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Abstract

The present thesis focuses on the study of interfacial mass transfer across the air-water interface
of a turbulent open channel flow through direct numerical simulation. Despite its high scientific
relevance, the detailed mechanisms of this phenomenon are far from being completely under-
stood today. Atmospheric gases usually have very low diffusivities in water and tend to create
thin, elongated structures in which very steep gradients can be found. The necessity of cutting
edge technologies required to analyze this phenomenon experimentally and the extremely high
computational costs required by solving the fine grid resolutions needed in direct numerical
simulations hindered the development of a unified model for gas transfer.

This thesis presents the results of direct numerical simulations (DNSs) of low to high diffu-
sivity (4 ≤ Sc ≤ 200, where Sc = ν/D is the Schmidt number, ν is the kinematic viscosity
and D the molecular diffusivity) mass transfer across a clean surface driven by low to moderate
turbulent intensity open channel flow (2875 ≤ Reb ≤ 12000, where Reb = UbH/ν is the bulk
Reynolds number, Ub the bulk velocity and H the height of the open channel). The simulations
were performed using the KCFlo in-house code developed by Kubrak et al. [2013]. The technical
limit of previous numerical studies is overcome with the employment of a fifth-order weighted
essentially non-oscillatory (WENO) scheme for the scalar convection and a dual mesh approach.
In order to properly resolve the velocity field, up to 5.1× 108 grid points were employed, while,
to fully resolve the highest Schmidt and Reynolds number mass transport 1.2×1010 grid points
were needed. The results reported here support the validity of existing experimental and nu-
merical data obtained for moderate Reynolds numbers and different types of flow. Small eddy
[Banerjee et al., 1968] and surface divergence [McCready et al., 1986] models were found to be
applicable for all the Reynolds and Schmidt numbers considered. Moreover, the employment
of different domain sizes, from 3H × H × 3H to 24H × H × 6H, allowed for the analysis of
the effects of coherent structures on interfacial mass transfer. The use of conditional average
underlined the correlation between high streamwise velocity areas and low mass transfer ve-
locity/convergence regions. The observation of 3D snapshots were used to define the role of
different scales of motion in interfacial mass transfer. Both large and small structures seems to
cooperate to increase the mass transfer at the surface, the former moving the latter from the
wall to the surface, where they can actively enhance the process, in agreement with the “chain
saw model” theorized by Moog and Jirka [1999].

In addition to the interfacial mass transfer simulations, DNSs of pollutant transport in open
channel flow were also performed. In these simulations two scalars are present, one modelling
the bacteria and one modelling the oxygen entering the flow from the surface of the channel. In
reality, different reaction terms link these two species and define the self-purification capabilities
of the system. Here, a parameter sensitivity analysis of UV-inactivation, natural decay and
bacterial oxygen consumption rates was performed to assess the effect of these reaction terms
on oxygen and bacterial decays. The only mechanisms that showed to have an impact on
pollutant transport were maintained active to study the effects that spatial heterogeneities,
typical of turbulent flows, have on the phenomenon. The small vortical motions were found to
create filament structures with high concentration of bacteria which locally might pose serious
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danger to living organisms, e.g. fish, and cannot be detected when only the average bacterial
concentration is considered.

ii



Zusammenfassung

Das zentrale Thema der vorliegenden Arbeit ist die Untersuchung des Massenaustauschs entlang
der Grenzfläche zwischen Wasser und Luft in einer turbulenten offenen Kanalströmung mittels
direkter numerischer Simulation (DNS). Trotz der hohen wissenschaftlichen Relevanz dieses
Phänomens sind die genauen Mechanismen bis heute nicht vollkommen geklärt. Atmosphärische
Gase haben in Wasser für gewöhnlich ein sehr geringes Diffusionsvermögen, sodass sich dünne,
langgezogene Strukturen mit ausgeprägten Gradienten bilden. Sowohl die Notwendigkeit von
innovativen Technologien für die experimentelle Untersuchung dieses Phänomens als auch der
sehr hohe Rechenaufwand in direkten numerischen Simulationen aufgrund der extrem feinen
Gitterauflösung haben bis heute die Entwicklung eines einheitlichen Models für den Gastransfer
verhindert.

Die vorliegend Arbeit zeigt Ergebnisse direkter numerischer Simulationen von schwach bis
stark diffusivem Massenaustausch entlang einer sauberen Oberfläche (4 ≤ Sc ≤ 200, wobei
Sc = ν/D die Schmidtzahl, ν die kinematische Viskosität und D das molekulare Diffusionsver-
mögen darstellen) in offenen Kanalströmungen bei geringer bis mittlerer Turbulenzintensität
(2875 ≤ Reb ≤ 12000, wobei Reb = ubH/ν die bulk Reynoldszahl, ub die bulk Geschwindigkeit
und H die Höhe des offenen Kanals bezeichnet). Die direkten numerischen Simulationen
wurden mit dem hauseigenen, von Kubrak et al. [2013] entwickelten Simulationscode KCFlo
durchgeführt. Um die technischen Einschränkungen früherer numerischer Untersuchungen zu
überwinden, wird dabei ein weighted essentially non-oscillatory (WENO) Schema fünfter Ord-
nung zur numerischen Lösung der skalaren Konvektion in Kombination mit einem Zwei-Gitter-
Verfahren angewendet. Zur Auflösung aller relevanten Skalen des turbulenten Geschwind-
keitsfeldes wurden bis zu 5.1 × 108 Gitterpunkte verwendet, wohingegen für eine volle Au-
flösung des skalaren Massentransports für die höchste Werte der Schmidt- und Reynoldszahl
eine Gesamtzahl von 1.2× 1010 Gitterpunkten benötigt wurden.

Die hier präsentierten Ergebnisse bestätigen Beobachtungen aus früheren experimentellen
und numerischen Untersuchungen für moderate Reynoldszahlen und verschiedene Strömungssi-
tuationen. Wie sich zeigt, sind sowohl Small-Eddy-Modelle [Banerjee et al., 1968] als auch
Surface-Divergence-Modelle [McCready et al., 1986] für die hier untersuchten Reynolds- and
Schmidtzahlen anwendbar. Eine Variation der Größe des Rechengebiets von 3H × H × 3H

bis zu 24H × H × 6H ermöglichte es ferner, den Einfluss kohärenter Strukturen auf den
Massenaustausch entlang der Grenzfläche genauer zu analysieren. Mit Hilfe eines condi-
tional averaging-Ansatzes konnte gezeigt werden, dass eine Korrelation zwischen Regionen
hoher Geschwindigkeit in der Hauptströmungsrichtung und solchen, in denen eine verringerte
Geschwindigkeit des Massenaustausches vorherrscht, besteht. Dreidimensionale Darstellungen
der Strömung und des Skalartransports wurden darüber hinaus herangezogen, um die Rolle
von Strukturen verschiedener Skalen auf den Massenaustausch zu untersuchen. Dabei wurde
beobachtet, dass große und kleine Strukturen scheinbar gemeinsam für eine Verstärkung des
Massenaustauschs an der Oberfläche sorgen, indem Erstere die Letzteren von der unteren Wand
zur Oberfläche bewegen, wo diese die Prozesse aktiv verstärken können. Der beschriebene
Prozess zeigt eine gute Übereinstimmung mit dem von Moog and Jirka [1999] entwickelten
"chain saw model".
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Zusammenfassung

Zusätzlich zu den Simulationen des Massenaustauschs entlang der Grenzfläche wurden weitere
direkte numerische Simulationen des Schadstofftransports in offenen Kanalströmungen durchge-
führt. In diesen Simulationen wurden zwei Skalarfelder betrachtet, von denen eines eine Bak-
terienverteilung darstellt, während das andere den Sauerstoffeintrag über die Kanaloberfläche
modelliert. Tatsächlich sind beide Felder über verschiedene Reaktionsterme gekoppelt, die die
Fähigkeit zur Selbstreinigung des Systems widerspiegeln. In der vorliegenden Arbeit wurde
dazu eine Sensitivitätsanalyse bzgl. der Deaktivierung durch UV-Strahlung, des natürlichen
Abbaus sowie der Rate der Sauerstoffabnahme durchgeführt, um den Einfluss dieser Reaktion-
sraten auf die Abnahme an Sauerstoff und Bakterienkonzentration zu bewerten. Diejenigen
Mechanismen, die einen Einfluss auf den Schadstofftransport aufwiesen, wurden aktiviert um
den Einfluss der räumlichen Heterogenität turbulenter Strömungen auf den Schadstofftrans-
port zu bewerten. Insbesondere für kleinskalige Wirbelbewegungen wurde beobachtet, dass
sich filamentartige Strukturen mit hoher Bakterienkonzentration ausbilden. Diese lokal stark
erhöhten Bakterienkonzentrationen können eine ernsthafte Gefahr für lebende Organismen wie
Fische darstellen, sie lassen sich jedoch nicht durch Modelle abbilden, die sich ausschließlich auf
gemittelte Bakterienkonzentrationen stützen.
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1 Introduction

Interfacial gas transfer depends upon a complex interplay between different factors. Physical,
chemical, biological mechanisms are only few of the vast number of phenomena playing a role
in gas transfer. These factors are far from being completely understood today and are usually
approximated by simplified models that, most of the time, are flow dependent. In the present
thesis, massively parallel computer simulations of a mathematical model which resolves all
scales of hydrodynamics and concentration fields of dissolved scalars (e.g. pollutant and gas)
are performed. The analysis presented here focuses on interfacial mass transfer and, in addition,
on the fate of freely-suspended fecal indicator bacteria (FIB) in turbulent open channel flow.
The present large scale simulations revealed the relative importance of the various mechanisms
through which the spatio-temporal heterogeneities of the flow affect scalar transport.

1.1 Motivation

Transfer of gases across a gas-liquid interface is a fundamental process in several research
fields, from civil engineering to biology. The quantity of gases exchanged between water and
atmosphere is a key factor for marine life and the balance of green-house gases present on Earth.
The quantity of oxygen present in water basin strongly affects the aquatic environment and it
must be constantly replaced in order for the life cycle to continue. This natural mechanism is
called reaeration and is fundamental for each species living in water. Moreover, DeVries et al.
[2017] demonstrated that the ocean is the largest sink of carbon dioxide, taking up to 40% of the
CO2 produced by human activities. Gas transfer is also a process often employed in man-made
facilities in order to e.g. remove taste and odor from drinking water or treat wastewater. These
few examples show how important and ubiquitous this phenomenon is and underlines how its
study can improve water quality assessment and management.

Flow conditions strongly affect interfacial mass transfer. In fact, generally, a turbulent en-
vironment tends to spread scalars much faster. The small vortices will enhance the mixing,
which will be much higher than the one produced by molecular diffusion only. Since in nature
turbulence is ubiquitous, a study of the mass transfer without considering turbulence would be
much less complex, but rarely applicable to reality. The main sources of turbulence in nature
are surface-shear-induced turbulence, buoyant-convective turbulence and bottom-shear-induced
turbulence. Surface-shear-induced turbulence is caused by e.g. wind shear on the water basin
surface. In this case, turbulence is generated at the surface and then spread over the whole
channel. Wind shear is usually the driving mechanism in gas transfer and it was widely stud-
ied in previous research (see section 2.2.4.5). Buoyant-convective turbulence is generated, for
example, in the case colder/warmer fluid (e.g. pollutant) is discharged into a river. The tem-
perature gradients locally modify the flow density, causing movements that would be absent if
buoyancy was neglected. Bottom-shear-induced turbulence is usually caused by the presence of
a wall at the bottom of the channel, in the nearby of which the production of turbulent kinetic
energy reaches its maximum. The present study focuses on interfacial mass transfer in rivers
in windless conditions. Buoyancy is not considered and turbulence is caused uniquely by the
shear stress induced by the presence of the wall at the bottom of the channel.
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1 Introduction

In the last decades, the inadequacy of technologies underlined the inability of experimental
apparatus to assess the main factors playing a role in interfacial mass transfer, hindering the
development of a unified model, even in simplified experimental set-ups. In contrast, direct
numerical simulation did not allow to reach Schmidt (Sc = ν/D, where ν is the kinematic vis-
cosity and D the molecular diffusivity) and friction Reynolds numbers (Reτ = uτ H/ν, uτ the
friction velocity and H the height of the open channel) found in real rivers, because atmospheric
gases usually have very low diffusivities (high Schmidt numbers) in water. Consequently, they
will tend to create thin, elongated structures in which very steep gradients can be found, requir-
ing extremely fine grid resolutions that made the simulations unfeasible. The most significant
experimental and numerical works of past studies are summarized in chapter 2.

Another important problem that will be tackled in the thesis is pollutant transport. The fate
of pollutants in surface water, which, in turn, affects the water quality, is usually approximated
by oversimplified models that employs empirically-fitted coefficients. Consequently, water qual-
ity predictions based upon state-of-the-art mathematical models still suffer large uncertainties.
Moreover, the temperature of the sewage discharge is usually different from the one of the wa-
ter basin and consequently a combination of bottom-shear and buoyancy-induced turbulence is
considered for the pollutant transport simulations, making the simulations more complex.

1.2 Methodology

Interfacial mass transfer over a flat surface and pollutant transport in turbulent open chan-
nel flow were investigated numerically. All the direct numerical simulations were performed
employing the existing in-house KCFlo code described in Kubrak et al. [2013] (see chapter 3).

While in direct numerical simulation the equations are solved for a time-dependent velocity
field U(x, t) for each realization of the turbulent flow, in a turbulent model, equations are
solved for some mean quantities, e.g. ⟨U⟩, ⟨uu⟩ or ϵ. Since all the length-scales and time
scales of the turbulent flow are resolved for each time step, direct numerical simulation is
computationally very expensive. The computational costs of DNS grows as Re3 and, when
scalars with low diffusivities are present, as (f3RRe

3) (see section 3.3), where fR defines how
many times the scalar grid is finer than the velocity grid. In a large eddy simulation (LES),
equations are solved for a filtered velocity field Ũ(x, t) and only the large-scale motions are fully
resolved. The computational costs are then much smaller since the small scales of motion are
modelled. Unfortunately, mass transfer and pollutant transport for high Reynolds and Schmidt
numbers are driven by small scales motions (cf. section 2.2.4.3.2). Using LES would translate
in approximations that hinder the validity of the research. The flow and scalar field close to the
surface, where interfacial mass transfer needs to be studied, and at the wall, where pollutants
usually sink, would not be resolved, giving uncertainties in the most important regions. This
is why DNS was employed, even though the computational costs are much higher.

As underlined above, thin boundary layers and steep scalar gradients are the main reasons
why previous direct numerical simulation studies were limited to moderate Reynolds and very
low Schmidt numbers. Moreover, the amount of computational hours needed to resolve the
smallest scales of both scalars and velocity fields hindered the possibility to employ large domain
sizes, which are needed to capture very large scale motions. Kubrak et al. [2013] developed the
KCFlo code specifically to overcome these limits and it was used, in the past, to simulate
mass transfer at the gas-water interface of flow driven by isotropic turbulence diffusing from
below [Herlina and Wissink, 2014, 2019, Wissink et al., 2017] and buoyancy-induced convection
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[Wissink and Herlina, 2016]. The KCFlo solver employs a central finite-difference approach with
a fourth-order accurate discretization of the diffusion and a fourth-order-accurate kinetic energy
conserving discretization for the convection to resolve the flow field. The Poisson equation for
pressure, obtained imposing the incompressibility restraint to the divergence of the momentum
equation, is solved using a conjugate gradient solver, with simple diagonal preconditioning.
A fifth-order weighted essentially non-oscillatory (WENO) scheme for the scalar convection
combined with a fourth-order accurate central method for scalar diffusion are employed. The
time integration for velocity and scalar fields is performed with a second-order Adams-Bashforth
scheme. The code allows to resolve up to five advection-diffusion equations for every time step,
providing a direct comparison of the behavior of scalars with different diffusivities developed in
the exact same turbulent flow field.

1.3 Objectives

Chapter 2 shows that most of previous research was focused on quantifying interfacial mass
transfer velocity by trying to relate it to easily measurable parameters. Even if this approach
seems to work in some situations, unfortunately it is far from being universally applicable. The
reason is that the mechanisms causing changes in mass transfer are still not completely under-
stood. Previous experimental studies showed disagreement in the definition of the coefficients
to apply for mass transfer models, which were found to depend on the flow characteristics. On
the other hand, previous direct numerical simulations of mass transfer in open channel flow were
limited to small Schmidt numbers, but, most importantly, the domains considered were very
small, not allowing the simulations to capture very large scale motions (VLSM). In order to
make a step forward toward a better comprehension of low diffusivity scalar transport phenom-
ena, it is necessary to elucidate the role of all the structures present in turbulent open channel
flow. Therefore, several direct numerical simulations spanning from low to moderate Reynolds
numbers and Schmidt numbers ranging from 4 to 200 were performed in different domain sizes,
from 3H×H×3H to 24H×H×6H. The literature review summarized in chapter 2 underlines
the key knowledge gaps in the study of mass transfer and pollutant transport in open channel
flow. The specific goals of the present thesis are the following:

• clarify the dependency of mass transfer parameters on Reynolds number, Schmidt number
and domain size,

• show the limits and the advantages of mass transfer models applied to open channel flow,

• define the effects of the different scales of motion on mass transfer,

• define which are the non-negligible decay and reaction rates of oxygen and bacteria, after
a sewage discharge in a river. In particular, scalars initial boundary conditions, differences
in temperature between FIB and ambient fluid, natural inactivation, UV-inactivation and
depletion of bacteria due to the presence of oxygen were considered,

• determine the effect of spatial heterogeneities in pollutant transport.

.

1.4 Organization of the thesis

The present chapter contains a description of the problem under consideration, a small sum-
mary of the reasons why we employed direct numerical simulation to study it and the objectives
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1 Introduction

of this thesis. The rest of the thesis is structured as follows. Chapter 2 introduces the mathe-
matical formulation for each component of the problem and summarizes the theories developed
until today for mass transfer and pollutant transport. A literature review including the most
important and recent experimental and numerical works closes the chapter. Chapter 3 describes
the numerical method employed. The description of the domain opens the chapter, while an
analysis of the code performance closes it. It was chose not to describe the code in detail,
since no modifications to it were applied by the author of the thesis. In the present work, the
simulations performed can be split into three large groups. The first group contains the flow
simulations needed to achieve a statistically stationary turbulence, before imposing the presence
of the scalars. The statistics of these simulations are shown in chapter 4. The grid resolutions
and the domain sizes employed are tested, confirming that, while the grid resolutions were fine
enough to capture the smallest scales in all the simulations, only the largest domain employed
qualified to capture the very large scale motions. The second group of simulations were per-
formed employing the first group simulations velocity fields. After the statistical stationarity
was achieved, a scalar is introduced at the top of the channel through a Dirichlet boundary
condition that imposes constant feeding from the top of the channel. This boundary condition
was imposed to mimic the interfacial mass transfer due to the contact between the basin of
water with the atmosphere at the top of the channel. The statistics pertaining to this group
of simulations are shown in chapter 5. The chapter starts with the analysis of the adequacy of
the refinement factors chosen, followed by the scalar statistics that confirms the adequacy of
the time windows chosen for the average. A comparison with the models described in chapter 2
follows. The study of the interaction between coherent structures and mass transfer closes the
chapter. Chapter 6 illustrates the results of the pollutant simulations. In this case, a Neumann
boundary condition imposing zero flux at the surface of the channel was imposed. The effect of
the initial shape of the pollutant cloud was considered using two different initial conditions. A
parameter sensitivity analysis was performed, in order to assess what are the most important
variables for the self-purification mechanism. The role of spatial heterogeneities in pollutant
accumulation was studied, in order to define the risks that the employment of over-simplified
models based on averaged quantities could introduce. The last chapter contains a summary of
the thesis and suggestions for future works.
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2 State of the art

The present chapter introduces some fundamental concepts relevant to this work. The chapter
is divided in four main sections, the first one describing the flow field, the second one focusing
on mass transfer, the third one on pollutant transport and the last one summarizing previous
literature on the subject. The first three sections start with the governing equations, followed
by the most important theories elaborated in the past. In the end, the experimental and
numerical studies performed in the last decades are summarized in the last section. Note that
in the following chapter the spatio-temporal dependency of flow and scalar variables will be
omitted (ϕ(x, t) = ϕ), unless otherwise specified. Each quantity can be split in a mean and a
fluctuating component. Since, in the present thesis, the statistical average is approximated by
time · and plane-averaging ⟨·⟩, the mean part of · will be written as ⟨·⟩, while ·′ represents its
fluctuating component. Therefore, each quantity can be written as follows:

· = ⟨·⟩+ ·′. (2.1)

2.1 Fundamentals of open channel flow

This section is devoted to introduce mathematical and statistical concepts of open channel
flows. At first, the governing equations for this flow typology will be presented. The second
subsection depicts the theory behind the multi-scale nature of turbulent flows, while the last
part is a summary of the fundamentals of open channel flow.

2.1.1 Governing equations

The governing equations for an open channel flow are the incompressible Navier-Stokes equa-
tions that in vector notation read:

∂u
∂t

+ (u ·∇)u +
1

ρf
∇p = ν∇2u + fb + f , (2.2)

∇ · u = 0. (2.3)

In equations 2.2 and 2.3, u is the Eulerian fluid velocity vector and its components in each
direction are (u, v, w), ρf the fluid density, p the hydrodynamic pressure, ν the kinematic
viscosity, fb = (0, cβ g(Tb,0 − T ), 0) the standard Boussinesq buoyancy term (due to thermal
expansion of the fluid with an expansion coefficient cβ , gravitational acceleration g and initial
temperature of the fluid Tb,0) and f = (fx, 0, 0) is the dynamically adjusted forcing term added
to the momentum equation to ensure a constant flow rate.

The chaotic nature of the turbulent flow arises from the non-linearity of the Navier-Stokes
equations. Even though the equations are deterministic, the velocity field can be random, since
the flow is highly sensitive to small variations in the initial conditions. Therefore, turbulent
flows need to be described statistically.
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2.1.2 Scales of turbulent motions

The fundamental aspect of turbulent flows is the simultaneous presence of large and small
scale energy-containing eddies. The anisotropic large vortices are unstable in nature and their
breakdown creates smaller vortices. In the same way, the new formed vortices break down into
smaller ones. This breakdown process is called forward energy cascade and it usually ends with
the smallest vortices being dissipated by the viscous dissipation process into heat (Richardson
[1922]). The opposite happens in the inverse energy cascade, when the smaller vortices coalesce
into larger structures. This last phenomenon is much less frequent compared to the forward
cascade, but it can be observed in real-world turbulence (e.g. rivers).

The length and time scale of these vortices were defined for the first time in a theory proposed
by Kolmogorov [1941]. This theory stands on three hypotheses. The hypothesis of local isotropy
is based on the fact that the anisotropy of the large scales is gradually lost in the forward energy
cascade. This hypothesis states that “at sufficiently high Reynolds numbers, the small scale
turbulent motions (l ≪ l0) are statistically isotropic” (Pope [2000]). l0 is considered to be the
dimension of the largest scales of the flow. Since the directional information is lost as the energy
passes down the cascade, Kolmogorov [1941] argued that all the directional information about
the geometry of the large eddies, determined by the flow boundary conditions, is also lost. As
a consequence, he proposed that the statistics of the small scales are somehow universal. It is
useful here to define a length scale below which the small scales can be considered isotropic
lEI = 1

6 l0. The dominant processes, when l < lEI , are the transfer of energy towards smaller
scales that depends on a rate of transfer TEI and the viscous dissipation ν. The transfer rate
can be approximated by the dissipation ϵ, such that the first Kolmogorov hypothesis can be
stated as “in every turbulent flow at sufficiently high Reynolds number, the statistics of the small
scale motions (l < lEI) have a universal form that is uniquely determined by ν and ϵ” (Pope
[2000]). As a consequence, the size range l < lEI is referred to as the universal equilibrium
range. Given the two parameters that completely determine the flow field in this range, ν and
ϵ, the Kolmogorov scales can be defined:

η ≡
(
ν3

ϵ

)1/4

, (2.4)

uη ≡ (ϵν)1/4, (2.5)

τη ≡
(
ν

ϵ

)1/2

. (2.6)

The definition of a Reynolds number based on these quantities Reη =
ηuη

ν = 1 shows that
these scales characterize the smallest, dissipative eddies. Being the Reynolds number the ratio
between inertial and viscous forces, Reη = 1 means that viscous forces are effective. When
the turbulent velocity fields are scaled by the Kolmogorov scales, they are statistically similar.
The above statement is valid only for high Reynolds numbers flow and considering only the
universal range (small scales).
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2.1 Fundamentals of open channel flow

Figure 2.1: Extent in outer scales of the different regions in turbulent wall-bounded flow as a function of the
Reynolds number. Image taken from Pope [2000]

The ratios between largest and smallest scales can be determined considering that ϵ ∼ u0/l0.
Applying this approximation to the Kolmogorov scales, the ratios read:

η

l0
∼ Re−3/4, (2.7)

uη
u0

∼ Re−1/4, (2.8)

τη
τ0

∼ Re−1/2. (2.9)

When higher Reynolds numbers are considered, the difference between large and small scales
becomes much larger. At sufficiently high Reynolds numbers, there is an intermediate range
of scales, lying between l0 and η, in which the spatial Reynolds number becomes Re ≫ 1 and,
consequently, the eddies motion is little affected by viscosity. Starting from this statement and
the first similarity hypothesis, Kolmogorov [1941] proposed his second similarity hypothesis,
which states that “in every turbulent flow at sufficiently high Reynolds number, the statistics of
the motions of scale l in the range l0 ≫ l ≫ η have a universal form that is uniquely determined
by ϵ, independent of ν” (Pope [2000]). This hypothesis is applicable in the range lEI > l > lDI ,
where lDI = 60η is the length scale that splits the universal equilibrium range (l < lEI) into
inertial sub-range lEI > l > lDI and dissipation range l < lDI . While only inertial effects
are important in the inertial range, the dissipation range experiences significant viscous effects,
which are responsible for all the dissipation of the channel.

2.1.3 Fundamentals of wall-bounded flows

If H is the vertical height of the open channel, the bulk velocity can be defined as follows:

Ub =
1

H

∫ H

0

⟨u⟩ dy, (2.10)

from which the bulk Reynolds number follows:

Reb =
UbH

ν
. (2.11)
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The total shear-stress τ(y) can be obtained from the balance of the mean forces and it reads:

τ = ρν
∂⟨u⟩
∂y

− ρ⟨u′v′⟩. (2.12)

At the wall, the boundary condition u = 0 dictates that the Reynolds stresses ⟨u′v′⟩ = 0 and
the shear stress is due entirely to the viscous contribution:

τw = τ(0) = ρν
∂⟨u⟩
∂y

∣∣∣∣
0

. (2.13)

The important variable in the near-wall region are viscosity ν, dissipation ϵ and the shear-stress
τw, from which the viscous scales can be defined:

uτ =

√
τw
ρ
, (2.14)

δν = ν

√
ρ

τw
=

ν

uτ
, (2.15)

where uτ is the friction velocity and δν is the viscous length scale. The friction Reynolds number
can be defined from these quantities :

Reτ =
uτH

ν
. (2.16)

The mean streamwise velocity in viscous units is:

u+ =
⟨u⟩
uτ

. (2.17)

The distance from the wall measured in viscous lengths is called wall units and it is denoted
by:

y+ ≡ y

δν
=
uτy

ν
. (2.18)

It represents a local Reynolds number, since its magnitude determines the relative importance
of viscous and turbulent processes.

Wall units define different regions in the flow field, which are depicted in figure 2.1. Two
macro regions are defined, the inner region for y/H < 0.1 and the outer region for y+ ≥ 50.
In general, the global quantities u0 and H characterize the statistics in the outer region, while
the viscous scales characterize the variables in the inner region. The inner region is usually
divided into smaller regions. The region containing the smallest scales of motion is the viscous
sub-layer and it satisfies u+ = y+. This linear relation holds for y+ < 5, but the deviation from
the linear behavior becomes quite large (greater than 25%) as soon as y+ > 12. Moving toward
the bulk of the channel, for y+ ≥ 30 and y/H ≤ 0.3 the streamwise velocity in wall units is
well approximated by the logarithmic law of the wall:

u+ =
1

κ
log(y+) +B, (2.19)

which defines the logarithmic region. In literature, the values of the constants κ and B are
topics of discussion, but usually accepted values are κ ≃ 0.41 and B ≃ 5.2 (Pope [2000]).
Figure 2.1 shows the regions usually identified in wall-bounded turbulence. As can be seen, the
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viscous sublayer and the log law regions are connected through a buffer layer (5 ≥ y+ ≥ 30), in
which the velocity adapts from the linear to the logarithmic dependency on the wall units.

2.2 Mass transfer in turbulent environment

This section presents a summary of the mass transfer phenomenon and literature. Starting
from the presentation of the governing equation, the section analyzes the basic mechanisms of
mass transfer and the most important models developed until today.

2.2.1 Governing equation for mass transfer

The Fick’s law defines the mass flux of a solute penetrating a liquid in a laminar flow. The law
states that the mass flux j is proportional to the concentration c gradient of the solute, with
the molecular diffusivity D as proportionality coefficient:

j = −D∇c. (2.20)

The negative sign defines the direction of the diffusion from high to low concentrations.
Since turbulent flows are ubiquitous in reality, the hypothesis of laminar flow strongly limits

the direct application of this model. In fact, further terms, like mass conservation and advection,
must be added, in order to take into account the turbulent motion of the flow and the consequent
different dispersion of the scalar. Therefore, the governing equation can be defined to be the
three dimensional advection-diffusion equation:

∂c

∂t
+ (u ·∇)c = D∇2c. (2.21)

Since mass transfer across an air-water interface acts mostly in the vertical direction, it is
possible to apply some simplifications to the general equation 2.21, in order to find the spatially
and temporally averaged equation. Velocity and concentration must be split in their mean and
fluctuating components and introduced in equation 2.21. Applying the average, the result is:

∂⟨c⟩
∂t

+ (⟨u⟩ ·∇)⟨c⟩+ ⟨(u′ ·∇)c′⟩ = D∇2⟨c⟩. (2.22)

Applying the properties of divergence and gradient and considering the continuity equation,
some simplifications can be performed:

∂⟨c⟩
∂t

+ (⟨u⟩ ·∇)⟨c⟩+∇ · (⟨u′ c′⟩) = D∇2⟨c⟩, (2.23)

which, for every component, becomes:

∂⟨c⟩
∂t

+ ⟨u⟩∂⟨c⟩
∂x

+ ⟨v⟩∂⟨c⟩
∂y

+ ⟨w⟩∂⟨c⟩
∂z

+ (2.24)

+
∂

∂x
⟨c′u′⟩+ ∂

∂y
⟨c′v′⟩+ ∂

∂z
⟨c′w′⟩ = (2.25)

= D

(
∂2⟨c⟩
∂x2

+
∂2⟨c⟩
∂y2

+
∂2⟨c⟩
∂z2

)
. (2.26)
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Considering a fluid flowing in the x direction, at the interface between the fluid and the at-
mosphere the averaged vertical velocity ⟨v⟩ is zero and the streamwise ⟨u⟩ and spanwise (⟨w⟩)
velocities depend only on y. Thus, the transport of the mean quantities mainly acts in the verti-
cal direction, which means that ∂/∂x = 0 and ∂/∂z = 0. Therefore, the following simplifications
can be applied:

∂⟨c⟩
∂t

+ ⟨u⟩
�
�
�∂⟨c⟩

∂x
+��⟨v⟩

∂⟨c⟩
∂y

+ ⟨w⟩
�

�
�∂⟨c⟩

∂z
+ (2.27)

+
�
��∂

∂x
⟨c′u′⟩+ ∂

∂y
⟨c′v′⟩+

�
��∂

∂z
⟨c′w′⟩ = (2.28)

= D

(
�
�
�∂2⟨c⟩

∂x2
+
∂2⟨c⟩
∂y2

+
�

�
�∂2⟨c⟩

∂z2

)
, (2.29)

giving the averaged governing equation:

∂⟨c⟩
∂t

=
∂

∂y

(
− ⟨c′v′⟩+D

∂⟨c⟩
∂y

)
= − ∂

∂y
⟨jy⟩, (2.30)

where ⟨jy⟩ is the average vertical mass flux:

⟨jy⟩ = −⟨c′v′⟩+D
∂⟨c⟩
∂y

. (2.31)

2.2.2 Parameters in mass transfer

The present sub-section is based on the findings of Jähne and Haußecker [1998]. Equation 2.31
introduces the definition of the average vertical mass flux ⟨jy⟩, which is composed by a turbulent
⟨jt⟩ = ⟨c′v′⟩ and a diffusive ⟨jd⟩ = −D∂⟨c⟩/∂y component. From this definition, it is possible
to define the average mass transfer velocity as the velocity at which an imaginary piston pushes
the gas across the interface [Jähne and Haußecker, 1998]:

KL =

∣∣⟨js⟩∣∣
cs − ⟨cb⟩

, (2.32)

where the indices s and b denote the surface of the flow and its bulk. The instantaneous and
pointwise value of the mass transfer will be denoted as:

kl(x, z, t) =

∣∣∣∣∣−D
(
∂c(x, z, t)/∂y

)
s

cs − ⟨cb⟩

∣∣∣∣∣. (2.33)

The reciprocal of the average mass transfer velocity is the mean mass transfer resistance and it
measures the resistance that the gas must overcome in order to penetrate the liquid:

R =
1

KL
, r =

1

kl
. (2.34)

The boundary layer thickness can be then defined as follows:

δ =
D

KL
, (2.35)
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and it represents the thickness of a layer in which the flux is maintained only by the molecular
transport. From the ratio of this quantities it is possible to define a time constant for the
transport across the boundary layer:

td =
δ

KL
=

D

K2
L

. (2.36)

These three quantities (2.32, 2.35 and 2.36) completely define the scalar boundary layer and
are coupled through the molecular diffusion coefficient. Therefore, only one of these parameters
should be known in order to deduce the other two. It is customary to define the mass transfer
velocity and then to compute all the other quantities.

2.2.3 Basic mechanisms of mass transfer

Turbulence, solubility and surface roughness are the mechanisms found to enhance the inter-
facial mass transfer. An increase in the turbulence intensity translates in a thinning of the
boundary layer and, as a consequence, an increase of the mass transfer velocity. Solubility α

is another important parameter, since it determines which boundary layer is dominant in the
mass transfer process [Jähne and Haußecker, 1998]. In fact, at the surface:

cl,s = αcg,s, (2.37)

where cl,s is the solute concentration in the liquid and cg,s is the solute concentration in the
atmosphere at the interface. Equation 2.37 states that if α ̸= 1, there is a concentration jump
at the surface and the flux densities differ by a factor of α. Considering that mass transfer
resistances can be modelled as electrical resistances in series and that R = 1/KL, it follows
[Liss, 1973]:

1

(KL)tg
=

1

(KL)g
+

1

α(KL)l
or

1

(KL)tl
=

α

(KL)g
+

1

(KL)l
. (2.38)

where (KL)
t
g and (KL)

t
l are the transfer velocities seen from the atmosphere and from the liquid,

respectively. The ratio α(KL)l/(KL)g determines which boundary layer controls the transfer
process. Since most of atmospheric gases have usually low to very low solubility in water, but
high solubility in gases, the higher resistance will be in the water part and the mass transfer
will be controlled by the water boundary layer.

Waves are another fundamental mechanism that plays a huge role in mass transfer. It has
been seen that in the presence of waves the mass transfer velocity is three to five times larger
than the one registered for a flat surface [Jähne and Haußecker, 1998]. This difference cannot be
explained by the increased surface, since the surface that Tschiersch and Jähne [1980] measured,
also for high wind speed, was only 20% larger than a flat surface. The understanding of this
phenomenon is really limited and the few models proposed until today cannot be proved to be
valid through experiments or numerical simulations. Breaking waves are more complex and the
only knowledge grasped is that they significantly enhance the mass transfer velocity, but the
details of this mechanisms are still to be found.

2.2.4 Mass transfer models

Mass transfer velocity is one of the most important parameters considered in interfacial mass
transfer research. Once this quantity is known, all the other parameters describing the process
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Liquid phase

Gas phase

Diffusion

Mixing

Diffusion
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Figure 2.2: Sketch of the film model.

can be estimated from it, as mentioned above. This is the reason why, the main focus of
previous research was to link the mass transfer velocity at the surface with easily measurable
flow quantities. In the following, the most important models developed in the past years are
summarized.

2.2.4.1 Film model

Lewis and Whitman [1924], considering the inadequacy of previous theories on gas transfer, pro-
posed a new model based on the fact that “a liquid-gas system which is not in equilibrium tends
to approach equilibrium conditions” (Lewis and Whitman [1924]). In the case of a dissolved
gas in a liquid, they observed, from previous experimental data, that the leading phenomenon
(the slowest one) is molecular diffusion. All the other events are so rapid compared to diffusion
that they have no appreciable effect on the absorption rate. Moreover, the same experimental
results showed that when gas transfer begins, two layers form at the interface, one at the gas
phase and the other one at the water phase, as depicted in Figure 2.2. Inside the layers mixing
is only due to molecular diffusion, while in the bulk turbulent mixing is predominant. The
diffusion proceed at a rate proportional to the difference between the concentrations inside and
outside the boundary layers, but, being the two layers very thin, the two films can be modelled
as two resistances in series.

As underlined before, in the case of an air-water interface (low solubility gases in water), the
water boundary layer has a much higher resistance, being, consequently, the leading obstacle
to mass transfer. In this case, the absorption equation reads [Lewis and Whitman, 1924]:

∂c

∂t
= KL(cg − cl), (2.39)

where cg and cl are the concentration of gas in the gas and liquid phase, respectively. The
constant of proportionality KL was found to be directly proportional to the diffusion coefficients
of the gas in air and in water.

2.2.4.2 Penetration model

The film model was rapidly discarded, since not supported by experiments and the dependence
of KL from D was replaced by a more accurate model built by Higbie [1935]. Higbie [1935]
argued that “since the surface films are very thin, the actual amount of solute in them at any one
time is usually negligible compared to the amount diffusing through them”. At the initial time
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Figure 2.3: Sketch of the surface renewal theory.

(before the penetration of the gas inside the liquid), the liquid film has the same concentration
of the liquid bulk. Therefore, the first stage of gas absorption will be the penetration of the gas
in the liquid, from which this model takes its name. Afterward, Higbie [1935] theorized that
the concentration profile will evolve, until it reaches the film behavior. Before that, the film
model, proposed by Lewis and Whitman [1924], is not valid and it cannot predict the effect of
diffusivity.

Starting from the Fick’s second law:

∂c

∂t
= D∇2c, (2.40)

Higbie [1935] developed the penetration model, with the following hypotheses: heat, surface
and dilation effects are negligible, the diffusivity is assumed constant and the depth infinite.
With these approximations the solution of equation 2.40 is:

c = c0 +
ce − c0√
πD t

∫ ∞

y

−y2

e4Dt
dy, (2.41)

where ce is the concentration of the solution corresponding to partial pressure of solute, c0 is
the initial concentration of the solution, y is the distance from the surface and t is the time
after beginning of exposure. The mass transfer velocity is then found to be:

KL = 2

√
D

π te
, (2.42)

where te is the time of exposure. The dependence of the mass transfer velocity from the time
of exposure has been validated in several experiments, confirming the common experience that
agitation and stirring (shortening the exposure period) increase the transfer velocity.

2.2.4.3 Surface renewal models

The first doubts on the fact that a laminar boundary layer was constantly present at the surface
of a turbulent flow were raised by Danckwerts [1951]. Considering the case in which the surface
of the liquid is at all times saturated by the gas, there are no chemical reactions between
solute and solvent and there is no external mixing in the flow, Danckwerts [1951] pointed out
how equation 2.42 largely underestimated the mass transfer velocity. In reality, he observed
that after few seconds, the difference in the concentration of CO2 in the fluid regions creates
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convection currents that enhance mass transfer, since a solution with carbon dioxide is heavier
than water. The liquid phase absorbed a volume of gas much larger than the quantity that
molecular diffusion would have allowed. The penetration model is then a good approximation
for mass transfer only if the exposure time is so short that the depth of the liquid is thicker than
the depth of penetration (e.g. liquid layers of restricted depth) or if the depth of penetration is
less than the depth at which the velocity is appreciably different from that at the surface (e.g.
liquid moving parallel to the surface with a velocity that varies with depth). Assuming that
the scale of turbulence is much greater than the depth of penetration of the solute diffusing
at the surface, Danckwerts [1951] created the surface renewal model. The assumptions of
this model are that the turbulent flow is a mass of eddies that are incessantly changing their
conformations and positions, the part of flow exposed to the surface will receive the solute with
the quantity defined by (⟨c⟩−⟨cb⟩)

√
D
πt , mean and bulk concentrations are constant in time, the

bulk of the liquid contains a uniform concentration of solute and no chemical reactions occur.
While previous models only considered molecular diffusion as the main driving mechanism,
surface renewal model introduced the role of advection in gas transfer. Considering a liquid
which is steadily stirred, such that the mean concentration is constant in time, Danckwerts
[1951] stated that once the eddies at the surface are exposed for a definite amount of time
to the atmospheric gas, they are replaced by eddies from the bulk of the fluid, with a poorer
gas concentration. The mean rate of production of fresh surface is constant and defined as
s, which depends on the hydrodynamics and geometry of the system. Starting from surface
aging hypotheses (see appendix A.1), Danckwerts [1951] related the mass transfer velocity to
the square root of the molecular diffusion multiplied by the mean rate of production of fresh
surface (see appendix A.2), as follows:

KL =
√
Ds. (2.43)

In equation 2.43 the most complicate parameter to define is the renewal time τ = 1/s. Around
the same year Fortescue and Pearson [1967] and Banerjee et al. [1968], Lamont and Scott [1970]
proposed two different answers to this problem, the former considering the large turbulent
structures, while the latter the viscous dissipation scales eddies as the main driving mechanism
for mass transfer. Even though, these two equations were validated with experimental results,
they link the mass transfer to very different scales of motion. Theofanous et al. [1976] justified
this discrepancy, explaining that the data considered for the two studies were representative
of small and large Reynolds numbers, respectively, limiting the applicability of the large eddy
model by Fortescue and Pearson [1967] to small Reynolds numbers and the small eddy model
by Banerjee et al. [1968], Lamont and Scott [1970] to large Reynolds numbers. In subsequent
years different attempts were made to directly measure or estimate the renewal time, but it was
difficult to unambiguously determine the renewal events1.

2.2.4.3.1 Large-eddy renewal model Fortescue and Pearson [1967] considered the scenario
depicted in Figure 2.4a, where large eddies close to the surface bring the solute rich fluid in the
bulk and the fresh liquid from the bulk to the surface (renewal model). No normal velocity is
allowed at the flat surface and eddies at the surface are 2D structures (v = 0). Mean transfer
properties of the eddies can be “modelled by means of a regular sequence of steady square roll

1 “For example, upwellings in open-channel flows could be considered renewal events, but not all appeared to
qualify.”Tourney and Banerjee [2013].

14



2.2 Mass transfer in turbulent environment

mean-flow direction

bulk fluid

(a) Sketch of the large eddy surface renewal
model.

bulk fluid

diffusion layer

(b) Sketch of the small eddy surface renewal
model.

Figure 2.4: Schematic of large and small eddy renewal models. Λ is the length scale of large eddies, while l is
the length scale of small eddies.

cells touching the surface, moving as a whole with the local mean surface velocity” [Fortescue
and Pearson, 1967]. The authors considered velocity structures to obey only mass conservation
equations, but not momentum, since they were not concerned with the dynamic aspects of the
flow. The paper considers the large eddies to be prominent at the surface, because the fixed
position of the surface, due to gravity, might damp out small eddies, while the lack of turbulent
dissipation mechanisms should leave the general eddy pattern similar to the bulk one. In the
paper, few experiments are cited where this behavior was found to be coherent with reality, but
they also underlined the lack of direct experiments on the topic at the time.

Fortescue and Pearson [1967] considered the integral length scale of the turbulent flow Λ as
size of the eddies at the surface (Figure2.4a):

Λ =

∫ ∞

0

1

⟨u2r(x)⟩
⟨ur(x)ur(x + r)⟩dr, (2.44)

where ur is the velocity in the r-direction. The eddies at the surface were considered to be
square with a length of Λ. The velocity of the cell is2:

u = A sin(
π x

Λ
) cos(

π y

Λ
), (2.45)

v = −A cos(
π x

Λ
) sin(

π y

Λ
), (2.46)

where A is a constant that can be found (see appendix A.3) to be:

A = 2

√
1

2
u2 +

1

2
v2. (2.47)

The mean mass transfer coefficient is:

KL = −D
Λ

∫ Λ

0

∂c

∂y

∣∣∣∣
y=0

dx, (2.48)

obtained resolving the steady mass transfer equation:

(u ·∇)c = D∇2c (2.49)

2 The velocity is considered to be 2D, since the complications added by considering the third component of
the velocity would not lead to any improvement to the model in Fortescue and Pearson [1967]’ opinion.
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with the following boundary conditions:

c(y = 0) = cs,

∂c

∂x

∣∣∣∣
x=NΛ

= 0 ∧ N ∈ N,

c(y = Λ) = cb.

(2.50)

Solving numerically equation 2.49 with the imposed boundary conditions (equations 2.50) ap-
plied to a ‘known’ turbulent velocity field3, Fortescue and Pearson [1967] found:

KL = 1.46

√√√√ D
urms

Λ

, (2.51)

where urms is the root mean square of the streamwise velocity component. Comparing this
equation with equation 2.43 and considering that τ = 1/s, in this model:

τ =
Λ

urms
. (2.52)

2.2.4.3.2 Small-eddy renewal model Banerjee et al. [1968]’s objective was to quantify the
mass transfer in a falling wavy liquid film in a turbulent flow. The use of an empirical/semi-
empirical expression requires a considerable number of experiments with similar set-ups, in
order to define the empirical coefficient. The authors discarded this method, because not enough
experimental work was performed at that time. Banerjee et al. [1968] decided then to develop
a model that attempts to relate the mass transfer rate at some hydrodynamic parameters. The
authors considered that, since the small eddies time scale is much shorter than the large eddies
one, the mass transfer must be influenced only by small eddies at the surface. These small eddies,
swept near the surface by the larger eddies, resides there for a time that is longer than the small
eddies time scale. In order for the distance the solute diffuses in the smallest eddy time-scale to
be small compared to the length scale of the eddy, the authors considered gases with very low
diffusivities (high Schmidt numbers)4. Therefore, the thickness of the diffusive layer is much
smaller than the length scales of the small eddies at the surface l (see Figure 2.4b). Moreover,
the turbulence near the interface is considered to be two-dimensional. The concentration field
is described by equation 2.49 and as boundary conditions equations 2.50. Therefore, the mass
transfer velocity was found to be:

KL = 2

√
Du1
π l

, (2.53)

providing a renewal rate of:

s =
1

τ
=
u1
l
, (2.54)

where u1 is a characteristic velocity scale. Equation 2.53 is expected to hold for a distance H̃
from the interface, such that H̃/

√
Dτ < 0.5. Considering that, approaching the interface, small

eddies kinetic energy is transformed into the configurational energy of the surface, Banerjee

3 The velocity field was generated by inserting square grids made from cylindrical rods at right angles in their
experimental set-up.

4 If τη is the small eddy time scale, then the distance the solute diffuses in that time will be 4
√
Dτ . The

length scale of the smallest eddies in this case is √
uητ . Therefore, the assumption is justified if 1/4

√
uη/D

is large, so if the Schmidt number is large enough (≥ 1000).
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et al. [1968] computed the distance from the interface, d, over which the small eddies are
expected to occur. This is an overestimation of the real value, since the viscous dissipation
has been neglected in this computation. They found that, in the wavy liquid film case under
analysis, H̃ > d and then equation 2.49 is applicable. Considering that, for Kolmogorov’s first
hypothesis:

l = η =

(
ν3

ϵ

)1/4

, (2.55)

u = uη = (νϵ)1/4, (2.56)

Danckwerts [1951] defined the mass transfer coefficient as:

KL =
√
D

(
ϵ

ν

)1/4

. (2.57)

Equation 2.57 is the main results of the small eddy renewal model. It is applicable to turbulent
flows with a free interface without external stresses on the surface. In this case the isotropy
condition at the surface is no longer valid.

2.2.4.4 Surface divergence model

A completely different approach for gas transfer modelling was attempted by McCready et al.
[1986]. Three-dimensional waves of various frequencies and wavelengths present at the surface
were neglected, since the model is applicable to high Schmidt numbers scalars. In fact, for
low diffusivities the concentration boundary layer is very thin compared to the curvatures
imposed by the fluctuating surface. In this case, the surface can be safely approximated as flat.
Concentrations and velocity fluctuations were considered to be two-dimensional at the interface
and the derivatives of the concentration in the streamwise direction negligible. The governing
equation for mass transfer at an interface is:

∂c

∂t
+ (u ·∇)c =

1

Sc
∇2c, (2.58)

where the terms are normalized with uτ , ν and cs − cb. The Taylor expansion of the velocity
field in the concentration boundary layer as a function of the distance from the interface is:

u = ⟨u(y)⟩+ Ξ(x, z, t), (2.59)

v = β(x, z, t)y, (2.60)

w = γ(x, z, t), (2.61)

where Ξ is the time-varying part of the streamwise velocity gradient, β is the time-varying
part of the normal velocity gradient (surface divergence) and γ is the time-varying part of the
transverse velocity gradient. This velocity field satisfies the continuity equation.

With the calculations shown in appendix A.4 and considering that KL ∼ 1/(δSc), McCready
et al. [1986] found:

KL ∼
√
βrms

Sc
for

σωc

ωm
large, (2.62)

KL ∼
√
Wβ(0)

Sc
for

σωc

ωm
small, (2.63)
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where σ is a shape factor, ωc is the critical frequency dividing high and low frequency regions
and ωm is the mean frequency (see appendix A.4 for the mathematical expressions). For
intermediate values of σωc/ωm the mass transfer velocity will depend on both βrms and Wβ(0).

This model removes the main difficulty of the surface renewal model, the definition of the
renewal time τ , replacing it with the unambiguous measurement of the surface divergence.
Anyway, the measurement of the surface divergence must be taken very close to the surface and
that is why this model has been supported by few experiments until now. In fact, the diffusive
boundary layer thickness is very thin and the aforementioned measurements should be taken
within ∼ 1 mm from the interface. Moreover, in reality, the surface is never flat, but usually
there are waves and surfactants that make the analysis of this thin layer very complex. All the
experiments that tried to define the coefficient of proportionality of equation 2.62 gave very
different results, with variations greater than a factor of three [Turney and Banerjee, 2013].

2.2.4.5 Wind speed parametrizations

Wind-shear acts directly at the interface between gas and liquid, where the resistance of mass
exchange is the highest. The main consequence is an enhanced mass transfer. In field experi-
ments, wind speed is an accessible variable compared to mass transfer velocity or small scales
flow structures and the mass transfer velocity is usually computed through the wind speed 10m
above the surface. The most important parametrizations in this direction were proposed by
Cole and Caraco [1998] and Wanninkhof et al. [2009]. The models proposed by the two studies
were developed considering CO2 in water at 20◦C (Sc = 600− 660):

KL,CC1998 = 0.215U1.7
10 + 2.07 [Cole and Caraco, 1998], (2.64)

KL,W2009 = 0.1U10 + 0.064U2
10 + 0.011U3

10 + 3 [Wanninkhof et al., 2009], (2.65)

where U10 is the wind velocity 10m above the water surface. It is clear from these parametriza-
tions that the transfer velocity cannot depend only on the wind speed, because for the condition
U10 = 0, KL is not null. Mass transfer must be, then, governed also by other processes, e.g.
buoyancy flux, heat flux, dissipation, flow divergence, presence of surfactants.

The shear-free boundary condition at the surface (see chapter 3) does not allow to test the
applicability of the wind speed parametrizations to the present simulations. This approximation
limits the applicability of the present results to very windless conditions, in which the roughness
of the surface is negligible.

2.2.5 Film-free and film-covered interfaces

The models presented above are valid for a flat shear-free surface and the mass transfer ve-
locity was found to be proportional to Sc−1/2. In experiments, it is hard to demonstrate this
behavior, because, for the exponent of the Schmidt number to be equal to −1/2, the surface
must be perfectly flat and clean. In this sense, the main limitation of experiments is the diffi-
culty of avoiding deposition of particles (e.g. dust) on the surface of the water, during all the
sets of experiments. This contamination of the surface changes the boundary condition and,
consequently, the aforementioned models are no longer applicable.

For a free surface, the only component of the fluctuating velocity vector that is zero at the
surface is v′. When the continuity equation is applied at the surface, the vertical derivative of
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Figure 2.5: Mass transfer resistance as a function of the Schmidt number for the different models. Figure taken
from Jähne [1980].

v′ reads:
∂v′

∂y
= −

(
∂u′

∂x
+
∂w′

∂z

)
. (2.66)

This equation is valid when the surface is clean and it allows dilation and contraction at the
surface.

Surfactants are surface-active chemical agents that generally reduce gas exchange and are an
important factor to consider in the analysis of interfacial gas transfer. They are usually present
in natural waters and form a film on the surface or a patchy distribution. In this last case the
surface tension varies on the surface and it results in elastic forces that attenuates the turbulent
eddies. In this way, the gas exchange at the surface is influenced by their presence, particularly
for gases with high Schmidt numbers/low diffusivities. The Schmidt number exponent in pres-
ence of surfactants on the surface was found to be −2/3 by Jähne et al. [1984], Richter and B.
[2011]. This large difference in the exponent between clean and polluted surfaces is due to the
fact that for a clean surface dilation and contraction of surface elements do not cause restoring
forces, since the total area is not changed by the process , while in the case of surfactants there
is a film on the surface that behaves like a rigid surface, imposing the 2D continuity equation
at the surface. In this last scenario, equation 2.66 imposes that:

∂v′

∂y
= 0, (2.67)

changing completely the boundary condition at the surface and, therefore, the exponent of the
Schmidt number relation from −1/2 to −2/3. This means that with the presence of surfactants
an increase in the Schmidt number will translate in a mass transfer velocity reduced by a factor
of 3 compared to the clean surface case. Figure 2.5 depicts the difference between the film
model, where KL ∝ Sc and the renewal models. As can be seen, the presence of surfactants
modifies the dependency of the resistance (or mass transfer velocity) and the result lies between
these two extreme cases. This is probably why, in the past decades, several experimental studies
showed such different exponential dependency of KL on Sc−n. The different conditions at the
surface of each study dictated different exponent n, as well described in Wissink et al. [2017].
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The definition of the boundary condition at the surface is much easier in DNS, where it is
imposed and, therefore, constant for the whole computation.

2.3 Pollutant transport in open channel flow

This section presents some background of pollutant transport. The first sub-section describes
the governing equation, from which, in the second sub-section, the turbulent mixing models in
rivers are developed.

2.3.1 Governing equations for pollutant transport

When pollutant transport is considered, a reaction term must be added to equation 2.21:

∂c

∂t
+ (u ·∇)c = D∇2c+Rc, (2.68)

where R is the reaction term for the scalar with concentration c. Most practical water quality
predictions for rivers rely on a very simplified first-order kinetic model that usually reads:

c(t∗) = c(0)e−Rt∗ , (2.69)

where t∗ is a time greater than 0. In this first-order kinetic model, the concentration of pollutant
is assumed to decay exponentially with time at a constant rate R, from an initial concentration
c(0). The decay rate is usually measured in-situ and it usually spans over several order of
magnitude (Thomann and Mueller [1987]). This uncertainty can be explained comparing the
complexity of the turbulent environment in which pollutants disperse and the simplicity of the
first-order kinetic model. It is clear that, in this kind of models, too many environmental factors
are over-simplified and each coefficient developed until today considers only the factors present
in that explicit study, hindering the development of a more complex universal model.

The details of the reaction rates chosen for the thesis will be presented in chapter 3.

2.3.2 Turbulent mixing in open channel flow

Mixing is a complex mechanism that is composed by stirring and diffusion. While stirring is
a reversible mechanism, diffusion is not and, consequently, mixing is also irreversible. Taylor
[1922], assuming a stationary homogeneous flow with a null mean velocity and a source point of
pollutant, showed that the growth of the size of the cloud of pollutant for t≫ Tx, where Tx is
the Lagrangian integral time scale, is time-independent and, in analogy with Fickian diffusion,
defined a turbulent diffusion coefficient ϵx:

2ϵx =
d

d t
⟨X2

p(t)⟩ = 2⟨U2
p ⟩Tx, (2.70)

where
〈
X2

p(t)
〉

is the spatial mean size of the cloud and Up is the velocity of points inside the
cloud. Here, the analysis is shown in the x-direction, but it is easily extended to the other
directions. If the flow is considered to be anisotropic, the turbulent diffusion coefficients are
spatially variable and then equation 2.68 becomes:

∂⟨c⟩
∂t

+ (⟨u⟩ ·∇)⟨c⟩ = ∇ · (ϵ∇⟨c⟩) +R⟨c⟩, (2.71)
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where ϵ is different for each direction. In three-dimensions the condition t ≫ Tx is replaced
with t≫ TL, where TL = 1

3 (Tx+Ty +Tz). When the size of the cloud is much greater than the
Lagrangian length scale and the scalars perfectly follow the flow (⟨U2

p ⟩ ≃ ⟨U2⟩), the dispersion
coefficient becomes5:

ϵx = lx⟨U2⟩, (2.72)

because lx ≡ ⟨U2
p ⟩T 2

x . The turbulent diffusion coefficient is the product of the Lagrangian length
scale and the intensity of turbulence.

An open channel flow is a uniform, straight, infinitely-wide channel of constant depth. Since
open channel flow satisfies the hypothesis of Taylor’s theory, this can be directly applied. The
turbulent diffusion coefficient in each direction is then:

ϵj ∝ H uτ . (2.73)

The diffusion coefficient in vertical direction can be found following the approach used by Elder
[1959]. From the definition of the shear stress and the logarithmic law of the wall, the vertical
diffusion coefficient reads:

ϵy = κy/H(1− y/H)H uτ . (2.74)

The proportionality coefficient depends on the vertical direction and integrating over the depth
of the channel can be theoretically estimated to be:

ϵy = 0.067H uτ . (2.75)

Csanady [1976] reported:
ϵy = 0.05H uτ . (2.76)

In the spanwise direction the mixing coefficient is based on several experimental studies [Elder,
1959, Lau and Krishnappan, 1977, Miller and Richardson, 19] and it is usually defined as follows:

ϵz = (0.15± 50%)H uτ . (2.77)

This wide range of values is due to the fact that in reality the coefficient strongly depends on side
boundary effects, even for relatively wide systems. When the longitudinal mixing is considered,
the analysis becomes much more complex, since it is impossible to distinguish between shear
and turbulent dissipation effects. For this reason, the diffusion coefficient in the streamwise
direction is not usually measured.

2.4 Previous experimental and numerical studies

The main goal of the aforementioned mass transfer models was to link the averaged mass
transfer velocity KL at the surface with easily measurable flow quantities. During the period
in which these conceptual mass transfer models were developed, experimental techniques were
improved. Non-intrusive measurements like laser-induced fluorescence (LIF) and particle image
velocimetry (PIV) allowed the simultaneous analysis of velocity and concentration fields near
the surface. Through the use of these techniques, Herlina and Jirka [2008] and Janzen et al.

5 Here, shown in x direction only for simplicity.
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[2010] were able to directly compute the mass fluxes, for the first time ever in grid-stirred
turbulence.

In subsequent years, Komori et al. [1982], Rashidi and Banerjee [1990], Rashidi et al. [1991]
proposed different methods to directly measure the characteristic time of surface renewal events,
but the lack of an unambiguous definition of the aforementioned event did not allow to clearly
define the time scale. Through open channel flow experiments, Moog and Jirka [1999] tested the
applicability of the surface renewal models and discovered that both small and large structures
collaborate to increase the mass transfer for moderate to high Reynolds number flows. The
analysis of their experimental data combined with data from previous literature confirmed the
applicability of the small eddy model in open channel flow for 357 ≤ Reτ ≤ 4220. They
explained the dependency of mass transfer on small scales in their “chain saw model", in which
the large scale motions transport turbulent energy to the surface, creating active zones for
mass transfer. In these regions, mass transfer is controlled by small eddies for all the Reynolds
considered in the study. Tamburrino and Gulliver [2002] used flow tracer particles to study
surface divergence motions. Unfortunately, the PIV data suffered from flow tracers being too
sparse to underline high divergence regions and too dense in convergence motions. Turney and
Banerjee [2013] validated the surface divergence model for open channel flow with PIV and
three dimensional PIV, concluding that it can accurately predict the mass transfer velocity,
but only in windless conditions. Sanjou et al. [2017] modified the surface divergence model,
in order to make it independent from the water depth in open channel flow configurations.
The experimental focus on the surface divergence model is due to the fact that the surface
renewal model relies on quantities that are hardly measurable in real rivers. On the contrary,
the application of the surface divergence model requires only the analysis of the surface, which
is a summary of the turbulent state below and it is easily accessible.

Several numerical experiments were performed in the same period. The main advantage
of DNS compared to experiments is the control of the boundary and flow conditions and the
availability of three dimensional fields. Herlina and Wissink [2014] and Herlina and Wissink
[2019] performed DNS with Reynolds and Schmidt numbers ranging from 84 to 1856 and 1

to 500, respectively, in a flow driven by isotropic turbulence diffusing from below. These wide
ranges allowed to prove the applicability of the two-regime model proposed by Theofanous et al.
[1976] to isotropic-driven turbulent flows. Moreover, the concentration and mass fluxes profiles
were analyzed, showing that previous experimental results were biased by the contamination of
the surface of the tank that e.g. limited the peak of the mean concentration fluctuation and,
consequently, hindered interfacial mass transfer.

The analysis of mass transfer in open channel flow through numerical simulations is more
complex, since a second boundary layer is imposed by the presence of the bottom wall and
the shear makes flow anisotropic. Various studies performed direct numerical simulations of
interfacial mass transfer in open channel flow [Handler et al., 1999, Kermani et al., 2011, Nagaosa
and Handler, 2003, 2012, Pan and Banerjee, 1995] and most of them focused on the interaction
between coherent structures and mass transport, unveiling a strong correlation between vortices
ejected from the bottom region and the concentration at the surface. Handler et al. [1999]
performed a DNS of open channel flow for Reb = 2805 and Pr = 2. They discovered that the
thermal structure at the surface is strongly affected by different scalar boundary conditions at
the surface and proposed a two-time-scale model. In the model, the scalar boundary layer is
strained and compressed by the fast hydrodynamic time-scale, but it is reformed in a longer
time linked to the diffusion scale. Through the analysis of cross-correlation, Handler et al.
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[1999] proposed hairpin vortices as the dominant structures contributing to the transport of
heat in open channel flow. After few years, Nagaosa and Handler [2003] performed a DNS of
interfacial mass transfer in open channel flow for 2300 ≤ Reb ≤ 5090 and Pr = 2. Surface
aligned vortices just below the surface were found to lie underneath high mass transfer regions.
The arrangement of this vortices was found to create circular areas of vertical (upwelling and
downwelling) motion, which enhanced interfacial mass transfer. These small vortices were
found to be originated from hairpin structures that deform into ring-like vortices, as soon
as they approach the surface. The hairpin eddies are originated at bottom of the channel and
transported upward by Q2-events. This definition of surface event was quantified and its spatial
extend was found to be comparable with flow macro length scales. It must be pointed out that
the macro scales defined in the paper were extrapolated from the auto-correlation of vorticity
and temperature and are still much smaller than the integral length scales computed from the
streamwise velocity. Kermani et al. [2011] performed DNS for interfacial mass transfer in open
channel flow at Reτ ≃ 300 and 0.71 ≤ Sc ≤ 8. The authors were able to define different
scalar transfer stages, using Lagrangian tracing. Nagaosa and Handler [2012], using the data
from Nagaosa and Handler [2003] and performing new simulations with 2840 ≤ Reb ≤ 11300,
proposed the use of two characteristic time-scales for surface renewal, based respectively on
surface divergence and auto-correlation coefficient of the surface divergence divided by velocity
fluctuations at the surface. The time-scales were found to be in agreement with previous
experimental studies and proportional to Re−3/5

b for the range of Reynolds number considered.
Since the Schmidt number considered in the paper was Sc = 1, the dependency of mass transfer
on the diffusivity was left to future investigations.

The main drawback of DNSs is the excessive computational costs to resolve high Reynolds and
Schmidt numbers flows. This is the main reason why, in the past decades, no direct numerical
simulations of mass transfer in open channel flow were performed with both moderate/high
Schmidt and Reynolds numbers in an adequate domain size. Magnaudet and Calmet [2006]
overcame this limit, performing a large eddy simulation (LES), through which they were able to
analyze the near surface regions statistics and find that the mass transfer velocity forReτ = 1280

and 1 ≤ Sc ≤ 200 is proportional to Sc−1/2 and Re−1/4.
In all the cited DNS studies of mass transfer in open channel flow, the focus was put on the

effects of sub-surface flow structures, which are usually very small since the larger structures
are suppressed by the presence of the surface. In order to capture these large structures,
simulations with adequate domain sizes and moderate Reynolds numbers must be performed.
Higher Reynolds numbers were considered in the study of heat transfer in close channel flow
by Pirozzoli et al. [2016] and Abe et al. [2018], who performed DNS with Reynolds numbers
up to Reτ = 4000. In close channel flow, Reτ ≥ 1000 is needed, in order for the very large
scale motions (VLSM) to have an influence on the turbulence intensities [Álamo et al., 2004,
Hoyas and Jiménez, 2006, Moser et al., 1999]. Considering open channel flows, VLSM footprint
is already visible for Reτ = 550 [Wang and Richter, 2019]. In order for such long structures to
form, a proper domain size is required. One of the main limitations in the literature of interfacial
mass transfer (open channel flow) is the use of small domain sizes that can not consider the
influence that VLSM have on the phenomenon. In fact, in order for these structures to develop
in an open channel configuration, the domain size must be twice as large in the streamwise
and spanwise directions as the one used in close channel configurations, as Bauer et al. [2020]
demonstrated.
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The limitation on the Schmidt and Reynolds numbers imposed by DNS in the study of
interfacial mass transfer in open channel flow hindered the possibility to test the applicability
of the aforementioned interfacial mass transfer models for Sc > 8 and Reτ > 600. An increase
in the Schmidt number translates directly into thinner filaments with very sharp concentration
gradients, for which the resolution of the small scales becomes fundamental. In order to fill this
gap, in the present thesis, scalar fields from Sc = 4 to Sc = 200 are resolved. At the same time,
Reynolds numbers up to Reτ = 630 were employed to determine the role of different scales of
motion on interfacial mass transfer for different turbulent levels and diffusivities. Moreover, a
range of domain sizes was employed to check if the results from previous studies were biased
by this choice.
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This chapter presents an overview of the finite-difference direct numerical simulation technique
employed for the thesis. The DNSs were performed with the KCFlo in-house code developed
by Kubrak et al. [2013], in order to resolve interfacial mass transfer for gases with low diffusiv-
ities. Since the difference between momentum and molecular diffusivities is very large for low
diffusivities gases, the code employs a dual mesh approach, where the velocity field is solved on
a base mesh, while the scalar fields are solved using a finer grid. The code was vastly used to
analyze mass transfer across a flat surface, driven by isotropic turbulence diffusing from below
(Herlina and Wissink [2014, 2019], Wissink et al. [2017]) and buoyant convection (Wissink and
Herlina [2016]).

The chapter has been structured in four main sections. In the first section, the mathemati-
cal formulation describing the problems tackled in the thesis is presented. The second section
depicts the characteristics of the computational setup, while the third section contains a de-
scription of the schemes implemented in the code. The last part of this section shows the
efficiency of the code resolving scalar transport.

3.1 Governing equations

The problems under consideration are gas transfer and pollutant transport in a turbulent
open channel flow. The mathematical system employed to describe these processes consists of
the three-dimensional incompressible Navier-Stokes equations and advection-diffusion-reaction
equations that model the scalars (e.g. gas, bacteria and heat) behavior. The complete mathe-
matical formulation is:

∂u
∂t

+ (u · ∇)u +
1

ρf
∇p = ν∇2u + fb + f , (3.1)

∇ · u = 0, (3.2)
∂ci
∂t

+ (u · ∇)ci = Di∇2ci −Rici, (3.3)

∂T

∂t
+ (u · ∇)T = kT∇2T. (3.4)

In equations (3.1) to (3.4), ci is the scalar concentration, Di the diffusion of the dissolved scalar,
Ri the reaction term, T the temperature field and kT the thermal diffusivity. Equation 3.3 is
the equation of the scalar that changes for each case considered in the thesis.

When mass transfer was considered, the advection-diffusion equation was resolved for the gas
and reads:

∂cg
∂t

+ (u · ∇)cg = Dg∇2cg, (3.5)

where the subscripts ∗g refers to the gas under consideration.
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If pollutant transport was simulated, two advection-diffusion-reaction equations were solved
by the code, one for bacteria and one for the gas:

∂cB
∂t

+ (u · ∇)cB = DB∇2cB −RB cB , (3.6)

∂cO2

∂t
+ (u · ∇)cO2

= DO2
∇2cO2

−RO2
cO2

, (3.7)

where the subscripts ∗B and ∗O2
refer to bacteria and oxygen, respectively. The decay rates of

bacteria and oxygen are bounded to the temperature. A change in this parameter modifies the
reaction rates. For the present thesis, all the parameters were tuned on a temperature of 20◦ C.
RB is the total decay rate of bacteria, which, in the present simulations, is composed by the
UV-inactivation rate RUV , the bacterial natural die-off rate Rnat and the decay rate due to the
higher metabolism induced by aerobic conditions RG, such that RB = RUV +Rnat +RG. RG

depends on the oxygen concentration level available in the fluid, while the oxygen consumption
rate RO2

depends on the amount of bacteria present. The bacterial inactivation rate due to
sunlight, RUV , is proportional to the product of the UV irradiance Iy and a UV sensitivity
coefficient αUV :

RUV = αUV Iy, (3.8)

where Iy at a certain depth y (measured from the water surface) is usually described by the
Lambert-Beer law:

Iy = I0e
−katty, (3.9)

such that:
RUV = αI0e

−katty, (3.10)

where I0 is the average surface UV irradiance and katt is an attenuation factor. In all the
simulations, we considered αI0 = 0.00029 s−1, katt = 1.998m−1, RG = 9.8 · 10−5 cG

3 + cG
s−1

and Rnat = 8.33 · 10−6 s−1. The UV E. Coli sensitivity coefficient was estimated considering
the decay rates of bacteria for UV irradiancies of 40 W/m2 to be 0.08. The oxygen decay
rate due to bacterial metabolism was chosen to be RO2 = 4.63 · 10−8 cB

2000MPN
s−1, where

MPN is the most probable number of bacteria. These values were computed from the results
of Garcia-Armisen and Servais [2009], Roslev et al. [2004], Schultz-Fademrecht et al. [2008],
Sinton et al. [2002], Tchobanoglous et al. [2003] by the Engler-Bunte-Institute (EBI) of KIT.
In all the simulations performed the re-growth rate of bacteria has always been considered to
be null, since the analysis was focused on the self-purification processes happening in the first
minutes of contact with water, when the bacteria are still in a lag state, due to the change of
environment.

3.2 Computational setup

The computational setup is shown in figure 3.1. The numerical domain is defined by lengths Lx,
Ly and Lz in streamwise (x), vertical (y) and spanwise (z) directions, respectively. The chosen
domains are 3H×H×3H, 12H×H×3H and 24H×H×6H, where H is the height of the open
channel. A free-slip boundary condition at the top (y/H = 1) and a no-slip boundary condition
at the bottom (y/H = 0) of the channel are applied for the velocity field, while periodic
boundary conditions are employed in streamwise and spanwise directions. Every movement
of the free-slip surface was neglected, which corresponds to zero Froude and Weber numbers.
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Figure 3.1: Computational geometry and coordinate system for open channel flow.

Therefore, the surface is considered to be flat, such that every influence waves can have on mass
transport is neglected in the simulations. The boundary conditions employed for the scalars in
the mass transfer simulations in the vertical directions are a Dirichlet boundary condition at the
surface (c at saturation), modeling the atmosphere, and a Neumann boundary condition at the
bottom of the channel. In the case of pollutant transport, a different boundary condition must
be implemented at the surface, since the bacteria are not perpetually replaced at the interface
between gas and liquid. For this reason, a Neumann boundary condition was imposed at the top
of the channel. In all the scalar simulations, periodic boundary conditions were implemented
in the homogeneous directions x and z. A detailed description of the implementation of the
aforementioned boundary conditions in the code can be found in Kubrak et al. [2013].

The spatial discretization of the fluid flow was performed on a non-uniform Cartesian mesh
using a staggered variable arrangement, where the pressure and scalar concentrations were
defined in the center of the grid cells. The mesh was uniform in the homogeneous (x, z)
directions and stretched in the vertical (y) direction to obtain finer meshes near the upper and
lower boundaries with the following function:

y(j) =

(
1− tanh(yϕ)

tanh(y1)

)
y(0)

2
+

(
1 +

tanh(yϕ)
tanh(y1)

)
y(ny)

2
(3.11)

for i = 1, ..., ny (ny =number of grid points in vertical direction), with:

y1 =
δ

2
, (3.12)

yϕ = δ

(
j

ny
− 0.5

)
, (3.13)

δ =
j

ny
σt +

(
1− j

ny

)
σb, (3.14)

where σt and σb are the parameters controlling the stretching at the top and at the bottom of
the channel, respectively. They were chose to be σb = 2 and σt = 2 for the smallest, σb = 2

and σt = 3 for the mid and σb = 2.3 and σt = 3 for the largest domain size simulations.
The stretching in the vertical direction allows to accurately resolve the fine scales produced by
velocity and scalars fields in the boundary regions in a very efficient manner.
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Figure 3.2: Tests of code performances.

3.3 Numerical method

The full set of governing equations was solved using the in-house KCFlo code [Kubrak et al.,
2013]. The flow field was solved using a fourth-order central discretization of the diffusion com-
bined with a fourth-order kinetic energy conserving discretization of the convection [Wissink,
2004]. The Poisson equation for the pressure was solved using a conjugate gradient solver, with
simple diagonal preconditioning. The scalar advection-diffusion equations were discretized us-
ing a fifth-order weighted essentially non-oscillatory (WENO) scheme [Liu et al., 1994] for the
scalar convection and a fourth-order accurate central scheme for the diffusion. The details of
the discretization of flow and scalars equations are reported in Kubrak et al. [2013].

The solutions of both flow and scalar fields were advanced in time using the second-order
accurate explicit Adams-Bashforth scheme. Up to five scalar advection-diffusion equations with
different Schmidt numbers were solved simultaneously, enabling a direct comparison of scalar
transport processes driven by exactly the same background turbulence.

In every simulation, a dual-mesh approach is employed, in order to consider the increase in
the ratio between momentum and scalar diffusivity due to the decrease of D. This difference
translates in the necessity to employ a much finer mesh to accurately resolve the low diffusivity
scalar field compared to the coarser mesh required by the flow field in an efficient manner. In
fact, scalar diffusivity can be up to three order of magnitude smaller than momentum diffusivity
when Sc = O(102) are considered.

Note that the implementation of two grids made the interpolation of the different variables
necessary, in order to compute the convective transport. In fact, the velocities are interpolated
onto a sub-grid using a fourth-order Lagrange interpolation. Depending on the chosen refine-
ment factor for the finer grid, an interpolation is necessary, in order to compute scalars and
velocity quantities in the same sub-cell. When the refinement factor is chosen to be equal to
3, this interpolation is not necessary, since some velocities and the central sub-cell of the scalar
are defined at the same location. The effectiveness and convergence of the dual-mesh approach
was demonstrated in Herlina and Wissink [2014], Kubrak et al. [2013], Wissink and Herlina
[2016].

The direct numerical simulations were performed on ForHLRII, bwUniClusterI and bwUni-
ClusterII at the Steinbuch Centre for Computing (SCC) at KIT. Several tests were performed
on ForHLRII, in order to determine the code performance in open channel flow configuration on
the aforementioned supercomputer. Figure 3.2a shows the time per iteration for a test in which
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the flow is solved on a coarse mesh and one scalar on a refined mesh with refinement factors fR
spanning from 1 to 4. 144 cores are employed for each simulation. The weak scaling is shown in
figure 3.2b. In this case, three scalars were resolved on a finer mesh, with different refinement
factors for each direction fxR, f

y
R, f

z
R = [6, 2, 2]. The local grid size per core was 48 × 96 × 48.

The noticeable decrease in the parallel efficiency for the largest number of cores employed is
mainly due to communication. Note that the number of operations per time-step was found to
be mainly dependent on the refinement factor fR, as O(f3RNf ), where Nf is the total number
of grid points in the flow field coarse mesh. Therefore, when using a refined scalar mesh, the
solver of the scalar convection-diffusion equation dominates the total computing time.
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4 Turbulent flow fields

The scalar (e.g. bacteria and gas) transport simulations presented in chapters 5 and 6 were
started from fully developed turbulent flows. These were prepared by starting from a coarser
mesh turbulent flow field interpolated to the desired mesh. On average around 50 bulk time
units were required for the flow statistics to converge. The time windows chosen for each
simulation are shown in table 4.1. The values averaged on the homogeneous planes x, z are
represented by ⟨·⟩, while the values averaged in time are represented by ·. ·+ represents averaged
data normalized with viscous scales.

In this chapter, the statistics of the flow fields are presented. The chapter is divided in three
main sections. In the first chapter, the two-point correlation and the 1D energy spectra of the
streamwise velocity component were analyzed to evaluate the adequacy of the chosen domain
sizes and grid resolutions. In the second section, the most important turbulent statistics are
analyzed and compared with previous literature. A discussion of the presence of large and very
large scale motions in the largest domain size considered and their interaction with small scale
motions closes the chapter.1

4.1 Domain sizes and grid spacing

The flow parameters chosen for each simulation are shown in table 4.1. In order to verify the
ability of the domain size to capture the largest scale of motions and the adequacy of the grid
spacing to resolve the smallest Kolmogorov scales, two-point correlation and the 1D energy
spectra of the streamwise velocity component were analyzed for all the simulations.

Before proceeding with the discussion of the results, a brief overview of the effect of the domain
size on the flow structures in open channel flow is presented. A more detailed investigation can

1 Part of the results reported in this chapter were also presented in Pinelli et al. [2022].

Case Reb Reτ Lx × Ly × Lz Nx ×Ny ×Nz ∆t/tb ∆t+ line

F01 3000 190 3H ×H × 3H 192× 128× 192 360 4332

F02 4000 240 3H ×H × 3H 192× 128× 192 260 3744

F03 5000 290 3H ×H × 3H 192× 128× 192 380 6390

F04 2875 180 12H ×H × 3H 384× 128× 192 700 7900

F05 4000 240 12H ×H × 3H 384× 128× 192 252 3630

F06 5000 290 12H ×H × 3H 384× 128× 192 340 5720

F07 3200 200 24H ×H × 6H 1152× 384× 1152 120 1500

F08 6300 365 24H ×H × 6H 1152× 384× 1152 80 1665

F09 12000 630 24H ×H × 6H 1152× 384× 1152 100 3300

Table 4.1: Computational parameters of flow simulations. Reb is the bulk Reynolds number, Reτ is the friction
Reynolds number, Lx, Ly and Lz denote the size of the domain, H is the height of the domain,
Nx, Ny and Nz are the number of grid points in x, y, z directions respectively, ∆t/tb and ∆t+ are
the time window over which the averaging is performed normalized with bulk time units and viscous
scales, respectively.

31



4 Turbulent flow fields

(a) F03: Reτ = 290.

(b) F05: Reτ = 290.

(c) F09: Reτ = 630.

Figure 4.1: Instantaneous contour maps of u′/Ub in the plane y/H = 0.6 for simulations F03, F06 and F09.

be found in e.g. Bauer et al. [2020], Wang et al. [2020], while similar investigations for closed
channel flow were carried out by e.g. Abe et al. [2018], Feldmann et al. [2018], Hwang and
Cossu [2010], Lozano-Durán and Jiménez [2014].

One of the main findings reported in the investigations mentioned above is the appearance of
very large coherent structures for large Reτ . To assess the suitability of the domain sizes used
in the present simulations for capturing such large coherent structures, typical snapshots of the
streamwise velocity fluctuations u′ at y/H = 0.6 for F03, F06, F09 are shown in figures 4.1.
As can be seen in table 4.1, these cases have the highest Reτ for each of the three domain
sizes considered. In all figures, high and low velocity elongated streaky structures, which are
characteristic of open channel flow, can be seen. The snapshots indicate that the streamwise
extent of these coherent structures was captured quite well in the largest domain, but not in the
smallest and mid domains. Furthermore, in figure 4.1c a coherent structure of length ≈ 20H

can be observed. In the literature, structures of length ≳ 10H are usually referred to as very
large scale motions (VLSM) [Álamo et al., 2004, Del Álamo and Jiménez, 2003, Jiménez, 2012,
Kim and Adrian, 1999], while the term large scale motions (LSM) is typically used for structures
with a length of ≈ 1−3H [Balakumar and Adrian, 2007, Hutchins and Marusic, 2007, Kim and
Adrian, 1999]. In open channel flow, the onset of the appearance of VLSM is still uncertain, i.e.
to date such motions were confirmed to appear for Reτ ≥ 400 [Bauer et al., 2020], Reτ ≥ 550

[Wang and Richter, 2019] and experimentally at Reτ ≥ 700 [Peruzzi et al., 2020]. The very
large coherent structure seen in figure 4.1c is an example of such a very large scale motion that
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Figure 4.2: Two-point correlation for the streamwise velocity u′ in streamwise x and spanwise z direction.

is found at Reτ = 630. Later, it will be shown that in the present simulations VLSM could
already be detected at Reτ = 365. Further confirmations of the appearance of VLSM based on
e.g. pre-multiplied spectra and velocity fluctuations analyses, is presented in the next sections.

The averaged two-point, one-time auto-covariance, from now on referred to as the two-point
correlation, of a random field Ω is given by:

Rx
Ω′

iΩ
′
j
(r) =

( ⟨Ω′
i(x, t)Ω

′
j(x + r, t)⟩

⟨Ω′
i(x, t)Ω

′
j(x, t)⟩

)
, (4.1)

where r is the separation vector between the two points. The two-point correlations for all the
velocity components were evaluated in the homogeneous directions for different distances from
the wall. Figure 4.2 depicts the two-point correlation of the streamwise velocity in streamwise
and spanwise directions for all the simulations performed close to the wall y+ ≃ 4.5 and near the
surface y/H ≃ 1. Figure 4.2a shows that for both Reτ = 365 and 630, the proper de-correlation
of u′ in the largest domain (shown for y/H = 0.9997 in figure) was achieved in the spanwise
direction for all y/H, but not in the streamwise direction. For y/H > 0.7 the minimum value for
the streamwise Ruu was always smaller than 0.05, indicating a more marginal de-correlation.
Even if the values for high separations are very low, correlation of the streamwise velocity
component in streamwise direction shows that a larger domain size needs to be employed to
achieve de-correlation. The positive side on using a slightly smaller domain size is that it
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Figure 4.3: One-dimensional energy spectra for simulations F07, F08 and F09 in streamwise direction close to
the surface (y/H = 0.9) and to the wall (y/H = 0.1).

hindered the meandering of these structures, allowing an easier analysis of their influence on
mass transfer (see Chapter 5). For the simulation with the largest domain size and the lowest
Reτ = 200, a de-correlation of u′ in both horizontal directions was obtained for the entire depth.
In the mid-sized simulations, the streamwise de-correlation was marginal for all cases, while in
the smallest domain no de-correlation was achieved at any height (see figure 4.2b). Therefore,
a domain size of 3H × 3H ×H is too small to fully capture turbulent open channel flow, even
for Reτ as low as 190. The three simulations with the largest domain sizes are considered the
only simulations in which the chosen domain size demonstrates to be adequate to capture both
large and very large scale motions.

In homogeneous turbulence, the Fourier space representation of the two-point correlation is
the spectrum tensor, defined as:

Φk
ΩiΩj

(k, t) =
1

(2π)3

∫∫∫ ∞

−∞
Rr

ΩiΩj
e−ik·rdr, (4.2)

where k = (kx, ky, kz) is the continuous wavenumber vector. The energy spectrum function is
obtained by removing all the directional information from Φij(k) and it is defined as:

E(k, t) =
∫∫∫ ∞

−∞

1

2
Φk

ΩiΩi
(k, t)δ(|k| − k)dk, (4.3)

where k is here independent from k. The one-dimensional streamwise energy spectra of the
velocity components for the simulations with the largest domain size (F07, F08 and F09) is
shown in figure 4.3. As also observed for all other simulations, no energy pile-up at high
wavenumbers was observed, demonstrating that the smallest scales of motion were well resolved.
Furthermore, the existence of an inertial sub-range, indicated by the k−5/3 power law, can be
clearly seen. All the simulations showed similar behaviors across the vertical direction, but only
the simulations with the largest domain size are shown.

4.2 Turbulent statistics

This section presents the analysis of the main flow field statistics. In the first sub-section,
the total shear stress was found to be linearly dependent on the height of the channel for all
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F01 F02 F03 F04 F05 F06 F07 F08 F09

κ 0.4795 0.4199 0.4301 0.3891 0.3924 0.3918 0.3933 0.3909 0.3798
B 7.6201 6.3537 6.5720 5.5159 5.4220 5.4887 5.3869 5.2819 4.8371

Table 4.2: Constants of the log law u+ = 1
κ
y+ +B computed by linear regression for y+ > 30 and y/H < 0.7.

the simulations performed. In the second sub-section, the law of the wall approximated well
the mean velocity profiles of every simulation. The third sub-section analyzes the influence
of turbulent intensity and domain size on the velocity fluctuations, while the last sub-section
shows that the turbulent kinetic energy equation is fulfilled for all the simulations. In addition,
it was found that Reτ = 0.166Re0.88b , which is in agreement with e.g. Bauer et al. [2020], Lee
and Moser [2015], Pope [2000].

4.2.1 Shear stress

Figure 4.4 depicts the total shear stress τ+ = ⟨τ⟩
u2
τ

and its viscous ν ∂u+

∂y and turbulent −⟨u′v′⟩
+

components for the simulations performed on the largest domain size. The viscous stress dom-
inates at the wall, while the Reynolds stress becomes important in the bulk and at the top
of the channel. As the Reynolds number increases, the height at which the turbulent stress
becomes larger than its laminar counterpart decreases, underlying the necessity to employ a
much finer grid when higher levels of turbulence are considered. The linearity of the total shear
stress indicates that the flow is statistically stationary and confirms that the chosen number
of time and space samples is sufficient to reach reliable one-point statistics. Only the simula-
tions performed on the largest domain size are shown, since they are considered to be the most
problematic cases. The shear stresses for all the simulations are shown in appendix A.5.

4.2.2 Mean streamwise velocity profile

A logarithmic plot of the mean velocity profile as function of wall units is shown in figure 4.5.
u+ was found to be linearly dependent on the wall units for y+ ≤ 5, in agreement with Pope
[2000]. The figure confirms that the viscous sub-layer thickness does not depend on the Reynolds
number when the vertical dimension is normalized with viscous scales. Further away from the
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Figure 4.5: Law of the wall applied to the results of all the simulations performed.

wall, the dependency of u+ on the viscosity becomes weaker and a buffer layer between the
viscous sub-layer and the logarithmic region is reached for all the simulations performed at
5 ≤ y+ ≤ 30. The logarithmic law of the wall introduced by von Karman [1930]:

u+ =
1

κ
ln y+ +B, (4.4)

was found to be applicable to all the simulations for y+ ≥ 30 and y/H < 0.7, with the values
of κ and B listed in table 4.2. The variation of the values looks quite large, but it is mostly
due to the choice of the range for the curve fitting that is somewhat arbitrary, as well explained
by Lee and Moser [2015]. Moreover, an analysis of the indicator function y+∂u+/∂y+ showed
that the results obtained from the small domain-sized simulations suffer from statistical noise,
which makes the definition of these constants quite arbitrary, as confirmed by Lee and Moser
[2015] for their simulation with domain size 2πH×H×πH. Figure 4.5 shows that all the plots
can be well modelled by the logarithmic law of the wall with parameters κ = 0.39 and B = 5,
which are widely accepted values for wall-bounded flows.

4.2.3 Velocity fluctuations

Figure 4.6a depicts the open channel turbulence intensities normalized by uτ in the region
y+ ≤ 120. The peak of the rms of the streamwise velocity component is located at y+ ≃ 15 for
all the domain size and Reynolds numbers employed. The values of the peak of u+rms vary from
one domain size to the other and they span from 2.7 to 3. An increase in the Reynolds number
determines an increase in the value of the streamwise velocity fluctuation peak, when the same
domain size is consider. The position of the peaks y+ ≃ 15 and their values were found to fall in
the range provided by previous literature [Kim et al., 1987, Pope, 2000, Wang and Richter, 2019].
The simulations performed with the smallest domain size showed higher values of the velocity
fluctuations in the streamwise direction and smaller values for vrms and wrms, in agreement
with the findings of Abe et al. [2018], Lee and Moser [2015]. Abe et al. [2018] explained this
behavior with a weakened energy redistribution between the velocity fluctuations, due to lower
energy fluxes present in domain sizes with Lx < 6.4H. Since the velocity fluctuations of the
simulations performed on the smallest domain size are known to be biased, they will not be
taken into account in the following analysis.
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Figure 4.6: Velocity fluctuation as a function of the vertical direction for all the simulations performed.

00.511.522.533.54
0

0.5

1

(H − y)/lv

u
+ r
m

s
,
v
+ r
m

s
,
w

+ r
m

s

u+
rms

v+
rms

w+
rms

0.36(H − y)/lv

Figure 4.7: Velocity fluctuation as a function of the vertical direction normalized with the near-surface viscous
scale lv for all the simulations performed. All v+rms have linear behavior for (H − y)/lv ≤ 0.6 with
a constant of proportionality equal to 0.36.

37



4 Turbulent flow fields

Figure 4.6b depicts the velocity fluctuations normalized with the friction velocity as a function
of the vertical direction y/H. The streamwise velocity fluctuations for Reτ ≥ 365 showed higher
values compared to the other simulations, which almost collapse on the same curve. In wall-
bounded flows, this increase is usually associated to the presence of VLSM, which become more
energetic when the Reynolds number is increased [Álamo et al., 2004, Hoyas and Jiménez,
2006, Kim and Adrian, 1999]. In the present simulations, the effect of these structures on the
turbulent intensities seems to be important already for Reynolds numbers as low as Reτ = 365.
Therefore, in turbulent open channel flow, the domain size must be very large already at
moderate Reynolds numbers, as figure 4.2a also confirms.

In the region y/H ≥ 0.4, the values of v+rms and w+
rms become similar for all the Reynolds

numbers and domain sizes considered. At the surface, vertical fluctuations are damped and
the turbulent kinetic energy is redistributed in the horizontal directions, which explains the
increase observed near the surface in the u+rms and w+

rms profiles. The region in which v+rms

starts to decrease is defined here surface-influenced region. While the boundary layer thickness
at the wall strongly depends on the Reynolds number, the surface-influenced region thickness
was found to be 0.25 ≤ δSI/H ≤ 0.4 for all the simulations performed. This region is defined
in section 5.3 to start from the point of maximum I = ⟨u′u′ + v′v′ + w′w′⟩/⟨u′u′ + w′w′⟩ and
to extend up to the surface. I can be seen as a measurement of the Reynolds stress anisotropy.

Bauer et al. [2020] reported that when the vertical direction is normalized with the near-
surface viscous scale lv = Re

−1/2
τ H, v+rms grows linearly moving from the surface toward the

bulk of the channel for (H−y)/lv ≤ 0.6. In this region, all the values for the different Reynolds
numbers considered were found to collapse and were well approximated by vrms = 0.36H−y

lv
.

Figure 4.7 depicts the behavior of the velocity fluctuations in the vicinity of the free-surface
for the present simulations and the scaling found in Bauer et al. [2020] is confirmed. Although
the region in which the vertical derivative of the vertical velocity is linear is usually referred to
as the Kolmogorov sub-layer, the above-mentioned scaling shows that the near-surface viscous
scale lv works better. With this finding, Bauer et al. [2020] demonstrated that a much finer grid
resolution is required when an open channel flow is considered instead of a close channel flow.
Our choice of a double stretching in the vertical direction at the two extremes of the domain is
justified by the necessity to properly resolve this layer in an efficient manner.

At the surface, the u+rms values ranging from 0.88 to 1 and the w+
rms values ranging from

0.78 to 0.83 were found to be in agreement with Borue et al. [1995], Komori et al. [1982], Nezu
and Rodi [1986]. The small variation observed was explained by Calmet and Magnaudet [2003],
who suggested a weak dependency of the values on the Reynolds number due to the very small
turbulent kinetic energy dissipation in this region.

4.2.4 Turbulent kinetic energy budget

The turbulent kinetic energy equation budget reads:

∂k

∂t
+

〈
uj

∂k

∂xj

〉
= −1

ρ

∂⟨u′ip′⟩
∂xi

− 1

2

∂⟨u′ju′ju′i⟩
∂xi

+ ν
∂2k

∂x2j
− ⟨u′iu′j⟩

∂⟨ui⟩
∂xj

− ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
, (4.5)

where k = 1
2

(
⟨u′2⟩ + ⟨v′2⟩ + ⟨w′2⟩

)
is the turbulent kinetic energy. Since open channel flows

are statistically stationary as well as homogeneous in the streamwise and spanwise directions,
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equation 4.5 can be simplified in the form (see Pope [2000]):

P − ϵ+ ν
∂2k

∂y2
− 1

ρ

∂⟨v′p′⟩
∂y

− 1

2

∂⟨v′u′ju′j⟩
∂y

= 0, (4.6)

where P = −⟨u′iu′j⟩
∂⟨ui⟩
∂xj

is the production and ϵ = ν
〈 ∂u′

i

∂xj

∂u′
i

∂xj

〉
the dissipation of turbulent

kinetic energy. The remaining terms are usually defined as viscous diffusion ν ∂2k
∂y2 , pressure

transport 1
ρ
∂⟨v′p′⟩

∂y and turbulent convection 1
2

∂⟨v′u′
ju

′
j⟩

∂y .
Figure 4.8a depicts the profile of each of the aforementioned components of the turbulent

kinetic energy equation for all the simulations performed in the vicinity of the wall. When
the turbulent kinetic energy components and the vertical height are normalized with viscous
scales, the results from the different simulations show only a weak dependency on the Reynolds
number in the inner layer. P increases from zero at the wall as y3, to reach its maximum around
y+ = 12 for all the simulations. It can be demonstrated (Pope [2000]) that this peak occurs
precisely where the viscous and Reynolds stresses are equal. Around this peak, production
exceeds dissipation and the excess energy is transported away by turbulent convection and
viscous transport. The latter transports energy to the wall, while the former also toward
the log-law region. The contribution of pressure transport in this region is small and do not
participate in the transport. Dissipation reaches its maximum at the wall and it is balanced by
the viscous transport that is the only other non-negligible component.

Figure 4.8b depicts the behavior of the turbulent kinetic energy components in the vicinity
of the surface for simulation F09. The choice to show only one simulation results is dictated
by the lack of a unified scaling for every component from the bulk of the channel to its surface.
The free-slip boundary condition allows all the components of the turbulent kinetic energy
equation but the production to be non-zero at the surface. In the region y/H ≥ 0.8, production
is weak and the evolution of turbulent kinetic energy is essentially a balance between the total
diffusion terms and the dissipation. The only component that is constantly positive is turbulent
transport, which brings the energy toward the surface. Pressure transport becomes negative
for y/H ≤ 0.97 and reduces the transport of turbulence toward the surface. The variation of
the viscous diffusion component from positive to negative produces a net increase of the sink
terms in the turbulent kinetic energy budget. This is balanced by the positive value of the
pressure transport at the surface. In this region, all the components but the pressure transport
experience an abrupt variation. Calmet and Magnaudet [2003] linked this rapid change to
viscous mechanisms that act only in the vicinity of the surface.

4.3 Very large scale motions

The analysis performed in this section focuses on the effects of VLSM on flow statistics. The
first sub-section defines the size of coherent motions for different Reynolds numbers through
pre-multiplied energy spectra of the streamwise velocity. In the second part, the study of
integral length scales and their link to anisotropy are considered. In the end, the interaction
between VLSM and small vortices is discussed.
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4.3 Very large scale motions

(a) F07: Reτ = 200.

(b) F08: Reτ = 365.

(c) F09: Reτ = 630.

Figure 4.9: Contour maps of the averaged normalized pre-multiplied 1D spectra of the longitudinal velocity
component in the streamwise direction (E∗

x(u
′) = kxEx(u′)/(kxEx(u′))max) as a function of non-

dimensional streamwise wavelength (λx/H) and distance from the wall (y/H) for simulations F07,
F08 and F09.

4.3.1 Pre-multiplied energy spectra

Figures 4.9 and 4.10 show the contour maps of the pre-multiplied 1D energy spectra of the lon-
gitudinal velocity component as a function of non-dimensional streamwise λx/H and spanwise
λz/H wavelengths, respectively, and distance from the wall y/H for the simulations performed
in the 24H × 6H ×H domain (F07-F09). The wavelengths covered by the peak underline the
scale of the most energetic structures of the flow field [Perry et al., 1986]. As expected, for in-
creasing Reynolds number the amount of energy at smaller wavelengths was found to increase,
especially near the bottom of the channel.

In the streamwise spectra (figure 4.9), an energy peak at a wavelength of λx/H ≈ 3 was
identified in all three cases. This peak is associated with LSM. It should be noted that in the
spectra, the location of the peaks with higher wavelengths becomes less accurate due to the
limited size of the computational domain Lx = 24H, Lz = 6H. Even though the location may
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4 Turbulent flow fields

(a) F07: Reτ = 200.

(b) F08: Reτ = 365.

(c) F09: Reτ = 630.

Figure 4.10: Contour maps of the averaged normalized pre-multiplied 1D spectra of the longitudinal velocity
component in the spanwise direction (E∗

z (u
′) = kzEz(u′)/(kzEz(u′))max) as a function of non-

dimensional spanwise wavelength (λz/H) and distance from the wall (y/H) for simulations F07,
F08 and F09.

not be entirely correct, the energy peaks observed at λx ≳ 10H, which extend over virtually
the whole channel height, indicate the presence of VLSM for Reτ ≥ 365 (F08, F09). Previ-
ous literature sets the limit for the double peak to appear in canonical wall bounded flows at
Reτ = 1700 (Hutchins and Marusic [2007]) and the VLSM effect on the streamwise turbulence
intensities is usually considered to be visible at Reτ ≥ 1000 (Moser et al. [1999], Hoyas and
Jiménez [2006], Álamo et al. [2004]). These studies focused on close channel flow, while exper-
imental [Peruzzi et al., 2020] and numerical [Wang and Richter, 2019] works on open channel
flows observed the presence of a second peak in the spectral density as soon as Reτ = 550 is
reached, in agreement with the present results. As expected, the early appearance of VLSM
in open channel flows confirms the necessity to employ very large domain sizes, even when
moderate Reynolds numbers are considered.

When examining the spanwise spectra (figure 4.10), energy peaks at λz/H ≈ 1, which relate
to LSM, were detected in all three cases. High energy values at λz ≥ 2 (typical for VLSM) were
observed for Reτ = 365 and Reτ = 630 when y/H ≥ 0.3 and 0.1, respectively.

Figure 4.11 shows the pre-multiplied energy spectra of the longitudinal velocity in streamwise
direction for the highest Reynolds number employed with the small and mid domain size simu-
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4.3 Very large scale motions

(a) F03: Reτ = 290.

(b) F06: Reτ = 290.

Figure 4.11: Contour maps of the averaged normalized pre-multiplied 1D spectra of the longitudinal velocity
component in the streamwise direction (E∗

x(u
′) = kxEx(u′)/(kxEx(u′))max) as a function of non-

dimensional streamwise wavelength (λx/H) and distance from the wall (y/H) for simulations F03
and F06.

lations. The analysis of this quantity underlined the inability of the smallest domain considered
to capture even the LSM. In fact, the peak seems to extend above the maximum wavelength of
the domain. The simulations with domain size 12H ×H × 3H were able to partially capture
these motions, but too small to be used with higher Reynolds numbers, in order to observe
VLSM.

4.3.2 Integral length scales and anisotropy

Figure 4.12 shows the integral length scales for the velocity components in the homogeneous
directions as a function of y/H for the largest domain size simulations F07, F08 and F09. For
y/H > 0.3, a significant increase in the integral length scale in the x−direction Lx

uu was observed
for Reτ ≥ 365. The value of this quantity for the two highest Reynolds numbers considered
was found to be almost twice the value found with Reτ = 200. Increasing Reτ from 365 to 630

resulted in a marginal increase in Lx
uu by about 10% (figure 4.12a). This significant growth in

Lx
uu for Reτ ≥ 365 corresponds to the presence of VLSM. For y/H ≤ 0.05, all integral length

scales in the x-direction (Lx
uu, Lx

vv and Lx
ww) can be seen to decrease with increasing Reynolds

number. This trend persists for Lx
vv for (almost) every y/H, and for Lx

ww until y/H ≈ 0.8.
Compared to the x−direction, with the possible exception of Lz

ww, the integral length scales in
the z−direction do not show any significant Reynolds number effect. This could be due to the
small difference in spanwise size between large and very large scale motions. In fact, while the
size of VLSM in the streamwise direction is usually larger than 10H, their size in the spanwise
direction is usually ≃ 2H. On the other hand, the size of LSM is usually around 3H in the
streamwise and H in the spanwise direction. It is clear how the presence of VLSM strongly
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Figure 4.12: Averaged integral length scales for Reτ = 200, Reτ = 365 and Reτ = 630 in
streamwise x and spanwise z directions. The simulations were performed on a domain size of
24H ×H × 6H.
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Figure 4.13: Representations of the anisotropy tensor for simulations F07, F08 and F09.

impact the integral length scales computed in the streamwise direction, while it does not affect
their size in the spanwise direction.

The analysis of the integral length scales has been performed only on the largest domain size
simulations, since de-correlation, even if marginal for Reτ ≥ 365 at y/H ≥ 0.7, is achieved
at any height only in these runs. The values of the different integral length scales for every
simulation are depicted in appendix A.6.

The anisotropy of the flow is increased when higher turbulence levels are considered. The
anisotropy tensor b can be computed from the Reynolds stress tensor, as follows:

bij =
⟨u′iu′j⟩
2k

− δij
3
, (4.7)
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4.3 Very large scale motions

Figure 4.14: Contour plots of the streamwise averaged streamwise velocity fluctuation ⟨u′/Ub⟩x at a random
chosen time from simulation F09. The black arrows represent the streamwise averaged velocity
vector field.

where δij is the Kronecker delta. Figure 4.13a shows the behavior of the different components
of the anisotropy tensor in the vertical direction for different Reynolds numbers. In all the
simulations, three regions can be defined. In the viscous wall region, the stress tensor is highly
anisotropic, with large gradients. In the logarithmic region, the profiles show a plateau, while at
the top of the channel, all the components deviate from the isotropic state due to the presence
of the surface. It can be observed that b11 and b22 moves further away from 0 for y/H ≥ 0.4,
when the Reynolds number is increased. On the contrary, the values of b22 and b12 seem to be
unaffected by the change in Reτ . This means that, when higher turbulence levels are considered,
the flow field becomes more anisotropic in the homogeneous directions x and z at y/H ≥ 0.4.

The structure of bij can be graphically expressed through its two non-trivial invariants:

ηb =

√
1

6
bijbji, (4.8)

ξb =

(
1

6
bijbjkbki

) 1
3

, (4.9)

where Einstein summation convention implies summation over repeated indices. Figure 4.13b
depicts the Lumley triangles for Reynolds ranging from Reτ = 200 to 630 and a domain size of
24H×H×6H. The figure shows that near the wall, the turbulent fluctuations are very close to
a two-dimensional state in which the vertical component is suppressed. Increasing the height,
the points move towards a one-dimensional condition (upper right part of the triangle, around
1/6 ≤ ξb ≤ 1/3 and ηb = 1/3). In the bulk of the channel, the points approach an isotropic
state, defined as ξb = 0 and ηb = 0, up to the surface-influenced region, where there is a sudden
deviation back toward the 2D state, ξb = −1/6 and ηb = 1/6. As can be seen, an increase in
the Reynolds number increases the distance between the anisotropic invariant points close to
the surface and the isotropic state.

4.3.3 Effect of VLSM on upwelling and downwelling regions

This section underlines the dynamics of the turbulent coherent vortices, from their formation
at the wall to their interaction with the flat-shear surface. Hunt et al. [1988] proposed to define
a vortex as a region where the vorticity magnitude is greater than the magnitude of the rate
of strain. In order to define these regions, the authors developed the so-called Q-criterion.
This criterion of vortex identification is based on the decomposition of the velocity gradient
in two components, the rate-of-strain tensor S = 1

2 [∇u + (∇u)T ] and the vorticity tensor
Ω = 1

2 [∇u− (∇u)T ]:
∇u = S +Ω. (4.10)
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4 Turbulent flow fields

(a) Contour plot of the instantaneous streamwise velocity u′ at y/H = 0.5
and iso-contours with values of Q = 1 colored with the normalized height
of the channel y/H.

(b) Contour plot of the instantaneous streamwise velocity u′ at y/H = 0.9
and iso-contours with values of Q = 0.1 colored with instantaneous
streamwise u′ and vertical v′ velocity fluctuations, respectively.

Figure 4.15: Typical vortical structures visualized by iso-surfaces of the second invariant of ∇u for simulation
F09. The color represents the fluctuating streamwise velocity component at different height of the
channel.

From this definition, Hunt et al. [1988] defined a vortex as a spatial region where:

Q̂ =
1

2
(|Ω|2 − |S|2) > 0, (4.11)

where Q̂ is the second invariant of the velocity gradient tensor. In order to avoid a random
choice for the threshold to impose on the value of Q̂ for vortex visualization, in the following, the
normalization employed by Nagaosa and Handler [2003] is applied. Since vortices are produced
by the presence of the bottom wall, the same threshold spanning over the whole channel would
either underline too few vortices at the surface when a high value is chosen or cause confusion,
because the iso-surface of Q̂ covers too much volume of the flow domain, when the threshold is
low. Therefore, the normalized value Q reads:

Q(x, y, z, t) =
Q̂(x, y, z, t)

Q̂rms(y)
, (4.12)
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where Q̂rms is the rms of Q̂. The normalization is based on the fact that the value of the root-
mean-square of Q has a peak in the vicinity of the wall, such that a decrease in the amount
of visualized vortices is locally applied. The main advantages of this normalization are the
ability to visualize vortices all over the channel, instead of having them concentrated at the
wall, and the possibility to determine a universal threshold level Q for the whole channel, as
demonstrated in Nagaosa and Handler [2003].

Figure 4.14 shows contours of the streamwise-averaged velocity fluctuation ⟨u′⟩x, together
with streamwise-averaged velocity vectors. Large areas with high and low speed streamwise
flow can be observed, which extend almost from the bottom to the top of the channel. Down-
ward moving flow is typically present in the high ⟨u′⟩x areas, while in the low ⟨u′⟩x areas the
flow tends to move upwards. It was observed in figure 4.1 that these high and low speed areas
extend over a significant streamwise portion of the channel, and are related to VLSM. The
rotation of large streamwise-aligned vortices create two regions on their sides, an upwelling and
a downwelling region, and spanwise movements above and below themselves. This observation
is coherent with the overall model depicted in Zhong et al. [2016]. The larger is the Reynolds
number the larger and stronger are these vortices. Due to their disposition and rotation direc-
tions, divergence regions lies over upwelling motions and, vice versa, convergence regions over
downwelling motions. While Zhong et al. [2016]’s model focused on the description of large
scale motions, here the effect of these structures on smaller vortices is analyzed.

Figure 4.15a shows contours of streamwise velocity fluctuations u′ in the plane at y/H = 0.5.
Superimposed on this plot are small-scale vortical structures in the interval 0.5 ≤ y/H ≤ 1 that
are visualized using the aforementioned normalized Q-criterion. It is known that low-speed
streaks form due to the upward ejection of relatively slow moving fluid from the lower part of
the boundary layer [e.g. Komori et al., 1982], while high-speed streaks form when relatively fast
moving fluid moves downwards. In figure 4.15a, it can be seen that the vast majority of the
small-scale vortical structures is present inside large low-speed streaks that extend toward the
surface. The presence of these small structures in low-speed streaks is explained by the fact that
the turbulence intensity in the lower part of the boundary layer is significantly larger than in
the upper part. Figure 4.14 shows that these vertical motions are mostly due to the presence of
large streamwise vortices that, rotating, transport the small eddies toward the surface. When
the small vortices approach the surface they either align with or become orthogonal to the
surface, which are referred to by surface-aligned and surface-attached vortices, respectively.
Figure 4.15b shows an instantaneous snapshot of the upper part (y/H ≥ 0.9) of the channel.
Most of the surface-attached vortices were found above downwelling motions corresponding to
high-speed streaks. As mentioned above, in low-speed streaks most of the vortical structures are
present. These structures tend to align with the surface due to the shear generated underneath
the divergent flow at the surface. In these low-speed regions, the surface aligned vortices are
often ring-shaped, which, according to Nagaosa and Handler [2003], started their life as hairpin
vortices from near the bottom of the channel.

The implications of the above on interfacial mass transfer will be discussed in chapter 5.
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This chapter presents the interfacial mass transfer simulations results. These were started
from the flow fields analyzed in chapter 4. Table 5.1 shows the parameters chosen for such
simulations. Refinement factors up to 6 were employed in order to simulate mass transfer for
Schmidt numbers ranging from 1 to 200. The bulk Reynolds number was varied from 2875 to
12000. Different domain sizes were employed, in order to assess the effect of VLSM, present only
in the largest domain considered (see section 4.3), on mass transfer. On average 40 bulk time
units for the small and mid domain simulations and 20 for the large domain simulations were
needed for the scalar statistics to converge. Statistics were then collected for a time window
dependent on the domain size. All the flow statistics presented in the present chapter are
computed in the same time window in which mass transfer is studied. Therefore, they could
differ from the statistics shown in chapter 4, even if the differences are expected to be small.
The values averaged on the homogeneous planes x, z are represented by ⟨·⟩, while the values
averaged in time are represented by ·. ·+ represents averaged data normalized with viscous
scales.

The chapter is divided in three main sections. The first section proves the adequacy of
the meshes employed for the most problematic simulations performed. The second section
demonstrates the sufficiency of the chosen time window that allows to capture correctly scalar
statistics. The third section describes the applicability of the mass transfer models described in
chapter 2 to the present results. In the end, an analysis of the interaction between surface diver-
gence and mass transfer is performed. Instantaneous snapshots define the role of the different
turbulent coherent structures typical of open channel flow in the mass transfer phenomenon. A
comparison with the isotropic turbulence driven flow data of Herlina and Wissink [2019] shows
the effect of choosing different flow types. 1

1 Part of the results reported in this chapter were also presented in Pinelli et al. [2022].

Run Reb Reτ Sc Lx × Ly × Lz Nx ×Ny ×Nz fx
R × fy

R × fz
R ∆t/tb

G01 3000 190 8R, 16R 3H ×H × 3H 192× 128× 192 3× 2× 3 200

G02 4000 240 8R 3H ×H × 3H 192× 128× 192 2× 2× 2 100

G03 5000 290 4R, 8R 3H ×H × 3H 192× 128× 192 3× 3× 3 120

G04 2875 180 7, 64R, 100R 12H ×H × 3H 384× 128× 192 3× 4× 3 230

G05 4000 240 7, 16R, 32R 12H ×H × 3H 384× 128× 192 2× 2× 2 130

G06 5000 290 7R, 16R 12H ×H × 3H 384× 128× 192 3× 3× 3 120

G07 3200 200 7, 16R, 200R 24H ×H × 6H 1152× 384× 1152 6× 2× 2 60

G08 6400 365 7R, 16R, 100R 24H ×H × 6H 1152× 384× 1152 6× 2× 2 60

G09 12000 630 7R, 16R, 64R 24H ×H × 6H 1152× 384× 1152 6× 2× 2 60

Table 5.1: Overview of simulations. Reb is the bulk Reynolds number, Reτ is the friction Reynolds number,
Sc is the Schmidt number, H is the channel height, Lx × Ly × Lz denote the size of the domain in
x, y, z directions, respectively, x, Ny and Nz are the number of grid points of the base mesh, while
fx
R × fy

R × fz
R represents the refinement factors applied to the scalar mesh for the Sc with superscript

∗R in x, y, z directions, respectively, and ∆t/tb is the time window employed for the average.
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(a) G07: Sc = 200 and Reτ = 200.
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(b) G09: Sc = 64 and Reτ = 630.

Figure 5.1: rms of concentration to prove the fulfillment of the second criterion described in Grötzbach [1983]
for simulations G07 and G09.
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Figure 5.2: Comparison between mean grid width ∆ and Batchelor scales LB for simulations G07 and G09.

5.1 Definition of the refinement factor

Before proceeding to the analysis of the scalar statistics, the method chosen in the present
thesis to define the refinement factor to apply to the scalar simulations is presented. Grötzbach
[1983] proposed three criteria for the determination of the grid spacing that allows accurate
direct numerical simulations of heat transfer in turbulent flows:

1. “the periodicity lengths must be chosen large enough to record all relevant large-scale
vortices.” [Grötzbach, 1983]

2. “The vertical grid width distribution must be able to resolve the steep gradients in the
velocity and temperature fields near the boundaries.” [Grötzbach, 1983]

3. “The mean grid widths must be smaller than the smallest relevant turbulence elements.”
[Grötzbach, 1983]

In the paper, these criteria were tested comparing different direct numerical simulations for
the Rayleigh-Bénard convection of air in an infinite channel. In the present chapter, only
the second and third criteria were considered to test the grid resolution chosen to correctly
resolve the Batchelor scales, since the adequacy of the domain lengths was assessed in chapter 4.
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Grötzbach [1983] demonstrated that the second criterion for Sc ≥ 1 is fulfilled using a minimum
of 3 nodes within the scalar boundary layer. This condition allowed the correct resolution of
the scalar fluxes. Moreover, the mean grid width, defined as ∆ = (∆x∆y∆z)1/3, must be
≤ πLB , in order to satisfy the third criterion. LB = ν/

√
Sc is the Batchelor scale and defines

the minimum length scale for scalar motion.
Figure 5.1 depicts the root mean square of the concentration crms in the vertical direction

normalized by the diffusive boundary layer thickness δ (see section 5.2.1 for a detailed discussion
of this quantity). Figure 5.1 shows the fulfillment of the second criterion for the simulations
with the highest Schmidt (figure 5.1a) and Reynolds (figure 5.1b) numbers performed. 8 grid
points can be observed in position (H − y)/δ ≤ 1 for G07 and 6 in G09, such that the second
criterion is definitely satisfied for both the simulations. In figure 5.2, the mean grid width
is compared to the Batchelor scales for Sc = 7, 16, 200 (G07) and Sc = 7, 16, 64 (G09). ∆ is
always smaller than LB for Sc ≤ 16 in both the simulations. When Sc = 200 and Reτ = 200 are
considered, the third criterion is fulfilled for y/H ≥ 0.1, while for simulation G09 and Sc = 64,
only for y/H ≥ 0.55. In both cases, no oscillations in the instantaneous concentration were
detected in the bottom part of the channel and the data were found to be valid for the analysis
of interfacial mass transfer. Moreover, 8 and 6 points lie within the diffusive boundary layer for
both simulations (see figure 5.1), such that the chosen mesh at the surface is more than capable
to resolve the small scales typical of high Schmidt and Reynolds numbers close to the surface.
A part from these two extreme cases, all the other simulations completely fulfilled the second
and third criteria defined in Grötzbach [1983].

5.2 Statistics of the scalars

As stated in section 3.2, mass transfer was modelled considering a Dirichlet boundary condition
at the surface (c at saturation). In order to save computational time, the simulations were
started with a concentration field that represents the solution of the unsteady diffusion equation
at a chosen time t = 10 for the small domain size simulations and t = 12 for the others. The
concentration gradient created is the mechanism that causes mass transfer at the surface. If a
simulation is run for long enough time, the whole domain will be saturated and mass transfer
will consequently stop due to the absence of a vertical concentration gradient. This sets a
maximum in the gathering of the scalar statistics. Moreover, to ensure that the obtained scalar
statistics are quasi-steady, these were collected after a transient period of time. Therefore, the
time ranges chosen for the scalar statistics span between these two extremes and the condition
∂⟨c⟩/∂y > 0 was always fulfilled.

In the first sub-section, the diffusive boundary layer thickness is analyzed, in order to define
its dependency on Schmidt and Reynolds numbers. This scale is then employed to normalize
the vertical direction to study concentration and mass fluxes vertical profiles.

5.2.1 Boundary layer thickness

Figure 5.3 shows typical contours of the concentration and qualitatively depicts the interaction
between the turbulent open channel flow and the scalar transport at (a),(c) Sc = 7, (d) Sc = 64

and (b) Sc = 100. The thickness of the concentration boundary layer δ depends on both the
Reynolds and the Schmidt numbers. Comparing the left (low Sc) and right (high Sc) panes, it
can be clearly seen that an increase in Schmidt number at constant Reb results in much finer
concentration filaments in the bulk and a significantly reduced δ. The same effect can be seen
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(a) G08: Reb = 6400 and Sc = 7. (b) G08: Reb = 6400 and Sc = 100.

(c) G09: Reb = 12000 and Sc = 7. (d) G09: Reb = 12000 and Sc = 64.

Figure 5.3: On the top row, slices of simulation G08 in the xy-plane at z/H = 3. On the bottom row, slices of
simulation G09 in the xy-plane at z/H = 3. The colormaps represent the normalized concentration
c∗ =

c−⟨cb⟩
cs−⟨cb⟩

for the different Schmidt numbers. All the figures are taken at time t/tb = 42 and for
Sc = 7 (left panes), 100 (right top pane) and 64 (right bottom pane).
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Figure 5.4: Variation of scalar boundary layer thickness δ with Schmidt Sc and bulk Reynolds Reb numbers for
simulations G01, G02, G03, G04, G05, G06, G07, G08, G09.

comparing figures 5.3a and 5.3c, where only the Reynolds number varies. Even if the Schmidt
number is the same, it can be clearly observed a reduction in the thickness of the boundary
layer and a thinning of the size of the structures. Note that the above reduction in δ at a
fixed Reb is due to the increase in interfacial mass transfer resistance with increasing Schmidt
number. At a fixed Sc, the increase in turbulence in the bulk associated with an increase in Reb
results in improved mixing with a reduction of δ, which in this case promotes mass transfer.

The thickness of the diffusive concentration boundary layer δ is identified using

δ =
D

KL
= Sh−1H, (5.1)

where the Sherwood number Sh = KLH/D is the ratio between the convective and the diffusive
mass transfer. As illustrated in figure 5.4a for simulation G07, in all simulations δ was found to
scale with Sc−0.5, which is in agreement with the theoretical prediction for a shear-free interface
[Jähne and Haußecker, 1998, Ledwell and Jirka, 1984]. Included in this plot are the thicknesses
of the Kolmogorov sublayer η and the Batchelor sublayer LB = η/

√
Sc at the interface. Except

for Sc = 7, it was found that LB < δ < η for all the simulations performed, which is in
agreement with Herlina and Wissink [2014].
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Figure 5.5: Profiles for mean and rms of the concentration as a function of the vertical direction for simulations
G06, G07 and G08 for different Schmidt and Reynolds numbers. Mean and rms of concentration are
normalized with the difference between the concentration at the surface cs and in the bulk cb, while
the vertical direction is non-dimensionalized with the concentration boundary layer thickness δ. The
data are compared with Herlina and Jirka [2008] (HJ08) and Herlina and Wissink [2019] (HW19)
with ReT = 780, Sc ≃ 500 and ReT = 1200, Sc = 20 respectively.

Figure 5.4b shows the variation of δ
√
Sc with the bulk Reynolds number Reb. The best

fit through the data points was found with a linear regression to be δ
√
Sc ∝ Re−0.67. This

scaling is similar to the one found by Nagaosa and Handler [2012], Sh
√
Sc ∝ Re0.75b , as will be

discussed further in section 5.3.

5.2.2 Mean and fluctuating concentration profiles

Figure 5.5 shows mean and r.m.s. of concentration fluctuations:

crms =

√
⟨c2⟩ − ⟨c⟩2 (5.2)

at various Reynolds and Schmidt numbers for simulations G07, G08 and G09. As discussed
above, the boundary layer thickness δ depends on both the molecular diffusivity (Sc) and the
Reynolds number (Reb). Thus, it is expected that the vertical profiles of the normalized mean
scalar quantities exhibit self-similarity when the vertical y direction is normalized by δ. This is
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Figure 5.6: Variation of the diffusive (cross) and turbulent (solid) mass fluxes with depth for different Schmidt
and Reynolds numbers. The mass fluxes are normalized by the total mass flux at the surface and the
vertical direction with the diffusive boundary layer thickness δ. The data are taken from simulations
G07, G08 and G09.

confirmed in figures 5.5a and 5.5b, where all the concentration profiles collapse in one plot for
different Schmidt and Reynolds numbers. A comparison with previous experimental [Herlina
and Jirka, 2008] and numerical results [Herlina and Wissink, 2019] shows a very good agreement,
even though the flow and the Reynolds numbers are different.

In all simulations, the magnitude of δ was found to be virtually identical to the distance
between the surface and the point at which the r.m.s. of the concentrations reaches its max-
imum. Hence, the crms peak in figures 5.5c and 5.5d is located at (H − y)/H = δ/H. The
maximum crms/(cs − ⟨cb⟩) values were ≈ 0.3 for all the simulations performed, which is in
agreement with previous numerical [Herlina and Wissink, 2014, 2019, Magnaudet and Calmet,
2006] and experimental [Atmane and George, 2002] results. The lower normalized crms peak
values of ≈ 0.1−0.2 obtained in the experiments of Herlina and Jirka [2008] indicate a partially
contaminated surface, as confirmed by the numerical studies of Khakpour et al. [2011], Wissink
et al. [2017].

5.2.3 Interfacial mass flux

As mentioned in the previous sections, the total averaged mass flux comprises a diffusive ⟨jd⟩ =
−D ∂⟨c⟩

∂y and a turbulent ⟨jt⟩ = ⟨c′v′⟩ component. Figure 5.6 illustrates that jd acts mainly at
the surface, where v′ is damped due to the two-dimensionality imposed by the free-slip boundary
condition. While the contribution of jd to the total flux reduces with distance from the surface,
at the same time jt gradually takes over. At y ≃ 0.65δ the diffusive and turbulent mass fluxes
are equally important for the scalar vertical transport towards the bulk for all the Reynolds
and Schmidt numbers considered, in agreement with results from isotropic turbulence driven
flows [Herlina and Wissink, 2014, 2019]. The normalization of the depth of the channel with
the boundary layer thickness allows to remove the dependency on the Schmidt and Reynolds
numbers in the vicinity of the surface ((H − y)/δ ≤ 10) in isotropic turbulence driven flow, as
demonstrated in Herlina and Jirka [2008], Herlina and Wissink [2014, 2019], Janzen et al. [2010].
On the contrary, figure 5.6 shows that, when a no slip boundary condition at the bottom is
considered, the fluxes collapse only within (H−y)/δ ≤ 2 in the time windows considered. Below
this threshold, turbulent mass flux in the present simulations shows lower values compared to
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Figure 5.7: Averaged normalized mass transfer velocity KL as a function of bulk Reb, friction Reτ , turbulent
ReT Reynolds numbers and surface divergence β. The simulations presented are G01, G02,

G03, G04, G05, G06, G07, G08, G09.

isotropic turbulence driven flows, with differences of 5 − 15% already at 10δ from the surface.
This difference seems to decrease when higher Reynolds and Schmidt numbers are considered.

5.3 Scaling of mass transfer velocity

As mentioned above, δ = Sh−1H, thus it can be readily inferred from figure 5.4 that the mean
transfer velocities KL obtained in the present simulations scale with Sc−0.5 and Re−0.33

b (cf.
figure 5.7a). In Wissink et al. [2017], it was found that surface conditions progressively change
the exponent of KL ∝ Scn from n = −1/2 for a clean surface to n = −2/3 for a contaminated
surface. The present study focuses only on clean surface interfacial mass transfer, therefore, the
exponent found in all the simulations (−0.5) confirms the validity of the results. The scaling
of KL ∝ Re−0.33

b is in agreement with the DNS of Nagaosa and Handler [2012] who showed
that Sh ∝ Re0.75b , i.e. KL ∝ Re−0.25

b . The depicted data in Moog and Jirka [1999] were
found to scale as KL ∝ Re−0.29

τ with a 95% confidence for the reported exponent that spanned
from −0.14 to −0.44. A linear regression of the present data showed that KL/uτ ∝ Re−0.23

τ

(cf. figure 5.7b), which is inside the aforementioned interval of confidence. The limitations
of the cited papers were the scatter and large uncertainties present in the data of Moog and
Jirka [1999] and the limited computational domains (5H × H × 2.5H for Reτ = 150 and
2H ×H ×H for Reτ = 600) and Schmidt number (Sc = 1) employed by Nagaosa and Handler
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Figure 5.8: Vertical profiles of the Reynolds stress anisotropy function I =
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⟨u′u′+w′w′⟩
for G01,

G02, G03, G04, G05, G06, G07, G08 and G09.

G01 G02 G03 G04 G05 G06 G07 G08 G09

(H − δSI)/H 0.7034 0.7397 0.7573 0.6666 0.7102 0.7208 0.6327 0.6651 0.7226
u∞ 0.0711 0.0663 0.0589 0.0696 0.0610 0.0631 0.0718 0.0669 0.0621
L∞ - - - 1.0626 1.0550 1.6246 1.0121 1.8457 1.8992
ReT - - - 425 515 1025 465 1581 2833

Table 5.2: Definition of the turbulent Reynolds number for the simulations listed in table 5.1, ReT =
2L∞ u∞/ν. δSI defines the position of the maximum of the Reynolds stress anisotropy function
I = ⟨u′u′ + v′v′ + w′w′⟩/⟨u′u′ + w′w′⟩. The quantities are computed at the vertical position corre-
sponding to the boundary layer thickness δSI .

[2012]. Therefore, the conclusions of Nagaosa and Handler [2012] are limited to high diffusivity
substances disperse in flows without any influence of large scale motions and the minimum
Reynolds number considered in Moog and Jirka [1999] was still a moderate value (Reτ ≃ 400).

In the two-regime model proposed by Theofanous et al. [1976], the turbulent Reynolds number
ReT = u∞2L∞/ν is used as a measure of turbulence characteristics that is independent on the
way that turbulence is generated, e.g. by wind-shear, bottom-shear, or buoyancy. In the
present thesis, the surface influenced layer δSI is defined as the depth at which the maximum
of Reynolds stress anisotropy function I = ⟨u′u′ + v′v′ + w′w′⟩/⟨u′u′ + w′w′⟩ lies. Figure 5.8
depicts the vertical profile of the aforementioned quantity that defines undoubtedly the position
at which vrms deviates toward 0 for every simulation performed. Once δSI was defined, u∞ and
L∞ were chosen to be urms(δSI) and Lx

uu(δSI), respectively. The values of u∞, L∞ and ReT

obtained in the present simulations are summarized in table 5.2. The two-regime model applies
the large eddy renewal model [Fortescue and Pearson, 1967] to low Reynolds numbers flows
and the small eddy renewal model [Banerjee et al., 1968, Lamont and Scott, 1970] only to high
Reynolds numbers. As can be seen in figure 5.7c and table 5.2, the present data that fall above
the critical RT = 500 suggested by Theofanous et al. [1976] shows very good agreement with

the small-eddy model, which can be written as
KL

u∞
= aRe−0.25

T Sc−0.5. Moreover, the use of

ReT allows to compare the present open channel results with those of isotropic turbulent driven
flow mass transfer. The constant of proportionality found from linear regression for simulations
with ReT ≥ 515 (0.3541) agrees well with the value 0.3425 used in Herlina and Wissink [2019].
The present results support the applicability of the small eddy model in open channel flow for
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240 ≤ Reτ ≤ 630 and Schmidt numbers ranging from 4 to 200. The domain sizes considered to
compute ReT allow to capture the large scale motions typical of moderate Reynolds numbers
turbulent open channel flows.

The above is further confirmed by evaluating the pre-multiplied time-averaged spectral den-
sity of the turbulent mass flux jt = c′v′ at a distance of 5δ from the surface. Figure 5.9 shows the
normalized pre-multiplied spectra as a function of the normalized wavelength λx/Lx

uu. It can be
seen that in all three cases, high-energy values were found at wavelengths significantly smaller
than the integral length scales. Also, as expected, the peaks tend to move towards smaller
scales at higher turbulence levels (from λx/L

x
uu ≃ 0.6 for Reτ = 200 to 0.1 for Reτ = 630). The

shown spectra confirms the predominant importance of small scales to interfacial mass transfer
in turbulent open channel flow for ReT > 500.

5.4 Surface divergence and mass transfer

Starting from the applicability of the SDM developed by McCready et al. [1986], this section
analyzes the correlation between mass transfer velocity and surface divergence ρ(kl, β) and the
mechanisms linking them. Different values for ρ(kl, β) were found in regions with different flow
characteristics instantaneously. This was quantified with conditional averaging.

5.4.1 Correlation between surface divergence and mass transfer

Previous studies showed that surface divergence model KL = ϕ
√
βrmsD [McCready et al., 1986]

generally provides a good prediction of the mass transfer velocity [Herlina and Wissink, 2019,
Kermani et al., 2011, Nagaosa and Handler, 2012, Sanjou et al., 2017]. The approximately
linear variation of KL/(Ub

√
D) with

√
βrmsH/Ub, shown in figure 5.7d, confirms that the

surface divergence model performs reasonably well also when applied to the present simulations.
Previous numerical studies found the constant of proportionality for the SDM to be 0.41 ≤ ϕ ≤
0.46 for 1 ≤ Sc ≤ 8 and 150 ≤ Reτ ≤ 600 [Kermani et al., 2011, Nagaosa and Handler, 2012] in
open channel flow. The present result ϕ = 0.455 extends the validity of this range to Sc = 200

and Reτ = 630.
Herlina and Wissink [2019] found that, despite the good average correlation between β and

kl, this value tends to deteriorate with ReT for interfacial mass transfer driven by isotropic
turbulence. In contrast, in the present simulations ρ(kl, β) was found to increase when higher
turbulence levels were considered.
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Figure 5.10: Average correlation between mass transfer velocity kl and surface divergence β as a function of Sc,
Reb and ReT . HW19 and NH12 represent the data from Herlina and Wissink [2019] and Nagaosa
and Handler [2012], respectively. The correlations are computed from simulations G01, G02,

G03, G04, G05, G06, G07, G08, G09.

Figure 5.10a shows that the correlation decreases when lower diffusivities are considered. For
Sc = 1 momentum and scalar diffusivity are identical and the correlation is not influenced by
differences in diffusive time scales. When higher Schmidt numbers are considered, the time scale
of the scalar becomes larger than their flow counterpart and, consequently, a lower correlation
between the two quantities is expected. In the same way, a decrease in the correlation coefficient
can be expected when higher turbulent levels are considered, due to the decrease in the diffusive
time scale of the flow field, as proposed by Herlina and Wissink [2019]. On the contrary, for
open channel flow, simulations at fixed Schmidt numbers indicate that the correlation increases
with the Reynolds number and reaches a plateau for Reb ≥ 6400. Figure 5.10b depicts the time-
averaged correlation between the instantaneous mass transfer velocity kl and surface divergence
β = −∂v/∂y, combined with results from Nagaosa and Handler [2012]. The correlation obtained
from all simulations is shown as a function of Reb. When increasing the Reynolds number, a
slight increase in ρ(kl, β) was observed in both present and Nagaosa and Handler [2012]’s data.

58



5.4 Surface divergence and mass transfer

(a) G07 slice over a low speed region. (b) G07 slice over a high speed region.

(c) G09 slice over a low speed region. (d) G09 slice over a high speed region.

Figure 5.11: Comparison of top plane (y/H = 0.9994) slices of G07 (top panes) and G09 (bottom panes) over
low (left panes) and high (right panes) velocity regions. The colorbars represent normalized mass
transfer velocity kl, while the black iso-lines depict β′ = σ(β′). The correlation between kl and
β for the shown regions were found to be 0.8106 for G07 and 0.8754 for G09 in the low velocity
region, while 0.4484 for G07 and 0.6557 for G09 in the high velocity region.

The higher values for the correlations computed in the cited paper are probably due to the low
Schmidt number considered (Sc = 1), as explained above.

Figure 5.10c depicts ρ(kl, β) as a function of the turbulent Reynolds number, combined with
results from Herlina and Wissink [2019]. The values for ρ(kl, β) found in the present thesis
and in Nagaosa and Handler [2012] for open channel flow were slightly lower than the ones
reported by Herlina and Wissink [2019]. It can be seen that, in isotropic turbulence driven
flows, initially the correlation ρ(kl, β) gradually reduces with increasing ReT to reach a plateau
around ρ ≈ 0.79. In contrast, in the large-box simulations (G07, G08, G09) the correlation
ρ(kl, β) was observed to improve slightly with ReT . This can be explained considering that,
while in isotropic turbulence driven flows only upwelling and downwelling motions can cause
high and low divergence regions at the surface, in open channel flows, more complex structures
modify the path of vertical scalar transport, e.g. LSM and VLSM. Therefore, in the latter
case, anisotropic coherent structures seem to disturb the vertical motions reducing the overall
correlation compared to isotropic turbulence driven flow.

Figures 5.11 shows zoomed instantaneous snapshots of kl over regions of low and high velocity
at the surface for simulations G07 and G09. Since the streamwise integral length scale of β
scales with the Reynolds number, as depicted in figure 5.12, the area of the zoomed region was
chosen to be 15Lx

ββ × 15Lx
ββ , such that the size of the structures looks similar in the pictures,

even if the Reynolds number is different. In figure 5.11, the regions with high surface divergence,
highlighted with black iso-lines, show a qualitative higher correlation when the zoomed area lies
above a low speed streak. The instantaneous correlations computed for each snapshot confirm
this qualitative observation. In fact, while the correlation between kl and β in figures 5.11a and
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Figure 5.12: Streamwise integral length scale of the surface divergence at the surface as a function of the bulk
Reynolds number. The symbols represent: G01, G02, G03, G04, G05, G06, G07, G08,

G09.

Run high-speed low-speed
Ah ρh(kl, β) Al ρl(kl, β) ρ(kl, β)

G07 0.154 0.578 0.151 0.780 0.6880
G08 0.154 0.623 0.157 0.786 0.7197
G09 0.154 0.640 0.156 0.787 0.722

Table 5.3: Averaged surface fraction area (Ah, Al) and correlation coefficient (ρh(kl, β), ρl(kl, β)) over high and
low speed regions and total averaged correlation coefficient ρ(kl, β) for different Reynolds numbers.
The high and low speed streaks were chosen such that u′ > σ(u′) and u′ < −σ(u′), respectively. σ(∗)
is the standard deviation of the quantity ∗ over the whole mean plane.

5.11c were found to be 0.8106 and 0.8754, respectively, the correlations for figures 5.11b and
5.11d were almost half, with values of 0.4484 and 0.6557.

Table 5.3 shows that the averaged correlation ρ(kl, β) was markedly higher in the low-speed
regions (u′ < −0.5σ(u′)) than in the high-speed regions (u′ > 0.5σ(u′)). Furthermore, while
ρl(kl, β) was found to be approximately independent of ReT , the correlation was found to
increase with ReT in the high-speed regions. The latter causing the observed overall increased
correlation with ReT .

5.4.2 Role of surface attached and parallel vortices in mass transfer

The aforementioned increased correlation was linked to the distribution of surface parallel vor-
tical structures (SPVS) close to the surface. Figure 5.13 depicts a 3D view of simulation G07.
The view captures the domain from the top and the iso-surface represents vortices at y/H ≥ 0.9

through the Q-criterion (equation 4.12) with a threshold of Q = 0.1. In order to highlight the
direction of rotation, the iso-surface is colored with the instantaneous vertical velocity fluctu-
ation v′, where black and white coloring depict downward and upward motions, respectively.
The color-lines representing the instantaneous mass transfer velocity kl for Sc = 200 lie at
y/H = 0.9997, the last vertical point of the computational mesh. Figure 5.13 shows the effect
of surface attached and aligned vortices on mass transfer. Surface aligned vortices are arranged
in ring-like shapes, in which the upwelling part faces the center of the structure, white in the
figure. The group of vortices forms a closed upwelling region and, once the fluid with low
concentration in the bulk of the channel enters this motion, it is dragged toward the surface.
The kinetic energy contained in the vertical motion is converted in streamwise and spanwise
velocities at the surface, due to the presence of the boundary. Therefore, once this motion
impacts the surface, it creates high surface divergence that will push the saturated fluid outside
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5.4 Surface divergence and mass transfer

Figure 5.13: Top view of simulation G07 for Sc = 200. The colored iso-lines represent the mass transfer velocity
at the surface. The iso-contours colored with v′ represent vortices at y/H ≥ 0.9 through the Q-
criterion with a threshold of Q = 0.1.

of the region. Therefore, these SPVS typically contribute to a good correlation ρ(kl, β). As
a consequence of this motions, the concentration around these ring-like vortices is very high.
Downwelling motions preserve the equilibrium of the flow and bring down the old saturated
fluid at the surface, thickening the scalar boundary layer and reducing mass transfer locally.
Hence, the mass transfer velocity in convergence zones is usually low, blue in the picture. Qual-
itatively looking at the picture, it is possible to observe that surface attached vortices mostly
lie in low kl regions and seem to accumulate saturated fluid in one point.

Nagaosa and Handler [2003] described surface attached and aligned vortices as the final stage
of the deformation of hairpin vortices coming from below and interacting with the surface.
Hairpin-like coherent vortices produced near intense Q2-events at the wall were found to advect
toward the surface and deform either aligning the head with the surface or splitting themselves
in two legs that attach to it.

Figure 5.14 depicts the position of surface attached and parallel vortical structures visualized
with Q = 0.1 compared to high and low mass transfer velocity regions. The slices are taken at
5δ from the surface and are colored with instantaneous normalized mass transfer velocity kl. It
can be observed that surface aligned (attached) vortices mostly lie over high (low) kl regions.
The aforementioned mechanism seems to be quite stable, since both figures 5.14a and 5.14b
show the same vortical distribution, even though the bulk Reynolds number for simulation G09
is almost four times larger than for simulation G07.

Figure 5.15 depicts 3D views of simulations G07 and G09. As in figure 5.14, the vortices
are underlined with Q = 0.1, while they are colored with the streamwise velocity fluctuation
u′. The slices are taken at 5δ from the surface and colored with the instantaneous streamwise
velocity fluctuation u′. A comparison of figure 5.15a and 5.15b shows that, for low Reb, SPVS
are mainly present near low-speed regions, while for larger Reb this distribution was observed
to become more uniform (possibly due to increased mixing). As a result, ρ(kl, β) is expected
to increase inside the high-speed regions, and hence overall, when higher Reynolds numbers are
considered. This is confirmed in the result of the quantitative analysis depicted in table 5.3.
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(a) G07: Reb = 3200.

(b) G09: Reb = 12000.

Figure 5.14: 3D snapshots for simulations G07 and G09. Vortices are visualized through the Q-criterion, with
a threshold of Q = 0.1, colored with instantaneous mass transfer velocity kl. The slice lies at
(H − y)/δ = 5 and is colored with the instantaneous interfacial mass transfer velocity kl.

5.4.3 Effect of streaky structures on local mass transfer

Figure 5.16 shows contour plots of time-averaged streamwise velocity fluctuations u′ and mass
transfer velocity kl at y/H = 0.9997 for simulations G07, G08 and G09. The average was
performed in time and considering a frame moving with a speed equal to the average stream-
wise velocity in that plane. The average was performed over the time windows presented in
table 5.1. The contour plots indicate footprints of very large structures present in the sim-
ulations with Reτ ≥ 365, confirming the observations depicted in chapter 4. As opposed to
isotropic turbulence driven flow, the high and low velocity regions in open channel flow are
organized in streaks. Moreover, upwelling and downwelling motions seems to be linked to the
presence of LSM and VLSM, since the low and high kl regions seems to have a coherent shape.
For Reτ = 630, more high mass transfer velocity regions can be spotted over high velocity
regions compared to G08 and, particularly, G07. This confirms that more divergence areas are
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(a) G07: Reb = 3200

(b) G09: Reb = 12000

Figure 5.15: 3D snapshots for simulations G07 and G09. The vortices are visualized through the Q-criterion,
with a threshold of Q = 0.1, colored with instantaneous streamwise velocity fluctuation u′. The
slice lies at (H − y)/δ = 5 and is colored with the instantaneous streamwise velocity fluctuation u′.

present when higher turbulence levels are considered, as qualitatively observed in the previous
sub-section.

5.5 Effect of vortical structures on mass transfer

The present section is based on the theoretical "chain saw model" proposed by Moog and Jirka
[1999]. Here, a visual confirmation of the model is given that helps to explain the mechanisms
described in this chapter.

Figure 5.17 depicts the streamwise spatial average of the streamwise velocity fluctuation ⟨u′⟩x
for G07, G08 and G09. As underlined in section 4.3.3, the velocity vectors confirm the collapse
of downwelling regions and high velocity streaks. This effect is stronger for the higher Reynolds
numbers considered, where the vortices span the whole domain length, but it is still visible for
Reτ = 200. Moreover, the black iso-lines representing constant concentrations show that, due

63



5 Mass transfer

(a) G07: Reτ = 200.

(b) G08: Reτ = 365.

(c) G09: Reτ = 630.

Figure 5.16: Contour plots of time-averaged streamwise velocity fluctuation u′ and mass transfer velocity kl at
y/H = 0.9997 for simulations G07, G08 and G09. Averaging was performed on the time window
defined in table 5.1 by considering a coordinate system which moved as fast as the mean streamwise
velocity at y/H = 0.9997. The white and black iso-lines represent kl = KL + σ(kl) and u′ = σ(u′),
respectively.
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5.5 Effect of vortical structures on mass transfer

(a) Reτ = 200.

(b) Reτ = 365.

(c) Reτ = 630.

Figure 5.17: Contour plots of streamwise velocity fluctuation averaged over the whole streamwise dimension at
t/tb ≃ 64 for simulations G07, G08 and G09. Black iso-lines represent concentration levels averaged
over the whole streamwise direction, while the black arrows represent the velocity vectors in the
plane averaged over the whole streamwise dimension.

to this upward (downward) motions, the near concentration gradient becomes steeper (milder)
in low (high) velocity streaks, confirming what observed above. Therefore, it can be assumed
that the rotation of the streamwise aligned large structures creates upwelling and downwelling
regions that bring the small vortices from the bulk of the channel to its surface. It is clear from
the figure that the size and the strength of these structures increase with Reynolds number. In
fact, while the size of the streamwise aligned vortices reaches at most 0.5H for G07, in G08
and G09 the blue and red regions cover the whole vertical extension of the domain. Moreover,
the large vortices for Reτ ≥ 365 strongly modifies the depth reached by the scalar, while in
figure 5.17a only marginal oscillations due to the flow motions can be observed. At the interface,
the small vortices brought up by the rotation of the large streamwise aligned structures actively
enhance mass transfer and this is the reason why spectral analysis (cf. section 5.3) showed that
the scales of motions that have an active role in mass transfer are the small scales. This should
not mislead to think that only these scales are important, since without the large scale motions
that increase the exchange of fluid parcels from the bottom to the top of the channel, turbulent
mass transfer would be hindered.
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6 Pollutant transport

In the past centuries, the aggregation of small villages into larger urban centers started a rise in
devastating epidemics due to problems in sewage disposal and supply of clean drinking water. In
the nineteenth century, with the increase in size of cities due to industrialization, the spread of
diseases and infections became a major problem. In 1854, physician John Snow linked the spread
of cholera to the contaminated drinking water supply [Walters, 2013]. His intuition started
the development of the, so called, wastewater treatment facilities. During the last century,
the research in this direction have significantly reduced the incidence of wastewater diseases in
developed countries. At the present day, surface water contamination due to point loadings, such
as combined sewer overflows, is one of the major cause of surface water pollution in developed
countries [Walters, 2013]. During a strong rainfall event, urban sewage can overflow, leading
to discharge of contaminated water into streams. These pollutants usually contain harmful
pathogens like Salmonella, Legionella, hepatitis A, polioviruses, entamoeba histolytica. Since
measurements of the contamination level for each pathogen is practically impossible, researchers
usually test the water for coliform group of bacteria that were found to be an indicator of the
presence of this pathogens, fecal indicator bacteria (from now on FIB) [Thomann and Mueller,
1987]. These microorganisms are accustomed to life in human or animal bodies where nutrient
levels are high and the temperature is constant and approximately 37◦ C. Once FIB enter the
streaming water body, several mechanisms will reduce the population, until extinction, strongly
reducing their long-term survival. A different temperature between bacteria and water will cause
buoyancy effects that strongly affect the distribution of the pollutant. Moreover, the natural
bacterial death rate is increased by inactivation caused by the penetration of sun light in the
water body and, once the bacteria are mixed by turbulent processes, possibly by the presence of
oxygen in the water. The latter activates bacteria’s metabolism which decreases their life-time.

This chapter presents DNSs of pollutant transport in open channel flow. Figure 6.1 depicts a
schematic of the problem under consideration, while the set up of the simulations was presented
in chapter 3 (figure 3.1). All the simulations were performed for ∆t/tb ≃ 100, in order to
simulate the first minutes in which the pollutant enters in water. The values averaged on
the homogeneous planes x, z are represented by ⟨·⟩, while the values averaged in time are
represented by ·. ·+ represents averaged data normalized with viscous scales.

gas and heat 
transfer at the surface 

freely suspended 
microorganisms dispersion

natural inactivation
UV inactivation

interaction with oxygen

Figure 6.1: Schematic of pollutant transport.
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6 Pollutant transport

L01 L02 L03 L04 L05 L06 L02B L03B L04B L05B L06B L07B

Rnat
√ √ √ √ √ √ √ √ √

RUV
√ √ √ √ √ √ √ √ √

RG
√ √ √ √ √ √ √ √ √

Ri 0 0 0 0 0 0 −0.62 −0.62 −0.62 −0.62 −0.62 0.62

c∗O2,b
0 0 0 0 0.5 0.75 0 0 0 0.5 0.75 0

Table 6.1: Summary of parameter sensitivity analysis simulations. Rnat is the bacterial natural decay rate, RUV

is the bacterial UV-inactivation rate, RG is the decay rate due to the higher metabolism triggered
by the presence of high oxygen concentrations, Ri is the Richardson number (equation 6.2) and
c∗O2,b

= cO2,b/cO2,s represents the normalized concentration of oxygen present in the bulk of the
channel at time t/tb = 0. All the values chosen for the decay rates were presented in chapter 3. The
grid resolution is 192× 192× 128, the domain size 3H ×H × 3H, the Reynolds number Reb = 3000
and the Schmidt number 7 for the bacteria and 4 for oxygen for all the simulations in the table. For
each case two different initial conditions for the bacteria were considered, a cloud (half sphere with
a radius of 0.45H) near the surface of the channel and a thin (0.02H thick) homogeneous layer just
below the surface.

The first section analyzes the role of the different decay rates considered in the present study,
to define which of them are negligible. In the second section, the mass of bacteria was approx-
imated with the one dimensional model presented in section 2.3.1 and the results compared
with the data of the parameter sensitivity analysis simulations. The third section considers the
effect of simulating FIB with different Schmidt numbers. In the end, a comparison between
averaged and instantaneous quantities enlightens the impact that spatial heterogeneities typical
of turbulent flows have on pollutant transport.

6.1 Parameter sensitivity analysis

In the pollutant transport simulations, the concentration fields of bacteria and dissolved gas
(oxygen) were coupled through the first-order reaction terms RO2

(oxygen consumption rate)
and RB (bacterial decay rate). The values used for the decay rates were recommended by the
Engler-Bunte-Institut of KIT and were described in section 3.1. The Schmidt numbers chosen
for representing the bacteria and dissolved oxygen were first set to Sc = 7 and Sc = 4, respec-
tively. Even though these Sc are significantly lower than the realistic Schmidt numbers for E.
Coli bacteria (Sc ≃ O(103)) and dissolved oxygen in water (Sc ≃ 500), the combination be-
tween them was chosen such that the resulting Schmidt number ratio was similar to the realistic
one. The simulations employed to perform the parameter sensitivity analysis are summarized
in table 6.1. All simulations were started from the exact same turbulent flow field and all the
simulations parameters were kept constant, in order to provide a fair comparison between all
cases. In order to compare the different reaction rates, the total mass of bacteria was computed
as follows:

mB =

nx∑
i=0

ny∑
j=0

nz∑
k=0

cB(i, j, k). (6.1)

In the pollutant transport simulations in which the released wastewater discharge had a different
density (temperature) than the ambient fluid, the temperature equation affects the Navier-
Stokes equations, causing buoyancy currents.

As illustrated in figure 6.2 two different initial conditions of wastewater discharge were consid-
ered. In the first case a cloud (half sphere with a radius of 0.45H) of freely-suspended bacteria
was released near the surface of the channel, while in the second scenario a thin (0.02H thick)
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6.1 Parameter sensitivity analysis

(a) t/tb = 0.1 (b) t/tb = 0.1

(c) t/tb = 38.5 (d) t/tb = 38.5

(e) t/tb = 48.5 (f) t/tb = 48.5

Figure 6.2: Time evolution of a blob (a, c and e) and a layer (b, d and f) of freely-suspended bacteria in open-
channel flow shown as iso-surfaces of cB = 0.1. The snapshots are taken from simulations L04.

homogeneous layer of freely-suspended bacteria near the surface was discharged. As can be seen
in figures 6.2a to 6.2d, during a short initial period after the release the bacterial distribution
varies between the two cases and hence, a different interaction between bacteria and dissolved
oxygen concentration can be expected. After typically about 50 bulk time units, in both cases,
the bacteria distributions become similar, as observed in figures 6.2e and 6.2f.

To study the effect of UV-inactivation upon the removal of bacteria, simulations with and
without RUV were performed. After a relatively short time, the effect of UV-inactivation
became observable. The decrease of the total mass of bacteria present in the domain is much
faster when RUV is active, as figure 6.3a clearly shows. In fact, a difference of ≃ 8% is observable
already at ≃ 100 bulk time units after the discharge.

It is likely that density differences (e.g. due to temperature differences) occur between the
river water and the pollutant discharged into the river. Even very small relative density differ-
ences are expected to alter the flow field significantly and consequently the pollutant transport
and/or its decay rate. Figure 6.4 depicts the effect that buoyancy has on a blob of pollutant.
The Richardson number is defined as the ratio between buoyancy and the flow shear terms:

Ri =
gcβ∆TH

u2b
, (6.2)

where g is the gravitational acceleration considered to act in the y directiont and ∆T = Tb,0 −
TB,0 is the difference between the initial temperature of the ambient fluid Tb,0 and the initial
temperature of the pollutant TB,0. Note that by assuming g = −9.81m/s2, cβ = 0.000207K−1

and H = 0.1m, the cases Ri = ±0.62 represent cases with ∆T ≈ ±2.75K. For Ri = 0 the
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6 Pollutant transport
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Figure 6.3: Decrease of the total mass of bacterial concentration due to UV-inactivation, buoyancy and oxygen
concentration in the bulk. The total mass is normalized by the total initial mass. The simulations
considered here are the ones in which the bacteria were introduced in the flow as a thin (0.02H thick)
layer just below the surface.

(a) Ri = 0 (b) Ri = −0.62 (c) Ri = 0.62

Figure 6.4: Instantaneous 3D snapshots representing the effect of buoyancy on pollutant concentration. The
slices in background are colored with u′/Ub from low, white, to high, black. The iso-contour repre-
sents cB = 0.1 and it is colored with cG from low, blue, to high, red. The snapshots are taken from
simulations L04, L04B and L07B at time t/tb = 30.

blob maintains its shape and position in the time range shown in the figure. On the other
hand, for Ri = −0.62 and the same amount of time, the blob sinks and lies on the bottom wall.
In this position, the concentration of oxygen is very low, as denoted by the blue color of the
iso-contour, and the action of the sunlight is weaker. When Ri = 0.62 is employed, the blob
floats on the surface, where the concentration of oxygen is very high and the UV-inactivation
really strong. Therefore, a faster (slower) decrease in the total mass of bacteria is expected
when Ri = 0.62 (Ri = −0.62) is employed. The case with Ri = 0 should have a decay rate
faster than Ri = −0.62 and slower than Ri = 0.62. Figure 6.3b shows the evolution of the
total mass of bacteria with time for the aforementioned cases, where the initial difference in
density corresponds to ∆T = ±2.75K between the pollutant and the ambient water. The figure
confirms quantitatively what was observed in figure 6.4. The bacterial decay rate in the case
with negative buoyancy (pollutant temperature lower than water temperature and Ri = −0.62)
is slower than in the other two cases, while, when buoyancy is positive, bacteria accumulates
at the top of the channel, where the effect of RG and RUV are the highest, and, therefore, the
total mass decreases much faster.

The overall decay rate of bacteria increases with increasing dissolved oxygen concentration
in the water body. In fact, when oxygen is available, bacteria start their life cycle and their
metabolism becomes faster. Since in the present thesis the growth mechanisms are not con-
sidered, a faster metabolism directly translates into a higher decay rate. To explore this effect
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6.2 Effect of Schmidt number and spatial heterogeneities

Parameter ∆t/tb difference [%]

Rnat 99.3 0.03

RUV 96.2 7.5

O2|b 95.06 0.05

Ri 86.4 1.2

IC 98.2 0.2

Table 6.2: Results of the parameter sensitivity analysis. Rnat is the bacterial natural decay rate, RUV is the
decay rate due to UV-inactivation, O2|b is the percentage of oxygen present in the bulk of the channel
at time t/tb = 0, Ri is the Richardson number and IC are the two different initial conditions employed,
which can be a thin (0.02H thick) layer just below the surface or a half sphere with radius 0.45H
with the flat part collapsing with the surface.

Name Reb Sc Lx × Ly × Lz Nx ×Ny ×Nz

S01 3000 7 3H ×H × 3H 192× 128× 192

S02 3000 28 3H ×H × 3H 384× 256× 384

S03 3000 49 3H ×H × 3H 576× 384× 576

S04 3000 100 3H ×H × 3H 768× 512× 768

S05 2785 7 12H ×H × 3H 384× 128× 192

Table 6.3: Computational parameters of simulations for the Schmidt number comparison and the heterogeneities
analysis. Reb is the bulk Reynolds number, Lx, Ly and Lz denote the size of the domain, H is the
height of the domain, Nx, Ny and Nz are the number of grid points for the refined scalar mesh. The
base mesh size employed for the flow field was the same as the scalar mesh for S01.

on the fate of bacteria in turbulent open-channel flow, simulations with different initial bulk
oxygen concentrations cO2,b were performed for the cases with and without buoyancy. Fig-
ure 6.3c compares the time evolution of the total mass of bacteria for c∗O2,b

= cO2,b/cO2,s = 0

and c∗O2,b
= 0.75, for the cases without buoyancy effects. At least in the range of the present

simulation time, the effect of varying the bulk oxygen concentration was negligible. The main
reason for this results can be the very low value of the bacterial decay rate due to oxygen
consumption that is of the order of O(10−5). Moreover, the interaction between the two species
usually happens in very small filaments where high concentration of oxygen and bacteria are
present that cover only a small part of the total numerical volume. Even though a decrease due
to this factor is present, its magnitude was found to be negligible compared to the other decay
rates.

Table 6.2 summarizes the results of the parameter sensitivity analysis, showing that only
UV-inactivation produced substantial modification to the bacterial concentration. Moreover,
it was observed that RUV is more effective when the pollutant is close to the surface. Since
buoyancy affects the spatial distribution of the bacteria, the effect of temperature differences
between the pollutant and the ambient fluid were found to be non-negligible.

6.2 Effect of Schmidt number and spatial heterogeneities

Even though bacteria have typically very low diffusivity in water and, consequently, a high
Schmidt number Sc = O(103), for the above parameter sensitivity studies, it was assumed to be
sufficient to perform simulations at a (low) Sc = 7 for the bacteria. However, when investigating
the effect of instantaneous spatial heterogeneities, which are characteristic of turbulent open
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6 Pollutant transport
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Figure 6.5: Results for the Schmidt number comparison. The simulations displayed are S01 (Sc = 7), S02
(Sc = 28), S03 (Sc = 49) and S04 (Sc = 100).

channel flow, it is necessary to evaluate further the influence of modelling the bacteria with
different Schmidt numbers. To do so, four simulations (S01 to S04 in table 6.3) were performed,
where the Schmidt number was varied between 7 and 100. In all simulations, the same initial
flow field was used so that instantaneous one to one comparison could be done. As the results
of the parameter sensitivity analysis (section 6.1) suggested, Rnat was dropped in the present
simulations and the initial concentration of oxygen in the bulk of the channel was set to 0.
Moreover, the pollutant initial condition was set to be a thin (0.02H thick) layer at the surface,
since the difference between the two tested conformations was found to be negligible. Because
buoyancy alters the flow field, a Richardson number different than 0 would have hindered a
one to one comparison between the bacteria modelled with different Schmidt numbers. A fifth
simulation with a larger domain size was performed (S05), in order to determine the effect that
spatial heterogeneities typical of turbulent flows have on pollutant distribution.

Figure 6.5a shows the decay of the total mass concentration for the different Schmidt numbers
employed. The plot suggests that the Schmidt number variation has no significant effect upon
the overall bacterial decay rate. When zooming-in very closely (figure 6.5a), however, there
is an indication that the lower Sc cases decay faster compared to the higher Sc cases. One
explanation might be the fact that UV-inactivation is the strongest near the surface. The scalar
with higher diffusivity (low Schmidt numbers) will tend to spread faster in all direction and
consequently cover a larger area near the surface in a shorter time, thus experiencing a stronger
UV-inactivation effect than the higher Schmidt number cases. Still, one would conclude that the
differences observed between these total mass concentration is too small to imply any important
effect of the Schmidt number. On the other hand, evaluating and comparing instantaneous
snapshots of the four cases highlight the influence of applying different Schmidt numbers to the
bacterial concentration field, particularly during the initial transient regime. Figure 6.5b shows
the variation of maximum concentration found in the domain over time. While the global
average concentration remain similar for all the cases, the maximum concentration starts to
deviate from one another. After a short period of time, the values for the higher Schmidt
number cases remain large compared to the lowest Sc case (between 20% and 60% larger).
This is also evident in Figure 6.6, where two top-plane snapshots of the bacteria modelled with
Sc = 7 (left pane) and Sc = 100 (right pane), taken at the same time, are depicted. It can be
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6.2 Effect of Schmidt number and spatial heterogeneities

Figure 6.6: Comparison between the surface area covered by bacteria modelled with Sc = 7 and Sc = 100 at
t/tb = 30. The contour plots represent the concentration maps at y/H = 0.998. Also shown are the
concentration profiles at x/H = 0.55 and z/H = 1.49. Data are from simulations S01 and S04 (cf.
Table 6.3).

Figure 6.7: 3D snapshot of the concentration of bacteria (modelled with Sc = 7) at time t/tb = 59 with iso-
contour of the concentration cB = 0.02. The simulation considered here is S05.

observed in the graphs that peaks of very high concentration are present in the high Schmidt
number simulation, while completely absent when the diffusivity is high (Sc = 7 shown in the
picture). This illustrates that globally averaged values can be much lower than the locally high
(dangerous) concentration peaks occurring somewhere in the domain.

Figure 6.7 also shows that such occurrences of high pollutant concentration are affected by
spatial heterogeneities of the turbulent flow. It was observed that after some period of time, the
horizontally averaged pollutant concentration becomes higher nearer to the bottom, indicating
an accumulation of the pollutant in that location. Evaluation of the instantaneous snapshots
shows that very close to the bottom, regions with higher pollutant concentration correlate to
regions where long elongated streaky structures are present. Scalo et al. [2012], who studied
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6 Pollutant transport

Figure 6.8: Comparison of two slices taken at y/H = 0.004 of concentration cB (with Sc = 7) and the shear
stress τ+. The snapshots are taken at t/tb = 59 of simulation S05. Black iso-lines represent
cB = ⟨cB⟩+ σcB , where σcB is the standard deviation of the instantaneous bacterial concentration
in the plane considered.
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Figure 6.9: Fluctuations of concentration cB and shear stress τ ′ in one point normalized with mean and standard
deviation. Both the points are in x/H = 2 and y/H = 0.004. The points are taken from simulation
S05.
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6.2 Effect of Schmidt number and spatial heterogeneities

Figure 6.10: Evolution of the streamwise-averaged pollutant concentration (left pane) and streamwise-averaged
wall shear stress fluctuation (right pane) near the bottom of the channel (y/H = 0.0022). The
shown contours are from simulation S05.

mass transfer at the sediment-water interface, found a correlation between sweep (high shear
stress near the wall) and high mass flux events at the bottom of the channel. Although, the
boundary condition for the scalar at the bottom of the channel in the present simulations was
different compared to the aforementioned research, a similar behavior between high shear stress
events and peaks in bacterial concentration near the bottom of the channel was found, which
can be seen in figure 6.8. The figure shows that peaks in bacterial concentration typically occur
after high shear stress events. Figure 6.9 depicts the fluctuating signals of shear stress and cB

at two points very close to the wall. The plots show that a sharp increase in concentration
comes after a peak in shear stress, confirming what assessed above. Moreover, the time lags
between these two events seems to all have similar values. Figure 6.10 illustrates the effect of
spatial heterogeneities of the turbulent flow on the transport of freely-suspended bacteria near
the bottom. Shown here are the evolution in time of the streamwise-averaged concentration
⟨cB⟩x and shear stress fluctuation ⟨τ ′+⟩x in the plane just above the wall. The figure confirms
that events of local maxima in bacterial concentration occur after high shear stress events.
In addition, it seems that once transported very close to the bottom of the channel, freely-
suspended bacteria tend to accumulate forming streaks of high concentrations near the wall.

Time cross-correlation is defined as the correlation between two variables Ω1 and Ω2 in time:

RΩ1Ω2
(y,∆t) =

⟨Ω1(x, y, z, t)Ω2(x, y, z, t+∆t)⟩
|⟨Ω1(x, y, z, 0)Ω2(x, y, z, 0)⟩|

. (6.3)

A peak in time cross-correlation determines the time shift at which the correlation coefficient
between the two quantities is maximum. The time lag is defined as the time difference between
the highest positive peak position of the cross correlation and t/tb = 0. The time cross-
correlations between shear stress τ ′ and concentration cB ′ shown in figure 6.11a allow to quantify
the time lag between these two fluctuations for different Schmidt numbers. Figure 6.11b shows
the dependence of the time lags in bulk time units on the Schmidt number (diffusivity). It can
be seen that the time lag increases with increasing Schmidt number (lower diffusivity). This
can be explained considering the slower response of low diffusivity scalars to flow modifications.
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Figure 6.11: Cross-correlation and time lag between flow and bacterial motions for the simulations listed in
table 6.3 (S01 to S04) close to the bottom of the channel (y/H = 0.004).

Even if the boundary condition at the wall and the numerical simulation employed were different
in the present thesis and in Scalo et al. [2012], the results seem to confirm that high shear stress
events predict peaks in mass flux/concentration and that a lower diffusivity increases the time
lag between peaks in shear stress and in concentration.
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7 Conclusion

The present thesis aimed to highlight the mechanisms behind interfacial mass transfer across
the air-water interface of a turbulent open channel flow. The study was performed by means
of several direct numerical simulations. Despite past research on this matter, most of the
mechanisms playing a role in interfacial mass transfer are still unknown. Previous studies
contradict each other to assess which eddy sizes are responsible for the phenomenon. The
coefficients of the models described in chapter 2 were found to be dependent on flow variables
that were different for every experiment. A deeper understanding of mass transfer across the
air-water surface is necessary to develop more precise and universal models. In order to do so,
fundamental research should reveal what is the interaction between flow and scalar structures.

The computational costs to perform reliable direct numerical simulations of low diffusivity
scalars in turbulent open channel flow are very high. This limited the applicability of previous
numerical studies conclusions to low Schmidt numbers and inadequate domain sizes. In the
present thesis, the main drawbacks of previous numerical research were overcome through the
use of an in-house code that employs a fifth-order WENO scheme for scalar convection and
a fourth-order accurate central scheme for scalar diffusion. A dual mesh approach, in which
the microscales typical of the flow field are resolved on a coarse mesh, while the smaller scales
typical of low diffusivity scalars on a refined mesh, allowed to reach high Schmidt numbers (low
diffusivities) in a very efficient manner.

In this chapter the main conclusions for the present thesis are drawn, followed by suggestions
for future research.

7.1 Conclusions

Before performing interfacial mass transfer and pollutant transport simulations, the flow fields
were developed and tested in order to assess their statistical stationarity. Three domain sizes
were employed, 3H×H×3H, 12H×H×3H and 24H×H×6H with Reynolds numbers spanning
from Reb = 2875 to Reb = 12000. The adequacy of the grid and domain sizes was confirmed
through two-point correlation and energy spectra, respectively. Only the largest domain size
chosen was found to be able to capture VLSM, showing de-correlation for the streamwise velocity
component in x-direction at large separations. The data of all the simulations showed good
agreement with the law of the wall, with constants for the log law equal to k = 0.39 and B = 5.
The analysis of the velocity fluctuations underlined a correct trend for all the components and
the expected scaling in wall units close the wall. The values of urms were found to be higher
and vrms and wrms lower for the whole height of the channel, when a domain size smaller
than 12H × H × 3H was employed. This is a known issue of small domain sizes, in which
the lower energy fluxes hindered energy redistribution between the different directions. Higher
values of urms for y/H ≥ 0.3, typical indication of the presence of VLSM, were found for
Reb ≥ 6400. The profiles of vrms near the surface collapse on the same curve, when the vertical
direction was scaled with the viscous scale lv, in agreement with the findings of Bauer et al.
[2020]. The values of the other two non-zero components at the surface were in good agreement
with previous studies. The components of the turbulent kinetic energy budget showed weak
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7 Conclusion

dependency on the Reynolds number in the inner layer, when normalized with viscous scales.
The modification of the budget close to the surface was described and it underlined the effect
that the boundary condition has on all the components. The presence of VLSM was proved
through the analysis of pre-multiplied energy spectra and integral length scales. The former
showed a double peak in streamwise and spanwise directions, which highlighted the presence
of these motions for Reb ≥ 6400. The latter showed that Lx

uu reaches much higher values at
y/H ≥ 0.3 for Reb ≥ 6400. In the end, a schematic of the transport of small eddies from the
bulk to the surface of the channel was drawn. It was found that high (low) velocity regions
corresponds to downwelling (upwelling) motions. The high and low velocity regions organized
in streaks that reach the whole domain length for Reb = 12000. 3D snapshots showed that the
rotation of large streamwise aligned vortical structures transport small eddies from the bulk
of the channel to the surface. These small eddies near the surface either align or attache to
the surface. The majority of the SPVS were found to lie in low velocity regions, where they
enhance surface divergence at the surface, while the surface attached vortices lied mostly on
high velocity regions.

Up to five scalars were added to the flow fields developed to study interfacial mass transfer in
open channel flow. The diffusivities considered in the different simulations varied from Sc = 4

to 200. In order to resolve such low diffusivities, the grid resolution was chosen with the criteria
described in Grötzbach [1983]. The diffusive boundary layer thickness was found to depend on
Re−0.67

b and Sc−0.5. Therefore, this quantity was employed to normalize the vertical direction in
the mass transfer analysis. In this way, scalar statistics collapsed in one curve in the region close
to the surface for all the different Reb and Sc considered. The averaged turbulent mass fluxes
normalized with js were found to collapse only for (H − y)/δ ≤ 2, while showing differences up
to 15% already at δ/H = 10. The mass transfer velocity was found to scale with Re−0.33

b and
Re−0.22

τ , in agreement with previous experimental Moog and Jirka [1999] and numerical Nagaosa
and Handler [2012] works. A turbulent Reynolds number was computed from the flow statistics,
in order to assess the applicability of the two-regime model of Theofanous et al. [1976]. Since
all the simulations were found to lie close or above the critical Reynolds number defined in the
model ReT ≃ 500, the data showed good agreement with the small eddy model, with a constant
of proportionality close to the one used in Herlina and Wissink [2019]. Moreover, the SDM of
McCready et al. [1986] could estimate with good precision the mass transfer velocity computed
for each simulation. In opposition to previous studies of isotropic turbulence driven flow, the
correlation between kl and β slightly increased with the Reynolds number. This behavior was
explained through conditional average that highlighted an increasing value for the correlation
over high velocity regions for increasing Reynolds numbers. It was found that a rise in the
turbulence level improves the mixing of small eddies close to the surface, which increases the
impingement of upwelling motions in high velocity regions, enhancing the overall mass transfer.
Large streamwise aligned vortical structures were found to be the mean for small eddies to reach
the surface and actively improve the exchange of scalars at the surface. The agreement of KL

with the small eddy model should not mislead on thinking that only small structures enhance
mass transfer. In fact, without the large streamwise-aligned vortices that actively transport
turbulent eddies from the wall to the surface, mass transfer would be hindered.

To understand the main characteristics of water self-purification in open channel flow, a third
group of simulations with domain sizes 3H×H×3H and 12H×H×3H and Reb = 2875, 3000

were performed. In these simulations two scalars modelled the bacteria and the oxygen entering
the flow from the surface of the channel. Different reaction terms in the advection-diffusion-
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7.2 Recommendations for future studies

reaction equations link the two scalars. Particularly, in the present thesis, natural decay rate,
UV-inactivation and higher metabolism due to the presence of oxygen were considered for the
bacteria, while the oxygen consumption due to bacterial activity is the only decay rate that
oxygen is subjected to. A first parameter sensitivity analysis underlined that UV-inactivation
caused the strongest depletion of bacteria. The other terms were found to be negligible. More-
over, the effect of a different temperature between the pollutant and the ambient fluid was
tested employing various Richardson numbers (buoyancy). This study underlined that the po-
sition of the pollutant causes different decay rates, with faster depletion when the temperature
of the bacteria is higher than the temperature of the fluid. On the other hand, variations in the
concentration of oxygen in the bulk showed negligible differences. In the parameter sensitivity
analysis the Schmidt numbers used to model bacteria and oxygen were chosen to be 7 and 4,
respectively. These low values (compared to the real values of bacteria and oxygen) are ex-
pected to highlight the effect of the different reaction terms, since the time scales of the scalars
are closer to the flow ones. In the subsequent simulations that analyze the effect of spatial het-
erogeneities typical of turbulent channel flows, only UV-inactivation was considered. In these
simulations, Sc = 7, 28, 49 and 100 were employed, in order to assess the role of diffusivity in
mass transport. In this study, it was found that, even if the average values of concentration were
low in the bulk of the channel, regions with dangerously high concentrations of pollutant could
be found, especially when high Schmidt numbers were employed. 3D snapshots showed that
bacteria tend to accumulate at the bottom of the channel, dragged down by the flow. It was
found a link between peaks in shear stress at the wall, representing a symptom of downwelling
motion, and concentration. The time scales between peaks in shear stress and concentration at
the bottom were quantified through cross-correlation. The analysis underlined a larger delay
between the peaks in the two quantities when higher Schmidt numbers were considered. More-
over, the pollutant at the bottom of the channel were found to be trapped in low speed regions
and to accumulate in those positions for the rest of the simulation time.

7.2 Recommendations for future studies

Overall, the open questions listed in chapter 1 were answered successfully. I expect that some
of the present findings can be readily applied to improve the existing mass transfer and pol-
lutant transport models to approximate better the phenomena when an open channel flow is
considered. However, some open questions remain for future studies.

The Reynolds and Schmidt numbers employed in the simulations are still far from the ones
found in real rivers, where Reb = O(106) and Sc ≃ 500 for oxygen and Sc = O(103) for bacteria.
Future simulations should test the applicability of the interfacial mass transfer models to much
higher values, in order to improve the approximation of real rivers. Moreover, the domain sizes
employed demonstrated to be sufficient to capture the VLSM, but still inadequate to allow
their meandering. In the present thesis, thanks to this limitation, a simple conditional average
showed patterns for low mass transfer velocity coinciding with footprints of VLSM. Moreover,
the pollutant transport simulations were performed only in the small and mid domain sizes,
where VLSM are completely absent. Future numerical studies could check if the present results
are still appreciable for larger domain sizes and could help on developing better experimental
set ups.

The very general boundary conditions applied to the domain allowed the application of the
present results to a variety of configurations, but at the same time excluded effects typical
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7 Conclusion

of different geometries. For example, the absence of lateral walls that are always present in
experiments and in real rivers in general hindered the study of the so-called secondary motions,
which are similar in size to the VLSM, but are only due to the presence of the walls. Such
motions are expected to enhance mass transfer, since they usually improve vertical mixing.
Moreover, one of the main driving mechanisms in interfacial mass transfer is surface shear.
Future simulations should test this feature to check if the mechanisms described in the present
thesis are negligible compared to it. Waves were omitted in the present work, even though they
are known to increase the mass transfer locally. In the future, with the increase of computational
power, the application of the aforementioned conditions should become easier and easier. The
availability of 3D snapshots and data from DNS could allow research to make a leap forward
on understanding the mechanisms behind scalars transport in open channel flow.
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A Appendix

A.1 Danckwerts [1951]

Consider a liquid which is stirred at a steady rate, turbulent flow. The turbulent motion will
keep replace the old surface areas (exposed for a limited period of time s), giving a uniform
averaged rate of absorption at the surface. The chances of an element to be replaced by
fresh fluid from the bulk is considered to be independent from its age: the fractional rate of
replacement of the elements is equal to s.
Let us consider the elements having ages between θ and θ + dθ to be ϕ(θ)dθ. Since we are
considering a steady state, we can assume that in a short time interval dθ the area entering the
age group θ ÷ θ + dθ from the age group θ − dθ ÷ θ is ϕ(θ)dθ), that is equal to the area in age
group θ − dθ ÷ θ less the portion replaced by fresh surface in a time equal to dθ:

ϕ(θ)dθ = ϕ(θ − dθ)dθ(1− sdθ) (A.1)

Therefore ϕ(θ) = ϕ θ − dϕ

dθ
dθ − sϕ with

dϕ

dθ
= −sϕ. If we consider all the times, then we must

have: ∫ ∞

0

ϕdθ = 1 (A.2)

and then:
ϕ = s e−s θ. (A.3)

Considering the rate of absorption into those elements of surface having age θ and combined
area s e−s θdθ:

ψ = (cs − cb)s e
−s θ

√
D

πθ
dθ, (A.4)

we obtain the mean rate of absorption per unit area of turbulent surface:

R = (cs − cb)
√
D

∫ ∞

0

s e−s θ

√
πθ

dθ = (cs − cb)
√
Ds. (A.5)

It is easily found that the mass transfer is
√
D s.

A.2 Demonstration of KL ∝
√
D

Considering a fluid particle close to the surface, which is dragged down to the bulk of the flow,
the mass fluxes will be constant for the different flow regions, due to the steady state hypothesis,
such that:

(⟨c⟩ − cs)
√
D s = (cs − cb)KE = (⟨c⟩ − ⟨cb⟩)KL (A.6)

and then:
1

KL
=

1

KE
+

1√
Ds

(A.7)

where KE is the average mass transfer velocity due to eddy diffusion. Since s and KE are only
functions of the physical properties and flow conditions, 1/KL must vary linearly with 1/

√
D.
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A.3 Determination of A in Fortescue and Pearson [1967]

Given the velocity defined in Equation 2.45, the kinetic energy associated to the roll cell will
be:

K =
1

2λ2

∫ λ

0

∫ λ

0

u2 + v2 + w2 dx dy =
1

4
A2. (A.8)

Considering also that:

λ =

∫ ∞

0

1

u2r(x)
ur(x)ur(x + r)dr, (A.9)

they defined:

A = 2

√
1

2
u2 +

1

2
v2 +

1

2
w2 (A.10)

as an upper bound approximation.

A.4 Development of the surface divergence model

Considering the concentration variation and the non-linear terms in the flow direction negligible
and ∂2c

∂z2 ≪ ∂2c
∂y2 (the concentration boundary layer is very thin), the authors obtained the

following linear equation:
∂c′

∂t
+ β y

∂⟨c⟩
∂y

=
1

Sc

∂2c′

∂y2
. (A.11)

McCready et al. [1986] found the solution of equation A.11 with an order-of magnitude analysis
for high:

vc′ ∼ β2δ

ω
, (A.12)

and low frequency velocity fluctuations:

vc′ ∼ β2δ3Sc. (A.13)

In these equations, δ is the diffusive boundary layer thickness, defined as the position at which
the concentration fluctuation c′ reach its maximum. Merging the two solutions, vc′ reads:

vc′ =

∫ ωc

0

δ3ScWβ(ω)dω +

∫ ∞

ωc

δ
Wβ(ω)

ω
dω, (A.14)

where ωc = 1/(δ2Sc) and Wβ is the spectral function for β:

β2 =

∫ ∞

0

Wβ(ω)dω. (A.15)

At the limit of the concentration boundary layer (y = δ) the turbulent transport is approxi-
mately equal to the molecular transport:

vc′ ∼ 1

Sc

d⟨c⟩
dy

. (A.16)

84



A.5 Shear-stress

Imposing the spectral function to be:

Wβ(ω) =
Wβ(0)

1 +

(
ωσ

ωm

)2 , (A.17)

where:

ωm =

∫∞
0
ωWβ(ω)dω∫∞

0
Wβ(ω)dω

(A.18)

σ = ωmπ
Wβ(0)

β2
. (A.19)

A.5 Shear-stress
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Figure A.1: Total, laminar and turbulent shear-stress for simulations for all the simulations performed.
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A.6 Integral length scales
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Figure A.2: Integral length scales.
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