a) and Proposition 7.19) in spite of the differing cardinal numbers |A| = 2 and
|B| = 3. This can be explained as follows: because of F ≤disc

D−pm G, the proof of
Proposition 7.19a) states that | NNG

F (a)| = 2 holds for all a ∈ A with F (xa−1) /∈ G(DG).
However, this is not true if the roles of F and G are reversed. In our specific example,
| NNF

G(2)| = | NNF
G(4)| = 1 since the constant intervals of G with indices 2, 4 ∈ B are

smaller / larger than every element of F (DF ).

b) In Example 7.16b), we have A = {1, 2, 3} and B = {1, . . . , 8} and the sets from
Proposition 7.19 are given by

⋃
a∈A

(
{a} × {β ∈ B : G(yβ−1) ∈ NNG

F (a)}
)

= {(2, 3), (2, 4)} ∪ {(3, 6), (3, 7)},

⋃
b∈B

(
{α ∈ A : F (xα−1) ∈ NNF

G(b)} × {b}
)

= {(2, 2)} ∪ {(2, 3)}

∪
⋃

b∈{4,5,6}
{(2, b), (3, b)} ∪ {(3, 7)} ∪ {(3, 8)}.

As postulated by Proposition 7.19, the first set is equal to R(⇋∧) and the second one is
equal to R(⇋∨). Since the sets F (DF ) and G(DG) do not share any elements, we have
| NNG

F (2)| = | NNG
F (3)| = 2. For the set R(⇋∨), we have G(DG) ∩ (0, min F (DF )] =

{1
4 , 5

16} = {G(y1), G(y2)}. Therefore, F (DF ) ∩ (0, G(y1)] = ∅ = F (DF ) ∩ (0, G(y2)]
and | NNF

G(2)| = | NNF
G(3)| = 1. This means that ≤∨−disc

D−supp compares the first and
second constant interval of G (connected to the indices 2, 3 ∈ B) each to one constant
interval of F and not two. Similarly, because of G(DG) ∩ [max F (DF ), 1) = {11

16 , 3
4} =

{G(y6), G(y7)}, the constant intervals of G connected to the indices 7, 8 ∈ B are also
each compared to only one constant interval of F by ≤∨−disc

D−supp.
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7.2. First Properties of the Discrete Dispersive Orders

It would be desirable for a discrete generalization of the dispersive order to satisfy two main
properties. First, it should bridge the gap between the dispersive order ≤disp in the discrete
setting (so for F (DF ) ⊆ G(DG)) and the discrete dispersive order ≤disc

disp defined in Definition
7.6. Ideally, this means that the new discrete order is equivalent to ≤disp and ≤disc

disp on
their respective areas of applicability. The second desirable main property is that a discrete
dispersive order should be reflexive and transitive. We start by proving the following result
concerning the first property.

Theorem 7.21. Let F, G ∈ D0.

a) If condition (7.3) is satisfied, then

F ≤disc
disp G ⇐⇒ F ≤∧−disc

disp G ⇐⇒ F ≤∨−disc
disp G.

b) If F (DF ) ⊆ G(DG), then

F ≤∨−disc
disp G =⇒ F ≤∧−disc

disp G ⇐⇒ F ≤disp G.

Proof. a) Proposition 7.9 states that F ≤disc
disp G is equivalent to F ≤disc

D−pm G and (7.3).
Therefore, by Definition 7.15, it only remains to be shown that condition (7.3) already
implies F ≤∨−disc

D−supp G, which, in turn, implies F ≤∧−disc
D−supp G. The central inequality to

be satisfied is the same in all three conditions and is given by xa −xa−1 ≤ yb −yb−1. The
only difference lies in the required supports of that inequality, i.e. the pairs of indices
(a, b), for which it is required to hold. This support is given by A × B for condition
(7.3), by R(⇋∨) for F ≤∨−disc

D−supp G and by R(⇋∧) for F ≤∧−disc
D−supp G. The assertion now

follows from the chain of inclusions R(⇋∧) ⊆ R(⇋∨) ⊆ A × B.

b) Since the implication holds in a more general setting, only the equivalence must be
proven.

We start out by proving that F (DF ) ⊆ G(DG) already implies F ≤disc
D−pm G. To this

end, let (a, b) ∈ R(⇋), i.e.

(F (xa−1), F (xa)) ∩ (G(yb−1), G(yb)) ̸= ∅. (7.15)

By assumption, G(yb) > F (xa) implies F (xa) = G(yb−1) and G(yb−1) < F (xa−1) implies
F (xa−1) = G(yb), so both cases contradict (7.15). This yields

(G(yb−1), G(yb)) ⊆ (F (xa−1), F (xa)). (7.16)

Again by assumption, there exist bu ∈ B, bℓ ∈ B ∪ {−∞}, bℓ < bu such that F (xa) =
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G(ybu) and F (xa−1) = G(ybℓ
). By combining this with (7.16), we obtain b, b − 1 ∈

{bℓ, . . . , bu} or, equivalently, b ∈ {bℓ + 1, . . . , bu}. It follows

pa = F (xa) − F (xa−1) = G(ybu) − G(ybℓ
) =

bu∑
j=bℓ+1

qj ≥ qb,

thus proving F ≤disc
D−pm G.

It remains to be shown that F ≤disp G is equivalent to F ≤∧−disc
D−supp G. Note that

F (DF ) = F (supp(F )) \ {1} = F (supp(F ) \ {max(supp(F ))}) holds as well as the
analogous identity for G. The following equivalences hold:

F ≤disp G ⇔ λ1(F −1({r})) ≤ λ1(G−1({r})) ∀r ∈ F (DF )

⇔ λ1(F −1({F (x)})) ≤ λ1(G−1({G(y)}))

∀x ∈ supp(F ) \ {max(supp(F ))},

y ∈ supp(G) \ {max(supp(G))} : F (x) = G(y)

⇔ λ1(F −1({F (xa)})) ≤ λ1(G−1({G(yb)})) ∀a ∈ A, b ∈ B : F (xa) = G(yb)

⇔ λ1([xa, xa+1)) ≤ λ1([yb, yb+1)) ∀a ∈ A, b ∈ B : F (xa) = G(yb)

⇔ xa − xa−1 ≤ yb − yb−1 ∀a ∈ A, b ∈ B : F (xa−1) = G(yb−1),

where the first equivalence holds because of Proposition 7.4. Comparing the last
equivalent characterization with the definition of F ≤∧−disc

D−supp G yields, that only the
equivalence of F (xa−1) = G(yb−1) and a ⇋∧ b is left to prove for a ∈ A, b ∈ B. To this
end, we use Proposition 7.19a) to obtain that, since a ∈ A, a ⇋∧ b is equivalent to

G(yb−1) ∈ NNG
F (a) = {sup (G(DG) ∩ (0, F (xa−1)]) , inf (G(DG) ∩ [F (xa−1), 1))}

= {F (xa−1)}.

The equivalence in Theorem 7.21a) is particularly relevant for the class LD of all lattice
distribution. As discussed in Example 7.7b), the comparison of the supports boils down to a
comparison of the defining distances in this case. Therefore, the comparison of two lattice
distributions is greatly simplified since, essentially, the involved cdf’s only need to be compared
with respect to ≤disc

D−pm. This observation is formalized in Corollary 7.23a).
Note that the implication in Theorem 7.21b) is strict, i.e. that the reverse implication

F ≤∧−disc
disp G ⇒ F ≤∨−disc

disp G does not hold in general under the assumption F (DF ) ⊆ G(DG).
For this, consider X ∼ Bin(1, 1

2) and P(Y = 0) = 1
2 , P(Y = 1) = 1

4 and P(Y = 3
2) = 1

4 ,
which yields F, G ∈ D0. Then we have F (DF ) = {1

2} ⊆ {1
2 , 3

4} = G(DG), which, as noted in
the proof of Theorem 7.21b), implies F ≤disc

D−pm G. The reduced indexing sets are given by
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A = {2} and B = {2, 3}. The corresponding sets of nearest neighbours are

NNG
F (2) =

{
sup

(
G(DG) ∩ (0, 1

2 ]
)

, inf
(
G(DG) ∩ [1

2 , 1)
)}

= {1
2} = {G(y1)},

NNF
G(2) =

{
sup

(
F (DF ) ∩ (0, 1

2 ]
)

, inf
(
F (DF ) ∩ [1

2 , 1)
)}

= {1
2} = {F (x1)},

NNF
G(3) =

{
sup

(
F (DF ) ∩ (0, 3

4 ]
)}

= {1
2} = {F (x1)},

where the structure of the set NNF
G(3) is due to the fact that F (DF ) ∩ [3

4 , 1) = ∅. It follows
that R(⇋∧) = {(2, 2)} and R(⇋∨) = {(2, 2), (2, 3)}. For the first element of both sets, we
obtain x2 − x1 = 1 = y2 − y1, already implying F ≤∧−disc

disp G. However, for the second element
of R(⇋∨), x2 − x1 = 1 > 1

2 = y3 − y2 holds, yielding F ̸≤∨−disc
disp G.

Generally, a counterexample can be constructed out of any pair of distributions F, G ∈ D0

with F (DF ) ⊆ G(DG) but F (DF ) ̸= G(DG) by choosing the supports of F and G accordingly.
This is due to the fact that the constant intervals of G with values in G(DG) \ F (DF ) are
used for comparisons by ≤∨−disc

D−supp, but not by ≤∧−disc
D−supp.

The next result concerns itself with the second desirable main property of a discrete
generalization of the dispersive order, i.e. that it is transitive. It is also shown that both
discrete orders are reflexive.

Theorem 7.22. Let F, G, H ∈ D0.

a) The orders ≤∧−disc
disp and ≤∨−disc

disp are both reflexive, i.e. F ≤∧−disc
disp F and F ≤∨−disc

disp F .

b) The order ≤∨−disc
disp is transitive, i.e. F ≤∨−disc

disp G and G ≤∨−disc
disp H implies F ≤∨−disc

disp H.
However, in general, the order ≤∧−disc

disp is not transitive.

Proof. a) For a, b ∈ A, we obviously have a ⇋ b, if and only if a = b. Consequently, for
all a, b ∈ A, we have

a ⇋∧ b ⇐⇒ a = b and a − 1 = b − 1 ⇐⇒ a = b,

a ⇋∨ b ⇐⇒ a = b or a − 1 = b − 1 ⇐⇒ a = b.

Therefore, F ≤disc
D−pm F is equivalent to pa ≤ pa for all a ∈ A; and F ≤∧−disc

D−supp F is
equivalent to F ≤∨−disc

D−supp F , which, in turn, is equivalent to xa − xa−1 ≤ xa − xa−1 for
all a ∈ A. Hence, F ≤∧−disc

disp F and F ≤∨−disc
disp F both hold.

b) Let H =̂ (C, (zj , rj)j∈C). First, let (a, c) ∈ R(
F,H

⇋ ), i.e.

(F (xa−1), F (xa)) ∩ (H(zc−1), H(zc)) ̸= ∅.

Furthermore, note that (⋃b∈B(G(yb−1), G(yb))) ∪ G(DG) = (0, 1) holds and the union is
disjoint. Since (F (xa−1), F (xa)) ∩ (H(zc−1), H(zc)) is a non-empty open sub-interval of
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(0, 1), there exists a b ∈ B such that

(F (xa−1), F (xa)) ∩ (G(yb−1), G(yb)) ∩ (H(zc−1), H(zc)) ̸= ∅.

It follows that a
F,G

⇋ b as well as b
G,H

⇋ c. By assumption, this yields rc ≤ qb ≤ pa and
since (a, c) ∈ R(

F,H

⇋ ) was arbitrary, the transitivity of ≤disc
D−pm follows.

Now let (a, c) ∈ R(
F,H

⇋∨). We prove the existence of a b ∈ B such that a
F,G

⇋∨ b and
b

G,H

⇋∨ c via case distinction.

Case 1: a ⇋ c

From the first part of the proof of b), we already know that there exists b ∈ B

such that a
F,G

⇋ b and b
G,H

⇋ c. Note that F (xa−1) < G(yb) follows from a
F,G

⇋ b.
Assume now b = min B along with the existence of that minimum. This implies
G(yb−1) = 0 and therefore α

F,G

⇋ b for all α ∈ A ∩ (−∞, a]. That latter set is not
empty and includes at least the element a − 1 since a > min A. We obtain

G(yb) = G(yb) − G(yb−1) = qb ≤ pa−1 = F (xa−1) − F (xa−2) ≤ F (xa−1),

a contradiction, and therefore b ≠ min B or, equivalently, b ∈ B. Combining a
F,G

⇋ b

with (a, b) ∈ A × B yields a
F,G

⇋∨ b and in the same way, combining b
G,H

⇋ c with
(b, c) ∈ B × C yields b

G,H

⇋∨ c.

Case 2: a − 1 ⇋ c − 1
Analogously to Case 1, there exists a b ∈ B such that a−1

F,G

⇋ b−1 and b−1
G,H

⇋ c−1.
It follows directly that a

F,G

⇋∨ b and b
G,H

⇋∨ c.

It follows that
xa − xa−1 ≤ yb − yb−1 ≤ zc − zc−1,

which yields the transitivity of ≤∨−disc
D−supp since (a, c) ∈ R(

F,H

⇋∨) was arbitrary. Combined
with the fact that ≤disc

D−pm is transitive, the transitivity of ≤∨−disc
disp follows.

It remains to give a counterexample for the transitivity of ≤∧−disc
disp . Since we already

proved the transitivity of ≤disc
D−pm, it needs to be a counterexample for the transitivity

of ≤∧−disc
D−supp. Let G be defined as F in Example 7.16b) and H be defined as G in that

example. Let F = Bin(1, 1
2). Just like in the latter part of Example 7.16b), let

cy = y2 − y1 = y3 − y2,

cz = z3 − z2 = z4 − z3 = z6 − z5 = z7 − z6,

δ = z2 − z1 = z5 − z4 = z8 − z7.
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Set cy = 2, cz = 3 and δ = 1
2 . We easily obtain

R(
F,G

⇋∧) = {(2, 2), (2, 3)}, R(
G,H

⇋∧) = {(2, 3), (2, 4), (3, 6), (3, 7)}, R(
F,H

⇋∧) = {(2, 5)}.

F(DF) G(DG) H(DH)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 7.4.: Illustration of the counterexample for the transitivity of ≤∧−disc
D−supp and ≤∧−disc

disp (as
given in the proof of Theorem 7.22b)). The pairs of constant intervals, of which
the lengths are to be compared with respect to ⇋∧, are identified by double-sided
arrows. Each constant interval is represented by the value that the corresponding
cdf takes on there.

An illustration of which pairs of constant intervals are compared among the three cdf’s
is given in Figure 7.4. Because of

x2 − x1 = 1 ≤ 2 = cy = y2 − y1 = y3 − y2,

F ≤∧−disc
D−supp G holds, and since

y2 − y1 = cy = 2 ≤ 3 = cz = z3 − z2 = z4 − z3 and

y3 − y2 = cy = 2 ≤ 3 = cz = z6 − z5 = z7 − z6,

G ≤∧−disc
D−supp H holds. However,

x2 − x1 = 1 > 1
2 = δ = z5 − z4
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contradicts F ≤∧−disc
D−supp H and thereby contradicts the transitivity of ≤∧−disc

D−supp and of
≤∧−disc

disp .

It turns out that both proposed discrete dispersion orders only satisfy one of the desired
main properties. ≤∨−disc

disp is transitive but strictly stronger than the original dispersive order
on their joint area of applicability. ≤∧−disc

disp is equivalent to ≤disp on that area but is not
transitive. This begs the question whether there even exists a discrete dispersion order that
satisfies both properties. While this question cannot be answered rigorously here, we give a
heuristic explanation suggesting that such an order does not exist.

Due to Proposition 7.4, any discrete dispersion order ≤D that is equivalent to ≤disp if
F (DF ) ⊆ G(DG) compares the lengths of constant intervals in a pointwise fashion that is
dictated by the candidate for the less dispersed cdf F . This, however, makes it possible
to construct a counterexample for the transitivity of ≤D similar to the one in the proof of
Theorem 7.22b). The general approach is to choose F, G ∈ D0 with F (DF ) ∩ G(DG) = ∅
and both sets being small. Then, H ∈ D0 is chosen in such a way that H(DH) is a disjoint
union of one set of points close to the elements of F (DF ) and another set of points close
to the elements of G(DG). As a result, the constant intervals of H to be compared with
those of F are not compared with any constant intervals of G because of this disjoint split.
The transitivity of ≤D can be contradicted by choosing the lengths of the involved intervals
accordingly. Graphically, the situation should be similar to what is depicted in Figure 7.4.

A notable exception to this problem is given by the class of all distributions in D0 that
satisfy (7.3), or, more specifically, by the class LD of all lattice distributions.

Corollary 7.23. a) Let F, G ∈ LD with defining distances cF , cG > 0. Then, the following
equivalences hold:

F ≤∨−disc
disp G ⇔ F ≤∧−disc

disp G ⇔ F ≤disc
disp G ⇔ F ≤disc

D−pm G and cF ≤ cG.

b) The orders ≤disc
disp, ≤∧−disc

disp and ≤∨−disc
disp are transitive on the set LD.

Proof. a) According to Example 7.7b), condition (7.3) is equivalent to cF ≤ cG. However,
because of xa − xa−1 = cF and yb − yb−1 = cG for all a ∈ A, b ∈ B, cF ≤ cG is also
equivalent to both F ≤∨−disc

disp G and F ≤∧−disc
disp G.

b) Let F, G, H ∈ LD with defining distances cF , cG, cH > 0. Since ≤disc
D−pm is transitive as

shown in the proof of Theorem 7.22b) and cF ≤ cG combined with cG ≤ cH implies
cF ≤ cH , the order ≤disc

disp is transitive on the set LD, and the assertion follows from part
a).
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Corollary 7.23 shows that the limitations of our approach to define a discrete dispersive
order are not relevant for lattice distributions, which is one of the two most important classes
of discrete distributions; the other one being the class of empirical distributions. First, one
does not have to choose one of the three given options for discrete dispersive orders because
they all coincide. And second, the one remaining discrete dispersive order fulfils both desirable
properties stated at the beginning of Section 7.2.

For the remainder of this section, we analyze whether the orders we derived in Section 7.1
change, if we alter the definition of the quantile function. The fact that the quantile function
of a discrete distribution is generally not unambiguous is noted in Section 2.1. There, the
p-quantile is characterized in a more general sense in (2.3); in order to differentiate this from
the specifically defined F −1(p), the notation Qp

F is introduced. For p ∈ (0, 1), any value within
the interval [inf{t ∈ R : F (t) ≥ p}, sup{t ∈ R : F (t) ≤ p}] is valid as a p-quantile Qp

F of a cdf
F since P(X ≤ Qp

F ) ≥ p and P(X ≥ Qp
F ) ≥ 1 − p holds for all of these choices. Note that,

for p /∈ F (supp(F )), inf{t ∈ R : F (t) ≥ p} = sup{t ∈ R : F (t) ≤ p} holds and, consequently,
all of the above quantile definitions coincide. The definition of the discrete dispersive orders
does not involve any definition of the quantile function, neither does the characterization of
the original dispersive order used for Theorem 7.21b). This characterization for purposive
discrete distributions, given in Proposition 7.4, along with the equivalent condition for the
relation ⇋ in Proposition 7.10 are the crucial points, where the definition of the quantile
function influences the definitions of the discrete orders and their properties. The proofs of
these two results only need to be changed slightly in order to also be valid for any alternate
quantile definition from before. This is due to the fact that, as mentioned already, the different
quantile definitions all coincide for p /∈ F (supp(F )). As an example, in (7.1), which proves
one implication of Proposition 7.4, the notation of the utilized limits is changed to

λ1(F −1({p})) = lim
r↘p

(Qr
F − Q2p−r

F ) ≤ lim
r↘p

(Qr
G − Q2p−r

G ) = λ1(G−1({p})).

In conclusion, the derivations of our discrete dispersive orders does not depend on the specific
definition of the quantile function that is used.

7.3. Further Properties of the Discrete Dispersive Orders

In the following, a number of properties and results concerning the original dispersive order
≤disp are transferred to the discrete setting. First, we consider the equivalence classes of the
relation =disp, which denotes equivalence with respect to the order ≤disp. Note that =disp

inherits the properties of reflexivity and transitivity from ≤disp (see Proposition 3.2), and it
is symmetric by definition. Thus, =disp is an equivalence relation. The equivalence class of
any F ∈ D0 with respect to =disp is given by all real shifts of F , i.e. {F (· − λ) : λ ∈ R} (see
Proposition 3.3b)). The following are the discrete versions of that result.
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Theorem 7.24. Let F, G ∈ D0. Then, F =∧−disc
disp G holds, if and only if there exists a λ ∈ R

such that G(t) = F (t − λ) for all t ∈ R.

Proof. ’⇒’: Let r ∈ (0, 1) \ (F (DF ) ∪ G(DG)), which is possible since F (DF ) ∪ G(DG) is
at most countable and (0, 1) is uncountable. Now let ar = min{a ∈ A : F (xa) ≥ r}
(which exists since r < 1 = sup F (supp(F )) holds and thus, there exists an a ∈ A such
that r ∈ (F (xa−1), F (xa))) and br = min{b ∈ B : G(yb) ≥ r}. Then, ar ⇋ br and, by
assumption, F (xar) − F (xar−1) = par = qbr = G(ybr) − G(ybr−1) follows. Rearranging
yields

F (xar ) − G(ybr ) = F (xar−1) − G(ybr−1).

Assume F (xar) > G(ybr). It follows that ar ⇋ br + 1, yielding F (xar) − F (xar−1) =
par = qbr+1 = G(ybr+1) − G(ybr). Note that br + 1 ∈ B since G(ybr) < F (xar) ≤ 1 =
sup G(supp(G)). Because of G(ybr ) > F (xar−1), it follows that G(ybr+1) > F (xar ), thus
yielding ar + 1 ⇋ br + 1. Now the same line of reasoning applied to ar and br can
also be applied to ar + 1 and br + 1. Inductively, it follows that par = pα = qβ for all
α ∈ A ∩ [ar, ∞) and all β ∈ B ∩ [br, ∞). We now know that there exist cA, cB ∈ N0 such
that

F (xar ) + cA · par = F (xar ) +
sup A∑
ar+1

pα = 1 = G(ybr ) +
sup B∑

β=br+1
pβ = G(ybr ) + cB · par ,

which, since 0 < F (xar ) − G(ybr ) < par (otherwise ar ⇋ br would not hold), yields

0 = F (xar ) − G(ybr ) + par (cA − cB) ̸= 0,

a contradiction. By symmetry, the case G(ybr) > F (xar) also yields a contradiction,
leaving only F (xar) = G(ybr). It immediately follows that ar ⇋ br and ar + 1 ⇋

br + 1 (see (7.11) and (7.12)), yielding par = qbr and par+1 = qbr+1. This also yields
F (xar−1) = G(ybr−1) and F (xar+1) = G(ybr+1). Inductively, we obtain par+d = qbr+d

and F (xar+d) = G(ybr+d) for all d ∈ Z such that ar +d ∈ A and br +d ∈ B. Furthermore,
ar + d = min A is equivalent to br + d = min B for all d ∈ Z and the same is true for
the maximums of A and B. It follows that F (supp(F )) = G(supp(G)) and, since the
indexing sets are uniquely determined by the supports, A = B follows along with ar = br.
The sets of pairs of indices to be compared are given by R(⇋) = {(a, a) : a ∈ A} and
R(⇋∧) = {(a, a) : a ∈ A}.

Now define λ = yar − xar . Let α ∈ A and, without restriction, let α ≥ ar. Then,

yα − xα = yar − xar +
α∑

j=ar+1
((yj − yj−1) − (xj − xj−1)) = yar − xar = λ
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follows from F =∧−disc
disp G. Overall, we obtain (B, (yj , qj)j∈B) = (A, (xj + λ, pj)j∈A) and

since the indexing set and the identifying sequence uniquely identify the corresponding
cdf, the assertion follows.

’⇐’: The assumption directly implies B = A, yj = xj +λ and qj = pj for all j ∈ A. The latter
observation then implies F (supp(F )) = G(supp(G)) as well as R(⇋) = {(a, a) : a ∈ A}
and R(⇋∧) = {(a, a) : a ∈ A}. While F =disc

D−pm G is now trivial, F =∧−disc
D−supp G follows

from (xa + λ) − (xa−1 + λ) = xa − xa−1 for all a ∈ A, thus concluding the proof.

Corollary 7.25. Let F, G ∈ D0. Then, F =∨−disc
disp G holds, if and only if there exists a λ ∈ R

such that G(t) = F (t − λ) for all t ∈ R.

Proof. Since ≤∧−disc
disp is a weakening of ≤∨−disc

disp , the implication from left to right follows
directly from Theorem 7.24. For the other implication, it is sufficient to show F ≤∧−disc

disp G ⇔
F ≤∨−disc

disp G for all F, G ∈ D0 with F (supp(F )) = G(supp(G)). Assuming F (supp(F )) =
G(supp(G)) directly implies R(⇋) = {(a, a) : a ∈ A}, where A is the indexing set of either
cdf. This yields

R(⇋∧) = {(a, a) : a ∈ A} = R(⇋∨),

thus ensuring the equivalence of ≤∧−disc
disp and ≤∨−disc

disp and concluding the proof.

Theorem 7.24 and Corollary 7.25 state that F =∧−disc
disp G is equivalent to F =∨−disc

disp G for
all F, G ∈ D0. Since =∨−disc

disp inherits reflexivity and transitivity as its properties from ≤∨−disc
disp

and is obviously symmetric, it is an equivalence relation. Its equivalence classes are, as for
≤disp, of the form {F (· − λ) : λ ∈ R} for F ∈ D0. We can now consider the quotient set of D0

by =∨−disc
disp , denoted by D0/ =∨−disc

disp , and also define both discrete dispersion orders on that
set. For all F , G ∈ D0/ =∨−disc

disp , the orders are defined by

F ≤∨−disc
disp G, if and only if ∃F ∈ F , G ∈ G : F ≤∨−disc

disp G,

and analogously for ≤∧−disc
disp . The consideration of these equivalence classes is relevant to the

following result.

Proposition 7.26. Let F, G ∈ D0 not belong to the same equivalence class of D0 by =∧−disc
disp .

Then, it follows from F ≤∧−disc
disp G that either λ1(DF ) = λ1(DG) = ∞ or λ1(DF ) < λ1(DG)

holds.

Proof. If F (DF ) ⊆ G(DG), the order ≤∧−disc
disp is equivalent to ≤disp and the assertion follows.

Otherwise, let a ∈ A such that F (xa−1) ∈ F (DF ) \ G(DG) ̸= ∅. It follows that

NNG
F (a) ∋ sup(G(DG) ∩ (0, F (xa−1)]) < F (xa−1) < inf(G(DG) ∩ [F (xa−1), 1)) ∈ NNG

F (a).
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Hence, | NNG
F (a)| = 2, and we choose b ∈ B such that NNG

F (a) = {G(yb), G(yb−1)}. (Note
that B ̸= ∅ since |B| ≥ 3 follows from Lemma 7.18.) Particularly, this means that a ⇋∧ b + 1
and, therefore, xa − xa−1 ≤ yb+1 − yb. Due to Lemma 7.18 and the beginning of the proof
of Proposition 7.19, for all j ∈ A, j ≥ a, there exists a kj ∈ B, kj ≥ ka = b + 1 such that
G(ykj−1) = inf(G(DG) ∩ [F (xj−1), 1)) ∈ NNG

F (j). It follows that j ⇋∧ kj and, particularly,
j − 1 ⇋ kj − 1 for all j ∈ A, j ≥ a. Moreover, the kj ’s are pairwise distinct. To see this, let
i, j ∈ A ∩ [a, ∞) with i > j; then we have

F (xj−1) ≤ F (xi−2) = F (xi−1) − pi−1 ≤ G(yki−1) − qki−1 = G(yki−2),

which implies G(ykj−1) ≤ G(ki−1) and kj ≤ ki − 1 < ki. It follows that

sup A∑
j=a

(xj − xj−1) ≤
sup A∑
j=a

(ykj
− ykj−1) ≤

sup B∑
k=b+1

(yk − yk−1). (7.17)

Instead of using the index a as a starting point upwards, we can also use it as a starting
point downwards. It follows from the structure of the set NNG

F (a) that a ⇋∧ b holds and,
subsequently, xa − xa−1 ≤ yb − yb−1. By Lemma 7.18, we obtain that, for all j ∈ A, j ≤ a,
there exists a ℓj ∈ B, ℓj ≤ ℓa = b such that G(yℓj−1) = sup(G(DG) ∩ (0, F (xj−1)]) ∈ NNG

F (j).
As before, it follows that j ⇋∧ ℓj and, particularly, j ⇋ ℓj for all j ∈ A, j ≤ a. To see that
the ℓj ’s are also pairwise distinct, let i, j ∈ A ∩ (−∞, a] with i > j, yielding

F (xi−1) ≥ F (xj) = F (xj−1) + pj ≥ G(yℓj−1) + qℓj
= G(yℓj

)

and, therefore, ℓi ≥ ℓj + 1 > ℓj . It follows that

a∑
j=inf A

(xj − xj−1) ≤
a∑

j=inf A

(yℓj
− yℓj−1) ≤

b∑
ℓ=inf B

(yℓ − yℓ−1). (7.18)

By combining (7.17) and (7.18), we obtain

λ1(DF ) =
sup A∑

j=inf A

(xj −xj−1) <

sup A∑
j=inf A

(xj −xj−1)+(xa −xa−1) ≤
sup B∑

k=inf B

(yk −yk−1) = λ1(DG),

if λ1(DF ) < ∞. Otherwise, we obtain that DG also has infinite Lebesgue measure, since then
the leftmost sum in (7.17) or (7.18) is already infinite.

The same result for ≤∨−disc
disp instead of ≤∧−disc

disp follows directly.

Corollary 7.27. Let F, G ∈ D0 not belong to the same equivalence class of D0 by =∨−disc
disp .

Then, it follows from F ≤∨−disc
disp G that either λ1(DF ) = λ1(DG) = ∞ or λ1(DF ) < λ1(DG)

holds.



7.3. Further Properties of the Discrete Dispersive Orders 181

An analogous result also holds for the the original dispersive order. It directly follows
from its definition in (2.9) and from λ1(DF ) = limα↘0(F −1(1 − α) − F −1(α)), λ1(DG) =
limα↘0(G−1(1 − α) − G−1(α)).

Another result that relates the dispersive order to the supports of the involved distributions
is given in Müller and Stoyan (2002, p. 42, Theorem 1.7.6a)) and can also be reproduced for
both discrete dispersive orders.

Proposition 7.28. Let F, G ∈ D0. If F ≤∧−disc
disp G and min(supp(F )) ≤ min(supp(G)) with

both minimums existing, then F ≤st G.

Proof. Similarly as in the proof of Proposition 7.26, Lemma 7.18 states that for all a ∈ A,
there exists a ba ∈ B such that G(yba−1) = sup(G(DG) ∩ (0, F (xa−1)]) ∈ NNG

F (a), implying
a ⇋∧ ba. As shown for Proposition 7.26, these ba’s are pairwise distinct. It follows for all
a ∈ A that

xa = min(supp(F )) +
a∑

j=min A

(xj − xj−1) ≤ min(supp(G)) +
a∑

j=min A

(ybj
− ybj−1)

≤ min(supp(G)) +
ba∑

k=min B

(yk − yk−1) = yba .

Note that for all (a, b) ∈ R(⇋), b ≥ ba holds because of G(yb) > F (xa−1) ≥ G(yba−1) and the
maximality of ba. This means that, for all (a, b) ∈ R(⇋), we obtain xa ≤ yba ≤ yb. According
to Lemma A.12, this is equivalent to F ≤st G.

Corollary 7.29. Let F, G ∈ D0. If F ≤∨−disc
disp G and min(supp(F )) ≤ min(supp(G)) with

both minimums existing, then F ≤st G.

Analogously, if F is less dispersed than G with respect to either order, and max(supp(F )) ≥
max(supp(G)) holds with both maximums existing, F ≤st G also follows.

It is worth noting that Proposition 7.28 and Corollary 7.29 relate the respective discrete
dispersive order to the usual stochastic order in the same way as the original dispersive order
is related to the stochastic order. Since both the stochastic order and the dispersive order
are orders of convex characteristics, these results somewhat legitimize ≤∧−disc

disp and ≤∨−disc
disp in

their asserted roles as discrete orders of the first convex characteristic.
The same can be said about the next results, which relate the discrete dispersive orders to

the so-called weak dispersive order, which is also based on the usual stochastic order. Note
that the weak dispersive order considered here is different from the order with the same
name from Definition 3.21a) in Part I of this thesis. The order discussed here in Part II was
introduced and noted to be weaker than ≤disp by Giovagnoli and Wynn (1995, p. 326), who
used it as a starting point for a multivariate dispersion order. They said that F precedes G

in the weak dispersive order, if |X − X ′| ≤st |Y − Y ′| holds for X, X ′ ∼ F independent and
Y, Y ′ ∼ G independent.
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Theorem 7.30. Let F, G ∈ D0 with X, X ′ ∼ F independent and Y, Y ′ ∼ G independent.
Then, F ≤∧−disc

disp G implies |X − X ′| ≤st |Y − Y ′|.

Proof. Let (a, b), (α, β) ∈ R(⇋). For better cross-reference, we divide the proof into three
parts.

Part 1: In this part, we show by contradiction that |xα − xa| > |yβ − yb| implies |α − a| =
|β − b| + 1. To this end, we first assume |α − a| ≤ |β − b|. Without restriction, let α ≥ a.
If α = a, then |xα − xa| = 0 ≤ |yβ − yb| follows, contradicting the assumption. Hence, it
remains to consider the case α > a. Because of a ⇋ b and α ⇋ β, we obtain

G(yb−1) < F (xa) ≤ F (xα−1) < G(yβ), (7.19)

yielding β ≥ b. We either have G(yβ−1) ≤ F (xα−1), yielding G(yβ−1) = sup(G(DG) ∩
(0, F (xα−1)]) ∈ NNG

F (α); in this case we define kα = β. Or we have G(yβ−1) > F (xα−1),
implying that there exists a kα ≤ β such that G(ykα−1) = inf(G(DG) ∩ [F (xα−1), 1)) ∈
NNG

F (α). Note that kα > b holds because of G(ykα−1) ≥ F (xα−1) and (7.19). So,
considering both cases as well as Proposition 7.19a), there exists a kα ∈ {b + 1, . . . , β}
such that α ⇋∧ kα.

It follows that α − 1 ⇋ kα − 1 and we can repeat the line of argument from above with
α − 1 taking the role of α and kα − 1 taking the role of β, as long as α − 1 > a. We
then obtain a kα−1 ∈ {b + 1, . . . , kα − 1} such that α − 1 ⇋∧ kα−1 and can repeat the
line of argument again, starting with α − 2 ⇋ kα−1 − 1 as long as α − 2 > a. Iteratively,
we obtain the following statement:

∀j ∈ {a + 1, . . . , α} ∃ pairwise distinct kj ∈ {b + 1, . . . , β} such that j ⇋∧ kj .

Since F ≤∧−disc
D−supp G holds, it follows

|xα − xa| = xα − xa =
α∑

j=a+1
(xj − xj−1)

≤
α∑

j=a+1
(ykj

− ykj−1)

≤
β∑

k=b+1
(yk − yk−1) = yβ − yb = |yβ − yb|,

a contradiction to the assumption |xα − xa| > |yβ − yb|. This closes the case |α − a| ≤
|β − b|.

Second, we assume |α − a| ≥ |β − b| + 2. Again, let α ≥ a. Because of α − a = |α − a| ≥
|β − b| + 2 ≥ 2, we have α > a. By combining a ⇋ b and α ⇋ β, we obtain (7.19) and



7.3. Further Properties of the Discrete Dispersive Orders 183

β ≥ b, as before. It follows from (7.19) that, for every j ∈ {a + 1, . . . , α − 1}, there exists
a k ∈ {b, . . . , β} such that j ⇋ k. More specifically, we define kj = min{k ∈ {b, . . . β} :
j ⇋ k} for every j ∈ {a + 1, . . . , α − 1}. These kj are pairwise distinct; otherwise there
would exist indices i, j ∈ {a + 1, . . . , α − 1}, i ̸= j (without restriction i < j) such that
ki = kj . This implies G(yki−1) ≤ F (xi−1) because of the minimality of ki. We obtain

G(yki
) = G(yki−1) + qki

≤ F (xi−1) + pi = F (xi) ≤ F (xj−1) < G(ykj
),

yielding a contradiction, and thereby proving that the mapping j 7→ kj is injective. The
cardinal number of the domain {a + 1, . . . , α − 1} of that mapping is |α − a| − 1 and
by assumption larger than or equal to the cardinal number |β − b| + 1 of its codomain
{b, . . . , β}. For |α − a| > |β − b| + 2, this directly contradicts the injectivity of the
mapping. For |α − a| = |β − b| + 2, it follows that the mapping is bijective and we obtain

F (xα−1) − F (xa) =
α−1∑

j=a+1
pj ≥

α−1∑
j=a+1

qkj
=

β∑
k=b

qk = G(yβ) − G(yb−1).

This, however, contradicts (7.19). Thus, we have shown the implication

|xα − xa| > |yβ − yb| =⇒ |α − a| = |β − b| + 1 ∀(a, b), (α, β) ∈ R(⇋) (7.20)

by excluding all other possibilities.

Part 2: It becomes apparent in Part 3 of the proof that pairs (a, b), (α, β) ∈ R(⇋) satisfying
|xα − xa| ≤ |yβ − yb| are easy to deal with. Therefore, the critical situation |xα − xa| >

|yβ − yb| is of particular interest. Considering in the final result (7.20) of Part 1, this
implies |α − a| = |β − b| + 1. It is the purpose of Part 2 to analyze the situation for
these kinds of pairs more closely, so let (a, b), (α, β) ∈ R(⇋) with |α − a| = |β − b| + 1.
Furthermore, let α > a. As in Part 1, we obtain (7.19) and thereby β ≥ b. It follows
from (7.19) and a ⇋ b that, for every j ∈ {a, . . . , α − 1}, there exists a k ∈ {b, . . . , β}
such that j ⇋ k. We consider the mapping

φ1 : {a, . . . , α − 1} → {b, . . . , β}, j 7→ kj = max{k ∈ {b, . . . β} : j ⇋ k}.

To see that φ1 is strictly increasing, let j, j + 1 ∈ {a, . . . , α − 1}. It follows from the
maximality of kj+1 that G(ykj+1) ≥ F (xj+1), yielding

G(ykj+1−1) = G(ykj+1) − qkj+1 ≥ F (xj+1) − pj+1 = F (xj) > G(ykj−1)

and, thereby, kj+1 > kj . Thus, φ1 is strictly increasing and therefore also injective.
Since α − a − 1 = β − b means that the domain and the codomain of φ1 have the same
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cardinal number, the mapping is bijective. This means that

a ⇋ b, a + 1 ⇋ b + 1, . . . , α − 2 ⇋ β − 1, α − 1 ⇋ β, (7.21)

a + 1 ⇋∧ b + 1, . . . , α − 2 ⇋∧ β − 1, α − 1 ⇋∧ β. (7.22)

Combined with (7.19), this has the following two implications:

G(yb−1) − F (xa−1) =

G(yβ) −
β∑

k=b

qk

−

F (xα−1) −
α−1∑
j=a

pj


= G(yβ) − F (xα−1) +

α−1∑
j=a

(pj − qkj
) ≥ G(yβ) − F (xα−1) > 0,

(7.23)

xα−1 − xa =
α−1∑

j=a+1
(xj − xj−1) ≤

α−1∑
j=a+1

(ykj
− ykj−1) =

β∑
k=b+1

(yk − yk−1) = yβ − yb.

(7.24)

It follows from (7.19), a ⇋ b and α ⇋ β that, for every j ∈ {a, . . . , α}, there exists a
k ∈ {b − 1, . . . , β} such that j ⇋ k. Note that b − 1 ∈ B because of (7.23), which implies
G(yb−1) > F (xa−1) ≥ 0. We now consider the mapping

φ2 : {a, . . . , α} → {b − 1, . . . , β}, j 7→ kj = min{k ∈ {b − 1, . . . β} : j ⇋ k}.

To see that φ2 is strictly increasing, let j, j + 1 ∈ {a, . . . , α}. It follows from the
minimality of kj that G(ykj−1) ≤ F (xj−1), yielding

G(ykj
) = G(ykj−1) + qkj

≤ F (xj−1) + pj = F (xj) = F (x(j+1)−1) < G(ykj+1)

and, thereby, kj < kj+1. Thus, φ2 is strictly increasing and therefore also injective.
Since α − a = β − b + 1 means that the domain and the codomain of φ2 have the same
cardinal number, the mapping is bijective. This means that

a ⇋ b − 1, a + 1 ⇋ b, . . . , α − 1 ⇋ β − 1, α ⇋ β, (7.25)

a + 1 ⇋∧ b, . . . , α − 1 ⇋∧ β − 1, α ⇋∧ β. (7.26)

Combined with (7.19), this has the following two implications:

F (xα−1) − G(yβ−1) =

F (xa) +
α−1∑

j=a+1
pj

−

G(yb−1) +
β−1∑
k=b

qk


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= F (xa) − G(yb−1) +
α−1∑

j=a+1
(pj − qkj

) ≥ F (xa) − G(yb−1) > 0,

(7.27)

xα − xa =
α∑

j=a+1
(xj − xj−1) ≤

α∑
j=a+1

(ykj
− ykj−1) =

β∑
k=b

(yk − yk−1) = yβ − yb−1.

(7.28)

Part 3: Recall the definition of r(a,b) in (7.6) to see that the following holds true for all t ∈ R:

H|X−X′|(t) = P(|X − X ′| ≤ t)

=
∑

x,x′∈supp(F )
P(X = x)P(X ′ = x′)1{|x − x′| ≤ t}

=
∑

a,α∈A

papα1{|xa − xα| ≤ t}

=
∑

a,α∈A

 ∑
b∈B:a⇋b

r(a,b)

 ∑
β∈B:α⇋β

r(α,β)

1{|xa − xα| ≤ t}

=
∑

(a,b),(α,β)∈R(⇋)
r(a,b)r(α,β)1{|xa − xα| ≤ t}. (7.29)

Analogously, we obtain

H|Y −Y ′|(t) = P(|Y − Y ′| ≤ t) =
∑

(a,b),(α,β)∈R(⇋)
r(a,b)r(α,β)1{|yb − yβ| ≤ t} (7.30)

for all t ∈ R. The claim of the theorem is equivalent to

0 ≤ H|X−X′|(t) − H|Y −Y ′|(t)

=
∑

(a,b),(α,β)∈R(⇋)
r(a,b)r(α,β)

(
1{|xα − xa| ≤ t} − 1{|yβ − yb| ≤ t}

)
(7.31)

for all t ∈ R. By Part 1, we have for all (a, b), (α, β) ∈ R(⇋) that

|α − a| ≠ |β − b| + 1 =⇒ |xα − xa| ≤ |yβ − yb|

⇐⇒
(
|yβ − yb| ≤ t =⇒ |xα − xa| ≤ t

)
∀t ∈ R

⇐⇒ 1{|xα − xa| ≤ t} − 1{|yβ − yb| ≤ t} ≥ 0 ∀t ∈ R.

The sums in (7.29) and (7.30) can each be split into three separate sums, one with
α > a, one with α = a and one with α < a. Since all the summands in (7.29) and (7.30)
are symmetric in (a, b) and (α, β), the sum with α > a is equal to the sum with α < a.
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Because α = a and |α − a| = |β − b| + 1 are not possible simultaneously, we obtain for
all t ∈ R that

H|X−X′|(t) − H|Y −Y ′|(t)

= 2
∑

(a,b),(α,β)∈R(⇋):
α>a

r(a,b)r(α,β)
(
1{|xα − xa| ≤ t} − 1{|yβ − yb| ≤ t}

)
+

∑
(a,b),(α,β)∈R(⇋):

α=a

r(a,b)r(α,β)
(
1{|xα − xa| ≤ t} − 1{|yβ − yb| ≤ t}

)

≥ 2
∑

(a,b),(α,β)∈R(⇋):
|α−a|=|β−b|+1,

α>a

[
r(a,b)r(α,β)

(
1{xα − xa ≤ t} − 1{yβ − yb ≤ t}

)

+ r(a,b−1)r(α−1,β)
(
1{xα−1 − xa ≤ t} − 1{yβ − yb−1 ≤ t}

)]
. (7.32)

For the validity of the inequality we use that, under the assumptions (a, b), (α, β) ∈ R(⇋),
|α − a| = |β − b| + 1 and α > a, it follows that (a, b − 1), (α − 1, β) ∈ R(⇋) according to
(7.21) and (7.25). Note that |(α − 1) − a| ≠ |β − (b − 1)| + 1 holds true in all summands
of the last sum, so no summand is used twice in that sum. For the differences of the
indicator functions, it holds that

1{xα − xa ≤ t} − 1{yβ − yb ≤ t} = −1 ⇐⇒ t ∈ [yβ − yb, xα − xa) and

1{xα−1 − xa ≤ t} − 1{yβ − yb−1 ≤ t} = 1 ⇐⇒ t ∈ [xα−1 − xa, yβ − yb−1)

for all (a, b), (α, β) ∈ R(⇋) with |α − a| = |β − b| + 1 and α > a. Because of (7.24) and
(7.28), [yβ − yb, xα − xa) ⊆ [xα−1 − xa, yβ − yb−1) follows, yielding

1{xα − xa ≤ t} − 1{yβ − yb ≤ t} = −1 =⇒ 1{xα−1 − xa ≤ t} − 1{yβ − yb−1 ≤ t} = 1.

This means that in order to prove that (7.32) is larger than or equal to zero and thereby
complete the proof, it remains to show that r(a,b)r(α,β) ≤ r(a,b−1)r(α−1,β) holds for all
(a, b), (α, β) ∈ R(⇋) with |α − a| = |β − b| + 1 and α > a. In that setting, by combining
(7.23) and (7.27), we obtain

r(a,b)r(α,β) =
(
F (xa) − G(yb−1)

)(
G(yβ) − F (yα−1)

)
≤
(
F (xα−1) − G(yβ−1)

)(
G(yb−1) − F (xa−1)

)
= r(α−1,β)r(a,b−1).

The following corollary directly follows from above theorem and the fact that ≤∧−disc
disp is a

weakening of ≤∨−disc
disp .
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Corollary 7.31. Let F, G ∈ D0 with X, X ′ ∼ F independent and Y, Y ′ ∼ G independent.
Then, F ≤∨−disc

disp G implies |X − X ′| ≤st |Y − Y ′|.
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Figure 7.5.: Exemplary visualization of crucial situation in the proof of Theorem 7.30. The
horizontal lines represent the elements of the sets given on the x-axis. The
double-sided arrows and the variable names next to them represent the distances
between those horizontal lines.

The starting point of the proof of Theorem 7.30 is the representation of the cdf of |X − X ′|
given in (7.29) and the subsequent equivalent characterization of the assertion given in (7.31).
Because of r(a,b) ≥ 0 for all (a, b) ∈ R(⇋), each summand in (7.31) is negative, if and only if
the difference of indicator functions is negative. The implication (7.20), which is shown in
Part 1 of the proof, states that this difference of indicator functions can only be negative if
|α − a| = |β − b| + 1, which is a crucial restriction. In Part 3 of the proof, it is shown that,
for every two pairs of indices (a, b), (α, β) for which the difference of indicator functions is
equal to −1, there exists another set of indices (a, b − 1), (α − 1, β) for which the difference of
indicator functions is equal to 1. Additionally, it is shown that r(a,b−1)r(α−1,β), the coefficient
for the latter set, is always larger than r(a,b)r(α,β), the coefficient for the former set. So for
every negative summand in (7.31), there exists a corresponding positive summand with equal
or larger absolute value. The situation is illustrated in Figure 7.5. The fact that the values
of F (DF ) and G(DG) in question are alternating, follows from |α − a| = |β − b| + 1 and is
derived in Part 2 of the proof. The plot also hints at the fact that, for reasons of symmetry,
(a + 1, b), (α, β + 1) would have been a viable alternative of (a, b − 1), (α − 1, β) in its role as
compensatory set of indices.
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Since ≤∧−disc
disp is a strictly weaker order than ≤∨−disc

disp , it is obvious that the statement of
Corollary 7.31 is a strict implication and no equivalence. The same can be proved for Theorem
7.30 by making use of the fact that ≤∧−disc

disp is not transitive. For that, let F, G, H ∈ D0 be
defined as in the part of the proof of Theorem 7.22b), where the counterexample for the
transitivity of ≤∧−disc

disp was constructed. It is shown there that F ≤∧−disc
disp G and G ≤∧−disc

disp H,
but F ̸≤∧−disc

disp H. If we now let X, X ′ ∼ F independent, Y, Y ′ ∼ G independent and Z, Z ′ ∼ H

independent, Theorem 7.30 yields |X − X ′| ≤st |Y − Y ′| as well as |Y − Y ′| ≤st |Z − Z ′|. Since
the stochastic order is transitive (see Proposition 3.2), we have now shown |X −X ′| ≤st |Z−Z ′|
while F ̸≤∧−disc

disp H holds and, thus, that the statement of Theorem 7.30 is indeed a strict
implication.

The implications given in Theorem 7.30 and Corollary 7.31 are also useful in Section 7.4,
where the compatibility of the discrete dispersive orders with popular dispersion measures in
analyzed. If a measure of dispersion can be written as a location measure applied to a term
of the form |X − X ′|, it obviously preserves the weak dispersion order. Because of Theorem
7.30 and Corollary 7.31, the dispersion measure then also preserves the discrete dispersive
orders ≤∧−disc

disp and ≤∨−disc
disp . A popular measure of this type is Gini’s mean difference, which

is given by E[|X − X ′|].

Another term used in well-established dispersion measures like the mean absolute deviation
from the median is |X −F −1(1

2)| instead of |X −X ′|, where, as before, F ∈ D0 and X, X ′ ∼ F

are independent. So if, analogously to Theorem 7.30 and Corollary 7.31, we could prove
that |X − F −1(1

2)| ≤st |Y − G−1(1
2)| follows from F ≤∧−disc

disp G and/or F ≤∨−disc
disp G for all

F, G ∈ D0, this would heavily simplify the analysis of these dispersion measures. However,
the following counterexample proves that this implication does not hold. Note that this does
not necessarily imply that any of the dispersion measures mentioned above do not preserve
the discrete dispersive orders.

Let F, G ∈ D0 be defined by

P(X = 0) =1
2 , P(X = 1) = P(X = 2) = 1

4 ,

P(Y = 0) = 3
8 , P(Y = 1) = P(Y = 2) = 1

4 , P(Y = 3) = 1
8

(see upper panel of Figure 7.6). It follows F (DF ) = {1
2 , 3

4}, G(DG) = {3
8 , 5

8 , 7
8} and the

indexing sets of F and G are A = {1, . . . , 3} and B = {1, . . . , 4}, respectively. The medians
are given by F −1(1

2) = 0 and G−1(1
2) = 1 with F (F −1(1

2)) = 1
2 and G(G−1(1

2)) = 5
8 . We

obtain
R(⇋) = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4)}.

By combining this with the jump heights given in the definition of F and G, it is easy to see
that F ≤disc

D−pm G holds. Since, furthermore, xa − xa−1 = 1 = yb − yb−1 for all (a, b) ∈ A × B,
i.e. F, G ∈ LD with defining distance 1, condition (7.3) is satisfied. This implies F ≤∧−disc

D−supp G
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Figure 7.6.: Illustration of the given counterexample for the implication F ≤∨−disc
disp G ⇒

|X − F −1(1
2)| ≤st |Y − G−1(1

2)|. Upper panel: Cdf’s. Central panel: Cdf’s of the
absolute deviations from the medians. Lower panel: Difference of the cdf’s in the
central panel.

as well as F ≤∨−disc
D−supp G, which, in turn, implies F ≤∧−disc

disp G and F ≤∨−disc
disp G. Now let

t ∈ [1, 2). It follows

H|X−F −1( 1
2 )|(t) = P(|X − 0| ≤ t) = P(X ≤ t) = P(X = 0) + P(X = 1) = 3

4
<

7
8 = P(Y = 0) + P(Y = 1) + P(Y = 2)

= P(1 − t ≤ Y ≤ 1 + t) = P(|Y − 1| ≤ t) = H|Y −G−1( 1
2 )|(t)

(see lower tow panels of Figure 7.6). This proves that neither F ≤∧−disc
disp G nor F ≤∨−disc

disp G

implies |X − F −1(1
2)| ≤st |Y − G−1(1

2)|.

Another dispersion order, which is weaker than ≤disp for continuous distributions, is the
dilation order ≤dil. It is introduced in Definition 2.18 and Example 2.21b), and it is shown to
be a weakening of ≤disp in Proposition 2.20b) and Example 2.21b). Throughout Chapter 3,
the dilation order is often used as an intermediate step in showing that a certain dispersion
measure (e.g. the standard deviation) preserves the dispersive order ≤disp. Hence, proving
that the discrete dispersive orders also imply the dilation order is very helpful for Section
7.4. For its use in the following results, recall that the dilation order is characterized by the
corresponding stop-loss transforms via (2.12).
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The proof of the implication F ≤disp G ⇒ F ≤dil G given in Proposition 2.20b) makes use
of the intersection criteria for the dispersive order. Specifically, it is first proved that, under
the assumption of equal means, F ≤disp G implies that F and G intersect exactly once with
F being smaller than G before the intersection and larger afterwards (see Proposition 2.17b)).

The fact that the discrete dispersive orders also imply the dilation order is proved in a
similar way. However, the intersection criterion in this case is not as simple as for ≤disp. The
following lemma gives the corresponding result, which is the discrete analogue of Proposition
2.17b).

Lemma 7.32. Let F, G ∈ D0 with F ̸= G have finite and coinciding means and satisfy
F ≤∧−disc

disp G. Then:

a) ∃(a, b) ∈ A × B : F (xa−1) ≤ G(yb−1) ≤ F (xa), yb−1 < xa ≤ yb.

b) One of the following two statements is true:

(i) ∃(a, b) ∈ A × B : F (xa) = G(yb), yb < xa, xa+1 ≤ yb+1 or

(ii) ∃(a, b) ∈ A × B : F (xa−1) < G(yb−1) < F (xa), yb−1 < xa ≤ yb.

Proof. Let X ∼ F , Y ∼ G and, as assumed E[X] = E[Y ] with F ̸= G.

a) For all a ∈ A, define the set Ba = {b ∈ B : F (xa−1) ≤ G(yb−1) ≤ F (xa)}. Note
that, for all a ∈ A, Ba ̸= ∅ holds. Otherwise, there would exist a b ∈ B such that
G(yb−1) < F (xa−1) < F (xa) < G(yb), yielding qb > pa in spite of a ⇋ b and thus
contradicting F ≤∧−disc

disp G. With similar reasoning, Bmin A ̸= ∅ follows (provided that
the minimum exists). We now prove part a) by contradiction and therefore assume that
xa ≤ yb−1 or yb < xa holds for all b ∈ Ba and all a ∈ A. This is contradicted by case
distinction.

Case 1: xa ≤ yb−1 ∀(a, b) ∈
⋃

a∈A ({a} × Ba)
Let a ∈ A. Obviously, a ⇋ b holds for all b ∈ Ba, except if G(yb−1) = F (xa). More
precisely, if there exists a b ∈ B such that F (xa−1) = G(yb−1), then {b ∈ B : a ⇋

b} ⊆ Ba. Otherwise, we have {b ∈ B : a ⇋ b} ⊆ Ba ∪ {min Ba − 1}. Overall,
xa ≤ yb follows for all (a, b) ∈ R(⇋) ∩ (A × B). (This is because, for all a ∈ A, we
have xa ≤ yb−1 < yb for b ∈ Ba and xa ≤ ymin Ba−1 by assumption.)

Now, let a = min A and assume that this minimum exists. Similarly as before, we
have

{b ∈ B : a ⇋ b} ⊆ Ba ∪ {min Ba − 1} = Ba ∪ {min B}

and we can infer xa ≤ yb for all (a, b) ∈ R(⇋) ∩ ({min A} × B). Combined with the
results for a ∈ A, it follows that xa ≤ yb holds for all (a, b) ∈ R(⇋). Furthermore,
at least one of these inequalities is strict since equality for all these pairs would
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imply F = G (see Lemma A.12 and Proposition 3.3a)). It follows

0 = E[Y ] − E[X] =
∑

(a,b)∈R(⇋)
r(a,b)(yb − xa) > 0,

a contradiction.

Case 2: yb < xa ∀(a, b) ∈
⋃

a∈A{a} × Ba

Let a ∈ A. Analogously to Case 1, it can be shown that {b ∈ B : a ⇋ b} ⊆
Ba ∪ {min Ba − 1}. If b ∈ Ba, yb < xa holds by assumption; if b = min Ba − 1,
yb < ymin Ba < xa holds. Overall, we have yb < xa for all (a, b) ∈ R(⇋), yielding

0 = E[X] − E[Y ] =
∑

(a,b)∈R(⇋)
r(a,b)(xa − yb) > 0, (7.33)

a contradiction.

The remaining cases all consist of xa ≤ yb−1 holding for some pairs (a, b) ∈
⋃

a∈A{a}×Ba

and yb < xa holding for others. For that, we order all these pairs from low to high, or,
in other words, primarily by a ∈ A and secondarily by b ∈ Ba, i.e.

. . . , (a − 1, min Ba−1), . . . , (a − 1, max Ba−1), (a, min Ba), . . . , (a, max Ba), . . . .

This gives us three possible kinds of successive pairs. The first one is (a, b), (a, b + 1),
where a ∈ A and b, b+1 ∈ Ba (denoted by (P1)). Both the second and the third kind are
of the form (a, max Ba), (a + 1, min Ba+1) for an a ∈ A. If G(ymax Ba−1) ∈ F (DF ), then
max Ba = min Ba+1 holds by definition of Ba. This gives the second kind of successive
pairs, which is of the form (a, b), (a+1, b), where a ∈ A and G(yb−1) = F (xa) (denoted by
(P2)). (Note that G(ymax Ba−1) = F (xa−1) is not possible because G(ymax Ba) > F (xa)
then contradicts qmax Ba ≤ pa and therefore a ⇋ max Ba, and G(ymax Ba) ≤ F (xa)
then contradicts the maximality of max Ba.) If G(ymax Ba−1) /∈ F (DF ), then max Ba =
min Ba+1 − 1 holds. This gives us the third kind of successive pairs, which is of the form
(a, b), (a + 1, b + 1), where a ∈ A and b = max Ba (denoted by (P3)).

For each of these kinds of successive pairs, xa ≤ yb−1 can hold for the former and yb < xa

can hold for the latter or vice versa. Overall, this gives us six cases that remain to be
considered.

Case 3: (P1) with xa ≤ yb−1 and yb+1 < xa

This directly gives yb+1 < xa ≤ yb−1, a contradiction.

Case 4: (P1) with yb < xa and xa ≤ yb

These two statements directly contradict each other.

Case 5: (P2) with xa ≤ yb−1 and yb < xa+1

Since G(yb−1) = F (xa) holds for any successive pair of index pairs of the second
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kind, it follows a + 1 ⇋∧ b. Then,

xa+1 = xa + (xa+1 − xa) ≤ yb−1 + (xa+1 − xa) ≤ yb−1 + (yb − yb−1) = yb, (7.34)

which contradicts the assumption yb < xa+1.

Case 6: (P2) with yb < xa and xa+1 ≤ yb−1

This directly gives xa+1 ≤ yb−1 < yb < xa, a contradiction.

Case 7: (P3) with xa ≤ yb−1 and yb+1 < xa+1

Since G(yb−1) < F (xa) < G(yb) holds for any successive pair of pairs of the third
kind, it follows from Proposition 7.19a) that a + 1 ⇋∧ b. Then, (7.34) again holds,
contradicting the assumption yb < yb+1 < xa+1.

Case 8: (P3) with yb < xa and xa+1 ≤ yb

This directly gives xa+1 ≤ yb < xa, a contradiction.

Now, we have considered all relevant cases and have thereby proved part a).

b) We prove this part by showing that (i) follows, if (ii) does not hold. This is done in
several steps.

Step 1: If (ii) does not hold, part a) yields that there exists a pair (a, b) ∈ A × B such
that F (xa) = G(xb) and yb < xa or there exists a pair (a, b) ∈ A × B such that
F (xa) = G(xb) and xa+1 ≤ yb+1.

Step 2: In the first case from Step 1, it directly follows from b ∈ B and F (xa) = G(yb)
that a ∈ A. Then, either xa+1 ≤ yb+1 holds (in which case we are finished) or
yb+1 < xa+1. Hence, assume yb+1 < xa+1. We proceed by showing b + 1 ∈ B.
We prove this by contradiction and therefore assume G(yb+1) = 1, from which
1 = F (xa+1) ≥ G(yb+1) directly follows because of a+1 ⇋ b+1. Thus, pa+1 = qb+1

holds, which yields R(⇋) ∩ ({a + 1} × B) = {(a + 1, b + 1)}. We now seek to show
yβ < xα for all (α, β) ∈ R(⇋), which then implies E[Y ] < E[X] in the same way as
in (7.33) and thereby concludes the proof of b + 1 ∈ B by contradiction. Obviously,
yβ < xa is true for all β ∈ B such that a ⇋ β because of yb < xa and since all such
β’s are no larger than b. From Proposition 7.19a), it follows that there exists a
β0 ≤ b − 1 such that a ⇋∧ β0 + 1 with β0 being the largest element of B, for which
a − 1 ⇋ β0 holds. (This can be achieved by defining β0 = min NNG

F (a) − 1.) From
this,

yβ̃0
< yβ0 = yβ0+1 − (yβ0+1 − yβ0) ≤ yβ0+1 − (xa − xa−1)

≤ yb − (xa − xa−1) < xa − (xa − xa−1) = xa−1

follows for all β̃0 ∈ B such that a − 1 ⇋ β̃0. This can be recursively continued for
a − 2, a − 3, . . . as long as these indices are in A. Overall, this proves that yβ < xα
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holds for all (α, β) ∈ R(⇋).

Step 3: Still assuming yb+1 < xa+1, it follows from Step 2 that b + 1 ∈ B. Now, if
F (xa+1) = 1, along with yβ < xa+1 for all β > b + 1, E[Y ] < E[X] follows similarly
as before, leading to a contradiction. Assuming F (xa+1) = 1 along with the
existence of a β > b + 1 such that yβ−1 < xa+1 ≤ yβ yields that (a + 1, β) satisfies
condition (ii), which also poses a contradiction. Hence, F (xa+1) < 1 and a + 1 ∈ A.

Step 4: Since (ii) is assumed to not hold, yβ+1 < xa+1 follows for all β ∈ B with F (xa) <

G(yβ) < F (xa+1). Hence, there exists a β1 ∈ B with F (xa+1) ≤ G(yβ1) < F (xa+2)
and yβ1 < xa+1 < xa+2. Now we can use our earlier procedure recursively in the
following sense. If G(yβ1) > F (xa+1), yβ1+1 < xa+2 follows since (ii) does not
hold. This gives us the setting from the beginning of Step 4 with (a, β) replaced
by (a + 1, β1). Here, a + 2 ∈ A is guaranteed since otherwise, E[Y ] < E[X] would
follow. This can be repeated recursively as long as the strict inequality analogous
to G(yβ1) > F (xa+1) is satisfied. The recursion has to stop at some point (in the
sense that equality holds) since otherwise, E[Y ] < E[X] would follow.

If G(yβ1) = F (xa+1) holds (or an analogous inequality later in the recursion), we
can reuse the proof from Step 2 onwards, replacing the pair (a, b) by (a + 1, β1).
With this new recursion, we end up at some point with a pair that satisfies condition
(i) since, otherwise, the contradiction E[Y ] < E[X] would follow again.

Step 5: It remains to consider the second case in Step 1, so that there exists a pair
(a, b) ∈ A × B such that xa+1 ≤ yb+1. Here, we can use the exact same procedure
as in Steps 2–4, only going through the cdf’s F and G in the opposite direction.
The fact that the inequality xa+1 ≤ yb+1 is not a strict inequality does not change
anything, because if equality held every time, we would end up with F = G, a
contradiction. (In Steps 2–4, the contradiction E[Y ] < E[X] always follows from
yβ < xα holding for all (α, β) ∈ R(⇋). Hence, if the inequality is not strict,
E[X] = E[Y ] can only occur if yβ = xα holds for all (α, β) ∈ R(⇋). However, in
that case, Lemma A.12 states that F =st G would follow, which is equivalent to
F = G.)

As mentioned before, the statement of Lemma 7.32 is the discrete analogue of an intersection
of F and G in the continuous case, which is the transition from G being larger to F being
larger. Note that part b) is just a more refined version of part a) and distinguishes between
two kinds of intersection equivalents, both of which are depicted schematically in Figure 7.7.

If condition (i) is fulfilled, the images of the two (standardized) cdf’s share a common
element and the generalized intersection occurs as both cdf take that value. This means that
(the more dispersed cdf) G is larger than F before said constant interval. After the constant
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Figure 7.7.: Different variations of ’generalized intersections’ between two standardized (w.r.t.
the mean) cdf’s F and G with F ≤∧−disc

disp G, as specified in Lemma 7.32b). Left
panels: condition (i). Right panels: condition (ii).

interval, G is either smaller than F right away (as in the upper left panel of Figure 7.7) or the
two cdf’s coincide for a while before G eventually becomes smaller (as in the lower left panel).
The specific formulation of condition (i) (and also condition (ii)) that allows equality on the
right side but not on the left is somewhat arbitrary in the sense that one could swap the
requirements without invalidating the result. Although this potentially results in a different
pair (a, b) being picked, that pair could be used in the same way going forward. Note that if
equality was disallowed on both sides, Lemma 7.32 would no longer be true.

If condition (ii) is fulfilled, a jump of F and a constant interval of G form a cross (or a kind
of degenerated cross if equality holds on the right side as discussed in the previous paragraph).
G is either larger than F before that cross and smaller after (as exemplified in the upper right
panel of Figure 7.7) or this kind of situation can occur repeatedly (as exemplified in the lower
right panel). The latter situation is the main difficulty in the proof of the following theorem.

Theorem 7.33. Let F, G ∈ D0 have finite means. Then, F ≤∧−disc
disp G implies F ≤dil G.

Proof. Assume without restriction that E[X] = E[Y ] and F ̸= G. We proceed by showing
F ≤dil G in cases (i) and (ii) of Lemma 7.32b), adopting the notation from there. According
to the assumption E[X] = E[Y ], the characterization (2.12) of the dilation order and the
identity

E[(X − t)+] = E[X − t] + E[(X − t)−] = E[X] − t + E[(X − t)−]
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for all t ∈ R, F ≤dil G is equivalent to

E[(X − t)+] ≤ E[(Y − t)+] ∀t ≥ t0 and E[(X − t)−] ≤ E[(Y − t)−] ∀t ≤ t0 (7.35)

for any t0 ∈ R.

(i) Let (a, b) be the pair, the existence of which is guaranteed by (i) in Lemma 7.32b) and
choose t0 = xa+xa+1

2 . The first inequality in (7.35) is now equivalent to

∑
(α,β)∈R(⇋)

r(α,β)((yβ − t)+ − (xα − t)+) ≥ 0. (7.36)

for all t ≥ t0. The summand corresponding to any pair (α, β) ∈ R(⇋) with α ≤ a is
zero because xα < t0 and yβ < t0 hold in that case. So, let α ≥ a + 1, also yielding
β ≥ b + 1. For all k > a + 1, there exists exactly one ℓk > b + 1 with G(yℓk−1) ≤ F (xk−1)
and k ⇋∧ ℓk, according to Proposition 7.19a). (ℓk > b + 1 holds because a + 1 is the
only element of A, for which a + 1 ⇋∧ b + 1 holds, since F (xa) = G(xb).) Furthermore,
a+1 < k −1 < k implies b+1 < ℓk−1 < ℓk because of G(yℓk−1−1) ≤ F (xk−2) < G(yℓk−1)
(see Lemma 7.18a)); thus, the ℓk’s are pairwise distinct. Hence, for all α > a + 1, there
exists a β0 > b + 1 with G(yβ0−1) ≤ F (xα−1) and

xα − xa+1 =
α∑

k=a+2
(xk − xk−1) ≤

α∑
k=a+2

(yℓk
− yℓk−1) ≤

β0∑
ℓ=b+2

(yℓ − yℓ−1) = yβ0 − yb+1.

Because of G(yβ0−1) ≤ F (xα−1), β ≥ β0 holds for all β ∈ B such that α ⇋ β. Overall,
all such β satisfy

yβ ≥ yβ0 = (yβ0 − yb+1) + yb+1 ≥ (xα − xa+1) + yb+1 ≥ (xα − xa+1) + xa+1 = xα,

yielding (yβ − t)+ ≥ (xα − t)+ for all t ≥ t0. Hence, (7.36) is true. The second inequality
in (7.35) is shown completely analogous by extending the inequality yb < xa down the
cdf’s F and G instead of extending the inequality xa+1 ≤ yb+1 up the cdf’s.

(ii) Let (a, b), (α, β) ∈ A × B satisfy condition (ii) with α − 1 > a, which yields β − 1 > b.
This implies (a, b − 1), (α, β − 1) ∈ R(⇋) as well as yb−1 < xa ≤ yb < yβ−1 < xα ≤ yβ,
which yields xα − xa > yβ−1 − yb. According to (7.20) in Part 1 of the proof of Theorem
7.30, α − a = (β − 1) − b + 1 = β − b follows. Part 2 of the same proof then implies

R(⇋∧) ⊇ {(a + 1, b), (a + 1, b + 1), (a + 2, b + 1), (a + 2, b + 2), . . .

. . . , (α − 2, β − 2), (α − 1, β − 2), (α − 1, β − 1), (α, β − 1)}

(see (7.21), (7.22), (7.25) and (7.26)). Obviously, α ⇋ β also holds. Thus, for all
k ∈ {1, . . . , α − a} = {1, . . . , β − b}, we have a + k ⇋∧ b + k − 1 and a + k ⇋∧ b + k.



196 Chapter 7. Discrete Dispersive Orders

Let k ∈ {1, . . . , α − a − 1}. Now G(yb+k−1) ∈ (F (xa+k−1), F (xa+k)) follows from
a + k ⇋ b + k − 1 and a + k ⇋ b + k. Furthermore,

xa+k = xa +
k∑

j=1
(xa+j − xa+j−1) ≤ yb +

k∑
j=1

(xa+j − xa+j−1)

≤ yb +
k∑

j=1
(yb+j − yb+j−1) = yb+k

and

xa+k = xα −
α−a∑

j=k+1
(xa+j − xa+j−1) > yβ−1 −

α−a∑
j=k+1

(xa+j − xa+j−1)

≥ yβ−1 −
β−b∑

j=k+1
(yb+j−1 − yb+j−2) = yb+k−1.

Overall, the pair (a + k, b + k) satisfies condition (ii) for all k ∈ {1, . . . , α − a − 1}.

The entirety of the proof for case (ii) so far states that, if there are multiple pairs of
indices satisfying condition (ii), they are of the form . . . , (a, b), (a + 1, b + 1), . . .. Assume
now that this chain of pairs has a lower end, so that there exists a pair (a, b) ∈ A × B

that satisfies condition (ii), but the pair (a − 1, b − 1) does not. Additionally, let
(α, β) ∈ R(⇋) be a lower pair than (a, b) in the sense that the interval measured by
r(α,β) is lower on the unit interval than the interval measured by r(a,b). We seek to
prove yβ < xα for all such pairs. If xa − xα ≤ yb−1 − yβ holds, then yβ < xα directly
follows because of yb−1 < xa. According to (7.20) in Part 1 of the proof of Theorem
7.30, a − α = b − β = (b − 1) − β + 1 is a necessary condition for xa − xα > yb−1 − yβ.
In that case, Part 2 of the same proof implies that the values of F and G alternate in
the sense of F (xα−1) < G(yβ−1) < F (xα). If yβ < xα already holds, we are done; if
yβ ≥ xα holds along with xα > yβ−1, the pair (α, β) satisfies condition (ii), posing a
contradiction. Therefore, assume xα ≤ yβ−1. Again invoking (7.20), this is only possible
if a − α = (b − 1) − (β − 1) + 1 = b − β + 1, which contradicts a − α = b − β. Overall,
it follows that yβ < xα holds for all pairs (α, β) ∈ R(⇋) lower than the chain of pairs
satisfying condition (ii). Analogously, it can be shown that xα ≤ yβ holds for all pairs
(α, β) ∈ R(⇋) higher than the chain of pairs satisfying condition (ii).

Due to the proven structure of this chain, we can find a unique indexing set C ∈
{{0, . . . , n} : n ∈ N0} ∪ {N0, −N0,Z} and an initial pair (a, b) ∈ A × B such that
((a + c, b + c))c∈C is the sequence of all pairs satisfying condition (ii). We now define
the following two mappings:

m̃pm : C → (0, 1), c 7→ G(yb+c−1) − F (xa+c−1)
F (xa+c) − F (xa+c−1) ,



7.3. Further Properties of the Discrete Dispersive Orders 197

m̃supp : C → (0, 1], c 7→ xa+c − yb+c−1
yb+c − yb+c−1

Both mappings can be extended to Z by assigning the value 1 (to both), if the argument
is smaller than the minimum of C, and assigning the value 0 (to both), if the argument
is larger than the maximum of C. We now show that both mappings are decreasing on
C. For that, let c, c + 1 ∈ C and define dF = min{F (xa+c) − F (xa+c−1), F (xa+c+1) −
F (xa+c)} as well as dy = min{yb+c − yb+c−1, yb+c+1 − yb+c}. Note that, because of

F (xa+c−1) < G(yb+c−1) < F (xa+c) < G(yb+c) < F (xa+c+1),

a+ c ⇋ b+ c, a+ c+1 ⇋ b+ c follows as well as a+ c+1 ⇋∧ b+ c, a+ c+1 ⇋∧ b+ c+1.
Then,

m̃pm(c + 1) − m̃pm(c) = G(yb+c) − F (xa+c)
F (xa+c+1) − F (xa+c)

+ F (xa+c) − G(yb+c−1)
F (xa+c) − F (xa+c−1) − 1

≤ G(yb+c) − G(yb+c−1)
dF

− 1 ≤ 0, (7.37)

m̃supp(c + 1) − m̃supp(c) = xa+c+1 − yb+c

yb+c+1 − yb+c
+ yb+c − xa+c

yb+c − yb+c−1
− 1

≤ xa+c+1 − xa+c

dy
− 1 ≤ 0.

It follows that the mappings

mpm : C → (0, ∞), c 7→
(
m̃pm(c)−1 − 1

)−1
= G(yb+c−1) − F (xa+c−1)

F (xa+c) − G(yb+c−1) ,

msupp : C → (0, ∞], c 7→
(
m̃supp(c)−1 − 1

)−1
= xa+c − yb+c−1

yb+c − xa+c

are also decreasing. Now, define the mapping

m : C → (0, ∞], c 7→ mpm(c) · msupp(c) = (G(yb+c−1) − F (xa+c−1))(xa+c − yb+c−1)
(F (xa+c) − G(yb+c−1))(yb+c − xa+c)

.

m can also be extended to the domain Z by assigning m(c) = ∞ if c < min C and
m(c) = 0 if c > max C. Furthermore, m inherits from mpm and msupp that it is
decreasing. Define c0 = min{c ∈ Z : m(c) ≤ 1}. Since m is monotone, the existence of
this minimum follows, if we can show that the range of m is neither a subset of [0, 1]
nor a subset of (1, ∞]. To prove this, first assume that m(c) ≤ 1 for all c ∈ Z. It follows
inf C = −∞, which implies C ∈ {−N0,Z}. If C = −N0, yβ ≥ xα holds for all pairs
(α, β) ∈ R(⇋) higher than (a, b). Hence, for C ∈ {−N0,Z},

E[Y ] − E[X] ≥
sup C∑

c=inf C

r(a+c,b+c)(yb+c − xb+c) + r(a+c,b+c−1)(yb+c−1 − xa+c)
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=
sup C∑

c=inf C

(F (xa+c) − G(yb+c−1))(yb+c − xa+c) (7.38)

− (G(yb+c−1) − F (xa+c−1))(xa+c − yb+c−1).

The non-negativity of the c-th summand in (7.38) is equivalent to m(c) ≤ 1, which was
assumed for all c ∈ C. The assumption E[X] = E[Y ] now implies m(c) = 1 for all c ∈ C.
Because of inf C = −∞, the sequence (F (xa+c) − F (xa+c−1))c∈C converges to zero as
c → −∞. This means that there exists a c ∈ C such that F (xa+c−1) − F (xa+c−2) <

F (xa+c)−F (xa+c−1), meaning that the first inequality in (7.37) is strict. This contradicts
that m̃pm is constant on C and therefore also that m(c) = 1 holds for all c ∈ C. Overall,
m(c) ≤ 1 cannot hold for all c ∈ Z. Since assuming m(c) > 1 for all c ∈ Z analogously
leads to a contradiction, we have proved that the minimum in the definition of c0 exists.

Define (a0, b0) = (a + c0, b + c0). We now prove F ≤dil G by showing (7.35), which is
equivalent to

∑
(α,β)∈R(⇋)

r(α,β)((yβ − t)+ − (xα − t)+) ≥ 0 ∀t ≥ t0 and (7.39)

∑
(α,β)∈R(⇋)

r(α,β)((yβ − t)− − (xα − t)−) ≥ 0 ∀t ≤ t0. (7.40)

We proceed via case distinction.

Case 1: c0 − 1, c0 ∈ C

In this case, we choose t0 = yb0−1. It holds that

yb0−2 < xa0−1 ≤ yb0−1 < xa0 ≤ yb0 ,

F (xa0−2) < G(yb0−2) < F (xa0−1) < G(yb0−1) < F (xa0).

Hence, (a0, b0 −1) is the lowest pair in R(⇋) such that the corresponding summand
in (7.39) is not zero. The next pairs in R(⇋) are then (a0, b0), (a0 + 1, b0), (a0 +
1, b0 + 1), . . . as long as the pairs of the form (a0 + k, b0 + k), k ∈ N, still satisfy
condition (ii). If max C exists, yβ ≥ xα holds for any pair (xα, yβ) ∈ R(⇋) higher
than (a + max C, b + max C) (as was shown earlier). Therefore,

0 ≤
max C∑
c=c0

[
r(a+c,b+c)((yb+c − t)+ − (xa+c − t)+) (7.41)

+ r(a+c,b+c−1)((yb+c−1 − t)+ − (xa+c − t)+)
]

=
max C∑
c=c0

[
(F (xa+c) − G(yb+c−1)) ((yb+c − t)+ − (xa+c − t)+) (7.42)
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− (G(yb+c−1) − F (xa+c−1)) ((xa+c − t)+ − (yb+c−1 − t)+)
]

for all t ≥ t0 is sufficient to show (7.39). We now consider each summand in (7.42)
separately. First, in the case t < yb+c−1, the summand is equal to

(F (xa+c) − G(yb+c−1)) (yb+c − xa+c) − (G(yb+c−1) − F (xa+c−1)) (xa+c − yb+c−1) .

(7.43)
The non-negativity of this is equivalent to m(c) ≤ 1, which is true since c ≥ c0. In
the case yb+c−1 ≤ t ≤ xa+c, the summand is equal to

(F (xa+c) − G(yb+c−1)) (yb+c − xa+c) − (G(yb+c−1) − F (xa+c−1)) (xa+c − t) ,

which is no smaller than (7.43) and therefore also non-negative. In the case
xa+c ≤ t ≤ yb+c, the summand is equal to (F (xa+c) − G(yb+c−1)) (yb+c − t), which
is non-negative because both factors are. Finally, in the case t > yb+c, the summand
is zero. Overall, inequality (7.41) is satisfied, leaving (7.40) to be shown. For that,
proceeding similarly to before, it is sufficient to show

0 ≤
c0−1∑

c=min C

[
(F (xa+c) − G(yb+c−1)) ((yb+c − t)− − (xa+c − t)−)

− (G(yb+c−1) − F (xa+c−1)) ((xa+c − t)− − (yb+c−1 − t)−)
]

(7.44)

for all t ≤ t0. We again only consider the c-th summand, beginning with the case
t > yb+c, in which it is equal to negative (7.43). The non-negativity of that term is
equivalent to m(c) ≥ 1, which is true since c < c0. The non-negativity of the c-th
summand in the remaining cases follows in a similar fashion. Hence, both (7.39)
and (7.40) are satisfied, yielding F ≤dil G.

Case 2: c0 − 1 = max C

In this case, (a0 − 1, b0 − 1) ∈ A × B obviously holds and we choose t0 = xa0−1.
Because of yb0−2 < xa0−1 ≤ yb0−1, only (a0 − 1, b0 − 1) and pairs (α, β) ∈ R(⇋)
higher than (a0 − 1, b0 − 1) have non-zero summands in (7.39). However, since
xα ≤ yβ and, consequently, (xα − t)+ ≤ (yβ − t)+ holds for all those pairs, (7.39)
is true.

Because of yb0−2 < xa0−1 ≤ yb0−1, the highest pair in R(⇋) with a non-zero
summand in (7.40) is (a0 − 1, b0 − 2). As before, all pairs (α, β) ∈ R(⇋) below the
chain of pairs in R(⇋) satisfying condition (ii) can be disregarded as they satisfy
yβ < xα. It follows that (7.44) is a sufficient condition for (7.40) and it can be
shown analogously to Case 1 as the chain indexed by C has the same properties
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Figure 7.8.: Exemplary situation in the proof of Theorem 7.33, part (ii), Case 1. (F and G
are assumed to be standardized w.r.t. the mean.)

from c0 − 1 downwards. (In fact, condition (7.44) can even be weakened since it
includes the non-positive summand associated with the pair (a0 − 1, b0 − 1), which
is not relevant here.)

Case 3: c0 = min C

For this case, we can proceed analogously to Case 2 after choosing t0 = xa0 and by
flipping the procedure upside-down.

Corollary 7.34. Let F, G ∈ D0 have finite means. Then, F ≤∨−disc
disp G implies F ≤dil G.

The crucial inequalities (7.35) the proof of Theorem 7.33 are easily shown to be satisfied,
if G is larger than (or equal to) F for t ≤ t0 and G is smaller than F for t ≥ t0. For all
situations depicted in Figure 7.7 except for the lower right panel, t0 can be chosen in such a
way that this holds. In particular, this is always possible in case (i), making the proof in this
case rather easy.

The only situation left to be considered is the one shown in the lower right panel of Figure
7.7, where F and G intersect multiple times. The structure of those intersections can be
further narrowed down before then being divided in three cases in the proof. The line of
reasoning in Case 1 is illustrated in Figure 7.8. The main focus lies on the ratio between the
two areas between each pair of vertical lines. If the left area is divided by the right area, the
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Figure 7.9.: Exemplary situation in the proof of Theorem 7.33, part (ii), Cases 2 and 3, if
t0 = yb0−1 was chosen instead of t0 = xa0−1 and t0 = xa0 . (F and G are assumed
to be standardized w.r.t. the mean.)

resulting ratio decreases as the corresponding index (c0 − 2, c0 − 1, c0, . . .) increases. (In the
proof, the ratio for an index c is denoted by m(c).) Now, t0 is chosen such that this ratio is
smaller than 1 on the left side of t0 and larger than or equal to 1 on the right side of t0. In
Figure 7.8, the smaller area of each pair is filled in red and the larger one is filled in green.
As noted in (7.42), for all t ≥ t0, the sum of the green areas on the right side of t minus the
sum of the red areas on the right side of t is required to be non-negative. For t = t0, this is
obviously true since the ratio between the green and the red areas is no smaller than 1 for
each index. If t is increased from t0 towards ∞, the red areas are always reduced before the
corresponding green areas are. Thus, the non-negativity of (7.42) stays intact. The situation
on the left side of t0, so for t ≤ t0, is analogous.

This begs the question why Cases 2 and 3 in part (ii) of the proof of Theorem 7.33 need
to be considered separately and cannot be included in the line of reasoning illustrated by
Figure 7.8. This is illustrated in Figure 7.9, where the left panel is exemplary for Case 2 (as
the chain of intersections of F and G ends at index c0, which is chosen as before) and the
right panel is exemplary for Case 3 (as the chain of intersections of F and G begins at index
c0). In Case 3, if t0 = yb0−1 is chosen as before, it is possible for F to exhibit more steep
jumps on the right side of t0, thus expanding the corresponding red area to be larger than the
corresponding green area. This is possible because the chain of intersections of F and G ends
at index c0 and does not extend any further below that index. The problem can be solved
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by choosing t0 = xa0 instead. On the left side of t0, F is then smaller than G; on the right
side of t0, there is an additional green area before the first full pair of red and green areas,
once again ensuring the non-negativity required in (7.42). The line of reasoning in Case 2 is
analogous, just going down instead of up.

7.4. Compatibility with Popular Dispersion Measures

In the literature, applying popular dispersion measures to discrete distributions is commonplace.
Even though dispersion was measured long before an axiomatic framework was created (see,
e.g., Kourkoulos and Tzanakis, 2010), such a widely used concept should definitely not lack a
rigorous foundation.

Throughout Chapter 3, a number of dispersion measures are introduced in a continuous
setting, based on the order-based approach given in Definition 3.1b). Part of this definition
is that a dispersion measure preserves the dispersive order ≤disp. This order is chosen for
this role because of its basic interpretation of dispersion that does not favour certain kinds of
measures. The discrete dispersive orders ≤∧−disc

disp and ≤∨−disc
disp are constructed in such a way

that they are also the strongest reasonable dispersion orders and do not favour any specific
type of dispersion measure. Furthermore, the original and discrete dispersive orders compare
two distribution in a pointwise way while ≤dil, as an example of another dispersion measure,
only considers means. This allows for probability mass to be smeared and for deviations
in the wrong direction to be compensated. Hence, the orders ≤∧−disc

disp and ≤∨−disc
disp are the

canonical choice as basic tools for the assessment of discrete dispersion measures. This yields
the following definition.

Definition 7.35. Let Q ⊆ D0. Then, a mapping τ : Q → [0, ∞] is said to be a discrete
dispersion measure, if

(DD1) τ(aX + b) = |a| · τ(X) for all a, b ∈ R and X ∼ Q,

(DD2) τ(F ) ≤ τ(G) for all F, G ∈ Q with F ≤∧−disc
disp G.

Note that any discrete dispersion measure according to Definition 7.35 is also a discrete
dispersion measure with respect to ≤∨−disc

disp as that order is stronger than ≤∧−disc
disp . Next, we

define a number of potential discrete dispersion measures, all of which are also introduced in
Chapter 3 under different names.

Definition 7.36. For F ∈ P, let X, X ′ ∼ F be independent and let eX : (0, 1) → R be the
corresponding expectile function in the case F ∈ L1.

a) The mapping
SD : L2 → [0, ∞), F 7→

√
E[(X − E[X])2]

is said to be the standard deviation of the corresponding distribution. On PI , it coincides
with τM (see Theorem 3.6b)).
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b) The mapping
GMD : L1 → [0, ∞), F 7→ E[|X − X ′|]

is said to be the Gini mean difference of the corresponding distribution. On PI , it
coincides with 2τLM (see Theorem 3.7b)).

c) The mapping
MAD : L1 → [0, ∞), F 7→ E[|X − E[X]|]

is said to be the mean absolute deviation from the mean of the corresponding distribution.
On PI , it coincides with τEL (see Corollary 3.25).

d) The mapping
MDMAD : L1 → [0, ∞), F 7→ E[|X − F −1(1

2)|]

is said to be the mean absolute deviation from the median of the corresponding distribu-
tion. On PI , it coincides with τIQ (see (3.4)).

e) For 0 < α < β < 1, the mapping

IQR(α, β) : P → [0, ∞), F 7→ F −1(β) − F −1(α)

is said to be the (α, β)-interquantile range of the corresponding distribution. For α ∈
(0, 1

2), β = 1 − α and on PI , it coincides with τα
Q (see Theorem 3.8b)). IQR = IQR(1

4 , 3
4)

is called the interquartile range.

f) For 0 < α < β < 1, the mapping

IER(α, β) : L1 → [0, ∞), F 7→ eX(β) − eX(α)

is said to be the (α, β)-interexpectile range of the corresponding distribution. For
α ∈ (0, 1

2), β = 1−α and on PI , it coincides with τα
E (see Corollary 3.24b)). Furthermore,

we define IER = IER(1
4 , 3

4).

For the remainder of Section 7.4, we consider the restrictions of these measures to D0.
Before considering the crucial property (DD2) for the above mappings, we first briefly discuss
whether they satisfy (DD1). While the requirement in (DD1) coincides with that in (D1), the
different underlying sets of distributions make a difference for a number of mappings. This
is made more precise by the following result. The proof borrows an idea from the proof of
Theorem 2 in Eberl and Klar (2019, pp. 268–269).

Proposition 7.37. Let α ∈ (0, 1
2).

a) The mappings SD, GMD, MAD and IER(α, 1 − α) all satisfy property (DD1).
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b) On the set of all cdf’s F ∈ D0 satisfying F (t) > 1
2 for all t > F −1(1

2), the mapping
MDMAD satisfies property (DD1).

c) On the set of all cdf’s F ∈ D0 satisfying F (t) > p for all t > F −1(p) for p ∈ {α, 1 − α},
the mapping IQR(α, 1 − α) satisfies property (DD1).

Proof. First, the necessity of the requirement β = 1−α for the interquantile and interexpectile
ranges is obvious for reasons of symmetry. Part a) now follows from the linearity of the
expected value and from Proposition 2.22a), b), e). If τ denotes either mapping from parts
b) and c), τ(aX + b) = a · τ(X) for all a > 0, b ∈ R follows from the linearity of the quantile
function.

This leaves τ(−X) = τ(X) to be shown for the mappings in parts b) and c). This follows
from the fact that, for p ∈ (0, 1), F (t) > p for all t > F −1(p) implies H−1

−X(p) = −F −1(1 − p)
(see Eberl and Klar, 2019, p. 269).

The additional requirements in parts b) and c) of Proposition 7.37 yield that inf{t ∈ R :
F (t) ≥ p} = sup{t ∈ R : F (t) ≤ p} holds for the corresponding p ∈ {α, 1

2 , 1 − α}. This means
that all possible definitions of the p-quantile Qp

F coincide. The additional requirements would
not be necessary, if the p-quantile was instead defined by

1
2
(

inf{t ∈ R : F (t) ≥ p} + sup{t ∈ R : F (t) ≤ p}
)
,

which is often done for empirical quantiles.
The fact that most of the mappings from Definition 7.35 also satisfy property (DD2) follows

directly from Theorems 7.30 and 7.33.

Corollary 7.38. The mappings SD, MAD and GMD all satisfy property (DD2).

For SD and MAD, this follows from Theorem 7.33 since both t 7→ t2 and t 7→ |t| are
convex functions on the real numbers. For GMD, (DD2) follows from Theorem 7.30 since the
expected value is a measure of (central) location, which preserves the usual stochastic order
≤st. We can also use Theorem 7.33 to show that GMD satisfies (DD2) since F ≤dil G implies
GMD(F ) ≤ GMD(G), as proved in Ramos and Sordo (2003, p. 126, Thm. 2.2) and pointed
out by Sordo et al. (2016, p. 65). Conversely, the fact that SD satisfies (DD2) also follows
from Theorem 7.30 because of

SD(F )2 = E[X2] − E[X]2 = 1
2

(
E[X2] − 2E[X]E[X ′] + E[X ′2]

)
= 1

2E[(X − X ′)2]

for X, X ′ ∼ F independent.
It can be shown in a similar way that IER(α, β) satisfies property (DD2) for 0 < α < 1

2 <

β < 1, which includes all cases relevant for applications. This again holds due to Theorem
7.33, combined with the fact that F ≤dil G implies IER(α, β)(F ) ≤ IER(α, β)(G) for all



7.4. Compatibility with Popular Dispersion Measures 205

0 < α < 1
2 < β < 1. This implication was first shown by Bellini (2012, p. 2020, Thm. 3(b)); a

more elementary proof that also includes the reverse implication is given in Theorem 3.23 and
Corollary 3.24 of this thesis. The assumptions can be weakened to include all distributions in
D0 ∩ L1 without changing the proof.

Corollary 7.39. If 0 < α < 1
2 < β < 1, the mapping IER(α, β) satisfies property (DD2).

It remains to be determined whether the mappings IQR(α, β) and MDMAD satisfy (DD2).
Both mappings are based on quantiles, which are well-known to not be as useful for discrete
distributions as they are for continuous distributions. This is partly due to the fact that
they are not unique in the discrete case, which also proved to be problematic for (DD1).
Furthermore, quantiles only evaluate a distribution in a very local sense, which also explains
their popularity in robust measures and estimators. However, for discrete distributions, where
the probability mass in very sparse, this leads to a lack of information that is conveyed by single
evaluations of quantile functions. In accordance with these observations, the interquantile
range IQR(α, β) does generally not preserve the discrete dispersive orders, as noted in the
following result.

Theorem 7.40. For all choices 0 < α < β < 1, the mapping IQR(α, β) does not satisfy
property (DD2).

Proof. We prove this by constructing a counterexample for arbitrary values of α and β. First,
define n =

⌊
β−α

min(α,1−β)

⌋
+ 1 ∈ N and choose δ ∈

(
β−α

n , min(α, 1 − β)
)

⊆ (0, 1). The latter
interval is not empty since

n >
β − α

min(α, 1 − β) ⇔ min(α, 1 − β) >
β − α

n

holds. Note that, by definition, 0 ≤ (n − 1)δ < β − α < nδ < 1 is true. The last inequality
specifically follows from

nδ <

(⌊
β − α

min(α, 1 − β)

⌋
+ 1

)
· min(α, 1 − β)

< (β − α) + min(α, 1 − β) = 1 − max(α, 1 − β) < 1.

Further, let εp = (β−α)−(n−1)δ
2 > 0, εq = nδ−(β−α)

2 > 0. Now we define F, G ∈ D0 by
F =̂ (A, (xj , pj)j∈A) and G =̂ (B, (yj , qj)j∈B), where A = {1, . . . , n + 1} with xa = a for all
a ∈ A and B = {1, . . . , n + 2} with yb = b for all b ∈ B. Furthermore, let

p1 = α + εp, pj = δ ∀j ∈ {2, . . . , n}, pn+1 = (1 − β) + εp,

q1 = α − εq, qj = δ ∀j ∈ {2, . . . , n + 1}, qn+2 = (1 − β) − εq.
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Figure 7.10.: Illustration of the counterexample in the proof of Theorem 7.40 with α = 1
4 ,

β = 3
4 , n = 3 and δ = 1

5 ∈ (1
6 , 1

4). Hence, εp = εq = 1
20 .

For all j ∈ {1, . . . , n}, it holds that

G(yj) = α − εq + (j − 1)δ = α + β

2 + δ

(
j − 1 − n

2

)
<

α + β

2 + δ

(
j − n

2 − 1
2

)
= α + εp + (j − 1)δ = F (xj)

<
α + β

2 + δ

(
j − n

2

)
= α + εp + jδ = G(yj+1),

yielding R(⇋) = ⋃n+1
j=1 {(j, j), (j, j + 1)}. Hence, F ≤disc

D−pm G. Since F and G are both lattice
distributions with the same defining distance, it follows that F ≤∧−disc

disp G. However,

IQR(α, β)(F ) = (n + 1) − 1 = n > n − 1 = (n + 1) − 2 = IQR(α, β)(G).

An illustration of the counterexample in the proof of Theorem 7.40 is given in Figure
7.10. The statement of Theorem 7.40 also holds, if we replace ≤∧−disc

disp by ≤∨−disc
disp or ≤disc

disp in
the definition of (DD2). This is due to the fact that the distributions used in the proof of
Theorem 7.40 are lattice distributions, for which all discrete dispersive orders are equivalent
(see Corollary 7.23a)).

Theorem 7.40 implies that the interquantile range is not fit to be used as a dispersion
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measure for discrete distributions. This statement is similar to Bellini et al. (2018b, p. 1852)
suggesting that the interquantile range is not a ’true measure of variability’ because it does
not preserve the dilation order. However, as noted in Theorem 3.8b), the interquantile range
indeed measures dispersion in a meaningful way for distributions in PI . The requirement
that dispersion measures should preserve the dilation order is simply too strong. Neither the
interquantile range nor the mean absolute deviation from the median could be proved to meet
this requirement.

Concerning the latter mapping MDMAD, it is shown in Section 7.1 (around Figure 7.6)
that the mapping F 7→ ν(|X − F −1(1

2)|), where ν is an arbitrary measure of central location,
generally does not preserve the order ≤∧−disc

disp . Hence, the desired result is not a simple
corollary as for some of the other dispersion measure contenders. However, the implication
still holds, as shown in the following.

Theorem 7.41. The mapping MDMAD satisfies property (DD2).

Proof. Without restriction, let F −1(1
2) = G−1(1

2) = 0. Furthermore, let a0 ∈ A and b0 ∈ B

be the unique indices that satisfy xa0 = F −1(1
2) = 0 = G−1(1

2) = yb0 . Because of F (xa0−1) <
1
2 ≤ G(yb0) and G(yb0−1) < 1

2 ≤ F (xa0), a0 ⇋ b0 holds. Hence, F (xa0) − F (xa0−1) = pa0 ≥
qb0 = G(yb0) − G(yb0−1) and it follows that G(yb0) ≤ F (xa0) or G(yb0−1) ≥ F (xa0−1).

We begin by assuming G(yb0) ≤ F (xa0) and show that, consequently, yβ ≥ xα holds for
all pairs (α, β) ∈ R(⇋) higher than (a0, b0). Choosing G(ybk−1) = min NNG

F (a0 + k) for all
k ∈ N such that a0 + k ∈ A gives pairwise distinct indices bk ∈ B such that a0 + k ⇋∧ bk.
This is guaranteed by Lemma 7.18. Note that, for all k ∈ N, bk is also the smallest index in
B such that a0 + k ⇋ bk. Note also that b0 < b1. Hence, for all pairs (α, β) ∈ R(⇋) higher
than (or equal to) (a0, b0), there exists a k ∈ N0 such that

xα = xa0+k = xa0 +
k∑

j=1
(xa0+j − xa0+j−1) =

k∑
j=1

(xa0+j − xa0+j−1)

≤
k∑

j=1
(ybj

− ybj−1) = yb0 +
k∑

j=1
(ybj

− ybj−1) ≤ ybk
≤ yβ.

Analogously, the assumption G(yb0−1) ≥ F (xa0−1) yields yβ ≤ xα holds for all pairs (α, β) ∈
R(⇋) lower than (a0, b0). With this in mind, we prove the assertion via case distinction.

Case 1: F (xa0−1) ≤ G(yb0−1) < G(yb0) ≤ F (xa0)
It holds that

MDMAD(G) − MDMAD(F ) =
∑

(a,b)∈R(⇋)
r(a,b)(|yb − yb0 | − |xa − xa0 |)

=
∑

(a,b)∈R(⇋)
r(a,b)(|yb| − |xa|)
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=
∑

(a,b)∈R(⇋)
lower than(a0,b0)

r(a,b)(xa − yb)

+
∑

(a,b)∈R(⇋)
higher than(a0,b0)

r(a,b)(yb − xa). (7.45)

Since xa ≥ yb holds for all pairs (a, b) ∈ R(⇋) lower than (a0, b0) and yb ≥ xa holds for
all pairs (a, b) ∈ R(⇋) higher than (a0, b0), (7.45) is non-negative. Thus, the proof in
this case is completed.

Case 2: F (xa0−1) < G(yb0−1) < F (xa0) < G(yb0)
We start out by considering pairs (a, b) ∈ R(⇋) that are higher than (a0, b0). According
to (7.20), xa > yb is only possible for any such pair, if a − a0 = b − b0 + 1 holds. Hence,
let (a, b) ∈ R(⇋) be higher than (a0, b0) and satisfy a − a0 = b − b0 + 1. Part 2 of the
proof of Theorem 7.30 states that, in this case, the values of F and G alternate for index
pairs between (a0, b0) and (a, b). In that area, the pairs in R(⇋) are of the form

(a0, b0), (a0 + 1, b0), (a0 + 1, b0 + 1), (a0 + 2, b0 + 1), . . .

. . . , (a − 2, b − 1), (a − 1, b − 1), (a − 1, b), (a, b). (7.46)

Hence,

∑
(a,b)∈R(⇋)

higher than(a0,b0)

r(a,b)(yb − xa)

≥ −
∑

c∈N0:
(a0+1+c,b0+c)∈R(⇋)

r(a0+1+c,b0+c)(xa0+1+c − yb0+c)

= −
∑

c∈N0:
F (xa0+c)<G(yb0+c)

(G(yb0+c) − F (xa0+c))(xa0+1+c − yb0+c). (7.47)

Note that, due to the structure of R(⇋) given in (7.46), F (xa0+c) < G(yb0+c) is
equivalent to (a0 + 1 + c, b0 + c) ∈ R(⇋) for any c ∈ N0. Since (a0 + 1 + c) − (a0 + 1) <

(b0 + c) − b0 + 1 holds for all c ∈ N0 such that (a0 + 1 + c, b0 + c) ∈ R(⇋), (7.20) implies
xa0+1+c − yb0+c ≤ xa0+1 − yb0 . Combined with (7.47), this yields

∑
(a,b)∈R(⇋)

higher than(a0,b0)

r(a,b)(yb − xa) ≥ −(xa0+1 − yb0) ·
∑

c∈N0:
F (xa0+c)<G(yb0+c)

(G(yb0+c) − F (xa0+c)).

(7.48)
For any c ∈ N0 with F (xa0+c) < G(yb0+c) and F (xa0+c+1) < G(yb0+c+1), it can be
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shown analogously to (7.37) that

G(yb0+c+1) − F (xa0+c+1)
F (xa0+c+2) − F (xa0+c+1) ≤ G(yb0+c) − F (xa0+c)

F (xa0+c+1) − F (xa0+c)
.

By applying this inequality recursively, we obtain

G(yb0) − F (xa0)
F (xa0+1) − F (xa0) ≥ G(yb0+c) − F (xa0+c)

F (xa0+c+1) − F (xa0+c)

for all c ∈ N0 with F (xa0+c) < G(yb0+c). With this, we can continue inequality (7.48)
by writing

∑
(a,b)∈R(⇋)

higher than(a0,b0)

r(a,b)(yb − xa)

≥ − (xa0+1 − yb0) ·
∑

c∈N0:
F (xa0+c)<G(yb0+c)

(G(yb0+c) − F (xa0+c))

= − (xa0+1 − yb0) ·
∑

c∈N0:
F (xa0+c)<G(yb0+c)

(
G(yb0+c) − F (xa0+c)

F (xa0+c+1) − F (xa0+c)
·

(F (xa0+c+1) − F (xa0+c))
)

≥ − (xa0+1 − yb0) · G(yb0) − F (xa0)
F (xa0+1) − F (xa0)

∑
c≥0

F (xa0+c)<G(yb0+c)

(F (xa0+c+1) − F (xa0+c))

≥ − (xa0+1 − yb0) · G(yb0) − F (xa0)
F (xa0+1) − F (xa0) · (1 − F (xa0))

≥ − xa0+1 − yb0

2 · G(yb0) − F (xa0)
F (xa0+1) − F (xa0) . (7.49)

Now we consider the pairs (a, b) ∈ R(⇋) lower than (a0, b0). According to (7.20),
xa − yb < xa0+1 − yb0 is only possible for this kind of pair if a0 − a = b0 − b holds. In
this case, the values of F and G between these pairs of indices once again alternate so
that the corresponding elements of R(⇋) are of the form

(a0, b0), (a0, b0 − 1), (a0 − 1, b0 − 1), (a0 − 1, b0 − 2), . . .

. . . , (a + 2, b + 1), (a + 1, b + 1), (a + 1, b), (a, b).
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It follows

∑
(a,b)∈R(⇋)

lower than(a0,b0)

r(a,b)(xa − yb)

≥ (xa0+1 − yb0) ·
(

F (xa0) −
∑

c∈N0:
(a0−c,b0−c)∈R(⇋)

r(a0−c,b0−c)

)

= (xa0+1 − yb0) ·
(

F (xa0) −
∑

c∈N0:
F (xa0−c)>G(yb0−c−1)

(F (xa0−c) − G(yb0−c−1))
)

. (7.50)

Note for the inequality that xa − yb < 0 = xa0 − yb0 would imply a0 − a = b0 − b + 1,
which contradicts a0 − a = b0 − b. For any c ∈ N0 with F (xa0−c) > G(yb0−c−1) and
F (xa0−c−1) > G(yb0−c−2), one can now again show similarly to (7.37) that

F (xa0−c) − G(yb0−c−1)
F (xa0−c) − F (xa0−c−1) ≥ F (xa0−c−1) − G(yb0−c−2)

F (xa0−c−1) − F (xa0−c−2)

holds. Inductively, it follows that

F (xa0) − G(yb0−1)
F (xa0) − F (xa0−1) ≥ F (xa0−c) − G(yb0−c−1)

F (xa0−c) − F (xa0−c−1)

is true for all c ∈ N0 with F (xa0−c) > G(yb0−c−1). Continuing from (7.50), we obtain

∑
(a,b)∈R(⇋)

lower than(a0,b0)

r(a,b)(xa − yb)

≥ (xa0+1 − yb0) ·
(

F (xa0) −
∑

c∈N0:
F (xa0−c)>G(yb0−c−1)

(
F (xa0−c) − G(yb0−c−1)
F (xa0−c) − F (xa0−c−1) ·

(F (xa0−c) − F (xa0−c−1))
))

≥ (xa0+1 − yb0) ·
(

F (xa0) − F (xa0) − G(yb0−1)
F (xa0) − F (xa0−1) ·

∑
c∈N0:

F (xa0−c)>G(yb0−c−1)

(F (xa0−c) − F (xa0−c−1))
)

≥ (xa0+1 − yb0) ·
(

F (xa0) − F (xa0) − G(yb0−1)
F (xa0) − F (xa0−1) · F (xa0)

)
≥ xa0+1 − yb0

2 ·
(

1 − F (xa0) − G(yb0−1)
F (xa0) − F (xa0−1)

)
. (7.51)
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Now, by combining (7.45), which is also valid in Case 2, with (7.49) and (7.51), it follows
that

MDMAD(G) − MDMAD(F )

≥ xa0+1 − yb0

2 ·
(

1 − G(yb0) − F (xa0)
F (xa0+1) − F (xa0) − F (xa0) − G(yb0−1)

F (xa0) − F (xa0−1)

)
≥ xa0+1 − yb0

2 ·
(

1 − qb0

min{pa0 , pa0+1}

)
≥ 0,

where the last inequality holds since (a0, b0), (a0 + 1, b0) ∈ R(⇋) is true by assumption.

Case 3: G(yb0−1) < F (xa0−1) < G(yb0) < F (xa0)
This case is completely analogous to Case 2 for reasons of symmetry.

7.5. Application to Specific Distributions

In this section, we analyze whether popular families of discrete distributions preserve the
discrete dispersive orders. Since all of the distributions considered in the following are lattice
distributions with defining distance equal to one, all previously defined discrete dispersive
orders are equivalent and it is sufficient to consider the order ≤disc

D−pm (see Corollary 7.23a)).
In the formulation of the results, the order ≤∧−disc

disp is used since it is the discrete order
that is closest to ≤disp. The only considered non-lattice distribution is the discrete uniform
distribution on arbitrary finite sets, which is discussed at the end of the following subsection.

7.5.1. The Discrete Uniform Distribution and Empirical Distributions

The discrete uniform distribution is the simplest discrete distribution. In its usual variant, it
puts the same amount of probability mass on a finite number of points that are equidistantly
spaced with distance 1. Since all of the dispersion orders and measures considered in the
previous chapters are location invariant, it is sufficient to consider uniform distributions with
supports {1, . . . , n}, n ∈ N≥2. If P(X = k) = 1

n for all k ∈ {1, . . . , n}, we denote this by
X ∼ U [n]. These distributions are also used in Example 6.7 in order to establish that the
original dispersive order is far from sufficient for discrete distributions. However, it is easy
to show that any two discrete uniform distributions are ordered with respect to the discrete
dispersive orders introduced in this work.

Proposition 7.42. Let n, m ∈ N≥2, n < m, and let X ∼ U [n] and Y ∼ U [m]. Then,
X ≤∧−disc

disp Y holds.

Proof. Since X and Y both have lattice distributions with the same defining distance,
Corollary 7.23a) states that X ≤∧−disc

disp Y is equivalent to X ≤disc
D−pm Y . Since the height of all
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Figure 7.11.: Plot of τ(X) for six different dispersion measures τ and X ∼ U [n], as a function
of n ∈ {2, . . . , 100}. The measures MAD and MDMAD coincide here because of
symmetry.

jumps of the cdf of X is equal to 1
n and, therefore, larger than 1

m , which is the height of all
jumps of the cdf of Y , X ≤disc

D−pm Y holds.

The behaviour of the dispersion measures from Chapter 7.4 for discrete uniform distributions
as a function of the parameter n is depicted in Figure 7.11. It shows that five of the six
dispersion measures are almost linearly increasing as a function of n, although the slight
deviations from linearity can barely be seen in Figure 7.11. The average slopes differ between
the measures; only MAD and MDMAD are exactly the same since the distribution is symmetric.
The graph of the interquartile range IQR has a different shape since it only takes values in the
natural numbers when applied to a lattice distribution with defining distance 1. This lack of
granularity is also somewhat indicative of its lack of compatibility with discrete distributions
that is formalized in Theorem 7.40. However, a counterexample for the proof of Theorem 7.40
cannot be constructed using this class of discrete uniform distributions.

The concept of discrete uniform distributions can be generalized to arbitrary finite sets.
Let S ⊂ R with |S| = n ∈ N≥2. If now P(X = s) = 1

n for any s ∈ S, then X is discretely
uniformly distributed on S, denoted by X ∼ U(S). Note that the set of all generalized discrete
uniform distributions is equal to the set Ent of all non-tied empirical distributions. Because of
the complexity of this family of distributions, we refrain from trying to obtain general results
with respect to discrete dispersive orders. Instead, we discuss a number of special cases for
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the order ≤∧−disc
disp in the following example.

Example 7.43. Let S, T ⊂ R with 2 ≤ |S| = m < n = |T | and let X ∼ U(S), Y ∼ U(T ).

a) Let n be a multiple of m, so there exists a c ∈ N≥2 such that n = c · m. Because of

F (DF ) = { k
m : k ∈ {1, . . . , m − 1}} = { c·k

n : k ∈ {1, . . . , m − 1}}

⊂ { k
n : k ∈ {1, . . . , n − 1}} = G(DG),

F ≤∧−disc
disp G is equivalent to F ≤disp G in this case. According to Proposition 7.4,

F ≤∧−disc
disp G holds if xk+1 − xk ≤ yc·k+1 − yc·k holds for all k ∈ {1, . . . , m − 1}. Hence,

m − 1 comparisons are made overall, one per constant interval of F .

b) Let n be a multiple of m plus one, so there exists a c ∈ N such that n = c · m + 1. It
follows that m and n are coprime and F (DF ) ∩ G(DG) = ∅. Furthermore, for each k ∈
{1, . . . , m − 1}, it holds that k

m = c·k
n−1 ∈ ( c·k

n , c·k+1
n ). Hence, NNG

F (k + 1) = { c·k
n , c·k+1

n }
for all k ∈ {1, . . . , m − 1}. Since F ≤disc

D−pm G is obviously satisfied, Proposition 7.19a)
states that F ≤∧−disc

disp G is equivalent to

xk+1 − xk ≤ yc·k+1 − yc·k and

xk+1 − xk ≤ yc·k+2 − yc·k+1

for all k ∈ {1, . . . , m − 1}. Hence, 2m−2 comparisons are made overall, two per constant
interval of F .

c) Let the greatest common divisor d of m and n satisfy 1 < d < m, so there exist
cF , cG ∈ N≥2 such that m = cF · d and n = cG · d. Then, F (DF ) ∩ G(DG) = {k

d : k ∈
{1, . . . , d − 1}} since

F (DF ) ∋ k · cF

m
= k · cF

cF · d
= k

d
= k · cG

cG · d
= k · cG

n
∈ G(DG)

holds for all k ∈ {1, . . . , d − 1} and because cF and cG are coprime by assumption. It
follows that | NNG

F (ℓ + 1)| = 1, if ℓ is a multiple of cF , and | NNG
F (ℓ + 1)| = 2 otherwise.

In the former case, the corresponding comparisons (by Proposition 7.19a)) have the
same structure as in part a), and in the latter case they have the same structure as in
part b). Overall, there are 2m − 2 − (d − 1) = (2cF − 1)d − 3 comparisons to be made.
Note that the edge cases d = m and d = 1 give the situation in part a) and part b),
respectively.

7.5.2. The Geometric Distribution

Except for the discrete uniform distribution, the geometric distribution is the only popular
type of discrete distribution with an explicit representation of the cdf. For other popular
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families of discrete distributions, like the binomial or the Poisson distribution, the cdf is only
available as sum of the values of the corresponding pdf.

We use the following version of the geometric distribution: if X ∼ Geom(π) with π ∈ (0, 1),
then P(X = k) = π · (1 − π)k−1 for k ∈ N. The cdf of X is then given by F (t) = 1 − (1 − π)⌊t⌋

for t ≥ 0. Graphically, the dispersion of the distribution seems to decrease as the parameter
π increases. Furthermore, for F = Geom(πF ) and G = Geom(πG) with 0 < πG < πF < 1,
F ≤st G and even F <st G obviously holds, which already implies G ̸≤∧−disc

disp F according
to Proposition 7.28. The following result gives a sufficient condition for the ordering of two
geometric distributions with respect to ≤∧−disc

disp .

Theorem 7.44. Let X ∼ Geom(πF ) and Y ∼ Geom(πG) with 0 < πG < πF < 1 have cdf’s
F and G. If

(πF , πG) ∈
{

(1 − λϱ, 1 − λ) : 1
2 < λ < 1, ϱ ≥ log(2λ − 1)

log(λ) − 1
}

,

then F ≤∧−disc
disp G holds.

Proof. Let λ = 1 − πG ∈ (0, 1) and ϱ = log(1−πF )
log(1−πG) > 1, then πF = 1 − λϱ and πG = 1 − λ.

Note that F ≤∧−disc
D−supp G holds because both are lattice distributions with defining distance

1. We start by finding an equivalent condition for (a, b) ∈ R(⇋), where a, b ∈ N = A = B.
The statement (a, b) ∈ R(⇋) is equivalent to F (a − 1) < G(b) and G(b − 1) < F (a) holding
simultaneously. For these two inequalities, the following equivalences hold:

F (a − 1) < G(b) ⇔ 1 − λϱ(a−1) < 1 − λb ⇔ λϱ(a−1) > λb ⇔ ϱ(a − 1) < b ⇔ a < b
ϱ + 1,

G(b − 1) < F (a) ⇔ 1 − λb−1 < 1 − λϱa ⇔ λb−1 > λϱa ⇔ b − 1 < ϱa ⇔ a > b−1
ϱ .

Overall, (a, b) ∈ R(⇋) is equivalent to a ∈ ( b−1
ϱ , b

ϱ + 1). Because a is required to be a natural
number and ( b

ϱ + 1) − b−1
ϱ = 1 + 1

ϱ ∈ (1, 2), there are either one or two possible values for a

for a fixed b ∈ N. Particularly, it follows that

a ∈
{⌊

b

ϱ

⌋
+ 1,

⌈
b − 1

ϱ

⌉}
.

The two values are different, if there exists an n ∈ N such that b−1
ϱ ≤ n ≤ b

ϱ . We consider the
two elements separately. To this end, note that

λb−1 − λb = P(Y = b)

≤ P(X = a) = λϱ(a−1) − λϱa ∀(a, b) ∈
⋃
b∈N

{(⌊
b

ϱ

⌋
+ 1, b

)
,

(⌈
b − 1

ϱ

⌉
, b

)}

is equivalent to F ≤disc
D−pm G, and therefore to F ≤∧−disc

disp G.
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Case 1: Let a =
⌈

b−1
ϱ

⌉
.

It holds that

λϱ(a−1) − λϱa = λϱ(a−1)(1 − λϱ) > λ
ϱ· b−1

ϱ (1 − λϱ) = λb−1 − λb−1+ϱ > λb−1 − λb,

where the last inequality is true because ϱ > 1 implies λb−1+ϱ < λb.

Case 2: Let a =
⌊

b
ϱ

⌋
+ 1.

It holds that

λϱ(a−1) − λϱa = λϱ(a−1)(1 − λϱ) > λ
ϱ· b

ϱ (1 − λϱ) = λb(1 − λϱ).

Thus, it is sufficient to show

λb−1(λ − λϱ+1) ≥ λb−1 − λb

or, equivalently,
2λ ≥ λϱ+1 + 1.

This, in turn, is equivalent to

λ(2 − λϱ) ≥ 1 ⇔ λϱ ≤ 2 − 1
λ

⇔ ϱ ≥
log(2 − 1

λ)
log(λ) = log(2λ − 1)

log(λ) − 1,

which is true by assumption.

The set of parameter pairs from Theorem 7.44 is visualized in the left panel of Figure 7.12,
where it is the green area on the lower right. The grey area represents those combinations
of parameters, for which no theoretical result could be obtained. In order to determine the
behaviour in these grey areas, a numerical analysis was conducted. Since the support of the
geometric distribution is infinite, the cdf’s and pdf’s were cut off at 106. The results with
0.01 as increment for the parameters πF and πG are depicted in the right panel of Figure
7.12. The numerical results look almost identical to the theoretical results with the grey area
filled in red. It is not clear whether the few sparse green dots in that area actually represent
F ≤∧−disc

disp G holding or they represent numerical inaccuracies. Either way, the numerical
results suggest that the implication in Theorem 7.44 is close to being an equivalence as the
number of counterexamples for the reverse implication is very small.

The behaviour of the dispersion measures from Section 7.4 applied to geometric distributions
is shown in Figure 7.13. First, it is immediately obvious that the graphs all have similar shapes.
While that includes the interquartile range IQR to a certain degree, its graph is the only one
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Figure 7.12.: Plot of theoretical (left panel) and numerical (right panel) results concerning
F ≤∧−disc

disp G for all possible parameter choices πF , πG ∈ (0, 1) for F = Geom(πF )
and G = Geom(πG). In green areas, F ≤∧−disc

disp G holds; in red areas, F ̸≤∧−disc
disp

G holds; in grey areas, no result could be obtained.
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Figure 7.13.: Plot of τ(X) for six different dispersion measures τ and X ∼ Geom(π), as a
function of π ∈ (0, 1). Note the different scales in the two panels.



7.5. Application to Specific Distributions 217

that is not decreasing on the entire parameter space. Furthermore, the slopes of all graphs
decrease significantly for increasing parameter values. Thus, there is a smaller difference in
dispersion between two similarly high values of π than there is between two similarly low
values of π. This observation is in agreement with the behaviour of the discrete dispersion
order for geometric distributions. Consider the following example: according to Theorem 7.44
and Figure 7.12, F ≤∧−disc

disp G holds for πF = 0.15 and πG = 0.12 while F ̸≤∧−disc
disp G holds for

πF = 0.9 and πG = 0.72, which differ from each other by the same factor.

7.5.3. The Binomial Distribution

The binomial distribution has two parameters to be varied, namely the sample size n and
the success probability π. However, if we consider two distributions F = Bin(n, πF ) and
G = Bin(n, πG) with n ∈ N≥2 and πF , πG ∈ (0, 1), πF ̸= πG, Proposition 7.26 states that
neither F ≤∧−disc

disp G nor G ≤∧−disc
disp F holds. That is because of DF = DG = [0, n), which

yields λ1(DF ) = λ1(DG) = n < ∞. Heuristically, the binomial distribution seems to be most
dispersed when it is symmetric. Its dispersion declines, if the success probability becomes
markedly high or low as then, the probability mass is concentrated heavily on one side. This
observation is reflected in the left panel of Figure 7.14, which depicts the behaviour of the
dispersion measures from Chapter 7.4 for fixed n and varying π.

Furthermore, the plot shows that the dispersion measures display differing degrees of
smoothness as a function of the success probability. While IQR is the only measure that is not
continuous, MAD, MDMAD and IER also exhibit some lack of smoothness. Solely the graphs
of SD and GMD look like they could stem from an infinitely often differentiable function.

For binomial distributions with fixed success probability π and varying sample size n, we
restrict ourselves to the symmetric case π = 1

2 . If we consider two distributions F = Bin(m, 1
2)

and G = Bin(n, 1
2) with m, n ∈ N≥2 and m < n, we can once again invoke Proposition 7.26 to

obtain G ̸≤∧−disc
disp F . The remaining question is: if at all, under which conditions concerning

m and n does F ≤∧−disc
disp G hold? Because of the non-explicit structure of the cdf of the

binomial distribution, no theoretical result answering this question could be proved. Instead,
we have to rely solely on numerical computations.

The results are depicted in Figure 7.15. They generally support the graphical impression that
the (symmetric) binomial distribution becomes more dispersed as its sample size increases.
However, the difference between the two sample sizes m and n needs to be quite large
for F ≤∧−disc

disp G to hold. For n < 5m, F ≤∧−disc
disp G only holds very sporadically. For

5m ≤ n ≤ 10m, F ≤∧−disc
disp G holds in some cases, depending on the compatibility of the two

distributions. However, as n approaches 10m, the share of positive results seems to increase.
Finally, for n > 10m, F ≤∧−disc

disp G always holds with very few exceptions if n ≈ 10m. It is
notable that the borders between the red and the mixed area as well as between the mixed
and the green area both seem to be approximately linear. According to further numerical
evaluations for larger sample sizes, the factors of 5 and 10 seem to grow a bit further to
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Figure 7.14.: Plot of τ(X) for six different dispersion measures τ and X ∼ Bin(n, π). Left
panel: n = 10 fixed, τ(X) as a function of π. Right panel: π = 1

2 fixed, τ(X) as
a function of n.
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Figure 7.15.: Plot of the numerical results concerning F ≤∧−disc
disp G for selected parameter

values for F = Bin(m, 1
2) and G = Bin(n, 1

2). In green areas, F ≤∧−disc
disp G holds;

in red areas, F ̸≤∧−disc
disp G holds. Note the different scales of the two axes.
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Figure 7.16.: Left panel: Plot of the numerical results concerning F ≤∧−disc
disp G (green: yes;

red: no) for selected parameter values for F = Pois(λF ) and G = Pois(λG). Note
that the scale on both axes is not linear and only contains exemplary values.
Right panel: Plot of τ(X) for six different dispersion measures τ and X ∼ Pois(λ),
as a function of λ.

approximately 8.5 and 12 at m = 400.
The behaviour of the dispersion measures when applied to symmetric binomial distributions

is similar to our previous observations. All graphs of the corresponding plot in the right panel
of Figure 7.14 are increasing, once again with the exception of IQR. Their slopes slightly
decrease as n is increasing. Their smoothness properties coincide with our observations from
the left panel of Figure 7.14, where π varies instead of n.

7.5.4. The Poisson Distribution

The last exemplary discrete distribution considered in this section is the Poisson distribution.
For that, we consider two distributions F = Pois(λF ) and G = Pois(λG) with λF , λG > 0.
Similarly to the geometric distribution, it is easy to show that F ≤st G and even F <st G holds,
if λF < λG. By Proposition 7.28, G ̸≤∧−disc

disp F follows in that case. Whether F ≤∧−disc
disp G

holds can once again only be analyzed numerically since the cdf of the Poisson distribution
also does not have an explicit form.

The results for selected values of λF and λG are depicted in the left panel of Figure 7.16.
As for the binomial distribution, F ≤∧−disc

disp G only seems to hold, if λG is sufficiently large
compared to λF . However, the differing factor between λF and λG at the border between
the red and the green area decreases for increasing λF . For λF = 0.05, that factor is equal
to 600, and it is subsequently reduced: to 70 for λF = 1, to 10 for λF = 10, and to 5 for
λF = 100. It is unclear whether this reduction is representative of the actual interaction
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between the Poisson distribution and the order ≤∧−disc
disp or it is a numerical phenomenon. The

latter explanation is supported by the fact that, with increasing parameter λ, the amount
of probability mass within jumps too small to register numerically also increases. Therefore,
more relevant jumps cannot be compared properly.

The behaviour of the dispersion measures plotted in the right panel of Figure 7.16 is
similar to the previous distribution families. The declining slope of the graphs is indicative of
smaller differences in dispersion for higher parameter values and therefore suggests that our
observations about the left panel are indeed due to numerical inaccuracies.



CHAPTER 8

Conclusion and Outlook

8.1. Alternative Approaches

In Section 7.1, the proposals for discrete dispersive orders are carefully constructed from the
information available about the original dispersive order, particularly about its behaviour on
discrete distributions. However, one could of course pursue other approaches to define such an
order. A number of these approaches are named in this section along with a brief discussion
of their advantages and disadvantages.

The first alternative approach arises from the inconsistency of ≤∧−disc
disp noted at the end of

Example 7.16b) and only differs from our definitions in the way that the supports are compared.
More specifically, it does not underlie the limitation that only the distances between pairs of
neighbouring points in the respective supports are compared. Instead, referring back to the
general setting in Example 7.16b), one could compare the distances x2 − x1 and x3 − x2 with
the distances y3 − y1, y6 − y3 and y8 − y6 (see also Figure 7.3). In a general setting, F ∈ D0

would be deemed less dispersed than G ∈ D0, if F ≤disc
D−pm G holds as well as a modification

of F ≤∧−disc
D−supp G. The pointwise comparison of the supports indicated by that modification is

again dictated by F , but the length xa − xa−1 of each constant interval of F is compared with
the cumulated length ∑b∈B:pa−1≤qb−1<pa

(yb − yb−1) of all constant intervals of G lower than
the next constant interval of F . xa − xa−1 is also be compared with the cumulated length∑

b∈B:pa−2<qb−1≤pa−1(yb − yb−1) of constant intervals of G below the interval [xa−1, xa). This
weakens the strong order ≤∧−disc

disp , but seemingly to a small enough degree that the new order
is still meaningful. We conjecture that this new order, just like ≤∨−disc

disp , is transitive, but not
equivalent to ≤disp on their joint area of applicability. Thus, it seems like a suitable order to
explore in further work. A downside is that it cannot be described with the relation ⇋ as
intuitively as the other discrete orders. Therefore, it might be difficult or even impossible to
replicate some of the results in Sections 7.3 and 7.4, while the results in Section 7.5 are not
going to be improved since they only concern lattice distributions.
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Figure 8.1.: Exemplary pair of discrete distributions, for which the second alternative approach
in Section 8.1 behaves counterintuitively.

A second approach arises from using the characterization of ≤disp based on RIDF’s, which is
often very useful in a continuous setting. However, it is discussed in Chapter 6 that the concept
of RIDF’s has several shortcomings in a discrete setting. The fact that this is particularly true
for the dispersive order is extended upon in Section 6.2 with the use of the specific Example
6.5. There, a dispersion order that is defined by the corresponding RIDF being increasing
is shown to behave counterintuitively for discrete distributions. Thus, this approach is not
sensible in a discrete setting. An adaptation solution in the form of a generalization of the
concept of RIDF’s is proposed in Appendix A, but it cannot replicate a number of crucial
properties of the original concept.

The third approach is to only have one requirement for the discrete order instead of two
as for ≤∨−disc

disp and ≤∧−disc
disp . Note that, under suitable regularity conditions, F ≤disp G is

equivalent to dF −1(p)
dp ≤ dG−1(p)

dp for all p ∈ (0, 1). Hence, a canonical combination of the
requirements concerning the probability mass and the support for discrete distributions is to
consider the slopes of their appropriately interpolated discrete quantile functions. The points
to be interpolated are given by (x, F −1(x)) for x ∈ F (supp(F )). However, this approach has
several disadvantages. First, it imposes no restriction on the first jumps of the two cdf’s to
be compared, which is obviously necessary to compare them in terms of dispersion. Even
if the first jump of F is additionally required to be higher than the first jump of G, one
can still construct examples, for which the resulting discrete dispersion order disagrees with
all well-known measures of dispersion. One such example is obtained for X = 1

2X̃ with
X̃ ∼ Bin(1, 1

2) and Y = (1 − ε)Ỹ with Ỹ ∼ Bin(1, 1 − ε) and ε > 0 sufficiently small (see
Figure 8.1, where ε = 1

10). Here, this new order would deem G more dispersed than F

although G converges to the cdf of a degenerate distribution for ε ↘ 0. Furthermore, the
interpolation order changes significantly, if we use another definition of the quantile function,
e.g. if it is defined by p 7→ sup{t ∈ R : F (t) ≤ p}.

In conclusion, the only alternative approach from this section that seems worth pursuing
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further is the first one. It is conjectured to be a transitive weakening of ≤∧−disc
disp that, on the

other hand, is more difficult to handle. All other discussed approaches have critical drawbacks.

8.2. A Discrete Skewness Order

The canonical next step after having found discrete versions of the dispersive order in Chapter
7 is to consider skewness orders for discrete distributions. The most popular and also most
fundamental skewness order is the convex transformation order introduced by van Zwet (1964,
p. 48), see Definition 2.11. Contrary to the stochastic order and the dispersive order, which
are usually defined according to Definition 2.8b) in the literature (see, e.g., Oja, 1981, p. 157,
Shaked and Shanthikumar, 2006, p. 148 and Müller and Stoyan, 2002, p. 40), the convex
transformation order is normally defined using RIDF-based characterization in Proposition
2.9 (see, e.g., van Zwet, 1964, p. 48, Oja, 1981, p. 160 and Groeneveld and Meeden, 1984, p.
392). In the papers that do so, this does not make a difference because they generally at least
assume that all involved distributions are absolutely continuous and have interval support, i.e.,
they lie in PI . This assumption is sufficient for the two different definitions to be equivalent.
However, just like for the stochastic order and the dispersive order, these characterizations
differ, if they are applied to discrete distributions. Thus, a choice needs to be made in order
to analyze the convex transformation order ≤c on discrete distributions.

For the sake of consistency, we use the same definition for ≤c, the order of the second convex
characteristic, as we used for the orders of zeroth and the first convex characteristic, ≤st and
≤disp. Another reason to not use the RIDF-based characterisation of ≤c as its definition is
that RIDF’s behave counterintuitively on non-continuous distributions. This is evidenced
generally in Appendix A and specifically for the orders ≤st and ≤disp in Chapter 6. The basic
problem is that RIDF’s generally do not retain their crucial property for discrete distribution,
which states that RF G is capable of transforming an F -distributed random variable into a
G-distributed random variable (see Proposition A.3).

The general Definition 2.8 of the order of the k-th convex characteristic is examined in
the case k = 2 in Example 2.10c). More specifically, the definition of F ≤c G for two cdf’s
F, G ∈ P is given in (2.11) by

F −1(w) − F −1(v)
F −1(v) − F −1(u) ≤ G−1(w) − G−1(v)

G−1(v) − G−1(u) (8.1)

for all 0 < u < v < w < 1 with F −1(u) < F −1(w) and G−1(u) < G−1(w), where division
by zero is allowed with the value ∞ assigned in that case. Note that, according to Lemma
3.9, this is equivalent to the comparison of standardized second order differences of the two
quantile functions.

One can easily see that the shortcomings of the dispersive order ≤disp for discrete distribu-
tions discussed in Section 6.2 apply to the convex transformation order ≤c in a similar way.
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This means that, just like for ≤disp, a discrete version of ≤c is needed. Eberl and Klar (2019)
also demonstrated the need for a fundamental discrete skewness order, although they used a
RIDF-based definition of ≤c.

The first step towards this kind of discrete modification is to find out what exactly the order
≤c means in a discrete context. Analogously to Proposition 7.4, the equivalent characterization
can be divided into requirements concerning the jumps heights and requirements concerning
the support or the jump points.

Theorem 8.1. Let F, G ∈ D0. Then, F ≤c G is equivalent to the following three conditions:

(i) F (DF ) ⊆ G(DG) ∪ (0, inf G(DG)],

(ii) G(DG) ⊆ F (DF ) ∪ [sup F (DF ), 1),

(iii)
xa+1 − xa

xa − xa−1
≤ yb+1 − yb

yb − yb−1
(8.2)

holds for all (a, b) ∈ A × B with F (xa−1) = G(yb−1) and F (xa) = G(yb).

Proof. We start by proving F ≤c G ⇒ (i) by contradiction. For that, assume F (DF ) \
(G(DG) ∪ (0, inf G(DG)]) ≠ ∅ and let r ∈ (0, 1) be in that set. Note that, since 0 and 1 are
the only possible accumulation points of G(DG) (because of G ∈ D0), either inf G(DG) = 0
or inf G(DG) = min G(DG) holds. Hence, the set G(DG) ∩ (0, r] is non-empty and has a
maximum. Define rG as that maximum, so rG = max(G(DG)∩ (0, r]). Obviously, rG ∈ G(DG)
holds as well as rG < r. Choose v ∈ (rG, r] and u ≤ rG. Furthermore, choose w ∈ (r, G(ybr+1)],
where if br ∈ B is the unique index such that G(ybr) = rG. Now, F −1(v) ≤ F −1(r) and
F −1(w) > F −1(r) yield F −1(w)−F −1(v)

F −1(v)−F −1(u) > 0, whereas G−1(v) = ybr+1 = G−1(w) yields
G−1(w)−G−1(v)
G−1(v)−G−1(u) = 0, thereby contradicting (8.1). Thus, F ≤c G is contradicted, which proves
the implication F ≤c G ⇒ (i).

The proof of the implication F ≤c G ⇒ (ii) is very similar. We assume G(DG) \
(F (DF ) ∪ [sup F (DF ), 1)) ≠ ∅ and now let r be in that set. We define rF = min(F (DF )∩[r, 1)),
which is again existent and finite. We choose u, v and w such that F (xar−1) < u ≤ r < v ≤
rF < w, where ar ∈ A is the unique index satisfying F (xar ) = rF . It can now be shown that
F −1(v) − F −1(u) = 0 < G−1(v) − G−1(u) holds, which contradicts (8.1) and therefore also
F ≤c G.

For the implication F ≤c G ⇒ (iii), let (a, b) ∈ A × B with F (xa−1) = G(yb−1) and
F (xa) = G(yb). Now, (iii) follows directly from the definition (8.1) of F ≤c G by setting u =
G(yb−1), v = G(yb) and w = G(yb+1). Note that, according to (i) and (ii), G(yb+1) ≤ F (xa+1)
holds (either they are equal or G(yb+1)) ∈ [sup F (DF ), 1) and F (xa+1) = 1), resulting in
F −1(w) = xa+1.

It remains to be shown that (i), (ii) and (iii) together imply F ≤c G. For that, let
0 < u < v < w < 1 with F −1(u) < F −1(w) and G−1(u) < G−1(w). By Definition 7.8, there
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exist pairs (au, bu), (av, bv), (aw, bw) ∈ R(⇋) such that

F −1(u) = xau , F −1(v) = xav , F −1(w) = xaw ,

G−1(u) = ybu , G−1(v) = ybv , G−1(w) = ybw .

Hence, F ≤c G is equivalent to

xaw − xav

xav − xau

≤ ybw − ybv

ybv − ybu

(8.3)

holding for all pairs (au, bu), (av, bv), (aw, bw) ∈ R(⇋), which are ordered from low to high
and may be equal, and with au < aw and bu < bw. We prove this in three cases.

Case 1: F (xau) ≥ inf G(DG) and G(ybw−1) ≤ sup F (DF ).
With these additional assumptions, (i) and (ii) dictate that F (xau) = G(yau), F (xau+1) =
G(ybu+1), . . . , F (xaw−1) = G(ybw−1). If the equivalent conditions au = av and bu = bv

are fulfilled, both sides of (8.3) are infinite; if the equivalent conditions av = aw and
bv = bw are fulfilled, both sides of (8.3) vanish. In both cases, inequality (8.3) is fulfilled,
so we can assume without restriction au < av < aw and bu < bv < bw.

Now, (iii) can be invoked for all pairs (au+1, bu+1), (au+2, bu+2), . . . , (aw−1, bw−1). For
all (α, a, β, b) ∈ A2×B2 with au+1 ≤ α ≤ a ≤ aw −1 and aw −a = bw −b, α−au = β−bu

(so α and a are at the same points in the chain au + 1, . . . , aw − 1 as β and b are in the
chain bu + 1, . . . , bw − 1), it follows that

xa+1 − xa

xα − xα−1
=

a∏
j=α

xj+1 − xj

xj − xj−1
≤

b∏
j=β

yj+1 − yj

yj − yj−1
= yb+1 − yb

yβ − yβ−1
.

Because of the identity

xaw − xav

xav − xau

=
aw−1∑
a=av

xa+1 − xa

xav − xau

=
aw−1∑
a=av

 av∑
α=au+1

xα − xα−1
xa+1 − xa

−1

=
aw−1∑
a=av

 av∑
α=au+1

(
xa+1 − xa

xα − xα−1

)−1
−1

and, analogously,

ybw − ybv

ybv − ybu

=
bw−1∑
b=bv

 bv∑
α=bu+1

(
yb+1 − yb

yβ − yβ−1

)−1
−1

,

which are increasing in every summand, (8.3) follows.

Case 2: F (xau) < inf G(DG) and G(ybw−1) ≤ sup F (DF ).
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It directly follows that inf G(DG) = min G(DG) as inf G(DG) > 0. Furthermore,
bu = min B follows because the minimum is the only element b ∈ B that satisfies au ⇋ b.
Note that F (xaw) > min G(DG) holds since, otherwise, bw = bu would follow in a similar
way. If F (xav ) < min G(DG), then bv = bu follows, yielding that the right hand side of
(8.3) is infinite, which proves the inequality to be true. Hence, we now assume F (xav ) ≥
min G(DG). Define ãu = min{a ∈ A : F (xa) ≥ min G(DG)}, which yields au < ãu ≤ av.
According to assumptions (i) and (ii), we obtain F (xãu) = min G(DG) = G(ybu). It
follows that Case 1 can be invoked for the pairs (ãu, bu), (av, bv) and (aw, bw), yielding

xaw − xav

xav − xau

≤ xaw − xav

xav − xãu

≤ ybw − ybv

ybv − ybu

.

Case 3: G(ybw−1) > sup F (DF ).
We proceed mostly analogous to Case 2. First, both sup F (DF ) = max F (DF ) and
aw = max A follow directly. Furthermore, G(ybu) ≤ max F (DF ) holds since, otherwise,
au = aw would follow. If G(ybv ) > max F (DF ), then av = aw follows, yielding that the
left hand side of (8.3) is zero, which proves the inequality to be true. We now assume
G(ybv ) ≤ max F (DF ) and subsequently define b̃w ∈ B by b̃w − 1 = max{b ∈ B : G(yb) ≤
max F (DF )} < bw −1. Since G(yb̃w−1) = max F (DF ) = F (xãw−1) follows due to (i) and
(ii) holding, Cases 1 and 2 (which, combined, cover the case G(ybw−1) ≤ sup F (DF ))
can be invoked for the pairs (au, bu), (av, bv) and (aw, b̃w), yielding

xaw − xav

xav − xau

≤
yb̃w

− ybv

ybv − ybu

≤ ybw − ybv

ybv − ybu

.

Note that properties (i) and (ii) from Theorem 8.1 are equivalent to the following. If
we disjointly divide the set F (DF ) ∪ G(DG) into the three sets SF G = F (DF ) ∩ G(DG),
SF = F (DF ) \ G(DG) and SG = G(DG) \ F (DF ), then p < r < q holds for all p ∈ SF , q ∈ SG

and r ∈ SF G. Simply put, there exists a subset of the unit interval, within which the sets
F (DF ) and G(DG) coincide; values smaller or larger than the elements of that common set
can only be elements of F (DF ) or G(DG), respectively. This equivalent characterization is
utilized multiple times in the proof of Theorem 8.1.

Since properties (i) and (ii) are very restrictive, and at the same time are necessary
conditions for F ≤c G, Theorem 8.1 implies that ≤c is not a suitable skewness order for
discrete distributions. This observation is in agreement with Eberl and Klar (2019). The
only notable subclass of D0, for which ≤c is a sensible skewness order, is the class of non-tied
empirical distributions with the same sample size. In order to obtain a skewness order suitable
for all purposive discrete distributions, the definition of ≤c needs to be modified, similarly to
the definition of discrete dispersive orders as a modification of the usual dispersive order in
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Section 7.1. In the remainder of this section, we develop a possible definition of a discrete
skewness order based on ≤c and Theorem 8.1.

Property (iii) from Theorem 8.1 already suggests the form of one criterion for two discrete
distributions to be ordered with respect to skewness. The quantities to be compared are the
ratios of the lengths of two successive constant intervals; it remains to be established for which
pairs of indices this comparison is necessary. These pairs in property (iii) of Theorem 8.1 are
all (a, b) ∈ A × B with F (xa−1) = G(yb−1) and F (xa) = G(yb), which obviously only makes
sense under restrictions (i) and (ii). For a suitable generalization of this requirement, consider
the following result.

Proposition 8.2. Let F, G ∈ D0 satisfy properties (i) and (ii) from Theorem 8.1. Then, for
(a, b) ∈ A × B, all of the following statements are equivalent:

(A) F (xa−1) = G(yb−1) and F (xa) = G(yb),

(B) a ⇋ b,

(C) a ⇋∧ b or a + 1 ⇋∧ b + 1,

(D) a ⇋∧ b and a + 1 ⇋∧ b + 1.

Proof. The implication (A)⇒(D) follows directly from Proposition 7.19, the implication
(D)⇒(C) is obviously true and the implication (C)⇒(B) holds by definition of the relation ⇋∧

(see Definition 7.14a)). For the remaining implication (B)⇒(A), let (a, b) ∈ (A × B) ∩ R(⇋).
If min G(DG) and therefore min B does not exist, inf G(DG) = 0 follows; if max F (DF ) and
therefore max A does not exist, sup F (DF ) = 1 follows.

Case 1: Both min B and max A do not exist.
In this case, properties (i) and (ii) dictate that F (DF ) = G(DG), which yields that (A)
and (B) are equivalent.

Case 2: min B exists, but max A does not exist.
Properties (i) and (ii) dictate that G(DG) \ F (DF ) = ∅. Furthermore, since b > min B,
G(yb−1) ≥ min G(DG) follows. Hence, G(yb−1+k) ∈ F (DF )∩G(DG) holds for all k ∈ N0.
Because of a ⇋ b, this particularly implies F (xa−1) = G(yb−1) and F (xa) = G(yb).

Case 3: max A exists, but min B does not exist.
The proof here is basically analogous to Case 2. Properties (i) and (ii) dictate that
F (DF ) \ G(DG) = ∅. Furthermore, since a < max A, F (xa) ≤ max F (DF ) follows.
Hence, F (xa−k) ∈ F (DF ) ∩ G(DG) holds for all k ∈ N0. Because of a ⇋ b, this
particularly implies F (xa−1) = G(yb−1) and F (xa) = G(yb).

Case 4: Both min B and max A exist.
Here, G(yb−1) ≥ min G(DG) and F (xa) ≤ max F (DF ) holds. Since the assumption
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a ⇋ b yields G(yb−1) < F (xa), it follows that both values are elements of F (DF )∩G(DG).
Hence, F (xa−1) = G(yb−1) and F (xa) = G(yb) holds.

Proposition 8.2 presents us with three possible alternative methods of determining which
pairs of indices have to be compared in the sense of (8.2). However, it is not difficult to find
cdf’s F, G ∈ D0 such that the set of pairs obtained through method (D) is empty. Methods
(B) and (C) both seem to be sensible choices. The set of pairs obtained through method (C)
is a subset of the set obtained through method (B) as the implication (C)⇒(B) obviously
holds for all F, G ∈ D0. However, since method (C) seems to be sufficient for a number of
exemplary pairs of distributions, we use this method in our definition for a discrete skewness
order as it requires a smaller number of comparisons. We refrain from attempting to prove
any rigorous results advocating the use of method (C), which could possibly be obtained
similarly to Proposition 7.19. An upside of using method (B) instead could be that the set of
index-pairs to be compared can be computed more easily. Overall, our proposed requirement
concerning the supports for F ∈ D0 to be deemed less skewed (to the right) than G ∈ D0 is

xa+1 − xa

xa − xa−1
≤ yb+1 − yb

yb − yb−1
∀(a, b) ∈ R(⇋3), (8.4)

where the relation ⇋3 on the set A × B is defined by

a ⇋3 b ⇔ (a ⇋∧ b) ∨ (a + 1 ⇋∧ b + 1)

⇔ ((a − 1 ⇋ b − 1) ∧ (a ⇋ b)) ∨ ((a ⇋ b) ∧ (a + 1 ⇋ b + 1))

⇔ (a ⇋ b) ∧ ((a − 1 ⇋ b − 1) ∨ (a + 1 ⇋ b + 1))

for a ∈ A, b ∈ B.
However, this requirement alone is not sufficient to deem one discrete distribution unam-

biguously less skewed than another. Similarly to our process of finding discrete dispersive
orders, a requirement concerning the jump heights seems to be missing. Or, in other words,
the requirements (i) and (ii) on the jump heights given in Theorem 8.1 need to be weakened.
In order to obtain the corresponding requirement for the discrete dispersive orders, we sub-
stituted the Lebesgue densities in an equivalent characterization of F ≤disp G on P1

I for the
pmf’s of the discrete distributions in question. That equivalent characterization is given by
g(G−1(p)) ≤ f(F −1(p)) for all p ∈ (0, 1). On P2

I , the statement F ≤c G can be equivalently
characterized in a similar way, namely by

g′(G−1(p))
(g(G−1(p)))2 ≤ f ′(F −1(p))

(f(F −1(p)))2 ∀p ∈ (0, 1)

(see the proof of Theorem 3.12c)). Here, the Lebesgue densities cannot simply be substituted
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for pmf’s. However, the fact that the derivatives of Lebesgue densities appear in the above
characterization suggests that some sort of comparison between successive values of the pmf’s
is necessary. Thus, our proposal is to formulate the requirement similarly to (8.4): this results
in requiring

qb

qb−1
≤ pa

pa−1
(8.5)

for all pairs (a, b) in a suitable subset of A × B. The direction of the ≤-sign in (8.5) is
obvious by comparing a discrete uniform distribution to a distribution with the same support,
but with decreasing pmf. The latter distribution is obviously skewed to the right and the
corresponding ratios considered in (8.5) are smaller than 1, while the uniform distribution is
obviously symmetric with the corresponding ratios always being equal to 1.

The only thing missing is a suitable subset of A × B that contains all pairs (a, b) to be
compared in the sense of (8.5). Two already known subsets of A × B suitable for a kind of
pointwise comparison between two cdf’s are R(⇋∧) and R(⇋∨). Since the set in association
with (8.5) should be a weakening of properties (i) and (ii) from Theorem 8.1, the following
result is helpful in choosing between the two presented alternatives.

Proposition 8.3. Let F, G ∈ D0 satisfy properties (i) and (ii) from Theorem 8.1. Then,

qb

qb−1
≤ pa

pa−1
∀(a, b) ∈ R(⇋∧) (8.6)

follows, whereas
qb

qb−1
≤ pa

pa−1
∀(a, b) ∈ R(⇋∨) (8.7)

does generally not hold.

Proof. It is easy to see that R(⇋∧) = {(a, b) ∈ A × B : F (xa−1) = G(yb−1)}. Consequently,
for all pairs (a, b) ∈ R(⇋∧) except for the lowest and the highest (if those exist), F (xa−j) =
G(yb−j), j = 0, 1, 2 holds, resulting in

qb

qb−1
= G(yb) − G(yb−1)

G(yb−1) − G(yb−2) = F (xa) − F (xa−1)
F (xa−1) − F (xa−2) = pa

pa−1
.

R(⇋∧) has a lowest pair, if and only if min G(DG) exists, and it has a highest pair, if and only
if max F (DF ) exists. In the first case, if (a, b) denotes the pair in question, F (xa−1) = G(yb−1)
holds along with G(yb−2) = 0 ≤ F (xa−2). If |R(⇋∧)| > 1, then F (xa) = G(yb) holds;
otherwise, F (xa) = 1 ≥ G(yb) holds. It follows

qb

qb−1
= G(yb) − G(yb−1)

G(yb−1) − G(yb−2) ≤ F (xa) − F (xa−1)
F (xa−1) − F (xa−2) = pa

pa−1
.

In the case of max F (DF ) existing, the proof is analogous.
For the counterexample to (8.7), let F ∈ D0 be defined by A = {1, . . . , 4} and (xj , pj) =
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(j, 1
4) for j ∈ A, i.e. X ∼ U [4]. Furthermore, let G ∈ D0 be defined by B = {1, . . . , 5},

yj = j for j ∈ B and (q1, . . . , q5) = (1
4 , 1

4 , 1
4 , 1

16 , 3
16). It follows that F (DF ) = {1

4 , 1
2 , 3

4} and
G(DG) = {1

4 , 1
2 , 3

4 , 13
16}, so both (i) and (ii) are satisfied. However, since (4, 5) ∈ R(⇋∨),

q5
q4

= 3 > 1 = p4
p3

contradicts (8.7).

With this result, our proposed definition of a discrete skewness order arises from the
combination of (8.4) and (8.6).

Definition 8.4. Let F, G ∈ D0. G is said to be at least as discretely skewed (to the right) as
F , denoted by F ≤disc

skew G, if

qb

qb−1
≤ pa

pa−1
∀(a, b) ∈ R(⇋∧) and

xa+1 − xa

xa − xa−1
≤ yb+1 − yb

yb − yb−1
∀(a, b) ∈ R(⇋3).

Corollary 8.5. Let F, G ∈ D0 satisfy properties (i) and (ii) from Theorem 8.1. Then, F ≤c G

and F ≤disc
skew G are equivalent.

Proof. The result follows from the combination of Theorem 8.1 and Propositions 8.2 and
8.3.

Similarly to our considerations concerning discrete dispersion orders, this order could be
analyzed further. This includes the derivation of desirable properties, its compatibility with
popular distribution families and skewness measures as well as the discussion of alternative
orders. However, for this outlook, the proposal of a discrete skewness order should suffice.

8.3. Comparing Discrete Distributions

Generally, quantiles are not an optimal tool for describing and comparing discrete distributions.
They seem to suffice for the relatively simple concept of location, which can be described by
the calculation and comparison of single quantiles (see Section 6.1). However, as soon as the
characteristic of interest requires differences of quantiles to be considered, quantile-based tools
like the Q-Q-plots are no longer satisfactory. This is shown for the characteristic of dispersion
in Section 6.2 and it is indicated in Section 8.2 for skewness.

One alternative way to describe distributions is to consider expectiles instead of quantiles.
Because all expectile functions eF are strictly increasing on (inf(supp(F )), sup(supp(F ))) (see
Proposition 2.22c)), the disadvantages of quantiles are not present for expectiles. This is
because expectiles are quantiles of the transformed cdf F̆ defined in (2.14), which lies in the
set PI for all underlying distributions. Thus, the problems with discrete distributions are
eliminated by transforming them into sufficiently similar continuous distributions. On the
other hand, expectiles do not describe distributions in the same fundamental and intuitive
sense as quantiles, making them more difficult to interpret.
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Another approach at describing and comparing discrete distributions is developed throughout
Chapter 7. Crucial points in this development are given by the restriction to purposive discrete
distributions in Definition 7.1, their equivalent description by indexing sets and identifying
sequences in Proposition 7.3, and by the definition and characterization of the relation ⇋ in
Definition 7.8 and Proposition 7.10. These tools allow us to describe and handle the discrete
dispersive orders in a fairly simple way. The relation ⇋ in particular modifies the meaning of
pointwise comparisons to be meaningfully applicable to discrete distributions. It does so in a
way that is informed by the Q-Q-plot (see Figure 6.3, Example 7.11a) and the subsequent
remarks), and is therefore connected to the methodology used in a continuous setting.

Within this thesis, the theory for the comparison of discrete distributions described above is
mainly used for the characteristic of dispersion. This begs the question whether it is generally
suitable for (convex) characteristics of discrete distributions. Lemma A.12 states that the
stochastic order ≤st can easily be described using the relation ⇋. Furthermore, Section 8.2
contains an approach to use it for the construction of a discrete version of the skewness order
≤c. Although the resulting Definition 8.4 is more complex than the discrete orders of location
and dispersion, the requirements are of a similar form and are based on the relation ⇋. Since
discrete skewness is only discussed briefly, the utility of the discrete skewness order is difficult
to assess. However, it is possible that convex characteristics of an even higher order could be
described in a similar way. For the example of kurtosis, it would be interesting to see whether
the problems that arise from a lack of standardization with respect to skewness in Chapter 4
also play a role in these discrete orders.

The framework for comparing discrete distributions from Chapter 7 also exhibits a few
disadvantages. First, the first alternative approach for a discrete dispersive order presented
in Section 8.1 looks promising, but it does not seem to fit into this framework. Of course,
this could also be seen as a weakness of the proposed order. Second, the discrete orders of
convex characteristics cannot be equivalently characterized by simple functions like RIDF’s.
A generalization of RIDF’s developed in Appendix A succeeds in characterizing the stochastic
order, but not the discrete dispersive orders. The third disadvantage of the methodology is
that it is not applicable to all discrete distributions, but only to the subset D0. Example 7.2
gives a discrete distribution outside of D0. Although virtually all practically useful discrete
distributions are in D0, this shows that the methodology is somewhat limited. However, for
some F ∈ D \ D0, it seems possible to divide F into multiple distributions in D0, which are
then treated separately and can finally be added up to again obtain F .

Finally, it is unclear whether the transition from the discrete dispersive orders to the original
dispersive order is smooth in some sense. For example, one could consider a continuous cdf F

and approximate it by discrete cdf’s Fn such that Fn
n→∞→ F in a given mode of convergence. If

the same is given for another continuous cdf G, a desirable result would be that Fn ≤∧−disc
disp Gn

for all sufficiently large n implies F ≤disp G. This and similar open questions could be the
topic of future research.





APPENDIX A

Relative Inverse Distribution Functions of
Discrete Distributions

In this appendix, we consider RIDF’s and their application to discrete distributions. The goal
is to obtain exact limits of their applicability and propose a suitable modification. Throughout
the appendix, we assume F =̂ (A, (xj , pj)j∈A) and G =̂ (B, (yj , qj)j∈B) whenever F, G ∈ D0

(see Proposition 7.3).
For two cdf’s F and G, the corresponding RIDF’s are given by RGF = F −1 ◦ G and

RF G = G−1 ◦ F . Under certain regularity conditions (e.g. F, G ∈ PI), these mappings are
strictly increasing functions that transform one random variable into another. Specifically, if
X ∼ F and Y ∼ G, then RGF (Y ) =st X and RF G(X) =st Y . This is explicitly proved in the
following (see also van Zwet, 1964, p. 48, and Oja, 1981, p. 156).

Proposition A.1. Let F, G ∈ PI . Then, φ(X) =st Y with φ : DF → DG strictly increasing
is equivalent to φ = RF G.

Proof. Preliminarily note that, if φ is bijective, we obtain

Hφ(X)(t) = P(φ(X) ≤ t) = P(X ≤ φ−1(t)) = F (φ−1(t)) (A.1)

for all t ∈ DG. For the implication from left to right, it follows from φ being strictly increasing
that it is also injective. For the surjectivity of φ, note that both φ(DF ) and DG are open
intervals. Thus, assuming φ(DF ) ⊊ DG would imply λ1(φ(DF )) < λ1(DG), which contradicts
φ(X) =st Y . This means that (A.1) holds and therefore, φ(X) =st Y is equivalent to
F (φ−1(t)) = G(t) for all t ∈ DG. Since F , G and φ are all strictly increasing, this is equivalent
to φ−1 = F −1 ◦ G and also to φ = G−1 ◦ F . For the direction from right to left, note that
φ is strictly increasing as a composition of strictly increasing functions. Since φ(DF ) = DG
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holds by assumption, φ is bijective. Due to (A.1), we obtain

Hφ(X)(t) = F (φ−1(t)) = F (F −1(G(t))) = G(t),

which, as noted before, is equivalent to φ(X) =st Y .

The domain and the codomain of a RIDF are chosen in such a way that they almost surely
contain all values that X and Y take, respectively. In the continuous setting in Proposition
A.1, the interiors DF and DG of the supports supp(F ) and supp(G) are chosen, because using
the supports themselves would lead to problems with the surjectivity of φ. However, if we are
instead dealing with discrete distributions, the supports supp(F ) and supp(G) would be the
canonical choices for the domain and the codomain since they are then a union of singleton
atoms instead of a closed interval.

The requirement that φ is strictly increasing is made in order to obtain a intuitive transfor-
mation, meaning that the probability mass on low values of X is transformed onto low values
of G and the mass on high values is transformed onto high values. It prevents unnecessary
rearrangements leading to the same result. Consider the following simple example.

Example A.2. Let X ∼ U(0, 2) and Y ∼ U(2, 4). Because of F, G ∈ PI , RF G is the unique
strictly increasing transformation that returns a G-distributed random variable, if applied
to X. Because of F : [0, 2] → [0, 1], t 7→ t

2 , and G : [2, 4] → [0, 1], t 7→ t
2 − 1, we obtain

RF G(t) = G−1( t
2) = 2

(
t
2 + 1

)
= t + 2. However, without the transformation being required

to be strictly increasing, one could, e.g., also propose φ(t) = (t + 3)1[0,1](t) + (t + 1)1(1,2](t).
Because of

P(φ(X) ≤ t) = P(X ≤ 1, X ≤ t − 3) + P(X > 1, X ≤ t − 1)

= t − 3
2 1[3,4](t) + t − 2

2 1[2,3](t) + 1
21(3,4](t) = t

2 − 1 = G(t)

for all t ∈ [2, 4], this transformation also satisfies φ(X) =st Y . However, since it is not
increasing, the nature of the transformation is non-monotone and very unintuitive, as illustrated
by Figure A.1.

Since, under some regularity conditions, RF G is the unique strictly increasing function that
transforms a F -distributed random variable into a G-distributed random variable, our next
step is to see whether this transformation works for all F, G ∈ P. The following proposition
not only states that this is, in general, not true, but also gives a necessary and sufficient
condition for its validity. The result and its proof are improved versions of Lemma 1c) from
Eberl and Klar (2019, p. 265). In particular, a number of equations in the proof are taken
directly from there.

Proposition A.3. Let F, G ∈ P. Then, RF G(X) =st Y holds, if and only if G(DG) ⊆ F (DF ).
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Figure A.1.: Illustration of Example A.2 with the transformation via G−1 ◦ F on the left and
the transformation via φ on the right. Upper panels: Cdf of X with the colour
signifying the order of the values (low values red, high values blue). Central
panels: Transformation function. Lower panels: Cdf of the transformation of X
with the colour signifying the order of the values as before.

Proof. Preliminarily, note that the following three equivalences hold for any cdf H ∈ P:

H−1(H(t)) = t ⇐⇒ ∀s ∈ DH , s < t : H(s) < H(t) (A.2)

for all t ∈ DH ,

H(H−1(p)) = p ⇐⇒ p ∈ H(R), (A.3)

for all p ∈ (0, 1), and

p ≤ H(t) ⇐⇒ H−1(p) ≤ t (A.4)

for all p ∈ (0, 1) and t ∈ R (see Shorack and Wellner, 1986, pp. 5–6). Considering (A.4), the
cdf of RF G(X) is given by

HRF G(X)(t) = P(G−1(F (X)) ≤ t) = P(F (X) ≤ G(t)) = HF (X)(G(t)) (A.5)
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for t ∈ R. If t /∈ DG, it immediately follows that either G(t) = 0 and

HRF G(X)(t) = HF (X)(0) = P(F (X) ≤ 0) = P(F (X) = 0) = 0

hold (since X does not have any probability mass where F is zero), or G(t) = 1 and

HRF G(X)(t) = HF (X)(1) = P(F (X) ≤ 1) = 1

hold. Hence, HRF G(X)(t) = G(t) for t ∈ R \ DG.
For the case t ∈ DG, we first focus on the cdf of F (X) at a point p ∈ (0, 1). If p ∈ F (DF ) =

F (R) \ {0, 1}, we obtain

HF (X)(p) = P(F (X) ≤ p) = P(F −1(F (X)) ≤ F −1(p))

= P(X ≤ F −1(p)) = F (F −1(p)) = p.

Here, the second equality follows by combining (A.3) and (A.4), using p ∈ F (R). The third
equality follows from (A.2) by using that X almost surely does not take any realization that
lies outside of DF , or on which F is constant. The last inequality holds due to (A.3) and
p ∈ F (R).

Now consider the case p ∈ F (DF ) \ F (DF ). Since any cdf H satisfies limt→−∞ H(t) = 0
and limt→∞ H(t) = 1 and has at most countably many discontinuities, H(DH) is a countable
union of disjoint intervals. This means that p is an endpoint of one of these intervals (now
relating to F (DF ) instead of H(DH)) that is excluded from the interval itself. Since any cdf
is right continuous, the left endpoint is always included in the interval. Hence, there exists an
interval I ⊆ F (DF ), of which p is the right endpoint. It follows

HF (X)(p) = lim
r∈I
r↗p

P(F (X) ≤ r) + P(F (X) = p) = lim
r∈I
r↗p

r = p,

where P(F (X) = p) = 0 is implied by p /∈ F (R). Hence, HF (X)(p) = p for p ∈ F (DF ). Now
let p /∈ F (DF ). Since F (DF ) ∩ (sup(F (DF ) ∩ [0, p]), p] = ∅, we obtain

HF (X)(p) = P(F (X) ≤ p) = P(F (X) ≤ sup(F (DF ) ∩ [0, p])︸ ︷︷ ︸
∈F (DF )

) = sup(F (DF ) ∩ [0, p]) < p.

Therefore, HF (X)(p) = p holds, if and only if p ∈ F (DF ) (see Shorack and Wellner, 1986, p.
5, Proposition 2, proof as exercise). Because of (A.5), this means that HRF G(X)(t) = G(t)
is equivalent to G(t) ∈ F (DF ) ∪ {0, 1}. Considering that RF G(X) =st Y is equivalent to
HRF G(X)(t) = G(t) for all t ∈ R, this concludes the proof.

Note that the sufficient condition for the existence of an increasing transformation function
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of one random variable into another, given in Proposition A.3, is highly similar to the necessary
condition for being ordered with respect to the dispersive order, given in Proposition 6.6.

Now we turn our attention to purposive discrete distributions. Since the only possible
accumulation points of H(DH) with H ∈ D0 are 0 and 1, we obtain H(DH) ∩ (0, 1) = H(DH).
Hence, for F, G ∈ D0, the equivalent characterization in Proposition A.3 is given by G(DG) ⊆
F (DF ). As discussed after Proposition 6.6, this condition poses a major restriction for pairs of
purposive discrete cdf’s. This suggests that, for most F, G ∈ D0, there exists no transformation
function φ : supp(F ) → supp(G) such that φ(X) =st Y . The following proposition proves
this result in a more rigorous way.

Proposition A.4. Let F, G ∈ D0. Then, there exists an increasing function φ : supp(F ) →
supp(G) such that φ(X) =st Y , if and only if G(DG) ⊆ F (DF ).

Proof. The implication from right to left holds due to Proposition A.3 and since, as stated
above, F (DF )∩(0, 1) = F (DF ). For the implication from left to right, assume G(DG) ̸⊆ F (DF )
or, equivalently, G(DG) \ F (DF ) ̸= ∅. Since the support of X is countable and φ relocates
the points in the support in an increasing way, we obtain

Hφ(X)(t) = P(φ(X) ≤ t) = P(X ∈ φ−1((−∞, t])) = P(X ≤ sup{s ∈ supp(F ) : φ(s) ≤ t})

= F (sup{s ∈ supp(F ) : φ(s) ≤ t})

for any t ∈ R. Therefore, Hφ(X)(R) ⊆ F (R) = F (DF ) ∪ {0, 1} holds. Now, G(DG) ⊆ G(R)
yields

G(R) \ Hφ(X)(R) ⊇ G(DG) \ (F (DF ) ∪ {0, 1}) = G(DG) \ F (DF ) ̸= ∅,

which contradicts Hφ(X)(t) = G(t) for all t ∈ R or, equivalently, φ(X) =st Y .

As shown throughout this thesis, the concept of RIDF’s is highly relevant for the comparison
of probability distributions. This role is based on the crucial property RF G(X) =st Y , which
implies that ∆F G(X) = RF G(X) −X is the difference of a G-distributed and an F -distributed
random variable. The function ∆F G can then be utilized to obtain useful and easy to interpret
equivalent characterizations of orders of convex characteristics, see Proposition 2.9.

However, this concept only works smoothly, if the RIDF in question actually succeeds in
transforming one random variable into the other. In order to meaningfully apply this useful
concept to all purposive discrete distributions, we introduce modified RIDF’s for this case.
Afterwards, we examine whether the new concept has the desired properties and whether it is
connected to orders of convex characteristics or their discrete versions. Preliminarily, for two
arbitrary sets S and T , denote the the set of all functions from S to T by M(S, T ).
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Definition A.5. Let F, G ∈ D0. A random element φ on M(supp(F ), supp(G)) is said to be
a random relative inverse distribution function (RRIDF) from F to G, if it satisfies

P(φ(xa) = yb) =
r(a,b)
pa

for all a ∈ A and b ∈ B and with r(a,b) being defined as in (7.6). We denote the set of all
RRIDF’s from F to G by ΦG

F .

Since, for F, G ∈ D0, supp(F ) is countable, the set M(supp(F ), supp(G)) is isomorphic to
the set of sequences (supp(G))A = {(ya)a∈A : ya ∈ supp(G) ∀a ∈ A} via the isomorphism
φ 7→ (φ(xa))a∈A. Therefore, any RRIDF from F to G can also be interpreted as a sequence
of random variables, indexed by A. Moreover, all of these random variables have themselves
purposive discrete distributions since they only take values in supp(G), which is order-
isomorphic to a subset of Z by assumption.

With that in mind, the distribution of any random element φ in M(supp(F ), supp(G))
is given by the joint distribution of the sequence (φ(xa))a∈A. However, since the defining
condition of a RRIDF only specifies the marginal distributions of that sequence, there are
generally multiple RRIDF’s for one pair of distributions F and G. These different elements
of ΦG

F are set apart by having a variety of dependence structures between the individual
components of the sequences (φ(xa))a∈A. One of the simplest and easiest to use elements
of ΦG

F is usually obtained, if each component of the sequence has the required marginal
distribution and all components are stochastically independent. This observation, along with
the facts that 0 ≤ r(a,b) ≤ 1 and ∑b∈B r(a,b) = ∑

b∈B:a⇋b r(a,b) = pa for all a ∈ A and b ∈ B,
already proves that ΦG

F ̸= ∅ for all F, G ∈ D0.
Next, we show that, for F, G ∈ D0, ΦG

F already contains all random transformations of
X ∼ F into Y ∼ G that are reasonably ’intuitive’, which means that they transform the
probability mass in an increasing way. However, requiring the transformation function φ to
be almost surely increasing in the sense that P(φ(x0) ≤ φ(x1)) = 1 for all x0, x1 ∈ supp(F )
with x0 < x1 is not sufficient. It still allows for non-intuitive transformations, if the joint
distribution of the components of φ is chosen accordingly, as demonstrated in the following
example.

Example A.6. Let X ∼ U({1, 2}) and Y ∼ U({1, 2, 3, 4}). Define φ as a random element on
M(supp(F ), supp(G)) by

P(φ(1) = 1, φ(2) = 2) = P(φ(1) = 3, φ(2) = 4) = 1
2 .

Hence, φ(1) ∼ U({1, 3}) and φ(2) ∼ U({2, 4}). Obviously, φ does not adhere to the guideline
that low values of X are transformed onto low values of Y and the same with high values.
Still, φ(X) =st Y is easily seen to be true and the formal requirement of φ being almost
surely increasing is satisfied because φ(1) < φ(2) holds for the two values of (φ(1), φ(2)) with
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probability mass on them.

This example shows that the property of being almost surely increasing is not sufficient
for a random transformation between purposive discrete distributions to behave intuitively.
Instead, we use a stronger property that is defined as follows.

Definition A.7. Let S and T be countable sets and let φ be a random element on M(S, T ).
Then, φ is said to be increasing with respect to the marginal distributions (MD-increasing), if

P(φ(xℓ) = yu) = 0 or P(φ(xu) = yℓ) = 0

holds for all xℓ, xu ∈ S with xℓ < xu and all yℓ, yu ∈ T with yℓ < yu.

With this definition, we can now show that the set of all ’intuitive’ transformation functions
of one random variable into another is equal to the corresponding set of RRIDF’s.

Theorem A.8. Let F, G ∈ D0 and let φ be a random element on M(supp(F ), supp(G)) that
is independent from X and that is MD-increasing. Then, the following equivalence holds:

φ(X) =st Y ⇐⇒ φ ∈ ΦG
F .

Proof. For the implication from right to left, let t ∈ R. If supp(G) ∩ (−∞, t] ̸= ∅ and
sup(supp(G)∩(−∞, t]) < ∞, let bt ∈ B be the unique index that satisfies ybt = sup(supp(G)∩
(−∞, t]). If supp(G) ∩ (−∞, t] = ∅, let bt = −∞; if sup(supp(G) ∩ (−∞, t]) = ∞, let bt = ∞.
It follows that

Hφ(X)(t) = P(φ(X) ≤ t) =
∑
a∈A

P(φ(X) ≤ t|X = xa)P(X = xa)

=
∑
a∈A

P(φ(xa) ≤ t)P(X = xa) =
∑
a∈A

pa

∑
y∈supp(G):

y≤t

P(φ(xa) = y)

=
∑
a∈A

pa

∑
j∈B:
j≤bt

r(a,j)
pa

=
∑

(a,j)∈R(⇋):
j≤bt

r(a,j)

=
∑
j∈B:
j≤bt

∑
a∈A:
a⇋j

r(a,j) =
∑
j∈B:
j≤bt

qj

= G(ybt) = G(t).

This only leaves the implication from left to right to prove; for that, let b ∈ B. Then, there
exists an a ∈ A such that P(φ(xa) = yb) > 0 since otherwise, P(φ(X) = yb) = 0 would follow,
which contradicts φ(X) =st Y because of P(Y = yb) = qb > 0. Denote the non-empty set of
all such a’s by

Ab = {a ∈ A : P(φ(xa) = yb) > 0}.
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Assume now that Ab does not have a minimum. Because of Ab ⊆ A ⊆ Z, this is equivalent
to inf Ab = −∞. If we additionally assume that there exists a b0 ∈ B, b0 < b, then, for all
a0 ∈ Ab0 , there exists an a ∈ Ab with a < a0. However, this contradicts the assumption that
φ is MD-non-decreasing, which means that b = min B follows, if Ab does not have a minimum.
Analogously, b = max B follows if Ab does not have a maximum.

Now we consider the case b ∈ B, meaning that both min Ab and max Ab exist. For all
b0 ∈ B, b0 < b, the fact that φ is MD-increasing dictates that a0 ≤ min Ab for all a0 ∈ Ab0 . It
follows

P(φ(X) < yb) =
∑

b0∈B:
b0<b

P(φ(X) = yb0)

=
∑

b0∈B:
b0<b

∑
a∈A

P(φ(X) = yb0 |X = xa)P(X = xa)

=
∑

b0∈B:
b0<b

∑
a∈A

P(φ(xa) = yb0)︸ ︷︷ ︸
=0 if a/∈Ab0

pa

=
∑

a∈
⋃

b0∈B:b0<b
Ab0

pa

∑
b0∈B:
b0<b

P(φ(xa) = yb0)

=
∑

a∈
(⋃

b0∈B:b0<b
Ab0

)
\{min Ab}

pa

∑
b0∈B:
b0<b

P(φ(xa) = yb0)

+ 1
⋃

b0∈B:b0<b
Ab0

(min Ab) · pmin Ab

∑
b0∈B:
b0<b

P(φ(xmin Ab
) = yb0) (A.6)

Let a ∈
(⋃

b0∈B:b0<b Ab0

)
\{min Ab}. Then all b0 ∈ B such that P(φ(xa) = yb0) > 0 are smaller

than b, yielding ∑b0∈B:b0<b P(φ(xa) = yb0) = 1. If min Ab /∈
⋃

b0∈B:b0<b Ab0 , then there exists
no b0 ∈ B, b0 < b, such that P(φ(xmin Ab

) = yb0) > 0, yielding ∑b0∈B:b0<b P(φ(xmin Ab
) =

yb0) = 0. This renders the characteristic function in (A.6) redundant. Furthermore, if
min Ab ∈

⋃
b0∈B:b0<b Ab0 , we obtain ∑

b0∈B:b0<b P(φ(xmin Ab
) = yb0) = P(φ(xmin Ab

) < yb).
Overall, this yields

P(φ(X) < yb) =
∑

a∈
(⋃

b0∈B:b0<b
Ab0

)
\{min Ab}

pa + pmin Ab
P(φ(xmin Ab

) < yb)

= F (xmin Ab−1) + pmin Ab
P(φ(xmin Ab

) < yb) (A.7)

= F (xmin Ab
) − pmin Ab

P(φ(xmin Ab
) ≥ yb).
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With analogous reasoning, we obtain

P(φ(X) > yb) =
∑

a∈
(⋃

b0∈B:b0>b
Ab0

)
\{max Ab}

pa + pmax Ab
P(φ(xmax Ab

) > yb)

= 1 − F (xmax Ab
) + pmax Ab

P(φ(xmax Ab
) > yb) (A.8)

= 1 − F (xmax Ab−1) − pmax Ab
P(φ(xmax Ab

) ≤ yb).

It follows

F (xmin Ab−1) = P(φ(X) < yb) − pmin Ab
P(φ(xmin Ab

) < yb)

≤ P(φ(X) ≤ yb−1) = P(Y ≤ yb−1) = G(yb−1), (A.9)

F (xmin Ab
) = P(φ(X) < yb) + pmin Ab

P(φ(xmin Ab
) ≥ yb)

≥ P(φ(X) ≤ yb−1) + pmin Ab
P(φ(xmin Ab

) = yb) > P(φ(X) ≤ yb−1) = G(yb−1),
(A.10)

F (xmax Ab
) = 1 − P(φ(X) > yb) + pmax Ab

P(φ(xmax Ab
) > yb)

≥ P(φ(X) ≤ yb) = P(Y ≤ yb) = G(yb), (A.11)

F (xmax Ab−1) = 1 − P(φ(X) > yb) − pmax Ab
P(φ(xmax Ab

) ≤ yb)

≤ P(φ(X) ≤ yb) − pmax Ab
P(φ(xmax Ab

) = yb) < P(φ(X) ≤ yb) = G(yb). (A.12)

yielding that, for all a ∈ A, a ⇋ b is equivalent to min Ab ≤ a ≤ max Ab, so to a ∈ Ab. This
directly implies that, for all a ∈ A \ Ab,

P(φ(xa) = yb) = 0 = r(a,b) =
r(a,b)
pa

,

leaving only a ∈ Ab to be considered. We now distinguish between two cases concerning the
cardinal number of Ab.

Case 1: |Ab| = 1
Let ab denote the one element of Ab. Then, (A.7) and (A.8) yield

P(φ(X) = yb) = 1 − P(φ(X) > yb) − P(φ(X) < yb)

= F (xab
) − F (xab−1) − pab

[P(φ(xab
) > yb) + P(φ(X) < yb)]

= pab
[1 − P(φ(xab

) < yb) − P(φ(xab
) > yb)]

= pab
P(φ(xab

) = yb). (A.13)

As noted before the case distinction, ab is the only element a ∈ A that satisfies a ⇋ b,
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which implies r(ab,b) = qb. By plugging this into (A.13), we obtain

P(φ(xab
) = yb) = P(φ(X) = yb)

pab

= P(Y = yb)
pab

= qb

pab

=
r(ab,b)
pab

.

This proves the assertion in this case.

Case 2: |Ab| ≥ 2
In this case, (A.7), (A.9) and (A.10) yield

r(min Ab,b) = F (xmin Ab
) − G(yb−1) = F (xmin Ab

) − P(φ(X) < yb)

= F (xmin Ab
) − F (xmin Ab−1) − pmin Ab

P(φ(xmin Ab
) < yb)

= pmin Ab
P(φ(xmin Ab

) ≥ yb).

Furthermore, because there exists an x > xmin Ab
with P(φ(x) = yb) > 0, the fact that φ

is MD-increasing dictates that P(φ(xmin Ab
) > yb) = 0. Dividing by pmin Ab

then yields

P(φ(xmin Ab
) = yb) =

r(min Ab,b)
pmin Ab

,

as asserted. Similarly, (A.8), (A.11) and (A.12) yield

r(max Ab,b) = G(yb) − F (xmax Ab−1) = 1 − P(φ(X) > yb) − F (xmax Ab−1)

= F (xmax Ab
) − F (xmax Ab−1) − pmax Ab

P(φ(xmax Ab
) > yb)

= pmax Ab
P(φ(xmax Ab

) ≤ yb). (A.14)

Since there exists an x < xmax Ab
with P(φ(x) = yb) > 0, it follows that P(φ(xmax Ab

) <

yb) = 0 since φ is MD-increasing. Hence,

P(φ(xmax Ab
) = yb) =

r(max Ab,b)
pmax Ab

,

Now let a ∈ Ab = Ab \{min Ab, max Ab}. Since there exist both larger (e.g. xmax Ab
) and

smaller (e.g. xmin Ab
) supporting points of F than xa that are mapped by φ onto yb with

positive probability, it follows that P(φ(xa) = yb) = 1 holds because φ is MD-increasing.
It follows

r(a,b) = F (xa) − F (xa−1) = pa = paP(φ(xa) = yb) ⇐⇒ P(φ(xa) = yb) =
r(a,b)
pa

. (A.15)

It remains to consider b = min B and b = max B, provided that the minimum and maximum
of B exists, respectively. Note that both cases cannot occur simultaneously since that would
imply |B| = 1 and, therefore, that the distribution of Y is degenerate. We first consider
b = min B; in that case Ab still has a maximum, but not necessarily a minimum. Hence, (A.8),



243

(A.11) and (A.12) still hold. Additionally, since inf Ab = inf A and since φ is MD-increasing,
Ab = {max Ab, max Ab − 1, . . .} = A ∩ (−∞, max Ab]. It then follows from (A.11) and (A.12)
that, for all a ∈ A, a ⇋ b is equivalent to a ≤ max Ab, so to a ∈ Ab. This again implies
P(φ(xa) = yb) = 0 = r(a,b) = r(a,b)

pa
for all a ∈ A \ Ab.

In the case |Ab| = 1 with ab denoting the one element of Ab, it once again directly follows that
ab is the only element a ∈ A with a ⇋ b, yielding r(ab,b) = qb. Considering yb = min(supp(G)),
we obtain

r(ab,b) = qb = P(Y = yb) = P(φ(X) = yb)

= 1 − P(φ(X) > yb)

= F (xab
) − pab

P(φ(xab
) > yb)

= pab
(1 − P(φ(xab

) > yb))

= pab
P(φ(xab

) = yb).

The assertion in this case follows by rearranging the equation.
In the case |Ab| ≥ 2, (A.14) still holds. Because yb is the smallest element of supp(G),

P(φ(xmax Ab
) ≤ yb) is equal to P(φ(xmax Ab

) = yb). Rearranging then yields the assertion
for a = max Ab. For a ∈ Ab = Ab \ {max Ab}, there exists a larger supporting point of F

that xa (namely xmax Ab
) that is mapped by φ onto yb with positive probability, yielding

P(φ(xa) > yb) = 0 because φ is MD-increasing. Since P(φ(xa) < yb) = 0 was already noted,
we obtain P(φ(xa) = yb) = 1. Hence, (A.15) holds and the proof is completed for the case
b = min B.

The case b = max B is analogous with the roles of minima and maxima being switched.

The following result reinforces the RRIDF’s in their asserted role as a discrete generalization
of the RIDF. It states that the RIDF is the only possible choice for a (then non-random)
RRIDF, if and only if the RIDF is actually successful in transforming one random variable
into another (via the equivalent characterization given in Propositions A.3 and A.4).

Proposition A.9. Let F, G ∈ D0. Then, ΦG
F = {RF G}, if and only if G(DG) ⊆ F (DF ).

Proof. First, note that the marginal distributions of all φ ∈ ΦG
F are the same. Therefore,

if RF G as a deterministic function is an element of ΦG
F , it is also the only element of that

set since there is then no dependency structure to be varied. So it remains to be shown
that RF G ∈ ΦG

F , if and only if G(DG) ⊆ F (DF ). For any a ∈ A, let ba ∈ B be the
unique index that satisfies yba = RF G(xa). By definition of the quantile function, we obtain
yba = inf{t ∈ R : G(t) ≥ F (xa)}. This yields G(yba) ≥ F (xa) > G(yba−1) because of the
minimality of ba and, hence, a ⇋ ba. By Definition A.5, G−1 ◦ F ∈ ΦG

F is equivalent to
r(a,ba) = pa for all a ∈ A, which, in turn, is equivalent to R(⇋) ∩ ({a} × B) only containing
one element for each a ∈ A. This is equivalent to G(DG) ∩ (F (xa−1), F (xa)) = ∅ for all a ∈ A



244
Appendix A. Relative Inverse Distribution Functions of Discrete

Distributions

and therefore to

∅ =
⋃

a∈A

(G(DG) ∩ (F (xa−1), F (xa))) = G(DG) ∩ ((0, 1) \ F (DF ))

or G(DG) ⊆ F (DF ) (since F (DF ), G(DG) ⊆ (0, 1)).

An alternative proof of Proposition A.9 can be obtained by combining Propositions A.3
and A.4 with Theorem A.8 as follows; let F, G ∈ D0. Due to Propositions A.3 and A.4,
G(DG) ⊆ F (DF ) is equivalent to RF G(X) =st Y , which itself is equivalent to RF G ∈ ΦG

F

because of Theorem A.8 and because RF G is increasing. The elements of ΦG
F all have the same

marginal distributions and can only differ based on the structure of their joint distributions.
However, because RF G is deterministic, there is no joint distribution to be varied, and so
RF G ∈ ΦG

F is equivalent to RF G being the only element of ΦG
F , which concludes the proof.

The concept of RRIDF’s is closely related to the so-called distributional transform, which
has been considered by Ferguson (1967), Rüschendorf (1981, 2009), Shorack and Wellner
(1986) and Shorack (2017), among others. It generalizes the result that F (X) ∼ U([0, 1])
holds, if F is a continuous cdf and X ∼ F , to arbitrary cdf’s. Note that this result also follows
from Proposition A.3 as a special case, if G is the cdf of the uniform distribution on the unit
interval. Moreover, it states that F being continuous (or, equivalently, (0, 1) ⊆ F (DF )) is a
necessary and sufficient condition for F (X) ∼ U([0, 1]). There are two well known versions of
the distributional transform. The version used by Ferguson (1967, p. 216) and Rüschendorf
(1981, pp. 330–331, 2009, p. 3922) is defined as

F ∗F (X) = F F (X, V ) with F F (x, λ) = P(X < x) + λ · P(X = x),

where x ∈ R, λ ∈ [0, 1] as well as X ∼ F and V ∼ U([0, 1]) independent. This is equivalent to
the following pointwise definition on the underlying probability space Ω

F ∗F (X)(ω) = lim
t↗X(ω)

F (t) + V (ω) ·
(

F (X(ω)) − lim
t↗X(ω)

F (t)
)

, ω ∈ Ω.

In the case F ∈ D0, it can be reformulated to

F ∗F (X) = F (X) − V ·
∑
a∈A

pa1{xa}(X).

To this end, note that

F ∗F (X)(ω) = lim
t↗X(ω)

F (t) + V (ω) ·
(

F (X(ω)) − lim
t↗X(ω)

F (t)
)

= F (X(ω)) −
(

F (X(ω)) − lim
t↗X(ω)

F (t)
)

+ V (ω) ·
(

F (X(ω)) − lim
t↗X(ω)

F (t)
)
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= F (X(ω)) − (1 − V (ω)) ·
(

F (X(ω)) − lim
t↗X(ω)

F (t)
)

, ω ∈ Ω,

where (1 − V ) ∼ U([0, 1]). Shorack and Wellner (1986, p. 106) and Shorack (2017, p. 113)
defined the distributional transform in a slightly different way, namely

F ∗S(X) = F (X) −
∑
a∈A

Uapa1{xa}(X), (A.16)

where (Ua)a∈A is a sequence of independent random variables that are uniformly distributed
on the unit interval. Moreover, the sequence (Ua)a∈A is independent of X. The representation
(A.16) is also applicable in the case F /∈ D0. Then, A is a countable set that indexes all jump
discontinuities with the sequence (xa)a∈A denoting their locations and (pa)a∈A denoting their
jump heights.

It has been shown that, for any F ∈ P , both F ∗F (X) and F ∗S(X) are uniformly distributed
on the unit interval (see Ferguson (1967, p. 216, Lemma 1) and Shorack (2017, p. 113,
Proposition 3.2)). However, while Ferguson uses the same uniformly distributed random
variable V to spread out the probability mass of all jump discontinuities, Shorack assigns
a separate independent uniformly distributed random variable Ua, a ∈ A, to each jump
discontinuity. One could define even more versions of the distributional transform by changing
the joint distribution of these uniformly distributed random variables (other than ’identical’
and ’independent’, which are already taken). The way, in which the construction of these
distributional transforms is rigid in the marginal distributions but variable in the dependence
structure or copula, is reminiscent of the sets of RRIDF’s from Definition A.5. In fact, both
concepts are closely related. In order to see this, define both F ∗F and F ∗S as random elements
on M(supp(F ), (0, 1)).

Proposition A.10. Let F, G ∈ D0. Then, φ ∈ ΦG
F is equivalent to the existence of a

sequence (Ua)a∈A with Ua ∼ U([0, 1]), a ∈ A, satisfying (G−1 ◦ F ∗Ua) =st φ, where F ∗Ua(t) =
F (t) −

∑
a∈A Uapa1{xa}(t) for t ∈ supp(F ).

Proof. ’⇐’: Obviously, (G−1 ◦F ∗Ua) is a random object on M(supp(F ), supp(G)). For a ∈ A,
we obtain F ∗Ua(xa) = F (xa) − paUa ∼ U((F (xa−1), F (xa))). For any b ∈ B, the set of
values that is mapped onto yb by G−1 is given by (G(yb−1), G(yb)]. It follows

P((G−1 ◦ F ∗Ua)(xa) = yb) = P(F ∗Ua(xa) ∈ (G−1)−1({yb}))

= P(F ∗Ua(xa) ∈ (G(yb−1), G(yb)])

=
∫ G(yb)

G(yb−1)

1
F (xa) − F (xa−1)1(F (xa−1),F (xa))(t)dt

=
∫
R 1(F (xa−1),F (xa))∩(G(yb−1),G(yb))(t)dt

F (xa) − F (xa−1)
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=
r(a,b)
pa

for all a ∈ A, b ∈ B.

’⇒’: Let φ ∈ ΦG
F . Furthermore, let (Ua)a∈A be a sequence of random variables satisfying

Ua ∼ U([0, 1]) for all a ∈ A as well as

P
(⋂

a∈A

{
Ua ∈

(
F (xa) − G(yb)

F (xa) − F (xa−1) ,
F (xa) − G(yb−1)
F (xa) − F (xa−1)

)
∩ (0, 1)

})

= P
(⋂

a∈A

{φ(xa) = yb}
)

(A.17)

for all b ∈ B. Note that the corresponding marginal distributions are the same: if a ⇋ b,
we have

P
(

Ua ∈
(

F (xa) − G(yb)
F (xa) − F (xa−1) ,

F (xa) − G(yb−1)
F (xa) − F (xa−1)

)
∩ (0, 1)

)
=

r(a,b)
pa

= P(φ(xa) = yb).

(A.18)

The left hand probability in (A.18) is zero whenever(
F (xa) − G(yb)

F (xa) − F (xa−1) ,
F (xa) − G(yb−1)
F (xa) − F (xa−1)

)
∩ (0, 1) = ∅. (A.19)

(A.19) is equivalent to a ̸⇋ b for all a ∈ A, b ∈ B, which is, in turn, equivalent to
P(φ(xa) = yb) = 0. The sequence (Ua)a∈A exists because of

(0, 1) \ N ⊆
⋃

b∈B

(
F (xa) − G(yb)

F (xa) − F (xa−1) ,
F (xa) − G(yb−1)
F (xa) − F (xa−1)

)
and

(
F (xa) − G(yb)

F (xa) − F (xa−1) ,
F (xa) − G(yb−1)
F (xa) − F (xa−1)

)
∩
(

F (xa) − G(yβ)
F (xa) − F (xa−1) ,

F (xa) − G(yβ−1)
F (xa) − F (xa−1)

)
= ∅

for all a ∈ A, all b, β ∈ B with b ̸= β and for some null set N with respect to the
Lebesgue measure. This means that the discretized values of Ua, a ∈ A, which are given
by open sub-intervals of (0, 1), are mutually exclusive and make up the entire space of
values that the corresponding random variable can take (except of a null set). Therefore,
the joint discrete distribution of the sequence (φ(xa))a∈A can be transferred to (Ua)a∈A

with the behaviour of the latter sequence within the given intervals not being specified.
Now,

P
(⋂

a∈A

{(
G−1 ◦ F ∗Ua

)
(xa) = yb

})

= P
(⋂

a∈A

{
F ∗Ua(xa) ∈ (G(yb−1), G(yb)]

})
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= P
(⋂

a∈A

{F (xa) − pa · Ua ∈ (G(yb−1), G(yb)]}
)

= P
(⋂

a∈A

{
Ua ∈

[
F (xa) − G(yb)

F (xa) − F (xa−1) ,
F (xa) − G(yb−1)
F (xa) − F (xa−1)

)})

= P
(⋃

a∈A

{φ(xa) = yb}
)

holds for all a ∈ A, b ∈ B, where the last identity is due to (A.17). This proves
(G−1 ◦ F ∗Ua) =st φ.

Invoking the implication from right to left in the above proposition for the two specific
choices of (Ua)a∈A that were already mentioned yields the following corollary.

Corollary A.11. If F, G ∈ D0, then (G−1 ◦ F ∗F ), (G−1 ◦ F ∗S) ∈ ΦG
F .

Let F, G ∈ D0 and let U = {(Ua)a∈A : Ua ∼ U([0, 1]) ∀a ∈ A} denote the set of all |A|-
dimensional copulas. Then, an equivalence relation ▷◁G

F can be defined on U via (Ua)a∈A ▷◁G
F

(Va)a∈A, if and only if G−1 ◦ F ∗Ua =st G−1 ◦ F ∗Va . Now Proposition A.10 states that the
quotient set of U by ▷◁G

F is isomorphic to the set ΦG
F of RRIDF’s from F to G, i.e. U/ ▷◁G

F
∼= ΦG

F .
We now apply the concept of RRIDF’s to orders of convex characteristics, starting with the

usual stochastic order ≤st. Propositions 6.1 and 6.2 state that ≤st is equivalently characterized
by the RIDF RGF , but generally not by RF G. Similarly to the general case, the stochastic
order can be characterized via the sets of RRIDF’s if we restrict ourselves to (purposive)
discrete distributions. In this case, both characterizations are indeed equivalent to F ≤st G,
as demonstrated in Theorem A.13.

Lemma A.12. Let F, G ∈ D0. Then, F ≤st G, if and only if xa ≤ yb for all (a, b) ∈ R(⇋).

Proof. The assertion follows from Definition 7.8, similarly to the proof of Proposition 7.9:

F ≤st G ⇐⇒ F −1(r) ≤ G−1(r) ∀r ∈ (0, 1)

⇐⇒ xa ≤ yb ∀(a, b) ∈ A × B such that

F −1(r) = xa, G−1(r) = yb for some r ∈ (0, 1)

⇐⇒ xa ≤ yb ∀(a, b) ∈ R(⇋).

Theorem A.13. Let F, G ∈ D0. Then, the following three statements are equivalent:

(i) F ≤st G,

(ii) P(φ(t) ≤ t) = 1 for all t ∈ supp(G) and for all φ ∈ ΦF
G,
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(iii) P(φ(t) ≥ t) = 1 for all t ∈ supp(F ) and for all φ ∈ ΦG
F .

Proof. We only prove the equivalence of (i) and (ii) since the proof of the equivalence of (i)
and (iii) is entirely analogous.

’(i)⇒(ii)’: Let φ ∈ ΦF
G and t ∈ supp(G). Let b ∈ B be the unique element satisfying

t = yb. By assumption, (a, b) ∈ R(⇋) implies xa ≤ yb. Therefore, the fact that the
random variable φ(yb) almost surely only takes values in {xa ∈ supp(F ) : a ⇋ b}, i.e.
P(φ(yb) ∈ {xa ∈ supp(F ) : a ⇋ b}) = 1, implies that P(φ(t) ≤ t) = P(φ(yb) ≤ yb) = 1.
Since t was chosen arbitrarily in supp(G), this proves the asserted implication.

’(ii)⇒(i)’: Let b ∈ B. We obtain

∑
a∈A:a⇋b

P(φ(yb) = xa) = 1 = P(φ(yb) ≤ yb) =
∑

a∈A:a⇋b

P(φ(yb) = xa) · 1{xa ≤ yb}.

Since each of the probabilities in the sum on the left hand side is positive, this identity
implies that all of the indicator functions in the sum on the right hand side are equal to
one. It follows that xa ≤ yb for all a ∈ A such that a ⇋ b.

Since the class of functions, for which the stochastic order cannot be equivalently de-
scribed using RIDF’s (see Proposition 6.1), also contains purposive discrete distributions, the
characterization via RRIDF’s provides a viable alternative. However, that critical class of
distributions from Proposition 6.1 also contains other discrete distributions as well as mixtures
of continuous and discrete distributions. For these kind of more complex non-continuous
distributions, one cannot define a corresponding set of RRIDF’s by Definition A.5 because the
concepts of an indexing set, an identifying sequence and of the relation ⇋ are only defined for
purposive discrete distributions.

For sufficiently regular continuous distributions, the order of the second convex characteristic,
i.e. the dispersive order ≤disp, can also be characterized using RIDF’s. It is demonstrated in
Example 6.5 that these characterizations are not sensible and also not equivalent to ≤disp for
discrete distributions.

A result for a discrete dispersive order that is similar to what is shown for the stochastic
order in Theorem A.13 could not be proved, and we conjecture that it does not hold at all.
Instead, only a number of implications like the one shown in Theorem A.15 seem to hold.
Overall, while RRIDF’s succeed in transforming purposive discrete random variables into one
another, they are seemingly not fit to describe orders of convex characteristics other than the
stochastic order.
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Lemma A.14. Let F, G ∈ D0. For a, α ∈ A with a ̸= α, the sets {b ∈ B : a ⇋ b} and
{b ∈ B : α ⇋ b} have at most one element in common, i.e.

|{b ∈ B : a ⇋ b and α ⇋ b}| ≤ 1.

Proof. Assume the existence of b, β ∈ {b ∈ B : a ⇋ b and α ⇋ b} with b ̸= β. Furthermore,
assume without restriction that α > a and β > b. It follows

G(yb) ≤ G(yβ−1) < F (xa) ≤ F (xα−1),

which contradicts α ⇋ b.

Theorem A.15. For F, G ∈ D0, the following implication holds:

F ≤∧−disc
disp G =⇒ ∃φ ∈ ΦF

G : P(φ(t) − φ(s) ≤ t − s) = 1 ∀s, t ∈ supp(G), s < t.

Proof. Let F =̂ (Ã, (xj , pj)j∈Ã) and G =̂ (B, (yj , qj)j∈B). If Ã = −N, let A = Ã + 3 so that
max A = 2. Otherwise, let A = Ã.

Define the discrete random variable Z1 by P(Z1 = yb) = r(1,b)
p1

for all b ∈ B. This is possible
because of 1 ∈ A and uniquely defines the distribution of Z1 because of ∑b∈B P(Z1 = yb) =∑

b∈B:1⇋b P(Z1 = yb) = 1. Note that Z1 only takes values on {yb ∈ supp(G) : 1 ⇋ b}. Now we
define another discrete random variable Z2. If {b ∈ B : 1 ⇋ b and 2 ⇋ b} = ∅, we define Z2

independently of Z1 by P(Z2 = yb) = r(2,b)
p2

for all b ∈ B. If |{b ∈ B : 1 ⇋ b and 2 ⇋ b}| = 1
(any higher cardinalities are impossible due to Lemma A.14), we denote the one element in
that set by b1,2. It follows that p1 ≥ qb1,2 , p2 ≥ qb1,2 and G(yb1,2−1) < F (x1) < G(yb1,2). By
combining these statements, we obtain

F (x0) = F (x1) − p1 < G(yb1,2) − qb1,2 = G(yb1,2−1) and

F (x2) = F (x1) + p2 > G(yb1,2−1) + qb1,2 = G(yb1,2).

Hence, 1 ⇋ b1,2 − 1 and 2 ⇋ b1,2 + 1, which means that the sets {b ∈ B : 1 ⇋ b} and
{b ∈ B : 2 ⇋ b} both contain at least one element apart from b1,2. We define the distribution
of Z2 by

P(Z1 = yb1 , Z2 = yb2)

=



0 , if b1 = b1,2 = b2,
r(1,b1)

p1−r(1,b1,2)
·

r(2,b1,2)
p2

, if b1 ̸= b1,2 = b2,

r(1,b1,2)
p1

· r(2,b2)
p2−r(2,b1,2)

, if b1 = b1,2 ̸= b2,

r(1,b1)
p1−r(1,b1,2)

· r(2,b2)
p2−r(2,b1,2)

·
(
1 −

r(1,b1,2)
p1

−
r(2,b1,2)

p2

)
, if b1 ̸= b1,2 ̸= b2,
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for all b1, b2 ∈ B such that 1 ⇋ b1 and 2 ⇋ b2. Note that all of these probabilities are
well-defined, particularly in the last case because of

r(1,b1,2)

p1
+

r(2,b1,2)

p2
=

qb1,2 · p2
p1

− r(2,b1,2) · p2
p1

p2
+

r(2,b1,2)

p2
≤ 1

if p2 ≤ p1 and

r(1,b1,2)

p1
+

r(2,b1,2)

p2
=

r(1,b1,2)

p1
+

qb1,2 · p1
p2

− r(1,b1,2) · p1
p2

p1
≤ 1

if p1 ≤ p2. Furthermore, we obtain

P(Z1 = yb1,2) =
r(1,b1,2)

p1

1
p2 − r(2,b1,2)

∑
b2∈B\{b1,2}:

2⇋b2

r(2,b2) =
r(1,b1,2)

p1
and

P(Z1 = yb1) =
r(1,b1)

p1 − r(1,b1,2)
·r(2,b1,2)

p2
+
(

1 −
r(1,b1,2)

p1
−

r(2,b1,2)

p2

) 1
p2 − r(2,b1,2)

∑
b2∈B\{b1,2}:

2⇋b2

r(2,b2)


=

r(1,b1)
p1 − r(1,b1,2)

·
[
1 −

r(1,b1,2)

p1

]
=

r(1,b1)
p1

for all b1 ∈ B \ {b1,2} such that 1 ⇋ b1. For all b1 ∈ B with 1 ̸⇋ b1, we have P(Z1 = yb1) =
0 = r(1,b1)

p1
. Hence, the definition of Z2 is compatible with that of Z1. Furthermore, for reasons

of symmetry, the marginal distribution is given by P(Z2 = yb) = r(2,b)
p2

for all b ∈ B. If 3 ∈ A,
we can now define a random variable Z3 analogously to the definition of Z2 with the pair
(1, 2) being substituted for the pair (2, 3). Specifically, the definition of Z3 is only dependent
upon Z2 and independent of Z1. The previous considerations for Z1 and Z2 can be replicated
analogously to obtain that the marginal distribution of Z3 is given by P(Z3 = yb) = r(3,b)

p3

for all b ∈ B. We continue to recursively define random variables Za for all a ∈ A, a ≥ 1.
Furthermore, if 0 ∈ A, define the random variable Z0 also analogously to Z2, now substituting
the pair (1, 2) for the pair (1, 0). By, again, continuing to do this recursively, we obtain the
random variables Za for all a ∈ A, a ≤ 0. Overall, we have now defined a sequence (Za)a∈A

of random variables, which satisfies P(Za = yb) = r(a,b)
pa

for all a ∈ A, b ∈ B. Therefore, by
defining φ ∈ M(supp(F ), supp(G)) through (φ(xa))a∈A = (Za)a∈A, we obtain φ ∈ ΦG

F .

Let aℓ, au ∈ A with aℓ < au. It remains to be shown that P(φ(xau)−φ(xaℓ
) ≥ xau −xaℓ

) = 1.
Since P(φ(xaℓ

) = yβℓ
) = 0 = P(φ(xau) = yβu) holds for all βℓ, βu ∈ B with aℓ ̸⇋ βℓ or au ̸⇋ βu,

there exist bℓ, bu ∈ B with aℓ ⇋ bℓ and au ⇋ bu such that P(φ(xaℓ
) = ybℓ

,P(φ(xau) = ybu) > 0.
Assume now xau − xaℓ

> ybu − ybℓ
. Accordning to (7.20) in Part 1 of the proof of Theorem

7.30, this implies au − aℓ = bu − bℓ + 1. From Part 2 of the proof of Theorem 7.30, it follows



251

from au − aℓ = bu − bℓ + 1 that

aℓ ⇋ bℓ, aℓ + 1 ⇋ bℓ + 1, . . . , au − 2 ⇋ bu − 1, au − 1 ⇋ bu,

aℓ ⇋ bℓ − 1, aℓ + 1 ⇋ bℓ, . . . , au − 1 ⇋ bu − 1, au ⇋ bu,

see (7.21) and (7.25). The situation is illustrated in Figure 7.5. Since P(φ(xaℓ
) = ybℓ

, φ(xaℓ+1) =
ybℓ

) = 0 holds by construction of φ, φ(xaℓ+1) = ybℓ+1 follows almost surely. From that, because
of P(φ(xaℓ+1) = ybℓ+1, φ(xaℓ+2) = ybℓ+1) = 0, φ(xaℓ+2) = ybℓ+2 follows almost surely, and
so on. Inductively, we obtain P(φ(xau−1) = bu) = 1, which contradicts P(φ(xau) = bu) > 0
because of P(φ(xau−1) = ybu , φ(xau) = ybu) = 0. Hence, ybu − ybℓ

≥ xau − xaℓ
. Since

ybℓ
, ybu ∈ supp(G) were arbitrarily chosen within the sets of (almost surely) possible values of

φ(xaℓ
) and φ(xau), respectively, it follows that P(φ(xau) − φ(xaℓ

) ≥ xau − xaℓ
) = 1.





APPENDIX B

Notation: Orders and Measures

Orders

In Table B.1, all sufficiently important stochastic orders introduced throughout this thesis
with specific notation are recollected along with the pages on which they are introduced.
The orders are grouped by the corresponding characteristic. Furthermore, there are separate
groups for families of orders for different characteristics and orders that are defined specifically
for discrete distributions.

Note that the notation ≤s is used as both an order of skewness and an order of kurtosis.
The notation is used in the literature for both orders and they are neither generally related nor
connected throughout the thesis. Furthermore, the name ’weak dispersive order’ is used for
≤w−disp as well as another dispersion order that is introduced without a specific notation in
the remarks preceding Theorem 7.30. The name is again used for both orders in the literature
although they describe different concepts.

Measures

For all measures throughout the thesis, for which a specific notation is introduced, Table B.2
states the page on which it is introduced or on which the corresponding result is presented.
On one hand, the measures can be grouped in terms of the characteristic they measure (i.e.,
central location, dispersion, skewness or kurtosis): this is denoted by the greek letters ν,
τ , γ and κ. On the other hand, they can be grouped in terms of how they measure that
characteristic (i.e., moment based, quantile based, etc.): this is denoted by the indices of the
greek letters, e.g. ’M ’ for moment based measures.

The sign ’—’ in a table cell indicates that no corresponding measure is defined within this
thesis. The alternate notations for dispersion measures in a discrete context are given in a
separate column.
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Families
≤k

for k ∈ N0
p. 23

≤k−cx

for k ∈ N p. 29

Location

≤st
p. 23 / p. 26

(a.k.a. ≤0, ≤1−cx)
≤e p. 57

Dispersion

≤disp
p. 23 / p. 26
(a.k.a. ≤1)

≤cx
p. 29 / p. 30

(a.k.a. ≤2−cx)

≤dil
p. 30

(a.k.a. ≤2−dil)
≤w−disp p. 58
≤e−disp p. 58

≤we−disp p. 59

Skewness

≤c
p. 23 / p. 26
(a.k.a. ≤2)

≤3−cx p. 29 / p. 30
≤3−dil p. 31
≤MAD

µ p. 66
≤s p. 66

Kurtosis
≤3 p. 23 / p. 77
≤s p. 86
≤a p. 86
≤S p. 75

≤gs
p. 87

(a.k.a. ≤0
gs)

≤t0
gs

for t0 ∈ R p. 91

<gss p. 93

Discrete dispersion
≤disc

disp p. 153
≤disc

D−pm p. 163
≤∧−disc

D−supp p. 163
≤∨−disc

D−supp p. 163
≤∧−disc

disp p. 163
≤∨−disc

disp p. 163

Discrete skewness
≤disc

skew p. 230

Table B.1.: Page references for the definitions of stochastic orders throughout the thesis.
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Based on Index Central
location Dispersion Skewness Kurtosis Discrete

dispersion

Moments M p. 42 p. 42 p. 43 p. 111 p. 202
as SD

L-Moments LM
p. 44

(= νM ) p. 44 p. 44 p. 112 p. 203
as GMD

Quantiles Q p. 45 p. 45 p. 45 p. 114 p. 203
as IQR(α, 1 − α)

Quantiles
(integrated) IQ — p. 48 p. 48 — p. 203

as MDMAD
Quantiles

(alternative) QA — — — p. 114 —

Quantiles
(functional) QF — — — p. 117 —

Densities D
p. 50

(= νQ) p. 50 p. 50 p. 119 —

Densities
(integrated) ID p. 53 p. 53

(i.a. = τQ) p. 53 p. 122 —

Densities
(alternative) DA — — — p. 124 —

Densities
(functional) DF — — — p. 123 —

Mode Mode
p. 54
as M·

— p. 56 — —

Expectiles E
p. 58

(= νM ) p. 61 p. 64 p. 124 p. 203
as IER(α, 1 − α)

Expectiles
(alternative) EA — — p. 68 — —

Expectiles
(lim. value) EL — p. 61 p. 65 p. 126 p. 203

as MAD
Expectiles

(lim. val. med.) EM — — — p. 127 —

Table B.2.: Page references for the definitions of / results for measures of different character-
istics throughout the thesis.
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