
Scalable Hash Tables

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Tobias Maier

Tag der mündlichen Prüfung: 23.07.21

1. Referent: Prof. Dr. Peter Sanders
Karlsruher Institut für Technologie
Deutschland

2. Referent: Julian Shun
Massachusetts Institute of Technology
USA

This document is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

Abstract
The term scalability with regards to this dissertation has two meanings: It means
taking the best possible advantage of the provided resources (both computational
andmemory resources) and it alsomeans scaling data structures in the literal sense,
i.e., growing the capacity, by “rescaling” the table.

Scalingwell to computational resources implies constructing the fastest best per-
forming algorithms and data structures. On today’s many-core machines the best
performance is immediately associated with parallelism. Since CPU frequencies
have stopped growing about 10-15 years ago, parallelism is the only way to take ad-
vantage of growing computational resources. But for data structures in general and
hash tables in particular performance is not only linked to faster computations. The
most execution time is actually spent waiting for memory. Thus optimizing data
structures to reduce the amount of memory accesses or to take better advantage of
the memory hierarchy especially through predictable access patterns and prefetch-
ing is just as important.

In terms of scaling the size of hash tables we have identified three domains where
scaling hash-based data structures have been lacking previously, i.e., space effi-
cient growing, concurrent hash tables, and Approximate Membership Query data
structures (AMQ-filter). Throughout this dissertation, we describe the problems
in these areas and develop efficient solutions. We highlight three different libraries
that we have developed over the course of this dissertation, each containing mul-
tiple implementations that have shown throughout our testing to be among the
best implementations in their respective domains. In this composition they offer
a comprehensive toolbox that can be used to solve many kinds of hashing related
problems or to develop individual solutions for further ones.

DySECT is a library for space efficient hash tables specifically growing space effi-
cient hash tables that scale with their input size. It contains the namesake DySECT
data structure in addition to a number of different probing and cuckoo based im-
plementations. Growt is a library for highly efficient concurrent hash tables. It
contains a very fast base table and a number of extensions to adapt this table to
match any purpose. All extension can be combined to create a variety of different
interfaces. In our extensive experimental evaluation, each adaptation has shown

I

https://github.com/TooBiased/DySECT
https://github.com/TooBiased/growt

to be among the best hash tables for their specific purpose. Lpqfilter is a library
for concurrent approximate membership query (AMQ) data structures. It contains
some original data structures, like the linear probing quotient filter, as well as some
novel approaches to dynamically sized quotient filters.

II

https://github.com/TooBiased/lpqfilter

It seems to be at the time to say thank you to a lot of people. First and foremost
I want to thank my family who have always been there when I needed support or
advice. To my mother and father, together they have shown me what it means to
have each others’ backs. To my brothers in hard times—mine and yours—having
them has helped me a lot. To my wife—you’re the best—who had to sit next to me
throughout the pandemic and is probably even happier than me that the stress of
the past weeks is ending now.
I want to thank Peter for being a great supervisor and never pressuring me too

hard—he would have given me the opportunity to work on this dissertation even
longer—and for giving me all these opportunities like sending me to Hawaii and
Sweden. I also want to thank Julian for agreeing to review this dissertation it is nice
that people voluntarily read my work.
Thank you to all my current and former colleagues. They have made my time

working on this dissertation truly memorable: to Christian for hiring me as a tutor
long before I worked here; to Daniel Funke for being the first person to actually use
one of my hash tables; to Darren for the great time we had on Hawaii; to Demian
for always being up for anything, I truly appreciate that; to Dominik for his funny
song lyrics; to Jochen for teaching me to guess running times; to Lorenz for all the
fun activities outside of work and around pizza ovens; to Lukas for the short time
we shared an office before heading to home office; to Marvin for his willingness to
play any board game I bring to board game night; to Matthias for him sometimes
loosing at pool; to Michael for writing the best work emails; to Sascha for all the
work he put into supervising the C++ lab course; to Sebastian Lamm for all the non-
work talk about painting and games; to Sebastian Schlag for the most legendary
parties; to Simon for his engaging and positive attitude; to Timo for all the fun
activities including either pesto or LEDs or both; to Tobias Heuer for being fine
with nicknames because I like my name; to Tomáš for his dry sense of humor at
the most unexpected times; to Yaroslav for sharing an office with me even though
I bought blue switches; to all the new guys Markus, Florian, Daniel Seemaier, and
Hans-Peter I’m looking forward to finding out what I would have written here.
A special thank you to the people who have read this dissertation in an unfin-

ished state, helping me edit this “mess” Demian, Tobias, Sebastian, Marvin, Hans-
Peter, and Lorenz.

III

Contents

Contents V

List of Figures IX

List of Tables XIII

List of Algorithms XIII

1 Introduction 1
1.1 Overview and Contributions . 3

2 Hashing Fundamentals 7
2.1 Common Hash-Based Data Structures andTheir Interfaces 8

2.1.1 Hash Table . 9
2.1.2 Hash Set . 12
2.1.3 AMQ-filter . 13

2.2 Concurrent Data Structures . 14
2.3 Hash Functions . 16

2.3.1 Preliminary Hash Function 17
2.3.2 Mapping to the Table Size 20
2.3.3 Double Hashing . 22
2.3.4 Some Words about Theory 24

2.4 Collision Resolution . 26
2.4.1 Separate Chaining . 27
2.4.2 In-Table-Displacement . 28

2.5 Some Facts about Memory . 41
2.5.1 Cache . 41
2.5.2 Shared Memory . 44

V

Contents

2.5.3 Memory Mapping . 46

3 Space Efficient Hash Tables 49
3.1 Contributions . 51
3.2 Related Work . 51
3.3 Defining Space Efficiency . 53

3.3.1 α-Space Efficient Hash Tables 53
3.3.2 Ideas for Space Efficient Growing 54

3.4 A Blueprint for Dynamic α-Space Efficiency 55
3.4.1 Amortizing Frequent Growing 56
3.4.2 Fast Table Migration . 56
3.4.3 Preventing Overhead During the Migration 58

3.5 DySECT (Dynamic Space Efficient Cuckoo Table) 61
3.5.1 Overview . 61
3.5.2 Growing . 62
3.5.3 Shrinking . 63
3.5.4 Implementation . 64

3.6 Analysis of Possible Loads . 70
3.6.1 Experimental Load Bounds 71
3.6.2 Simple Explanation Using Local Effects 72
3.6.3 Dynamic LoadThreshold 74

3.7 Greedy Growing . 75
3.8 Performance Experiments . 77

3.8.1 Influence of Fill Ratio (Static Table Size) 78
3.8.2 Influence of Fill Ratio (Dynamic Table Size) 80
3.8.3 Word Count—a Practical use Case 81

3.9 Conclusion . 83

4 Concurrent Hash Tables 85
4.1 Motivation . 87
4.2 Related Work . 88
4.3 Concurrent Hash Table Interface and Folklore Implementation . 90

VI

Contents

4.4 Generalizations and Extensions . 96
4.4.1 StoringThread-Local Data 96
4.4.2 Approximating the Size . 97
4.4.3 Table Migration . 98
4.4.4 Deletions . 106
4.4.5 Bulk Operations and Forall 107
4.4.6 Restoring the Full Key Space 109
4.4.7 Complex Key and Value Types 110

4.5 Implementation Details . 114
4.6 Experimental Evaluation . 115

4.6.1 Competitors . 115
4.6.2 Hardware Overview . 118
4.6.3 Test Methodology . 119
4.6.4 Experiments . 121

4.7 Conclusion . 138

5 Concurrent Quotient Filters 141
5.1 References . 142
5.2 Introduction . 142
5.3 Related Work . 144
5.4 Sequential Quotient Filter . 145

5.4.1 Basic Quotient Filter . 145
5.4.2 Variants . 148

5.5 Concurrent Quotient Filter . 149
5.5.1 Concurrent Linear Probing Quotient Filter 152
5.5.2 Concurrent Quotient Filter with Local Locking 153

5.6 Fully Expandable QFs . 159
5.7 Experiments . 163
5.8 Chapter Conclusion . 172

6 Discussion 175

Bibliography 179

VII

List of Figures

2.1 Comparing the performance of different hash functions. 18
2.2 Schematic representation of mapping approaches. 20
2.3 Comparing the performance of different map functions. 23
2.4 Insert operation into a table using chaining. 27
2.5 Insert operation into a table using multi hashing. 29
2.6 Insert operation into a table using linear probing. 31
2.7 Insert operation into a table using quadratic probing. 33
2.8 Inserting an element into a hash table using Robin Hood hashing. 34
2.9 Querying a hopscotch hash table. 36
2.10 Influence of displacement on cache performance. 43
2.11 Schematic representation of the memory system in a multi socket

shared memory machine. 44
2.12 Schematic representation of the virtual to physicalmemorymapping. 47

3.1 Schematic representation of our fast migration algorithm. 57
3.2 Schematic view of the in-place growing algorithm. Top: original

table with added memory. Bottom: Ongoing algorithm showing
both scan lines. 59

3.3 Multi-table approach. Currently inserting element x into the table.
The insertion triggers a migration which is also shown. 60

3.4 Schematic representation of a DySECT table. During the insertion
of an elemement x, showing possible displacements. 62

3.5 Benchmarking operations onDySECT tableswith different param-
eters. 66

3.6 Benchmarking operations on DySECT tables with different dis-
placement algorithms. 68

IX

List of Figures

3.7 Experimentally determined periodic maximum load bounds. . . . 71
3.8 Comparing the expected maximum fill degree due to the number

of bucket defects to the measured load bound. 74
3.9 Memory Usage of Space Efficient Hash Tables over n 75
3.10 Insertions into a static table showing the influence of the load fac-

tor (normalized). 79
3.11 Performance of successful and unsuccessful finds. 80
3.12 Insertions into a dynamic growing table enforcing aminimum load

factor δmin. 81
3.13 Word count benchmark. 83

4.1 Schematic representation of twoneighboring clusters and their non-
overlapping target areas growing factor γ = 2. 100

4.2 Left: dynamic block distribution—table split into even blocks. Right:
resulting cluster distribution (implicit block borders). 101

4.3 Throughput while inserting 108 elements into a previously empty
table. 123

4.4 Performance and scalability of find operations. 126
4.5 Performance and scalability of find operations. 127
4.6 Throughput of updates and find operations with a skewed input

distribution. 128
4.7 Throughput of an aggregation with a skewed input distribution. . 130
4.8 Word count benchmark using string-keys taken from the Guten-

berg library. 132
4.9 Throughput of alternating insert and delete operations, thus keep-

ing the table at a constant size. 134
4.10 Testing the performance of our migration thread pools. 135
4.11 Performance of negative find queries relative to the memory foot-

print. 136

5.1 Meaning of different status bit combinations. 147
5.1 Section of the table with highlighted runs, clusters, and superclusters. 147
5.2 Example of a query that shows why lock-freeness is not possible. . 150

X

List of Figures

5.3 Throughput of inserts, positive finds, and negative finds over the
fill degree. 167

5.4 Speedup constructing a table with 70% fill degree. 169
5.5 Throughput of the growing quotient filter variants. 171

XI

List of Tables

2.1 Overview of collision resolution schemes strengths and weaknesses. 40

2.2 Common atomic operations and their effects. 46

3.1 DySECTJournal . 71

4.1 Overviewof concurrent hash table implementations and their func-
tionality. 119

List of Algorithms

2.1 Pseudocode representation of different mapping variants. 22

4.1 Concurrent insertOrUpdate operation. 93

5.1 Concurrent quotient filter operations (insert and find). 155
5.2 Concurrent quotient filter delete operation. 160

XIII

1 Introduction

A hash table is a data structure associative storagethat stores elements associated with their keys. Af-
ter an element and its key have been inserted, the original element can be retrieved
(efficiently) using only the key. Hash tables are some of the most common data
structures in research codes ubiquity in all areas of coding, industry applications, and also small (private) soft-
ware projects. Their invention dates back to the 1950s, where multiple groups came
up with the concept independently [37]. Since then they have become ubiquitous
in many programming contexts. As such there are default hash table implemen-
tations in all common programming languages, e.g., every programming language

has access to one
C++s std::unordered map

in the Standard Template Library (STL), rust’s HashMap from the rust standard li-
brary, and java’s HashMap in the utils library. Some programming languages—like
python, ruby, and perl—even have integrated support for hash tables.

The term scalability can have multiple meanings. An online dictionary defines
the term as follows:

scalability

1 the capacity to be changed in size or scale. [. . .]

1.1 the ability of a computing process to be used or produced in
a range of capabilities. [. . .]

Lexico [40] (retrieved 20. May 2021,lexico.com/en/definition/scalability)

The entry identifies two aspects to the term scalability. Scaling in size and scaling
scaling in size and scaling to
resources

to computational resources. This dyadic nature is at the core of this dissertation.
A central focus of our work has been to provide fast and efficient hash table ar-
chitectures that can scale their capacity in a scalable (efficient) manner. The ba-
sic methodology of growing a hash table’s capacity, by allocating a new table and

1

https://www.lexico.com/en/definition/scalability

1 Introduction

migrating elements from the old table, is taught in most algorithm classes or be-
ginner level textbooks, for example in “Algorithms and Data Structures: The Basic
Toolbox” [55] (page 85, Exercise 4.5) or “Introduction to Algorithms” [16] (Sec-
tion 17.4.1).migration is well known This samemigration technique is also implemented in all of the default
library hash tables mentioned above. However, very little research exists into effi-
cient migration algorithms. With our research we try to close this gap by designing
tables with efficiency and adaptability in mind.
One strength of hash table data structures is that they inherently scale really well

to the size of input problemsscaling to problem size is an
inherent strength

. All basic operations have expected constant running
times. In fact this is one of the main draws to hash tables and one of the reasons
for their ubiquity (e.g., compared to search trees). Nonetheless, for algorithms to
scale well to larger inputs compute power has to scale with the size of the problem.
However, for the past 10-15 years increasing compute power has only come in the
form of increased processor counts. Thus, algorithms scaling well with compute
powerconcurrent data structures for

scalable algorithms
means they have to scale well in multi-processor environments. For data

structures like hash tables scaling tomulti-processors necessitates concurrency, i.e.,
data structures that can be accessed by many cores in parallel. Hence, concurrent
data structures are a major topic throughout this dissertation.
The performance of one hash table operation is actually not that dependent on

the CPU frequency. It depends more on the speed of a memory accessesmemory access is more
important than CPU speed

. As such
hash tables have to be designed to minimize the amount of necessary memory ac-
cesses. One important technique to achieve this goal is to take advantage of mem-
ory prefetching (loading memory into the cache before it is actually accessed, see
Section 2.5.1) opportunities as much as possible—both automatic prefetching and
manual prefetching. Consequently, hash tables can only scale well if the mem-
ory connection can support the amount of data that is being transmitted. Overall,
we see that scalable hash table implementations depend on scaling both CPU and
memory resources to be able to scale to larger problems.
Another kind of scalability that one could take a look at is scaling well to the re-

quirements of different application, i.e., having flexible solutions that adapt well to
any given set of problems. This can either mean creating one data structure that is
a jack of all tradesjack of all trades vs. toolbox

implementations
and can solve any problem. Or it can mean having a toolbox full

of different specialized tools and techniques that can be combined to fit all needs.

2

1.1 Overview and Contributions

Hash tables are ubiquitous in programming, they are used in all kinds of different
applications from personal projects to important industry projects. Consequently,
the requirements are as diverse as the application domains. Possible requirements
could be, dynamic table size (i.e., growing), memory efficiency, small tables, large
tables, or even specific workload patterns, and many more, combining and jug-
gling all of these potentially contradicting requirements leaves a lot of potential
performance on the table. for true scalability fit hash

tables to specific application
Therefore, true scalability can only be achieved by a set

of specialized solutions that can take advantage of an applications specifications.

1.1 Overview and Contributions

Throughout this dissertation we describe a set of hash-based data structures, split
into 3 libraries according to three different areas of use. Together, these hash ta-
bles can fit into all kinds of different applications. All described hash tables follow
the same general interface—simplifying drop in replacement without unnecessar-
ily changing the context of table accesses. This is of course especially true for all
implementations within one library but we also paid special attention that inter-
library-compatibility is possible.

Space Efficient Hash Tables In Chapter 3 we describe the domain of space
efficient hashing. Prior to our work in this area, there was no notion of dynamic
space efficiency dynamic space efficiency, i.e., holding tight memory bounds even in cases where the table
has to be migrated to fit all elements (Section 3.3). Dynamic space efficiency is an
important concept because it is the only way to guarantee space efficiency in cases
where the final number of elements is not known at the construction time of the
table.
In addition to the theoretical groundwork we also show two approaches for im-

plementing dynamic space efficient hash tables. The first approach is a blueprint
for adapting existing adapting existing hash tableshash table architectures to make them dynamically space effi-
cient. The idea is to grow the table in-place without using any additional memory
(see Section 3.4). We used this technique to implement 4 different (dynamically)
space efficient hash tables. The second approach called DySECT DySECT(Dynamic Space
Efficient Cuckoo Table; Section 3.5) is specifically designed for this use case. It

3

1 Introduction

remains space efficient by growing small subsections of the table and using a rebal-
ancing mechanism that is based on cuckoo hashing (a popular technique for space
efficient hash tables Section 2.4.2, page 37) to make use of the created slots.
In our experiments (Section 3.8) both approaches succeed at offeringwell scaling

solutions, even for very large fill degrees of 97% and above.

Concurrent Hash Tables In Chapter 4 we look into concurrent hash tables.
The central theme of this chapter is folkloreHTfolkloreHT a fast concurrent hash table im-
plementation that was not developed by us but seems to be “folklore”. However,
folkloreHT, is very specialized and thus is not usable in many workloads, it cannot
grow, supports only word sized keys and values, and does not support deletions.
Throughout Section 4.4 we develop scalable techniques to lift these restrictionslifting restrictions .

In particular we design a table migration that allows the table to be grown coop-
eratively by all threads operating on the table. This migration is notable because
during the migration there is little to noscalable migration algorithm interaction between threads which makes
it very efficient in practice. These techniques (for lifting restrictions) can be com-
bined freely, thus leading to a flexible solution that can be adapted individually to
specific use cases.
In Section 4.6 we executed an extensive experimentalextensive experiments with up

to 17 hash tables
evaluation of folkloreHT

and its extensions. For these tests we used multiple input types—uniformly ran-
dom, skewed inputs, and real world string data from the Gutenberg project—as
well as different access patterns—insert, find, insert-or-update—on two machines
to compare 17 different hash table implementations from 7 different libraries. In
all of these tests, our implementations either folkloreHT or its generalizations were
among the top performing data structures. They commonly outperformed all com-
petitor tables by at least a factor of two.

Concurrent Quotient Filters In Chapter 5 we take a look at quotient filters.
A quotient filter is an Approximate Membership Query data structure (AMQ filter)
that works similar to a hash table but stores fingerprints instead of actual elements.
The base quotient filter described by Bender et al. [8] uses 3 status bits per slot.
We have designed a number of different data structures changing or adding to the
use of status bits. Overall we propose 6 variantsproposed 6 variants : sequential 2BQ-filter and sequen-

4

1.1 Overview and Contributions

tial LPQ-filter in Section 5.4.2, the concurrent LPQ-filter, the concurrent locally
locked quotient filter and the concurrent 2BQ-filter in Section 5.5 (infeasible from
practical point of view), and the fully expandable quotient filter in Section 5.6.
Noteable among these are noteable:

- concurrent LPQ-filter
- locally locked Q-filter
- fully expandable Q-filter

: (1) The concurrent LPQ-filter because it is a lock free
data structure which is uncommon for concurrent quotient filters (see page 151).
This is also the variant that performs best in our experiments. (2)The locally locked
quotient filter because its locking technique allows us to avoid many instances of
locking, and because we have implemented a version of this filter that allows for
limited growing. This limited growing variant is also a building block for the con-
current fully expandable quotient filter. And (3) the fully expandable quotient filter
because it can grow arbitrarily while holding a bounded false positive rate.
In our tests (Section 5.7) we use two machines to compare these variants against

4 other AMQ-filters. During these tests, both the LPQ-filter and the locally locked
quotient filter outperform most other variants especially on lower fill degrees and
on successful finds. They both scale well with the number of threads, even inmulti-
socket NUMA scenarios. We also test two variants of the fully expandable quotient
filter against the locally locked quotient filter with the limited growing technique
growing up to two orders of magnitude.

5

2 Hashing Fundamentals

In this section we present our definition of hash-based data structures and we es-
tablish the necessary notation that is used throughout this dissertation. Addition-
ally, we explain some concepts and interfaces that are inherent to the presented
data structures.

Definition

We define a hash-based data structurehash-based data structure to be any data structure that stores infor-
mation associated with keys within a table, where the position of this data is at
least in part dictated by a pseudo-randommapping from keys to the slots of the
table.

The goal of hash-based data structures is usually to achieve operation times that
are independent of the number of maintained elements (at least in expectation).
Instead the running times usually depend on the fill degree of the table.
To describe the objects that are stored within a hash-based data structure we use

the two words element and keyelement and key. The subtle difference is that the key is the part of
the object that is used to derive the position in the table. One could say the key
describes the elements distinguishing features. Two objects that have the same key
are considered to be the same object for the purpose of a hash-based data structure.
Additionally, a lot of hash-based data structures can only contain one object with
the same key. An element can be more than just its key. It usually contains the key,
but it can also contain other data. An easy example where elements and keys are
different from one another would be during an aggregation like word count. The
key would be the word itself. The element that is stored in a hash table would be
the word together with its occurrence-counter.

Throughout this dissertation, we use n to denote numbers of elements number of elements n. Usually
this is the number of elements inserted into a data structure. But, depending on

7

2 Hashing Fundamentals

the context n could also be used as the cardinality of other sets of elements, e.g.,
number of elements in one batch of operations or in one subsection of the data
structure. Whenever necessary we use indices to specify the exact meaning of the
variable. As described in the definition above, a hash-based data structure stores its
data within a table. In this context we use table to denote any basic data structure
that supports O(1) access time to a set of m numbered slotstable has m slots (a0...am−1) that each
hold the same amount of data, like an array or an unbounded array. Depending on
the hashing technique different table architectures are possible, e.g., a table consist-
ing of multiple subtables or a table that stores elements indirectly using pointers to
the real data.

The position where data is stored has to be retrieved when looking for the el-
ement. Thus it is very common that each element is associated with one slot of
the table. We call the associated slot itscanonical slot canonical slot. Section 2.3 describes how
to compute the canonical slot given the key of an element. Similarly, each opera-
tion also has a canonical slot—the canonical slot of the key that is being queried
or inserted. If there is another element already stored in the canonical slot, we call
this a collision. Different hashing schemes have different ways to resolve collisions
(see Section 2.4). The running time of each operation is usually dependent on the
number of collisions. Usually operations are at their fastest when their canonical
slot is empty. Therefore, thefill degree δ = n/m fill degree δ = n/m of the table is important. For all
hash-based data structures where data is stored directly in the table, the fill degree
indicates the probability of a random slot being empty P[slot empty] = 1 − δ, i.e.,
the canonical slot of an element that has not yet been inserted.

2.1 Common Hash-Based Data Structures and Their
Interfaces

Given the above definition, there are three common hash-based data structures
hash tables, hash sets, and AMQ-filter. In this section, we describe their function-
ality, and their interfaces. We also show what they might have in common or what
differentiates them, i.e., where common techniques can be reused or where spe-
cializations are necessary.

8

2.1 Common Hash-Based Data Structures andTheir Interfaces

2.1.1 Hash Table

Hash tables are probably the most well known hash-based data structure. They
solve the “dictionary problem” dictionary problemand are therefore also called dictionary data struc-
tures. A dictionary is a set of data elements, where each element consists of a key
(a word) and its value (its definition). The goal of a dictionary is to offer a fast
look up, i.e., to retrieve elements given their key. Thus, dictionaries implement the
following functionality (insert insert, find, and remove, find, remove): given an element insert adds this ele-
ment to the dictionary; given a key find retrieves the element/value associated with
the key—if such an element was inserted previously; given a key remove erases ele-
ments with the provided key. Find operations are often also called queries query. Queries
can be either successful, i.e., the element is present and was found or unsuccessful,
i.e., the element is not present and thus was not found, sometimes especially when
talking about our experiments we also say positive and negative queries.

Hash tables closely follow the characteristic scheme for hash-based data struc-
tures described above. Elements are stored in a large table. Whenever possible, we
store an element in its canonical slot canonical slot. The canonical slot is computed using a hash
function (see Section 2.3). If an element is inserted and its canonical slot is already
filled then a collision resolution technique collision resolutionis used to find another place to store the
element (see Section 2.4). Find and remove operations get the key of the queried
element and use the hash function to compute the same canonical slot. Then they
look for the element in its canonical slot (and eventual alternative slots depending
on the collision resolution technique).

Hash tables are usually constructedwith an initial capacity initial capacity(i.e., table size). Once
the table is filled, operations become increasingly slow until the table is completely
filled and new elements cannot be inserted. Therefore, it is common to include a
mechanism to increase the table’s capacity. The procedure is similar to growing an
unbounded array, a new larger table is allocated and all elements from the original
table are moved to the new table. We say the elements are migrated migrationto the new ta-
ble. This migration usually takes linear time in the size of the original table. Thus
it can easily be amortized (if the capacity is doubled O(m) time for O(m) new
slots). This migration is ordinarily hidden from the user of the hash table (similar
to unbounded arrays). Most implementation contain really simple growing algo-

9

2 Hashing Fundamentals

rithms like this. However, throughout this dissertation we will see that there is a
lot of potential for optimized migration techniques.
Hash tables are essential to many algorithms like aggregations, map-reduce type

reductions, lazy dynamic programming, and many operations on collections of
elements (i.e., unification, occurrence counting, intersection). Additionally, they
are also part of many common data structures like dictionaries, indexes, and set
representations. Because hash tables are this important, there are hash table im-
plementations in many basic programming libraries, e.g., std::unordered map

in the Standard Template Library (STL) for C++, the HashMap from the rust stan-
dard library, and the HashMap in java’s utils library. There are even programming
languages—like python, ruby, and perl—that have integrated support for hash ta-
bles. All these hash tables have different implementations and also different inter-
faces.
One choice thatrepresenting elements stands in the beginning of the interface design is the representa-

tion of elements. Allmajor implementations of hash tables represent their elements
as key-value-pairskey-value-pair x = ⟨k, v⟩ where k is x’s key and v is its value. But in the litera-
ture there is also another commonnotation. In this notation, we use a key-extractor
functionkey-extractor function k = key(x) to obtain the key of a given element. Here the element can be
viewed as a black box without any structure, as long as the key can be extracted
efficiently. Throughout this dissertation, we use this “key-extractor notation” be-
cause it is more in line with the other presented hash-based data structures (i.e.,
hash sets and AMQ-filter) and because it allows for more flexibility. Whenever it is
unambiguous we use x and key(x) interchangeably, e.g., h(x)⇔ h(key(x))when
using the hash function to map the element to the table.
The second major difference between hash table interfaceselement access interfaces is the way they allow

access to the elements, e.g., after a query. There are three main concepts: return by
value, by reference, or by iteratorreturn by value, by reference,

or by iterator
. Each method comes with its own strengths and

weaknesses.
Return by value: When returning by value, the query does not give any access

to the stored element. Instead, the value is copied from the element and returned.
When the table uses return by value there is often an update operation that queries
the table and changes the value that is stored with a certain key. This interface is
often used by scientific codes (because it is simple to implement and is less prone

10

2.1 Common Hash-Based Data Structures andTheir Interfaces

to errors) or by concurrent libraries, e.g., libcuckoo [41]. However, the necessary
copies can cost time and the necessity of an update function is cumbersome.

Return by reference: A reference is a pointer like “object” that allows accessing
the underlying element. When a query returns a reference to the stored element,
users can freely access and change the stored element. Any changes become visible
to future queries of the same element. Reference based interfaces are used within
java’s utils library both HashMap and ConcurrentHashMap return by reference for
non-trivial value types. Java in general, only allows passing complex data types per
reference.
Return by iterator: An iterator is similar to a reference in that it gives access to

the stored elements. In addition to the element itself, iterators also give access to
other stored elements. Other elements can be accessed by “iterating” through the
table (i.e., incrementing the iterator). Iterator-like interfaces are common in C++ for
example in std::unordered set, which is the hash table in theC++ standard tem-
plate library, and in concurrent unordered map, which is part of theThreading
Building Block (TBB) library developed by Intel.
Whenever references and or iterators are passed out of the hash table, referential

integrity referential integritybecomes an important topic. Referential integrity specifies what actions
invalidate previously returned references and or iterators. A reference returned by
a query can be viewed as a pointer to the slot that holds the queried element. There-
fore, any operation that removes the elements from its slot may change the target
of the pointer such that it does not point to the queried element. Themost obvious
example is deleting the queried element from the hash table. In this case, the dele-
tion invalidates all references to the deleted element. However, there might be less
obvious operations that invalidate references likemoving an element within the ta-
ble. This can be problematic when using certain collision resolution techniques like
cuckoo and Robin Hood hashing that rely on moving elements within the table. In
such tables references could be invalidated when new elements are inserted.
Usually hash tables operate as set-like data structures, meaning that each key can

only be inserted one time keys are unique. If a key that is already stored in the hash table is inserted
for a second time, the insertion fails. Many hash table implementations even return
a reference (or iterator) to the previously inserted element. Ahash table that accepts
multiple elements with the same key is called amulti-hash table multi-hash table. Multi-hash tables

11

2 Hashing Fundamentals

can often be implemented similar to normal hash tables, especially if the number
of repeated keys is small, but some collision resolution techniques have inherent
problems with repeated keys.
The interface of deletions ismore or less the same between different libraries, but

someunderlying hashing implementations have problems implementing deletions.
Thus, there exist implementations that do not allow any deletions (for an overview
of different hashing techniques and their capabilities see Table 2.1). Using a reduced
hash table like this could still be beneficial, since a lot of applications do not actually
use delete operations.
Many hash tables, even ones that do not return by iterator offer a method to

iterate over the table, i.e., executing a loop that visits each contained element. This
could for example be used to insert the elements into another data structure, for
example at the end of an algorithm. Or to do something with them while they
remain in the table. Usually, iterating over all elements takes O(m) time (Note
depending on fill degree of the table m might be significantly larger than n).
Overall, all different hash table interfaces have different advantages and disad-

vantages that can be used to implement algorithms in different ways. As we will see
throughout this dissertation, different hash table interfaces also have an influence
on the underlying hash table implementation and its performance. Some imple-
mentations (i.e., collision resolution techniques) lend themselves better to certain
interfaces. Some information on the inherent advantages and disadvantages of col-
lision resolution techniques concerning interfaces can be found in Table 2.1 (see
Section 2.4).

2.1.2 Hash Set

In a hash table elements consist of their key which is their unique identifier and
some associated data that can be retrievedwhen querying said key. However, a very
common use case for hash-based data structures is representing a set of elements.
Here, the additional data per element is often unnecessary—it is only important
whether a certain element is present (e.g., for unification). Thus, an element should
be represented by its key alone. In applications like this hash sets can be the data
structure of choice. A hash set is basically aelement = key hash table that only stores keys without

12

2.1 Common Hash-Based Data Structures andTheir Interfaces

any associated data. The overall construction of the data structure remains the
same. Elements are stored within a large table in their canonical slot or in a slot
that is retrievable from their canonical slot using a collision resolution technique.

Even though the construction remains similar to that of a hash table, there are
different requirements for the underlying implementation of a hash set. Keys can-
not be changed after being inserted, therefore, returning by reference or iterator is
usually not necessary. Instead, queries usually only return true or false indicating
whether the queried key was inserted or not, thus removing the necessity of worry-
ing about referential integrity. We call this form of query a contains query contains query. A hash
set still stores all inserted keys. Thus iterating iterating through hash setthrough inserted elements remains
a possibility.

Elements in a hash set are usually much smaller then they would be in a hash
table (since they consist only of their key), thus, hash table implementations with
additional per-element-data (e.g., pointers for chaining) have larger relative over-
heads. Throughout this dissertation, we mainly focus on the efficient implementa-
tion of the generalized common hash tables (with additional data). However, since
none of our techniques use any unnecessary overheads, they should be well suited
to implement hash sets or other similar data structures.

2.1.3 AMQ-filter

ApproximateMembership Query Data Structures (abbreviated with AMQfilter) are
similar to hash sets, in that they represent sets that do not store any additional
data per element. Thus, AMQ-filters also use contains queries—sometimes also
called membership queries. Themain interface difference compared to hash sets is
that AMQ-filter queries return approximate results (i.e., their result can be wrong).
An approximate contains query, can return approximate

⇒false positives
/⇒ false negatives

a false positive, but not a false negative.
Meaning that an approximate contains operation may return true even if the ele-
ment was not inserted (false positive), however, it cannot return falsewhen query-
ing an element that was inserted (no false negative). Each AMQ-filter has a certain
false positive rate false positive ratep+ that describes the probability of returning truewhen querying
a “random” uncontained element. It should be noted that the answer of an AMQ-

13

2 Hashing Fundamentals

filter is usually deterministic, thus, repeated queries of the same element always
return the same false positive.
Allowing false positive queries can reduce the necessarymemory to a fewbits per

element. While a hash set has to store thewhole (potentially large) key, AMQ-filters
get awaywith storing only small sketches, sometimes called fingerprintsfingerprint . Because of
their small size, AMQ-filters are often used as summary data structuressummary data structure for slower
more complex data structures like databases or web based services—accelerating
the overall performance, by shortcutting negative queries. A good example would
be safe browsing. Safe browsing is a service that displays a warning when accessing
a potentially dangerous phishing website. To do this the browser regularly down-
loads an AMQ-filter from a trusted source (e.g., Google) whenever a website is
accessed, its address is first checked with the AMQ-filter. Positive queries are then
rechecked using an online blacklist. Using the AMQ-filter, most queries can be
answered offline and without downloading the whole blacklist.
Both the capacity and the false positive rate p+ of a quotient filter are parameters

of the quotient filter construction. Because the keys of inserted elements are not
stored explicitly, it is usually impossible to decrease the false positive rate after the
filter is constructed. This can also be a problemwhen trying to increase the capacity
of an AMQ-filter. Traditional reallocation and migration techniques are usually
impossible, because the original keys cannot be reconstructed. The false positive
rate of the AMQ-filter increases with every inserted element. It should reach the
given (initialized) false positive rate when the given capacity is reached.

2.2 Concurrent Data Structures

Throughout this dissertation, we also look at some concurrent data structures.
Concurrent data structuresconcurrent data structures are data structures that are meant to be accessed by
many threads at the same time. Operations on the data structures should be as
independent as possible—forcing no unnecessary serialization.
Throughout this dissertation we use p to denote the number of threadsnumber of threads p operating

on a data structure. We assume that each application thread has its own designated
hardware thread or processing core. For the purpose of algorithm analysis, we
assume that n iswe assume n ≫ p2 significantly larger than p2—this allows us to simplify algorithm

14

2.2 Concurrent Data Structures

complexities by hiding O(p) terms that are independent of n and m in the overall
cost. We feel that this is safe to assume for most problems where hash-based data
structures constitute a significant part of the running time.

Correctness

The most important requirement for concurrent data structures is that the data
structure should always be in a consistent state consistent state, e.g., there should never be the possi-
bility of a thread accessing an element in anunfinished state or accessing an element
that was previously deleted. It should also be guaranteed that once an operation is
finished its effects should be visible to all threads, e.g., after inserting x with thread
a, x should be found by all future queries. Oneway to guarantee this, is to prove the
linearizability linearizabilityof a data structure. A data structure is linearizable if each possible
sequence of concurrent operations can be reordered in a way such that executing
them sequentially in that order will result in the same outputs—without reorder-
ing two operations of the same thread. This can be achieved by guaranteeing that
all changes caused by an operation are executed atomically at one point in time
between their invocation and their return. This moment is called the linearization
point of an operation.

Progress Guarantees

Outside of these consistency guarantees, concurrent data structures can also offer
progress guarantees. For example, we say a data structure is non-blocking non-blockingif block-
ing a thread that is accessing the data structure can not prevent other threads from
making progress. A data structure is lock-free lock-freeif it is non-blocking and guarantees
global progress, i.e., there must always be at least one thread finishing its operation
in a finite number of steps. It could be possible that one progressing thread repeat-
edly prevents another thread from doing so—e.g., through a compare-and-swap
loop. The strongest progress guarantee is wait-freeness wait-free. A data structure is wait
free when each operation on said data structure can always be finished in a finite
number of steps, independent of all other threads.

15

2 Hashing Fundamentals

Problems

There are two problems that are inherent to concurrent data structures (especially
lock-free data structures): the ABA problemABA-problem

concurrent deallocation
and the problem of concurrent deal-

location. Both of these problems are encountered multiple times throughout this
dissertation.
The ABA problem can be summarized as follows. It is hard to read a consistent

state ofmultiple data entries if those entries are changed concurrently. For example,
let us assume we have two memory slots s1 and s2 and one processor p supervising
both slots. The processors task is to wait until s1 and s2 contain the same value.
Thus p repeatedly loads s1 and s2 into its memory m1 and m2 but since s1 and s2
cannot be read at the same time there is time that passes between acquiringm1 and
m2. Thus, even if m1 and m2 are equal p cannot be sure that s1 was not changed
in the meantime. Rechecking s1rechecking is not the solution might also not work because both elements could
have been flip flopped repeatedly in the meantime.
Solving the ABA Problem usually involves careful arguments how to ensure that

slots have not been changed (e.g., locks, monotony arguments, epoch counter) or
arguments why knowing a fully consistent state is not actually necessary.
The concurrent deallocation problem is related to the ABA problem. The idea

here is that if there is a pointer to some element we cannot deallocate that element
unless no other thread is using it. However, it is hard to ensure that this is the case.
Common techniques to solve this problem are locks, counting pointer, and hazard
pointer [57]. Although only hazard pointers are actually lock-free. Another way to
enable safe deallocations is called quiescent state based reclamation (qsbr). To use
qsbr threads that are not in any critical section have to call a function (from time
to time). We can safely deallocate a pointer if this pointer is not publicly available
and every thread has called the qsbr function at least once (since the pointer was
last publicly available).

2.3 Hash Functions

In this section, we describe how elements are mapped to their canonical slot. The
mapping uses a hash function, therefore, we also say elements arehashing elements to slots hashed to their

16

2.3 Hash Functions

canonical slot. A hash function is a mapping h ∶ U ↦ H from a universe U of
potentially variable sized keys to a fixed size result spaceH. A common assumption
is thatH = [0..m− 1] such that a direct mapping to table slots is possible. However,
for the purpose of this dissertation it is sometimes necessary to think of hashing as
a two step process h(k) = rmap ○ hpre(x). First the key k is hashed to a number in the intermediate hash
space Hint = [0..2ℓ − 1] using the preliminary hash function hpre ∶ U ↦ Hint. Here
∣Hint∣ = 2ℓ is significantly larger than the table size—usually ℓ = 64 or 32. Then
the resulting number is mapped to the range of the table using the table mapping
rmap ∶ Hint ↦ H. This two step process is important whenever the table size is
adapted, because, when a table is using the same preliminary hash function hpre
and a similar mapping r′map we can deduce the approximate position of an element
in the new table by its position in the old table.

The hash function only operates on keys not necessarily on full elements, i.e.,
key(x) not x. However, it is usually unambiguous to use x and key(x) interchange-
ably, e.g., h(x)⇔ h(key(x)) when using the hash function to map the element to
the table. This allows us to simplify some of the notation.

2.3.1 Preliminary Hash Function

Thegoal of the preliminary hash function is to distribute elements around the table
evenly, without creating artificial clusters. There are different types hash functions
that are commonly used in applications. between identity and SHA-1From the identity function—reinterpreting
the bits of the key as a number1—to cryptographic hash functions like SHA-1 or
MD5, different tasks require different hash functions. Simple hash functions like
the identity could lead to artificial clusters when input keys are not sufficiently ran-
dom (i.e., similar elementsmap to the same area of a table). Stronger hash functions
on the other hand can be slow to compute and often have unnecessarily large result
spaces. SHA-1 andMD5 for example are well known cryptographic hash functions.
They map to a large result space of 160bits and 128bits respectively because their
main task is tomake it difficult to find hash collisions (two inputs thatmap onto the
same output). All this is not necessary when mapping to the table of a hash-based
data structure (assuming non-malicious users). The tables are usually smaller and

1only possible if the key space is small

17

2 Hashing Fundamentals

can be addressed using 32bits or 64bits. Additionally, they are not usually filled by
adversaries looking for collisions. Instead it is only important that the number of
collisions remains reasonably small when inserting elements that contain at least
some “randomness” (i.e., from an appropriate distribution). There are still some
requirements that a hash function has to fulfill to be usable in a hash-based data
structure.
The result of the preliminary hash functionrequirements:

- uniformity
- speed

should use the whole result space
Hint evenly, i.e., the hash function should “randomize” all bits of the output in-
dependent of the input space, i.e., even when hashing small numbers it should be
possible to get a large hash value. This is important because depending on themap-
ping function (covered later) either the most significant or the least significant bits
are used for the mapping to the table. Furthermore, it is important that the hash
function is fast to evaluate. The hash function is evaluated at least once per opera-
tion on the table. A slow hash function could significantly impact the performance
of the data structure.

2.7
5.4

9
13.4

9 12.3 9.8

84.5
140.2

10.6
15.9 17 21.1 19

92.5
160.1

integer string

id
en
tit
y

cr
c3
2

xx
h3

xx
ha
sh

m
ur
m
ur
2

m
ur
m
ur
3

ta
bu
lat
io
n

sh
a2
56

m
d5

id
en
tit
y

cr
c3
2

xx
h3

xx
ha
sh

m
ur
m
ur
2

m
ur
m
ur
3

ta
bu
lat
io
n

sh
a2
56

m
d5

3

10

30

100

300

Ti
m
e
pe
rO

pe
ra
tio

n
in

ns

Figure 2.1: Comparing the performance of different hash functions. Measured over two
kinds of inputs: (left) 64bit integer data, (right) string data (The King James
Bible).

Topre-hash benchmark evaluate the speed of different hash functions, we set up the following small
benchmark—Figure 2.1. First we construct a set of keys, either integer keys (i.e., 107

random64bit numbers) or using strings (we used 5 copies of the “King James Bible”

18

2.3 Hash Functions

≈ 4M words). Then we iterate over the keys, hashing each key (the full benchmark
is repeated 10 times averaging the results). To get a reliablemeasurement for the in-
teger benchmark, we use some code that prevents optimizations, like compile time
computations or pipelining2. The overhead of these anti-optimization-measures
was quite small (below 3ns see identity). Such tricks did not seem to be necessary
for the string benchmark.

With this setup we test 9 different hash functions. Specifically for integer keys,
we use the identity function and crc32—using the hardware optimized compiler
builtin (to extend crc32 to compute 64bit hash values we call it twice using different
seeds once for the 32most significant and the 32 least significant bits). The following
hash functions work both for kinds of keys. Both xxh3 and xxhash are part of
the xxHash library [15]. Murmur2, murmur3, and the tested implementation of
tabulation hashing are all part of the well known smhasher library [4], however,
since this has not been updated recently we use an active fork from user Reini
Urban [86] (the original library does not contain tabulation hashing); forMD5 and
SHA256 we use implementations that are part of the openssl package (installed via
the default package manager).

The fastest measured hash function was crc32, it is hardware supported and sig-
nificantly faster than the other hash functions, nearly on par with the identity func-
tion. However, the builtin function can only hash integer types thus the string test
was not possible. Thehash functions xxh3, xxHash,MurmurHash2,MurmurHash3/
and tabulation are designed for the use in hash tables. They also have very similar
performance, i.e., about ≈ 2× worse than crc32, but still by far faster than the two
cryptographic hash functions sha256 and MD5 that we used for comparison. All
non-cryptographic hash functions were significantly faster than a main memory
lookup that would take around 100ns. Thus, they should not impose a significant
slow down over the faster more specialized functions.

2This was done by storing the result in an atomic variable and by using the previous result as part
of the input for the next call of the hash function

19

2 Hashing Fundamentals

2.3.2 Mapping to the Table Size

The preliminary hash function outputs pseudorandom integers that are far greater
than the number of slots m in our table. Therefore, there has to be another step of
mapping the hashed keys to the table size—using the mapping rmap. The only re-
quirement for the table mapping is that the intermediate hash spaceHint is mapped
evenly to the final hash space H. Given this requirement there are many possible
mappings, but in practice there are two main approaches—circular or linear a circular mapping or a
linear mapping (see Figure 2.2). Both are functions that are fast to compute.

0

∣H∣

0 ∣H∣ 2∣H∣ ∣Hint∣ − 2∣H∣ ∣Hint∣ − ∣H∣ ∣Hint∣

preliminary hash Hint

m
ap
pe
d
re
su
lt
H

mapping
circular
linear

Figure 2.2: Schematic representation of mapping approaches.

We first handle the case of hashing to a table with power of two slots, i.e.,table size m = 2 j m =
2 j. This case is interesting because it leads to a better performance and because it
gives some interesting insights into the two mapping techniques. It is possible to
force a table size that is a power of 2 albeit at a memory overhead of a factor of 2.
Mapping a hashed value to m = 2 j slots can be done by selecting j bits from the
binary representation of the hashed value. Thus, both circular and linear mappings
can be computed in just a few cpu cycles using simple bitwise operations—making
them very fast. The kind of mapping only depends on the positions of the bits we
select. The circular mapping uses the least significant bits. They can be selected
with a bitwise-and operation—using a bitmask to obtain the j least significant bits
(see Algorithm 2.1). A linear mapping uses the most significant bits. They can be
selected by shifting the hashed value to the right until only j bits remain.
Both aarbitrary table size circular mapping and a linearmapping are still possible on tables with ar-

bitrary sizes (not power of 2). But computing them is somewhatmore difficult. The

20

2.3 Hash Functions

circular mapping can be computed using a simple modulo operation rmap(x) = x
mod m. But, in figure 2.3 we see that the modulo computation takes about 4.3
times longer than the bitwise operation. There are two options of computing the
linear mapping. (1) The first option is to use floating point multiplication. When
constructing the table, we compute the scale factor s = m/∣Hint∣ (double precision)
floating point number. Using this constant, we can map a hashed value by casting
the hashed value to a floating point number, multiplying it with the scale factor,
and re-casting it to an integer. (2)The second option uses an integer multiplication
in combination with some bit shifting. This implementation of a linear mapping is
sometimes called fastrange fastrangeand was popularized by Lemire [39]. First the hashed
value is multiplied with the capacity m, and then the result is shifted to the right
by ℓ bits (where Hint = [0..2ℓ − 1]), basically computing the same multiplication as
the floating point variant, but using only primitive operations. However, this only
works if the first multiplication cannot cause any overflows. Therefore, it has to be
implemented using double word operations, thus, if ℓ is 64 we need 128bit multi-
plications (i.e., fastrange64). Alternatively, one could use only the lower 32bits of
a hashed value to compute the mapping (using a 64bit multiplication), this would
lead to a mixture of a cyclical and a linear mapping. However, our experiment
below shows that using a 128bit multiplication does not lead to any performance
penalties.
An interesting fact about hashing is that hashing is similar to sorting elements by

their mapped table position [62]. When a linear mapping is used this is similar to
rounding the intermediate hash values and sorting the elements by their rounded
values. If two hash tables use the same preliminary hash function then their keys
are sorted similarly this can be beneficial for some algorithms like migration and
join.
To mapping benchmarkbenchmark the performance of the presented mapping approaches (results

in Figure 2.3), we use a similar test as before (in Section 2.3.1) when measuring the
performance of preliminary hash functions (with the same tricks to prevent opti-
mization). This time, wemap 108 random integers to a range of either {0, .., 220−1}
(power of two) or to a range of {0, .., 1011−1} (arbitrary). Themappings specialized
for the power of two case have next to no performance penalty (compared to the
identity function benchmarked in Figure 2.1). However, all methods that are usable

21

2 Hashing Fundamentals

Algorithm 2.1 Pseudocode representation of different mapping variants.

map-circular-pow2(prehash ∈ [0..2ℓ − 1]) ↦ [0..m = 2 j]
return prehash & m − 1 // bitwise and (keeps j least significant bits)

map-linear-pow2(prehash ∈ [0..2ℓ − 1]) ↦ [0..m = 2 j]
return prehash >> (ℓ − j) // bitwise shift (keeps j most significant bits)

map-circular-arbitrary(prehash ∈ [0..2ℓ − 1]) ↦ [0..m]
return prehash % m // integer modulo computation

map-linear-arbitrary(prehash ∈ [0..2ℓ − 1]) ↦ [0..m]
// precompute the floating point number scaling = m/2ℓ
return ⌊prehash ⋅ scaling⌋ // floating point multiplication

map-linear-fastrange-arbitrary(prehash ∈ [0..2ℓ − 1]) ↦ [0..m]
return (prehash ⋅ m) >> ℓ // ⋅ = double length integer multiplication
// i.e.,64-bit-multiplication with ℓ =32 or 128-bit-multiplication with ℓ =64

with arbitrary table sizes have significant performance impacts. Both fastrange im-
plementations keep their promise (3.7× faster). Both original arbitrary mappings
take about as long, as a single evaluation of an optimized hash function, indicating
that the table mapping can be a significant factor for the overall performance.

2.3.3 Double Hashing

Some hashing algorithms use multiple hash functions. This is obviously the case
formulti hashing (see Section 2.4.2, page 29) and cuckoo hashing (see Section 2.4.2,
page 37). But other hashing methods like linear probing can also profit from mul-
tiple hash functions, for example, when the current hash function turns out to be
particularly bad at distributing elements throughout the table. In these instances, it
can be advantageous to change the hash function, and redistribute elements within
the table.
Most implementations of hash function use a seedseeding a hash function . Therefore, creating a new

hash function is as simple as using a different seed. This is especially useful, when
only one or two hash functions are necessary. Whenever many (i.e., more than

22

2.3 Hash Functions

3 3

15.3 13

4 4.2

15.3
12

4 4.2

power of 2 (= 220) arbitrary (= 1011)

lin
po
w
2

ci
rc
po
w
2

lin
ar
bi
tr
ar
y

ci
rc
ar
bi
tr
ar
y

lin
fa
str
an
ge
32

lin
fa
str
an
ge
64

lin
po
w
2

ci
rc
po
w
2

lin
ar
bi
tr
ar
y

ci
rc
ar
bi
tr
ar
y

lin
fa
str
an
ge
32

lin
fa
str
an
ge
64

3

5

10

Ti
m
e
pe
rO

pe
ra
tio

n
in

ns

Figure 2.3: Comparing the performance of different map functions. Left: table size is a
power of two; right: arbitrary table size

two) hash functions are necessary at the same time—e.g., within a cuckoo hash
table—executing many hash functions per element can become a significant over-
head. Double hashing can be a solution for these instances double hashing. The idea is to compute
only two preliminary hash functions, but to create many hash values from these
two preliminary results. The hash values h′(x) and h′′(x) are computed using two
distinct preliminary hash functions (potentially different seeds). Thenwe can com-
pute the hash functions h0(x), . . . , hk(x) using linear combinations of h′(x) and
h′′(x).

hi(x) = h′(x) + i ⋅ h′′(x) mod 2ℓ

One requirement for this to work in theory is that h′′(x) and 2ℓ have to be coprime,
i.e., h′′(x)must not be even. This can easily be enforced (by fixing its last bit to one).
In some sense, double hashing reduces the “randomness” of each hash function.
Nevertheless, it has been proven to work well in many real world scenarios like
computing the different hash functions of a cuckoo hash table [60].

Another way to reduce the number of computed hash functions is to increase
the number of used bits from each computed hash function. Throughout this dis-
sertation, we use hash functions primarily to address tables. Therefore, we only

23

2 Hashing Fundamentals

ever use ≈ log(m) bits to fairly address the table (especially if the table size is a
power of two). Most hash functions return a 64bit hash value—enough to com-
pute two addressessplitting hashed values for tables below 232 slots. One using the upper 32bits and one
using the lower 32bits. This can even be combined with double hashing, i.e., using
the lower 32bits of h(x) as h′(x) and the higher 32bits as h′′(x), thus generating
an arbitrary number of mapped slots from only one preliminary hash function.

2.3.4 SomeWords about Theory

The theoretical properties and qualities of hash functions have been studied ex-
tensively. Largely, there are two kinds of quality metrics. Singlesingle function metrics vs.

hash-function-family metrics
function metrics

like uniformity that are analyzed for one specific hash function or universality and
k-independencewhich are properties inhibited by a family of hash functions rather
than one instance of a hash function.

Single Funciton Metrics

Single function metrics are quality measures or properties that one hash function
can hold on its own (i.e., one function with one seed). The most common quality
in this category isuniformity uniformity, i.e., how close does the hash function resemble a uni-
form distribution (every slot has the same probability). There are multiple projects
that evaluate the uniformity of hash functions [4, 86, 15] in an experimental analy-
sis. All (preliminary) hash functions presented in Section 2.3.1 perform really well
in these tests (appart from the identity and crc32). However, it should be noted,
that uniformity alone, does not enforce any type of randomization. It also does not
enforce scattering “similar” elements throughout the whole result space which we
stated as a goal for the preliminary hash functions.

The property that similar input elements lead to wildly different results is some-
times called the avalanche effectavalanche effect . A hash function fulfills the strong avalanche cri-
terion if one bit flip in the input element, will cause all output bits to change with a
probability of 50% (e.g., tabulation hashing). However, the property is most com-
monly mentioned in the context of cryptographic hash functions, as such there are
very few tests or proofs for other hash functions that are used for data structures.

24

2.3 Hash Functions

Hash-Function-Family Metrics

In 1979, Carter andWegman [11] have established a different way of analyzing fam-
ilies of hash functions. When looking at a single hash function there is always the
possibility that any given set of input elements constitutes a bad input, i.e., produces
above average collisions. This possibility can be quantified why analyze families of hash

functions
if the hash function is

chosen at random from a set of hash functions (family of hash functions). Given
a random hash function from this set, we can analyze the probability for a hash
function that produces above average collisions. The original metric proposed by
Carter and Wegman [11] was universality universality. A family of hash functions is universal
if given two elements, the probability of randomly picking a hash function where
both elements collide is 1/m. This same universality concept has been general-
ized [88] to multiple elements and multiple slots, i.e., a family of hash functions
is k-independent k-independentif for k elements x1, . . . , xk and k associated slots s1, . . . , sk the
probability of P[∀i h(xi) = si] = m−k .

The generalized concept of k-independence can be used to show the require-
ments of different hashing methods towards their hash functions. For example in
the case of linear probing (described in Section 2.4.2, page 31) linear probing needs

5-independence
, it can be shown

that the expected constant running times for insertions can only be guaranteed
with a hash function randomly chosen from a family of 5-independent hash func-
tions [67, 74] (there are families of 4-independent hash functions that lead to loga-
rithmic insertion times). Many families of provably k-independent hash functions
like high degree polynomials are slow to evaluate. Patrascu andThorup [73] show
that simple tabulation hashing is strong enough to guarantee constant insertion
times, even though it is only 3-independent [73] (but not 4-independent or higher).

Most other commonly used hash functions like xxh3 and MurmurHash can be
seeded and thus also form families of hash functions. However, the resulting fam-
ilies are usually not proven to be universal or k-independent. In practice we have
had very good results with experiments use xxh3xxh3 [15], thus we used xxh3 in our experiments pre-
sented in the following chapters.

25

2 Hashing Fundamentals

2.4 Collision Resolution

Whenever an element is inserted into a non-empty table—using a random posi-
tion determined by a hash function—there is a possibility that the position already
holds an element. We call this a (hash-)collision(hash-)collisions . The probability of a new element
causing a collision grows with the fill ratio δ of the table. The element that caused
the collision still has to be stored in the table. Depending on the hashing tech-
nique there are different ways to resolve collisions like this. There are two major
categories of collision resolution techniques open addressing and closed addressingopen and closed addressing .
Open addressing means that elements can be stored in other slots—not just their
canonical slot. This includes many common hashing techniques like linear prob-
ing and cuckoo hashing (both described later throughout this Section). In a closed
addressing table each element must be stored in its canonical slot. Thus, slots have
to be able to store a varying number of elements (usually in a linked list or a sim-
ilar unbounded data structure). The most common examples of closed hashing
are variants of hashing with chaining. Due to some potential for confusion with
the terms open and closed hashing (Note below)—that work contrary to open and
closed addressing—we instead use the terms hashing with in-table-displacementin-table-displacement

for open addressing and hashing with separate chainingseparate chaining for closed addressing.

Notation

There is some misleading vocabulary surrounding the terms open and closed
addressingopen addressing ≠ open

hashing
versus the terms open and closed hashing. The most confusing part

is that open addressing and open hashing refer to contrary concepts. As de-
scribed above, open and closed addressing refers to the slot where an element is
stored. Open and closed hashing refers to whether the elements can be stored
outside the table (i.e., addressed by a pointer). Therefore, hashing with chain-
ing uses closed addressing (all elements are stored in their canonical slot) but
open hashing (they are stored outside the table within a queue). Similarly, linear
probing is a classic example for open addressing, but usually conforms to closed
hashing because all elements are stored within the table. To avoid any type of
confusion we have chosen to use the terms in-table-displacement and separate

26

2.4 Collision Resolution

chaining throughout this dissertation. We feel they are more descriptive of the
actual data structures.

2.4.1 Separate Chaining

h(x)

Di..

De..

Dy..

Ef.. Gl.. Ji..

Ju..

Jp..

Ja..

Mi.. Ni..

Nu..

Na..

Figure 2.4: Insert operation into a table using chaining.

Hashing with chaining is a very common hashing technique. Instead of stor-
ing elements directly in the table each slot holds a queue of elements (usually a
singly linked list). An insertion creates a new queue item holding the inserted ele-
ment (O(1)). Queries search the queue of their canonical slot (O(∣queue∣)). Some
performance metrics of hash-based data structures are particularly impacted by
chaining-based collision resolution. A chaining-based architecture has to store one
pointer per slot and per element. Therefore, thememory usage memory usageism ⋅sp+n ⋅(sp+se)
where sp and se are the sizes of pointers and elements respectively. Hence, the
memory efficiency depends primarily on the relative size of elements to pointers.
The speed of queries is also impacted by using pointers. To find an element queries
first have to iterate over the queue of the canonical slot. However, iterating through
a queue that is implemented as a linked list is significantly slower than searching
through an array because each link leads to a new (main) memory access that has
to be resolved before comparing two elements, and before the next link (see Sec-
tion 2.5.1).

27

2 Hashing Fundamentals

There are different variants of hashing with chaining that address some of these
problems. One common technique is to store the list headslist heads in the table in the table, thus the
performance penalty of queries is reduced, e.g., when querying the first queue el-
ement or when the queue contains only one element (which is often the case for
realistic workloads E[∣queue∣] = δ). Another technique that improves the cache
efficiency of queries (at the cost of memory) is toblock queues group queue elements and to
store these groups in larger blocks. This improves query times because blocks are
faster to scan through than linked lists. However, non-full blocks can increase the
necessary memory. There is a large design space of moving elements to reduce
the memory consumption. E.g., if insertions are sufficiently rare the queue can be
stored within a perfect sized array, which could actually save memory because less
pointers are necessary.

Overall it would be fair to say that hashing with chaining offers many versatile
solutions that are usable in a variety of situationsversatile but never the

optimum
. But throughout this dissertation

we are more interested in specialized solutions that achieve better performance
than general purpose chaining hash tables. Thus we put our focus on different
variants of in-table-displacement techniques.

2.4.2 In-Table-Displacement

When all elements are stored directly in the table, hash collisions have to be re-
solved by finding alternative slots for elements. One common way to do this, is
to have an ordered list of alternative slots for each element, i.e., when inserting el-
ement x, we look at the slots s0(x), s1(x), . . . (s0(x) is the canonical slot). Each
element has to be stored in one of its slots si(x). We say the displacementdisplacement of an
element is the number i of the slot it is stored in. Small displacements are benefi-
cial because query operations find their elements faster when they probe slots in
ascending order.

Different hashing techniqueswith in-table-displacement differentiate themselves
in the way alternate slots are chosen, the way queries iterate through the alternate
slots, and in how they spot that an element is not in the table. Additionally, there
are hashing techniques with in-table-displacement that move previously inserted
elements when a new element is inserted or an old one is deleted. This can be used

28

2.4 Collision Resolution

to move displaced elements after a deletion or to reduce the displacement of an
element. However, moving elements has impact on the referential integrity referential integrityof the
table (see Section 2.1.1). Every pointer, iterator, or reference that used to point to
an element before it was moved now points to an empty slot or even to another
element that replaced it. Depending on how the hash table is used, referential in-
tegrity might be important (e.g., in parallel applications). Thus it should always be
clear which operations can invalidate references.
Deletions are often a difficult to handle for hash tableswith in-table-displacement.

A lot of implementations stop queries once an empty slot is encountered (i.e., once
an alternative slot is empty). In these tables, deleted elements cannot be fully re-
moved from their slots because elements that were displaced previously would not
be found after the element was cleared. Sometimes this can be fixed by moving
other inserted elements within the table to fill the empty slot (e.g., linear probing).
However, there are techniques where finding and moving an appropriate element
is infeasible (e.g., multi hashing). In those cases marking the element as being re-
moved might be the only option to implement deletions. The removed element is
replaced with a dummy called a tombstone tombstone. Future queries will treat the dummy as
if it was any other element, new insertions can replace the tombstone.
In the following we explain some of the most common hashing techniques that

use in-table-displacement.

Multi Hashing

h(x)h(x)
h(x)

Di.. Ni.. Ut..Po..No.. Ul..

Figure 2.5: Insert operation into a table using multi hashing.

Multi hashing is more of theoretical technique meant to understand in-table-
displacement. It is based on the idea that each alternative slot can be found the
same way as the canonical slot, i.e., with a new hash function h0, h1, Every
probe si = hi(x) has the same probability of finding a free slot independent of the

29

2 Hashing Fundamentals

number of unsuccessful probes. This makes multi hashing significantly easier to
analyze (expected running times for operations). When inserting x, whenever a
collision occurs x is rehashed using another hash function until we find an empty
slot (in theory this needs an arbitrarily large number of hash functions). During a
query, we probe alternative slots until the queried element or an empty slot is found.
An empty slot indicates that the queried element was not previously inserted.
The expected running time of operations within a table using multi hashing de-

pend on the expected probe length (how many slots are accessed before the ele-
ment or an empty slot is found). There are three main operations: inserting a new
element, querying an inserted element, and querying an element that was not in-
serted (a note on deletions is explained later in this section). Both insertions and
negative queries probe through alternative slots until an empty slot is found (both
have the same running time). Each probed slot is independently drawn using a
uniform hash function. Therefore, each time a slot is probed it is empty with a
probability of pempty = m−n

m = 1−δ and thus the expected number of probed slots is
E[Probesn] = (1−δ)−1. Thenumber of probeswhen looking for an inserted element
is equal to the number of probes when said element was originally inserted, thus
it depends on the fill degree when said element was inserted. Looking for the first
element always succeeds on the first probe while looking for the last inserted ele-
ment could take a lot longer. Probing an element takes the same number of probes
as inserting it, therefore, querying a (uniformly-)random contained element leads
to the following expected running time:

E[Probesaverage query] =
1
n

n−1
∑
i=0

E[Probesi]

= 1
n
⋅ (m

m
+ m
m − 1 + ... +

m
m − (n − 1))

= m
n
⋅ (1

m − n + 1 +
1

m − n + 2 + ... +
1
m
)

= δ−1(Hm −Hm−n)

Deletions are especially hard to handle for tables using multi hashing. When
removing an element, its slot cannot be cleared, because the element could have

30

2.4 Collision Resolution

caused other elements to be displaced. Furthermore, it is very hard to find elements
that have been displaced because of the removed element, since the displaced el-
ements could be stored anywhere within the table. Therefore tombstones are the
only feasible method for implementing deletions in amulti hashing table. The run-
ning time of a deletion is similar to the running time of the query necessary to find
the element that should be deleted. However, future queries do not become faster
after deleting the element since the slot is still filled (insertions could reuse the slot).
The running times described above always use the actual number of filled slots.

Linear Probing

h(x)

Di.. Ef.. Da.. Hi.. Ha.. Jo.. Ju.. Ht.Ka.. Ol..

Figure 2.6: Insert operation into a table using linear probing.

Linear Probing is probably themost common example for hashingwith in-table-
displacement. During an insertion, whenever a collision occurs the inserted ele-
ment is stored in the first free slot after its canonical slot (i.e., s i(x) = h(x) + i mod msi(x) = h(x) + i
mod m circular order). When an element is queried, all slots after its canoni-
cal slot are scanned scan(i.e., searched linearly) until either the element or an empty
slot is found. This method has significant performance advantages on actual ma-
chines because sequential scans take better advantage of modern memory hierar-
chies than other access patterns(i.e., cache usage and prefetching mechanisms, see
Section 2.5.1).

Because of its performance in practice and its relative simplicity, linear probing is
explained in most beginner level algorithm textbooks. Analyzing its expected run-
ning time, however, is significantly more challenging compared to the multi hash-
ing example above. The problem is that elements start to naturally form clusters in
the table. A cluster clusteris a continuous range of filled slots. New elements have a higher
chance of being stored at the end of an already existing cluster (i.e., elements hashed
anywhere within a cluster are stored at the end of said cluster). These clusters in-
crease the average probing distance. Especially for negative queries and insertions.

31

2 Hashing Fundamentals

The following running times have famously been proven by Donald Knuth in an
unpublished memorandum in 1963 [36] (also in their book [37]). Knuth’s proof is
sometimes considered to be the origin of modern average case analysis [67]. As-
suming a fully random hash function:

E[probes until empty] = 1
2
(1 + 1
(1 − δ2)) (2.1)

E[probes query] = 1
2
(1 + 1

1 − δ) (2.2)

E[probes fill] = n ⋅ E[probes query] = n
2
(1 + 1

1 − δ) (2.3)

The number of probes to find an empty slot (e.g., during an insertion or negative
find) is E[probes until empty] (Equation 2.1). Querying an inserted element needs
on average of E[probes query] (Equation 2.2). Filling a table incrementally with
n insertions has a linear cost E[probes fill] similar to n queries on the final table
(Equation 2.3). These bounds also hold for hash functions that are (uniformly)
randomly chosen from a 5-independent family of hash functions [67] or when us-
ing tabulation hashing [73] (see Section 2.3.4)

Indeletions contrast to multi hashing and many other probing variants, linear probing
supports deletions without the use of tombstones. When an element is deleted and
its slot is cleared, we can find all other inserted elements that were displaced be-
cause of the current element since they are still stored in the consecutive slots of the
same cluster. After clearing the slot we scan through the following elements. If we
find an element whose canonical slot is before the cleared slot, then we move the
element into the cleared slot, and recurse on its slot. However,This implementation
violates the referential integrity that is otherwise maintained by all operations of a
linear probing hash table, i.e., if there existed any references to the original position
of the element (e.g., a pointer), then these references would be invalidated by mov-
ing the element. Another method for deletions that maintains referential integrity
was recently explored by Sanders [80]. Their method is based on tombstones, but
it only inserts a tombstone if it is necessary to find another element—removing old
tombstones if they become unnecessary. They show with practical experiments

32

2.4 Collision Resolution

that this method leads to an equilibrium of constant sized clusters, after a period
of mixed deletions and insertions.

Implementation details

Linear circular wrappingprobing hash tables are often implemented such that a probe that hits the
end of the table wraps around to the front of the table (Pac-Man style). We call
this method circular wrapping. This implementation has the advantage that the
table is topologically uniform—all slots are equal. The problem is that wrapping
the table necessitates some computational overhead (either a bitwise AND or
conditional jump). A somewhat faster method overflow bufferis to provide a number of slots
at the end of the table. We call these the overflow buffer. The slots of the over-
flow buffer are only reachable through probing from the actual table, i.e., no
hash value is mapped to the slots of the overflow buffer. The size of the overflow
buffer should be large enough to hold the longest expected cluster (≈ O(log n)
for reasonable δ). Additionally, the overflow buffer can be used to simplify the
detection of a full table using a sentinel slot sentinel slot. To do this, we ensure that the last
slot of the overflow buffer can never be filled, i.e., we report that the table is full
whenever the last slot would be filled by an insertion (usually triggering a capac-
ity increase). This ensures that each probe is always able to find another empty
slot before it reaches the end of the table making checking for the boundary of
the table unnecessary.

Other Probing Schemes (Quadratic, Random, . . .)

h(x)

Di.. Ef.. Da.. Hi.. Ha..Ar.. Ka.. Jo.. Ol.. Ht.

Figure 2.7: Insert operation into a table using quadratic probing.

All of the following techniques aim to reduce the clustering of a table. Thus,
achieving the expected probing distances of multi hashing while retaining some of
the memory efficiency and performance of linear probing.

33

2 Hashing Fundamentals

Quadratic Probing [37] si(x) = h(x) + i2 mod m here the distance to the
canonical slot grows quadratically in the number of probes necessary to find an el-
ement. Formost elements, the search is still very local and for larger displacements,
this method aims to reduce the clustering problem.

Double Hashing [37] si(x) = h′(x) + i ⋅ h′′(x) mod m this technique could
be described by using double hashing (see Section 2.3.3) to compute themany hash
functions used for multi hashing. The distance between two probed slots is com-
puted using a second hash function (h′′(x)) thus, average cluster size is drastically
reduced but the data locality remains low on average.

Mixed Hashing schemes we can easily imagine mixed hashing schemes that
use linear probing for a few slots, before switching to one of the othermethods. This
way thememory efficiency could be similar to linear probing while also shortening
clusters.

Circular Cache Line Probing (CCLP) one such mixed technique that we be-
lieve might be interesting is CCLP (it has not been mentioned scientifically). It
combines some of the advantages of linear probing and random probing. The idea
is to split the table into blocks and to scan the whole block, whenever one part of
the block has to be loaded (e.g., one block = one cache line). First the whole block
containing the canonical slot is probed in a circular fashion. If all slots within
the “canonical block” are filled, we use another probing technique (e.g., double
hashing) to compute an alternative slot within a new alternative block that is again
probed in a circular fashion.

Robin Hood Hashing

h(x)

Di.. Ef..Da.. Hi..Ha.. Jo.. Ju.. Ka.. Ol..

Ht..

Figure 2.8: Inserting an element into a hash table using Robin Hood hashing.

34

2.4 Collision Resolution

Themotivation behind Robin Hood [12] hashing is to minimize the variance in
query running times by moving elements closer to their canonical slot. The result-
ing hash table is a linear probing hash table where all elements within a cluster are
sorted sorted by their hashed keyby their hashed key. All elements that belong to the same canonical slot are
stored in a continuous range called a run or canonical run canonical run. This order of elements
minimizes the maximum displacement while still representing a legal linear prob-
ing hash table (i.e., same resulting table as a linear probing table with a different
order of insertions).
The insertion algorithm is themain difference between linear probing andRobin

Hood hashing. If there is a collision, the element has to be inserted into the correct
slot within its canonical cluster (the filled range of slots that contains its canonical
slot). The correct slot can be found by hashing the keys of elements that are scanned
while searching for a free slot. Once an element is found whose key has a larger
position we insert into its slot and this element and all following elements of the
cluster are moved one slot to the right. If there is no such element in the cluster,
the new element is inserted in the first empty slot after the cluster (similar to linear
probing).
The query algorithm is the same as in linear probing. From the canonical slot

we scan to the right and compare the keys of stored elements to the queried key
until the correct element or an empty slot is found. However, there are techniques
that can improve the query performance. For example it is possible to stop scan-
ning the cluster, once an element is found, whose canonical slot is larger than the
queried element’s canonical slot. Alternatively, it is possible to store the maximum
displacement length throughout the whole table. Thus, queries can be aborted after
they have looked at enough slots. This method is interesting for Robin Hood hash-
ing in particular, because it minimizes the maximum displacement (it is also less
prone to variance). Both of these early rejection methods decrease the number of
probed slots at the cost of some additional comparisons. Therefore, they are both
only beneficial if the average probing length’s are large, i.e., if the table is densely
filled.
Robin Hood hashing also allows for some very intuitive acceleration techniques

that depend on per-slot auxiliary data using auxiliary data, i.e., some additional information that is
stored in each slot (in addition to the key value pair). These information can be

35

2 Hashing Fundamentals

used to avoid executing the hash function unnecessarily or to find the canonical
run that belongs to a slot more quickly.

• each slot could store 3 auxiliary bits that encode cluster start, run start, and
occupied comparable to quotient filters (see Section 5.4)

• each slot could store the displacement of its run (offset of the first element
hashed to it) since displacements are usually small 8bits per slot should be
enough to store these offsets.

Hopscotch Hashing

h(x)

Di.. Ef.. Da.. Hi.. Jo..Ha.. Ka.. Ju..Ht. Ol..
100.. 100.. 011.. 000..000.. 000.. 010.. 000.. 000.. 000.. 000.. 100.. 000.. 000..000..

0 0 00011 1

Figure 2.9: Querying a hopscotch hash table.

Hopscotch hashing [33] is another hashing technique that rearranges elements
in a linear probing based hash table. However, the main goal is not to minimize
displacements but to improve the performance via auxiliary per-slot data. Each
slot s stores a bitmaskbitmask representing the

neighborhood
(bs,0, . . . , bs, j) of size j representing its neighborhood (the

canonical slot and j− 1 slots after it). Elements can only be stored in the neighbor-
hood of their canonical slot. Each bs,i = 1 iff slot s + i stores an element that was
originally hashed to slot s. Therefore, queries only need to compare one key per
1-bit in the canonical slots neighborhood bitmask.
The insertion works similar to linear probing. The slots after the canonical slot

are scanned until an empty slot is found. If the empty slot is inside of the canoni-
cal slots neighborhood, the element is inserted and the appropriate bit is updated.
Otherwise, elements from other slots aremoved to the right in an effort to create an
empty slot closer to the canonical slot. In some instances this might not be possible
(without having to move elements out of their canonical neighborhood), then the
current element cannot be inserted. The maximum displacement in the table has
to be smaller than the neighborhood size.

36

2.4 Collision Resolution

Queries and deletions are the main strengths of hopscotch hashing. Through
the help of the neighborhood data it is possible to reduce the number of compared
elements to the number of elements that are true collisions (i.e., elements that have
the same canonical slot). Negative queries can be particularly fast, especially when
the canonical slot has an empty neighborhood bitmask. One large advantage is that
elements can be removed easily by removing the corresponding 1-bit and clearing
their slot, without moving any elements (this works because queries do not access
or stop at empty slots, instead they always look at all slots that have a 1-bit in the
neighborhood data.

Cuckoo Hashing

Cuckoo hashing [19, 25, 59, 68] is a technique where each element only has a con-
stant number of alternative slots (i.e., slots it can be stored in). guaranteed constant look-upsThus, the running
time of a query is guaranteed to be constant. This even holds, for densely filled
tables, where linear probing would slow down due to large clusters. Cuckoo hash
tables are able to operate under higher fill degrees than other tables with in-table-
displacement because they allow rearranging elements between their alternative
slots. This opens a large search space of new potentially empty slots. A more de-
tailed view at cuckoo hashing can be found in Section 3.5 where we use techniques
based on cuckoo hash tables to grow a table incrementally in small steps.

In the following we give a short introduction toH-ary B-bucket cuckoo hashing
(from now on (B,H)-cuckoo hashing (B,H)-cuckoo hashing). There are many other variants of cuckoo
hashing, however most of them are adaptations of this base technique. The table
is split into m/B buckets with B slots each. Additionally, we use H different hash
functions h0, ..., hH . Instead of hashing to a slot directly, each hash function hashes
an element to one of these buckets (hi ∶ U ↦ [0..m/B − 1]).
When an element is inserted, it is hashed once with all H hash functions ob-

taining different “canonical buckets”. If at least one bucket is not full, the element
is inserted into the least full of its buckets. This technique uses the power of two choicespower of two
choices [58] concept to automatically balance elements within the table. Even when
all its buckets are full, the element can usually be inserted by moving one of the
other elements into one of its other buckets. This form of displacements can lead

37

2 Hashing Fundamentals

to long chains of elements being moved until a free slot is found (i.e., recursive
moves if those buckets are also full).
To find these movesfinding moves by exploring the

induced graph
, we traverse elements in a graph like manner. Each node

represents a bucket and each element contained in the bucket creates an edge from
the node to all other nodes that represent the alternative buckets of the element. In
this graph representation, each full bucket has an outgoing degreeoutgoing degree B ⋅ (H − 1) of B ⋅ (H − 1). To
find a way of inserting a new element, we have to find a simple path from a node
representing one of its canonical buckets to a node representing a bucket that is not
full. Once such a way is found, we can move elements along this path freeing up
a slot in the original bucket. In general, there are two ways of finding a path like
this—breadth first search

random walk
breadth first search and random walk 3.5.4).

Both queries and deletions are very simple, all canonical buckets are scanned
looking for the element. Deletions can clear the slot of found elements, without
any additional work.

Coalesced Hashing (in-table-chaining)

An older technique that we want to point out because it is an interesting combina-
tion of in-table-displacement and chaining techniquesin-table chaining is coalesced hashing. Each
slot of the table stores a pointer in addition to its element. These pointers are used
to create chains that connect each slot with all elements that were hashed to said
slot. Elements that are not stored in their canonical slot are stored in alternative
slots somewhere in the table. Their alternative slot is added to a queue starting in
its canonical slot (linked through the additional pointers). This technique is some-
what similar to hopscotch hashing, in that additional per slot data (here pointers)
is used to improve queries and other operations. Using the chains created by point-
ers, we can reduce the number of comparisons and thus reduce the effects of cluster
generation.
When an element is inserted, we first check its canonical slot. There are 3 possi-

bilities:

1. the slot is empty: We store the element in its slot.

2. the slot holds another element that was also hashed there: We iterate through
the chain given by the pointers (s0 = h(x) and si = pointer(si−1)) to find

38

2.4 Collision Resolution

out, weather the element is already in the table. At the end we find a new
alternative slot. There we store the element and update the pointer of the last
element in the chain.

3. the slot holds an element that was hashed to another slot: In the classical im-
plementation, we proceed like in case 2. Thus, both chains start to interleave
(the queue contains elements with two different canonical slots). This can be
avoided at the cost of referential integrity (see box below).

When querying a key, we only have to check all slots within its “canonical chain”.
When deleting an element we update the pointer of the previous chain element
and clear the slot. If the element was actually the first element of its chain, we can
move the last element of its chain into the original slot, removing the last pointer
of the chain. Merged chains might need some special attention during the dele-
tion algorithm (because slots within one chain could be first chain link of another
chain).
There is some interesting design space in how to find alternative slots in a hash

table like this. In theory, it would be possible to use any probing mechanism pre-
sented previously, but without any changes to the algorithm (see box below) this
would lead to many interleaved lists. The original variants of coalesced hashing
published in the early 80s [87] solve this problem by using a cellar cellarof unreachable
slots at the end of the table. The idea is to have m slots in the table, but to address
only m′ slots using the hash function (we describe a similar technique for linear
probing page 33). The last m − m′ slots are only used as alternative slots. Using
these un-addressable slots as alternative slots prevents chains from merging. Al-
ternative slots can be found using a simple pointer to the last free slot in the table.
Whenever an alternative slot is needed, the last empty slot is used, and the pointer
is decremented. The pointer automatically starts to use slots from the addressed re-
gion, once the cellar is full. The appropriate ratio betweenm′ andm depends on the
targeted fill degree, and also on the ratio of successful to unsuccessful lookups [83].

Updating coalesced hashing

39

2 Hashing Fundamentals

Coalesced hashing is a really old technique that predates the importance of cache
efficiency onto the running time of algorithms. But given a fewupdates, in-table-
chaining could be competitive with other in-table-displacement techniques.
The goal is to get the combined advantages of linear probing (cache efficiency)

and hashing with chaining (less comparisons, easy deletions) at the cost of some
memory (≈ 1byte per slot not a full pointer). To get a similar cache efficiency to
linear probing, we choose alternative slots with one of the probing techniques
mentioned in the previous sections, e.g., linear probing, or quadratic hashing. To
prevent interleaved chains, we change the third case of the insertion algorithm
to:

3. We find an alternative slot for the stored element and move the element
to this slot. Then we fix the chain of the moved element. Now the original
element can be stored in its canonical slot.

Using linear or quadratic probing to find alternative slots also helps to reduce the
memory overhead of in-table-chaining. Since, alternative slots are likely reason-
ably close to each other, we can store pointers in the form of small offsets to the
next queue item. A 1byte offset should be more than enough to store the rel-
ative position of two chain links. If one offset poses a problem, we can move
already stored elements to create a free slot closer to the last queue item (similar
to hopscotch hashing).

Table 2.1: Overview of collision resolution schemes strengths and weaknesses.

Hashing Method in-table cache duplicates deletions ref. invalidation
chaining × – ✓ ✓ never
chaining with heads × 0 ✓ ✓ deletion, mig.

multi hashing ✓ – slow tombstone migration
linear probing ✓ ++ slow ✓ deletion, mig.
random probing ✓ – slow tombstone migration
quadratic probing ✓ + slow tombstone migration
Robin Hood hashing ✓ ++ slow ✓ non-lookups
hopscotch hashing ✓ ++ can fail ✓ insertion, mig.
coalesced hashing ✓ 0 slow ✓ migration
cuckoo hashing ✓ 0 can fail ✓ insertion, mig.

40

2.5 Some Facts about Memory

2.5 Some Facts about Memory

2.5.1 Cache

A common bottleneck inmany algorithms is the time spent onwaiting formemory
accesses. This is also true for most hash table operations. In Section 2.3 we mea-
sured the time to compute the hashed value for a random key with 64bits at about
13ns (9ns xxh3 + 4ns fastrange64). Each main memory access however takes be-
tween 50 and 100ns. This can be reduced if the accessed memory region is stored
in the cache hierarchy cache hierarchyconsisting of L1, L2, and L3 caches. However, onemainmem-
ory access per operation seems to be unavoidable if the table is significantly larger
than cache (multiple accesses to the same key would be improved by caching).

There are a couple of facts that are necessary to understand the memory per-
formance of hash tables. Once a piece of memory was accessed, it is stored in the
cache. As long as it remains cached, future accesses are considerably faster (≈ 1ns
for an access to the L1 cache). The smallest unit of memory that is loaded into the
cache is one cache line cache line(usually 64bytes). Thus, accessing two memory slots that
are physically close to each other can be considerably faster. Furthermore, modern
architectures use a cache prefetcher cache prefetcherwhich loads cache lines that were not already
accessed, further increasing the effectiveness of accessing physically close memory
positions. This is especially apparent when scanning scan = linear searchthrough memory entries, i.e.,
linearly looking at consecutive memory entries. When scanning through consec-
utive memory entries every piece of the cache line that was loaded is used (high
cache reuse rate), additionally, the access pattern is really easy to detect for the
prefetcher making it highly likely that consecutive cache lines are already loaded
when they are accessed for the first time.

When accessing memory there are two performance measures latency latency and bandwidth, i.e., the
turnaround time from requesting a cache line to it being available to the CPU and
bandwidth, i.e., the amount ofmemory per time that can be loaded. The bandwidth
is typically high enough, to load multiple cache lines at once. Therefore, there can
be some pipelining pipelining, i.e., multiple cache lines being in transit at the same time, e.g.,
when theywere accessed consecutively. This is only possible, however, if the second
memory access does not depend on the first one (i.e., the address of the second

41

2 Hashing Fundamentals

memory access does not depend on the value of the first access). We call this a
dependent memory accessdependent memory access . Dependentmemory accesses should be avoided because
they decrease the possibilities for pipelining, each dependent memory access that
is not cached adds its latency to the overall running time of the operation.

Cache lines can also be prefetchedmanual prefetching manually. This can increase performance if the
hashing scheme dictates some alternative memory positions that are very likely to
be accessed, but that are not obvious to the automatic prefetcher. One such example
is during cuckoo hashing (page 37). When querying an element we can prefetch
all canonical buckets before beginning to access the first bucket, this will cause all
buckets to be loaded at the same time. Thus, accessing the second and third buckets
will be significantly faster after scanning the first.

Cache Performance of Different hashing Techniques

To visualize the impact of cache effects—latencyimpact of latency, pipelining,
and prefetching

, pipelining, and prefetching—on
different hashing algorithms, we conduct the following experiment. A hash table
with 50M slots is filled to around 70%. After the insertion, we check the displace-
ment of each element and store elements grouped by their displacement (number
of probed slots until the element is found). In a second step, wemeasure the perfor-
mance of look ups from each group (thewhole experiment is repeated 5 times using
different key sequences; on an AMD Epyc 7551P CPU with 256MB L3 Cache). The
results can be seen in Figure 2.10: the plot on top shows the average time tavg(i) for
queries within group i, the bottom plot shows the size s(i) of the group (logarith-
mic scale), the right plot overall average query time of each hashing algorithm (i.e
∑i tavg(i) ⋅ s(i)).

The most obvious result is, longer displacements lead to longer query times.
However the correlation changes between different hashing techniques3. All plots
seem to start at around 40ns≈ 40ns for the first memory

access
per operation, which is lower than the common wis-

dom would indicate for one main memory access but we should also consider that
around 1/3 of the hash table fits into the L3 cache of our machine (256MB). Most

3Robin Hood hashing profits from the structure of the benchmark. Elements that are stored in
neighboring slots often have the same displacement, this is especially noticeable when groups
become small.

42

2.5 Some Facts about Memory

0

500

1000

Ti
m
e
pe
ro

p
in

ns

100

102

104

106

0 10 20 30 40 50
displacement

nm
br

of
el
em

en
ts linear probing

quadratic probing
robin hood
hopscotch
(4, 4) cuckoo hashing
chaining

45.8 45.1 44.5
51.7

56.1 55.6

0

20

40

60

lin
pr
ob

qu
ad
pr
ob

ro
bi
n
ho
od

ho
ps
co
tc
h

cu
ck
oo

ch
ai
ni
ng

av
er
ag
e
tim

e
in

ns

Figure 2.10: Influence of displacement on cache performance. Top: shows the average time
for queries with a certain displacement distance. Bottom: displays the number
of elements with a certain displacement. Right: average query time overall.

techniques have displacements-distribution that are heavy on elements with low
displacements.

Linear probing in particular has relatively long displacements, however, the query
time per displacement is faster than other methods, with clearly distinguished lev-
els (plateaus) loosely corresponding to (pairs of) cache lines (cache lines contain
four 16byte elements and are loaded in pairs). Quadratic probing achieves shorter
displacements due to reducing the size of clusters, however, elements with larger
displacements take significantly longer to find due to the low usage rate of loaded
cache lines (only one comparison per cache line). Hopscotch hashing does not seem
to have any benefits compared to linear probing, the displacement-distribution is

43

2 Hashing Fundamentals

CPU Cache
Memory

CPU Cache

CPU Cache

CPU Cache
InterconnectCache

Coherence

Memory

Socket 0

Socket 1

Figure 2.11: Schematic representation of thememory system in amulti socket sharedmem-
ory machine.

exactly the same as with linear probing and performance does not seem to benefit
from the additional neighborhood bitmasks.
Robin Hood hashing shortens the displacements, however, it also reduces the

number of elements with smaller displacements, i.e., moving more elements to-
wards the average displacement. Thus, more elements fall into the second level of
performance (i.e., displacement > 5).
Looking at the performance metrics of cuckoo hashing we can clearly see the

bucket structure. At 70% fill degree there are only very few buckets that have an
8th element. Because of the balancing insertions, there is a higher average displace-
ment. However, theprefetching buckets prefetching nearly eliminates the correlation between displace-
ment and query time.
The effects of chaining are somewhat contrary to cuckoo hashing. The average

displacement length is significantly reduced, but the dependence on the running
time is significantly larger. Each additional displacement adds about 40ns to the
query time (about the same time as the first access).
Overall, the experiments show that the displacement distances are an indica-

tor for running times, but an efficient access pattern can compensate these larger
displacements.

2.5.2 Shared Memory

Concurrent hash tables that run onmulti core processors have additional memory
characteristics that have to be considered. Each processor has its own cache hierar-

44

2.5 Some Facts about Memory

chy that might also be shared with other processors. Additionally, there are hidden
costs behind communications and synchronizations between processors.

One such hidden cost is the cache coherence protocol cache coherence. Whenever a cache line is
accessed by a processor, it is loaded into the corresponding cache. When one pro-
cessor changes a value within the cache line, then existing copies in other caches
need to be invalidated (to avoid accessing old data). This process is called cache
invalidation cache invalidation. This is done automatically through the cache coherence protocol. It
holds the state of each cache line that is stored in the cache. The states themselves
are usually based on the MESI coherency protocol, i.e., (M)odified, (E)xclusive,
(S)hared, (I)nvalidated. However, changes on the same chip are usually handled
independently on the L3 cache level. Intel has recently changed the inner workings
of their internal cache coherence protocol (for their processor generation code-
named skylake released 2017). For the purpose of this dissertation, the exact states
are mostly irrelevant. It is important to know that writing to a cache line invali-
dates copies of said cache line on other processors, and that changing the state of a
cache line incurs some overhead due to updates to other cached copies. Therefore,
situations wheremultiple processors repeatedly write to the same cache line should
be avoided. Sometimes this even happens unnecessarily, whenmultiple processors
repeatedly write to different variables that are stored in the same cache line. We
call this effect false sharing false sharing. False sharing can often be avoided by isolating relevant
variables.

Whenever multiple processors access the same variables, it is important that all
of them observe a consistent state of the variable and that no updates to the vari-
able have the potential to get lost or become visible in an unwanted order (i.e., if
one processor changes two variables the second change should not be visible be-
fore the first). The correct behavior can be ensured, by using atomic variables and
operations atomic operations/variables. An atomic operation transforms the initial state of a variable to its re-
sulting state without any intermediate states being observable. A variable that is
only accessed through atomic operations is called an atomic variable. Many atomic
operations follow the read-modify-write pattern. They couple read and write ac-
tions into one atomic transaction. This ensures that the state right before the op-
eration is observed. Common atomic operations (see 2.2) include load, store, ex-

45

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)#Cache_Coherency

2 Hashing Fundamentals

Table 2.2: Common atomic operations and their effects.
name C++ equivalent4 function
load load() loads an atomic variable
store store(x) stores the new value
exchange exchange(x) stores the new value, returning the previous value
fetch-and-add fetch add(x) increments by x, returning the previous value

(similar operations exist for: sub, and, or, xor)
compare-and-swap compare. . . 1. loads the variable

. . . exchange. . . 2. compares its current value with y

. . . strong(y, x) 3a. if they are the same, store x
3b. otherwise update y to current value

change, compare-and-swap (CAS), and fetch and add (other fetch and X opera-
tions).
Larger shared memory machines—especially multi-socket server hardware—

haveNon-UniformMemory Access (NUMA)Non-Uniform Memory Access .There, processors are split into groups
called (NUMA-)nodes(NUMA)-node , each group has its own “local” main memory which it has
fast access to. All groups can also access each others memory, but accessing the
local memory is faster than other group’s memory. Most data structures like most
hash-based data structures cannot avoid accessing other sockets. To make a con-
current data structure scalable on NUMA hardware it is necessary to reduce these
accesses to a minimum. I.e., in a hash table there might be a slower access because
the section of the table is stored on a certain node, however, there should not be
a slow access because of some global metadata that could be duplicated on each
node. Special problems may arise if the whole data structure is stored on the same
node. In those cases, the bandwidth of this nodes data connection (i.e., QPI or UPI
links5, Infinity Fabric) might become a bottleneck.

2.5.3 Memory Mapping

When allocatingmemory, there are three steps that usually happen before it can be
used. (1)(1) allocating virtual memory

pages
(2) mapping to physical

memory frames
(3) initializing memory

A section from the (virtual-)address space is allocated by calling malloc,
which only reserves memory (usually constant time). (2) The virtual memory is

4all C++ functions take an optional parameter specifying thememory order. Using the correctmem-
ory order can be necessary for optimal performance.

5QPI and UPI links are trademarked by intel

46

2.5 Some Facts about Memory

0 |MEM|

0
248process 0

process 1

virtual memory

0
248

allocation

not allocated

physical memory

allocated (not mapped)
allocated (mapped)

virtual memory size

physical memory size

physical pages are interleaved

Memory Translation

Figure 2.12: Schematic representation of the virtual to physical memory mapping.

organized in pages, before using a memory page, it has to be mapped to a physical
memory frame. (3) Once the memory is mapped, it usually has to be initialized
before it is used. The initialization actually triggers the mapping from virtual to
physical memory. Therefore, steps (2) and (3) are connected—no physical memory
frame is used before it is accessed and written to.
The mapping happens per virtual memory page (= physical memory frame).

Therefore, the amount of physically used memory can be small even if there is a
large amount of allocated virtual memory, as long as only a small subset of this
memory has ever been accessed (see Figure 2.12). Usually, the virtual memory
space is significantly larger, than the amount physically available memory. Thus,
the operating system allows overallocation overallocation—allocating more virtual memory then
there is physical memory6. Overallocation can be used to create a memory alloca-
tion that can grow over time growing memory allocationfor example to create a growing hash table that does
not need any reallocations. This can be done by allocating enoughmemory to hold
the maximum number of elements (i.e., ≈ physical memory size), then we only us-
ing the first m ⋅ se bytes (should be a multiple of the virtual memory page size),
where se is the size of an element. Additional memory can be made available by
simply accessing (i.e., initializing it for the first time). The true memory footprint
(amount of physically used memory) is only the number of used bytes in addition
to the waste of the last physical memory page.
The mapping process itself is mostly controlled by the operating system. How-

ever, we observed that this mapping can be a bottleneck when called in parallel

6This feature can be turned off on some systems.

47

2 Hashing Fundamentals

by many processors at once, e.g., when many processors initialize a large array in
parallel.
Once thememory ismapped, eachmemory access leads to an address translationaddress translation

from the virtual to the physical address space. We only give a short description of
the address translation, since it is invisible to the user and it cannot be influenced
by programmers. Each access starts with a lookup in the translation lookaside buffer
(TLB)Translation Lookaside Buffer it stores the frames for all recently accessed virtual memory pages. The TLB
is a hardware cache that is a part of the memory management unit (MMU) of the
CPU. The operating system is only involved in the translation, i.e., when there is
a miss in the TLB. This is either the case, because the page has not been mapped
yet (see above) or if the relevant page has not been accessed in a while (thus it was
evicted from the TLB). In this case, the operating system translates the address
using the page table. Depending on the operating system, the table can be imple-
mented in different ways (usually in Linux systems it is implemented as a broad
tree).

48

3 Space Efficient Hash Tables

There are two commonly analyzed performance metrics that are
analyzed for data structures: time per operation and memory
consumption. Hash-based data structures in particular have an
interesting tradeoff between performance andmemory. Less space
per element usually leads to slower operations. However there
are architectures that are specifically designed for space efficient
hashing.
One aspect that we explore throughout this section is the re-

lation between dynamic table size and space efficiency. To build
a space efficient hash table it is necessary, to initialize the table
with the correct final size. This is only possible if there is a tight
bound to the number of elements which is not the case for many
practical workloads. Hash tables that can grow in a space effi-
cient manner can guarantee space efficiency even for workloads
where the final size is unknown prior to the execution. We show
multiple ways to implement hash tables that grow in a space effi-
cient manner. These variants are space efficient throughout their
whole lifetime—not just once the capacity is reached and the ta-
ble is densely filled. All implementations developed throughout
this chapter are available publicly in our DySECT [42] library
on github.

One common aspect of hash tables that has been studied a lot is their space
efficiency [18, 22, 19, 25, 59, 68]. Thus, when researching a set of specialized but
interchangeable hash table implementations, one should also pay some attention
to hash tables focusing on space efficiency.

49

https://github.com/TooBiased/DySECT

3 Space Efficient Hash Tables

While current state of the art implementationsworkwell evenwhenstate of the art: space efficient
only with static size

filled to 95%
and more, they can only reach these fill degrees if they are initialized with the cor-
rect (final) capacity, thereby, requiring programmers to know tight bounds on the
maximum number of inserted elements. This can often be unrealistic. Many typi-
cal hash table applications like aggregating data elements by their key, often have no
guarantees on howmany of their elements are unique. Whenever the exact number
of unique keys is not known a priori, we have to overestimate the initial capacity
to guarantee good performance. In these cases, we need dynamic space efficient
data structures to guarantee both good performance and low memory overhead
independent of the final number of elements.

To visualize this, assume the following scenario. During a word count bench-
mark (counting the number of duplicates by storing and incrementing counters
in a hash table), we know an upper bound nmax on the number of unique words.
Therefore, we construct a hash table with at least nmax slots. If an instance only con-
tains 0.7 ⋅ nmax unique words, no static hash table can have fill ratios greater than
70%. Sometimes, dynamic data structures are necessary even if the final number
of elements is known, i.e., when distributing a known number of elements onto a
number of hash tables. Unless we know the distribution to be balanced, all tables
must be initialized for themaximumpossible load. In both cases, dynamic space ef-
ficient hash tables are required to achieve guaranteed near-optimal memory usage.
In scenarios where the final size is not known, the hash table has to grow closely
with the actual number of elements. This cannot be achieved efficiently with any
of the current techniques used for hashing and migration.

Many librariesno other library supports
space efficient growing

—even ones that implement space efficient hash tables – offer
some kind of growing mechanism. However, all existing implementations either
lose their space efficiency or suffer from performance breakdowns once the table
grows above its original capacity.

The results presented in this chapter have been collected from our previous con-
ference [45] and journal [49] publicationsthe results in this section have

been peer reviewed
. In this dissertation I use some of the

texts verbatim or with fairly small changes. I was the main author for both of these
publications. Thus, this text (aside from minor editing through my co-authors)
was originally written by me. The theoretical analysis of maximum load bounds

50

3.1 Contributions

presented in [49] was originally written by Stefan Walzer. As such, I do not repeat
the full analysis. Instead, I present some of the interesting threshold behavior that
we noticed and also show some reasons why this happens—without reproducing
the full theoretical analysis.

3.1 Contributions

We consider space efficient hash tables that can grow (and shrink) dynamically and
are always highly space efficient, i.e., their space consumption is always close to the
lower bound even during migrations and when taking into account storage that
is only needed temporarily. None of the traditionally used hash tables (i.e., grow-
ing techniques) have this property. blueprint to adapt known

hashing methods
We show how known approaches like linear

probing and bucket cuckoo hashing can be adapted to this scenario by subdivid-
ing them into many subtables or using virtual memory overcommitting. However,
these rather straightforward solutions suffer from slow amortized insertion times
due to frequent reallocation in small increments.
Our main result is DySECT DySECT

Dynamic Space Efficient
Cuckoo Table

(Dynamic Space Efficient Cuckoo Table) which
avoids these problems. DySECT consists of many subtables that grow efficiently
by doubling their size. The resulting inhomogeneity in subtable sizes is counter-
balanced by the flexibility available in bucket cuckoo hashing where each element
can go to several buckets each of which contains several slots. Experiments indicate
that DySECTworks well with loads up to 98%. With up to 35%better performance
than the next best solution.
In addition to our data structure designs, we also present an extensive exper-

imental evaluation. Furthermore, we including some analysis of the interesting
periodic behavior of DySECTs maximum load bound and previously unpublished
experiments like an analysis of insert-delete workload.

3.2 Related Work

Over the last one and a half decades, the field of space efficient hash-based data
structures—especially the design space of space efficient hash tables—has regained
attention, both from a theoretical and practical point of view. The initial innovation

51

3 Space Efficient Hash Tables

that sparked this attention was the idea that storing an element in the less filled of
two “random” spots (often called buckets) leads to very well balanced loads. This
phenomenon is known aspower of two choices “the power of two choices” [58].

This concept led to the development of cuckoo hashing [68]. Cuckoo hashing ex-
tends the power of two choices paradigm by allowing insertions to move elements
within the table to create space for new elementspower of two choices

+moving elements
= cuckoo hashing

(see Section 2.4.2, page 37 for a
more elaborated explanation). Cuckoo hashing revitalized research on space effi-
cient hash tables. Probabilistic bounds on themaximum load [18, 22] and expected
displacement distances [26, 27] are often highly non-trivial.

Cuckoo hashing can be naturally generalized in two directions to increase space
efficiency:more hash functions and

larger buckets
allowingH ≥ 2 choices [25] or extending slots in the table to buckets that

can store B ≥ 1 elements [19]. We summarize this under the term (B,H)-cuckoo
hashing.

Further adaptations of cuckoo hashing include: multiple concurrent implemen-
tations either powered by bucket locking [41], transactional memory [41], or fully
lock-less [63]; a de-amortization technique that provides provable worst case guar-
antees for insertions [5, 35]; and a variant that minimizes page-loads in a paged
memory scenario [23].

Some non-cuckoo space efficient hash tables continue to use linear probing vari-
ants. Quadratic Probing (see page 33) was already analyzed by Knuth [37] and per-
forms better on densely filled tables. Robin hood hashingRobin Hood hashing (see page 34), for example,
is a technique that was originally introduced in 1985 [12]. The idea behind robin
hood hashing is to move already stored elements during insertions in a way that
minimizes the longest possible search distance. Robin Hood hashing has regained
some popularity in recent years, mainly for its interesting theoretical properties
and the possibility to reduce the inherent variance of linear probing.

All these publications show that there is a clear interest in developing hash tables
that can be more and more densely filled. Dynamic hash tables on the other hand
have not received much attentionsignificantly less interest in

growing hash tables
. The few papers we found (e.g. [20]) which take

on the problem of dynamic hash tables predate cuckoo hashing, as well as much of
the newfound attention for space efficient hashing. All memory bounds presented
are given without tight constant factors. The lack of implementations and theory

52

3.3 Defining Space Efficiency

about dense dynamic hash tables is where we pick up and offer a fast hash table
implementation that supports dynamic growing with tight space bounds.

3.3 Defining Space Efficiency

Tables can usually only operate efficiently up to a certain maximum load factor.
Above that, operations get slower or have a possibility to fail. in-table vs. out-of-tableWhen implementing
a hash table, one has to decide between storing elements directly in the table—in-
table storing (sometimes called closed hashing)—or storing pointers to elements—
out-of-table storing (sometimes called open hashing). This has an immediate impact
on the amount of memory required—in-table storage uses m ⋅ se and out-of-table
uses at least m ⋅ sp + n ⋅ se (chaining needs an additional n ⋅ sp) where se is the size
of an element and sp is the size of a pointer.
For large elements large elements→ out-of-table(i.e., much larger then the size of a pointer), one canuse a non-

space efficient hash table with out-of-table storing to reduce the relevant memory
overhead. Therefore, we inspect the common andmore interesting case of elements
whose size is close to that of a pointer. For our experiments we use 128bit elements
(64bit keys and 64bit values). In this case, out-of-table storing introduces a sig-
nificant memory overhead (at least 50% for 64bit pointers). small elements→ in-tableFor this reason, we
only consider in-table storing hash tables. Their memory efficiency is directly de-
pendent on the table’s load. To reach high loads with in-table storing, we have to
employ in-table displacement techniques (see Section 2.4.2). This means that ele-
ments are not stored in predetermined slots, but can be stored in one of several
possible places (e.g., linear probing, or cuckoo hashing).

3.3.1 α-Space Efficient Hash Tables

Static

We call a hashing technique α-space efficient when it can work efficiently using at
most α ⋅ n ⋅ se + O(1) memory (where se is the size of an element). An intuition
for what we mean by working efficiently is having find performance similar to an
unfilled table; and having insertion times close to ≈ (1 − δ)−1. This is the expected
number of fully randomprobes needed to hit an empty slot, and therefore, a natural

53

3 Space Efficient Hash Tables

estimation for insertion times (i.e., insertion time in a table with multi hashing—
see Section 2.4.2, page 29). This definition is in some ways intentionally vague
because we want to include machine specific benefits (like cache line usage and
prefetching, see Section 2.5.1) of techniques like linear probing that are hard to
translate into models.

When a table uses in-table storing (e.g. linear probing, cuckoo hashing) slots
usually have the same size as elements. Therefore, being α-space efficient is the
same as operating with a loadα-space efficient δ ≥ α−1 of δ ≥ α−1. Because of this, we will mostly talk about
the load of a table instead of its memory usage.

Dynamic

The definition of a space efficient hashing technique given above is specifically tar-
geted for statically sized hash tables. We call an implementation dynamically α-
space efficient if an instantiated table can grow arbitrarily large over its original
capacity while remaining smaller than α ⋅ nmax ⋅ se + O(1) at all times.

One problem for many implementations of space efficient hash tables is thefull table migrations are not
space efficient

mi-
gration. During a normal full table migration, both the original table and the new
table are allocated. This requires mnew + mold slots. Therefore, a normal full table
migration is never more than 2-space efficient. The only option for performing a
full table migration with less memory is to increase the memory in-place (see Sec-
tion 3.7). Similar to static α-space efficiencydynamic α-space efficiency

δmin ≥ α−1
, wewillmostly talk about theminimum

load factor δmin ≥ α−1.

3.3.2 Ideas for Space Efficient Growing

Growing is commonly implemented either by creating additional hash tables—
decreasing performance especially for lookups (thus, this approach is only feasible
in a very limited capacity)—or byclassic growing mechanisms

do not work
migrating to a new table—causing a temporary

drop of space efficiency to at best 50%. The reason being that at least for the time
of the migration two tables exist. Thus even when the original table was filled to
100% and the migration does not change the size (by more than a constant) there
are at least two slots per element.

54

3.4 A Blueprint for Dynamic α-Space Efficiency

The classical way to circumvent the memory overhead of full table migrations
is to split the table into subtables that can be migrated individually. If there are T
subtables, growing one subtable individually reduces the necessary memory over-
head tom/T (if subtables are balanced), because onlym/T slots are duplicated. We
use this method both for our updated hashing methods (in Section 3.4) and also
within DySECT (Section 3.5).
In Section 3.4 we also present another technique that avoids the memory over-

head of full table migrations. We propose an in-place growing technique that uses
memory overallocation (see Section 2.5.3) to increase the tables capacity in-place.
By “creating” newmemory at the end of the table. Afterwardswe can use a novel in-
placemigration technique to reorder the elements to fit the new table size. The pro-
posed in-placemigration is flexible enough to be adapted tomany existing hashing
schemes. with only minor differences.

3.4 A Blueprint for Dynamic α-Space Efficiency

In this section we describe a blueprint that can be used to construct dynamic space
efficient variants frommany static hashingmethods. This blueprint consists of two
aspects: speed up the - speedup migration

- prevent migration overhead
table migration to counteract frequent small growing steps

and prevent the memory overhead during migrations.
Weuse the following commonly knownhashingmethods: linear probing, quadratic

probing, Robin Hood hashing, and cuckoo hashing. All these methods can fill static
tables to close to 100% (albeit losing performance). Both hashing with chaining,
and hopscotch hashing are not statically space efficient, because they store addi-
tional per-slot-data (for values of α that are interesting to us; the queue pointer
and neighborhood bitmaps respectively). We tested hopscotch hashing in some
preliminary experiments, but needed neighborhoods larger than 64 to reach our
targeted loads (90% and more), therefore, creating the same kinds of overheads as
chaining.
Growing a hash table usually means allocating a new table, and migrating all

elements from the current “source” table to the new “target” table. Even when ne-
glecting the memory constraint during the migration itself, being space efficient
means that the table has to be filled very densely before growing. Additionally, the

55

3 Space Efficient Hash Tables

table can only grow in small steps because it still has to be filled more than δmin

after growing. This leads to many small growing steps (each one growing only by
small factors) which can be very inefficient if migrations are small.
To achieve a minimum load of δminwhen to grow

and by how much
(up to α = δ−1min-dynamic space efficient), we

start growing once the table has a load of δtrigger = δmin+1
2 andwe grow the table such

that it fulfills the minimum load (n ⋅ δ−1min). This method, of keeping the table’s load
between δmin and δtrigger leads to many repeated full table migrations. As such, it
becomes even more important that each migration is as fast as possible.

3.4.1 Amortizing Frequent Growing

Even the frequent migrations that are necessary to grow the table with the number
of elements can be amortized if the table is statically δ−1trigger-space efficient (i.e., if its
operations remain efficient until δmin is reached). We outline a quick proof using
the token method. We define δ∆ = δtrigger − δmin = (1 − δmin)/2. Between two
migrations, i.e., fromm tom′ slots, we insert δ∆m elements. If each insertion pays
δ−1∆ tokens (constant number), then we have m tokens when the table is supposed
to grow, allowing us to pay for the expected running time of the migration O(m).
From the number of tokens necessary for each element, we see that the cost of
frequent migrations scale inversely with δmin.

3.4.2 Fast Table Migration

To implement fast table migration, we need to use the correct mapping from pre-
liminary hash function to the table positionneeds linear mapping . As described in Section 2.3.2 there are
two natural ways tomap a hash value h(e) (large binary number) to a slot in the ta-
ble (index 0..s−1). The circular mapping using amodulo operation (h(e) mod s),
or a linear mapping using one of the scaling methods described in Section 2.3.2.
We also see that the linear mapping (using fastrange) is actually significantly faster,
than the circular approach on arbitrary table sizes (Note: Arbitrary table sizes are
necessary for space efficiency).
Aside from being the faster of the two mapping opportunities, this mapping

leads to the elements in the table being quasielements quasi sorted by
preliminary hash function

sorted by their preliminary hash value
(in the absence of collisions they would be fully sorted). This in turn helps us make

56

3.4 A Blueprint for Dynamic α-Space Efficiency

 m

m′

scanline source

scanline target

Figure 3.1: Schematic representation of our fast migration algorithm.

themigration cache efficient. We use the same preliminary hash function andmap-
ping technique in the new table, therefore, after the migration the elements are still
quasi sorted by the same preliminary hash values.
Thus, the order of elements in the target table is close to the order of elements in

the source table. Therefore, scanning through the source table from beginning to
end, reinserting each element into the target table is similar to scanning through the
target table (as shown in Figure 3.1). scan through both tablesThis parallel scan of both tables is significantly
more cache efficient and thus faster than othermigration techniques (i.e., ones that
do not use a linearmapping) that have random access patterns. Thismethod works
similar for many of the most common hashing methods.

• linear probing: elements within one cluster (consecutive filled slots) are not
sorted by their preliminary hash. However, clusters are (usually) small rela-
tive to the grow amount, making the migration highly efficient on average.

• quadratic probing: in general, quadratic probing offers very short displace-
ments, therefore, many elements will benefit from the cache efficiency.

• Robin Hood hashing: this method can be adapted such that elements are
purely sorted by their preliminary hash value. Therefore, making the mi-
gration as efficient as possible.

• cuckoo hashing: cuckoo hashing does not map directly to this parallel scan
approach. To still profit from the same effect, we use the following approach.
When migrating an element, we first check which of its H hash functions
was used to store the element. If possible that hash function is also used to

57

3 Space Efficient Hash Tables

store the element in the new table. However, due to the linear mapping it
is possible that buckets in the target table overfill. We insert these elements
using the normal insertion algorithm.

3.4.3 Preventing Overhead During the Migration

As we mentioned before (in Section 3.3.1) there is one problem with classical full
table migrations. During the migration there are two tables (both ≥ n), the source
table, and the target table. Bounding the effective load to below 0.5, thus the table
can only be dynamic α = 2 + ε-space efficient. We propose two solutions to this
problem, both have their own strengths and weaknesses.

In-Place Migration

Using virtual memory overcommittingvirtual memory
overcommitting

, it is possible to increase the size of an allo-
cation in-place (see Section 2.5.3). The idea is that the operating system only maps
virtual memory pages to physical memory frames once the virtual memory pages
are accessed for the first time. Thus, for the purpose of space efficiency thememory
is not yet used. When we construct the hash table at the beginning of a large mem-
ory allocation initializing more memory is similar to increasing the tables effective
memory size. However, after increasing the capacity of a table, previously inserted
elements are out of place and have to be reordered into their new positions. Luck-
ily, the methods described in Section 3.4.2 allow us to implement a cache efficient
in-place migration algorithm.
The main idea of our in-place migration techniques is to again use the fact that

the order of elements does not actually change much, because the linear mapping
leads to the elements being sorted by their preliminary hash value. Thus, elements
that are in the back of the source table will also be towards the back of the target
table. The plan is to scan the source table from back to frontmigrate back to front , migrating each el-
ement when it is encountered by the scan (compare Figure 3.2). When migrating
the table in this waymostmigrated elements are hashed to the area behind the scan
line. Thus, as long as their probing does not cross the scan line they cannot inter-
fere with the rest of themigration (i.e., linear probing). Elements that are hashed in
front of the scan line are stored in a separate overflow buffer and are reinserted after

58

3.4 A Blueprint for Dynamic α-Space Efficiency

 m m′

scan line origin projected target areacurrent element x and h(x)

added memory

Figure 3.2: Schematic view of the in-place growing algorithm. Top: original table with
added memory. Bottom: Ongoing algorithm showing both scan lines.

the scan is finished. For some hashing techniques, the overflow buffer may contain
a lot of elements. In these cases we can store the overflow elements in the empty
slots at the end of the table (interleaved with elements that are already migrated).
At the end of the migration we can rehash them to find their final slots. Similar
to the technique described in Section 3.4.2 this migration accesses both the source
and the target table in a cache efficient access pattern (here in reverse order).
This in-place table migration using virtual memory achieves good performance.

But, there are someproblemswith the technique of virtualmemory overcommitting problems with overcommitting
- memory page size
- OS configuration
- no shrinking
- portability

.
Memory can only be increased by at least a memory page at a time (memory pages
can be large on some systems). Additionally, these memory pages cannot be un-
mapped after they were accessed making shrinking the data structure after dele-
tions impossible (without deallocating the whole memory). The amount of vir-
tual memory per application can be limited by the operating systemmaking it im-
possible to have many of these overcommiting memory regions at once or virtual
memory overcommitting could be turned off entirely. Therefore, virtual memory
overcommitting is sometimes considered bad practice, especially in codes that are
considered to be portable. Therefore, we report numbers for both scenarios (with
and without virtual memory overcommitting).

Multitables

For thismethod, we split the table into T subtables (T is constant). On the top level,
we hash each element to one of the subtables, i.e., each element has one canonical

59

3 Space Efficient Hash Tables

 T

imbalance

insert(x) htab(x) = T − 
full→migrate

avg size

optimal dense full

Figure 3.3: Multi-table approach. Currently inserting element x into the table. The inser-
tion triggers a migration which is also shown.

tablecanonical table . After that we use one of the classic hashing schemes to store elements within
the subtables. The benefit of this technique is that each subtable can be grown
independently. Subtables grow their capacity in the classical manner of allocating
a new table and doing a full table migration (using the fast migration techniques
Section 3.4.2).

Figure 3.3 shows a table being grown. The overhead of having both the source
and the target (sub)table allocated at the same time is reduced to a small constant
factor of the overall memory mgrow ≈ αn ⋅ T+1T . This could be worse for instances
with bad element imbalances, i.e., when there is one subtable that is significantly
larger than the rest. However, if the top level hash function is sufficiently random,
the distribution behaves like the well known balls into bins problem. Raab and
Steger [79] show that number of elements in the largest subtable is smaller than

n/T +Θ(
√

n logT
T) with high probability—assuming n > T logT . But even small

differences can be bad for the overall size, e.g., when the size estimation at the time
of construction was correct, or the final size is known, then we would preferably
initialize each table with α ⋅ n/T slots. Thus, even small imbalances could lead to
a few grown subtables and other subtables being less densely filled. Leading to a
worse than expected overall fill ratio. Overall, the final capacity could be larger

60

3.5 DySECT (Dynamic Space Efficient Cuckoo Table)

than α ⋅n. In our tests most multi-level variants turned out to be slower on average
than the tables using in-place techniques.

3.5 DySECT (Dynamic Space Efficient Cuckoo Table)

Acommonly used growing technique is to double doubling is efficientthe size of a hash table bymigrat-
ing all its elements into a table with twice its capacity. This is of course not mem-
ory efficient. The idea behind our dynamic hashing scheme is to double only parts
of the overall data structure. This increases the space in part of our data structure
without changing the rest. But due to our usage of cuckoo displacement techniques
this indirectly relieves pressure from other parts of the hash table as well.

3.5.1 Overview

Our DySECT hash table consists of T subtables (shown in Figure 3.4) that in turn
consist of buckets, which can store B elements each parameters

H number of hash functions
B number of slots in a bucket
T number of subtables

. Each element hasH associated
buckets—similar to cuckoo hashing – which can be in the same or in different
subtables. T , B, and H are constants, which cannot change during the lifetime of
the table. Additionally, we pick a minimum fill ratio δmin ∈ (0, 1). The table will
never exceed δ−1min ⋅ n slots once it begins to grow over its initial size (appropriate
choices for δmin are discussed later).
To find the buckets mapping elements to bucketsassociated with an element e, we compute e’s preliminary

hash values hi(e) using appropriate hash functions hi , (1 ≤ i ≤ H). These hash
values have to bemapped to buckets. Thismapping works in two steps (1) first each
hash value is mapped to a table, (2) then the value is mapped to a bucket within
said table. The construction of DySECT allows us to use powers of two for both
the number of subtables T and for the number of buckets per subtable. Therefore,
bothmappings can be done with simple bit operations. The preliminary hash value
is split into two parts htab i and hin i . (1) The first logT bits (i.e., htab i) are used to
address the table using a direct mapping. (2) The other bits (i.e., hin i)are used to
map to a bucket within said table (using a linear mapping). Since the subtable size
is also a power of two, the linearmapping can be implemented using simple bitwise
operations.

61

3 Space Efficient Hash Tables

 T

insert(x)

j

non-full bucket

full bucket

large table  ⋅ s

small table s

canonical slot

Hasher
displacement

next to grow

Figure 3.4: Schematic representation of a DySECT table. During the insertion of an eleme-
ment x, showing possible displacements.

Aside from the bucket computationsdisplacement paths connect
tables

, insertions work the same way they do in
other cuckoo tables by either inserting into the emptiest associated bucket or by
finding a displacement path. The interesting idea behind DySECT is that displace-
ments allow us to balance the subtable loads and utilize memory in one subtable
to make room in another (denser) subtable and thus enable insertions even if the
canonical slots are all filled.

3.5.2 Growing

As soon as the (overall) table containsgreedy growing enough elements such that thememory con-
straint can be kept during a subtable migration, we grow one subtable bymigrating
it into a table twice its size. We migrate subtables in order from first to last. This
ensures that no subtable can be more than twice as large as any other.

Doubling the size of one subtable is very easy and cache efficient. The new sub-
table again uses the same preliminary hash function as before, thus, the mapping
uses one additional bit. This leads to each source bucket being split into two target
buckets. Thus, there cannot be any overfilledno bucket overflows

no displacements necessary
buckets in the target table and also no

necessary displacements that could be triggered. Similar to all methods described
in Section 3.4.2 the migration can again be implemented as a cache efficient simul-
taneous scan through source and target tables.

62

3.5 DySECT (Dynamic Space Efficient Cuckoo Table)

Using the implicit graph model of the cuckoo table (described in Section 2.4.2,
page 37), we can explain how growing one subtable increases insertion opportu-
nities new insertion opportunities

for the whole table
into the rest of the table. Here, growing a subtable is equivalent to splitting

each node that represents a bucket within that subtable. The resulting subgraph be-
comesmore sparse, since the edges (elements) are not doubled. This is true for both
outgoing edges—elements that are stored within the grown subtable—and incom-
ing edges—elements that are stored elsewhere but that have an associated bucket
within the table. many of these incoming edges now point to half-filled buckets,
and therefore, offer new displacement opportunities in the rest of the table.

Now lets look at some numbers connected to growing the table. When the data
structure contains j large subtables (with 2s slots) then there are m = (T + j) ⋅ s
slots. When δ−1min ⋅ n > m + 2s growing triggerwe can grow the first subtable while obeying the size
constraint (the newly allocated table has 2s slots). Doubling the size of a subtable
increases the global number of slots from mold = (T + j) ⋅ s to mnew = mold + s =
(T + j + 1) ⋅ s (growth factor T+ j+1

T+ j growth factor). Note that all subsequent growing operations
migrate one of the smaller tables until all tables have the same size. Therefore, each
growuntil then increases the overall capacity by the same absolute amount (smaller
relative to the current size). The cost of growing a subtable is amortized over all
insertions since the last subtable migration. There are δmin ⋅ s = Ω(s) insertions
between two migrations. One migration takes Θ(s) time.

3.5.3 Shrinking

In most workloads, shrinking is not actually necessary. Usually the goal with a
space efficient data structures is to remain small enough to fit into the main mem-
ory (or into another similar memory bound). Thus, once you have used a certain
amount of memory there is often no use in reducing the memory. This assumption
is also present in the STL-implementation of many data structures where there
is no automated shrinking. Instead STL-data structures usually have a function
called shrink to fit shrink to fitthat shrinks the data structure to a size relative to the current el-
ements. There are workloads where automated shrinking is preferable. This is usu-
ally the case when elements are moved between different kinds of data structures
(e.g., many different space efficient tables) and the overall size has to be bounded.

63

3 Space Efficient Hash Tables

If shrinking is necessary it can work similarly to growing. We replace a subtable
with a smaller one by migrating elements from one to the other. During this mi-
gration we join elements from two buckets into one. Therefore it is possible for a
bucket to overflowbuckets can overflow . We store these elements at the front of the source table and
reinsert them at the end of the migration. Obviously, this can only affect at most
half the migrated elements. A shrink to fit operation can be implemented in a sim-
ilar manner, potentially shrinking multiple subtables.

When automatically triggering the size reduction, one has to make sure that the
migration cost is amortized. Therefore, a grow operation cannot immediately fol-
low a shrink operation. When shrinking is enabled we propose to shrink one sub-
table when δ−1min ⋅ n < m − s′shrinking trigger elements (s′ size of a large table, mnew = mold − s′/2).

Avoiding memory overhead while shrinking

The current implementation of shrinking actually usesmorememory temporar-
ily during themigration to a smaller table. In theory it would be possible to avoid
this additional memory by shrinking two large tables A and B at the same time.
This can be done by first reducing the usedmemory of A in-place. By combining
the appropriate buckets within A to the front half. Reinserting any overflowed
elements. Then all elements in B are migrated into the second half of table A,
again reinserting overflow elements. Thus table B can be deallocated. Lastly we
allocate two new smaller tables copying the first and second half of table A (af-
terwards deallocating A). Alternatively we could keep table A and change the
pointer that used to point to B such that it points to the second half of table A.

3.5.4 Implementation

EachDySECT-table is implemented as an array ofT pointers to its subtables. When-
ever a subtable is accessed its pointer is accessed, and the offset of the accessed
bucket is added to this pointer. The performance impact of this pointer lookup is
fairly low, since all subtable pointers will be cached—at least if the hash table is a
performance bottleneck.

64

3.5 DySECT (Dynamic Space Efficient Cuckoo Table)

Default Parameter Choices

To choose the default parameters, we made a few preliminary experiments using a
varying number of hash functions and bucket sizes. We tested both insertions and
finds on a statically sized table as well as constructing a table space efficiently by
growing from a small initial size.

Given the results shown in Figures 3.5, we use 4 hash functions H = 4 and a
bucket size of B = 4 as default parameters default parameters

H = 4, B = 4, T = 256
. These values have outperformed other

options in terms of insert performance (especially into a growing table) and they
deliver a particularly good tradeoff between find performance (consistently faster
than B = 8 H = 3) and maximum load (see Section 3.6). The default number of
subtables T is set to 256. It has very little impact on the performance, but it impacts
the minimum size of the table mmin = T × B and the minimum growing factor
which changes the space efficiency (see Section 3.5.2). If not mentioned otherwise,
these are the parameters we use throughout our evaluation of DySECT, e.g., for our
experimental evaluation in Section 3.8.

65

3 Space Efficient Hash Tables

(4,2)-dysect
(8,2)-dysect

(4,3)-dysect
(8,3)-dysect

(4,4)-dysect
(8,4)-dysect

0

50

100

0.80 0.85 0.90 0.95 1.00
load δ

t im
e
in

ns
⋅(1
−
δ)

Insert (static table)

0

50

100

0.80 0.85 0.90 0.95
enforced min load δmin in ns

t im
e
in

ns
⋅(1
−
δ m

in
)

Insert (growing table)

0

50

100

150

0.80 0.85 0.90 0.95 1.00
load δ

t im
e
pe
ro

p
in

ns

Find Positive

0

50

100

150

0.80 0.85 0.90 0.95 1.00
load δ

t im
e
pe
ro

p
in

ns
Find Negative

Figure 3.5: Benchmarking operations on dysect tables with different parameters. Topleft:
insertions with a static table size of 224 slots measuring the performance at dif-
ferent points (1000 operations sample size; performance normalized with 1/δ).
Topright: average insertion time inserting into a dynamic space efficient table
averaged over 10 000 000 insertions into a table starting at 50 000 slots. Bot-
tomleft and Bottomright: performance of positive and negative find queries re-
spectively (experimental setup like in Topleft)

66

3.5 DySECT (Dynamic Space Efficient Cuckoo Table)

Displacement Algorithm

In addition to the parameters described above there remains the choice of a dis-
placement algorithm. This algorithm is executed if all buckets associated with an
element are full. It finds a sequence ofmoves finds moves to create an empty

slot
that results in creating an empty slot in

one of the associated buckets. As we mentioned in Section 2.4.2 (page 37) there are
two general ways, of exploring the table for displacement opportunities. A breadth
first search breadth first search

random walk
of the implicit graph, or a random walk (i.e., depth first search) through

the graph. Both work on the implicitly defined graph, where buckets are nodes and
elements are edges from the node they are stored in to their other associated nodes.

Bounded BFS TheBFS algorithm explores the associated buckets of the inserted
element. For each element encountered in these buckets, we insert their potential
buckets into a queue (remembering the appropriate element). Then we repeat this
procedure with every bucket in this queue, until we find a bucket that has empty
slots remaining. Afterwards the chain of elements that lead to this bucket is recon-
structed and the corresponding moves are performed.

Contrary to classic BFS implementations, we do not check whether any bucket
has been accessed by the BFS before rechecking the same bucket. This makes us look through parts of the
hash table multiple times (if one bucket is reached by more than one paths), but
it improves the overall speed and memory footprint. Our hope is that usually BFS
searches are short and thus the unnecessary work remains small. Additionally, we
only use a bounded BFS because without checking bucket repetitions, the search
space would become infinite otherwise. If not stated otherwise we use a bound of
8192 visited buckets (this number is chosen arbitrarily).

(Optimistic) RandomWalk The random walk technique corresponds loosely
to a depth first search in the graph view of the insertion problem. In the sense
that at each node, we explore only one of the outgoing edges (backtracking does
not happen since that would mean we found an empty bucket). When inserting an
element x if all buckets that are associatedwith x are full, thenwemove one random
element x′ fromone of the explored buckets to one of its other associated buckets—

67

3 Space Efficient Hash Tables

(4,4)-dysect (8,3)-dysect bfs opt. rwalk

0

20

40

60

0.80 0.85 0.90 0.95 1.00
load factor δ

t im
e
⋅(1
−
δ)

in
ns

Insert (static table)

40

60

80

100

120

0.80 0.85 0.90 0.95
min enforced load δmin

t im
e
⋅(1
−
δ m

in
)i
n
ns

Insert (growing table)

Figure 3.6: Benchmarking operations on DySECT tables with different displacement al-
gorithms. Topleft: insertions with a static table size of 224 slots measuring the
performance at different points (1000 operations sample size; performance nor-
malized with 1/δ). Topright: average insertion time inserting into a dynamic
space efficient table starting averaged over 10 000 000 insertions into a table
starting at 50 000 slots.

freeing up its slot to insert x. Then this procedure is repeated now inserting x′ until
an element can be stored within a non-full bucket.

There are two kinds of random walk. (1) The optimistic random walkoptimistic random walk stores only
the currently replaced element. Thus the memory footprint is independent of the
number of displacement steps. This variant is useful when the memory footprint
of the displacement technique has to be small. The main problem with this variant
happens when no displacement path is found. Then, the last replaced element can-
not be reinserted and we cannot rollback the insertion. This is a problem because
applications expect elements to remain in the table after they have been inserted
once. (2) the pessimistic random walkpessimistic random walk only looks for a possible replacement path,
without actually doing any replacements. Only once a path is found do we execute
all replacements at once.

Default Choice We repeated the same test we used to choose the default pa-
rameters, this time, with different displacement algorithms, see Figure 3.6. In our
preliminary tests, BFS displacement outperformed random walk displacement. It

68

3.5 DySECT (Dynamic Space Efficient Cuckoo Table)

has less variance and a better cache line utilization, since all elements within one
bucket are used to finddisplacement opportunities. Therefore, we use the (bounded
size) breadth first search (BFS) as our default displacement technique.

Reducing the Number of Computed Hash Functions

Our default implementations use the double hashing double hashingtechniques described in Sec-
tion 2.3.3. This allows us to construct an arbitrary number of 32bits hash values by
computing only one 64bit hash function. The resulting preliminary hash is then
split into two parts that are combined linearly, to obtain a series of hash values.

Virtual Memory Overcommitting

In Section 3.4.3 we describe how virtual memory overcommiting (see Section 2.5.3)
can be used to implement growing hash tables that grow in-place. DySECT does
not need tricks likememory overcommitting to remainmemory efficient since sub-
table migrations do not present the samememory overhead. But, the DySECT im-
plementation can also use these same techniques. In our experiments (Section 3.8)
we show results with andwithout using this overcommitting technique. It turns out
that the traditional variants are even faster then the ones using overcommitting.
Accessing a DySECT subtable usually takes one indirection removing pointer lookup. The pointer to the

subtable has to be read from an array of pointers before accessing the actual sub-
table. Instead of using an array of pointers, we can implement the subtables as
sections within one large allocation (size u). We choose u larger than the actual
main memory, to allow all possible table sizes. This has the advantage that the off-
set for each table can be computed quickly (ti = u

T ⋅ i), without looking it up from
a table.
The advantage is that we can grow subtables in-place. To increase the size of a

subtable, it is enough to initialize a consecutive section of the table (following the
original subtable) in-place migration of subtables. Once this is done, we have to redistribute the table’s elements.
This allows us to grow a subtable without the space overhead of reallocation. There-
fore, we can grow earlier, staying closer to the minimum load factor δmin. The in-
place growing mechanism is even easier within DySECT, since the subtable size is
doubled and there is no possibility for bucket overflows.

69

3 Space Efficient Hash Tables

3.6 Analysis of Possible Loads

Usually, cuckoo hash tables cannot be filled up to the last slot. Instead at some
point there is an insertion that fails because there is no path in the implicit graph
representation that leads to a non-full bucket, i.e., all paths in the implicit graph
representation (described in Section 2.4.2, page 37) end in circles.

Most cuckoo hashing schemes exhibit what can be described as threshold be-
havior, i.e., each hashing scheme has a specific feasibility thresholdfeasibility threshold δ∗ δ∗ where loads
that are smaller than the feasibility threshold (i.e., δ < δ∗− ε) are feasible with high
probability1 (i.e., all elements can be inserted) and loads above that threshold (i.e.,
δ > δ∗ + ε) are not feasible with high probability1. Examples for such load thresh-
olds are 97.8% for (4, 2)-cuckoo hashing or 99.98% for (8, 3)-cuckoo hashing.
Throughout this section, we analyze the feasibility bounds of DySECT. These

bounds can be reached by exploring the whole search space for displacementsfeasibility vs. practicability .
Reaching these bounds is generally not efficient in the sense of having reasonable
insertion times (which we defined as approximately O((1 − δ)−1)). But knowing
these bounds is integral for choosing appropriate δmin bounds for our growing ta-
bles. Additionally, none of our displacement algorithms are truly equipped to ex-
plore the full graph (BFS are intentionally bounded and random walks could take
an arbitrarily long time).

For (B,H)-DySECTwe expect load thresholds that are comparablewith (B,H)-
cuckoo hashing. Especially when all subtables have the same sizesame as cuckoo when

subtables are identical
. When all ta-

bles have the same size there is actually no difference between DySECT and classic
cuckoo hash tables. But due to the uniform mapping from elements to subtables
there are imbalances between buckets in larger and smaller tables. These imbal-
ances can lead to different feasibility thresholds depending on the ratio between
large and small tables. The table mapping htab i is (see Section 3.5.1) independent
of the subtable size.imbalance between buckets Therefore, each table has the same expected number of ele-
ments that are associated with it. Since large tables have more buckets there are
less elements associated with each individual bucket (than with individual buckets
in small tables)—in expectation.

1probability p > 1 − o(1)

70

3.6 Analysis of Possible Loads

0.9

0.99

0.999
1

218 219 220 221 222 223 224

capacity m

m
ax

lo
ad

δ m
ax

(4,2)-dysect
(4,3)-dysect
(4,4)-dysect
(8,2)-dysect
(8,3)-dysect
(8,4)-dysect

Figure 3.7: Experimentally determined periodic maximum load bounds. Elements are in-
serted until an insertion fails (500 000 probed buckets), then one subtable is
grown.

Toprove somemore formal bounds and feasiblity thresholdswe outlook on formal boundscooperatedwith
Stefan Walzer. The resulting theoretical work can be found in our joined publica-
tion [49]. In this dissertation, we present a shorter intuition into the problem, and
an experimental analysis.

3.6.1 Experimental Load Bounds

Table 3.1: Experimental load bounds. Extracted from the measurement presented in Fig-
ure 3.7 (using the last period n > 223) together with theoretical bounds [49]

B H exp. min theo. min exp. max theo. max
4 2 0.9278 0.9566 0.9800 0.9855
4 3 0.9896 0.9984 0.9997 1.0000
4 4 0.9980 0.9980 0.9997 1.0000
8 2 0.9671 0.9915 0.9989 0.9993
8 3 0.9976 0.9766 0.9975 0.9980
8 4 0.9996 0.9999 0.9997 1.0000

71

3 Space Efficient Hash Tables

To measure the maximum load bound experimentally, we initialize a table with
≈ 50 000 slots (256 subtables). Then we insert elements until an insertion fails, i.e.,
does not find an appropriate displacement (within 500 000 probed buckets, inten-
tionally high to reduce variance). Once an insertion isgrow subtable once insertion

fails
unsuccessful, we measure

the current load and grow one subtable. We repeat this procedure until 1 000 000
elements have been inserted. We repeat the same experiment with 5 different sets
of keys (1 000 000 keys each) to reduce the probability of randomly picking a bad
input (averaging the load of each level between the five runs).
The results of the experiment are shown in Figure 3.7. As expected, the table

behaves the best when the size is a power of two (i.e., when all subtables have the
same size). Between these maxima, the load bound exhibits an interesting periodic
behavior. The maximum load threshold depends on the ratio between large and
small subtables (i.e., ratio is 0 at powers of two), not on the absolute number of
slots or any other factor.
Comparing the different parameter choices, we see that variants with fewer hash

functions exhibit a stronger dependence towards the ratio of large vs. small tables
than larger H.

3.6.2 Simple Explanation Using Local Effects

To remove some of the complexities of analyzing maximum load bounds we try
to look only at local effects that are independent of moving elements, i.e., without
using the displacement graphargument over per bucket

distribution
. Elements can only be stored in one of their canonical

buckets, therefore, if a table or a bucket has fewer associated elements (elements
that are hashed to this table or bucket) than slots, then this table or bucket can
never be 100% filled.

Table Imbalance By growing subtables individually we introduce a size imbal-
ance between subtables. Large subtables contain more buckets but the number of
elementsthe number of elements

hashed to a table does not
depend on the tables size

hashed to a large subtable is not larger than the number of elements that
are hashed to a small subtable. This makes it difficult to spread elements evenly
among buckets. Assume there are n elements in a hash table with T subtables, j of
which have size 2s the others have size s. If elements would be spread evenly among

72

3.6 Analysis of Possible Loads

buckets then all small tables store around n/(T + j) elements, and the bigger tables
store 2n/(T + j) elements. For each table we expect about Hn/T elements that
have an associated bucket within that table. This also shows that having more hash
functions can lead to a better balance.
For example, in a table using two hash functions (H = 2) and only one grown

table (j = 1) this means that ≈ 2n/(T+1) elements should be stored in the first table
to achieve a balanced bucket distribution. Therefore, nearly all there are not enough elements

hashed to a table
elements associated

with a bucket in the first table (≈ 2n/T) have to be stored there. This might be one
reason why H = 2 does not work well in practice.

Individual Buckets This same style of argument can be formalized on a per
bucket level. Let us assume a set E of n = m elements—not all of them can be
inserted thus the following calculations derive optimistic estimates. We say the
degree bucket degreeof b is deg(b) = ∣{e ∈ E∣∃hi with hi(e) = b}∣, i.e., the number of elements
that are hashed to b with at least one hash function. This number can be estimated
using the balls into bins model. Each element casts H balls, thus overall mH balls
are being cast (note: n = m = (j + T) ⋅ s ⋅ B). However, not all bins have the
same probability. The probability of hitting a specific bucket in a small table is
psmall = T−1s−1, therefore, degsmall is binomially distributed with Bin(Hm, psmall),
this in turn can be approximated with a Poisson distribution Po(Hm ⋅ psmall) =
Po(H(j/T + 1) ⋅ B). The probability of hitting a specific bucket in a large table is
plarge = psmall/2, thus the expected number of elements is also halved deglarge =
Po(Hm ⋅ plarge) = Po(Hm ⋅ psmall/2).
No bucket b can have more than deg(b) elements. We say b has a bucket defect bucket defect

of defect(b) = min(0, B−deg(b)), i.e., b has at least defect(b) free slots. The bucket
defect is a simple random variable and its expectation is easy to calculate. There-
fore, m −∑b defect(b) is an upper bound to the number of elements that can be
inserted, before an insertion fails (from our original set of m elements). The influ-
ence of bucket defects can be seen in Figure 3.8. We see that this simple concept
already explains a lot of the periodic behavior of the load bound, without actually
assigning any elements to buckets.

73

3 Space Efficient Hash Tables

0.9

0.99

0.999
1

0.00 0.25 0.50 0.75 1.00
large table ratio θ

lo
ad

fa
ct
or

δ
(4,2)-dysect
(4,3)-dysect
(4,4)-dysect
(8,2)-dysect
(8,3)-dysect
(8,4)-dysect

Figure 3.8: Comparing the expected maximum fill degree due to the number of bucket
defects (dashed lines) to the measured load bound between 223 and 224 (solid
lines).

3.6.3 Dynamic Load Threshold

It is clear that a newly grown subtable is not filled as densely as other subtables. In
fact, it has a load below 50% (subtable size is doubled). This load imbalance be-
tween subtables does not actually change the theoretical load bound. But, it does
lead to long insertion timessubtable migrations cause

imbalance
imbalance causes long

insertions

. Cuckoo hashing with a static table size profits from
the fact that power of two choices hashing creates a very well balanced table, i.e.,
there are very few buckets with more than one free slot. Most free slots are dis-
tributed evenly throughout the table (making them easy to find). Growing sub-
table A creates a lot of buckets with very few elements, thus, insertions have to find
a displacement path to one of these buckets (fewer buckets with empty slots).

To visualize the described problem assume the global table is filled close to 100%
before A is grown. Now all free slots in the global table are positioned in A. New
elements that are not hashed toAautomatically trigger the displacement algorithm.
Each edge examined during the displacement algorithm has some probability pA
of hitting A, i.e., ≈ 1/T . Therefore, we have to look at approximately T edges of

74

3.7 Greedy Growing

the implicit graph. However, whenever we find a path, and move the appropriate
element into the table there is one less element that helps future insertions (i.e.,
element outside of A that can be moved into A). This process benefits more from
increasing the number of hash functions than it does from larger buckets, because
the number of elements that is expected to be hashed to a table increases with H.
Notice that repeated insert and erase operations help to equalize this imbalance
because elements are more likely inserted into the sparser areas, and more likely to
be deleted from denser areas.

3.7 Greedy Growing

The goal of our implementations is to achieve the best possible performance while
keeping the size constraint. Thus, it is beneficial for our hash tables to be as close
as possible to the memory bound. This is achieved through greedy growing, i.e.,
the table grows as soon as the number of elements increases enough to fit a larger
table (and themigration is amortized by inserted elements). The resulting progress
is displayed in Figure 3.9.

α′n

number of elements

with overallocation

2k αn − s
αn − 2s

number of elements

sp
ac
e

no overallocation

dysect
blueprint tables

min storage m = n
max allowed storage m = αn

Figure 3.9: Memory usage of our different α-space efficient variants while the table is grow-
ing.

75

3 Space Efficient Hash Tables

DySECT (no overallocation) The table grows when αn is larger than m + 2s
where s is the size of a small table. This is the moment where a new subtable can be
allocated without breaching the size constraints (see markers on the αn line). The
small original table is deallocated after the migration causing the overall memory
to drop. The used memory fluctuates between αn − s and αn − 2s (right after and
before a migration respectively). We see that the amount by which a migration
changes the table size increases when the capacity reaches a power of two, i.e., when
all tables have the same size (T and B are powers of two).

DySECT (with overallocation) When using overallocation and in-place ta-
ble migration, capacity increases can be triggered earlier (at αn = m + s), because
the subtable is migrated in-place (i.e., its old memory is reused). This also means
that we can fully use the allottedmemory—as the usedmemory fluctuates between
αn and αn− s. The amount the table grows by changes whenm reaches a power of
two similar to the variant without overallocation.

Blueprint (with overallocation) All variants presented in Section have the
same memory consumption. They grow when m = α′n where α′ = (α + 1)/2.
At this point a migration can be amortized (see Section 3.4.1). Since the memory
grows in-place, there is no need for temporary memory.

Blueprint (no overallocation; not shown) This variant uses multiple ta-
bles to reduce the overhead of having to allocate a new table once a single table is
growing. However, since the subtable sizes are independent of each other, i.e., each
subtable grows depending on the number of elements inserted into it, imbalances
in the table size can happen. Since the memory mt of each subtable t ranges be-
tween α′nt and αnt the overall memory is also between α′n and αn. However this
does not include the moment when a subtable is growing. During the process of
growing, a subtables memory is (α+α′) ⋅nt . Therefore, the overall memory bound
could be broken if a subtable grows while the overall memory is close to αn (this is
unlikely, but it might happen if all subtables grow at approximately the same time).

76

3.8 Performance Experiments

Conclusion Overall we see, that both DySECT variants grow closer with the
allotted memory of αn than the variants using our blueprint for dynamic α-space
efficiency. Especially since adapting the number of subtables has little impact on the
overall performance and increasing the number of subtables increases the number
growing steps needed to double the table size (i.e., number of growing steps before
s is increased).

3.8 Performance Experiments

We have shown through our construction that our tables can be α-space efficient.
And that the frequent growing can be amortized. However, there are many factors
that impact hash table performance. To show that our ideas actually perform well
in practice, we use benchmarks with both synthetic and real world data sets.
All reported numbers are averaged by running each experiment five times. The

experiments were executed on a one-socket AMD EPYC 7702P AMD Epyc 2GHz with
256MB L3 Cache

with 64 cores each
running at 2.0GHz (3.35GHz Turbo Frequency), 256MB L3 cache size and 1TB
of main memory2. It uses a Ubuntu 20.04.2 operating system and all tests were
compiled using gcc 9.3.0 with -march=native and -O3 flags. All experiments in
this chapter of the dissertation are sequential (in contrast to the other chapters),
therefore, the whole cache is available for processor running the benchmark. This
could have some influence on the measured running times.
We tested 5 different hash table architecturesDySECT (see Section 3.5) 5 different architectures

each with in-place and
multitable variants

, cuckoo
hashing , linear probing , quadratic probing , and Robin Hood probing (see
Section 3.4). For each of these architectures we have both an implementation that
uses a multitable approach (without memory overcommitting; plots use dashed
lines and markers are less opaque) and one that uses memory overcommitting
(with in-place growing; plots use solid lines and higher opacity markers). Some
workloads/tests are not feasiblewith themultitable variants created by our blueprint
(both implementations of GrowT are always feasible). In these cases we show only
feasible variants. Both DySECT and Cuckoo use the parameters described in Sec-
tion 3.5.4, i.e., B = 4, H = 4, and T = 256. All multitable variants also use T = 256
2Experiments on different machines and architectures including a Desktop machine yield qualita-
tively similar results

77

3 Space Efficient Hash Tables

3.8.1 Influence of Fill Ratio (Static Table Size)

The following test was performed by initializing a table with a static table sizes
(non-growing). Then we fill the table with random keys. At different fill degrees,
we measure the running time of new insert (see Figure 3.10), and find (see Fig-
ure 3.11) operations. To measure the performance of an operation, we execute a
sample of 1000 operations, averaging the running time. Positive finds are mea-
sured using randomly selected elements from within the tablequery random elements . Thus, representing
an average query. Querying predominantly early insertions could lead to faster
query times (especially on linear probing and quadratic probing), querying pre-
dominantly later elements could lead to slower query times. Negative queries query
random elements from the whole key space.

We omit testing the non-DySECT multi table variantsno multitable variants . They are not suitable
for this test because using a static table size (without growing) they cannot com-
pensate potential imbalances between subtables. In a growing scenario multitables
can be densely filled because subtables withmore elements will just be grownmore
often. This is not possible in the static scenario. Each subtable would have to be
constructed with m/T slots. Any kind of imbalance would likely cause one table
to overflow. This is not the case for DySECT where subtable imbalances can be
alleviated. In this test DySECTwithout memory overcommitting or in-place mi-
gration actually performs better, than the version with memory overcommitting .

We repeated this test for four different table sizes (ℓ ∶= 224, 1.25ℓ, 1.5ℓ, 1.75ℓ). This
way, we can demonstrate the influence of the ratio of large subtables θ (0, 1

4 ,
1
2 ,

3
4)

on insertion times (the maximum load depends on θ see Section 3.6). Figure 3.10
(left) shows the average running time between the four measurements. The impact
of θ on the performance of DySECT insert operations can be seen in Figure 3.10
(right).

As to be expected, the insertion performance depends highly on the load of the
table. Therefore, we show it normalizedinsert times normalized with

1
1−δ

with 1
1−δ which is the expected number

of fully random probes to find a free slot and thus a natural estimate for the run-
ning time of insertions. We see that—up to a certain point—the insertion time
behaves proportional to 1

1−δ for all tables. Close to the capacity limit of the table,
the insertion time increases sharply. Depending on the growing phase θ, DySect

78

3.8 Performance Experiments

0

50

100

150

0.80 0.85 0.90 0.95 1.00
load factor δ

t im
e
⋅(1
−
δ)

in
ns

Insert (static table; avrg. θ)

0.90 0.95 1.00
load factor δ

dysect by θ

(4,4)-dysect
linear inpl
robin hood inpl

(4,4)-dysect inpl
quadratic inpl
(4,4)-cuckoo inpl

θ = 0
θ = 0.25
θ = 0.5
θ = 0.75

Figure 3.10: Insertions into a static table showing the influence from the load factor, on the
performance of insertions. Left: average over four table sizes; right DySECT
with different ratios of large subtables (θ). To make insertion time more read-
able, we normalize it with time per operation ⋅ (1 − δ).

has smaller maximum load bounds than cuckoo (see Section 3.6). This is also
clearly visible in the performance (right side) when the table is very full. For many
realistic loads (<97%), however the impact remains small. Quadratic probing is
exceptionally fast, even for the highest fill degrees.

Figure 3.11 shows the performance of find operations. Linear and quadratic
both perform really well on successful find operations, up to a load of around 90%.
The reason for this is that most elements are inserted before the table becomes too
full, therefore, many elements have small displacements—improving the average
find performance. However, cuckoo hashing in particular and also DySECT

cuckoo based approaches
better on find

perform much better on decently filled tables and on negative find queries, espe-
cially because their performance is completely independent of the load of the table.
For all other tables the performance of negative find queries is much more related

79

3 Space Efficient Hash Tables

(4,4)-dysect
linear inpl

(4,4)-dysect inpl
quadratic inpl

(4,4)-cuckoo inpl
robin hood inpl

0

100

200

300

0.80 0.85 0.90 0.95 1.00
load factor δ

t im
e
pe
ro

p
in

ns

Find Positive

0

100

200

300

0.80 0.85 0.90 0.95 1.00
load factor δ

t im
e
pe
ro

p
in

ns

Find Negative

Figure 3.11: Performance of successful (left) and unsuccessful (right) finds. DySECT’s find
performance is independent from the load factor, and the operations success.

to the load of the table. There, traditional “probing-based” tables perform really
bad. Robin Hood hashing performs somewhat better than linear probing. It wors-
ens the successful find performance by moving previously inserted elements from
their original position, in order to achieve better average displacements (which
likely backfires since the probing performance is non-linear). However the nega-
tive find performance is somewhat improved compared to linear probing.

3.8.2 Influence of Fill Ratio (Dynamic Table Size)

In this test 10M elements are inserted into an initially empty table. The table is
initialized expecting 50 000 elements, thus growing is necessary to fit all elements.
The tables are configured to guarantee a load factor of atminimum load factor δmin

normalization with min load
least δmin at all times. Fig-

ure 3.12 shows the performance in relation to the minimum load factor. Insertion
times are computed as average of all 10M insertions. They are normalized similar
to Figure 3.10 (divided by 1

1−δmin
).

We see that both DySECT variants perform the better than the competitors
on all fill degrees, even on lower load factors around 80%. Here we achieve a 22%

80

3.8 Performance Experiments

0

100

200

300

0.80 0.85 0.90 0.95
load factor δ

t im
e
⋅(1
−
δ)

in
ns

Insert (growing table)
(4,4)-dysect

(4,4)-cuckoo

linear

quadratic

robin hood

multi

inpl

Figure 3.12: Insertions into a dynamic growing table enforcing a minimum load factor
δmin.

lower running time next best solution (233% ns vs. quadratic probing 299ns).
On denser instances with 97.5% load, we can increases the distance to 35% (1545%
ns vs. quadratic probing 2368ns). With growing load, we see the insertion times
of linear probing and robin hood hashing degrade due to the combination of
long insertion times, and frequent table migrations. cuckoo and quadratic constant

→ amortization works
However both cuckoo and

quadratic remain close to DySECT . This demonstrates the cache efficiency of
themigration algorithms. DySECT , quadratic probing and cuckoo all remain
close toO(1

1−δmin
) albeit at different constant factors due to the frequentmigrations

and high amortization overheads. dysect dominates due to
smaller overheads

DySECT has much smaller overheads because
only very few elements are touched by each subtable migration (≈ n

T).
We alsomeasured the performance of find operations on the created tables, they

are similar to the performance on the static table in Figure 3.11, therefore, we omit
displaying them.

3.8.3 Word Count—a Practical use Case

Word count and other aggregation algorithms are some of the most common use
cases for hash tables. Data is aggregated according to its key. This is a common
application, in which static hash tables can never be space efficient, since the final
size of the hash table is usually unknown. Here we use two different real world

81

3 Space Efficient Hash Tables

data sets: first we use parts of the Gutenberggutenberg (literature)
common crawl (largely html)

library (3 different parts, each with
2.2GB, i.e., 1/10 overall size the experiment is repeated 3 times per block), sec-
ondwe use blocks of theCommonCrawl data set (commoncrawl.org/the-data/
get-started from Apr. 2021, again we use 3 blocks at 5.4GB and we repeat the
experiment 3 times).
For each of these blocks, we count the occurences of each contained word. The

gutenberg blocks have on average around 342Mwords with around 7.6Muniques,
and the common crawl blocks have on average 229M words with around 34.8M
uniques. Thus gutenberg blocks contain more words but have less unique words
(on average 45 repetitions per word), which makes sense because they mostly con-
tain natural language, and common crawl blocks contain fewer but more unique
words (on average 7 repetitions per word).
For the word count benchmark, we hash each word to a 64bit key and insert

this key together with a counter. Subsequent accesses to the same key increase
this counter. Note that hash collisions while computing the key are improbable,
but they could lead to incorrect counts. However, this implementation is signif-
icantly faster and more space efficient than any variant storing strings within the
table. Similar to the growing benchmark, we start with an empty table initialized
for 50 000 elements.
Theperformance results can be seen in Figure 3.13. We donot use any normaliza-

tion because most operations actually behave more like successful find operations
instead of insertions. When using DySECT tables, the running time seems to
be nearly independent from the table’s enforced load. We experience little to no
slowdown until around 92.5%. Our probing based hash tables perform really well
on the gutenberg data set the reason is likely, that the heavy hitting elements that
appear many times (“the”, “a” . . .) are constantly cached, and are probably stored
close to their canonical slot. The common crawl data set has less repetitions, there
DySECT performs best among all tables above a fill degree of 95%. On these high
fill degrees, the performance degenerates similar to the insertion benchmark.

82

commoncrawl.org/the-data/get-started
commoncrawl.org/the-data/get-started

3.9 Conclusion

0

100

200

300

400

0.80 0.85 0.90 0.95
load factor δ

t im
e
pe
ro

p
in

ns
Aggregation (gutenberg)

0

500

1000

1500

0.80 0.85 0.90 0.95
load factor δ

t im
e
pe
ro

p
in

ns

Aggregation (common-crawl)

(4,4)-dysect (4,4)-cuckoo linear quadratic robin hood

multi inpl

Figure 3.13: Word count benchmark. Behaves like a mix of insert and find operations.
DySECT’s performance only weakly depends of the load factor.

3.9 Conclusion

We have shown that dynamically growing hash tables can be implemented to al-
ways consume space close to the lower bound. We find it surprising that even our
simple solutions based on common probing schemes seem to be new. They already
offer a great performance considering the amount of migrations that happen. This
also shows that our simple migration algorithm is highly efficient. It is interesting
that quadratic probing performs best for insert heavy workloads even with very
high fill degrees, yet is mentioned much less often than more popular techniques
like cuckoo hashing.
DySECT is a sophisticated solution that exploits the flexibility offered by bucket

cuckoo hashing to significantly decrease the number of element migrations over
the structurally simpler in-place migration approach. When very high space effi-
ciency is desired, it is up to 35% faster than the simple solutions (quadratic probing
which has significantly worse find performance) and 53% faster than the struc-
turally similar cuckoo hashing with multi tables.

83

4 Concurrent Hash Tables

In the previous chapter we have taken a look at memory scal-
ing. However, the term scalability is more commonly associated
with scaling to computational resources, i.e., scaling to multipro-
cessor environments. This has never been more important than
today. Multi processor environments have become omnipresent
and processor numbers are growing continuously. The same is
true for industry and research applications that need to take ad-
vantage of these computational resources in order to make their
problems solvable.
Hash tables are at the core of many algorithms, especially ones

dealing with big data problems—organizing large quantities of
data and making them searchable. Concurrent hash tables can
also be used as an intuitive and asynchronous way to share data
between threads. Thus communicating without the need for ac-
tive synchronizations and contention.
This chapter is an update into our ongoing research in the field

of concurrent hash table data structures. The findings of this
research are integrated into our concurrent hash table library
growt [43].

Concurrent hash tables are an area where specialized hash tables seem to be
evenmore important than in the sequential case. In some preliminary experiments
we found that a specialized table using linear probing and changing slot contents
with simple compare-and-swap operations was significantly faster than many gen-
eralized implementations like TBB’s concurrent unordered map. However, this
implementation is limited toword sized key-value types and does not support dele-

85

https://github.com/TooBiased/growt

4 Concurrent Hash Tables

tions or dynamic size adaptation. Throughout this section, we explain how to lift
each of these limitations in a provably scalable way and demonstrate that dynamic
growing has a comparable overhead compared to dynamically growing a sequential
table.

Concurrent hash tables are used in numerous applications. In many applica-
tions, hash tables are at the center of tight loops, as such they can be crucial for good
running times. Moreover, well scaling implementations are necessary for these ap-
plications to work efficiently and to achieve speedups even in highly concurrent
scenarios. Fortunatelyfew interactions between

threads
, hash tables offer some great opportunities for the design

of concurrent data structures. Two simultaneous operations often have no influ-
ence on each other (e.g., when they are operating on different keys). Unfortunatelyour goal is scalability ,
currently available concurrent hashing libraries do not offer the kind of scalabil-
ity that would be necessary, especially when adaptively sized tables are necessary
or contention on some elements occurs. Our approach of interchangeable imple-
mentations with different capabilities and performance characteristics is aimed at
preserving the best possible performance for each task and offering scalable solu-
tions for a wide range of possible applications.

We perform extensive experiments comparing the performance of our imple-
mentations with six of the most widely used concurrent hash tables. Each of our
specializations is considerably faster than the best alternative algorithms with sim-
ilar restrictions. Specialized implementations can be an order of magnitude faster
than the best more general tables. In some extreme cases, the difference even ap-
proaches four orders of magnitude. All of our implementations as well as the code
used for our benchmarks can be found on github [43]. The results presented in this
chapter have in part been previously published in our conference [47] and jour-
nal [48] publications. These publications were written in cooperation with Peter
Sanders and Roman Dementiev, with me being the main author. For this disserta-
tion, I have rewritten and substantiated some of the design ideas concentrating on
sections previously contributed by Sanders—specifically concerning arbitrary key
and value types. Other sections of the previous publications are reused verbatim.

86

4.1 Motivation

4.1 Motivation

To show the ubiquity of hash tables we give a short list of example applications: a
very simple use case is storing sparse sets of precomputed solutions (e.g., [66, 7]). A
more complicated scenario for hash tables is at the heart of many database like ap-
plications for example in the case of aggregations SELECT FROM . . .COUNT. . .GROUP
BY x (e.g., [62]). Such a query selects rows from one or more relations and counts
for every key x how many rows have been found (similar queries work with SUM,
MIN, or MAX). Hashing can also be used for a database join [13]. Another group
of examples is the exploration of a large combinatorial search space where a hash
table is used to remember the already explored elements (e.g., in dynamic program-
ming [84], itemset mining [72], a chess program, or when exploring an implicitly
defined graph in model checking [85]). Similarly, a hash table can maintain a set
of cached objects to save I/O-operations or repeated computations [64]. Further
examples are duplicate removal, storing the edge set of a sparse graph in order to
support edge queries [55], maintaining the set of non-empty slots in a grid-data
structure used in geometry processing (e.g., [21]), or maintaining the children in
tree data structures such as van Emde-Boas search trees [17] or suffix trees [53].

Outside of implementing specific parallel algorithms, concurrent hash tables
can also be used to exchange concurrent data structures

allow asynchronous
comunication between threads

information between different threads in an efficient
and flexible manner, i.e., without contentious access to shared memory. Contrary
to other concurrent data structures there is often little or no interaction between
concurrent operations making scalability achievable. Therefore, concurrent hash
tables are one of the most important concurrent data structures.

Many of these applications and use cases have in common that—even in the se-
quential version of the program—hash table accesses constitute a significant frac-
tion of the running time hash tables are often in inner

loops
. Thus, it is essential to have highly scalable concurrent

hash tables that actually deliver significant speedups in order to parallelize these
applications. Unfortunately, currently available general purpose concurrent hash
tables do not offer the needed scalability (see Section 4.6 for precise numbers). On
the other hand, it seems to be folklore folklore solutionthat a lock-free linear probing hash table
can be constructed using atomic compare-and-swap (CAS) of key-value-pairs. We
call our implementation of this simple concept folkloreHT [84]. But this simple ap-

87

4 Concurrent Hash Tables

proach has several restrictionsrestrictions:
- key- and value-size
- no capacity changes

- no deletions

which keep it from becoming a standard for parallel
hash tables: keys-value pairs have to be small enough to enable the necessary CAS
operation (i.e., 128bit for double-word atomic CAS), the table cannot grow over
its preallocated size, and it does not support true deletion (in a way that reclaims
memory).
In this implementation, find operations can proceed naively and without any

changes to the table. This is very important to us since there are scenarios where
different hashing techniques can have a large impact on the concurrent perfor-
mance. For example, consider a situation with mostly read only access to the table
and heavy contentioncontention on a small number

of elements
for a small number of elements that are accessed again and

again by all threads. folkloreHTactually profits from this situation because the con-
tended elements are likely to be replicated into local caches. On the other hand, any
implementation that uses local locks or does any memory changes on the shared
table during find operations, would become much slower than the sequential vari-
ant on current machines. The purpose of our research in this area is to document
and explain performance differences, and, more importantly, to explore to what
extent we can make folkloreHT more general with an acceptable deterioration in
performance.

4.2 Related Work

In this dissertation we follow up on our continuingupdates on our continuing
research

research and findings about
generalizing fast concurrent hash tables [46, 47, 48]. In addition to describing the
previously presented generalizations we go into further detail on arbitrary key- and
value-types—including experiments—andwe show newmeasurements on current
more relevant machines comparing to the most up to date libraries.
There has been extensive previous work on concurrent hashing. Thewidely used

textbookOften in textbooks—but:
- no focus on scalability

- surprising lack of detail

“The Art of Multiprocessor Programming” [32] devotes an entire chap-
ter to concurrent hashing and gives an overview over previous work. However, it
seems to us that a lot of previous work focuses more on concepts and correctness
but surprisingly little on scalability. For example, most of the discussed growing
mechanisms in [32] assume that the number of elements in the table is known ex-
actly without a discussion that this introduces a performance bottleneck limiting

88

4.2 Related Work

the speedup to a constant. In practice, the actual migration is often done sequen-
tially.

Stivala et al. [84] describe a bounded concurrent linear probing hash table that
is very similar to folkloreHT but is specialized for dynamic programming. It only
supports insert and find operations. An interesting point is that they need only
word size compare-and-swap instructions at the price of reserving a special empty
value. This technique could also be adapted to port our code to machines without
128-bit-CAS. Kim and Kim [34] compare this table with a cache-optimized lock-
free implementation of hashing with chaining and with hopscotch hashing [33].
The experiments use only uniformly distributed keys, which induce little contention.
Both linear probing and hashing with chaining performwell in that case. The eval-
uation of find-performance is a bit inconclusive: chaining performs faster in their
experiments, but uses more space than linear probing. Moreover it is not speci-
fied whether this is for successful (search for present keys) or mostly unsuccessful
(search for non-present keys) queries. We suspect that varying these parameters
could reverse the result.

Gao et al. [28] present a theoretical dynamically resizeable lock-free dynamic
linear probing hash table. Themain contribution is a formal correctness proof. Not
all details of the algorithm let alone an implementation is given. Specifically, the act
of moving the table is only reduced to the asynchronous write-all problem [30, 51].
Thus, there is also no analysis of the complexity of the growing procedure.

Shun andBlelloch [81] propose phase concurrent hash tableswhich are allowed to
use only a single operation within a globally synchronized phase. They show how
phase concurrency helps to implement some operations more efficiently and even
deterministically in a linear probing context. For example, deletions can adapt the
approach fromKnuth [37] and rearrange elements. This is not possible in a general
hash table since this might cause find operations to report false negatives. They
also outline an elegant growing mechanism albeit without implementing it and
without filling in all the details like how to initialize newly allocated tables. They
propose to trigger a growing operation when any operation has to scan more than
k log n elements where k is a tuning parameter. Shun and Blelloch make extensive
experiments including applications from the problem based benchmark suite [82].

89

4 Concurrent Hash Tables

Li et al. [41] use the bucket cuckoo-hashing method by Dietzfelbinger and Wei-
dling [19] and develop a concurrent implementation. They use fine grained per
bucket locks which can sometimes be avoided using transactional memory, e.g.,
Intel® Transactional Synchronization Extensions TSX (Intel TSX). To further re-
duce the number of acquired locks per insertions they use a BFS-based insertion
algorithm to find a minimal displacement path. As a result of their work, they im-
plemented the open source library libcuckoo, which does not use Intel TSX (see
Section 4.6 for an experimental evaluation). This approach has the potential to
achieve very good space efficiency. However, our measurements indicate that the
performance penalty is high especially when there is contention on a subset of keys.

The practical importance of concurrent hash tables also leads to new and inno-
vative implementations outside of the scientific communityimplementations from outside

the scientific comunity
. A good example of

this is the Junction library [78] that was published by Preshing in the beginning of
2016, shortly after our initial publication [46]. Additionally, well tested and reliable
concurrent hashing implementations can be found in multiple libraries provided
by the biggest software companies like intel’s TBB library [76] or in facebook’s folly
library [64].

4.3 Concurrent Hash Table Interface and Folklore
Implementation

Althoughconcurrent interface needs
attention to detail

it seems quite clear what a hash table is (see Section 2.1.1) and how this
generalizes to concurrent hash tables, there is a surprising number of details to
consider. Therefore, we quickly go over some of our interface decisions and detail
how this interface can be implemented in a simple, fast, lock-free concurrent linear
probing hash table.

In this section we describe a hash table that we callfolkloreHT folkloreHT. Variations of
folkloreHT are used in many publications and it is not clear to us by whom it was
first published. It is the basis for all other hash table variants presented in this
publication. folkloreHT has a bounded capacity m that has to be specified when
the table is constructed and elements fit into twomachine words (typically 128bit).

90

4.3 Concurrent Hash Table Interface and Folklore Implementation

Themost important requirement for concurrent data structures is that they should
be linearizable linearizability(see Section 2.2), i.e., it must be possible to order the operations in
some sequence—without reordering two operations of the same thread—so that
executing them sequentially in that order yields the same results as the concurrent
processing. For a hash table data structure this basically means that all operations
should be executed atomically at one point in time between their invocation and
their return. For example, a find should never return an inconsistent state, e.g., a
half-updated data field that was never actually stored at the corresponding key.

Our variant of the folkloreHT ensures the atomicity of operations using double-
word atomic compare-and-swap double-word atomic CASoperations for all changes to the table. As long
as the key and the value each only use one machine word, we can use double-
word CAS operations to atomically manipulate a stored key together with the cor-
responding value. There are other variants that avoid needing double-word CAS
operations, but they often need a designated empty value (see [78]). Since double-
word-CAS instructions arewidely available onmodernhardware, using them should
not be a problem. If the target architecture does not support these instructions, the
implementation could in theory be switched to use a variant of concurrent linear
probing without double-word CAS. As it can easily be deduced by the context, we
will usually omit the prefix “double-word” and use the abbreviation CAS for both
single and double word CAS operations.

To map keys to their canonical table slots table mappingwe use a common preliminary hash
function like xxHash [15] and a linear table mapping (see Section 2.3.2). We use
table sizes which are powers of two to simplify the mapping (which consists of a
single shift operation) and to improve the performance of the cyclic table via fast
modulo operations (one bitmask).

Initialization Given a number of expected elements nexp, the constructor first
defines m to be the smallest power of two that is still at least twice as large as nexp
(i.e., 2 j−1 < 2nexp ≤ m = 2 j). Then it allocates an array of size m consisting of 128-
bit-aligned slots whose key is initialized to the empty key empty key(here 0). This empty key
cannot be used for stored key-value-pairs—see Section 4.4.6 for how to get around
this limitation.

91

4 Concurrent Hash Tables

Accessing Elements In Section 2.1.1 we explain three different implementa-
tions of ways to access a hash table—return by:

- value
- reference
- iterator

return by value, return by reference, and re-
turn by iterator. In concurrent scenarios the method of giving access to the table
is even more important. Both references and iterators to elements in a data struc-
ture can be invalidated by operations on said data structure. Usually this is the case
when elements are moved within the data structure, e.g., iterators and references
to elements in an unbounded array (e.g., std::vector) are invalidated when the
array relocates. Accessing elements via invalidated iterators leads to unforeseen er-
rors like segmentation faults. This is a problem for concurrent data structures be-
cause the invalidating operation could be triggeredone thread may invalidate

another thread’s iterator
from another thread while one

thread is currently accessing an element through an iterator—basically invalidating
the iterator while it is being used. This is not necessarily a problem for folkloreHT
because elements will not be moved within the table, thus iterators would not be
invalidated, but we need to design an interface that is future proof for the different
extensions we want to design and being able to move elements is essential for most
extensions (e.g., deletions, growing, shrinking).
Another problem with a concurrent hash table interface is that all changes to

elements in the table have to be atomic. Additionally, updates should also work
even if elements are moved through the table. To ensure this we need a syntax that
allows arbitrary changes without relying on the user to ensure atomicityinterface ensures atomicity . At the
same time there should be an interface for experienced programmers to implement
fast atomic updates that can take advantage of atomic operations like fetch and add,
exchange, or compare-and-swap.

Modifications We categorize all operations that change the hash table’s content
into one of the three functions: insert, update and insertOrUpdate (excluding dele-
tions). All of these functions are variations of the same general concept exemplified
by insertOrUpdate.
In Algorithm 4.1 we show the pseudocode of the insertOrUpdate function. The

operation computes the hash value of the key and proceeds to look for an element
with the appropriate key (beginning at the corresponding position). If no element
matching the key is found (when an empty space is encountered; case I), the new
element has to be inserted. This is done using a compare-and-swap operation (case

92

4.3 Concurrent Hash Table Interface and Folklore Implementation

Ia). A failed failed CAS lead to retriesswap can only be caused by another insertion into the same slot (case
Ib). In this case, we have to revisit the same slot to check if the inserted element
matches the current key. If a slot storing the same key is found, it is updated using
the atomicUpdate function (case II). This function is usually implemented by eval-
uating the passed update function (up) and using a compare-and-swap operation
to change the slot. In the case of multiple concurrent updates, at least one update
is successful.

Algorithm 4.1 Concurrent insertOrUpdate operation.

input:
element e = ⟨k, d⟩ ∈ E = K × V ,
update function up ∶ E × P → V , additional update parameters par ∈ P
output:
true if k was not present (insert), false if k was present (update occurred)
i = h(k)
while true

current = table[i]
if current.key == empty-key then

// case I: k is not present yet. . .
if table[i].CAS(current, e) then

return true // case Ia: successfully inserted
else

continue // case Ib: retry at the same position
else if current.key == k then

// case II: key is already present. . .
if table[i].atomicUpdate(current, up(⋅, ⋅), pars) then

// e.g., table[i].CAS(current, up(⟨k, current.data⟩, pars))
return false// case IIa: updated present value

else
continue // case IIb: retry at same position

i++ // if the table is circular i = i mod c

insert(e): returns true if the insert succeeds, false otherwise (i.e, if an element
with the specific key is already present). Only one operation should succeed if
multiple threads are inserting the same key at the same time. The implementation

93

4 Concurrent Hash Tables

is similar to Algorithm 4.1, but returns false if case II is reached (instead of any
updates).
update(k, up(⋅, ⋅), pars): returns false if there is no value stored with the speci-

fied key, otherwise this function atomically updates the stored value to new value =
up(e, pars). Notice that the resulting value can be dependent on both the current
value and the additional input parameters pars. The implementation is similar to
Algorithm 4.1 but returns true in case IIa and false if case I is reached.

insertOrUpdate(e, up(⋅, ⋅), pars): this operation updates the current value if one
is present, otherwise the given data element is inserted. The function returns true
if insertOrUpdate performed an insert (key was not present) and false if an update
was executed.
We choose this interface for two main reasons. It allows applications to quickly

differentiate between inserting and changing an element. Additionally, even in
contentious cases wheremultiple threads try to insertinserting thread can be

identified
the same element at the same

time there is exactly one thread that succeeds with its insertion. With the inter-
face described above, arbitrary changes are automatically executed atomicallyAs
described above, we made sure that using our interface arbitrary changes would be
automatically executed in an atomic fashion (see default implementation of atom-
icUpdate in the comment). Experienced users can customize atomic changes by
overloading the atomicUpdate function, e.g., with a simple overwrite (using single
word store) or increment (using fetch and add).

Lookup For the performance of many hash table workloads lookup operations
are even more important than table modifications.trivial lookups FolkloreHT, provides lookups
that proceed without any memory changes. find(k) returns an iterator like object
that acts as an accessor to the element with key k. If there is no such element then
the accessor is a dummy indicating that no such element exists.
To implement a correct find operation one has to be aware that using current

hardware it is impossible to atomically read both the key and the value together1

(as they have 128bit bits). Therefore—even though any change to a slot is atomic—
it is possible for a slot to be changed in between reading its key and its value, this is

1Theelement is not read atomically, because x86 processor specifications donot guarantee atomicity
for 128-bit-reads.

94

4.3 Concurrent Hash Table Interface and Folklore Implementation

called a torn read torn reads. To argue the correctness of our find implementation, we have to
make sure that torn reads cannot lead to any inconsistent behavior. There are two
kinds of interesting torn reads: first, an empty key is read while the queried key is
inserted into the same slot. In this case the element is not found (consistent since it
has not been fully inserted). Second, the element is updated between the key being
read and the value being read. Since the value is read after the key, only the newer
value is read. This is consistent with a finished update (updates cannot change the
key). Modifications can also encounter these torn reads, but since all modifications
use compare-and-swap instructions, the compare-and-swap happens atomically to
the whole 128bit slot.

Deletions FolkloreHT does not support true deletions (deletions that reclaim
previously used memory). Simply deleting elements from folkloreHT is not possi-
ble because we have to make sure that future lookup operations can still find dis-
placed elements. The same problem arises when rearranging elements. The only
way folkloreHT can support deletions is using tombstones deletions use tombstones(see 2.4.2).

delete(k) returns true if an element with key k is successfully removed. The key
stored in a slot is replaced with del-key (this key represents a tombstone). Future
operations scan over deleted elements like over any other non-empty entry. This
means that the slot cannot be used anymore. Using tombstones for handling deleted
elements is usually not feasible because the starting capacity has to be set dependent
on the number of overall insertions (deletion does not free up any deleted slots).
Evenworse, tombstonesfill up the table and slowdownfindqueries. In Section 4.4.4
we showhowour generalizations can be used to handle tombstonesmore efficiently.
No inconsistencies can arise from this kind of deletion. In particular, a concur-

rent find operation with a torn read would return the element before the deletion
since the delete-operation leaves the value-slot a untouched. A concurrent insert
⟨x , b⟩might read the key x before it is overwritten by the deletion and return false
because it concludes that an element with key x is already present. This is con-
sistent with the outcome when the insertion is performed before the deletion in a
linearization. Other operations would just continue scanning over the element.
Note that even new inserts cannot reuse a slot with a slots with tombstones cannot

be reused
tombstone, because then

torn reads could lead to errors. If a query reads its queried key, but before the

95

4 Concurrent Hash Tables

value is read the element is first removed (keeping its value the same) and then
overwritten by a new insertion. Now the first thread reads the updated value that
was never stored together with the original key.

Size Keeping track of the number of contained elements deserves special no-
tice here because it turns out to be significantly harder in concurrent hash tables
than in sequential hash tables, where it is trivial to count the number of contained
elements—using a single countercounting elements with fetch

and add creates contention
. This same method is possible in parallel tables

using atomic fetch and add operations, but it introduces a massive amount of con-
tention on one single counter creating a performance bottleneck. Because of this
we did not include a countingmethod in folkloreHT. In Section 4.4.2 we show how
this can be alleviated using an approximate count.

4.4 Generalizations and Extensions

In this section, we detail how to adapt the concurrent hash table implementation—
described in the previous section—to be universally applicable to most hash table
workloads. Most of our efforts have gone into a scalable migration method that is
used to move all elements stored in one table into another table. It turns out that
a fast migrationfast migration can solve many

shortcommings of folkloreHT
can solve most shortcomings of folkloreHT (especially deletions

and adaptable size).

4.4.1 Storing Thread-Local Data

Storing thread specific data connected to a hash table is necessary to efficiently
implementthread-local data is a building

block for other extensions
some of our other extensions. Per-thread data can be used in many dif-

ferent ways, from counting the number of insertions to caching shared resources.
From a theoretical point of view, it is easy to store thread specific data. The addi-

tional space is usually only dependent on the number of threads (O(p) additional
space), since the stored data is typically constant sized. Compared to the hash table
data this is usually negligible (p≪ n < m).
Storing thread specific data is challenging from a software design and perfor-

mance perspective. Our solution uses explicit handles. Each thread has to create a

96

4.4 Generalizations and Extensions

handle handles, prior to accessing the hash table. All hash table operations are then accessi-
ble via the handle, not the hash table object itself (which only supports a getHandle
function). These handles can store thread specific data since they are not shared
between threads. This is not only in line with the RAII idiom (resource acquisition
is initialization [56]), but it also protects our implementation from some perfor-
mance pitfalls like unnecessary indirections and false sharing (see Section 2.5.2).
Moreover, the data can easily be deleted once the thread does not use the hash
table anymore (delete the handle).
There are alternatives to our solution using handles. Some of our competitors

use a alternatives:
- register
- thread local

register function that each thread has to call once before accessing the table
the first time. This function serves a similar purpose of creating some memory
specific to this thread. Alternatively, one could use the C++ storage class specifier
thread local to create per-thread-memory. However, thread local storage du-
ration behaves very similar to static storage duration, i.e., the number of thread
local variables has to be known at compile time. And thus it is not possible to work
on multiple different hash tables at once. Overall, both implementations have the
problem of not being able to delete the data once the thread does not need to access
the table anymore.

4.4.2 Approximating the Size

Keeping an exact count of the elements stored in the hash table quickly leads to
contention on one count variable contention on size variable

exact size is outdated quickly
. Additionally, when the table is used in parallel

any size reading can be outdated before it is returned. Therefore, we propose to
support only an approximate size operation that can be exact when it is coordinated
between threads.
To keep an approximate count of all elements, each thread maintains a local

counter of its successful insertions local insertion counter(using the method desribed in Section 4.4.1).
The global counter is then frequently updated (e.g., every Θ(p) insertions) by
atomically adding the local counter onto the global insertion counter I and then
resetting the local count. Contention at I is provably small if the exact number of
local insertions before updating the global counter is randomized, e.g., between 1
and 2p. I underestimates the size by at most O(()p2). Since we assume the size

97

4 Concurrent Hash Tables

to be much larger than p2 this method provides a small relative error. By adding
the maximal error, we also get an upper bound for the table size. Additionally, all
threads can update the global counter to receive an exact countexact count , e.g., after a phase
of insertions is done when the size remains constant.
If deletions are also allowed, we maintain a globalglobal/local deletion counter counter D in a similar way.

S = I − D is then a good estimate of the total size as long as S ≫ p2. In this case,
both global counts are updated every Θ(p) operations (independent of insert or
delete), ensuring the same approximation quality as without deletions.
When a table is migrated for growing or shrinking (see Section 4.4.3), each mi-

gration thread locally counts the elements it moves. At the end of the migration,
local counters are added to create the initial count for I. D is set to 0 because tomb-
stones are removed during the migration.

4.4.3 Table Migration

While Gao et al. [28] have shown that lock-free dynamic linear probing hash tables
are possible, there is no result on their practical feasibility. Our focus is gearedour migration is not lock-free

but fast and scalable
more

towards engineering the fastest migration possible, therefore, we allow locking, as
long as the practical performance is not impacted by those locks. To do this we
want to avoid locks that have to be acquired during every operation. Instead, we
design a way that introduces locking, only during table migrations. Themaximum
number of locks that a thread has to acquire (throughout the existance of the table)
is in O(number of migrations) (i.e., O(log n)).
Moreover, our implementation works lock free, as long as no migration is trig-

gered. Once amigration is triggered, it is not lock-free but happens asynchronously
and is hidden from the threads using the hash table. This is helpful for instances
where the necessity to grow is improbable, i.e., probabilistic bounds, but since
growing is rare it is also improbable to ever be slowed down by a lock.

Eliminating Unnecessary Contention from the Migration

Here we use the idea—introduced in Section 2.3 —that hashing a key to its canon-
ical slot is a two step processmigration uses hint and rmap

to its advantage
. The overall hash function h is split into two parts:

the intermediate hash function hint which maps a key to a number in the range of

98

4.4 Generalizations and Extensions

1..264 − 1 and the table mapping rmap which maps that number to a specific entry.
When migrating elements into a new table, we ensure that the intermediate hash
function remains the same. We also use the mapping technique to our advantage.
As described in Section 4.3 we use a linear table mapping (implemented with a
simple bitmask). There are two types of migrations: the table size stays at least the
same (m′ ≥ m) or the table shrinks (m′ < m).

Growing Exploiting the properties of linear probing and the linear mapping
from hashed values to the table, there is a surprisingly simple way to migrate the
elements from the old table to the new table in parallel which results in exactly the
same order as the sequential algorithm and that greatly reduces the synchroniza-
tion between threads.
To describe the technique, we will first introduce some definitions. Letm be the

size of the old table, andm′ be the size of the new table, then we call γ = m′/m the
growing factor growth factor γ = m′/mof the migration. Notice that the specific tables mentioned here are
still using sizes that are powers of two, therefore, the growing factor will also be a
power of two. But all presented techniques also work with arbitrary table sizes and
arbitrary growth factors (γ ≥ 1). Additionally, we use the term cluster clusterfor a range
of filled slots that is enclosed by empty slots (see Figure 4.1). In linear probing
hash tables clusters can become large because each element whose canonical slot
is within a cluster will be stored at the end of that cluster. Slots in the original table
form a circular groupZ/mZ any slot calculations are computed in the cyclic group,
slot calculations in the target table are calculated in Z/m′Z.

Lemma 1. Consider a cluster a..b, i.e., slots a..b are non-empty and slots a − 1 and
b + 1 are empty. When migrating the table, sequential migration maps the elements
stored in that cluster into the range ⌊γa⌋..⌊γ(b + 1)⌋ in the target table, regardless of
the rest of the source array.

Proof. Let x be an element stored in the cluster a..b at position p(x) = h(x)+d(x),
where h(x) = ⌊hpre(x) m

∣Hint ∣⌋ is x’s preliminary hash value hpre(x) linearly mapped

to a slot using the mapping factor of m
∣Hint ∣ . We say d(x) is the displacement displacementof x.

99

4 Concurrent Hash Tables

a

b

γa

γ(b + )
a′
b′

γa′

γ(b′ + )

Figure 4.1: Schematic representation of two neighboring clusters and their non-
overlapping target areas growing factor γ = 2.

Then h(x) has to be in the cluster a..b because linear probing does not displace el-
ements over empty slots (h(x) = ⌊hpre(x) m

∣Hint ∣⌋ ≥ a), and therefore, hpre(x) m′
∣Hint ∣ ≥

am′
m = γa.
Similarly, ⌊hpre(x) m

∣Hint ∣⌋ ≤ b implies that hpre(x) m
∣Hint ∣ < b + 1, and therefore,

hpre(x) m′
∣Hint ∣ < γ(b + 1).

Thus, two distinct clusters in the source table cannot overlap in the target table.
We can exploit this lemma by assigning entire clusters to only onemigrating thread
which can then process its assigned cluster completelytwo clusters are independent independently from any
other threads. Meaning that as long as other threads work on other clusters, two
threads never access the same slots of the target table.
Distributing clusters between threads can easily be achieved by first splitting the

table into blocks (regardless of the tables contents) which we assign to threads for
parallel migration. A thread that is assigned block d ..e migrates all clusters that
start within this range—implicitly moving the “responsibility borders”implicitly moving borders to

the end of a cluster
to free slots

between clusters as seen in Figure 4.2. The blocks are assigned by incrementing
an atomic variable by the block size. Since the average cluster length is short and
m ∈ Ω(p2), it is sufficient to deal out blocks of size Ω(p) to reduce the contention
on the atomic variable. Additionally, each thread is responsible for initializing all
slots in its region of the target tabletable is initialized at the same

time
. This is important because sequentially ini-

tializing the hash table can quickly become infeasible. It is possible that a cluster

100

4.4 Generalizations and Extensions

Figure 4.2: Left: dynamic block distribution—table split into even blocks. Right: resulting
cluster distribution (implicit block borders).

covers a complete block. Using our simple scheduling method this would not be
a problem, since this cluster fully belongs to the thread that works on the block it
starts in. The covered block has no work to be done (clusters to migrate). The over-
all work balance is still ensured by our simple work balancing mechanism (given
that: #(clusters)≫ p).
Note that waiting for the last thread at the end of the migration introduces some

waiting (locking) migration is not lock-free. Usually, this does not create significant work imbalance, since
the block/cluster migration is very fast and clusters are expected to be short. But
if the operating system would interrupt a migrating thread, then all other threads
would have to wait until this one thread is rescheduled and finishes its current
block.

Shrinking When elements are deleted, shrinking might be necessary to reuse
unused memory (see Section 4.4.4). Unfortunately, the nice structural Lemma 1
no longer applies. Because when shrinking the table, separate clusters separate clusters can collidecan collide
in the target table. However, we can still parallelize the migration with little syn-
chronization. Once more, we cut the source table into blocks that we assign to
threads for migration. The scaling function maps each block a..b in the source ta-
ble to a block a′..b′ in the target table. We have to be careful with rounding issues
so that the blocks in the target table are non-overlapping. two phases:

- in block migration
- overflow

We can then proceed in
two phases. First, a migrating thread migrates those elements that move from a..b

101

4 Concurrent Hash Tables

to a′..b′. These migrations can be done in a sequential manner (without atomic
operations), since target blocks are disjoint. The majority of elements fits into the
target block. Then, after a barrier synchronization, all elements that did not fit into
their respective target blocks are migrated using concurrent insertion i.e., using
atomic operations. This has negligible overhead since elements like this only exist
at the boundaries of blocks. The resulting order of elements in the target table is
not guaranteed to be the same as for a sequential migration but the data structure
invariants of a linear probing hash table are still fulfilled.

Hiding the Migration from the Underlying Application

To make the concurrent hash table more general and easy to use, we would like to
avoid all explicit synchronization. The growing (and shrinking) operations should
be performed asynchronously when needed, without involvement of the underly-
ing application.growing is triggered using the

approximate count
The migration is triggered once the table is filled to a factor of α

(e.g., 2/3), this is estimated using the approximate count from Section 4.4.2, and
checked whenever the global count is updated. When a growing operation is trig-
gered, the capacity is increased by a factor of γ ≥ 1 (Usually γ = 2). The difficulty is
ensuring that this operation is done in a transparent way without introducing any
inconsistent behavior and without incurring undue overheads.
To hide the migration process from the user, we have to solve two problems.

(1) who migrates elements
(2) preventing inconsistencies

First, we have to find threads to grow the table (strategies u and p), and second,
we have to ensure that changing elements in the source table does not lead to any
inconsistent states in the target table (possibly reverting changes made during the
migration; strategies a and s). Each of these problems can be solved in multiple
ways. We propose two strategies for each of them resulting in four different variants
of the hash table (mix and match).

Recruiting User-Threads (u) A simple approach to dynamically find threads
that migrate the table, is to recruit threads that try to perform table operations.
These threads would otherwise have to wait for the completion of the growing
process anyway. Recruiting user threads works well when the table is regularly
accessed by all user-threads, thus, all threads cooperate on growing phases. But

102

4.4 Generalizations and Extensions

it can be inefficient in the worst case, e.g., when most threads stop accessing the
table for example because they are stuck in a barrier waiting for the completion of
a global computation phase. The few threads still accessing the table at this point
would need a lot of time for growing (up to Ω(n)) while most threads are waiting
for them. One could try to recruit waiting threads but it looks difficult to do this in
a sufficiently general and portable way. One way to allow users to add threads to an
eventual table migration would be to call a dedicated yield function, this function
would check, whether there is an ongoing migration and return otherwise. Simi-
larly, one could even implement a specialized barrier, that inserts waiting threads
into a thread pool of potential helpers.

Using aDedicated Thread Pool (p) A provably efficient approach is to main-
tain a pool of p threads dedicated to growing the table. They are blocked until
a growing operation is triggered. This is when they are awoken to collectively
perform the migration in time O(n/p) (assuming fair scheduling of migrating
threads). Afterwards, they block again until the next migration is triggered. Dur-
ing amigration, application threadsmight have to sleep until themigration threads
are finished. This will increase the CPU time of our migration threads making this
method nearly as efficient as the recruiting variant. Using a reasonable computa-
tion model (i.e., processor speeds are within a constant of each other and all active
threads pinned to one node get fair time slots), one can show that using thread
pools for migration balances the cost of each table migration between all cores. We
omit the relatively simple proof.
Note: in our implementation of this technique ensuring fair measurements, we create one growing thread

per application thread accessing the hash table. Additionally, we pin each growing
thread to the same logical core as the corresponding application thread. Thus we
ensure fair measurements because the same number of computational resources
are used for all variants (recruiting, thread pool, and competitors).

Marking Moved Elements (a—asynchronous) During the migration it is
important that no element can be changed in the old table after it has been copied
to the new table. Otherwise, it would be hard to guarantee that changes are cor-
rectly applied to the new table. The easiest solution to this problem is mark slots before copyingto mark each

103

4 Concurrent Hash Tables

slot before it is copied. Marking each slot can be done using a compare-and-swap
operation to set a special marked bit which is stored in the key. In practice this
reduces the possible key space. If this reduction is a problem, see Section 4.4.6 on
how to circumvent it. To ensure that no copied slot can be changed, it suffices to
ensure thatno updates to marked slots nomarked slot can be changed. This can easily be done by checking the
bit before each writing operation, and by using compare-and-swap operations for
each update. However, this prohibits the use of fast atomic operations to change
element values.

Whenever a thread t finds a marked element, it is clear that the current table is
being migrated. Then t either helps with the migration, or blocks until the thread
pool has finishedmigrating the table (depending on the migration strategy u or p).
In principle, find operations could proceed without waiting for the migration. We
chose not to enable this in our implementation.

After the migration, the old hash table has to be deallocatedconcurrent deallocation . Before deallocat-
ing an old table, we have to make sure that no thread is currently using it any-
more. This problem can generally be solved by using reference counting. Instead
of storing the table with a usual pointer, we use a reference counted pointer (e.g.,
std::shared ptr) to ensure that the table is eventually freed.

Themain disadvantage of counting pointers is that acquiring a counting pointer
requires an atomic increment on a shared counterlocally buffering the

incremented counter
. Therefore, it is not feasible to

acquire a counting pointer for each operation. Instead the counter is incremented
once, and a reference to the table is stored locally (using the method from Sec-
tion 4.4.1). At the beginning of each operation, we can use the local version number
to make sure that the local table reference still points to the newest table version. If
this is not the case, the old counter is decremented and a new pointer is acquired.
This happens only once per version of the hash table. The old table is automatically
freed by the last thread that updates its local pointer. This solutuion achieves the
same worst case memory overhead O(pm) as described by Gao et al. [28] because
each thread keeps at most one table alive (O(n) if the table grows with each mi-
gration). Note that classic counting pointers cannot be exchanged in a lock-free
manner increasing the cost of changing the current table (using an explicit lock).
We use a specialized counting implementation that reuses previous counters af-

104

4.4 Generalizations and Extensions

ter their protected table was deleted. This implementation works lock-free with a
small memory overhead of O(p) counter objects.

Preventing Concurrent Updates (s—semi-synchronized) We propose a
simple protocol inspired by read-copy-update protocols [54]. It uses p local flags
f1,..,p, and one global growing flag fG to control that no thread is using the flagwhile
it is being migrated. It should be said that to implement this technique efficiently
special attention has to be paid to the memory order of different operations on
flags. Whenever a thread t accesses the table, it sets its local busy flag ft at the start
of the operation and unsets it after the operation is completed (before returning the
result of the operation). When a thread tG triggers the growing operation it sets
some global growing flag fG using a compare-and-swap instruction. This global
flag is inspected by each thread after setting its local flag (before executing each
operation). If the flag is set, the local flag ft is unset. wait until ongoing updates are

finished
Then the thread waits for the

completion of the growing operation, or helps with migrating the table depending
on the current growing strategy. After setting fG , the growing thread tG waits until
all busy flags have been unset at least once before starting the migration (overhead
O(p) is a lower order term compared to the migration ∼ O(m/p)). When the mi-
gration is completed, the growing flag is reset, signaling to the waiting threads that
they can safely continue their table operations. Because this protocol ensures that
no thread is accessing the previous table after the beginning of themigration, it can
be freed without using reference counting.

We call this method semi-synchronized why semi-synchronizedbecause grow and update operations are
disjoint. However, threads that are participating in one growing step (i.e., the u-
variant) still arrive asynchronously, e.g. when the parent application called a hash
table operation. Compared to the marking based protocol, we save cost during
migration by avoiding compare-and-swap operations (i.e., not marking elements).
However, this is at the expense of setting the busy flags for every operation. Our ex-
periments indicates that overall this is only advantageous for updates using atomic
operations like fetch-and-add that cannot coexist with the asynchronous consis-
tency method’s marking bit per element.

105

4 Concurrent Hash Tables

Overviewoftheresultingmethods In the beginning of this sectionwe iden-
tified two orthogonal problems that have to be solved tomigrate hash tables: which
threads should execute the migration? and how can we make sure that copied ele-
ments cannot be changed in the old table? For each of these problems we formu-
lated two strategies.u—user threads

p—thread pool
a—asynchronous(marking)

s—semi-synchronized

The table can either be migrated by user-threads that execute
operations on the table (u), or by using a pool of threads which is only respon-
sible for the migration (p). To ensure that copied elements cannot be changed,
we propose to mark elements before they are copied, thus proceeding fully asyn-
chronously (a); and we explain a semi-synchronized protocol which ensures that
all running update operations finish before the table is migrated (s).
All strategies can be combined—creating the following four growing hash table

variants: uaGrow recruit user threads and asynchronous marking for consistency;
usGrow also uses user threads for the migration, but ensures consistency by syn-
chronizing updates and growing routines; paGrow uses a pool of dedicated migra-
tion threads for the migration and asynchronous marking of migrated entries for
consistency; and psGrow combines the use of a dedicated thread pool formigration
with the semi-synchronized exclusion mechanism.

4.4.4 Deletions

In Section 4.3 we describe why the normal folkloreHT table cannot support true
deletions. Instead we use tombstones to mark deleted elements, without reclaiming
the slot for future insertions. This method can be improved by using ourmigration
technique to clean the table once it is filled with too many tombstones.
As described in Section 4.3 there are two problems with this kind of deletion.

The initial size of the table has to be set according to the number of overall in-
sertions, and the generated tombstones clutter the table slowing down future op-
erations.removing tombstones during

the migration
Both of these problems can be solved by migrating all non-tombstone

elements into a new table. The decision when to migrate the table should be made
solely based on the number of insertions I since the last table migration (i.e., num-
ber of non-empty slots). The count of all non-deleted elements I−D is then used to
decide whether the table should grow, keep the same size (notice γ = 1 is a special
case for our optimized migration), or shrink. Either way, all tombstones can be

106

4.4 Generalizations and Extensions

removed in the course of the element migration. We implemented both a growing
migration, and a migration to a table with the same size. We did not implement
the shrinking mechanism.

4.4.5 Bulk Operations and Forall

Forall

Many algorithms need to iterate over all elements within a hash table, e.g., out-
putting all unique elements after one round of duplicate detection. This problem
can be solved easily by iterating over all slots of the table and omitting empty slots.
This approach is very cache efficient if the table is sufficiently filled (constant ratio
of filled slots). dynamically sized⇒ constant

fill degree
The use of dynamically sized hash tables—in particular—enforces

a constant fill ratio because growing is only triggered once the table is sufficiently
filled.

Forall operations can easily be done in a parallel manner—given the right inter-
face. However, different interfaces have different strengths and weaknesses. De-
pending on the interface forall operations can be synchronous or asynchronoussynchronized or asynchronous
and the load balancing can be either dynamically or statically balanced static or dynamic balancing. Addition-
ally, it should be possible that only a subset of threads cooperates on the opera-
tion. To enable quick implementations supporting all of these different techniques,
we decided on an interface that uses block-iterators block-iterator. A block iterator can be con-
structed using two table indices start ℓ and end r. Once constructed, the iterator
iterates over all filled slots between ℓ and r. Thus each element can be handled
in parallel if different threads create different block iterators. Given this interface,
all kinds of forall implementations can be realized. For example using static load
balancing by splitting the table into p equal parts. Dynamic load balancing can
be implemented by splitting the table into many smaller blocks using fetch-and-
add on a single atomic variable to distribute the work packages (i.e., similar to the
load balancing during the migration). The latter approach has the advantage that
random element imbalances would likely be evened out.
Synchronicity is achieved using dedicated barriers around the operation. The

only restriction to this implementation is that the iterators should not be invali-
dated while the operation is going on. Thus, no element should be inserted and no

107

4 Concurrent Hash Tables

element should be deleted during the operation (each thread is allowed to delete
slots stored in its range). However, executing concurrent insert and delete opera-
tions likely creates problematic interactionswith any kind of forall implementation.
Similarly, it seems to be impractical to migrate a table while also executing a forall
operation.

Bulk Operations

Our experiments in Section 4.6.4 show that contentious updates (highly skewed
key sequences) still have a large impact on running times (even when using atomic
operations). The main reason for this is probably the number of uncached main
memory accesses caused by cache invalidation (see Section 2.5.2) and the neces-
sary sequencing through atomic operations. Bulk operations might be a way to
solve this problem in instances where all updates are known a priori. By sorting a
number of hash table operations by their hashed key (or their canonical slot), one
can partition the table into sections where updates (or even insertions) can run in
an embarrassingly parallel fashion.

Construction Building a hash table for n elements passed to the constructor
can be parallelized in this fashion. First, we use integer sorting to sort the inserted
elements by their hash function value. This works in time O(n/p) regardless of
eventual collisions and repeated insertions, i.e., sorting circumvents contention.
See thework ofMüller et al. [62] for a discussion of this phenomenon in the context
of aggregation.

Generalization Generalizing batches of operations to othermethods, i.e., dele-
tions, updates, or even mixed batches is straightforward. Processing batches of
m = Ω(n) arbitrary hash table operations in a globally synchronized way can use
the following strategy—similar to the strategy we just outlined for the case of bulk
insertions. (1) First (integer-)sort all operations by their hash key in expected time
O(m/p). (2)co-partitioning the hash table

and the sorted array of
operations

Co-partition the sorted insertion array and the hash table into cor-
responding pieces of size O(m/p). Most of the work can now be done on these
pieces in an embarrassingly parallel way (load balancing is possible by choosing

108

4.4 Generalizations and Extensions

more than p pieces). Each piece is operated on sequentially by only one thread. (3)
Whenworking on each piece, reducing the number of

unnecessary operations
we canminimize the sequence of operations for each

key, i.e., any insertions and updates that happen before a deletion can be removed
and depending on the update function updates can be grouped. (4) Then “merge”
each block into the hash table (the hash table may have to be migrated beforehand
to provide space for new elements). We can adapt ideas from parallel merging [31].
For insertions we can start looking for a free slot at position max(h(x), i) where
i is the position of the last element this thread operated on. Atomics only have to
be used for the first cluster of one partition, and once insertions enter the partition
of another thread. This only happens for the last cluster of one threads partition
(constant expected cluster length).

4.4.6 Restoring the Full Key Space

Our table uses two special keys, the empty key empty-key and del-key(empty-key) and the deleted key
(del-key). Elements that actually have these keys cannot be stored in the hash ta-
ble. To fix this, one could use two additional slots (me and md) in the global hash
table data structure. If the element with the empty key is inserted it is stored in
me (deleted key is stored in md). These two slots are not accessible through linear
probing, therefore, they cannot be filled with any other elements. The case distinc-
tion needed to access these slots when an insert or lookup uses one of these special
keys should have rather low impact on the overall performance.

One of our growing variants (asynchronous) uses a marker bit growing-marker-bitin its key field.
This halves the possible key space from 264 to 263. To regain the lost key space,
we can store the lost bit implicitly. Instead of using one hash table that holds all
elements, we use the two subtables t0 and t1. The subtable t0 holds all elements
whose keys do not have their most significant bit set. While t1 stores all elements
whose keys do have the most significant bit set. Instead of storing the full keys, t1
only stores the lower 63bits of the keys. Themost significant bit is removed (stored
implicitly).

Each element can still be found in constant time because when looking for a cer-
tain key, it is immediately obvious which table is responsible for the corresponding
element. After choosing the right table, comparing the 63 explicitly stored bits

109

4 Concurrent Hash Tables

uniquely identifies the correct element. Notice that both empty keys have to be
stored distinctly (as described above). The size of both subtables can be chosen
independently. In this case, both tables could be grown independently of one an-
other.

4.4.7 Complex Key and Value Types

Using compare-and-swap instructions to change the content of hash table slots
makes our data structure fast but limits its use to cases where keys and values fit
into machine words. Lifting this restriction is bound to have some impact on per-
formance. In the following, we outline ways to keep this penalty small. The general
idea is to replace the key-value-pairs by pointers to the actual data, similar to hash-
ing with chaining (see Section 2.4.1). So far, this is a very common technique and
it runs the risk of combining the weaknesses of hashing with chaining (i.e., addi-
tional memory for pointers and indirections when accessing elements) and linear
probing (i.e., long displacements and slowdown on full tables). But we feel that
there are some possible improvements that are often overlooked.

Open Problems with Complex Elements There are three main problems that
pointers introduce to the data structure:- comparison

- concurrent deallocation
- memory allocation

(1) each key comparison generally causes
one main memory access, (2) memory allocation costs performance, and (3) deal-
location in concurrent scenarios causes problems. In the following, we will show
solutions to all of these problems that are adapted to our overall data structure to
achieve the best possible performance.

Fast Comparison

When using pointers to store elements outside of the table, we have an effect that
is similar to hashing with (out-of-table) chaining. Finding an element will always
incur one “random” memory access per probed element (each one likely incur-
ring a cache fault). Contrary to chaining, the accessed memory locations can be
prefetched because the address of one memory access does not depend on the re-
sult of the previous access.minimize memory accesses

outside the table
But for our fast comparison, we want to minimize the

memory accesses outside the table.

110

4.4 Generalizations and Extensions

To implement this fast comparison, it is important to know that pointers actually
use fewer than 64bits. On modern hardware, using current operating systems,
pointers actually only use the least significant 48 bits2. The 16 most significant bits
can be used for other data. For example, we can use these bits to mark migrated
elements in the asynchronous variant of our migration algorithm (see Section 1).
To implement our fast comparison, we use the remaining 15bits to store a fingerprintfinger-

print of the element. A fingerprint is a small number dependent on the key (here
between 0 and 215− 1) that is independent of the canonical slot. We can easily com-
pute such a number by hashing the key (using only 15bits of the hashed value). We
can even reuse the original hash value if we just use 15bits that were not used for
determining the canonical slot of the element. If we use the linear mapping with
m being a power of two for computing the canonical slot, then the 64− logm least
significant bits were unused and thus should be independent from the canonical
slot.
Thus, while querying for a key, we first compute its canonical slot and its fin-

gerprint. Then we scan from its canonical slot similar to normal linear probing,
but instead of comparing keys we would first compare fingerprints. Thus, we only
compare the keys if the fingerprint stored in the slot matches the queried finger-
print. This method reduces the number of unnecessary key comparisons by a fac-
tor of 2−15 in expectation. This is especially interesting because comparing saves complex

key-comparisons
complex

keys—like strings—usually takes more time than a simple integer comparison.
Note: the same methods would still work with true 64bit pointers. In this case,

we would use the double-word variant of our table and store the fingerprint in
the second word. This way, we could even support longer fingerprints, although it
seems questionable that the speedup due to the smaller false positive rate would be
worth the effort (using an additional hash function to compute fingerprints).

Frequent Allocation

To store elements outside of the table, it is necessary to allocate the out-of-table
memory out-of-table memory needs

allocation
(see Section 2.5.3). Repeatedly calling commonly used memory allocation

2Due to alignment reasons, there are even some additional unused bits in the least significant por-
tion of a pointer, but we do not use those here

111

4 Concurrent Hash Tables

methods like malloc has a large impact on the performance of the data structure,
especially in concurrent scenarios. There are specialized allocators that can allevi-
ate some of these problems. However, we believe that parts of our design and our
specific use case allow us to improve the performance even further.
The running time of these common allocation methods is usually independent

of the element size, thus allocating a lot of memory at once is reasonably efficient.
We call the following technique alocal-page-allocator local-page-allocator. Using the per-thread-data
technique described in Section 4.4.1, we keep one active memory page per-thread.
Whenever a new element is inserted, we append its content to the active memory
page and insert a pointer to this address. Once a page is completely filled, we can
start a new page (keeping a pointer to the old one). Large elements (≈ page size)
can be allocated using one of the common allocation functions. With the described
allocation system, small allocations boil down to (non-atomically) incrementing a
local variable. This is especially efficient in the absence of deletions, where it is
impossible to create gaps in a previously filled memory page.
Concurrent data structures are often used to communicate data between differ-

ent threads. Nonetheless, it is very common that threads predominately operate
reducing non-local memory

access
on their own elements. This design has the advantage that it reduces the number
of accesses to other NUMA-nodes in these cases (this works better in conjunction
with our fingerprinting technique).

Concurrent Deallocation

Out-of-table storage is significantly more complicated if deletions are necessary.
The critical situation that can arise is when one thread A reads a slot s, and the fin-
gerprint matches its queried element. Then another thread B removes the element
in slot s and replaces the pointer with a dummy. If B deallocates the element, then
thread A will cause a segmentation fault when accessing the old element. This is
a problem, since B has no way of knowing of A’s intention to access the element.
Luckily, there are different solutions to this problem that are specific to our design.
The concurrent deallocation problem is commonly solvedwith one of twometh-

ods, either by using complicated protection methods like hazard pointer or by pro-
tecting pointers with some kind of locking mechanismsimple locking method . Both options introduce

112

4.4 Generalizations and Extensions

some overhead. A simple locking mechanism that is easy to implement in our de-
sign is to introduce a locking bit in conjunction with the pointer. The locking bit
could be implemented as part of the fingerprint—reducing the actual fingerprint
size by one bit. After successfully comparing the fingerprint, A acquires the lock
before accessing the element in slot s. Then the key can be compared without fear
of deallocation. Similarly, thread B can only remove the element after locking its
pointer first. Fingerprints can still be compared without locking the pointer, thus,
a lock only impedes concurrent queries to other elements in the same cluster if
they have a matching fingerprint. However, this method is sensitive to contentious
workloads, even if there is only read contention (i.e., multiple threads query the
same element, and try to obtain the same lock).
One interesting possibility that is inherent to our hash table design is the fact

that the table is repeatedly migrated—either when growing or when it runs full
of tombstones reclamation during table

migration
. Connected to these migration phases, we have already solved the

problemof concurrent deallocation for the old tables (see Section 4.4.3). Whenever
an old table is deallocated, it is guaranteed that there is no operation still working
with the old table. Thus there is also no operation still using one of the old pointers
(that were only stored in this table). Thus, a simple reclamation techniquewould be
to remove elements in conjunctionwith the tablemigration. Whenwe are using the
local-page-allocator described above, we can even defragment the memory pages
by moving elements that remain in the table to free up unnecessary memory pages
(this is only possible in the semi-synchronized variants).
Another interesting idea is to reuse memory that was previously used by deleted

elements reuse memory instead of
deallocation

. This works best when all inserted elements have the same size. This is
usually the case in programming languages like C++, where all instances of the same
(object-)type have the same size. Reusing the memory can either be done after the
migration. Or we can reuse the memory during the lifetime of one table. For this
it is necessary that queries which still access the previously stored element—e.g.,
for comparing their keys—recognize that the element has changed. This could be
implemented efficiently by locally storing the addresses of recently removed ele-
ments until a new element is inserted. Freed addresses can be exchanged between
threads, by adding them to a global data structure. Before doing so, pointers should
be grouped (group size O(p)) to reduce the contention on the global structure.

113

4 Concurrent Hash Tables

This overall technique could be used to bound the number of actual allocations to
O(nmax + p2)number of allocations

∈ O(nmax + p2)
where nmax is the maximum number of elements stored at the same

time.

4.5 Implementation Details

In this section, we describe some choices and details that we made while imple-
menting our data structures.
All of our growing and non-growing hash tables (uaGrow, usGrow, paGrow, ps-

Grow, and folkloreHT) can be instantiated with either specialized 128bitspecialized for 128bit or
complex key value types

slots using
double word compare-and-swap operations or with our methods for complex key
and value types described in Section 4.4.7. Slots that can hold complex key and
value types are implemented as atomic 64bit pointers, storing the actual element
outside the table. Each pointer has a 15 or 16bit fingerprint for fast comparisons.
Changing a slot’s content is implemented with an atomic compare exchange oper-
ation3. Changing an element’s value can be done using any atomic operation on
the value. Elements are allocated using Intel®Thread Building Blocks’s [76] (TBB)
scalable allocator.
In our growing variants, amigration is triggered when the table is approximately

2/3 filledmigration at 2/3 . Each migration either doubles the capacitym of the table or the capacity
remains the same—depending on the number of non-tombstone elements (≤ 1/3).
The migration works in blocks of 4096 slotsmigration block size 4096 that are assigned by incrementing an
atomic number. Blocks are migrated with a minimum amount of atomics by using
the cluster migration described in Section 4.4.3, thus moving the block boarders
implicitly.
During our testing we found out that the memory mapping has a significant

influence on the test’s running time. Therefore, we use a user-spacememory-pool-
allocatormemory-pool-allocator to

reduce the influence of
memory mapping

implemented in TBB to prevent a slowdown due to the re-mapping of vir-
tual to physical memory (see Section 2.5.3) which is probably protected by a coarse
lock in the Linux kernel. This pool-allocator manages a large amount of memory
thatwas already accessed and thus is alreadymapped fromvirtual to physicalmem-

3using the cmpxchg16b assembler instruction

114

4.6 Experimental Evaluation

ory. By allocating memory from this memory pool, we avoid concurrent syscalls
to map the allocated memory, thus bypassing the kernel-lock. The performance
impact from the allocation itself should be fairly minimal because there is only one
allocation per migration level. The use of the memory-pool-allocator improves the
performance especially when using more than 24 threads.

4.6 Experimental Evaluation

We performed a large number of experiments to investigate the performance of
different concurrent hash tables in a variety of circumstances (an overview over all
tested hash tables can be found in Table 4.1). We begin by describing the tested
competitors (Section 4.6.1), the test environment (Section 4.6.2), and the test in-
stances (Section 4.6.3). The results of our tests and a discussion thereof can be
found in Section 4.6.4.

4.6.1 Competitors

To compare our implementation to the current state of the art we use a broad se-
lection of other concurrent hash table implementations. These competitors competitors from research and

popular libraries
were

chosen on the basis of their popularity in applications and academic publications.
We introduce symbols to simplify relating between the text and performance plots.
Each implementation is assigned a unique symbol that is used throughout this sec-
tion and within each graph each hash table has a symbol(different implementations from the same library use
the same symbol in different colors).

Non-Growing Hash Tables

One of the most important subjects of this chapter is to offer generalizations to
our simple lock-free hash table implementation folkloreHT.While this makes folk-
loreHTmuchmore usable in a variety of circumstances, for example when growing
is necessary. We also want to show the overhead measure the overhead we

”pay” for growing
that is necessary for supporting

all of these generalizations and we want to analyze if a dynamically sized table can
compete with non-growing hash tables.

115

4 Concurrent Hash Tables

FolkloreHT + Our folkloreHT implementation described in Section 4.3. This
hash table is also the core of our growing variants. Therefore, we can immediately
determine the overhead that the ability for growing places on this implementation
(Overhead for approximate counting and shared pointers).

Shunhash× This hash table implementation by Shun and Blelloch [81]. They
offer two implementations, one deterministic variant that is supposed to be used
in a phase concurrent manner, i.e. no reads can occur concurrently with writes
and a non-deterministic variant which we used for our tests (in our preliminary
experiment there was only very little difference between both versions)s.

Hopscotch Hash Hopscotch hashing (see Section 2.4.2, page 36) is a vari-
ant of hashing with in-table displacement that was originally developed by Herlihy
et al. [33] for this concurrent use case. The version we tested was published to-
gether with their original publication proposing the technique. Interestingly, the
provided implementation only implements the functionality of a hash set (unable
to retrieve/update stored data). Therefore, we had to adapt some tests to account
for that4 (insert ≅ put and find ≅ contains).

LeaHash This hash table is designed by Lea [38] as part of Java’s Concurrency
Package. We have obtained a C++ implementation which was published together
with the hopscotch table. It was previously used for experiments by Herlihy et al.
[33] and Shun and Blelloch [81]. LeaHash uses hashing with chaining and the im-
plementation that we use has the same hash set interface as hopscotch4.

Efficiently Growing Hash Tables

The following hash tables are able to grow efficiently from a very small initial size.
They are used in our growing benchmarks, where we initialize tables with an ini-
tial capacity that is more than 3 orders of magnitude smaller than the number of
insertions into the table, thus making efficient growing necessary for good perfor-
mance. There is one hash table (folly) that can only grow by at most a “constant”
4Themeasured results should be taken with a grain of salt. Hash table implementations should be
straightforward to implement, but they might lose some performance over the measured results

116

4.6 Experimental Evaluation

factor (approximately 20). To still be able to test folly, we decided to increase their
intitial capacity to -th of the target size.

uaGrow , usGrow , paGrow , and psGrow These are our generalized
implementations (see Section 4.5). To de-clutter the plots by a little bit, we usually
only test uaGrow and usGrow . Additionally we present a specific comparison
to the other two implementations in a separated comparison.

JunctionLinear , JunctionGrampa , and JunctionLeapfrog The junc-
tion library consists of three different variants of a dynamic concurrent hash tables.
It was published by Jeff Preshing on github [78] after our first publication on the
subject ([46]). There are no scientific publications, but in their blog [77] Preshing
publishes some insightful posts on their implementation. In theory, junction’s hash
tables use an approach to growing which is similar to ours. A filled bounded hash
table is migrated into a newly allocated bigger table. Although all three variants
are constructed from a similar idea their performance seems to differ quite signif-
icantly. The junction hash tables use a quiescent-state based reclamation (QSBR)
protocol for memory reclamation. For the memory reclamation to work, i.e., each
thread has to call a designated function in regular intervals, as long as it is not in
a critical section. Calling this function indicates that the thread does not hold any
references to the table. The table can be deallocated once its pointer has been re-
moved and every thread has called the function at least once (transferring some of
the overhead of deallocation to users of the data structure).
Junction tables need to be used with invertible hash functions. Since xxH3 (i.e.,

the hash function we used for all of our tests) is not invertible, we decided to use
the provided hash function called avalanche (comes with the junction library). The
different hash tables within the library all perform variants of in-table displacement
(see blogpost [77] for for individual details).

tbbHM and tbbUM Intel®Threading Building Blocks [76] (TBB) library is
one of the most widely used libraries for shared memory parallel (and concurrent)
programming. It contains two different hash table implementations: (tbbHM)
concurrent hashmap and (tbbUM) concurrent unorderedmap respectively. Both

117

4 Concurrent Hash Tables

versions have some significant differences especially concerning their interfaces
and the way accessed elements are locked. Therefore, they behave very differently,
for example under contention.

cuckoo (cuckoohash map)This hash table using (bucket) cuckoo hashing as
its collision resolution method, is part of the small libcuckoo library (Version 1.0).
It uses a fine grained locking approach presented by Li et al. [41] to ensure consis-
tency. Cuckoo is mentionable for their interesting interface, which combines easy
container style access with an update routine similar to our update interface.

RCU /RCU QSBR This hash table is part of the userspace-rcu library (Ver-
sion 0.8.7) [75] that brings the read copy update principle to userspace applica-
tions. Read copy update is a set of protocols for concurrent programming that are
popular in the Linux kernel community [54]. RCU uses the recommended read-
copy-update variant (urcu). RCU QSBR uses a QSBR based protocol that is com-
parable to the one used by junction hash tables. It forces the user to repeatedly call
a function with each participating thread.

folly (folly::AtomicHashMap) This hash table was developed at facebook
as a part of their open source library folly [65, 64] (Version 57:0). It uses restrictions
on key and data types similar to folkloreHT. In contrast to our growing procedure,
the folly table grows by allocating additional hash tables. This increases the cost of
future queries. The implementation has a built-in maximal growing factor of ≈ 20
(over its initial size). Therefore, instead of initializing folly hash tables with the
usual initial capacity we use an initial capacity that is 1/4th of the target capacity.

4.6.2 Hardware Overview

All experimentswere executed on a one-socketmachinewith anAMDEPYCamd-epyc 7702P
with 64 cores each running at 2.0GHz (3.35GHz Turbo Frequency) with 256MB
of L3 cache size and 1TB ofmainmemory. We call thismachine amd-epyc. To show
the scalability of different approches, we also execute experiments on a four-socket
Intel4-socket-intel Xeon Gold 6138 machine with 20 cores per socket, each running at 2.0GHz

118

4.6 Experimental Evaluation

Table 4.1: Overview of concurrent hash table implementations and their functionality.
name plot std. interface growing atomic updates deletion arbitrary types
FolkloreHT + ✓ ✓
Shunhash × sync phases partially1 ✓
Hopscotch set interface set interface ✓
Lea Hash set interface set interface ✓
xyGrow
uaGrow using handles ✓ ✓ ✓ without deletion2

usGrow using handles ✓ ✓ ✓ without deletion2

paGrow using handles ✓ ✓ ✓ without deletion2

psGrow using handles ✓ ✓ ✓ without deletion2

Junction
linear qsbr function ✓ only overwrite ✓
grampa qsbr function ✓ only overwrite ✓
leapfrog qsbr function ✓ only overwrite ✓
TBB
hash map accessor obj. ✓ ✓ ✓ ✓
unordered ✓ ✓ ✓ unsafe ✓
Cuckoo by value slow ✓ ✓ ✓
RCU
urcu register thread ✓ ✓ ✓ ✓
qsbr qsbr function ✓ ✓ ✓ ✓
Folly ✓ const factor ✓

1 There are some specialized operations (chosen at the time of construction)
2 not implemented in our implementation (possible for future release)

(3.7GHz Turbo Frequency) with 27.5MB of L3 cache size (per socket) and 768GB
of main memory (overall). We call this machine 4-socket-intel (or short 4-intel).
Both machines use a Ubuntu 20.04.2 operating system and all tests were compiled
using gcc 9.3.0 with -march=native and -O3 flags.

4.6.3 Test Methodology

Each test measures the time it takes, to execute 108 hash table operations (strong
scaling strong scaling 108 operations). Each data point was calculated by taking the average of five separate ex-

119

4 Concurrent Hash Tables

ecution times5. Different tests use different hash table operations and key distri-
butions. The used keys are pre-computed before the benchmark is started. Each
speedup given in this section is computed as the absolute speedupreported speedups are absolute

speedups
over our hand-

optimized sequential hash table.

The work is distributed among threads dynamically. Until all operations have
been distributed, threads reserve blocks of 4096 operations to execute (using an
atomic counter). This ensures a minimal amount of work imbalancedynamic scheduling , making the
measurements less prone to variance.

All random inputs are precomputed before the execution. Two executions of
the same test use the same input keys. Most experiments are performed with uni-
formly random generateduniform random with

mersenne twister
keys (using the Mersenne twister random number gen-

erator [52]). Real world inputs usually have recurring elements, thus possibly intro-
ducing contention which can potentially lead to performance issues. To test hash
table performance under contention, we use Zipf ’s distribution to create skewed
key sequences. In a sequence of keys generated with Zipf ’sskewed inputs with Zipf

distribution
distribution, the prob-

ability for any given key ki is P(ki) = 1/(is ⋅ HN ,s), where HN ,s is the N-th gener-
alized harmonic number∑N

i=1
1
is (normalization factor) and N is the universe size

(N = 108). The skew can be adjusted using the exponent s. We use Zipf ’s distribu-
tion because it closely models some real world inputs like natural language, natu-
ral size distributions (e.g. of companies or internet pages), and even user behavior
([6, 9, 1]). Zipf distributed keys are pre-generated similar to our other random key
distributions as to not influence the measurements unnecessarily (this is especially
necessary since constructing Zipf distributed keys is more costly than uniformly
distributed numbers).

The main argument for using randomizedwhy randomized data? keys over real world data is that even
when using real world data, the access patterns will be randomized due to the hash
function. The only influence that the input sequence has given a good hash func-
tion is the repetition of keys, which we simulate using our skewed input sequences.
Only for our tests with arbitrary key types we use the real world Project GutenbergProject Gutenberg data set

data (each word is treated as a key) because generating realistic strings is much

5on 4-socket-intel we have experienced some deterministic slowdowns in the first and second iter-
ation, thus, we increase the number of iterations and drop the first two measurements (warmup
runs)

120

4.6 Experimental Evaluation

more difficult. TheGutenberg collection is a set of books within the public domain.
It contains over 60 000 documents in many different languages, for the purpose of
our tests however, we limit ourselves to the documents available in English.
In our tests we use the hash function xxH3 [15] xxH3 hash functionwhich is part of the xxHash li-

brary. It is a highly optimized hash function implementation that is efficient for
both long and short inputs. Additionally, while it is not a cryptographic hash func-
tion, it still offers enough entropy to “guarantee” well balanced hash tables.
We use sequential variants of our growing and fixed size tables to measure and

report absolute speedups. They do not use any atomic instructions or other over-
heads necessary for our concurrent data structures. In a number of preliminary ex-
periments our sequential variants outperform popular choices like Google’s dense
hash map (80% increased insert throughput), making them a reasonable approxi-
mation for the optimal sequential performance.

4.6.4 Experiments

The most basic functionality of each hash table is inserting and finding elements.
The performance of many parallel algorithms depends on the scalability of par-
allel insertions and finds. Therefore, we begin our experiments with a thorough
investigation into the scalability of these basic hash table operations.

Insert Performance

Webegin by benchmarking the insert performance 108 different uniformly random
keys are inserted into a previously empty hash table. We repeated 108 insertions

(1) static table size
(2) growing table

this test two times
once inserting into a preinitialized table that has the appropriate capacity to hold
all inserted elements and once inserting into a growing table (i.e., initialized with
a capacity of ≈ 50 000 causing the table to grow by about 3 orders of magnitude—
folly grows by a factor of 4). Figure 4.3 shows results measured on both machines
(amd-epyc and the 4-socket-intel server). Due to the number of tested hash tables,
these plots can be pretty overwhelming but we want to single out some trends.
On amd-epycwe see that insertions into the static table (Figure 4.3; top) scale re-

ally well for almost all hash table architectures. The top four best absolute perform-
ing hash tables are all variants of folkloreHT (i.e., linear probing top tables use linear probingwith compare-

121

4 Concurrent Hash Tables

and-swap): shunhash× (38.2; absolute speedup taken at p = 64), folkloreHT+ (
38.1), uaGrow (34.1), and usGrow (27.4). All other tables have at most half
the performance, i.e., cuckoo (14.8) and folly (12.5). Our growable variants
uaGrow and usGrow are 11% and

28% slower than folklore. This is the overhead caused by the ability to grow the
table, i.e., due to the overhead of keeping pointers to the table up to date.
On 4-socket-intel (Figure 4.3; third plot) we could not reproduce the nice scal-

ing behavior of amd-epyc. Our solutions scale relatively well up to 20 cores; then
they scale reasonable up to 40 cores (second socket); afterwards there is a lot of
variance indicating that there is some bottleneckbottleneck on 4-socket-intel impacting the performance and
causing congestion (accesses scale better—indicating that the bottleneck might be
write access to NUMA-memory). However the relative behavior of the hash tables
remains similar. The top four hash tables have not changed their order (cuckoo
and folly switched places).
In our experiments with growing tables (see Figure 4.3) we can see that again our

variants based on linear probing are themost efficient. Especially on amd-epyc (sec-
ond plot) there uaGrow has an absolute speedup of 25.9 (at p = 64) and usGrow
has a speedup of 25.6 (24% and % less than in the static case). Thus, usGrow has
comparable absolute speedups for the case with a growing table compared to the
case with a static tableabsolute speedup with growing

vs. absolute speedup on static
table

, indicating that our migration approach scales about as well
as insert operations. Similar to the static case, no other table comes within a factor
of two in this test. The best competitors are junction grampa with a speedup of 9.8
and the two rcu tables , both with around 6.8. On 4-socket-intel uaGrow , us-
Grow , and junction grampa perform relatively similar, all seemingly converge
to the same maximum speed. Comparing the absolute speedups of our solutions
between the static table size and the growing table we achieve 9% (and 17%) lower
speedups than in the static case, indicating again that the migration scales about as
well as inserting elements.

122

4.6 Experimental Evaluation

Folklore

ShunHash

Hopscotch

LeaHash

uaGrow

usGrow

Junction Grampa

Junction Linear

Junction Leap

Cuckoo

TBB HashMap

TBB UnorderedMap

Folly

RCU

RCU qsbr

0

200

400

600

0
10
20
30
40

1 4 8 16 24 32 48 64 96 128
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Static Table (amd-epyc)

0
50
100
150
200

0

10

20

1 4 8 16 24 32 48 64 96 128
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Growing Table (amd-epyc)

0

100

200

300

0

5

10

15

1 4 20 40 80 120 160
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Static Table (4-intel)

0

20

40

60

80

0

3

6

9

1 4 20 40 80 120 160
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Growing Table (4-intel)

Figure 4.3: Throughput while inserting 108 elements into a previously empty table. Perfor-
mance is measured either with static table size (plots 1 and 3) or with dynam-
ically growing tables mstart ≈ 50 000 (plots 2 and 4). The results are collected
both on amd-epyc (plots 1 and 2) and on 4-socket-intel (plots 3 and 4).

123

4 Concurrent Hash Tables

Find Performance

amd-epyc vs. 4-intel
× growing vs. static
× positive vs. negative

When looking for a key in a hash table there are two possible outcomes—either it
is in the table or it is not. For most hash tables not finding an element takes longer
than finding said element. Therefore, we present two distinct measurements for
both cases Figure 4.4. We have also experienced the fact that queries on a grown
table can also take more or less time to execute. Therefore, we also show measure-
ments querying tables that have previously grown (these benchmarks were exe-
cuted on the tables constructed during the previous benchmark). We measure the
performance of positive queries by looking up all 108 elements that were previously
inserted into the hash table (average find time). Formeasuring negative queries 108

uniformly random keys are searched in the same hash table.

Since find operations can proceed without changing memory it is fairly obvious
that many hash tables can achieve higher throughputs on find heavy workloads,
e.g., folkloreHT+ has 1.42 times higher throughput on positive find queries vs.
insert operations (p = 64; 1.14 times higher for negative finds). The hash tables that
perform well in this benchmark are again the same four linear probing based hash
tables that performed well on the insertion benchmark (shunhash×, folkloreHT+,
uaGrow , and usGrow). In addition to these hopscotch and folly achieve
nearly the same speedup. Hopscotch hashing is especially strong for negative
find queries where it is the fastest hash table.

The absolute speedups measured in this benchmark are also significantly higher
than the speedups reached during the insertionqueries scale better than

insertions
test suggesting that queries scale

better than insertions (folkloreHT+ 1.18× and 1.25×, and uaGrow 1.13× and
1.42×). Hyperthreading also seems to be quite efficient for find queries.

The results on 4-socket-intel again suggest that there is a problem with memory
accesses to different NUMA-nodes. It is somewhat indicative how folkloreHT+
and shunhash× start to collapse when scaling to a second node. Bot uaGrow
and usGrow scale somewhat better on successful find queries but have the same
problem on find negative queries. What is interesting however, is that these prob-
lems are significantly reducedon 4-intel queries are faster on

migrated tables
on the tables that have been migrated (row 3 and 4).

The reason could be that these tables were initialized concurrently by all proces-
sors who executed themigration thus the tablesmemorywould be scattered among

124

4.6 Experimental Evaluation

NUMA-nodes in contrast to the static tables that were initialized on one specific
node (uaGrow 1.44 × and 1.78 × and usGrow 1.31 × and 1.92 × higher through-
put on migrated tables). Thus on multi-socket hardware it seems to be beneficial
to intentionally allocate the table too small, thus forcing the table to grow. Alterna-
tively one could probably implement a parallel table initialization that would split
the tables memory among NUMA-nodes. However, this would necessitate a larger
change to the tables interface and also some synchronization overhead during the
construction of the table.
Overall, we have to say that none of the competitor tables performs well after it

has been growing. Most tables that were performing well in these find benchmarks
were non-growing tables (i.e., hopscotch , shunhash×, and folkloreHT+) other
tables have bad performance specifically on grown tables (i.e., folly).

125

4 Concurrent Hash Tables

Folklore

ShunHash

Hopscotch

LeaHash

uaGrow

usGrow

Junction Grampa

Junction Linear

Junction Leap

Cuckoo

TBB HashMap

TBB UnorderedMap

Folly

RCU

RCU qsbr

0

250

500

750

0

20

40

60

1 4 8 16 24 32 48 64 96 128
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Find Negative (amd-epyc)

0

250

500

750

0
10
20
30
40

1 4 8 16 24 32 48 64 96 128
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Find Positive (amd-epyc)

0

200

400

600

0

10

20

30

14 20 40 80 120160
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Find Negative (4-intel)

0

200

400

600

0

5

10

15

20

14 20 40 80 120160
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Find Positive (4-intel)

Figure 4.4: Performance and scalability of find operations. We call 108 find operations
on a table containing 108 unique keys. We measure the throuput of successful
find operations—keys that are present (plots 1 and 3) and of unsuccessful find
operations—random uninserted keys (plots 2 and 4). The results are collected
both on amd-epyc (plots 1 and 2) and on 4-socket-intel (plots 3 and 4).

126

4.6 Experimental Evaluation

Folklore

ShunHash

Hopscotch

LeaHash

uaGrow

usGrow

Junction Grampa

Junction Linear

Junction Leap

Cuckoo

TBB HashMap

TBB UnorderedMap

Folly

RCU

RCU qsbr

0

200

400

600

0
10
20
30
40
50

1 4 8 16 24 32 48 64 96 128
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Find Negative (after growing; amd-epyc)

0

250

500

750

0
10
20
30
40

1 4 8 16 24 32 48 64 96 128
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Find Positive (after growing; amd-epyc)

0

250

500

750

0

10

20

30

40

14 20 40 80 120160
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Find Negative (after growing; 4-intel)

0

250

500

750

0

10

20

14 20 40 80 120160
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Find Positive (after growing; 4-intel)

Figure 4.5: Experiment similar to Figure 4.4. However, all experiments (shown here) are
concluded on a table that has grown to its current size (mstart ≈ 50 000). We
measure the throuput of successful find operations—keys that are present (plots
1 and 3) and of unsuccessful find operations—random uninserted keys (plots 2
and 4). The results are collected both on amd-epyc (plots 1 and 2) and on 4-
socket-intel (plots 3 and 4). 127

4 Concurrent Hash Tables

Performance under Contention

Folklore
uaGrow
usGrow

Junction Grampa
Junction Linear
Junction Leap

Cuckoo
TBB HashMap
TBB UnorderedMap

Folly
Sequential

0.00

0.25

0.50

0.75

0.5 1.0 1.5 2.0
Contention s

Th
ro
ug

hp
ut

in
G
O
ps
/s

Contentious Updates

0

3

6

9

12

0.5 1.0 1.5 2.0
Contention s

Th
ro
ug

hp
ut

in
G
O
ps
/s

Contentious Read

Figure 4.6: Throughput of updates and find operations with a skewed input distribution.
Executing 108 operations with p = 64 tested on amd-epyc. Left: assign opera-
tions (write access); right: contentious look ups (no write access; we also plot
10×, ..., 40× the sequential Performance).

Up to this point all data sets we looked at contained uniformly randomkeys sam-
pled from the whole key space. This is not necessarily the case in real world data
sets where some keys might appear many times. One key might even dominate the
input. Access to this key’s element can slow down the global progress significantly
especially if hash table operations use locking (even fine grained locking) to pro-
tect hash table accesses. To benchmark the robustness of the compared hash tables
on these degenerate inputs we construct the following test setup. First, we fill the
table with all keys from 1 to 108, thus all updates and find queries will be successfulall updates/queries are

successful
.

Then we compute a sequence of skewed keys using the Zipf distribution described
in Section 4.6.3. We generate 108 keys from the range 1..108 with a varying exponent
s (amount of skew). We reduced the set of tested hash tables for this benchmark:
hopscotch and leahash are only hash sets, thus updates are not possible; shun-
hash× and rcu , can support updates but the interfaces are somewhat unwieldy
(additionally shun is very similar to folkloreHT creating unnecessary clutter).

128

4.6 Experimental Evaluation

For the first benchmark we execute an update operation for each key of the
skewed key sequence overwriting its previously stored element (Figure 4.6 left).
These update operations create contentious write accesses to the hash table. Note
that updates perform simple overwrites, i.e., the resulting value of the element is
not dependent on the previous value. The hash table remains at a constant size
throughout the execution, making it easy to compare different implementations
independent of effects introduced through growing. In the second benchmark we
execute find operations instead of updates, thus creating contentious read accesses.
For sequential hash tables contention on some elements sequential tables profit from

contention
can have very positive

effects. When one slot is visited repeatedly, its contents will be cached and thus
future accesses will be faster. The sequential performance shown in our plot rises
(grey line). For concurrent hash tables, however, contention has a very different
effects. For concurrent hash tables there is a significant difference between con-
tentious write or find operations. The reason is that multiple threads can read the
same value simultaneously but only one thread at a time can change a value (on
current CPU architecture). Therefore, read accesses can profit from cache effects—
much like a sequential hash table—while write accesses are hindered by the con-
tention. This goes so far that for workloads with high contention, no concurrent
hash table can achieve the performance of a sequential table.
From the update measurement shown in Figure 4.6 left it is clearly visible that

the serious impact through contention begins between s = 0.85 and 0.95. Up until
that point contention has a positive effect even on update operations. For a skew
between upto s = 0.85mostly positive

→ ≈ 1% of keys are equal
s = 0.85 and 0.95 about 1% to 3% of all accesses go to the most common

element (key k1). This is exactly the point where 1/p ≈ P(k1), therefore, on average
there will always be one thread changing the value of k1. Contentious update op-
erations are one of the motivations for the semi synchronized scheme employed in
usGrow usGrow advantage on updates. In usGrow elements can be updated using a simple 64bit compare-
and-swap operation instead of a 128bit compare-and-swap operation on the whole
slot as it would be necessary for uaGrow (to ensure that the marked bit of the
element has not been set before the change). This is possible because updates and
grow routines cannot overlap in usGrow this variant.
Figure 4.6 (right) shows that concurrent hash tables achieve similar performance

benefits from contentious read accesses as sequential ones. FolkloreHT+ and ua-

129

4 Concurrent Hash Tables

Grow consistently have absolute speedups greater than 40 (see topmost grey line,
i.e., sequential throughput times 40) which is consistent with the negative find per-
formance on non-contentious queries.
Overall, we see that our folkloreHT+ implementation consistently outperforms

all other competitors. Our two growing variants uaGrow andusGrow both have
their own advantages, i.e., less overhead on find operations and cheaper atomics
for updates. However both versions still outperform most competitors at least on
lookups. None of the tables can achieve any speedups on highly contentious write
accesses these are probably instances that would profit from a special treatment of
their most common keys (Note: s = 0.95→ P[k1] ≥ 3%).

Aggregation—a common Use Case

Folklore
Sequential

uaGrow
usGrow

TBB HashMap
TBB UnorderedMap

Cuckoo
Folly

0.0

0.2

0.4

0.6

0.8

0.5 1.0 1.5 2.0
Contention s

Th
ro
ug

hp
ut

in
G
O
ps
/s

Contentious Aggregation (static)

0.0

0.1

0.2

0.3

0.4

0.5 1.0 1.5 2.0
Contention s

Th
ro
ug

hp
ut

in
G
O
ps
/s

Contentious Aggregation (growing)

Figure 4.7: Throughput of an aggregation with a skewed input distribution. Executing 108
insert-or-increment operations (p = 64 threads executed on amd-epyc). Left:
experiment using a static table size; right: the same experiment using a growing
table.

Hash tables are often used for key aggregation. The idea is that all data elements
connected to the same key are aggregated using a commutative and associative
function. For our test, we implemented a simple key count programkey-count benchmark . To implement
the key count routine with a concurrent hash table an insert-or-increment function
is necessary. Our tables update function can easily be adapted by using specialized

130

4.6 Experimental Evaluation

update functions (see Section 4.3). We use the same hash tables as in the previous
test except for all junction tables , , . In junction’s update interface there is no
possibility to define an update function where the resulting value (after the update)
depends on the previous value (i.e., increment). This was mainly a problem of the
used interfaces, therefore, it could probably be solved by reimplementing a more
functional interface.We also left folly out of the growing plot because it does not
allow arbitrary growing factors and guessing the final table size is not as easy in
this benchmark. Like in previous tests, we make two distinct measurements.
The aggregation benchmark uses the same Zipf key distribution as the previous

tests with contention, however, this time we do not preinsert any elements. Instead
we initialize the empty table 108 insert-or-update

operations
no preinserts (just table
initialization)

either with 108 slots (left) or with ≈ 50 000 slots (right).
Then we measure the time it takes to call insert-or-increment on each key. The
first thread that calls insert-or-update with a given key inserts that key. All further
threads add one to the count. The number of distinct elements in the hash table is
dependent on the contention of the key sequence (given by s). Thismakes growable
hash tables even more desirable because the final size can only be guessed before
the execution.
The results, shown in Figure 4.7, are fairly similar to the contentious overwrite

benchmark shown in Figure 4.6 (left), i.e., slightly increasing performance until
s = 0.85 with a sharp decline afterwards. However, changing a value by incre-
ment has some slight differences to overwriting it since the updated value of an
insert-or-increment is dependent on its previous value. In the best case this incre-
ment can be implemented using an atomic atomic fetch-and-addfetch-and-add operation (i.e., usGrow ,
folkloreHT+, and folly). However this is not possible for all hash tables. Some-
times dependent updates are implemented using a read-modify-CAS cycle (i.e.,
uaGrow) or fine grained locking (i.e., tbb hash map or cuckoo).

Until s = 0.85, uaGrow seems to be the more efficient of the two growing op-
tion since it has an increased writing performance and the update cycle are suc-
cessful most of the time. From that point on, usGrow is clearly more efficient
because fetch-and-add behaves better under contention. Folly can use the same
fetch-and-add operation and thus catches up with our specialized implementation
for higher skews. On higher loads, both usGrow and folly actually catch up
to folkloreHT+ which again performs the best out of all implementations. In the

131

4 Concurrent Hash Tables

growing benchmark we see more or less the same behavior with the main differ-
ence being that TBBum makes an appearance among the front runners (for really
high skews).

Arbitrary Data Types

uaGrow
usGrow

TBB UnorderedMap
TBB HashMap

Cuckoo

0

50

100

150

16 32 48 64 96 128
Threads p

o p
s

Word Count (amd-epyc)

0

20

40

60

80

20 40 80 120160
Threads p

op
s

Word Count (4-intel)

Figure 4.8: Word count benchmark using string-keys taken from the Gutenberg library.

In essence this test is very similar to the previous test. We again use insert-or-
increment to count the number of occurrences of individual keys. However, this
benchmark is special as it uses both non-integer keys (strings) and a real world
data set, i.e.,real world Gutenberg data the Gutenberg library containing thousands of books. In Section 4.4.7
we describe how to implement support for arbitrary data types within our hash
table architecture based on folkloreHT.The data set we used contains 3 496 038 668

3.4 ⋅ 109 words 4.6 ⋅ 107

individuals
words with 46493 779 individuals, thus eachword appears on average ≈ 75.2 times.

Some Implementation Details In C++ creating many std::string objects
scalable strings repeatedly allocates small amounts of memory. This is quite inefficient. It is pos-

sible, however, to use a specialized allocator for these implementations. Thus we
specialized the standard string class to use TBB’s scalable allocator, reducing the
overall overhead.

132

4.6 Experimental Evaluation

To prepare the data set, we first put all texts into one large file (22GB). To dis-
tribute operations work distribution(i.e., words) among the processors of our machine we proceed
similar to ourmigration algorithm. Each thread continuously reserves one block of
this file, moves its file descriptor to the beginning of the block, and adds all words
starting in its block to the quotient filter using an insert-or-update operation sim-
ilar to the previous experiment.

In Figure 4.8, we see that our table variants perform the best among all com-
petitors. Both tbbHM and cuckoo have speedups < 1with increasing processor
counts (only achieving 5% and 2% of uaGrow ’s throughput p = 64). This is likely
caused by the fact that both variants have to use fine grained locking to ensure con-
sistent behavior. TBBum performs well in this benchmark. It achieves 59% of
uaGrow ’s throughput. Overall, we achieve throughputs of 123MOps/s (for ua-
Grow) and 113MOps/s (for usGrow). overhead of arbitrary data

types
This is about 59% of the growing insert

performance (with uniform integer keys) and around 16% of the positive query
performance. However, we do not know how much the potential contention has
influenced the performance in either way. Overall this seems to be a realistic over-
head for arbitrary data types—accentuating important to have specialized

tables for small data types
why it is important to have specialized

solutions for (common) smaller data types.

Deletion Tests

As described in Section 4.4.4, we use migration not only to implement an effi-
ciently growing hash table but also to clean up the table after deletions. This way
all tombstones are removed and thus freed slots are reclaimed. But how does this
fare against different ways of removing elements? This is what we investigate with
the following benchmark.

First we initialize a table with ≈ n slots (i.e., can hold the whole window), thus ta-
bles that offer true deletions (like cuckoo) do not need to use any formof growing.
Then we prefill the table with n elements. The test itself consists of 108 insertions—
each immediately followed by a delete operation alternating insert and delete

operations
. Therefore, the table remains at

approximately the same size throughout the test (±p elements). All inserted keys
are generated before the benchmark using a uniform distribution (similar to our
other tests). Each thread has a circular array of its n/p last inserted keys. After each

133

4 Concurrent Hash Tables

0

50

100

150

104 105 106 107 108

window size n

Th
ro
ug

hp
ut

in
M
O
ps
/s

uaGrow
usGrow
Junction Grampa
Junction Linear
Junction Leap
Cuckoo

Alternating insert + delete

Figure 4.9: Throughput of alternating insert and delete operations, thus keeping the table
at a constant size n. The table contains a slidingwindowof n elements (executed
on amd-epyc with p = 64). The measured throughput combines one iteration
of insert+delete = 1Op.

insertion the new key is put into the array and the deletion is called on the replaced
key, thus each deleted key is guaranteed to be in the table.

The results of this experiment (see Figure 4.9) show that our implementation
performs better than other available implementations. It also indicate that there is
no strong correlation between performance of operations the size of the table (i.e.,
the size of the window). This is what one would expect because the performance of
hash table operations is not dependent on their size. However, this part of the result
is not as clean as one would have expected. On smaller window sizes, there are
a lot more migrations leading to increased synchronization overheads compared
to synchronization free insert operations. The absolute performance of usGrow
≈ 150MOps/s (i.e., around 300MOps/s single insert or delete operationsThroughputs are in line with

growing insertions
) is in line

with the performance of insertions into a growing table.

Using Dedicated Growing Threads

In Sections 4.4.3 and 4.5 we describe the possibility of using a pool of dedicated
migration threads which grow the table cooperatively. To test this variant we use
two tests where tables have to be migrated repeatedly, i.e., inserting into a grow-

134

4.6 Experimental Evaluation

uaGrow usGrow paGrow psGrow

0

50

100

150

200

0

10

20

148 16 24 32 48 64 96128
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s A

bsolute
Speedup

Insert (growing table)

0

50

100

150

104 105 106 107 108

window size n

Th
ro
ug

hp
ut

in
M
O
ps
/s

Alternating insert + delete

Figure 4.10: Testing the performance of our migration thread pools. Left: Insertions into
a growing table (compare Figure 4.3); right: alternating insert and delete op-
erations (compare Figure 4.9)

ing hash table (Figure 4.10 left) and the deletion test which alternates insertions
and deletions (right) benchmarks that caus

migrations
. The insertion benchmark grows the table around 3 orders of

magnitude, as such it forces around 10 to 11 full table migrations of increasing size.
The alternating deletion test causes even more migrations especially on smaller
window sizes. The table is repeatedly migrated without size increases, to remove
unnecessary tombstones from the data structure. We see that the variants using a
thread pool perform similar albeit somewhat slower than the recruitment variants.

Theoverhead arises because using additionalmigration threads necessitates some
communication with the operating system. The growing threads have to sleep

overheads caused by
communication (with
operating system)

while they are not needed (otherwise normal operations would become slow)—
using a conditional wait syscall (i.e., futex). Then the migration threads are awo-
ken and operating threads cannot access the data structure during the migration
(they sleep). This all happens once during each migration cycle (scheduling and
notification). Originally, we designed the thread-pool-variant to prevent slow ta-
ble migrations in cases where only few application threads actually work on the
table (when using the recruitment variants, this thread would have to do all the

135

4 Concurrent Hash Tables

Folklore

uaGrow

usGrow

Junction Grampa

Junction Linear

Junction Leap

Cuckoo

TBB HashMap

TBB UnorderedMap

Folly

ShunHash

Hopscotch

LeaHash

0

200

400

600

800

0 10 20 30
Used memory in GiB

Th
ro
ug

hp
ut

in
M
O
ps
/s

Find Negative (varying initial capacities)

Figure 4.11: Performance of negative find queries relative to the memory footprint. Tables
are initialized with different initial capacities (Note: contrary all of our other
plots, this plot does not show standard deviations).

work). However, this advantage does not come into play in these tests, since all of
the application threads actually operate on the table.

Memory Consumption

One aspect of parallel hash tables that we did not talk about throughout this chapter
is memory consumptionmemory consumption . Overall, a low memory consumption is preferable but
having less slots means that there are more hash collisions. This leads to longer
running times especially for non-successful find operations. It would be interesting
to adapt a hash tables size in order to increase its capacity. Most hash tables do
not allow the user to set a specific table size directly. Instead they are initialized
using the expected number of elements. We use this mechanism to create tables
of different sizes. Using these different hash tables with different sizes, we find out

136

4.6 Experimental Evaluation

howwell any one hash table scaleswhen it is givenmorememory. This is interesting
for applications where the hash table speed is more important than its memory
footprint (lookups to a small or medium sized hash table within an application’s
inner loop).

The values presented in Figure 4.11 are acquired by initializing each hash table
with varying initial table capacities. Non-growing tables are created with initial
capacities of vary initial capacitywith (1, 1.2, 1.5, 1.8, 2, 2.5, 3, 4) × n (where n = 100M) and growing
hash tables are additionally initalized with 50 000, (0.2, 0.4, 0.6, 0.8)×n (folly does
not use 50 000). Afterwards the table is filled with n = 108 elements. The plot-
ted measurements show the throughput of executing 108 unsuccessful lookups on
the preinitialized table (compare Figure 4.4). This throughput is plotted over the
amount of allocated memory each hash table used. To measure the memory con-
sumptionwe use the resident set size resident set size(number of actual physical memory pages that
are loaded inmemory) which we query after all elements have been inserted. Mea-
surements are connected with lines (for better visibility), these lines are in no way
interpolating between themeasurements—arbitrary capacities seem to be impossi-
ble for all tested hash tables (i.e., all hash tables snap to capacities that are probably
powers all hash tables snap to

”≈ powers of two”
of two in addition to some overheads). Measurements that are initialized

with an initial capacity smaller than n are marked with dashed lines.

Theminimum size for any hash table should be around minimum table size 1.53GiB1.53GiB ≈ 108 ⋅(8B+8B)
(Key and Value each have 8B). Our hash table uses a number of slots equal to the
smallest power of 2 that is at least two times as large as the expected number of
elements. In this case, this means we use 228 ≈ 2.7 ⋅ 108, therefore, the table is filled
to ≈ 37% and use exactly 4GiB. We believe that this memory usage is reasonable,
especially for heavily accessed tables where the performance is important. This is
supported by our measurements as all hash tables that use less memory have bad
performance (Note: both hopscotch and leahash only have a hash set interface).

We see that most tables cannot profit from the increased table capacity. One
reason for this is probably the memory performance of our machine amd-epyc and
speed the at which memory is prefetched. The only table that profits significantly
from size increases is leahash. It is a hash table that uses chaining, thus having
more chains that are empty leads to more trivial negative find queries.

137

4 Concurrent Hash Tables

4.7 Conclusion

We demonstrate that a bounded linear probing hash table specialized to pairs of
machinewords hasmuch higher performance than currently available general pur-
pose hash tables like Intel TBB,Cuckoo, orRCUbased implementations.large performance gap from

specialized folklore to
available general purpose

This is not
surprising from a qualitative point of view given previous publications [84, 34, 81].
However, we found it surprising how big the differences can be in particular in the
presence of contention. For example, the fact that a hash table requires a lock for
reading can decrease its performance by multiple orders of magnitude.

We have also shown, that all restrictions that come with this hashing technique,
i.e.,all restrictions can be

overcome
static table size, no deletions, and restricted key- and value-types, can be over-

come. Our generalizations can be combined to give us a wide variety of different
implementations (folkloreHT, uaGrow, usGrow, paGrow, and psGrow each with a
specialized version for complex key and value types). Moreover, in dedicated tests
our specialized variants continuously outperform any (sufficiently different) com-
petitor tableour solutions continuously

outperform other options
. Usually by at least a factor of two or greater. This is true for growing

hash tables both in our insert and find benchmarks; for hash tables with deletions;
and also for hash tables with arbitrary data types.

What we have not talked about yet is the fact that we have combined these vari-
ants into alibrary implementation library [43] that given a set of simple parameters combines the described
extensions (at compile time) to construct a table type that offers all the necessary
functionality. Without hand picking combinations of specialized and extended
classes and templates. We have constructed the table in a way that is as close to the
C++ standard hash-table-interface as possible without sacrificing any performance
(e.g., including iterators).

One of our main contributions is also the efficient and communication avoiding
migrationmigration technique algorithmwhere blocks are assigned to cores using a simple atomic vari-
able and interaction between cores is avoided by implicitly moving the borders of
assigned blocks to free slots. This allows themigration to work without any form of
atomic operations in the target table thus reducing the interaction between threads.
The only overhead that comes with our deletion technique is that hash tables have
to be growable. As long as this is the case, other operations are not impacted by
deletions.

138

4.7 Conclusion

Further directions of research could be to look into translating the same low-
communication applying the migration to

other data structures
, concurrent migration mechanism to different hashing schemes

(i.e., cuckoo hash tables or hopscotch hash tables). One such example could be the
space efficient DySECT table introduced in Section 3, there we are already using a
similar algorithm for its subtable migrations. However, to implement fast concur-
rent DySECT tables, we would also have to implement a concurrent displacement
algorithm. Similarly, the concurrent quotient filter shown in Section 5 also uses an
adapted variant of the samemigration technique. Even non-hash-based data struc-
tures could benefit from similar element migrations that reduce the comunication
(i.e., necessity for atomic operations) by preserving element order and partitioning
the target data structure among threads.

139

5 Concurrent Quotient Filters

AMQ data structures are often used to improve the scalability of
complex storage solutions like databases and online/cloud stor-
age, for example to reduce the number of unnecessary queries.
However AMQ-filters themselves also offer interesting opportu-
nities when analyzed for their scalability. The main idea behind
AMQ data structures is to improve both speed and memory per-
formance by relaxing correctness guarantees, i.e., contains queries
are allowed to output false positives.

Today, AMQ-filters are used on the largest of inputs—like huge
bioinformatics databases. As such it is natural that they are built
on high performance hardware that has the capabilities to cope
with the amount of data. On these machines, concurrency is
a necessity and scalability of data structures to large processor
counts is important for many algorithms to achieve satisfactory
speedups. The findings of our research throughout this chapter
can be found in our library lpqfilter [44].

So far, we have considered a number of dynamic hash tables. ApproximateMem-
bership Query data structures AMQ-filter(AMQ-filter; see Section 2.1.3) are a different type of
hash-based data structure that are interesting to reevaluate from a scalability per-
spective. Similar to hash sets, AMQ-filters are usually used to represent sets, thus,
they offer insert and a contains operations (sometimes also deletions). However,
in contrast to classical hash sets that more or less function the same as hash ta-
bles, AMQ-filters offer an interesting tradeoff. They allow false positives false positiveson their
contains queries, meaning a contains query can return true even if the queried ele-

141

https://github.com/TooBiased/lpqfilter

5 Concurrent Quotient Filters

ment is not part of the set. This allows us to trade the exactness of the data structure
to safe memory or improve the performance.
Specifically we take look at different variants of quotient filtersquotient filter . A quotient fil-

ter works similar to a hash table with in-table-displacement (see Section 2.4.2).
But instead of storing full elements, quotient filters only store fingerprints of the
inserted elements. Queries check whether the requested fingerprint is stored in
the data structure and return true iff that is the case. Given the similarity to in-
table-displacement (specifically linear probing and Robin Hood hashing) we can
use methods that are similar to the previous sections to open up an interesting
design space and develop a variety of new adaptations.
One of the main advantages of quotient filters is their cache efficiency. Similar

to hash tables with linear probing, quotient filters can often insert elements and
answer queries by accessing a few consecutive cache linesfewer memory accesses than

Bloom filters
. What makes quotient

filters even more interesting from a scalability perspective is that quotient filters
offer the opportunity for table migrationssupports table migration similar to growing a hash table. This is
uncommon amongAMQ-filters. The tablemigration uses amore or less traditional
migration approach—similar to the linear probing tables analyzed in Section 4.4.3.

5.1 References

The results presented in this chapter are based on a conference paper [50] pub-
lished jointly, with Peter Sanders and Robert Williger. The paper was mainly writ-
ten by the author of this dissertation, with Peter Sanders mostly contributing to the
ideas and conception (in addition to some editing of the publication) and Robert
Williger, mostly contributing to the initial implementation. Similar to previous
chapters, some of the original texts are used verbatim or with fairly small changes.

5.2 Introduction

Motivation

AMQ-filter have become an integral part of many complex data structures and
database applications. Their small size and fast access times can be used to sketch

142

5.2 Introduction

large, slow data sets. In these cases a fast AMQ-filter is queried before accessing the
database to check whether the slow database lookup is actually necessary. Quotient
filters have recently been used in network analysis [2] and bioinformatics [71]. Data
sets in these two areas are among the largest data sets available today, but given the

increased necessity due to new
big data applications

current big data revolution we expect more and more research areas and industry
applicationswill have a need for the space efficiency and speedup potential of AMQ
data structures.

The most common AMQ data structure in practice is still a Bloom filter Bloom filters are ubiquitous
despite of shortcomings

. In our
experience and in preliminary experiments, however, quotient filters consistently
outperform Bloom filters onmany workloads (see Section 5.7). We believe that one
reason for the continued (perceived) predominance of Bloomfilters is likely inertia,
but another reasonmight be that concurrent Bloom filters are easy to implement—
even lock-free and scalable implementations. This is important because scalable
implementations have become critical to handle growing data sets in today’s multi-
processor scenarios.

Contribution

Typically concurrent quotient filters are implemented using an external array of
locks—each protecting a region of the table. Accessing this array incurs one addi-
tional memory access per operation—negating the advertised cache efficiency. We
propose a new fine grained locking scheme that stores locks inside the table and
has no memory overhead zero-memory-overhead

locking scheme
. Instead of traditional locks we use the content of table

slots to represent very localized locks that lock specific clusters in the table. Us-
ing this new locking scheme we achieve 1.6× times higher insertion performance
and over 1.8× higher query performance than with the common external locking
scheme.

Additionally, we propose several unique quotient filter variants that aim to re-
duce the number of status bits (2-status-bit-variant—2BQ-filter) or to simplify con-
current implementations (linear probing quotient filter—LPQ-filter) newly introduced variants

2BQ-filter and LPQ-filter
. The linear

probing quotient filter variant that we present even leads to a lock-free (see Sec-
tion 2.2) concurrent filter implementation. What makes this especially interesting
is that we can show that any lock-free implementation of other common quotient

143

5 Concurrent Quotient Filters

filter variantswould incur significant overheads in the formof additional data fields
or multiple passes over the accessed data.

Quotient filters allow increasing the table capacity through migrating elements
into a larger table (similar to hash tables). However, the false positive rate does not
change when growing the AMQ-filter. Thus, the false positive rate continues to
growwith the number of additional insertions. Hence, this growingmethod is only
useful for a limited number ofmigrationslimited growing (before the fp rate becomes too high). We
implement this growing technique for our concurrent quotient filters and extend
it to allow unbounded growing while maintaining a bounded false positive rate. We
call the resulting data structure a fully expandable quotient filter. Its design is similar
to scalable Bloom filters [3], but we exploit some concepts (like the limited growing
technique) inherent to quotient filters to improve the space efficiency and the query
speed.

5.3 Related Work

The concept of quotient filters is based on compact hash tables [14] that store part
of their key implicitly (via the table possition). However the first specific men-
tion in the context of AMQ data structures was in 2012 by Bender et al. [8]. Since
then, there has been a steady stream of improvements. For example Pandey et al.
[70] have shown how to reduce the memory overhead of quotient filters by using
rank-select data structuresdifferent variants and use

cases of quotient filters
. This also improves the performance when the table be-

comes full. Additionally, they show an idea that saves memory when insertions are
skewed (some elements are insertedmany times). They alsomention the possibility
for concurrent access using an external array of locks (see Section 5.7 for results).
Recently, Geil et al. [29] proposed a GPU-based implementation of quotient filters,
further indicating that there is a lot of interest in concurrent AMQ-filters even in
these highly parallel scenarios.

Quotient filters are not the only AMQ data structures that have received atten-
tion recently. Cuckoo filterscuckoo and Morton filters [24, 61] and very recentlyMorton filters [10] (based on
cuckoo filters) are two other examples of AMQ data structures. Due to their simi-
larity to cuckoo hash tables (see Section 2.4.2, page 37), they do not lend themselves

144

5.4 Sequential Quotient Filter

to easy parallel solutions (insertions can have large effects on the overall data struc-
ture).
A scalable Bloom filter scalable Bloom filter allows

capacity increase
[3] allows unbounded growing by adding additional lev-

els of Bloom filters once a level becomes full. Each new filter is initialized with a
higher capacity and more hash functions than the last. The query time is depen-
dent on the number of times the filter has grown both because more filters have to
be checked and because later filters have more hash functions. In Section 5.6, we
show a similar technique for fully expandable quotient filters that mitigates many
of these problems.

5.4 Sequential Quotient Filter

In this section we describe the basic sequential quotient filter as well as some vari-
ants to the main data structure. We use the same naming conventions as for hash
tables, i.e., m is the number of slots, n the number of elements, and δ = n/m is
the fill degree of a table. In addition to these, we define the false positive rate false positive rate p+p+

to denote the probability of a false positive query, i.e., the probability of a query
looking for a random non-present element to return true (see Section 2.1.3).

5.4.1 Basic Quotient Filter

Quotient filters are approximate membership query data structures that were first
described by Bender et al. [8] and build on an idea for space efficient hashing orig-
inally described by Cleary [14]. Quotient filters represent possibly large elements
by fingerprints fingerprint f (⋅). The fingerprint f (x) of an element x is a number in a predefined
range f ∶ x ↦ {0, ..., 2k − 1} (binary representation with exactly k digits). We
commonly obtain a fingerprint of x by taking the k least significant bits of a hash
function value h(x) (i.e., xxHash [15]).
A quotient filter stores the fingerprints of all inserted elements. When executing

a query for an element x, the filter returns true if the fingerprint f (x) was previ-
ously inserted and false otherwise query for x returns true iff

f (x) was inserted
. Thus, a query looking for an element that was

inserted always returns true. A false positive occurs when x was not inserted, but
its fingerprint f (x) matches that of a previously inserted element. Given a fully

145

5 Concurrent Quotient Filters

random fingerprint function, the probability of two fingerprints being the same is
2−k . Therefore, the probability of a false positive is bounded byp+ = n ⋅ 2−k n ⋅ 2−k where n is
the number of stored fingerprints.

To achieve expected constant query times as well as to savememory, fingerprints
are stored in a special data structure that is similar to a hash table with in-table-
displacement. During this process, the fingerprint of an element x is split into two
partsquotient and remainder : the q most significant bits called the quotient quot(x) and the r least sig-
nificant bits called the remainder rem(x) with q + r = k. The quotient is used to
address a table consisting of m = 2q memory slots of r + 3 bitsr + 3 bits per slot . A slot can store
one remainder and three additional status bits. The quotient of each element is
only stored implicitly by the position of the element in the table. The remainder is
stored explicitly within one slot of the table. Similar to many hashing techniques,
we try to store each element in one designated slot (index quot(x)) which we call
its canonical slotcanonical slot

3 status bits
(see Section 2). With the help of the three status bitswe can recon-

struct quotient of each stored element even when it is not placed in its canonical
slot.

The main idea for resolving collisions is to find the next free slot—similar to
linear probing hash tables. However, we reorder the elements such that they are
sortedsorted by fingerprint by their fingerprints (see Figure 5.1). This is similar to Robin Hood hashing
(see Section 2.4.2, page 34), thus, we use some of the same notation. Elements with
the same quotient (the same canonical slot) are stored in consecutive slots, we call
them a run(canonical) run . The canonical run of an element is the run associated with its canonical
slot. The canonical run of an element does not necessarily start in its canonical
slot. It can be shifted by other runs. If a run starts in its canonical slot we say
that it starts a cluster(super) cluster that contains all shifted runs that follow. Multiple contiguous
clusters (i.e., clusters that have no free slots between them) form a supercluster. We
use the 3 status bits that are part of each slot to distinguish between runs, clusters,
and empty slots. For this we store the following information about the contents of
the slotassignments of status bits

- was hashed to
- run continuation

- cluster continuation

(further described in Table 5.1): were elements hashed to this slot (is its run
non-empty)? Does the element in this slot belong to the same run as the previous
entry (used as a run-delimiter signaling where a new run starts)? Does the element
in this slot belong to the same cluster as the previous entry (is it shifted)?

146

5.4 Sequential Quotient Filter

1** this slot has a run
000 empty slot
100 cluster start
*01 run start
*11 continuation of a run
*10 – (not used, see 5.5.2)

Table 5.1: Meaning of differ-
ent status bit combi-
nations.

1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 000

super cluster

status

rem(⋅)

cluster
run

∣a ∣b ∣c ∣d ∣e ∣ f ∣g 
∶ ∶ ∶ ∶ ∶ ∶ ∶quot(⋅)∣ ∶∶

Figure 5.1: Section of the tablewith highlighted runs, clus-
ters, and superclusters. Runs point to their
canonical slot.

During the query for an element x, all remainders stored in x’s canonical run
have to be compared query compares remainders

in canonical run
to rem(x). First we look at the first status bit of the element’s

canonical slot. If this status bit is not set there is no run for this slot and we can
return false. If there is a canonical run, we use the status bits to find it by iterating
to the left until the start of a cluster (third status bit = 0) find run by counting runs

from cluster start
. From there, we move to

the right counting the number of non-empty runs to the left of the canonical run
(slots with first status bit = 1 left of quot(x)) and the number of run starts (slots with
second status bit = 0). This way, we can easily find the correct run and compare the
appropriate remainders.

An insert operation for element x proceeds similar to a query, until it either
finds a free slot or a slot that contains a fingerprint that is ≥ f (x). The current slot
is replaced with rem(x) shifting the following slots to the right (updating the status
bits appropriately).

When the table fills up, operations become slow because the average cluster
length increases. When the table is full, no further insertions are possible. In this
case, quotient filters can be migrated into a larger table migration to increase capacity, increasing the overall ca-
pacity. To do this, a new table is allocated with twice the size of the original table
and one bit less per remainder. Addressing the new table demands an additional
quotient bit, since it is twice the size. This issue is solved by moving the uppermost
bit from the remainder into the quotient (q′ = q + 1 and r′ = r − 1). As fingerprint
size and number of elements remain the same, the capacity increase does not affect
the false positive rate of the filter. But the false positive rate still increases linearly
with the number of insertions (p+ = n ⋅ 2−k). Therefore, the false positive rate dou-

147

5 Concurrent Quotient Filters

bles when the table is filled again. We call this migration technique limited growing,
because to guarantee reasonable false positive rates this method of growing should
only be used a limited number of times.

5.4.2 Variants

During our work with quotient filters we have developed the following variants
both varying the use of status bits and fingerprints. The basic idea behind both
variants is that if we enforce rem(x) ≠ 0. We sacrifice some potential fingerprints—
little influence on p+—but we can then differentiate empty from filled slots thus
reducing the necessary number of status bits.

Two-Status-Bit Quotient Filter—2BQ-filter

Pandey et al. [70] already proposed a 2-status-bit-variant of their counting quo-
tient filter. Their implementation however is closer to a thought experiment and
serves as a motivation for their rank-select based implementation. It has aver-
age query and insertion times in Θ(n). The goal of our 2-status-bit-variant is
to achieve running times close to O(supercluster length). We change the defini-
tion of the fingerprint (only for this variant) such that no remainder can beforce rem(x) ≠ 0 zero,
f ′ ∶ x ↦ {0, ..., 2q−1}×{1, ..., 2r−1}. Obtaining a non-zero remainder can easily be
achieved by rehashing an element with different hash functions until the remain-
der is non-zero1. This change to the fingerprint only has a minor impact on the
false positive rate of the quotient filter (n/m ⋅ (2r − 1)−1 instead of n/m ⋅ 2−r).
Because there is no element with rem(x) = 0 we can easily distinguish empty

slots from filled ones. Each slot uses two status bits: the occupied-bit (first status bit
in the description above) and the new-run-bit (run-delimiter). Using these status
bits we can find a particular run by going to the left until we find a free slotfind supercluster start via

empty slot
and

then counting the number of occupied- and new-run-bits while moving right from
there (Note: a cluster start within a larger supercluster cannot be recognized when
moving left).

1slightly worse bounds can be achieved without rehashing—using rem′(x) = max{1, rem(x)}

148

5.5 Concurrent Quotient Filter

Linear Probing Quotient Filter—LPQ-filter

This quotient filter variant is a hybrid between “pure” linear probing and classic
quotient filters. It uses no reordering no reordering and no status

bits
of stored remainders and no status bits. Sim-

ilar to the two-status-bit quotient filter above we ensure that no element x has
rem(x) = 0 by adapting the fingerprint function.
During the insertion of an element x the remainder rem(x) is stored in the first

empty slot after its canonical slot. Without status bits and reordering it is impos-
sible to reconstruct the fingerprint of each inserted element. Therefore, a query
looking for an element x compares its remainder rem(x) with every remainder
stored between x’s canonical slot and the next empty slot. There are potentially
more remainders that are compared than during the same operation on a normal
quotient filter. To offset that, we add three additional bits more remainder bits

counteract more comparisons
to the remainder (lead-

ing to a longer fingerprint), while not using more memory than a classic quotient
filter. The increased remainder length reduces the chance of a single comparison to
lead to a false positive by a factor of 8. Therefore, as long as the average number of
compared remainders is less than 8 times higher than before, the false positive rate
remains the same or improves. In our tests, we found this to be true for fill degrees
up to ≈ 70%. The number of compared remainders corresponds to the number
of slots probed by a linear probing hash table. It should be noted that LPQ-filters
cannot support deletions or the limited growing technique.

Lemma 2 (p+ LPQ-filter). The false positive rate of a linear probing quotient filter
with δ = n/m (number of comparisons due to Knuth [37], chapter 6.4) is

p+ = E[#comparisons]
2r+3 − 1 = 1

2
(1 + 1

(1 − δ)2) ⋅
1

2r+3 − 1

5.5 Concurrent Quotient Filter

Besides correctness there are two main goals for any concurrent data structure—
scalability and overall performance. Onemajor performance advantage of quotient
filters over other AMQ data structures is their cache efficiency preserving cache efficiency. Concurrent quo-
tient filters should strive to preserve this advantage, especially on insertions into
short or empty clusters and on (unsuccessful) queries with empty canonical runs.

149

5 Concurrent Quotient Filters

1 1 1 1 0 1 1 1 10 0 0 0 0 1 0 0 0status

rem(⋅) ∣⋅ ∣x ∣⋅ ∣⋅
∶ ∶ ∶ ∶ ∶ ∶ ∶quot(⋅)∣ ∶

∣⋅∣⋅∣⋅ ∣⋅
∶

1 0 1 1 1 0 1 1 0

1 1 1 1 0 1 1 1 10 0 0 0 0 0 0 0 1status

rem(⋅) ∣⋅ ∣x ∣⋅ ∣⋅
∶ ∶ ∶ ∶ ∶ ∶ ∶quot(⋅)∣ ∶

∣⋅∣⋅∣⋅ ∣⋅
∶

1 1 1 1 1 0 1 1 0

∣y

thread A calls �nd(∣x)

thread B calls insert(∣y)

thread A continues �nd

 occupied bits
 run start

 occupied bits
 run start

⇒ canonical run
⇒ compare remainder
⇒ x ≠ y

⇒ nd run is canonical

⇒ return false

Figure 5.2: Example of a query, where observing two parts of individually consistent states
leads to a false negative. Thread A queries a contained element. During the
query thread B changes the data structure. This leads to A checking the wrong
run and results in a false negative.

These lead to operations that access only one or two cache lines and lead to at most
one write operation.

From a theoretical point of view, using an external array of locksadditional array of locks should lead to
a good concurrent quotient filter, as long as the number of locks is large enough to
reduce contention and the number of slots per lock is large enough to ensure that
clusters don’t span multiple locking regions. A similar solution was described by
Pandey et al. [70]. They also describe a variant that handles contention by first in-
serting elements into a local filter if acquiring the appropriate lock failed. Nonethe-
less, having an external array of locks introduces a significant overhead especially
on the easy operations mentioned above. This assumption is confirmed in our ex-
perimentsexternal locking performs

badly in practice
(see Section 5.7), where we compare against the counting quotient filter

by Pandey et al. and against our own implementation of this simple locking tech-
nique.

150

5.5 Concurrent Quotient Filter

The Question of Lock-Free Quotient Filters

One way to achieve theoretically provable scalability is lock-freeness as defined in
Section 2.2. However, there are some problems inherent to lock-free quotient fil-
ters. Every query has to read multiple data entries in a consistent state to succeed query needs consistent state of

the whole cluster
.

All commonly known variants (except the LPQ-filter) use at least two status bits
per slot, i.e., the occupied-bit and some kind of run-delimiter-bit (the run delimiter
might take different forms). The remainders and the run-delimiter-bit that belong
to one slot cannot reliably be stored close to their slot and its occupied-bit. There-
fore, the occupied-bit and the run-delimiter-bit cannot be updated with one atomic
operation each run:

- occupied-bit in canonical slot
- run-delimiter-bit at run start

. For this reason, implementing a lock-free quotient filter that uses status
bits would cause significant overheads (i.e., additional memory or multiple passes
over the accessed data). The problem is that reading parts of multiple different
but individually consistent parts of different consistent

states can form an inconsistent
perceived state

states of the quotient filter leads to an inconsistent per-
ceived state (a scenario visualizing this can be seen in Figure 5.2). To show this we
assume that insertions happen atomically and transform the table from one consis-
tent state directly into the new final consistent state. During a query we have to find
the canonical run and scan the remainders within this run. To find the canonical
run we have to compute its rank among non-empty runs using the occupied-bits
(either locally by iterating over slots or globally using a rank-select data structure)
and then find the run with the same rank using the run-delimiter-bits. There is no
way to guarantee that the overall state has not changed between finding the rank of
the occupied-bit and finding the appropriate run-delimiter. Specifically we might
find a new run that was created by an insertion that shifted the actual canonical
run. Similar things can happen when accessing the remainders, especially when
remainders are not stored interleaved with their corresponding status bits. Some
of these issues can be mitigated using multiple passes over the data but ABA (see
Section 2.2) problems might arise in particular when deletions are possible. To
avoid these problems while maintaining good performance we have two options:
either comparing remainders from different canonical slots and removing the need
for status bits (i.e., the LPQ-Filter LPQ-filters have no status bits

thus they avoid this problem
) or by using locks that protect the relevant range

of the table.

151

5 Concurrent Quotient Filters

Concurrent Storage of Arbitrarily Sized Slots

Whenever data is accessed concurrently by multiple threads, we have to think
about the atomicity of data manipulation. To reduce the number of cache lines
accessed during an operation and to be able to change both status bits and remain-
der atomically, they need to be stored together in the same atomic data element
(i.e, alternating status bits and remainders).
The size of a quotient filter’s slots depends on the target false positive rate of

the quotient filteratomic data members with
arbitrary sizes

, thus, it is common that slots have odd sizes (i.e., non-powers
of two). In practice however, atomic operations only work on certain predefined
atomic data types (typically integers with 1, 2, 4, or 8bytes). Additionally, atomic
operations become really slow (or depending on the architecture even impossible)
unless the data objects are aligned (i.e., address is divisible by object size). When
combining both of these facts it becomes clear, that slots cannot be stored consecu-
tively inmemory without any form ofmemory offcuts (i.e., some remaining unused
bits). We have to take into account the memory that is wasted by memory offcutswasted memory due to offcuts .
In the trivial case, i.e., one slot per atomic data object, the offcuts are often infea-

sibly large. To reduce memory offcuts to a minimum, we use the largest common
atomic data type (64bit) and pack asmany slots as possible into one data element—
we call this packed construct a slot groupslot group . This way, the potential waste of multiple
slots accumulates to encompass additional slots. Furthermore, using this technique
we can atomically read or write multiple slots at once—allowing us to update them
all at once and even avoid some locking (if the relevant parts of a cluster fit in one
group).

5.5.1 Concurrent Linear Probing Quotient Filter

LPQ-filters (as described in Section 5.4.2) are a simplification of the general quo-
tient filter concept. Fingerprints are still split into quotient and remainder, the quo-
tient is still used for addressing the table, and the remainder is still stored within
the table. But instead of implicitly storing the quotient via status bits and element
order we discard the quotient as soon as the remainder is inserted. This change
makes concurrent LPQ-filters much easier to implement because inserting an ele-
ment only ever changes one slot.

152

5.5 Concurrent Quotient Filter

Thus, operations on an LPQ-Filter can be executed concurrently similar to op-
erations on a concurrent linear probing hash table similar to concurrent linear

probing hash table
(see Section 4). The table con-

sists of grouped atomic slots as described above. Each insertion changes the table
atomically using a compare-and-swap instruction on a single slot group. This im-
plementation is even lock-free lock-freebecause at least one competing write operation on
any given slot group is successful. Queries find all remainders of elements that
were inserted into their canonical slot because all such remainders were stored in
the first empty slot after their canonical slot and the contents of a slot never change
once something is stored within it.
This implementation of concurrent quotient filters has significant advantages

when it comes to performance and scalability pro: simple, lock-free, no
writes during contains

, e.g., it is lock-free, no writes occur
during contains queries and correctness and linearizability follow the same princi-
ples as linear probing hash tables. But it also inherits the downsides that sequential
LPQ-filters carry contra: bad when full, no

deletions, no migration
, i.e., increased false positive rate over 70% fill degree, no support

for deletions and no support for migration of elements (for growing).

5.5.2 Concurrent Quotient Filter with Local Locking

In this section we introduce an easy way to implement concurrent quotient fil-
ters with a simple local locking protocol local locking protocol. Our protocol is based on previously un-
used status bit combinations. Thus, it does not require any additional memory and
does not increase the number of slots that are accessed during operations. Our
concurrent implementation is based on the basic (3-status-bit) quotient filter. But
we show that the same locking idea also applies to the 2BQ-filter variant, thus, a
similar protocol is possible albeit practically infeasible because it needs unaligned
compare-and-swap operations (details to come later in this section). One of the
main advantages avoid locking small clustersof our local locking technique is that under many circumstances
locks can be avoided. This is most often the case if operations work on short or
empty clusters.

Using status bits for local locking

To implement our locking scheme we use two combinations of status bits that are
impossible to occur naturally (see Table 5.1)—010 and 110. We use 110 to imple-

153

5 Concurrent Quotient Filters

ment awrite-lockwrite-lock 110 in empty slot
locks preceeding supercluster

. It is written into the first free slot after the canonical supercluster
at the beginning of each write operation (using a compare-and-swap operation, see
Block B in Algorithm 5.1.a). Insertions wait when encountering a write-lock. This
ensures that only one insert operation can be active per supercluster. The com-
bination 010 is used as a read-lockread-lock 010 in cluster start

locks cluster
. All operations (both insertions—Block C in

Algorithm 5.1.a—and queries—Block G in Algorithm 5.1.b) acquire a read-lock by
replacing the status bits of the first element of their canonical cluster with 010insertions need both a read-

and a write-lock
. To

release a read-lock, we have to restore the status bits that were originally stored in
its slot. Read-locks are always stored in the first slot of a cluster, thus, they can be
unlocked by restoring the status bits to 100 which indicates a cluster start.

Inserting threads can encounter read-locks in later clusters of the same super-
cluster. They have to wait for each encountered read-lock to be released whilemov-
ing elements in the table, see Block E inAlgorithm 5.1.a. This way insertions cannot
interfere with concurrent read operations because changes can only occur to the
left of the read lock. After waiting for the read lock, the cluster start (that was read
locked) is shifted as part of the insert operation. Thus, it becomes part of the canon-
ical cluster that is protected by the insertion’s original read-lock. Contains queries
never have to wait for any locks except the read-lock on their canonical cluster.
The only case where a contains query encounters any other lock—except a po-

tential read lock on its canonical cluster start—is if it has reached the end of its
cluster and either the cluster is write-locked or the next cluster is read-locked (in
the same supercluster). Either way, the query is done looking at fingerprints of the
canonical run (i.e., the element has not been found).
It would also be possible to implement deletionsdeletions in a similar way to insertions

(first acquiring a write-lock, then a read-lock). But both queries and insertions are
affected by the possibility of holes being created within clusters while acquiring a
lock. While we have not implemented deletions in our implementation, a possible
deletion algorithmusing the same locking scheme can be found later in this section
(Algorithm 5.2).

154

5.5 Concurrent Quotient Filter

Algorithm 5.1 Concurrent locally locked quotient filter operations.
5.1.a Insertion

(quot, rem)← f (key)
// Block A: try a trivial insertion
group← atomically load data around quot
if insertion into group is trivial then

finish insertion with a CAS and return
// Block B: write-lock the supercluster
scan right from it ← quot

if it is write-locked then
wait until released and continue

if it is empty then
trylock it with write-lock and break

if lock unsuccessful then
re-examine it

// Block C: read-lock the cluster
scan left from it ← quot

if it is read-locked then
wait until released and retry this slot

if it is cluster start then
trylock it with read-lock and break

if lock unsuccessful then
re-examine it

// Block D: find the correct run
occ = 0; run = 0
scan right from it

if it is occupied and it < quot then occ++
if it is run start then run++
if occ = run and it ≥ quot then break

// Block E: insert into the run and shift
scan right from it

if it is read-locked then
wait until released

store rem in correct slot
shift content of following slots
(keep groups consistent)
break after overwriting the write-lock

unlock the read-lock

5.1.bQuery

(quot, rem)← f (key)
// Block F: try trivial query
group← atomically load data around slot quot
if answer can be determined from group then

return this answer
// Block G: read-lock the cluster
scan left from it ← quot

if it is read-locked then
wait until released and retry this slot

if it is cluster start then
trylock it with read-lock and break

if lock unsuccessful then
re-examine it

// Block H: find the correct run
occ = 0; run = 0
scan right from it

if it is occupied and it < quot then occ++
if it is run start then run++
if occ = run and it ≥ quot then break

// Block I: search remainder within the run
scan right from it

if it = rem
unlock the read-lock
return contained

if it is not continuation of this run
unlock the read-lock
return not contained

155

5 Concurrent Quotient Filters

Avoiding locks

Locking—both internal and external—introduces a significant overhead. Both ac-
quiring and releasing a lock takes a compare and swap operationlocking is expensive

⇒ avoiding locks pays off
. Thus, avoiding

locks whenever possible is an important feature of our design. Many instances of
locking can be avoided, e.g., when the canonical slot for an insertion is empty (the
insertion happens within a single compare-and-swap) or when the canonical slot
of a query either has no run (first status bit is 0), or stores the sought fingerprint.
In addition to these trivial instances of lock elision where the whole operation hap-
pens in one slot, we can also profit from our grouped atomic storage scheme. Since
we store multiple slots together in one atomic data member, multiple slots can be
changed simultaneously.avoid locks when whole

operation in one slot group
Each operation can act without acquiring a lock if the

whole operation can be completed within one slot group. The correctness of the
algorithm is still guaranteed because the relevant slots cannot be part of a read-
locked cluster (otherwise the operation would have to wait in the cluster start).
Thus changing the global consistent state atomically cannot lead to problems with
the perceived state, i.e., both the old and the new version form a consistent state
with the rest of the table.

Growing concurrently

The limited growing technique described in Section 5.4.1 can be used to increase the
capacity of a concurrent quotient filter similar to that of a sequential quotient filter.
In the concurrent setting we have to- distribute work of migration

- prevent insertion in old table
consider two things: distributing the work of

themigration between threads and ensuring that no new elements are inserted into
parts of the old table that were already migrated, as otherwise they might be lost.
To distribute the work of migrating elements, we use the recruiting user-threadsrecruiting user threads

method from Section 4.4.3 (page 102). Thus, after the migration is triggered, ev-
ery thread that starts an operation first helps with the migration before executing
the operation on the new table. Reducing interactions between threads during the
migration is important for performance. Therefore, we migrate the table in blocks.
Every thread acquires a block by incrementing a shared atomic variable. The mi-
gration of each block happens one supercluster at a time. Each thread migrates all
superclusters that begin in its block. This means that a thread does not migrate the

156

5.5 Concurrent Quotient Filter

first supercluster in its block if it starts in the previous block. It also means that
the thread migrates elements from the next block if its last supercluster crosses the
boundary to that block. The order of elements does not change during the migra-
tion, because they remain ordered by their fingerprint. In general this means that
most elements within one block of the original table are moved into one of two
blocks in the target table (block i is moved to 2i and 2i + 1). By assigning clusters
depending on the starting slot of their supercluster, we enforce that there are no two
threads accessing the same slot of the target table. Hence, no atomic operations or
locks are necessary in the target table.

As described before, we have to ensure that ongoing insert operations either fin-
ish correctly or help with the migration before inserting into the new table. On-
going queries also have to finish to prevent deadlocks. To prevent other threads
from inserting elements during the migration, we write-lock each empty slot and
each supercluster before it is migrated. These migration-write-locks are never re-
leased. To differentiate migration-write-locks from the ones used during normal
insertions, wewrite-lock a slot and store a non-zero remainder (write locks are usu-
ally only stored in empty slots). This way, an ongoing insertion recognizes that the
write-lock it encountered belongs to a migration. The inserting thread first helps
with the migration before restarting the insertion after the table is fully migrated.
Queries can happen concurrently with the migration because the migration does
not need read-locks.

Concurrent 2BQ-Filter

In the 2-status-bit-variant of the quotient filter there are no unused no unused
status-bit-combinations

status-bit-com-
binations that can be used as read or write-locks. But we can still use the same
general technique of representing a lock through slot contents that cannot occur
during normal operation. The 2BQ-filter variant enforces that there cannot be an
empty remainder (rem(x) = 0). At the same time, status bits are only set in slots
that contain an element. Thus, use non-zero status bits with

remainder 0 as lock
a slot with empty remainder and non-zero status

bits cannot normally occur. We can use such a slot to represent a lock. To write-
lock a supercluster, we store 01 write-lock 01in the status bits of an otherwise empty slot after
the supercluster.

157

5 Concurrent Quotient Filters

Read-locks are a little more difficult. They cannot work exactly the same as they
do in the 3-status-bit-variant described earlier. When operating on a 2BQ-filter,
we cannot recognize cluster starts within a larger supercluster—at least not when
scanning to the left from the canonical slot (Blocks C andG in Algorithms 5.1.a and
5.1.b). Only supercluster starts can be identified. They are the first non-empty slot
(i.e., their neighbor is empty).read-locks protect the whole

supercluster
Therefore, we can only read-lock superclusters, not

individual clusters. When scanning to the left, we have to wait at encountered read
locks even if they appear within a supercluster. This happens if two supercluster
grow together—after the read lock was taken.

To read-lock a supercluster we remove the remainder from the table and store
it locally until the lock is released—the status bits of the supercluster start are 11

read-lock 11 (they are not changed). Even though this variant seems to be feasible theoretically,
it is not practical because we have to ensure that the read-locked slot is still a super-
cluster start after it was locked (the slot to its left remains empty). This is necessary
to prevent potential ABA-problems where the locked element does not change its
content but is not a cluster start anymore. After successfully locking a slot, it does
not have to remain a super cluster start, i.e., two clusters are still allowed to grow
adjacent to each other.

To ensure that the locked slot is still the supercluster start we can atomically
compare-and-swap both the supercluster start and its empty neighbor at the same
timedouble-slot

compare-and-swap
. This however is a problem since both slotsmight be stored in different atomic

slot groups or even in different cache lines. This would lead to unaligned compare-
and-swap operations and, thus, poor execution time (we confirmed this hypothesis
with some preliminary experiments, but have not finished a full implementation).
The variant is still interesting from a theoretical perspective where a compare-and-
swap operation changing two neighboring slots is completely reasonable (usually
below 64bits). Indeed this variant might be interesting in an implementation for
transactional memory where it would be used if a transaction fails. In this case,
unaligned atomic operations could be rare enough to be justified as a fallback.

158

5.6 Fully Expandable QFs

Concurrent Deletions

Theconcurrent quotient filterwith local locking as it is described above cannot sup-
port concurrent deletions. Implementing a deletion would be possible, however, it
is at the cost of slowing impact to other operationsdown other operations, therefore, our implementations do
not support deletions. Deletions would however be possible in a phase concurrent
manner (compare [81]) meaning, that there could be a deletion phase, where other
operations are not possible. Or slower versions of queries and insertions would
have to be used in a deletion phase.
See Algorithm 5.2 for a pseudocode description of the deletion algorihtm. A

thread (1) acquire write lock
(2) check if split
(3) read lock
(4) delete

executing a deletion first has to acquire a write-lock on the supercluster
then it has to scan to the left (to the canonical slot) to guarantee that there was
no element removed while finding the cluster end. Then the read-lock is acquired
and the deletion is executed similar to the sequential case. During the deletion it is
possible that new cluster starts are created due to elements shifting to the left into
their canonical slot. Whenever this happens, the cluster is createdwith read-locked
status bits (010). After the deletion all locks are unlocked.
Implementing deletions in this way would impact the other methods in some

ways necessary changes to query
and insert

. During a query, after acquiring the read-lock when moving to the right
(Block H in Algorithm 5.1.b), it would be possible to hit a new cluster start or even
an empty slot before reaching the canonical slot. In this case the previous read-lock
is unlocked and the operation is restarted. During an insertion after acquiring the
write-lock (before Block C in Algorithm 5.1.a) it is necessary to scan to the left to
check that no element was removed after the canonical slot (comparable to Block
III Algorithm 5.2).

5.6 Fully Expandable QFs

The goal of this fully expandable quotient filter is to offer a resizable quotient fil-
ter variant with a bounded false positive rate that works well even if there is no
known bound to the number of elements inserted bounded false positive rate for

unbounded elements
. Adding new fingerprint bits to

existing entries is impossible without access to the inserted elements. We adapt a
technique that was originally introduced for scalable Bloom filters [3]. Once a quo-

159

Algorithm 5.2 Concurrent locally locked quotient filter delete operation.

(quot, rem)← f (key)
// Block I: try a trivial deletion (if there is another empty slot in group)
group← atomically load data around quot
if deletion into group is trivial then

finish deletion with a CAS and return
// Block II: write-lock the supercluster
scan right from it ← quot

if it is write-locked then
wait until released and continue

if it is empty then
trylock it with write-lock and break

if lock unsuccessful re-examine it
// Block IIa: scan to the left to ensure there are no holes from other deletions
scan left from it until quot

// ignore read-locks
if it is empty or write-lock then

unlock the write-lock
restart the operation

// later there can be no holes because any deletion waits for our lock
// Block III: read-lock the cluster
scan left from it ← pos(write-lock)

if it is read-locked then
wait until released and retry this slot

if it is cluster start then
trylock it with read-lock and break

if lock unsuccessful re-examine it
// Block IV: find the correct run
occ = 0; run = 0
scan right from it

if it is occupied and it < quot then occ++
if it is run start then run++
if occ = run and it ≥ quot then break

// Block V: delete from this run and shift elements left
scan right from it

if it = rem then break
if it is cluster start or read-locked or write-locked then

// not in the table
unlock both locks
return false

// Block VI: shift elements to the left until the next cluster start
// new cluster starts are created with read-locks
scan right from it

// this loop can be done atomically to each group (keep groups consistent)
next ← read(it + 1)
if next is cluster start or read-lock or write-lock then

it ← clear
break

next ← precompute shifted status bits
if next becomes a cluster start then

next ← status bits for read-lock
it ← next

unlock all the locks // also the newly created ones
return true

5.6 Fully Expandable QFs

tient filter is sufficiently full, we allocate a new level level = additional filter with
longer fingerprints

to the data structure, each new
level is an additional quotient filter. Each subsequent level increases the fingerprint
size. Overall, this ensures a bounded false positive rate. This old idea offers new
and interesting possibilities when applied to concurrent quotient filters, such that
avoiding locks on lower levels, growing each level using the limited growing tech-
nique, higher fill degree through cascading inserts, and early rejection of queries
also through cascading inserts.
The fully expandable quotient filter starts out with one quotient filter, but over

time, it may contain multiple levels each consisting of one quotient filters. At any
point in time, only the newest (highest) level is active. Insertions operate on the
active level. The data structure is initialized with two user-defined parameters the
initial capacity initial capacity c

bounded false positive rate p+
c and the upper bound for the false positive rate p+. The first level

table is initialized withm0 slots wherem0 = 2q0 is the first power of 2 where δgrow ⋅
m0 is larger than c, where δgrow is the fill ratio where growing is triggered and
ni = δgrow ⋅mi at most n i elements on level iis the maximum number of elements level i can hold. The number
of remainder bits r0 is chosen such that p+ > 2δgrow ⋅ 2−r0 (k0 = q0 + r0 fingerprint
bits).
Queries have to check each level. Within the lower levels no locks on lower levelsqueries do not need

any locks because the elements there are finalized. Query performance depends
on the number of levels. To keep the number of levels small, we have to increase
the capacity of each subsequent level. To also bound the false positive rate, we have
to reduce the false positive rate of each subsequent level. We achieve both of these
goals by increasing the size of the fingerprint ki two additional bits per levelby two for each subsequent level
(ki = 2+ ki−1). Using the longer fingerprint, we can ensure that once the new table
holds twice as many elements as the old one (ni = ni+1/2), it still has half the false
positive rate (p+i = ni ⋅ 2−k i = 2p

+
i+1 = 2 ⋅ ni+1 ⋅ 2−k i+1).

When a level reaches itsmaximum capacity ni , we allocate a new level. However,
instead of allocating the new level to immediately have twice the number of slots
as the old level, we allocate it with new table starts at 1/8th of its

final size
one 8th of the final size (1/4 of the current level),

and use the limited growing algorithm (described in Section 5.4.1) to grow it to
its final size (over time with three growing steps). This way, the table has a higher
average fill rate (at least 2/3 ⋅ δgrow instead of 1/3 ⋅ δgrow).

161

5 Concurrent Quotient Filters

Theorem 1 (Bounded p+ in expandable QF). The fully expandable quotient filter
maintains the false positive probability p+ set by the user independently of the number
of inserted elements.

Proof. For the following analysis, we assume that fingerprints can potentially have
an arbitrary length. The analysis of the overall false positive rate p+ is very similar
to that of the scalable Bloom filter. A false positive occurs if one of the ℓ levels has
a false positive p+ = 1 −∏i(1 − p+i). This can be approximated with the Weier-
strass inequality p+ ≤ ∑ℓ

i=1 p+i . When we substitute the shrinking false positive
rates per level (p+i+1 = p+i /2), we obtain a geometric sum which is bounded by 2p+1 :
∑ℓ−1

i=0 p+i 2
−i ≤ 2p+1 < p

+.

Using this growing scheme the number of filters is in O(log n/c). ThereforeO(log n/c) levels , the
bounds for queries are similar to those in a broad tree data structure. However, due
to the necessary pointers, tree data structures take significantly morememory. Ad-
ditionally, they are difficult to implement concurrently without creating contention
on the root node.

Cascading Insert

Cascading insertions can be used to improve memory usage and query perfor-
mance of growing quotient filters. The idea is to insert elements on the lowest
possible levelinsert remainder into lower

levels if canonical slot is free
. If the canonical slot on a lower level is empty, we insert the ele-

ment into that level. This can be done using a simple compare-and-swap operation
(without acquiring a write-lock). Queries on lower levels can still proceed without
locking because insertions cannot move existing elements.
Themain reason to grow the table before it is full is to improve the performance

by shortening clusters. The trade-off for this is space utilization. For the optimal
space utilization it would be necessary to fill eachcascading inserts improve fill

degree of lower levels
up to δ = 100%

table to 100%, i.e., δgrow = 1.
Using cascading inserts, this can be achieved while still maintaining a good per-
formance on each level. Queries on lower levels have no significant slowdown due
to cascading inserts because the average cluster length remains small (cascading
inserts lead to one-element clusters). Additionally, if we use cascading inserts, we
can abort queries that encounter an empty canonical slot in one of the lower level

162

5.7 Experiments

tables because this slot would have been filled by an insertion. We call this early
query termination early query termination. Yet cascading inserts also cause some overhead. Each inser-
tion has to check every level whether its canonical slot is empty. This was already
mandatory in some applications where elements were not allowed to be inserted
multiple times, i.e., a full query on every level was already necessary, for example
in applications like approximate element unification to prevent repeated insertions
of one element. Such applications often use combined query and insert operations
that only insert if the element was not yet in the table. In these cases, cascading
inserts do not cause any additional overhead.

5.7 Experiments

Throughout this section we compare a number of different AMQ-filters. We test
multiple variants described throughout compare our variants with

state of the art
this chapter like our LPQ-filter and the lo-

cally locking quotient filter (see Section 5.5) as well as some state of the art data
structures like bloom filter and counting quotient filter. Furthermore, we test the
set of growing quotient filters described throughout this chapter, however, we did
not find any state of the art implementations of other growing AMQ-filters avail-
able anywhere else. Each test was repeated 9 3 repetitions × 3 seedstimes using 3 different sequences of
keys—3 runs per sequence. Similar to the experiments in the previous chapter ()

The Non-Growing Competitors

linear probing quotient filter (LPQ-filter presented in Section 5.5.1). This is our
lock free quotient filter variant that does not use any reordering. It does not
use any status bits, instead it always uses three additional remainder bits.

locally locked quotient filter (presented in Section 5.5.2). This is the variant that
uses status bit combinations to locally lock specific clusters. This quotient
filter is also the base implementation used for all of our growing quotient
filter variants compared in the growing test.

externally locked quotient filter. This variant is based on the same sequential
code as our locally locked quotient filter but instead of using the novel in-

163

5 Concurrent Quotient Filters

table-locking approach we use an external array of locks, i.e., one lock per
4096 slots.

counting quotient filter—implementation by Pandey et al. [70] found at [69].
This implementation has a similar locking approach as our externally locked
quotient filter. In addition to our implementation, it does support delete
operations and improved duplicate insertions (using variable sized counters)
but it does not support growing.

classic bloomfilter implementation. This is a bloomfilter implementation using
simple atomic operations. This simple implementation uses less memory
than the comparable quotient filters.

optimized bloom filter. For this variant of the bloom filter we tweaked the
parameters for the table size and number of hash functions to offer a fair
comparison to the quotient filter data structures. This version uses the same
amount of memory as the quotient filters. It also uses fewer hash functions
to keep a similar bound on the false positive rate but a reduced running time
both for insertions and for find operations (5 hash functions).

Hardware All experiments were executed on two machinestwo machines:
- 4-socket-intel

- amd-epyc

(1) a four-socket
Intel Xeon Gold 6138 machine with 20 cores per socket, each running at 2.0GHz
(3.7GHz Turbo Frequency) with 27.5MB of L3 cache size (per socket) and 768GB
of main memory (overall). (2) a one-socket machine with an AMD EPYC 7702P
with 64 cores each running at 2.0GHz (3.35GHz Turbo Frequency) with 256MB
of L3 cache size and 1TB of main memory. Both machines use a Ubuntu 20.04.2
operating system and all tests were compiled using gcc 9.3.0 with -march=native
and -O3 flags.

Fill Ratio Benchmark

In this benchmark, we test all filter implementations under a varying fill degreetest performance at varying
fill degrees constant p

.
To do this we initialize a table with 226 ≈ 67.1M ≈ slots and r = 10 remainder bits
(LPQ-filter has 13 remainder bits). This table is filled with uniform random ele-
ments concurrently by all cores of the machine (pi = 80 and pa = 64 respectively).

164

5.7 Experiments

Every 10% of the fill ratio we execute a performance test. Each such test consists of
100000 positive queries, negative queries, and insertions. These operations are split
among all processors and are executed concurrently after a synchronization. Each
positive query is looking for a random previously inserted element (not necessarily
the last inserted elements). Negative queries query a new random element, these
may include false positives. Any necessary random numbers are computed prior
to executing the benchmark. The results are shown in Figure 5.3.

As one would expect, the throughput of most quotient filter variants decreases
with increasing fill ratio. However, this seems not increasing fill degree→

decreasing performance
to be the case for the counting

quotient filter and theBloomfilter. Our advanced quotient filter implementations—
the LPQ-filter and the locally locked quotient filter —display their strengths on
sparser tables with about × and 2.2 higher insertion throughputs than the simi-
larly implemented externally locked quotient filter at 30% fill degree (amd: 2.7
and 1.6). At 70% fill degree the advanced implementation are still 2.9× and 1.6×
faster than the externally locked implementation (amd: 2.2× and 1×).
Our LPQ-filter is by far the fastest AMQ find performancefor positive queries. The table likely

profits from the same effect we have already seen in the previous chapters (see Sec-
tion 2.5.1 and Section 3.8), i.e., the fact that average query times are fast whenmany
elements have a small displacement—a few elements with large displacements are
a lot less impactful. The other quotient filter variants behave similar to RobinHood
hashing in that many elements have medium to large displacements. Both Bloom
filters , that we used in these experiments are especially good at negative queries
because the density of 1s is actually very small (for most fill degrees), therefore,
queries can often be aborted after one or two memory accesses.
The insert performance of the counting quotient filter is at best 1.7MOps/s on

intel (3.3 MOps/s on amd), however, its find performance is at about the same as
the externally locked variants —onourmachine amd-epyc–and significatly better
on the intel machine, e.g., by a factor of 1.8 on positive finds at 70% fill (factor of
2.1 on negative finds).

All quotient filter variants (except for the LPQ-filter) have the same false pos-
itive rate—which is determined by the fingerprint function. The fp ratefalse positive rate
of the LPQ-filter and the optimized bloom filter both start out smaller than the
normal quotient filter rate but they become bigger on fill degrees over 70%. The

165

5 Concurrent Quotient Filters

classic bloom filter starts out very low but the false positive rate begins to pick up
with the fill degree. At 100% fill degree, it should have the same false positive rate
as the quotient filters.

166

5.7 Experiments

0.0

0.1

0.2

0.3

0 25 50 75
Fill Degree δ

Th
ro
ug

hp
ut

in
G
O
ps
/s

Insert (4-socket-intel)

0.0

0.2

0.4

0.6

0 25 50 75
Fill Degree δ

Th
ro
ug

hp
ut

in
G
O
ps
/s

Find Positive (4-socket-intel)

0.0

0.2

0.4

0.6

0.8

Th
ro
ug

hp
ut

in
G
O
ps
/s

Find Negative (4-socket-intel)

10-1

10-2

10-3

0 25 50 75
Fill Degree δ

p+
in

%

0.0

0.2

0.4

0.6

0.8

0 25 50 75
Fill Degree δ

Th
ro
ug

hp
ut

in
G
O
ps
/s

Insert (amd-epyc)

0.00

0.25

0.50

0.75

1.00

0 25 50 75
Fill Degree δ

Th
ro
ug

hp
ut

in
G
O
ps
/s

Find Positive (amd-epyc)

0.0

0.3

0.6

0.9

Th
ro
ug

hp
ut

in
G
O
ps
/s

Find Negative (amd-epyc)

10-1

10-2

10-3

0 25 50 75
Fill Degree δ

p+
in

%

LP QFilter
QFilter (local)

QFilter (external)
Counting QFilter

Optimized Bloom
Classic Bloom

Figure 5.3: Throughput over fill degree. At specific fill degrees we test the performance
of the quotient filter operations, i.e., insertions (top), positive finds (scnd), and
negative finds (thrd). Additionally we also measured false positives (bottom).
All measurements were executed on both described machines (i.e., 4-socket-
intel and amd-epyc at p = 80 and 64 respectively).

167

5 Concurrent Quotient Filters

Speedup of Table Construction

Our first test (presented in Figure 5.4) examines the scaling behavior of all imple-
mentations under a varying number ofconstruct table—70% fill,

varying p
operating threads p. We prepare a table

with a capacitym to hold M elements. Then we fill this table with 46M uniformly
random elements through repeated insertions (by all p threads concurrently). Fill-
ing the table to about 70% using r = 10 remainder bits (13 for the LPQ-filter).

We can see that all data structures scale close to linearly with the number of
processors. Therelinear scaling is only a small bend (on the 4-socket intel machine) when the
number of cores exceeds the first socket (p = 20) and once it reaches the number
of physical cores (highlighted at p = 80 and p = 64 respectively). However, the
data structures even seem to scale relatively well when using hyperthreading. The
absolute performance is quite different between the data structures. LPQ-filter
has the best throughput.
As it was the case in the previous test the LPQ-filter has the best performance

among all tested filters. It has an absolute speedup of 19.7 (relative to the sequential
LPQ-filter with p = 80 on intel; p = 64 on amd 38.7). Compared to the sequential
quotient filter the speedups are even larger, i.e., 32.2 and 64.1 respectively. Even
though the locally locked quotient filter uses locking.speedup over the respective

sequential versions is
comparable

It has similar speedups
when compared to the (non-LP) sequential quotient filter, of 21.9 (with p = 80 on
intel; p = 64 on amd 39.3).

Overall we see that the speedups and also the overall performance are better
on the amd machine, even though it has less cores at about the same frequency.
However, it has a significantly better memory connection and an about 10 times
larger L3 cache size it. Additionally, it does not have any NUMA effects that are
negatively impacting the multi-socket intel machine. Compared to our results on
concurrent hash tables presented in Section 4.6, we see that quotient filters scale
better on 4-socket-intel, i.e., higher speedup. The main reason for this is probably
because the actual amount of loaded data is significantly lower due to the packing of
multiple slots into one 64bit read. This points to the fact that memory bandwidth
might be an issue at least for the traditional hash table implementations.

168

5.7 Experiments

0

100

200

300

400

0

10

20

30

1 4 20 40 80 120 160
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s

Speedup
overSeq.Q

Filter

Speedup (4-socket-intel)

0

200

400

600

0

20

40

60

80

14 8 16 24 32 48 64 96 128
Threads p

Th
ro
ug

hp
ut

in
M
O
ps
/s

Speedup
overSeq.Q

Filter
Speedup (amd-epyc)

LP QFilter
QFilter (local)
QFilter (external)
Counting QFilter
Optimized Bloom
Classic Bloom

Figure 5.4: Speedup constructing a table. Strong scaling measuremen inserting 47M el-
ements into a table with 226 ≈ 67M slots (70% fill degree). The speedup is
measured relative to a sequential quotient filter (non-LP version) (right scale).

Growing Benchmark

In this experiment we compare the performance of the different growable quo-
tient filter implementations, the limited growing quotient filter , the expandable
growing quotient filter , and the expandable growing quotient filter with cascad-
ing inserts . We show two test series using the limited growing quotient filter, one
starting at remainder length 10 (i.e., false positive rate of 2−10 in the first table) and
one starting at remainder length 17 (can grow by a factor of ≈ 128 and still have a
false positive rate of 2−10). The limited growing quotient filter grows by repeatedly
migrating the table—each time reducing the fingerprint by one bit. The expand-
able quotient filter uses the multi level growing approach we adapted to quotient
filters (see Section 5.6). It keeps a bounded false positive rate of 2−10. Each level

169

5 Concurrent Quotient Filters

of the data structure grows 3 times before it reaches its final size. The expandable
quotient filter with cascading inserts keeps the same false positive rate but uses
the cascading insert technique described on page 162 to pack additional elements
into the lower levels of the data structure.
For this benchmark we insert 50M uniform random elements into each of our

fully expandable quotient filters. Each filter was initialized with a capacity of only
219 ≈ 0.5M (95× growing factor) slots and a target false positive rate of p+ = 2−10.
The inserted elements are split into 50 segments of M elements. We measure the
running time of inserting each segment as well as the query performance after each
segment (similar to the fill benchmark). The results of this experiment are shown
in Figure 5.5.
As expected, the false positive rates of the quotient filters with limited grow-

ing increase linearly with the number of elements. The query performance only
depends on the fill degree of the current table—not the actual number of elements.
The table that was initialized with a higher precision has a worse overall perfor-
mance, but has the same “final” false positive rate as the variants with bounded
growing (inserting more elements would cause the rate to diverge).
Both fully expandable variants stay below 2−10 false positive rate. But their

query performance suffers due to the lower level look ups. Cascading inserts can
improve positive query times by 10% (average over all queries; 10% on amd), how-
ever, for unsuccessful queries we do not see the same significant speedups 2% and
7% respectively (on intel and amd respectively). The reason for this is that after
some time there are likely very few empty slots in lower level tables, therefore,
early query rejection does not do much good (aborting a query after in a lower
level table). Finding an element on a lower level seems to be beneficial, especially
since elements inserted on a lower level (through a cascading insert0) are always
in their canonical slot. As expected cascading inserts are slowing down insertion
times significantly. A lot of workloads could still profit from cascading inserts be-
cause AMQ-filter data structures are usually queried a lot more often than they are
updated.

170

5.7 Experiments

0

100

200

300

0 10 20 30 40 50
Elements in Millions

Th
ro
ug

hp
ut

in
M
O
ps
/s

Insert (4-socket-intel)

0

200

400

0 10 20 30 40 50
Elements in Millions

Th
ro
ug

hp
ut

in
M
O
ps
/s

Positive Find (4-socket-intel)

0

200

400

600

800

Th
ro
ug

hp
ut

in
M
O
ps
/s

Negative Find (4-socket-intel)

10-3
10-2
10-1
100

0 10 20 30 40 50
Elements in Millions

p+
in

%

0

100

200

300

400

0 10 20 30 40 50
Elements in Millions

Th
ro
ug

hp
ut

in
M
O
ps
/s

Insert (amd-epyc)

0

200

400

0 10 20 30 40 50
Elements in Millions

Th
ro
ug

hp
ut

in
M
O
ps
/s

Positive Find (amd-epyc)

0

200

400

600

Th
ro
ug

hp
ut

in
M
O
ps
/s

Negative Find (amd-epyc)

10-3
10-2
10-1
100

0 10 20 30 40 50
Elements in Millions

p+
in

%

fully expandable
fully expandable + cascading

limited growing
limited growing (high precision)

Figure 5.5: Throughput of the growing quotient filter variants (all variants based on the
local locking quotient filter). All threads cooperatively insert 50 segments of
20M elements each into a table initialized with 224 ≈ 16.8M slots (executed on
4-socket-intel and amd-epyc at p = 80 and 64 respectively).

171

5 Concurrent Quotient Filters

5.8 Chapter Conclusion

Throughout this chapter we have described a number of quotient filter variants that
add to the varied list of AMQ-filters. Some of our variants are targeted for specific
use cases, like the LPQ-filter- lp quotient filter

- local locking quotient filter
- expandable quotient filter

that is fast to build but only works until certain fill
degrees or the expandable growing filter variants that open the design space for
unbounded growing quotient filters. Other techniques are targeted at optimizing
already available variants like the locally locked quotient filter that improves the
performance of concurrent quotient filters and serves as a building block for the
expandable variants.

We proposed a new technique for concurrent quotient filters that uses the sta-
tus bitslocal locking with status bits inherent to quotient filters for localized locking. Using this technique, no
additional cache lines are accessed (compared to a sequential quotient filter). This
variant achieves a 1.6 times increase in insert performance over the external lock-
ing scheme (p = 80 and 70% fill degree; 1.8 and 2.3 on queries). Additionally, we
proposed a simple linear probing based filterlock free linear probing

quotient filter
that does not use any status bits and

is lock-free. Using the same amount of memory this filter achieves even better false
positive rates up to a fill degree of 70% and also 1.9 times higher insertion speedups
(than the local locking variant also at 70% fill degree).

We also designed the fully expandable growing quotient filter which uses the
limited growing technique to refine the growing scheme used in scalable Bloom
filters. This combination of techniques guarantees that the overall data structureexpandable

- bounded fill degree
- bounded fp rate

is
always at least 2/3 ⋅ δgrow filled (where δgrow is the fill degree where the migration
is triggered). Using cascading inserts this can even be improved by filling lower
level tables even further, while also improving successful query times by around
10% (on amd).
Our tests show that there is no optimal AMQ data structure. Which data struc-

ture performs best depends on the use case and the expected workload. The linear
probing quotient filter is veryoptimal table still depends on

workload
good as long as the table is not densely filled and

as long as positive queries make up a lot of the workload. Similarly, Bloom filters
perform well on workloads with a lot of negative queries. The locally locked quo-
tient filter is also efficient on tables below a fill degree of 70%. But, it is also more
flexible for example when the table starts out empty and is filled to above 70% (i.e.,

172

5.8 Chapter Conclusion

constructing the filter). Our growing implementations work well if the number
of inserted elements is not known prior to the table’s construction. The counting
quotient filter could perform well on very query heavy workloads that operate on
densely filled tables.

173

6 Discussion

Throughout this dissertation we have looked at scaling hash tables with scalable
migration algorithms. We have identified three domains where growing hash-
based data structures are important and where previous approaches to growing
have failed: (1) Space efficient hash tables space efficient hash tablesbecause only growing hash tables can be
space efficient if the table size is not known before the construction of the hash ta-
ble and because there was no previous work showing space efficient growing tech-
niques. (2) Concurrent hash tables concurrent hash tablesbecause data structures that can achieve signifi-
cant speedups are essential for writing efficient algorithms and because scalability
is literally in the name of this dissertation. And (3) concurrent quotient filters concurrent quotient filtersbe-
cause quotient filters have the chance to be faster than bloom filters but are hard
to implement concurrently and because AMQ-filter with an adaptable capacity are
rare and potentially very interesting for many applications.

Space Efficient Hashing We have defined the concept of dynamic α-space ef-
ficient hash tables. dynamic α-space efficient

hashing
Themain idea behind the concept is that there always has to be

a tight bound to thememory used by the data structure (α ⋅n ⋅s where s is the size of
an element). Using this definition, traditional growing techniques (i.e., reallocate
and migrate) can be at most 2-space efficient because during the migration at least
2 slots exist for every element.
We have developed an in-place growing approach to construct dynamically α-

space efficient hash tables and have applied this approach to many common hash-
ing techniques in-place growing can be

applied to many hashing
techniques

(i.e., linear probing, quadratic probing, Robin Hood hashing, and
cuckoo hashing). In-place growing works by allocating additional memory at the
end of the existing table and reordering the elements in-place.

We also developed a hash table that is specifically designed to be dynamically
α-space efficient—DySECT. DySECT is a hash table architecture that consists of

175

6 Discussion

many subtables, thus using a traditional migration algorithm for one subtable does
not violate the overall space bound. Through a cuckoo displacement technique,
elements can be moved between subtables, thus making newly created memory in
one subtable accessible to new elements.

Both techniques perform really well in our experiments with insertions scaling
as expected up to loads of 95% and higher. Among the tables using the in-place
growing method, quadratic probing emerged as the strongest competitor, however
find operations are slow on all variants that use traditional probing (non-cuckoo
methods). DySECT offers a great balance between efficient insert and find opera-
tions.

Concurrent Hash Table The motivation behind looking at concurrent hash
tables was taking the simple folkloreHT implementation and expanding it in a way
that it can be used in a wider variety of circumstances without compromising the
raw speed of the simple base implementation. We have implemented a variety of
generalizations for folkloreHT that can all be enabled or disabled at compile time.
Thus, adapting the functionality of the resulting table without any overheads in
cases where a specific extension was not chosen.

Using our generalizations we successfully remove all constraints that we identi-
fied in folkloreHT: dynamic table size, deletions, and arbitrary key and value types.
Additionally, our generalizations can be freely combined to adapt the resulting hash
table to its specific intended work load.

Throughout our extensive experimental evaluation with up to 17 different hash
tables from 7 different libraries, our implementations consistently outperformed
all state of the art implementations. This is true even for tests where multiple of
our extensions were combined, e.g., the word count benchmark on page 132, or the
deletion benchmark on page 134.

Concurrent Quotient Filters We describe multiple variants of concurrent
AMQ-Filters both non-growablesolutions with and without

growing
(i.e., LPQ-filter, locally locked quotient filter) and

growable (either using the limited growing technique, or fully expandable). We
have shown that there cannot be a “simple” lock-free implementation for status-

176

bit-based quotient filter (page 151). This makes our LPQ-filter LPQ-filter is lock-freethe only available
lock-free solution.

Both our lock-free and locked solutions scale well with the number of processors
and perform especially well on tables with lower fill degrees (page 167). The LPQ-
filter has by far the best performance on most work loads and it even has a lower
false positive rate for fill degrees under 70%.

Our growable quotient filters come in two flavors: the limited growing technique
that is inherent to quotient filters but has an unbounded limited and fully expandable

variants
false positive rate, and the

fully expandable quotient filter that has a bounded false positive rate, albeit at non-
constant operation times. In our experiments the fully expandable technique was
within a factor of two of the limited growing technique, even when growing by a
factor of 100 (page 171).

LinearMapping andMigrations One of the most important takeaways from
this dissertation is the influence of the linear table mapping on hash table migra-
tions. Because we use a linear table mapping because of linear table

mapping
, elements are stored in an order that

is correlated to their preliminary hash value. Throughout this dissertation we use
this knowledge in two ways:

First, to construct our space efficient hash tables we use the fact that the order of
elements in the source and target order of elements in source

table ≈ order in target table
tables do not change significantly. Thus scanning

through the elements of the source table during the migration and moving them
to the target table accesses the slots of the target table in a very predictable order.
This is important because it ensures that the elements move behind the scan line
during the in-place migration. It is also the reason for the cache efficiency of all
our migration algorithms.

Second, if we know how many elements are hashed into a certain range given a range (source) and its
corresponding range (target)
elements move from source to
target

in the
source table (e.g., in a cluster) we know there cannot be more elements hashed into
the corresponding range in the target table. Because the target table has at least the
same number of elements (concurrent hash tables with deletions), we can guaran-
tee that certain slots remain empty. We use this in our concurrent migrations to
reduce interactions between threads (by implicitly moving the border of blocks to
free slots).

177

6 Discussion

Concluding In combination the solutions we developed throughout this thesis
can be used in a wide variety of situations. Moreover, throughout all experiments
against state of the art competitorsflexible, interchangeable, top

performing
, our implementations consistently rank among

the top performing data structures. And since all of our tables have been devel-
oped with interchangeability in mind users can quickly change between different
implementations to find the correct data structure for their specific use case and
workload.

178

Bibliography

[1] Lada A. Adamic and Bernardo A. Huberman. Zipf ’s law and the internet.
Glottometrics, 3:143–150, 2002.

[2] Mohammad Al-Hisnawi and Mahmood Ahmadi. Deep packet inspec-
tion using quotient filter. IEEE Commun. Lett., 20(11):2217–2220, 2016.
doi:10.1109/LCOMM.2016.2601898.

[3] Paulo SérgioAlmeida, Carlos Baquero, NunoPreguiça, andDavidHutchison.
Scalable Bloom Filters. Inf. Process. Lett., 101(6):255–261, March 2007. ISSN
0020-0190. doi:10.1016/j.ipl.2006.10.007.

[4] Austin Appleby. SMHasher. https://github.com/aappleby/smhasher.
Accessed April 25, 2021.

[5] Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing:
Provable worst-case performance and experimental results. In Automata,
Languages and Programming, 36th International Colloquium (ICALP), volume
5555 of LNCS, pages 107–118. Springer, 2009. doi:10.1007/978-3-642-02927-
1 11.

[6] Robert Axtell. Zipf distribution of u.s. firm sizes. Science (New York, N.Y.),
293:1818–20, 10 2001. doi:10.1126/science.1062081.

[7] Hannah Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik
Schultes. In transit to constant time shortest-path queries in road networks.
In Proceedings of the Ninth Workshop on Algorithm Engineering and Experi-
ments (ALENEX). SIAM, 2007. doi:10.1137/1.9781611972870.5.

[8] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner,
Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep

179

https://doi.org/10.1109/LCOMM.2016.2601898
https://doi.org/10.1016/j.ipl.2006.10.007
https://github.com/aappleby/smhasher
https://doi.org/10.1007/978-3-642-02927-1_11
https://doi.org/10.1007/978-3-642-02927-1_11
https://doi.org/10.1126/science.1062081
https://doi.org/10.1137/1.9781611972870.5

Bibliography

Shetty, Richard P. Spillane, and Erez Zadok. Don’t thrash: How to
cache your hash on flash. Proc. VLDB Endow., 5(11):1627–1637, 2012.
doi:10.14778/2350229.2350275. URL http://vldb.org/pvldb/vol5/

p1627_michaelabender_vldb2012.pdf.

[9] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
caching and zipf-like distributions: evidence and implications. In Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM), volume 1, pages 126–134 vol.1, Mar 1999.
doi:10.1109/INFCOM.1999.749260.

[10] Alex D. Breslow andNuwan Jayasena. Morton filters: fast, compressed sparse
cuckoo filters. VLDB J., 29(2-3):731–754, 2020. doi:10.1007/s00778-019-
00561-0.

[11] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J.
Comput. Syst. Sci., 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

[12] Pedro Celis, Per-Åke Larson, and J. Ian Munro. Robin hood hash-
ing (preliminary report). In 26th Annual Symposium on Foundations of
Computer Science (FOCS), pages 281–288. IEEE Computer Society, 1985.
doi:10.1109/SFCS.1985.48.

[13] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.
Improving hash join performance through prefetching. ACMTrans. Database
Syst., 32(3):17, 2007. doi:10.1145/1272743.1272747.

[14] JohnG. Cleary. Compact hash tables using bidirectional linear probing. IEEE
Trans. Computers, 33(9):828–834, 1984. doi:10.1109/TC.1984.1676499.

[15] Yan Collet. xxHash. https://github.com/Cyan4973/xxHash. Accessed
April 25, 2021.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.
ISBN 978-0-262-03384-8. URL http://mitpress.mit.edu/books/

introduction-algorithms.

180

https://doi.org/10.14778/2350229.2350275
http://vldb.org/pvldb/vol5/p1627_michaelabender_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1627_michaelabender_vldb2012.pdf
https://doi.org/10.1109/INFCOM.1999.749260
https://doi.org/10.1007/s00778-019-00561-0
https://doi.org/10.1007/s00778-019-00561-0
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1109/SFCS.1985.48
https://doi.org/10.1145/1272743.1272747
https://doi.org/10.1109/TC.1984.1676499
https://github.com/Cyan4973/xxHash
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms

Bibliography

[17] RomanDementiev, Lutz Kettner, JensMehnert, and Peter Sanders. Engineer-
ing a sorted list data structure for 32 bit key. In ”6th Workshop on Algorithm
Engineering & Experiments (ALENEX)”, pages 142–151. SIAM, 2004.

[18] Luc Devroye and Pat Morin. Cuckoo hashing: Further analysis. Inf. Process.
Lett., 86(4):215–219, 2003. doi:10.1016/S0020-0190(02)00500-8.

[19] Martin Dietzfelbinger and ChristophWeidling. Balanced allocation and dic-
tionaries with tightly packed constant size bins. Theor. Comput. Sci., 380(1-2):
47–68, 2007. doi:10.1016/j.tcs.2007.02.054.

[20] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert Endre Tarjan. Dynamic perfect
hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994.
doi:10.1137/S0097539791194094.

[21] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Pentto-
nen. A reliable randomized algorithm for the closest-pair problem. J. Algo-
rithms, 25(1):19–51, 1997. doi:10.1006/jagm.1997.0873.

[22] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea
Montanari, Rasmus Pagh, and Michael Rink. Tight thresholds for cuckoo
hashing via XORSAT. In Automata, Languages and Programming, 37th Inter-
national Colloquium (ICALP), volume 6198 of LNCS, pages 213–225. Springer,
2010. doi:10.1007/978-3-642-14165-2 19.

[23] Martin Dietzfelbinger, Michael Mitzenmacher, and Michael Rink. Cuckoo
hashing with pages. In 19th Annual European Symposium on Algorithms
(ESA), volume 6942 of LNCS, pages 615–627. Springer, 2011. doi:10.1007/978-
3-642-23719-5 52.

[24] Bin Fan, David G. Andersen, Michael Kaminsky, andMichaelMitzenmacher.
Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Tech-
nologies (CoNEXT), pages 75–88. ACM, 2014. doi:10.1145/2674005.2674994.

181

https://doi.org/10.1016/S0020-0190(02)00500-8
https://doi.org/10.1016/j.tcs.2007.02.054
https://doi.org/10.1137/S0097539791194094
https://doi.org/10.1006/jagm.1997.0873
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1007/978-3-642-23719-5_52
https://doi.org/10.1007/978-3-642-23719-5_52
https://doi.org/10.1145/2674005.2674994

Bibliography

[25] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space
efficient hash tables with worst case constant access time. Theory Comput.
Syst., 38(2):229–248, 2005. doi:10.1007/s00224-004-1195-x.

[26] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger. On
the insertion time of cuckoo hashing. SIAM J. Comput., 42(6):2156–2181, 2013.
doi:10.1137/100797503.

[27] Alan M. Frieze, Páll Melsted, and Michael Mitzenmacher. An analysis
of random-walk cuckoo hashing. SIAM J. Comput., 40(2):291–308, 2011.
doi:10.1137/090770928.

[28] Hui Gao, Jan Friso Groote, and Wim H. Hesselink. Lock-free dynamic
hash tables with open addressing. Distributed Comput., 18(1):21–42, 2005.
doi:10.1007/s00446-004-0115-2.

[29] Afton Geil, Martin Farach-Colton, and John D. Owens. Quotient filters: Ap-
proximate membership queries on the GPU. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 451–462. IEEE Com-
puter Society, 2018. doi:10.1109/IPDPS.2018.00055.

[30] Jan Friso Groote, Wim H. Hesselink, Sjouke Mauw, and Rogier Vermeulen.
An algorithm for the asynchronous write-all problem based on process colli-
sion. Distributed Comput., 14(2):75–81, 2001. doi:10.1007/PL00008930.

[31] Torben Hagerup and Christine Rüb. Optimal merging and sorting on
the erew pram. Inf. Process. Lett., 33(4):181–185, 1989. doi:10.1016/0020-
0190(89)90138-5.

[32] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Re-
vised Reprint. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2012. ISBN 9780123973375.

[33] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In Dis-
tributed Computing, 22nd International Symposium (DISC), volume 5218 of
LNCS, pages 350–364. Springer, 2008. doi:10.1007/978-3-540-87779-0 24.

182

https://doi.org/10.1007/s00224-004-1195-x
https://doi.org/10.1137/100797503
https://doi.org/10.1137/090770928
https://doi.org/10.1007/s00446-004-0115-2
https://doi.org/10.1109/IPDPS.2018.00055
https://doi.org/10.1007/PL00008930
https://doi.org/10.1016/0020-0190(89)90138-5
https://doi.org/10.1016/0020-0190(89)90138-5
https://doi.org/10.1007/978-3-540-87779-0_24

Bibliography

[34] Euihyeok Kim and Min-Soo Kim. Performance analysis of cache-conscious
hashing techniques for multi-core CPUs. International Journal of Control &
Automation (IJCA), 6(2), 2013. ISSN 2005-4297.

[35] Adam Kirsch and Michael Mitzenmacher. Using a queue to de-amortize
cuckoo hashing in hardware. In 45th Annual Allerton Conference on Com-
munication, Control, and Computing, volume 75, 2007. URL https://www.
eecs.harvard.edu/~michaelm/postscripts/aller2007.pdf.

[36] Donald E. Knuth. Notes on ”open” addressing. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.56.4899, 1963. Unpublished
memorandum.

[37] Donald Ervin Knuth. The art of computer programming, , Volume III, 2nd
Edition. Addison-Wesley, 1998. ISBN 0201896850. URL https://www.

worldcat.org/oclc/312994415.

[38] Doug Lea. Hash table util. concurrent. concurrenthashmap, re-
vision 1.3.4. JSR-166, the proposed Java Concurrency Package.
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html,
2004.

[39] Daniel Lemire. Fast random integer generation in an interval. ACM
Trans. Model. Comput. Simul., 29(1), January 2019. ISSN 1049-3301.
doi:10.1145/3230636.

[40] Lexico. scalability. https://www.lexico.com/en/definition/

scalability, Accessed May 20, 2021.

[41] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J.
Freedman. Algorithmic improvements for fast concurrent cuckoo hash-
ing. In Ninth Eurosys Conference, (EuroSys), pages 27:1–27:14. ACM, 2014.
doi:10.1145/2592798.2592820.

[42] Tobias Maier. Dysect. https://github.com/TooBiased/DySECT, . Ac-
cessed May 25, 2021.

183

https://www.eecs.harvard.edu/~michaelm/postscripts/aller2007.pdf
https://www.eecs.harvard.edu/~michaelm/postscripts/aller2007.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899
https://www.worldcat.org/oclc/312994415
https://www.worldcat.org/oclc/312994415
https://doi.org/10.1145/3230636
https://www.lexico.com/en/definition/scalability
https://www.lexico.com/en/definition/scalability
https://doi.org/10.1145/2592798.2592820
https://github.com/TooBiased/DySECT

Bibliography

[43] Tobias Maier. Growt. https://github.com/TooBiased/growt, . Ac-
cessed May 25, 2021.

[44] Tobias Maier. lpqfilter. https://github.com/TooBiased/lpqfilter, .
Accessed May 25, 2021.

[45] Tobias Maier and Peter Sanders. Dynamic space efficient hashing. In
25th Annual European Symposium on Algorithms (ESA), volume 87 of LIPIcs,
pages 58:1–58:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ESA.2017.58.

[46] TobiasMaier, Peter Sanders, and RomanDementiev. Concurrent hash tables:
Fast and general?(!). CoRR, abs/1601.04017, 2016. URL http://arxiv.org/
abs/1601.04017.

[47] TobiasMaier, Peter Sanders, and RomanDementiev. Concurrent hash tables:
Fast and general(?)! In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), PPoPP, pages 34:1–
34:2, 2016. ISBN 978-1-4503-4092-2. doi:10.1145/2851141.2851188.

[48] Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent Hash Ta-
bles: Fast and general(?)! ACM Trans. Parallel Comput., 5(4):16:1–16:32,
February 2019. ISSN 2329-4949. doi:10.1145/3309206.

[49] TobiasMaier, Peter Sanders, and StefanWalzer. Dynamic space efficient hash-
ing. Algorithmica, 81(8):3162–3185, 2019. doi:10.1007/s00453-019-00572-x.

[50] Tobias Maier, Peter Sanders, and Robert Williger. Concurrent ex-
pandable AMQs on the basis of quotient filters. In 18th International
Symposium on Experimental Algorithms (SEA), volume 160 of LIPIcs,
pages 15:1–15:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.SEA.2020.15.

[51] Grzegorz Malewicz. A work-optimal deterministic algorithm for the certi-
fied write-all problem with a nontrivial number of asynchronous processors.
SIAM J. Comput., 34(4):993–1024, 2005. doi:10.1137/S0097539703428014.

184

https://github.com/TooBiased/growt
https://github.com/TooBiased/lpqfilter
https://doi.org/10.4230/LIPIcs.ESA.2017.58
http://arxiv.org/abs/1601.04017
http://arxiv.org/abs/1601.04017
https://doi.org/10.1145/2851141.2851188
https://doi.org/10.1145/3309206
https://doi.org/10.1007/s00453-019-00572-x
https://doi.org/10.4230/LIPIcs.SEA.2020.15
https://doi.org/10.1137/S0097539703428014

Bibliography

[52] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random num-
ber generator. ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.
doi:10.1145/272991.272995.

[53] Edward M. McCreight. A space-economical suffix tree construction algo-
rithm. J. ACM, 23(2):262–272, 1976. doi:10.1145/321941.321946.

[54] Paul E. McKenney and John D. Slingwine. Read-copy update: Using execu-
tion history to solve concurrency problems. Parallel and Distributed Com-
puting and Systems, pages 509–518, 1998. URL http://www.rdrop.com/

users/paulmck/paper/rclockpdcsproof.pdf.

[55] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic
Toolbox. Springer, 2008. ISBN 978-3-540-77977-3. doi:10.1007/978-3-540-
77978-0.

[56] Scott Meyers. Effective C++: 55 specific ways to improve your programs and
designs. O’Reilly, 2005. ISBN 0321334876.

[57] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Trans. Parallel Distributed Syst., 15(6):491–504, 2004.
doi:10.1109/TPDS.2004.8.

[58] Michael Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Trans. Parallel Distributed Syst., 12(10):1094–1104, 2001.
doi:10.1109/71.963420.

[59] Michael Mitzenmacher. Some open questions related to cuckoo hashing. In
17th Annual European Symposium onAlgorithms (ESA), volume 5757 of LNCS,
pages 1–10. Springer, 2009. doi:10.1007/978-3-642-04128-0 1.

[60] Michael Mitzenmacher, Konstantinos Panagiotou, and Stefan Walzer. Load
Thresholds for Cuckoo Hashing with Double Hashing. In 16th Scandina-
vian Symposium and Workshops on Algorithm Theory (SWAT), volume 101
of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1–29:9,

185

https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/321941.321946
http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/71.963420
https://doi.org/10.1007/978-3-642-04128-0_1

Bibliography

Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. ISBN 978-3-95977-068-2. doi:10.4230/LIPIcs.SWAT.2018.29. URL
http://drops.dagstuhl.de/opus/volltexte/2018/8855.

[61] Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego. Adap-
tive cuckoo filters. In Proceedings of the Twentieth Workshop on Algo-
rithm Engineering and Experiments (ALENEX), pages 36–47. SIAM, 2018.
doi:10.1137/1.9781611975055.4.

[62] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz
Färber. Cache-efficient aggregation: Hashing is sorting. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, pages
1123–1136. ACM, 2015. doi:10.1145/2723372.2747644.

[63] Nhan Nguyen and Philippas Tsigas. Lock-free cuckoo hashing. In 34th Inter-
national Conference on Distributed Computing Systems Workshops (ICDCS),
pages 627–636. IEEE Computer Society, 2014. doi:10.1109/ICDCS.2014.70.

[64] RajeshNishtala, Hans Fugal, StevenGrimm,MarcKwiatkowski, HermanLee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling mem-
cache at facebook. In Proceedings of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), pages 385–398. USENIX
Association, 2013. URL https://www.usenix.org/conference/

nsdi13/technical-sessions/presentation/nishtala.

[65] RajeshNishtala, Hans Fugal, StevenGrimm,MarcKwiatkowski, HermanLee,
Harry C. Li, Ryan Mcelroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, Venkateshwaran Venkataramani, and Facebook Inc.
folly version 57:0. https://github.com/facebook/folly, Accessed Au-
gust 13, 2020.

[66] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-
off. In Advances in Cryptology - 23rd Annual International Cryptology Con-
ference (CRYPTO), volume 2729 of LNCS, pages 617–630. Springer, 2003.
doi:10.1007/978-3-540-45146-4 36.

186

https://doi.org/10.4230/LIPIcs.SWAT.2018.29
http://drops.dagstuhl.de/opus/volltexte/2018/8855
https://doi.org/10.1137/1.9781611975055.4
https://doi.org/10.1145/2723372.2747644
https://doi.org/10.1109/ICDCS.2014.70
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://github.com/facebook/folly
https://doi.org/10.1007/978-3-540-45146-4_36

Bibliography

[67] Anna Pagh, Rasmus Pagh, andMilan Ruzic. Linear probing with constant in-
dependence. SIAM J. Comput., 39(3):1107–1120, 2009. doi:10.1137/070702278.

[68] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms,
51(2):122–144, 2004. doi:10.1016/j.jalgor.2003.12.002.

[69] Prashant Pandey. Counting Quotient Filter. https://github.com/

splatlab/cqf. Accessed August 07, 2019.

[70] Prashant Pandey,Michael A. Bender, Rob Johnson, andRob Patro. A general-
purpose counting filter: Making every bit count. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD), pages
775–787. ACM, 2017. doi:10.1145/3035918.3035963.

[71] Prashant Pandey, Fatemeh Almodaresi, Michael A. Bender, Michael Ferd-
man, Rob Johnson, and Rob Patro. Mantis: A fast, small, and exact large-
scale sequence-search index. In Research in Computational Molecular Bi-
ology - 22nd Annual International Conference (RECOMB), volume 10812 of
LNCS, pages 271–273. Springer, 2018. URL https://link.springer.com/
content/pdf/bbm%3A978-3-319-89929-9%2F1.pdf.

[72] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash based
algorithm for mining association rules. In Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data, pages 175–186. ACM
Press, 1995. doi:10.1145/223784.223813.

[73] Mihai Patrascu andMikkelThorup. The power of simple tabulation hashing.
J. ACM, 59(3):14:1–14:50, 2012. doi:10.1145/2220357.2220361.

[74] Mihai Patrascu and Mikkel Thorup. On the k-independence required by lin-
ear probing and minwise independence. ACM Trans. Algorithms, 12(1):8:1–
8:27, 2016. doi:10.1145/2716317.

[75] Mathieu Desnoyers Paul E. McKenney and Lai Jiangshan. LWN: URCU-
protected hash tables. http://lwn.net/Articles/573431/, 2013. URL http:

//lwn.net/Articles/573431/.

187

https://doi.org/10.1137/070702278
https://doi.org/10.1016/j.jalgor.2003.12.002
https://github.com/splatlab/cqf
https://github.com/splatlab/cqf
https://doi.org/10.1145/3035918.3035963
https://link.springer.com/content/pdf/bbm%3A978-3-319-89929-9%2F1.pdf
https://link.springer.com/content/pdf/bbm%3A978-3-319-89929-9%2F1.pdf
https://doi.org/10.1145/223784.223813
https://doi.org/10.1145/2220357.2220361
https://doi.org/10.1145/2716317
http://lwn.net/Articles/573431/
http://lwn.net/Articles/573431/

Bibliography

[76] Chuck Pheatt. Intel® threading building blocks. J. Comput. Sci. Coll., 23(4):
298, April 2008. ISSN 1937-4771.

[77] Jeff Preshing. New concurrent hashmaps for c++. http://preshing.com/
20160201/new-concurrent-hash-maps-for-cpp/, 2016.

[78] Jeff Preshing. Junction. https://github.com/preshing/junction, Ac-
cessed April 27, 2021.

[79] Martin Raab and Angelika Steger. ”balls into bins” - A simple and tight analy-
sis. InMichael Luby, José D. P. Rolim, andMaria J. Serna, editors, Randomiza-
tion and Approximation Techniques in Computer Science, Second International
Workshop (RANDOM), volume 1518 of LNCS, pages 159–170. Springer, 1998.
doi:10.1007/3-540-49543-6 13.

[80] Peter Sanders. Hashing with linear probing and referential integrity. CoRR,
abs/1808.04602, 2018. URL http://arxiv.org/abs/1808.04602.

[81] Julian Shun and Guy E. Blelloch. Phase-concurrent hash tables for determin-
ism. In 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 96–107. ACM, 2014. doi:10.1145/2612669.2612687.

[82] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo
Kyrola, HarshaVardhan Simhadri, andKanat Tangwongsan. Brief announce-
ment: the problem based benchmark suite. In 24th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 68–70. ACM, 2012.
doi:10.1145/2312005.2312018.

[83] Alan Siegel. On the statistical dependencies of coalesced hashing and their
implications for both full and limited independence. In Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
10–19. ACM/SIAM, 1995. URL http://dl.acm.org/citation.cfm?id=
313651.313657.

[84] Alex D. Stivala, Peter J. Stuckey, Maria Garcia de la Banda, Manuel V.
Hermenegildo, and Anthony Wirth. Lock-free parallel dynamic

188

http://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/
http://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/
https://github.com/preshing/junction
https://doi.org/10.1007/3-540-49543-6_13
http://arxiv.org/abs/1808.04602
https://doi.org/10.1145/2612669.2612687
https://doi.org/10.1145/2312005.2312018
http://dl.acm.org/citation.cfm?id=313651.313657
http://dl.acm.org/citation.cfm?id=313651.313657

Bibliography

programming. J. Parallel Distributed Comput., 70(8):839–848, 2010.
doi:10.1016/j.jpdc.2010.01.004.

[85] Tony Stornetta and Forrest Brewer. Implementation of an efficient parallel
BDD package. In Proceedings of the 33rd Conference on Design Automation,
pages 641–644. ACM Press, 1996. doi:10.1145/240518.240639.

[86] Reini Urban. SMHasher (fork). https://github.com/rurban/

smhasher. Accessed April 25, 2021.

[87] Jeffrey Scott Vitter. Implementations for Coalesced Hashing. Com-
munications of the ACM, 25(12):911–926, Dec 1982. ISSN 0001-0782.
doi:10.1145/358728.358745.

[88] Mark N. Wegman and Larry Carter. New hash functions and their use in
authentication and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.
doi:10.1016/0022-0000(81)90033-7.

189

https://doi.org/10.1016/j.jpdc.2010.01.004
https://doi.org/10.1145/240518.240639
https://github.com/rurban/smhasher
https://github.com/rurban/smhasher
https://doi.org/10.1145/358728.358745
https://doi.org/10.1016/0022-0000(81)90033-7

