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Abstract

Current state-of-the-art perception models do not always detect all objects in an image. Therefore,

they cannot currently be relied upon in safety critical applications such as autonomous driving.

Objects that cannot be detected are called anomalies. Current work on anomaly detection is pri-

marily based on camera data. This work evaluates to what extent it is possible today to do anomaly

detection in 3D on pseudo-lidar data. A pseudo-lidar is a model that estimates 3D depth for each

pixel of an image. Currently, there is no approach available that performs anomaly detection on

pseudo-lidar data.

Research Question 1 (RQ1) considers whether dissimilarities between lidar and pseudo-lidar

are an indicator of anomalies. For this purpose, it is evaluated whether there are larger deviations

between pseudo-lidar and lidar point clouds for anomalies compared to non-anomalies. There is

no multi-modal dataset for anomaly detection available which could be directly used. Therefore, in

the multi-modal KITTI-360 dataset each instance that was not correctly segmented by a panoptic

segmentation model, was labeled as anomaly. It is shown how the anomaly definition depends

on the used segmentation criterion. The dataset contains 2D images with instance labels and

corresponding 3D lidar point clouds with corresponding instance labels. With these labels, one

can compare pseudo-lidar and lidar instance by instance. The 2D instance labels allow to define

which instances are correctly segmented. In a next step the chamfer-distance between point clouds

of each instance in lidar and pseudo-lidar are calculated. Lidar was used as physically captured

ground truth. It has been found that the deviation between lidar and pseudo-lidar is similar for

anomalies and non-anomalies. Thus, the dissimilarity between lidar and pseudo-lidar can not be

used as an indicator for an anomaly.

In Research Question 2 (RQ2) it was analyzed how good a pseudo-lidar can map anomalies

of type novelties in 3D. Therefore, one augmented anomaly dataset, and two real world anomaly

datasets were considered. All these datasets are image based. For answering the research ques-

tions, both a quantitative and qualitative analysis was carried out. As a quantitative analysis, Monte

Carlo Dropout was applied onto these datasets to evaluate the uncertainty of the model. The 3D

point clouds estimated with the pseudo-lidar were visualized for the qualitative analysis. The qual-

itative analysis shows that some anomalies can be mapped well in 3D and others are not mapped at

all. Furthermore, it is shown that augmented anomalies can be sometimes mapped ambiguously in

3D. In the quantitative analysis, it is shown for all datasets considered that the pseudo-lidar is more

certain for anomaly regions than for non-anomaly regions which is interpreted as a consequence

of an overconfidence of the model. Furthermore, the anomaly concept is not always consistent

across different modalities.

The Research Question 3 (RQ3) analyzed whether anomalies can be found using flow estimation

on pseudo-lidar predicted point clouds. An anomaly would be present in theory if the motion
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segmentation model contradicted with a panoptic segmentation model. For this purpose, it was

investigated whether the pseudo-lidar estimated point clouds are consistent enough through time

to do flow estimation on them. For this purpose, the multi-modal KITTI-360 dataset was used.

For each instance in the pseudo-lidar it was determined how much a point cloud of an instance

differs from the same instance in the next frame. For the consistency evaluation of static and

dynamic instances, the ego motion has to be extracted. The pseudo-lidar prediction is consistent

between frames if for static instances the distance is small and for dynamic instances the distance

is equal to the motion of the instance. It has been shown that the pseudo-lidar makes inconsistent

predictions over time, and therefore one cannot distinguish between static and dynamic instances

based on pseudo-lidar point clouds. It follows that a flow-based approach to anomaly detection is

not possible for point clouds predicted by current single image based pseudo-lidars.
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1 Introduction

The German federal statistical office reports 2,564 traffic fatalities in Germany for the year 2021 [1].

According to the same office, drivers of cars, buses, and trucks account for 68.82% of the causes

of personal injuries in traffic. The cause of these incidents is sometimes due to the influence of

drugs, inattentiveness or fatigue, which leads to delayed and erroneous reactions and behavior.

Autonomous vehicles do not have such influences on the driving behavior. Furthermore, computer

driving cars have the chance to enhance, e.g., the convenience of riders and also for, e.g., an opti-

mized use of one car by multiple users. Hence, the hope is that autonomous driving systems can

largely prevent fatal traffic accidents and simultaneously enhance the comfort and efficiency of

driving

Today’s autonomous systems sometimes make fatal errors. One reason is that they misperceive

their environment. A Tesla Model S in Autopilot mode failed to recognize a truck trailer in front of

it and crashed into it [2]. In this case, the misperception is attributed to glare from the sun. Current

systems therefore sometimes recognize objects insufficient, incorrectly, or not at all. Autonomous

driving is a safety-critical task, and it is therefore of particular importance that the systems perceive

their environment as correctly as possible to effectively reduce dead toll and injuries.

Autonomous driving deals with several components, e.g. localization, prediction, path plan-

ning, and perception. It is of great importance to recognize unusual situations, like the one the

Tesla Model S was in, so that accidents can be avoided. [2]. The identification of such extraor-

dinary events belongs to the perception component of autonomous driving. Autonomous ’level 4

- high driving automation’ [3] and level 5 - full driving automation’ [3] systems require the abil-

ity to function in very unusual situations. Level 4 systems do not need a driver in their areas of

application, level 5 systems are fully autonomous and are able to drive in any situation without a

driver [3]. Autonomous vehicles of this level need to be able to perceive the environment with high

precision. Neural networks currently define the state-of-the-art for perception systems. They are

trained and sometimes do not recognize their surroundings correctly in unfamiliar situations [4].

Therefore, as Andrej Karpathy, the Sr. Director of AI of Tesla, points out, ’It’s all about the long

tail – 99.9999. . . %’ [4] is about dealing with these rare events in order to be able to implement

level 4 and level 5 autonomous systems. Anomaly detection is concerned with identifying such

rare events. In perception, the detection of anomalies can be made at different levels. Object level

anomaly detection is concerned with finding objects that are anomalies. In the following work,

research is carried out with a focus on object level anomaly detection in 3D space for autonomous

driving.

Different sensors are used in autonomous vehicles, namely lidar, radar, and cameras. [5]. Lidar

and radar sensors record the environment in 3d. Each sensor type has its own set of advantages

and disadvantages. For example, lidar sensors do not see black vehicles because they are not
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1 Introduction

reflective [6]. Radar sensors have problems of inference with other signals in the environment [6].

Cameras can be blinded, or covered with dirt [6].

Most anomaly detection approaches are camera based. There are significantly fewer 3D based

and multimodal approaches [7] than camera based approaches. In the field of 3D anomaly detec-

tion, there are no flow-based approaches that consider object anomalies yet [7]. The lidar-based

approaches look at either single points [8], scene level anomalies [9], a domain shift [10], or at

unknown classes [11] [12]. Current radar-based approaches search either for anomalies in terms

of entire scenes or point-based anomalies [7].

A pseudo-lidar is a model that, given an image, estimates 3D depth for each pixel in the image.

With the addition of the intrinsic camera matrix, a 3D point cloud can be calculated. In this

work, first it is analyzed how pseudo-lidar performance is related to object anomalies in images.

Therefore, it is analyzed if pseudo-lidar is more accurate for instances that can be correctly instance

segmented in 2D than for objects that cannot be correctly segmented in 2D. For this purpose, we

compare the point clouds estimated with the pseudo-lidar with the recorded lidar point clouds.

Then, it is analyzed if anomaly datasets, that contain real anomalies or augmented anomalies,

can be mapped from a pseudo-lidar into a 3D object. These two research approaches are used to

determine whether anomaly detection approaches can be built on the basis of pseudo-lidar point

clouds. Finally, we will evaluate whether flow-based anomaly detection can be performed based

on pseudo-lidar point clouds.

This work is structured as follows. Chapter 2 presents the state-of-the-art for the anomaly defini-

tion, anomaly detection approaches, pseudo-lidar approaches, and panoptic segmentation models.

In chapter 3, the methodology used to answer the questions is presented. Then, in chapter 4, an

evaluation of the results is presented. Chapter 5, summarizes the findings and provides an outlook

on areas where further research can be conducted.
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2 State-Of-The-Art

In this chapter, first, current state-of-the-art approaches in anomaly detection are discussed 1. Then,

the state-of-the-art is evaluated for specific tasks outside of anomaly detection. The tasks are

necessary for the implementation of this work.

2.1 Taxonomies of Anomalies in Autonomous Driving

An anomaly, in the domain of autonomous driving, is considered by Heidecker et al. [6] as a sub-

category of a so-called corner case. Heidecker et al. [6] follow the definition of Bolte et al. [13] that

’a corner case is given, if there is a non-predictable relevant object/class in relevant location’ [13].

Their work considers a corner case as the union of anomalies, outliers and novelties. These three

categories can be defined as follows [6]. An outlier is an observation that is actually known but by

some other mechanism looks quite different in the context [6]. For example, when nothing can be

seen on the camera image because the sun is blinding [6]. Anomaly is described by Jiang et al. as

an event that occurs with a low frequency [14]. By others, an anomaly is described as a pattern

that is not consistent with what has been learned [15] [16]. For example, an aircraft that makes

an emergency landing on the highway is an anomaly because it is inconsistent with the learned

occurrence of an aircraft in the sky. The last part, that belongs to the corner cases according to

Heidecker et al. [6], are novelties. Novelties are defined as objects that are not known during

training. The terms corner-case and anomaly are often used as synonyms [6].

This corner case definition of Bolte et al. [13] was transferred to different sensor systems by

Heidecker et al. [6] such as lidar, radar, and camera. For each of these sensor systems, one can

view corner cases at different levels. These levels were originally defined by Breitenstein et al. [17]

and extended by Heidecker et al. [6] for lidar and radar sensor modalities. The different levels

are shown in figure 2.1. The sensor layer deals with damaged sensors at the hardware level,

such as dead pixels on cameras and other corner cases that are due to, e.g., a sensor that is not

operating optimally or has been maladjusted. The physical level of the sensor layer considers

physical aspects to which a corner case can be attributed. Radar systems, for example, often

show an insufficient data quality when it’s raining. The content layer considers corner cases at

three levels. The domain level looks at domain shifts. If a network is trained on German data,

for example, there is a domain shift if it is used in the USA. For instance, the traffic lights in

the USA are mounted in different positions than in Germany. In the object level, object corner

cases are considered. These can occur when objects of unknown classes occur or when objects of

known classes occur in a manner that was not present in the training data. The scene level looks

at anomalies at a particular point in time and looks at situations or actions rather than individual

1as of 01 December 2021
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2 State-Of-The-Art

Hardware Level

Laser Error

• Broken mirror
• Misaligned actuator

Pixel Error

• Dead pixel
• Broken lense

Impulse Error

• Low voltage
• Low temperature

Physical Level

Beam-Based
Corner Case

• Dirt on lense
• Overexposure

Pixel-Based
Corner Case

• Black cars disappear
• . . .

Impulse-Based
Corner Case

• Interference
• . . .

Domain Level

Domain Shift
on Single Point Cloud

• Location (EU-U.S.A.)
• . . .

Domain Shift
on Single Frame

• Shape of Road
markings

Domain Shift
on Single Point Cloud

• Weather, e.g.,
snow, rain, etc.

Object Level

Single-Point Anomaly
on Single Point Cloud

• Dust cloud
• . . .

Single-Point Anomaly
on Single Frame

• Animal
• . . .

Single-Point Anomaly
on Single Point Cloud

• Lost objects
• . . .

Scene Level

Contextual/Collective
Anomaly on Single

Point Cloud
• Sweeper cleaning

the sidewalk

Contextual/Collective
Anomaly on
Single Frame

• People on a billboard
• . . .

Contextual/Collective
Anomaly on Single

Point Cloud
• Demonstration
• Tree on street

Content LayerSensor Layer Temporal Layer

Camera-based
corner cases

RADAR-based
corner cases

LiDAR-based
corner cases

Scenario Level

Corner Cases
on Multiple
Point Clouds
and Frames

• Person breaks
tra�c rule

• Overtaking a
cyclist

• Car accident
• . . .

TABLE I. Categorization of camera-, LiDAR-, and RADAR-based single-source corner cases. Example situations are given for the individual corner
cases on the sensor layer, content layer, and temporal layer. Method layer corner cases are not shown in this table.

corner cases. These patterns can be observed throughout
an image sequence and further subdivided into anomalous,
novel, and risky scenarios based on their potential for col-
lision and their observability during training. Scene-level
corner cases are observed on single images and describe
known objects in either unseen quantities or locations. On
the object level, unknown objects are observed in single
images, while on the domain level, corner cases arise due to
the inability of the world model to explain its observations,
i.e., a domain shift. The pixel level is the lowest in [1] and
includes corner cases resulting from local and global outliers
in the camera hardware.

In this work, we now extend and modify the vision-
oriented systematization [1] by including other sensors and
introducing the additional notion of a layer, see Table I. For
clarity, the sensor layer, content layer, and temporal layer
are introduced at the top level. The temporal layer includes
corner cases with a temporal context, thereby corresponding
to the scenario level in [1]. On the other hand, the content
layer comprises the domain, object, and scene level from
[1] and thus contains corner cases that result from the data
at a specific point in time. The four levels scenario, scene,
object, and domain are existing in signals from LiDAR and
RADAR sensors as they exist in camera signals, as such
corner cases appear in point clouds and sequences of point
clouds in a similar way. However, it is important to consider
that corner cases of a certain level can only be transferred
from one sensor to another to a limited extent, if at all. A
corner case can therefore exist for one sensor but not for a
different sensor. Finally, the sensor layer describes corner-
cases that can be traced back to hardware errors or physical
properties. This results in the newly introduced hardware
level and physical level.
Corner cases resulting from a single sensor are called single-
source corner cases. We have already discussed the catego-
rization of these corner cases into layers and levels. However,
the fusion of sensor data can cause multi-source corner cases,
which we consider as a separate category. Since they can
appear more or less in any of the levels, we do not highlight
them in Table I.

A. Camera

In the context of highly automated driving, vehicles are
often equipped with many different camera systems. Mono
and fisheye cameras are often used to cover the areas to
the left, to the right, and behind the vehicle. Stereo, or
rarely trifocal cameras, are used mostly to cover the area in
front of the vehicle [10]. Regardless of the camera system,
pixel errors such as dead pixels, a dirty camera lens, or
overexposure can lead to a corner case at hardware level,
or physical level, see Table I. Unique camera properties or
functions, such as calculating the depth image of a stereo
or trifocal camera, can cause corner cases at hardware level.
This group of corner cases can be summarized with corner
cases at the sensor layer.
However, many corner cases are found in the image data
itself and are often system-independent. Image data have
a high information density. This fact is also reflected in
various methods, such as object recognition and classifi-
cation, contour estimation, recognition of the direction of
gaze of a person, gesture recognition, traffic sign recognition,
extraction of weather conditions and many more. On the
other hand, this abundance of information and variability of
image content also results in the most diverse corner cases.
These corner cases can be divided into domain level, e.g.,
different traffic signs in Germany and the U.S.A., object
level, such as animals and never-seen-before objects, and
scene level, where it can be a new situation such as a tree
lying on the road. If the depth image is also available, the
spectrum is extended by the possibility to determine the
position of an object, which results in a further type of scene-
level corner case. However, all these cases belong to the
content layer.
If a camera captures a scene in a video sequence, it consists
of several individual images and the corner case can be rep-
resented by either a single frame, or by several consecutive
frames. A corner case in a particular frame may require a
temporal component as, e.g., in the case of a pedestrian’s
movement prediction, and is therefore a temporal-based
corner case categorized on the scenario level, situated at the
temporal layer.
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Figure 2.1: Systematic of corner case levels and sensor modalities adapted from Heidecker et al. [6].

objects. Finally, there is the temporal layer. In this layer, there is only the scenario level, which

does not only look at one point in time, but at the evolution of several points in the data as a function

of time. Here, a corner case could be, for example, a motorist overtaking another motorist.

In the following, an anomaly is considered the union of a novelty and an anomaly according to

the definition by Heidecker et al. [6]. An outlier does not fall under our definition of an anomaly.

Since an outlier is caused by other mechanisms, this part is excluded from the anomaly definition

used here. Furthermore, this work deals with the sensor modality of a camera and a lidar. From the

categorization, the focus is on the content layer and therein on the object level. This means that no

domain shift or scene level is considered here. Furthermore, anomalies and outliers due to corner

cases of sensor systems are not considered. In the work we consider in parts two successive point

clouds as expected from the temporal layer. But we are looking for object anomalies at the first

time point and not for anomalies that exist through time or due to a scenario. Hence, the temporal

layer is also not reflected upon.

Object anomalies can be considered as bounding box based or instance based. Bounding boxes

for anomalies contain pixels that do not belong to the anomaly, in contrast to instance-based

anomalies, which contain only pixels that belong to the anomaly. The points that are in the bound-

ing box but do not belong to the anomaly are mapped in 3D and considered as areas associated with

the anomaly. These areas can be very different in 3D from the areas that belong to the anomaly,

so a bounding box based anomaly consideration with pseudo-lidar is not advisable. Therefore,

anomalies are not considered bounding box based in the following, but pixel-wise instance seg-

mented.

2.2 Anomaly Detection Datasets and Benchmarks

To quantitatively compare anomaly detection approaches, we need dataset suited for the task of

anomaly detection and based thereon benchmarks. There are different anomaly detection bench-

marks available.

The StreetHazard benchmark [18] consists of a synthetic dataset for anomaly detection. For this

reason, it is not considered in this work, as there is a domain gap to the real world. Especially,

since the dataset is not rendered photo-realistically.

Another approach is based on an augmented dataset called WD-Pascal [19]. Objects from the

4



2.2 Anomaly Detection Datasets and Benchmarks

Pascal VOC dataset [20] were inserted into the street scenes of the WildDash dataset [21]. The

WildDash dataset [21] contains images from different countries, so the data includes a domain

shift. Since domain level anomalies were excluded in the anomaly definition for this work, this

benchmark is not included in the evaluation of anomaly detection approaches in the following.

The Fishyscapes anomaly benchmark [22] consists of three parts: FS Web, FS Static and FS Lost

and Found. It contains images of car rides from the driver’s point of view in which anomalies are

present as well as corresponding semantic segmentation masks to distinguish between anomalies

and non-anomalies. The FS Lost and Found dataset extends the Lost and Found dataset of Pingerra

et al. [23]. It provides additional annotations and filters out specific images. The original Lost and

Found dataset includes annotations for anomalies and coarse annotations for the road. FS Lost

and Found adds pixel-level annotations for three classes: objects which represent the anomalies,

background for pixels belonging to classes of Cityscapes, and void for the other pixels. Images

from Lost and Found in which anomalies can be assigned to Fishyscapes classes were filtered out.

FS Lost and Found publishes 100 images as validation set, and 275 images remain as private test

set. In the following, we will refer to FS Lost and Found as Lost and Found. FS Static is an

augmented anomaly dataset that combines two datasets. Images are taken from the Fishyscapes

validation set and Pascal VOC instances are inserted into them. The Pascal VOC instances serve as

anomalies. Only instances of classes that cannot be assigned to a cityscapes class are inserted. To

reduce the domain shift for a more realistic dataset in the Fishyscapes dataset, classes like mammal

were placed with a higher probability on the lower half of the image and classes like birds on the

higher half of the image [24]. An adapted shadow is also applied to the inserted instances, and the

lighting is adjusted to obtain a more realistic result for the inserted instances. In addition, synthetic

fog is applied to the Cityscapes parts of the image. Without this fog, a naïve approach could match

the augmented Fishyscapes image with the Cityscapes images and look for the places that differ

from each other. It is precisely at these pixels, which differ, that one knows that an anomaly

has been inserted. Of FS Static, 30 images are public in the validation set and 1000 images are

secret in the test set. FS Web is very similar to FS Static. However, not Pascal VOC instances

are inserted but images downloaded from the internet. This involves searching the internet for

images using keywords and selecting those that have a transparent background. These instances

are then inserted as anomalies. This is more cost-efficient than capturing and labeling completely

new scenes, as semantic labeling is expensive [25]. The fine image annotation and quality control

for the Cityscapes dataset required 1.5 hours per image [25]. One can generate a semantic label

by marking the region as an anomaly, in which one inserts the augmented objects. This gives one

a semantic label with minor additional effort by inserting the anomalies. The disadvantages of

this approach are that the inserted objects do not fit optimally into the image. This means that

reflections and shadows are not transmitted correctly, which is a big disadvantage of this method

because the created anomaly dataset is non-realistic. Adjustments were made to the brightness

and color distribution of the objects, but no realistic reflections were added. Fishyscapes provides

pixel-wise semantic masks that distinguish between anomalies and non anomalies, so the labels

are suitable for evaluating anomaly detection approaches that search for anomalies in our sense.

Moreover, all three parts consist of street scenes from Germany, so there is no domain shift in
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2 State-Of-The-Art

Fishyscapes.

CODA is an anomaly detection benchmark in 2D space from 2022 [26]. CODA selects images

containing anomalies from KITTI [27], nuScenes [28] and ONCE [29], and labels them. Since

KITTI was recorded in Germany and nuScenes in the USA, there is a domain shift within the

benchmark. Therefore, this anomaly benchmark is not considered further because our anomaly

term has excluded the domain level.

A newer anomaly detection dataset called SegmentMeIfYouCan [30] consists of real images. It

consists of three parts, RoadAnomaly21 with 110 images, which generally refers to anomalies in

road traffic. The second part is called RoadObstacle21 and deals specifically with obstacles on the

road and contains 357 images. The last part is the Lost and Found dataset.

Compared to CODA and WD-Pascal, there is no domain shift in the Fishyscapes benchmark.

The StreetHazard benchmark was not considered because it contains only rendered images and

no real world data. This domain shift to the real world does not allow evaluation of anomaly

detection approaches in our sense. Since the Fishyscapes benchmark uses aggregated data, it has

a larger number of images and is therefore preferred over the SegmentMeIfYouCan benchmark

when evaluating the approaches here. As shown, the Fishyscapes benchmark is best suited for

the evaluation of camera-based anomaly detection approaches. Since current anomaly detection

benchmarks rely on image data as input data, other approaches that aren’t based on images data

like the one proposed by Masuda et al. [8] cannot participate.

To date, there is no anomaly detection dataset or benchmark in 3D. Therefore, it is difficult

to compare anomaly detection methods that are in 3D. However, we can compare pseudo-lidar

methods. To do this, one can determine an anomaly score for each point in the pseudo-lidar point

cloud by a method and then assign this score to the corresponding pixel in 2D. This allows the

method to participate in an image-based anomaly detection benchmark.

2.3 Current Anomaly Detection Approaches

In an autonomous vehicle, there are typically the following sensors: lidar, radar, camera, gps, and

imu. For lidar, radar, and camera, there are approaches for anomaly detection [7].

Camera-based object anomaly detection approaches can be divided into four categories: reconstruction-

based, confidence-based [7] and open world detection. Chan et al. [31] present a confidence-based

approach to anomaly detection. Di Biase et al. present a reconstruction- and confidence-based

approach [32]. Lis et al. [33] present a reconstruction-based approach towards anomaly detec-

tion. In the following, we try to make a selection of methods based on benchmarks, if possible.

In the following, we will consider anomaly detection approaches in our sense, i.e. object-based

anomaly detection approaches. As shown, the Fishyscapes benchmark is best suited for the eval-

uation of camera-based anomaly detection approaches. Therefore, it will be used to select which

camera-based approach will be considered in the following.

In the field of 3D based anomaly detection, there are approaches that work on lidar data and

approaches that work on radar data [7]. Radar based approaches are not considered herein because

they are at the scene level [7], and we are looking for anomalies at the object level. Among the
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lidar-based anomaly detection approaches, there are confidence-based and reconstruction-based

approaches [7]. There is one reconstruction-based 3D anomaly detection approach from Ma-

suda et al. [8] and one confidence-based anomaly detection approach from Wong et al. [34]. The

confidence-based approach considers open world detection. Both approaches are considered in

detail below. Another kind of approach is based on detecting abnormal motion through scene flow

estimation [35]. The approach estimates the scene flow via point clouds and then considers the

closest object to the origin. This object is considered abnormal when it moves towards the car,

otherwise not. Therefore, one scenario is searched for anomalies, namely the scenario that the

closest object to the car is moving towards it. This is considered as scenario level anomaly. It is

not explicitly searched for object anomalies. Since our work is object-based, the approach is not

fully applicable. Furthermore, the approach is very limited because it only looks at the nearest

object.

2.4 Image-Based Anomaly Detection

First we consider image-based anomaly detection approaches. Di Biase et al. [32] present an

approach that is both reconstruction and confidence based. This approach achieves state-of-the-

art performance on the Fishyscapes benchmark with a Mean Intersection Over Union (mIoU) of

81.4%. Two approaches on the benchmark leaderboard achieve better results, but the associated

publications are not published. The approach also reduced the False Positive Rate at 95% True

Positive Rate (FPR95) for Fishyscapes Lost and Found and Fishyscapes Web by 50% in compar-

ison to the second best approach. In other words, they reduced the False Positive Rate (FPR) by

half while finding 95% of the anomalies. The confidence based approach by Chan et al.[31] in

comparison achieved a mIoU of 70.5%. The two approaches are compared in table 2.1. One can

see from the higher Average Precision (AP) that the approach of Di Biase et al. [32] detects more

anomalies than the approach of Chan et al. [31] for both FS Lost and Found and FS Static. Further-

more, the approach of Di Biase et al., less often predicts anomalies in non anomaly regions as one

can see through the lower FPR95. In the reconstruction-based approaches, there is no approach

that has participated in Fishyscapes and therefore these have been excluded from consideration

based on our criteria. Overall, therefore, the approach of Di Biase et al. [32] is considered below.

FS L&F FS Static
mIoU Cityscapes AP FPR95 AP FPR95

Di Biase et al. 81.4 43.2 15.8 72.6 18.8
Chan et al. 70.5 34.28 47.43 31.3 84.6

Table 2.1: Fishyscapes benchmark results of two image based approaches. The best values are printed in
bold [32] [31].

The approach of Di Biase et al. [32] is both reconstruction and confidence-based. For the

confidence-based part, the authors use the uncertainty estimation methods softmax entropy [36]

and softmax difference [37]. The problem with this approach is that Convolutional Neural Net-

works (CNNs) are known to be overconfident [38], and thus it can be difficult to find anoma-
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lies through softmax entropy [36] and softmax difference [37]. They use a re-synthesizing ap-

proach [33] as a second part of their approach. For re-synthesis one uses two components. First,

the image on which anomalies are to be found is segmented semantically. This produces a mask

that outputs the corresponding class for each pixel. This mask can now be used to synthesize

an image with another neural network. Finally, one compares at which places the re-synthesized

image differs from the original image and at these places an anomaly is predicted because the

re-synthesis did not work there. These approaches are often limited by the module that performs

the comparison between the re-synthesized image and the original image [33]. Di Biase et al. [32]

therefore combine two approaches and thereby expect to reduce the deficiencies of each approach

alone [32].

The following approach combines two groups of methods, an approach which is based on a re-

synthesis loss [33] and uses an uncertainty estimation approach [39] [40] Both modules are com-

bined in a dissimilarity module to retrieve a pixel-based anomaly detection. It combines softmax

entropy [39] and softmax difference [40] for estimating the uncertainty. To retrieve a resynthesis

loss, first, a semantic map of the original image is inferred. This semantic map is then resynthe-

sized by a conditional Generative Adversarial Network (GAN). Finally, the perceptual difference

between the original and the resynthesized image is retrieved. This approach is similar to Doso-

vitskiy & Brox [41] which used the perceptual difference instead of the pixel distance. This is

superior for comparison than to use the pixel distance as similar objects can have different colors,

for example after resynthesis. T-shirts, for example, can have different colors, but a resynthesized

t-shirt with a different color than the t-shirt in the original image is no indicator for an anomaly, as

many wear a t-shirt. In this case, the pixel-distance would be high and the perceptual distance low.

This combined approach therefore assumes that higher perceptual difference corresponds to higher

probability of an anomaly. To retrieve the perceptual distance, the following steps are performed.

First, they subtract and take the absolute of each feature map pixel at each of the five feature map

resolutions from the resynthesized image with the original image. Then they reduce the depth of

the feature maps to the next one by applying the arithmetic mean function, resulting in five feature

maps, one for each resolution. Then, at each resolution, the resulting map is bicubically extrap-

olated to the target resolution of the anomaly map. Lastly, each map is combined to one feature

map by summing all up and by giving more weight to maps from deeper layers. The second con-

cept that is used relies on an uncertainty estimation approach. It uses softmax difference [40] and

softmax entropy [39] to detect anomalies. To retrieve a pixel-wise anomaly probability, a dissimi-

larity module combines uncertainty estimation maps and perceptual difference maps. This module

consists of an encoder, fusion module, and decoder. The encoder uses VGG16 [42] to encode the

input image resynthesized image and a CNN to encode the semantic map and the uncertainty maps,

namely entropy, softmax difference, and perceptual distance. A linear combination by a 1x1 con-

volution is applied to the input, the synthesized image, and the semantic map, to obtain the same

dimension as the uncertainty map. Afterwards, a point-wise correlation fuses this linear combina-

tion with the uncertainty map. The decoder then performs an upsampling of the correlation result

using spade normalization, which finally retrieves the anomaly prediction.

The weakness of the approach is that the re-synthesis error is dependent on the ability of the
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synthesis module to realistically synthesize things. For example, if a class is poorly synthesized,

instances of the class are often recognized as an anomaly because the perceptual difference due to

the poor synthesis is higher than in other regions.

However, if the synthesis module works properly, the approach is suitable for detecting anoma-

lies, since anomalies are detected in this case if the segmentation mask is incorrect. This is be-

cause the segmentation module would synthesize a completely different image in areas that were

not segmented correctly, so the perceptual differences here would be high, and an anomaly would

be predicted. And exactly where the segmentation is not correct, there is an anomaly.

2.5 3D Open World Object Detection for Anomaly Detection

One approach for 3D anomaly detection is concerned with open world object detection. Open

world detection is a task that involves finding bounding boxes and class labels of objects of known

and unknown classes. Ir additionally enables incremental learning of objects of unknown classes.

That means the approach can do active learning. Therefore the objects that are detected and of

unknown classes can be manually labeled and incremental learned by the approach. This enables

gradual learning of new objects that appear regularly in the world, and is consequently well suited

for autonomous driving. The following approach is considered as it is one of the two anomaly

detection approaches in 3D [43].

To achieve this, the authors first train a classifier on samples of known classes [44]. Then the

trained model identifies objects of the known classes, and unknown classes which are classified as

unknown with a zero label. Someone can then select instances with a zero label of certain classes,

label them, and then a new model can be trained. The network is not trained from scratch, but

by active learning. What the approach has to deal with in active learning is catastrophic forget-

ting [45]. Catastrophic forgetting means that if you do continuous learning, like here with active

learning, the performance on old classes often becomes very bad when you learn new classes. This

would lead to a very bad detection of objects of old known classes while learning new classes. In

another publication, it was proven that an optimal continuous learner solves an NP-hard problem

which would otherwise requires infinite memory [46]. The approach presented here [43] addresses

this problem by not learning new classes based on the new examples alone, but additionally re-

taining a set of old representative examples that contain a minimum number of instances for each

old class. Thus, the new training contains the new labeled examples and parts of the old exam-

ples. To find objects of unknown classes, they use the region proposal network of Faster R-CNN

gives objectness scores of different regions in the input image. These proposals are class agnostic.

Thereby, they can predict those proposals, as unknown object, that do not match to a ground-truth

object and have a higher objectness score than unknown objects. The region proposal network

is unknown aware and followed by the so called region of interest head. The region of interest

head learns the regression of bounding boxes and a classification of these boxes. The classification

is achieved using an energy based classifier. The energy function returns low energy values for

known classes and high energy values for unknown ones.

The energy based classification head uses contrastive learning. That means that feature vectors
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of instances of same classes are forced to be nearby and those of other classes are pushed away. A

contrastive loss is therefore defined as follows. To get the distance of an instance to each class, a

prototype vector of each class is used that describes the typical vector of features in a class. Then

the loss between each class, especially between each prototype vector and the feature vector of the

instance, is summed up. The equation (2.1) describes the loss calculation of one prototype vector

pi and an instance feature vector fc. Where ∆ describes the minimum distance between prototype

vectors of another class and the feature vector of the instance, D describes any distance metric.

l( fc, pi) =

D( fc, pi) i = c

max{0,∆−D( fc, pi)} otherwise
[2.1]

During training the |Q| newest feature vectors are stored in a feature store and after every Ip

iteration the average of the feature store defines Pnew. Then the new prototype is calculated using

the old and the new feature vector using an exponential moving average.

The problem with 3D open world detectors is that they do not primarily try to find anomalies that

can be attributed to a pattern that has not yet been trained. The focus of such anomaly detection

approaches is on detecting anomalies that are novelties, i.e., belong to an unknown class. This is a

limit of open world detection approaches.

2.6 3D Point Reconstruction Based Anomaly Detection

As a third approach, we consider the second 3D anomaly detection approach.

The approach by Masuda et al. [8] is based on a variational autoencoder. The point clouds are

encoded in a three channel image, where each channel represents one dimension of the coordinate.

The input matrices contain 2048 points. The autoencoder was trained on the ShapeNet dataset [47].

It was only trained on certain classes. For training, 2048 points of each point cloud were randomly

sampled to match the input dimension of the network. It therefore was transformed to the input

size. Variational autoencoders consist of a latent loss, which ensures that the compressed layer

follows certain distributions, and a reconstruction loss that ensures that the reconstruction result

is accurate. The encoder is based on FoldingNet [48]. In comparison to the original FoldingNet,

the authors used a spherical shape for the grid instead of a plane. It uses the chamfer distance,

see equation (2.2), ’because training with the chamfer distance is faster in terms of convergence,

and the chamfer distance is less computational expensive than the earth mover distance’ [8]. The

earth mover distance of two distributions, with the same number of samples, is the minimum effort

required to transform one distribution into the other. The chamfer distance is the average distance

from one point cloud to another point cloud and back. The distance from one point cloud to another

point cloud is defined by the average distance of each point of the first point cloud to the nearest

neighbor of the second point cloud. .

dCD(S, Ŝ) =
1
|S| ∑

x∈S
min
x̂∈Ŝ

||x− x̂||2 +
1
|Ŝ| ∑

x̂∈Ŝ

min
x∈S

||x̂− x||2 [2.2]

The variational autoencoder learns a probability distribution over 512 normal distributions. The
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network uses skip connections in the encoder, which enables the compressed features to better

include global and local features [8].

The anomaly score is finally received for each sample by the chamfer distance between the

original point cloud and the reconstructed point cloud. There is no other 3D based anomaly de-

tection approach known to the author. The assumption of the approach is that if a point cloud can

be poorly reconstructed, then there is an anomaly. The anomaly determination is therefore based

solely on the comparison of the reconstructed point cloud with the original point cloud.

However, this approach does not deal with object based anomalies in point clouds of more than

one object. Therefore, it cannot participate in the Fishyscapes benchmark and is not comparable

to the other approaches described above. Therefore, a single anomaly score is calculated per 3D

point cloud instead. The problem is that in real-world conditions, one receives a point cloud with

not one object but many. The network would then only present one anomaly score per point cloud

and not per object. Therefore, it would also not output an object wise anomaly score. This means

one can do less with the information because one does not know where the anomaly is. In order

to use this approach in a real environment to discover objects that have not been found before,

one would have to first find bounding box proposals and then second calculate the anomaly scores

per proposal. However, since the authors did not do that, the approach is not applicable in the

context of this work. The approach has nevertheless a contribution for this work because also in

the following work with distances between point clouds is worked. The chamfer distance can be

used for the calculation of distances in point clouds as it is done in this approach.

2.7 Research Gap and Contribution

There is currently no anomaly detection approach available which is based on pseudo-lidar. The

only approaches in 3D space are open world based [12], reconstruction based approaches [8] [49].

The scene flow based anomaly detection approach, however, evaluates the behavior of objects or

people over time as abnormal. Therefore, it considers scenario based anomaly detection and not

object-based as considered here [9].

The biggest problem with the unsupervised 3D point cloud anomaly detection [8] approach

is that it bases the anomaly score on the chamfer distance equation (2.2) and therefore doesn’t

provide object level anomaly scores in point clouds of more than one object. This is also the reason

why it cannot be benchmarked against other anomaly detection approaches in the Fishyscapes

benchmark. To use it under real world conditions one would first have to cut out interesting

regions from the 3D point cloud and for each of these regions one could then obtain an anomaly

score. This would also require additional execution time. Additionally, the object level anomaly

score would have to be transferred onto all pixels of the object, and then it could participate in the

Fishyscapes Benchmark. The authors [8] use the Area Under The Curve (AUC) value from the

Receiver Operating Characteristic (ROC) as the evaluation measure. This measure is not used for

evaluation in the Fishyscapes anomaly detection benchmarks [22] but in the SegmentMeIfYouCan

benchmark [30]. In this benchmark, however, it is used for a different reason and not for evaluating

the reconstruction error. They do not have an outlier score at the pixel level, therefore they can

11



2 State-Of-The-Art

only compare their model to 3D point cloud reconstruction models. In this respect, they are state-

of-the-art, but the applicability of this metric to anomaly detection approaches is not given. It is

unknown today if a high deviation in the reconstruction of the 3D point cloud is an indicator for

an anomaly, or if it has other causes.

The Open World Object Detection approach [43] tries to detect anomalies by detecting objects

of unknown classes. Instead, our goal is to find anomalies that originate from unknown classes as

well as those from known classes that have not been detected for other reasons. Although state-

of-the-art closed-set object detectors like YOLOR [50] for example show high AP scores, they

sometimes cannot recognize objects of known classes. Due to these weaknesses, this approach is

not suitable for achieving our goals and a different approach is required.

The current best state-of-the-art anomaly detection approach [32] uses a combination of differ-

ent approaches, namely uncertainty estimation and resynthesized error minimization. Both results

are fused by late fusion to obtain an anomaly map. But it remains in the 2D space. Although the

FPR95 for Fishyscapes Lost and Found and Fishyscapes Web was reduced by 50%, compared to

the previous state-of-the-art approach, there is still room for improvement.

Another approach using 3D data could be advantageous as most publications work in the 2D

image space, and it should be investigated if one could improve anomaly detection by considering

3D space. Especially the false positive predictions needs to be reduced by future approaches,

which means that an anomaly is predicted that is not present [32].

In comparison to the other approaches, the proposed approach of this thesis tries to find out if

a flow estimation in 3D can be helpful to find anomalies. A flow based approach is expected to

result in a lower false positive rate, as only parts of the image that move together are considered

potential anomalies. The use of pseudo-lidar in combination with a 3D flow based approach has

four advantages. Firstly, it could be used to participate in the Fishyscapes benchmark, as opposed

to the other 3D-based approaches [8] [34] [12]. It presents a bijective mapping from image pixel

to 3D points and therefore allows transferring anomalies found in 3D to 2D space. Secondly, if it

would be used in cars, no lidar would be needed and only cameras would be sufficient. Thirdly,

the problems of lidars in certain weather conditions that appear like absorption, reflection and

refraction [51] do not apply to the pseudo-lidar that is based on image data. In addition, the fine-

tuning of the architectures could be performed with datasets that do not have corresponding lidar

data related to the image data. A disadvantage of the approach is that only dynamic objects are

considered, so static objects that are anomalies cannot be detected.

The main goal of this contribution is therefore to evaluate if flow estimation, on pseudo-lidar

point clouds, allows detecting anomalies.

2.8 Pseudo-Lidar

One can analyze the performance of a pseudo-lidar using two benchmarks. The first benchmark is

the monocular depth estimation benchmark on the NYU-Depth V2 dataset [52] which is based on

indoor 3D scenes. The domain gap between indoor scenes and street scenes makes it not preferable

for the domain of autonomous driving. Since this work also does not deal with Domain Level
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anomaly detection, any domain shift is to be avoided. For autonomous driving, the indoor pseudo-

lidar performance is much less important than the performance in more realistic driving scenarios.

What is not available are benchmarks that analyze how consistently the depth is predicted over

time. Video based benchmarks required for this are not available. Therefore, our choice of the

pseudo-lidar model depends on the monocular depth estimation benchmark on the KITTI Eigen

split [53]. KITTI Eigen split is a subset of the KITTI dataset [54] that is often used for pseudo-

lidar comparisons [55] [56] [57]. It was captured from a driving car and is therefore well suited

for autonomous driving conditions [54]. There are various criteria on which one could base the

decision for choosing the pseudo-lidar model. There are six metrics which are commonly used for

the KITTI Eigen split benchmark [53] [55] [57] [56]. Another criterion for choosing the pseudo-

lidar model is whether a reference implementation of the approach is publicly available.

No approach leads the benchmark on all metrics of KITTI Eigen split. In terms of the Root

Mean Squared Error (RMSE) metric, AdaBins is reported as the best approach [55]. There are

also three metrics that are based on other thresholds. They measure what percentage of points

have a relative deviation from ground truth that is less than 1.25,1.252,1.253, respectively. Ad-

aBins also has the best performance for all these three metrics [55]. The gaps in this metric are

relatively small, namely max. 0.2%. In terms of the absolute relative error, a transformer approach

called SwinDepth [58] achieves the best result. It is followed by AdaBins with a 0.1% differ-

ence. SwinDepth [58] is an approach for which there is no reference implementation. Hence,

this approach is not chosen. Furthermore, the lowest absolute relative difference is achieved by

SwinDepth, whereas AdaBins has the second-best result in this metric by only a small margin.

In terms of the metric RMSE log error, SC-Depth (ResNet18) [59] achieves the best results. It

punishes underestimation more than overestimation. One advantage of this metric is that it is less

sensitive to outliers. However, the approaches that are successful in terms of Root Mean Square

Error (RSME) log error are not convincing in the other metrics considered here.

Overall, AdaBins was chosen for this contribution because it ranks first or second in all but

one metric and a reference implementation is available. AdaBins mainly consists of two parts.

An encoder-decoder architecture and a AdaBins module. The encoder-decoder module consists

of the EfficientNet B5 [60] backbone. It achieves a comparatively high top-1 accuracy with other

current approaches while having a relatively low memory and computational demand [60]. The

AdaBins module works with feature maps and further processes them in a transformer encoder.

The transformer is based on a smaller version of an image classification model [55]. The feature

map received from the encoder-decoder is embedded through convolutions so that the patch em-

beddings are received. The stride is exactly as large as the receptive field, so the filter kernel does

not overlap but cuts out individual regions. These patch embeddings are then used in a transformer

encoder. Transformers learn attention and require a lot of memory and computation, so visual

transformers generally work on smaller patches of feature maps to reduce the complexity.

In the AdaBins paper it was shown that the adaptive bins achieve better results than fixed bins

and therefore the functionality of these is described below. The transformer encoder output is used

twice. First it is followed by a classification multi layer perceptron. It returns the bin widths for

depth prediction. Each image gets its own bin widths, so that more relevant regions, meaning
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regions with more points, have more intervals than regions with fewer points. The output of the

bin widths is a softmax score vector for the ith bin it is bi. The bin center of the nth bin can

be calculated by adding all the softmax scores of the n-1 previous bins, i.e. the ones before the

value in the vector, and adding half the score of bi. This can then be multiplied by the considered

distance interval, dmax − dmin which is defined by the maximum distance dmax and the minimum

distance dmin that the model should be able to predict. Finally, the minimum distance dmin must

be added to it and thus the center point of the bin is obtained. This description is formalized in

equation (2.3).

c(bi) = dmin +(dmax −dmin)(bi/2+
i−1

∑
j=1

b j) [2.3]

The second time, the transformer encoder output is used to retrieve the range attention maps.

The output is therefore forwarded through 1x1 kernels. The transformer tends to bring larger

relationships into the consideration and analysis, of how the parts of the image relate to each

other. Then the original feature maps from the EfficientNet B5 are put through a 3x3 convolution.

This result contains more pixel-wise fine granular information of the image. Both sources are

then combined with a pixel-wise dot product. One receives the range-attention-maps R. This

combination makes it possible to combine high-resolution information from the feature maps with

more global information through the transformer.

A dimensionality adaption of the range-attention-maps to n layers is achieved by a convolutional

layer. N corresponds to the number of bins. Each layer i now contains the weighting factor pi per

pixel for a cluster center c(bi). Now one can multiply the cluster centers with the scores for each

pixel and add them up and thereby get a smooth depth map as in equation (2.4).

d = ∑
k
= 1Nc(bk)pk [2.4]

2.9 Panoptic Segmentation

There are various benchmarks to compare the performance of panoptic segmentation models.

One can evaluate the performance on panoptic segmentation on the Cityscapes [25], Mapillary

and KITTI benchmark [61]. KITTI does not allow for panoptic segmentation in its published

form [62], therefore parts of the dataset were combined to obtain a benchmark for panoptic seg-

mentation. This benchmark was only used in some publications [63] [64] [65] [66]. Hence, most

approaches cannot be compared with it. For this reason, methods that were only evaluated on the

KITTI benchmark were not included in our analysis. Cityscapes and Mapillary in comparison

provide a panoptic segmentation benchmark and were used to evaluate the approaches here. The

Cityscapes benchmark includes images from Germany and Switzerland [25]. The Mapillary in-

cludes images from 6 continents [67]. Another difference between the two datasets is the number

of classes: Mapillary has more classes than Cityscapes. To evaluate the panoptic segmentation,

the Panoptic Quality (PQ) metric is used, which can be seen in equation (2.5). The PQ consists of

the segmentation quality and the recognition quality. The segmentation quality evaluates how well
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the segmentation is. The average Intersection over Union (IoU) is used for this. The recognition

quality considers a combination of recall and precision, meaning, how effective the model is at

recognition.

PQ =
∑(p,g)∈T P IoU(p,g)

|T P|︸ ︷︷ ︸
segmentation quality (SQ)

× |T P|
|T P|+ 1

2 |FP|+ 1
2 |FN|︸ ︷︷ ︸

recognition quality (RQ)

[2.5]

In the two benchmarks Cityscapes test [25] and Mapillary val [67] the three best models hold

the top in terms of PQ. The PQ of each model in the two benchmarks is shown in table 2.2. In

both benchmarks, the SWideRNet [35] based on the Panoptic DeepLab[35] model has the highest

and thus best PQ. For Cityscapes test, EfficientPS [63] is in second place and for Mapillary val

Axial-DeepLab-L [68] is in the second place.

Panoptic Quality (PQ)
Mapillary val Cityscapes test

SWideRNet-(1,1,4.5) 44.8 68.5
EfficientPS 40.6 67.1
Axial-DeepLab-L\XL 41.1 66.6

Table 2.2: Benchmark of State-of-the-Art Panoptic Segmentation Models [35][63] [68].

The SWideRNet model has the best PQ, therefore it is considered the state-of-the-art model for

panoptic segmentation.

Panoptic Segmentation can be performed in two ways: top-down or bottom-up. Top-down

means that the approach is proposal-based, which is typically achieved by combining Mask R-

CNN [69] with an additional stuff segmentation branch [70] [71]. Bottom-up approaches are box-

free. They are typically achieved by first starting with a semantic segmentation module, followed

by grouping operations to achieve instance segmentation results [72]. SWideRNet is a family

of bottom-up approaches that is based on the DeepLab architecture [35]. The family of models

is called SWideRNet − (w1,w2, l) in which w1, w2 and l parameterize the individual models. The

parameter w1 controls the channel size for the first two stages. The first two stages are also referred

to as stem models. The two remaining parameters w2 and l adjust the channel size and number of

layers, respectively, for the other layers in the model. The best model of the family on the basis of

the PQ metric is found by grid search with the following configuration SWideRNet − (1,1,4.5).

SWideRNet extends the DeepLab Model by adjusting hyperparameters with w1, w2 and l. The

performed grid search determined that the width of the layers seemed to be already large enough,

so it is retained. However, the number of layers per block was increased by a factor of 4.5. The

authors have therefore determined that the model has sufficient width, but a greater depth brings

advantages over the original version [35]. The stem network consists of two convolution layers and

thereafter a max-pooling layer. The following three convolution blocks consist of two convolution

layers and a channel-wise squeeze and excitation module. This module scales each feature map by

one scalar value. The scalar value is determined based on the entire feature map. In the last convo-
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lution block, a convolution layer is followed by a switchable atrous convolution layer, then a 1x1

convolution and again a squeeze and excitation module. The other parts remain from the DeepLab

model. The switchable atrous convolution gathers information acquired during convolving with

different atrous rates [35].
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3 Method

This contribution considers if it is possible to do anomaly detection in 3D using a pseudo-lidar and

flow estimation. In the following, the three research questions are presented and how they can be

answered.

RQ1: Is there a dissimilarity between point clouds generated by pseudo-lidar and those
captured by lidar for anomalies, and are these dissimilarities an indicator of an anomaly?

In the following, we will analyze if there is a relation between whether an object is perceived

in 2D and whether this object can be mapped well in 3D. The objects that were not detected

in 2d are considered as anomalies. Since we only consider objects of known classes, we only

consider anomalies that are attributable to an unknown pattern. Then we look for each object if

it is well mapped in 3D by the pseudo-lidar. For this, we compare the distance of an object in 3d

from pseudo-lidar to lidar. We can compare the pseudo-lidar with the lidar because the lidar was

recorded physically and is not a model that makes estimates. Now we have for each object once

how well it was mapped in 3d and if it is an anomaly due to an unknown pattern. With this, we

can then answer the question if anomalies due to an unknown pattern can be mapped properly in

3D and if dissimilarities between lidar and pseudo-lidar are an indicator for anomalies.

RQ2: Is a pseudo-lidar capable of mapping anomalies of type novelties in 3D? In RQ1, we

considered whether anomalies of known classes can be mapped properly in 3D. In RQ2, we want

to consider if anomalies of the type of novelties can be mapped properly in 3D. For the analysis,

we consider the pseudo-lidar results quantitatively and qualitatively. For the quantitative analysis,

we work with Bayesian Neural Network (BNN) and measure the uncertainty of the pseudo-lidar

estimate at both anomaly and non-anomaly pixels and compare these uncertainties with each other.

In the qualitative analysis, we look at the 3D point clouds predicted by the pseudo-lidar and analyze

how well the mapping worked for anomalies. Since we are now analyzing how novelties are

mapped in 3D, we consider special anomaly datasets that contain anomalies of type novelties.

For two real world anomaly datasets the quantitative analysis is performed and for one of them

additionally the qualitative analysis. For one anomaly dataset based on augmented data, both the

qualitative and the quantitative analysis are performed.

RQ3: Is it possible with a flow estimation approach, based on pseudo-lidar data, to find
anomalies of dynamic classes? The third research question deals with whether the prediction

of the pseudo-lidar is suitable to make flow estimation on it. If this were possible, a flow-based

anomaly detection approach could be implemented using a pseudo-lidar. Flow based approaches

require accurate 3D point clouds from successive points in time. Today’s flow based approaches

are distance based [73] [49]. Therefore, it must be found out whether the pseudo-lidar applied on

successive images provides 3D point clouds on which flow estimation is possible. For this, we

consider whether the pseudo-lidar outputs consistent estimates over time.
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3.1 RQ1: Is There a Dissimilarity Between Point Clouds Generated by
Pseudo-Lidar and Those Captured by Lidar for Anomalies, and Are These
Dissimilarities an Indicator of an Anomaly?

The aim of RQ1 is to find out whether anomalies due to unknown pattern can be properly mapped

by a pseudo-lidar in 3D or whether the deviations of lidar and pseudo-lidar are an indicator for

anomalies.

In order to answer the research question, we need to analyze at least two things. First, we need

to distinguish between anomalies and non-anomalies on a dataset. In the absence of a multimodal

anomaly dataset, a dataset-specific approach to the methodology had to be adopted. Second, we

need to determine for each instance how well it is mapped in 3D by the pseudo-lidar. For this,

we compare an 3D point cloud of the environment captured by a lidar with the prediction of a

pseudo-lidar.

3.1.1 Dataset Requirements

The point clouds generated by the pseudo-lidar can be compared with point clouds physically

captured by a lidar. For this, one needs a dataset that has 3D point clouds recorded by a lidar

synchronously with image data. In addition, we need to know where anomalies are in 2D and

3D. So we can see how well these are mapped in 3D. Furthermore, for non-anomalies we need

a segmentation, in 2D and 3D, so that we can make comparisons between anomalies and non-

anomalies. If we cannot find an anomaly dataset that provides the multimodal data and labels for

anomalies and not anomalies in 2D and 3D, we can proceed as follows. For such cases, we need a

dataset that contains 2D instance segmentation masks for the images of the dataset. With this, we

can determine if an instance is an anomaly. In order to evaluate the performance of the pseudo-

lidar instance by instance, we also need an instance segmentation ground truth in 3D of the lidar

point clouds. For these instance masks in 2D and 3D, it must be true that for the same instances

the same instance IDs have been assigned. We can only then compare anomalies in 2D with how

accurate a pseudo-lidar predicts its surroundings instance by instance. In addition to these hard

criteria, it seems to be useful to choose a dataset whose publication is one of the most cited. This is

because for those datasets, probably more neural networks are pre-trained and hyperparametrically

optimized. Therefore, they can also be used to better select the best neural networks for specific

tasks. Besides, there should be enough data with labels for both 2D and 3D instance segmentation

to evaluate the research question. If there are only a few labels in a modality, it is difficult to make

a valid statement about the research question with this data.

3.1.2 Dataset Selection

There is no multimodal anomaly detection dataset that includes instance labels for both 3D point

clouds and images [74]. Therefore, we are looking for a dataset that satisfies the properties we

presented in section 3.1.1. There are at least 22 datasets containing lidar and image data according

to ad-datasets [74]. The KITTI dataset [62] is the most cited under these 22 datasets autonomous
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driving dataset containing lidar and image data [74]. In second place in terms of the number of

citations are nuScenes [28] and nuImages [28]. The nuImages dataset contains 2D instance masks

and the nuScenes dataset contains 3D bounding boxes. For the nuScenes point clouds, paoptic

labels for each point are provided by the nuScenes-lidarseg dataset [75]. However, the problem is

nuScenes and nuImages are disjoint [76], i.e. they do not contain corresponding lidar and image

data. Since they do not contain synchronous image and point cloud labels, they are not suitable for

answering the research question. In fourth place, in terms of most citations, is the Oxford Robot

Car dataset [77]. Since it does not contain any labels [74], it does not meet our criteria and was

not selected. The next most cited dataset is the Waymo Open Perception dataset [78]. It contains

instance labels in 2D and bounding boxes in 3D. For the annotation of objects, bounding boxes are

less suitable than point labels because bounding boxes can also contain points that do not belong

to the object. Therefore, this dataset was not considered. Now we look at the KITTI dataset and

whether it is suitable to answer RQ1. KITTI does not contain any instance labels for the point

clouds. But in addition to the KITTI dataset, there is also the SemanticKITTI dataset [79] which

provides panoptic labels for all KITTI point clouds. Since panoptic segmentation includes both

instance segmentation and semantic segmentation, it fulfills the purpose of instance segmentation.

KITTI also includes a monocular depth estimation benchmark that means that pseudo-lidars are

trained and optimized on the KITTI dataset. Furthermore, it contains instance segmented images.

However, of the 6 hours of trips, only 200 images are training examples and 200 images test

examples for instance segmentation [61]. Hence, it is not well suited for the evaluation of the first

research question. The KITTI dataset is not considered in the following because it only contains

200 images of ground truth 2D instance segmentations. A similar dataset is KITTI-360 [79]. The

KITTI-360 dataset was taken with a very similar sensor setup in the same environment as the

KITTI dataset. Therefore, the domain shift is assumed to be not too large between KITTI and

KITTI-360. Since KITTI has pre-trained and hyperparametric optimized approaches for pseudo-

lidar and other tasks, these models can also be used on KITTI-360. It contains synchronized lidar

point clouds and images. It has point clouds panoptically segmented and resulting transformed

2D panoptic labels. In addition, due to the transformed labels from 3D to 2D, the instance IDs

are the same. Therefore, KITTI-360 is considered and suitable for the evaluation of this research

question. The methodology used to answer RQ1 had to be dataset specific because no multimodal

anomaly dataset is available. Therefore, it has to be defined what an anomaly is in a dataset that

does not contain anomaly labels. It is also outlined how the pseudo-lidar can be compared to the

lidar per instance.

3.1.2.1 Recovery of Panoptic Labels

In order to compare the pseudo-lidar performance instance by instance for each time point in

KITTI-360, we need instance labels for the point clouds. The panoptic and motion labels are not

available for each point in the point cloud. Instead a fused point cloud contains labels. A total

of 9.58 billion raw points were sampled, down to 835 million points. Hence, from the 835 mil-

lion fused point clouds that have been labeled, we need to recover the labels for the raw points.
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Therefore, an already existing recovery script for KITTI-360 was extended [80]. The script was

changed similarly to Finn [81] but instead of mapping semantic labels to the raw points, instance

labels were mapped to the raw points. The fused points are in the world coordinate system. The

raw points taken by the Velodyne at each point in time first have to be transformed from the Velo-

dyne coordinates to the world coordinate system so that both the fused and raw points are in the

same coordinate system. For this purpose, transformation matrices of the KITTI-360 dataset were

used. However, since these were not published for scans where the speed fell below a threshold,

the labels cannot be recovered for these points in time. Out of 81,106 scans, 64,640 could finally

be recovered.

For each raw point, the nearest neighbor in the fused points is searched and if this is not greater

than 0.5 meters away, the instance label of the nearest fused point is given to the raw point. If

there is no fused point within 0.5 meters, the raw point is labeled as "unlabeled". In total, 9% of

the points were labeled as "unlabeled". The points that are "unlabeled" and the scans that have no

poses were not considered in the following. A total of 6.95 billion points are considered.

3.1.3 Approach

To answer RQ1, two things must be present. For one thing, one has to compare the point clouds

of pseudo-lidar and lidar for each instance. And one needs to know for each object whether it is

an anomaly or not

3.1.3.1 Instance-Wise Comparison of Lidar and Pseudo-Lidar

The process required to compare pseudo-lidar and lidar point clouds is illustrated in figure 3.1.
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Figure 3.1: Steps required to do instance-wise comparison of lidar and pseudo-lidar.

To compare point clouds instance wise, we need to know which points belong to each instance

in the lidar and pseudo-lidar point clouds. The first thing we do is to estimate the 3D environment

with AdaBins. To find out how much pseudo-lidar deviates from lidar for an instance, we must

find out which points in lidar and pseudo-lidar belong to an instance. For the pseudo-lidar there
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is no information for each point to which instance it belongs.One cannot simply select the same

number of points in the pseudo-lidar as they were selected in the lidar because the pseudo-lidar has

a higher density than the lidar. This approach would result in too few points being selected in the

pseudo-lidar. But we know how many points in the pseudo-lidar belong to an instance because we

have a 2D instance segmentation. Therefore, we can first take the points that belong to the instance

in lidar. With these points, we can determine the centroid. We can use the centroid and select the k-

nearest points to the centroid in the pseudo-lidar, with k being the number of pixels in the instance

segmentation that belong to the instance. Once the corresponding points in pseudo-lidar and lidar

have been found for each instance, the chamfer distance is used as a distance measure to evaluate

the performance of pseudo-lidar instance by instance. A large distance means that the pseudo-

lidar performs worse compared to the ground truth lidar data, while a small distance means better

performance in comparison..

3.1.3.2 Anomaly Classification

As already mentioned, we do not have anomaly labels in KITTI-360, so we have to define anoma-

lies ourselves. An anomaly in our sense ’is given, if there is a non-predictable relevant object/class

in relevant location’ [13]. Therefore, we consider exactly those instances as anomalies that were

not detected by an instance segmentation model. For this task, we used the panoptic segmentation

model SWideRNet-(1,1,4.5), which we presented in section 2.9, trained on the Cityscapes dataset.

Determining a Confidence Threshold

KITTI-360 provides transformed instance segmentation from 3D to 2D, and they provide a

confidence that the transformation created a correct segmentation ground truth in 2D [82]. The

transformation works with Conditional Random Fields. The transformation is performed from

the globally labeled point clouds, which is composed of all frames. This is transformed into the

images and the labels of the points are transferred to the pixels. lidar does not have as dense data as

a camera, so there is not a corresponding point captured for every pixel. Therefore, it can happen

that points are transformed to 2D from another point in time that are actually obscured at this point

in time. Since the ground truth does not have to be correct, a confidence is added to each pixel

indicating whether the ground truth is correct. Low confidence pixels should not be considered

because they can provide false ground truth. For such pixels, the model could make a correct

prediction, but the evaluation would consider them as a wrong prediction because the ground truth

is wrong. Therefore, we do not use the IoU as a metric but introduce a new metric, namely the

Confidence-based Intersection Over Union (cIoU). The cIoU is defined in equation (3.1c) for each

ground truth instance i. For a pixel at position (x,y), the confidence is given as Cx,y, the ground

truth as GTx,y, and the prediction of the instance segmentation model as Px,y. In both the union and

the intersection, it considers only pixels that are confident. The segmentation ground of a pixel is

confident if its confidence level exceeds a threshold. For these points, the intersection, and union
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for each instance is now considered. Finally, the cIoU is defined as the division of both.

Intersectioni
con f ident = ∑

(x,y)∈Pixels
1Cx,y>τ ·1GTx,y ∩ Px,y ∩ i [3.1a]

Unioni
con f ident = ∑

(x,y)∈Pixels
1Cx,y>τ ·1(GTx,y ∩ i) ∪ (Px,y ∩ i) [3.1b]

cIoU i =
Intersectioni

con f ident

Unioni
con f ident

[3.1c]

The confidence threshold τ must be well chosen. If it is too low, many wrongly segmented

GT pixels will be included. This can lead to correctly segmented instances being considered as

misclassified. At the other end of the spectrum, a threshold that is too high means that only very

few pixels and thus very few parts of the image are taken into account. This could mean that some

anomalies are not considered at all in the analysis of the first research question. Additionally, if

the threshold is too high, the instance segmentation network may have segmented the instance

correctly, but most of the pixels that were segmented correctly were filtered out because of the

threshold. Therefore, there is a stronger case for a threshold of 80%.

To determine a suitable confidence threshold, the confidence distribution of the 15,460,208,640

pixels of KITTI-360 were analyzed. Since these confidence values are encoded with 16 bit, they

make up a total of over 30 GB Random-Access Memory (RAM). Therefore, a frequency count

was first made of all values in order to reduce the RAM requirement. It was then analyzed how

different confidence thresholds influence the number of pixels considered. The results can be seen

in table 3.1. A threshold of 90% is not preferred, as almost 1/3 of the points are not taken into

account.

What seems additionally interesting when choosing a confidence threshold is to look at the Mean

Confidence-based Intersection Over Union (mcIoU). This is determined by the average cIoU over

all instances. If this drops significantly at a certain τ , this could be an indicator that the ground

truth transformation from 3D to 2D has led to a false ground truth mask for many pixels that are

considered confident. A higher τ would possibly reduce this problem, as fewer pixels of the wrong

segmentation mask would be included. The table 3.1 shows the mcIoU for different τ as well as

the cIoU for different classes. As you can see, the higher the threshold, the better the segmentation

result. The rider class has the highest variance for the different confidence thresholds in terms

of cIoU. One can see how much the cIoU rider deviates for the different thresholds in table 3.1.

Overall, it was shown that the threshold τ has an influence on the cIoU and an influence on the

considered pixels. The threshold τ = 90% was excluded because only about 2/3 of the image are

considered with it. Furthermore, τ = 70% was excluded because it is likely to include mislabeled

points, since the mcIoU as well as the cIoU are strongly reduced for many classes. Therefore, in

the following, the threshold of τ = 80% will be chosen.

Specification of When an Instance Was Detected
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τ mcIoU cIoUcar cIoU rider considered pixels

70 44.01 76.07 53.75 90.85
80 45.87 78.86 58.40 83.52
90 48.09 82.45 63.20 67.18

Table 3.1: IoU analysis for different confidence thresholds τ . Additionally considered pixels for different
confidence thresholds.

Whether an instance is segmented correctly or not can be defined via the IoU. For this one

defines a threshold and if the IoU exceeds this threshold then an instance is considered to be

segmented correctly. Since our ground truth has a confidence and is not always correct, we take

the cIoU instead of the IoU. The higher you set it, the more instances are considered anomalies.

The lower you set it, the fewer instances will be considered anomalies. In figure 3.2 you can see

how a segmentation looks like at certain cIoU values. This makes it easier to understand how

the cIoU affects what is considered an anomaly and what is considered not an anomaly. The

Cityscapes benchmark has an Average Precision With 50% IoU Threshold (AP50) metric that it

publishes for each submission [25]. An instance is considered correctly classified if the IoU>50%.

This work is oriented towards this threshold, i.e., the cIoU threshold is set to 50% as in [25].

Different Viewing Angles for Lidar and Camera

A camera takes pictures from a single point of view. In contrast, the lidar of KITTI-360 captures

the 3D point cloud spherically as the lidar rotates 360°. Therefore, instances that were recorded in

3D at a time t were not necessarily recorded by the camera. There are also instances that occur at a

time t in the camera instance map but not in the 3D point cloud instance map. This can result from

two reasons. First, the camera image has a higher density than a lidar and therefore instances can

occur in the camera image that do not occur in the lidar point cloud. Second, labels of points can

be incorrectly transformed into 2D and the points can actually be hidden at that point in time. This

means that instances can occur in 2D that do not have a corresponding point in 3D at this point in

time. In the following sequence 0005 at timepoint 10767 is analyzed to show what an influence

the different labels in 3D and 2D have. At this time, four instances were not in 3D, but labeled

in 2D. However, these four only cover 23 pixels. Since the instances that are in 2D but not in 3D

are small instances, it is assumed that they have no corresponding points in the lidar. Therefore,

these instances are not considered in the following analysis. The instances that are in 3D but not

in 2D cannot be considered because the 3D point clouds are 360° and the camera has a smaller

angle of view. Hence, one can ignore the instances that occur in 3D but not in 2D. Additionally, it

was shown above that the labels that appear in 2D but not in 3D are negligible. In summary, it was

shown that one should only consider the points and pixels of instances that occur in both 2D and

3D.
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(a) The concrete mixer has a cIoU=30.01%. Sequence 0002 at timepoint 11290 of KITTI-
360 [82].
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(b) Garbage man has a cIoU=50.65%. Sequence 0004 at timepoint 6576 of KITTI-360 [82].
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(c) Motorcycle has a cIoU=70.89%. Sequence 0000 at timepoint 6901 of KITTI-360 [82].

Figure 3.2: Illustration of different instances with associated panoptic segmentation maps predicted by
SWideRNet-(1,1,4.5) and associated cIoU values.
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3.2 RQ2: Is a Pseudo-Lidar Capable of Mapping Anomalies of Type Novelties in
3D?

At the beginning of this work, the question was asked whether the depth can be estimated for

anomalies of type novelties. In the following, both a quantitative and a qualitative analysis will

be carried out to answer this question. figure 3.3 illustrates which steps are taken to answer RQ2.

First, a quantitative analysis is carried out using the uncertainty estimation method of Monte Carlo

Dropout. This is followed by a qualitative analysis that evaluates how well the mapping works for

anomalies.
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• RoadObstacle21
• Fishyscapes Static
• Fishyscapes Lost and Found

• RoadObstacle21
• Fishyscapes Static

Figure 3.3: Illustration of RQ2 and the steps taken to answer it. For each step it is shown which dataset is
considered, and it is illustrated which results will be achieved by the step. First, a quantitative
analysis with Monte Carlo Dropout is performed. Then a qualitative analysis is performed using
the estimated point clouds to see how well the anomalies were mapped in 3D.

3.2.1 Dataset Requirements

Datasets used to answer RQ2 must contain anomalies that are novelties. Novelties are in the

following objects that can not be assigned to classes of cityscapes. Since we want to consider

the capability of a pseudo-lidar to map novelties in 3D. In order to quantitatively evaluate the

uncertainty of the PseudoLiDAR, we need 2D instance labels to see how uncertain the depth

estimate is for anomalies and non-anomalies. The same anomaly masks are needed to visualize

the anomalies in the pseudo-lidar point cloud for a qualitative analysis. The optimum would be an

anomaly dataset that is multimodal and contains 3D labels for anomalies and non-anomalies.

3.2.2 Dataset Selection

As already explained in section 2.2 there is no multimodal anomaly dataset. Therefore, image-

based anomaly datasets are selected in the following. Fishyscapes was chosen as an augmented
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anomaly detection dataset [22]. It contains anomalies that are objects with no correspondence to

a Cityscapes class and provides pixel wise segmentation of anomalies. Therefore, the dataset is

suitable for evaluating the research question. The 30 images of Fishyscapes Static, introduced in

section 2.2, that contain augmented anomalies were used in the following. Fishyscapes is based

on Cityscapes and inserts cut-out instances into it. Motion blur and depth blur are applied, as well

as color matching of the pasted object to the image color schemes [22]. The Fishyscapes datasets

divides the images into three regions. The regions are in-distribution for parts that correspond to

Cityscapes classes [25]. Void is used as label for regions that do not belong to a Cityscapes class,

and anomaly for the anomalies. Void regions in Cityscapes are things like garbage bags that can be

somewhere else the next day or your own vehicle [25]. Both the RoadObstacle21 dataset [30] and

the Lost and Found dataset [23] contain anomalies that cannot be assigned to Cityscapes classes

and offer pixel-by-pixel annotations to the images whether a pixel belongs to an anomaly or not.

Therefore, they are suitable for answering our research question. The CODA benchmark [26] is

not suitable in our sense because it does not provide pixel wise annotations but bounding box

based ones. Other anomaly detection datasets were not considered for the reasons explained in

section 2.2 because they consider anomalies that do not fit to our anomaly definition. There-

fore, the RoadObstacle21 dataset [30] and the Lost and Found [23] dataset were selected as real

world anomaly datasets. The RoadObstacle21 dataset is part of the SegmentMeIfYouCan anomaly

benchmark [30]. It consists of images of roads with objects like toys on them. These objects are

the anomalies of the dataset. The dataset consists of the images and, corresponding segmenta-

tion masks. The segmentation masks divide the images into three parts. The three categories are

anomaly, not anomaly and void. Void is a region that does not correspond to a Cityscapes class

and is not an anomaly. The 30 training examples were recorded with an iPhone 12 mini. The third

dataset considered is the Lost and Found dataset [23]. This resembles the RoadObstacle21 dataset.

It also consists of small obstacles lying on the road. It has the same labels as the Fishyscapes

dataset.

3.2.3 Quantitative Analysis

The three datasets provide segmentation masks and image data. No ground truth 3D data is pro-

vided. Hence, it is difficult to quantitatively assess whether the depth estimate of a pseudo-lidar

is correct. However, an uncertainty-based approach is suitable for quantitatively assessing the re-

search question. Therefore, the pseudo-lidar AdaBins is used and Monte Carlo Dropout is applied.

Monte Carlo Dropout is used to find out the uncertainty of a model, i.e., the epistemic uncertainty.

k forward passes are executed with dropout activated. The average variance of each pixel belong-

ing to a class then gives the uncertainty of the model for that class. In our case, we now calculate

the average uncertainty across all images and for each class, i.e., anomaly, not anomaly and void,

to find out how uncertain the model is when estimating the depth.
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3.2.4 Qualitative Analysis

In addition to the quantitative analysis, a qualitative analysis is also carried out. For the qualitative

analysis, one needs the intrinsic camera coordinates to transform the estimated depth image into

3D. In this, the 30 images from RoadObstacle21 that have segmentations are depth-estimated with

AdaBins and then the depth estimated 3D point cloud is analyzed for plausibility. The anomaly

objects are checked to see if they have been mapped well in 3D. For this the point cloud is color

coded in two ways. On the one hand a color coding is used which codes the height so that one can

see whether an anomaly stands out from the road for example. On the other hand, a color coding is

used that marks in orange which areas are anomalies and the rest is then color coded according to

the depth. One is the use of color coding that encodes elevation so that you can see if an anomaly

stands out from the road, for example. For the transformation of the estimated depth image into

a 3D point cloud, the intrinsic camera matrix of the iPhone12 mini is used. This was determined

from the focal length in mm and the pixel width in micrometers. Furthermore, Fishyscapes is

analyzed qualitatively as an augmented dataset. Therefore, the depth for Fishyscapes is estimated,

and the depth map is transformed into 3D. It is then also checked for plausibility. The qualitative

results are then compared to the ones for the Obstacle21 dataset.

3.3 RQ3: Is It Possible With a Flow Estimation Approach, Based on Pseudo-Lidar
Data, to Find Anomalies of Dynamic Classes?

The idea behind our theoretical flow-based anomaly detection approach is whether it is possible to

use a contradiction between a panoptic segmentation model in 2D and a flow-based model in 3D

to find anomalies. In order to find a contradiction between 3D points and 2D pixels, we need a 1:1

mapping from pixels to points. This is made possible by a pseudo-lidar.

Pseudo-Lidar Scene Flow 
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+
Motion 

Segmentation

Select 
Dynamic 
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Figure 3.4: Theoretical approach to anomaly detection using a contradiction between motion segmentation
in 3D and panoptic segmentation in 2D. For this purpose, an image is mapped in 3D by a pseudo-
lidar. The dynamic points are then selected with the help of motion segmentation. These are
then clustered by flow into moving objects. Then it is compared whether the pixels belonging
to a moving object are segmented by the panoptic segmentation as something that can move. If
not there is a contradiction and an anomaly is predicted.

The following approach is illustrated in figure 3.4. First, AdaBins is used to obtain a 3D point

cloud for a corresponding image. The input for the flow estimation are two consecutive point

clouds. Therefore, in our case, two consecutive images imaget and imaget+1 of timepoints t and
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t+1 are mapped into two point clouds Pseudot and Pseudot+1 in 3D by a pseudo-lidar. These two

generated point clouds serve as input into a flow estimation and motion segmentation model. The

motion segmentation predicts for each point in Pseudot if it is static or dynamic. Dynamic means

that the point moves, static means that it does not move. The flow estimation indicates how each

point in Pseudot moves from t to time t +1. One can either use a motion segmentation model to

classify the points as static or dynamic, or one can classify a point as dynamic if the closest point

in the following point cloud exceeds a certain distance, and otherwise classify the point as static.

The dynamic points are then clustered by flow. Finally, the clusters are compared to an instance

segmentation prediction.

The contradiction that can be used for anomaly detection looks as follows. If the pixels belong-

ing to a dynamic cluster in 3D are segmented as a non-movable class by the instance segmentation,

then the pixels in the image are output as anomalies. In this area, on the one hand the instance

segmentation network says there is an immobile class there and on the other hand the motion

segmentation model says something is moving there. That is a contradiction.

Current flow estimation models use nearest neighbor distances to predict flow [73] [83]. There-

fore, a flow-based approach on pseudo-lidar point clouds is only suitable if they are consistently

predicted through time. That is, if the pseudo-lidar predicts successive point clouds inconsistent

through time, no flow-based anomaly detection approach is appropriate for pseudo-lidar point

clouds.

3.3.1 Dataset Requirements

For flow based anomaly detection on the data of a pseudo-lidar we need a dataset that has both

images and instance masks for them. In addition, this data must be available for successive points

in time. Without the instance masks, we cannot judge how consistent the depth estimation is

through time and therefore whether a flow based approach is suitable. In addition, as already

described in section 3.1, instance masks allow us to obtain anomaly ground truth. In order to

assess the consistency of two consecutive pseudo-lidar point clouds, we also need a way to remove

the ego motion. Transformation matrices are suitable for this purpose. Furthermore, it is of great

importance to be able to judge independently how the consistency through time behaves for static

and dynamic objects. If the pseudo-lidar gives larger changes through time for dynamic instances

than for static ones, it seems suitable to use distance based flow estimation models on the data.

Therefore, we need a dataset with motion labels that classify each instance as static or dynamic.

In summary, the dataset must include: images with 2D instance labels, corresponding movement

labels and data for ego motion removal. In the following, various datasets are examined to see

whether they are suitable for this research question.

3.3.2 Dataset Selection

The Fishyscapes [22] anomaly detection benchmark is based on Cityscapes [25] and consequently

includes pixel-wise instance labels. However, the instances as well as the inserted anomalies

from Fishyscapes are not motion segmented. Therefore, one does not know whether an instance
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is static or dynamic. Although ego-motion data is available from the vehicle to remove ego-

motion between consecutive pseudo-lidar point clouds in Cityscapes, Fishyscapes does not provide

anomalies for subsequent images. Hence, one cannot examine two consecutive point clouds for

consistency in the pseudo-lidar and flow estimation.

RoadObstacle21 and Lost and Found are not suitable because neither have motion segmentation

labels. The anomalies they show are from static objects. Therefore, the flow-based approach

presented here cannot find any anomalies on them. Furthermore, there are no instance labels to

analyze the consistency of the pseudo-lidar through time.

The KITTI-Scene Flow Evaluation 2015 dataset contains motion segmentation labels and scene

flow labels [84] [85]. The labeling was semi-automatic. The 200 training images from the dataset

correspond to the 200 training images from the KITTI Semantic Instance Segmentation Bench-

mark [86]. Transformation matrices to eliminate the ego-motion are also available. Thus, the

combined use of both datasets fulfills our requirements for 2D instance labels, corresponding

movement labels and data for ego motion removal.

The second candidate is KITTI-360. It contains recovered panoptic 2D labels, which also con-

tain instance labels. Motion labels are not available for 2D, but for the 3D points. Since the 3D

points have the same instance labels as the 2D panoptic labels, we can use the 3D motion labels

to have a motion segmentation ground truth for each instance in 2D. KITTI-360 also provides

transformation matrices for the removal of the ego-motion. Therefore, KITTI-360 meets all the

requirements for this research question.

In the following, RQ3 was analyzed on KITTI-360 because it comprises over 60,000 time points

in contrast to Kitti-Scene Flow with 200 time points, which comprises significantly fewer time

points. This means that with KITTI-360, a more valid statement can be made about flow-based

anomaly detection.

3.3.3 How to Evaluate Pseudo-Lidar Consistency Through Time

To evaluate how consistent the pseudo-lidar is through time, we need to bring each pair of two

consecutive pseudo-lidar point clouds into the same coordinate system. Then we can compare

the two point clouds for consistency by comparing the pseudo-lidar and lidar point cloud by the

chamfer distance for each instance. For static instances the chamfer distance should be small and

for dynamic instances the distance should reflect the motion that each instance has moved between

t and t + 1. The pseudo-lidar is therefore not consistent through time if the chamfer distance is

high for instances that are static. Instances that appear in the first point cloud and have disappeared

in the second one are not considered in the following. For these, no consistency comparison is

possible.

The following explanation of the transformation of the pseudo-lidar point cloud Pseudot to the

camera coordinates at t + 1 is visualized in figure 3.5. Pseudot is the estimated point cloud from

the image of camera at time t. Therefore, this point cloud is in the camera coordinate system at

time t. The goal is now to compare this point cloud to the Pseudot+1 point cloud. Pseudot+1 is

in the camera coordinate system at time t +1. So we transform Pseudot in the camera coordinate
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Figure 3.5: Visualization of the transformation of the pseudo-lidar point cloud Pseudot from camera co-
ordinate system of t in the camera coordinate system of t + 1. Additional visualization of the
pseudo-lidar point cloud from timepoint t +1.

system at time t +1. To achieve this, Pseudot is transformed to world coordinates and then back

to the camera coordinate system of camera at time t + 1. The mathematical formulation of this

transformation is given in equation (3.2). Since we only have transformations given from the

world coordinates to the camera coordinates in KITTI-360, we need to invert the transformations

from camera to world in order to obtain a transformation from the world to the camera coordinate

system at each point in time.

(CamToWorldT+1)
−1 ∗CamToWorldT ∗Pseudot [3.2]

3.3.4 Ground Removal

We remove the ground first because self-supervised scene flow models like SLIM [73] and Flow-

Step3D [83] require a point cloud as input without ground.

Figure 3.6: Visualization of the areas that GndNet segmented as the ground on the pseudo-lidar point cloud.
Segmented ground is colored as purple. Considered is KITTI-360 [82] sequence 0005 and time
point 752.

For ground removal, you can use GndNet [87], a neural network. GndNet was chosen because
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a good reference implementation of this model was available. GndNet, however, is trained on

lidar and does not work as well on pseudo-lidar as can be seen in figure 3.6. When viewing

the PseudoLiDAR point clouds in 3D, it became clear that the PseudoLiDAR depicts the road as

somewhat uneven, even though it is actually flat. We suspect that this is the reason why GndNet

has difficulties to remove the ground in PseudoLiDAR point clouds. A different approach towards

ground removal would be to cut off everything below a certain height [73]. Since the KITTI-360

cameras are tilted downward, cutting anything below a threshold is not practical because either

you cut away too much at the front or the ground is not removed at the back. Instead, one could

cut off below a height depending on the distance. Since this is not optimal for the evaluation, we

consider another way that is possible on KITTI-360. Ground removal can be carried out using the

semantic road mask in 2D of KITTI-360. Since pseudo-lidar has a 1:1 reference between pixel

and point, the corresponding points representing a road can be cut out.
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For RQ1, we will first evaluate if pseudo-lidar performance correlates with instance segmenta-

tion performance and whether a deviation between lidar and pseudo-lidar is an indicator for an

anomaly. Since the KITTI-360 dataset is not a specific anomaly dataset, we will consider anoma-

lies which are not novelties. According to our anomaly definition, not only unseen patterns count

as anomalies, but also new unknown classes. Therefore, we investigate in RQ2, using specific

anomaly datasets that contain novelties, whether a pseudo-lidar can map anomalies to 3D. For this

purpose, a quantitative and qualitative data analysis is performed. Lastly, RQ3 analyzes whether

scene flow based anomaly detection based on a pseudo-lidar is possible. For this, we evaluate if

it is possible with today’s approaches to do flow estimation on pseudo-lidar data instead of the

commonly used lidar data.

4.1 RQ1: Is There a Dissimilarity Between Point Clouds Generated by
Pseudo-Lidar and Those Captured by Lidar for Anomalies, and Are These
Dissimilarities an Indicator of an Anomaly?

In the following, we will evaluate how the dissimilarity between point clouds generated by pseudo-

lidar and those captured by lidar is related to anomalies due to unknown patterns. For this, an

instance in 2D was defined as an anomaly if the cIoU does not exceed a threshold. This instance

segmentation performance should be put in relation to the pseudo-lidar performance. The pseudo-

lidar performance was defined as the instance-wise chamfer distance, equation (2.2), at a timepoint

for each instance between pseudo-lidar and lidar. This means that the smaller the distance for an

instance the better the pseudo-lidar performance and vice versa.

4.1.1 Configuration

The following experiments were carried out on the KITTI-360 dataset [82]. For the reasons de-

scribed in section 2.8 we use AdaBins as the pseudo-lidar. As described in section 3.1.3.2 and,

section 3.1.3.2 the confidence threshold was set to 80% and the cIoU threshold to 50%.

4.1.2 Answering the Research Question

For the evaluation, the values of the chamfer distance for anomaly instances and non-anomaly

instances are considered. If the chamfer distance is usually higher for anomalies than for non-

anomalies, then one can see a correlation between anomalies and the pseudo-lidar performance. If

the chamfer distances look very similar, no correlation can be found.
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Figure 4.1: Distribution of chamfer distances for anomalies and non anomalies at (cIoU, confidence) = (0.5,
0.8).

The boxplot of figure 4.1 shows in which areas the chamfer distance is situated for instances that

are no anomalies and for instances that are anomalies. We see that the chamfer distance is larger for

non-anomalies. The median chamfer distance for anomalies is 3.21 and for non-anomalies 3.77.

The upper quantile is 5.97 for non-anomalies and 4.78 for anomalies, which is a significantly

larger difference than both the median and the lower quantile. Therefore, there is a correlation that

the chamfer distance is slightly lower for anomalies than for non-anomalies in KITTI-360. We

expected the pseudo-lidar performance to be poor when the instance segmentation performance is

poor. This did not prove to be true. It is shown that a dissimilarity between lidar and pseudo-lidar

is not an indicator for an anomaly.

It should be taken into account that a pseudo-lidar has greater error at greater distances to the

camera [55]. Therefore, we now additionally consider the distances of anomaly and non-anomaly

instances. Figure 4.2 shows that on average, anomaly instances are further away from the camera

than non-anomaly instances. The median of non-anomalies towards the distance to the camera

is below the lower quantile of anomalies. This shows how substantially different the distances

of anomaly and non-anomaly instances are in relation to the distance to the camera. It becomes

apparent that the panoptic segmentation model has greater difficulties in segmenting more distant

objects. However, it also shows that although pseudo-lidar has more difficulty estimating depth at

greater distances [55], in our case anomaly instances are better mapped in 3D than non-anomaly

instances.

The distance to the camera can not explain why anomalies are better mapped by pseudo-lidar

than non-anomalies. The difference could be that different classes can be mapped differently well

in 3D. But classes that can be mapped well in 3D are not the same classes that can be segmented

well by the panoptic segmentation model. In order to analyze this, one can show the chamfer
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Figure 4.2: Distribution of object distances to the camera for anomalies and non anomalies at (cIoU, confi-
dence) = (0.5, 0.8).

distance per class and the frequency of occurrence of that classes, both for anomalies and non-

anomalies. The more frequently a class appears, the greater its influence on the outcome of the

evaluation of this question is. Figure 4.3 illustrates this very point: the frequency of occurrence of

instances and the chamfer distance for anomaly and non-anomaly instances. It can be seen that the

class distribution is not equally distributed. There are many cars and many buildings and garages.

This was to be expected, since KITTI-360 is captured on streets where there are many parked cars

and houses with garages. On the one hand, one can see that the panoptic segmentation model has

great difficulties with buildings and garages. On the other hand, cars are detected with a high cIoU

by the panoptic segmentation model. Therefore, there are many cars that are non anomalies and

many anomalies under buildings and garages. However, the chamfer distance of buildings and

garages is lower from anomalies than the chamfer distance of cars from non-anomalies. This

strongly influences the overall result that indicates anomalies are similar to slightly better mapped

in 3D than non-anomalies. For anomalies and non-anomalies, the distances between pseudo-lidar

and lidar are similar. This means that the dissimilarity between lidar and pseudo-lidar point clouds

is not an indicator of anomalies.

4.2 RQ2: Is a Pseudo-Lidar Capable of Mapping Anomalies of Type Novelties in
3D?

RQ1 assessed the relationship between panoptic segmentation performance and pseudo-lidar per-

formance. Since this was evaluated on the KITTI-360 dataset, it considered anomalies according

to Heidecker [6] but not novelties, which are included in our anomaly term. This is because KITTI-

360 is not a special anomaly dataset. Therefore, we now consider the pseudo-lidar performance

on anomaly datasets that deal with novelties of our anomaly taxonomy. Since our panoptic seg-
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Figure 4.3: Number of instances for each class and corresponding average chamfer distance for both anoma-
lies and no anomalies. The box plot shows the frequency of occurrence and the line plot shows
the average chamfer distance. The classes are sorted according to the frequency of occurrence.
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mentation model is trained on Cityscapes classes, all instances that belong to classes that are not

part of Cityscapes are novelties. The presented anomaly datasets contain toys, animals like dogs,

as well as boxes that could have fallen from a truck onto a road. All these elements are not part of

Cityscapes classes.

First, we consider whether a pseudo-lidar can map augmented instances in 3D. For this purpose,

we perform a quantitative and qualitative analysis on the augmented anomaly dataset Fishyscapes [22].

In order to consider the performance on novelties and the performance on augmented datasets

separately, we analyze a novelty-based dataset based on real data. When examining Fishyscapes

on its own, we can’t be sure if there is uncertainty in mapping anomalies in 3D because of the

augmentation of the data or because the instances are novelties. For this purpose, the two datasets

Lost and Found and RoadObstacle21 are considered.

4.2.1 Augmented Dataset

The Fishyscapes Static dataset is considered first. It contains segmentation masks for anomalies

for 20 images.

4.2.1.1 Quantitative Analysis

Fishyscapes is based on Cityscapes and for the datasets anomalies were augmented into Cityscapes

scenes, there is no ground truth of depth data available for both datasets. Therefore, it is challeng-

ing to perform a quantitative analysis on it. As described in the methodology, it was decided to

use Monte Carlo Dropout to consider the uncertainty for both the class anomaly and non anomaly.

The measure we use for uncertainty is the average uncertainty over all uncertainties of a class.

This means that we consider the uncertainty for each pixel of a class. For Monte Carlo Dropout,

this is the variance of the different outputs of the forward passes at each pixel of the class. From

all pixels of a class, we now take the average of these uncertainties and thus obtain an indicator for

the uncertainty.

Figure 4.4 shows that the uncertainty is the lowest for anomalies. This is counterintuitive. We

actually expected that the uncertainty is higher for anomalies because these were often not present

in the training data of the pseudo-lidar. However, the average uncertainty does not show the

distribution of uncertainties. It is possible that the median uncertainty is the highest for anomalies

even though the arithmetic mean is lower for anomalies. If outliers in in-distribution and out-

distribution classes make the uncertainty higher, then the mean could be higher for these classes

than for anomalies. Therefore, we consider the distribution of the uncertainties for each class.

In figure 4.5 one sees that the distribution of uncertainties is very different between the different

classes. For anomaly the lower-, upper quantile as well as the median is the lowest. This indicates

that the anomaly class has the lowest uncertainties. The assumption that the average uncertainty

of anomalies is higher than that of non-anomalies due to outliers has therefore not proved to be

true. It confirms what the average uncertainty has shown, that the pseudo-lidar is most certain for

anomalies compared to in-distribution and void. It is suspected that the model is overconfident for

the anomaly regions and therefore makes an incorrect uncertainty estimate.
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Figure 4.4: Average uncertainty of different classes on Fishyscapes Static.
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Figure 4.5: Distribution of uncertainty from pseudo-lidar on Fishyscapes Static for in-distribution, anomaly
and void regions.
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4.2.1.2 Qualitative Analysis

For the qualitative analysis we have to consider each of the three spatial dimensions. At first we

will evaluate how the pseudo-lidar mapped the anomalies in 3D from birds eye view. Figure 4.6

shows that the pseudo-lidar has difficulties in mapping the anomalies. It shows results for all

publicly available Fishyscapes Static images. The instances are distributed very widely in the z-

axis, although they should not have such a great depth. The first evaluation image, for example, has

two inserted horses that should not extend so far along the z-axis. The third image contains three

birds and the mapped anomalies cover several meters in depth. It is clear that the pseudo-lidar

cannot map these augmented anomalies well in depth. In the following we will evaluate particular

images of Fishyscapes and their corresponding point clouds.
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Figure 4.6: All Pseudo-Lidar point clouds of Fishyscapes evaluation images from birds eye view. Anomalies
in orange. Color gradient for z-axis for non-anomaliy points.

39



4 Evaluation

The first finding is that in certain cases the pseudo-lidar is not able to predict the depth at all.

This means that instead of mapping an object in 3D, what is presumably behind the object is

mapped in 3D, here a street. We categorize anomalies mapped like this in 3D with background-

mapped. This means that one cannot see the plasticity of the anomaly objects at all. For this

insight, we will look at two examples from Fishyscapes Static, specifically images 11 and 18. As

one can see in figure 4.7 the bird that is augmented into the dataset is not mapped in 3D at all. The

reason for that could be that the bird that has to be mapped was augmented with color shifts before

inserting and thereby the colors look quite similar to the color scheme of the ground.In general,

it is quite an unrealistic insertion and barely visible at all. Another reason could be that the bird

was not in the training samples of KITTI, on which AdaBins was trained. The network could not

generalize enough to predict birds for two reasons. Either the dataset is not large enough, or the

network does not have enough capacity to generalize sufficiently.

(a) Fishyscapes Static image 11 [25] [22].

(b) Pseudo-Lidar Fishyscapes Static image 11. Orange for anomaly.

(c) Pseudo-Lidar Fishyscapes Static image 11. Color gradient for visu-
alizing height.

Figure 4.7: Qualitative analysis of Fishyscapes Static image 11.

Fishyscapes Static image 18 shows another bird in another setting. It is also not mapped in 3D,

as one can see in figure 4.8. Since the bird from the 18th image of Fishyscapes Static is more

distinct in color from the background than the bird from the 11th image and yet it was not mapped

in 3D, it is suspected, like stated before, that birds were not or not enough in the training data of

AdaBins.

In the second step, we now look at another aspect that the qualitative analysis has brought to
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(a) Fishyscapes Static image 18 [25] [22].

(b) Pseudo-Lidar Fishyscapes Static image 18. Orange for anomaly.

(c) Pseudo-Lidar Fishyscapes Static image 18. Color gradient for visu-
alizing height.

Figure 4.8: Qualitative analysis of Fishyscapes Static image 18.

light. The anomalies of image 12 and 13 of Fishyscapes Static consist of dogs. Dogs are not part

of a class of Cityscapes [25]. Thereby they are novelties in our sense and thus anomalies. One

can see in figure 4.9c that the dog is way better mapped in 3D than the birds. The dog is plastic

three-dimensional. In contrast to the birds where one does not see birds in any sense figure 4.8c.

To confirm this, we consider the 13th image of Fishyscapes Static. The dog inserted in this

image is platically well visible in figure 4.10c. By human standards, he is a smaller dog than the

dog in image 12. The dog is also mapped smaller in 3D by AdaBins. AdaBins was trained on

KITTI. Dogs are an anomaly for Cityscapes because they are not labeled as a class. However, in

the KITTI dataset used for training AdaBins they are found, for example, in sequence 0 at time

814. Therefore, they are not a novelty and thus not an anomaly for AdaBins but an anomaly for

the panoptic segmentation model. Therefore it is assumed that novelties like birds can be mapped

worse by AdaBins in 3D than dogs. We classify anomalies mapped like the 12th and 13th images

as correctly mapped.

It must be said that for a pseudo-lidar the depth images on which it is trained do not have to

be labeled manually. However, the instance masks and panoptic masks have to be laboriously

labeled. Therefore, it can still be advantageous to use an AdaBins with pseudo-lidar to detect

objects compared to a Panoptic Segmentation Model like SWideRNet, since the pseudo-lidar does

not require manual labeling.

Lastly, we look at ambiguously mapped images where AdaBins has neither mapped nothing

of the instance in 3D nor mapped an instance properly in 3D. For this, we look at image 1 from

Fishyscapes Static. Figure 4.11a shows two augmented horses inserted into a Cityscapes image.
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(a) Fishyscapes Static image 12 [25] [22].

(b) Pseudo-Lidar Fishyscapes Static image 12. Orange for anomaly.

(c) Pseudo-Lidar Fishyscapes Static image 12. Color gradient for visu-
alizing height.

Figure 4.9: Qualitative analysis of Fishyscapes Static image 12.

(a) fishyscapes static image 13 [25] [22].

(b) Pseudo-Lidar Fishyscapes Static image 13. Orange for anomaly.

(c) Pseudo-Lidar Fishyscapes Static image 13. Color gradient for visu-
alizing height.

Figure 4.10: Qualitative analysis of Fishyscapes Static image 13.
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(a) fishyscapes static image 1 [25] [22].

(b) Pseudo-Lidar Fishyscapes Static image 1. Orange for anomaly.

(c) Pseudo-Lidar Fishyscapes Static image 1. Color gradient for visual-
izing height.

Figure 4.11: Qualitative analysis of Fishyscapes Static image 1.

One can see quite well in the image that the horses are blended into the image with alpha blending.

The background is still visible through the horses. If you now look at the pseudo-lidar point cloud,

you see that the legs of the horses are mapped in a place that is roughly correct, but towards the

head the mapping goes far back. We think the horses are badly mapped in 3D because of the

strong blending. The bus for example shines through the horse. Furthermore, horses seem to be

unknown to the network. We refer to anomalies mapped as image 1 as ambiguously-mapped.

It has been shown that pseudo-lidar estimates of augmented anomalies can be divided into three

categories. The first category is well-mapped for plausible mappings in 3D. The second category is

background-mapped for objects that are not visible in 3D, but the model estimates what is behind

the object in 3D. The third category is called ambiguously-mapped and means that the anomaly is

partially plausible and partially poorly mapped in 3D which occurs for anomalies that are highly

augmented. In order to estimate the influence of augmentation on depth estimation, two true

anomaly datasets are considered in the following.
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4.2.2 Non Augmented Anomaly Datasets

In the following, we will evaluate two real anomaly datasets quantitatively, namely RoadObsta-

cle21 and Lost and Found. For RoadObstacle21 we further evaluate the depth predictions qual-

itatively. With this, we aim to find out why AdaBins is not able to predict the depth of several

anomaly objects. Thereby, we want to find if augmentation caused the bad mapping or if it is

because the instances are anomalies that are mapped.

4.2.2.1 Quantitative Analysis

One can see in figure 4.12 that the uncertainty of the depth for Lost and Found [23] is the highest

for in-distribution pixels. Anomaly has the second highest uncertainty and void the lowest uncer-

tainty. This means that even on the non-augmented Lost and Found dataset the uncertainty for

anomalies is not the highest of the classes.
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Figure 4.12: The average uncertainty of AdaBins on Lost and Found [23].

In RoadObstacle21 the uncertainty for street is higher than for anomaly as can be seen in fig-

ure 4.13. Thus, it is now shown on all three datasets that the AdaBins depth estimation network is

not most uncertain for anomalies. For RoadObstacle21, interestingly, the road is the most unsafe

region in the deep estimate. This is unexpected since roads have appeared a lot in the training of

AdaBins. Perhaps it is due to a domain shift, since the topology of RoadObstacle21 was taken

in Switzerland, which is very different from the environment in Karlsruhe. It can also be due to

the different road surfaces or the different quality of the road in RoadObstacle21. There are also

gravel roads in contrast to KITTI, where there are tarred roads.
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Figure 4.13: The average uncertainty of AdaBins on RoadObstacle21 [23].

4.2.2.2 Qualitative Analysis

In qualitative analysis, we look at different things. We analyze if the three different aspects found

in Fishyscapes are present in the depth estimation of RoadObstacle21. These are background-

mapped, well-mapped and ambiguously-mapped.

First we determine if there are well-mapped anomalies in RoadObstacle21. As in Fishyscapes,

there are also dogs as anomalies in RoadObstacle21. In figure 4.14a there is a dog sitting on the

street. You can see in the pseudo-lidar generated point cloud in figure 4.11b that the dog is well

mapped in 3D. Interestingly, there are ears sticking out of its head, although the dog in the image

does not have ears sticking out. The presumption suggests that the pseudo-lidar has seen dogs with

ears sticking out in KITTI and therefore is trained to map a dog into a dog with sticking out ears.

Umbrellas, which also occur as anomalies, can sometimes be mapped well in 3D.

Now the background-mapped category of mapped anomalies is analyzed on RoadObstacle21.

In figure 4.15a you can see a soccer ball which represents the anomaly of the image. In the point

cloud, one can see that the soccer ball does not appear at all. The neural network simply continues

the mapping of what is near the ball in the image, in this case the street. This means that the

pseudo-lidar predicts in 3D what is probably behind the anomaly on the image. In all the pictures

where the soccer ball appeared in RoadObstacle21 not the soccer ball but what was behind the ball

was mapped in 3D. The soccer ball serves as an example for background-mapped anomalies in

RoadObstacle21. Toys are mostly background-mapped in 3D. In rare cases something sticks out a

little where the toy should be. The same is true for watering cans and trash cans.
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(a) Image of RoadObstacle21 with dog as anomaly [30].

(b) Pseudo-Lidar of RoadObstacle21 with dog as anomaly. Orange for anomaly.

(c) Pseudo-Lidar of RoadObstacle21 with dog as anomaly. Color gradient for visualizing height.

Figure 4.14: Qualitative analysis of RoadObstacle21 image with dog as anomaly.
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(a) Image of RoadObstacle21 with soccer ball as anomaly [30].

(b) Pseudo-Lidar of RoadObstacle21 with a soccer ball as anomaly. Orange for anomaly.

(c) Pseudo-Lidar of RoadObstacle21 with a soccer ball as anomaly. Color gradient for visualizing height.

Figure 4.15: Qualitative analysis of RoadObstacle21 image with a soccer ball as anomaly.
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The last category in which we categorized the mapping quality of anomalies are the ambiguously-

mapped instances. In all 30 images of RoadObstacle21 that are available for evaluation, not a sin-

gle anomaly was mapped ambiguously. An anomaly was either well mapped or not mapped at all.

Whereas with background-mapped anomalies, the network simply mapped in 3D what is probably

behind the anomaly. So if there is ground behind an anomaly from the camera’s perspective, the

network has predicted the ground at the location of the anomaly.

In summary, both RoadObstacle21 and Fishyscapes cannot map unknown classes to 3D in the

vast majority of cases. This means that an anomaly detection approach that works on point clouds

generated from pseudo-lidar tend to fail for objects that are unknown to the pseudo-lidar. In

Fishyscapes, the horses were predicted ambiguously and they are strongly augmented with alpha

blending. It is assumed that the blending was responsible for the ambiguous prediction, since

no instances were ambiguously mapped in RoadObstacle21. The quantitative analysis has shown

that the network is very confident for areas where anomalies occur. The assumption is that the

network is very overconfident. As shown in the qualitative analysis of fisyhscapes, many instances

are not well-mapped in 3D. Therefore, we assume that the uncertainty estimation for reasons of

overconfidence did not show any significant deviations from anomalies to other classes.

4.3 RQ3: Is It Possible With a Flow Estimation Approach, Based on Pseudo-Lidar
Data, to Find Anomalies of Dynamic Classes?

To evaluate if flow based anomaly detection is possible on pseudo-lidar point clouds, it has to be

evaluated if flow estimation works on pseudo-lidar point clouds.

Modern approaches towards flow estimation are self-supervised. This allows you to benefit

from large unlabeled datasets and saves expensive labeling. These state-of-the-art unsupervised

approaches [88] [89] [90] [73] incorporate the k-Nearest Neighbor (kNN) loss as one of their

main losses. The kNN loss work as follows. A model estimates the scene flow between two points

in time. As input the model gets two consecutive point clouds between which it is to estimate the

scene flow. The estimated flow is applied to the first point cloud, and then for each of these points,

the nearest neighbor in the second point cloud is searched. The nearest neighbor distances of all

these points now make up the loss. Thus, today’s flow estimation models can only be re-trained

with pseudo-lidar data if the pseudo-lidar outputs consistent point clouds through time. This means

that if one adjusts the own motion between two points in time then a model should give the same

distances for the same points of an object. If the noise of the pseudo-lidar is too large, it is not

possible to distinguish between static and dynamic instances using distance-based methods.

To compare the point clouds taken from camera coordinates at different times, the transforma-

tion from section 3.3.3 is applied. We remove the ground first as in section 3.3.4. First, we

consider the deviations of the total point clouds after removal of the ground. Figure 4.16 shows

that most of the deviations of the point clouds are in the range of less than one meter. More than

99.7% of time points have a deviation of less than 2 meters.

To facilitate the interpretation, one should additionally consider the time. The time between two

recordings moves predominantly between 0.1043 and 0.1047 seconds. Therefore, in the following,
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Figure 4.16: Distribution of the average consistency through time, evaluated by the chamfer distance.

the time interval is simplified with 0.1. With this time interval, one can now interpret this distance

as the distance of the instance and thereby convert it into km/h. For this you must first halve the

distance because it is the average distance from each point in point cloud A to the closest point in

point cloud B and back. Then we convert this distance into km/h.

The figure 4.17 shows the distribution of average speeds of all timepoints in km/h. This means

that for each point in time, the average speed of all points is determined. This is only an approxima-

tion because it is based on the kNN towards the next pseudo-lidar point cloud but with egomotion

removed. It can be seen that the point cloud is very inconsistent through time, especially when

considering that a large portion of the pixels in the image belong to static classes/instances.

Up to this point, we have considered only one distance per pair of consecutive point clouds

to evaluate consistency over time. The problem is that outliers can make this value very large.

Therefore, the next step is to determine the distances and velocities per instance. To do this, we

cut out the corresponding parts of an instance from each point cloud. Only the chamfer distance

between the instance point clouds are calculated. Additionally we show two plots: one for the

distance of dynamic instances and one for the distance of static instances. In figure 4.18, you can

see that the pseudo-lidar is also not consistent per instance through time. Interestingly, the dynamic

instances have fewer deviations than the static ones. Although actually the static instances should

be consistent and the dynamic instances should reflect their motion.

In figure 4.19, one sees that the static instances have a very high velocity according to the

pseudo-lidar. Static and dynamic instances on pseudo-lidar point clouds cannot be distinguished

from each other based on distance as one can see. Almost every static instance can be considered
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Figure 4.17: Distribution of average speeds of instances km/h.
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Figure 4.18: Evaluation of the movement of KITTI-360 instances through time with the chamfer distance.
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Figure 4.19: Evaluation of the movement of KITTI-360 instances through time in km/h.

dynamic with it. Whether the measured speed for static instances is too high is not decisive for

whether flow estimation can be performed. Important is whether the measured velocity of static

instances caused by the inconsistency is lower and well separable from that of dynamic instances.

Since this is not the case, flow estimation based on the pseudo-lidar AdaBins cannot be made.

The goal of RQ3 was to find out whether it is possible to do anomaly detection with a flow based

approach on pseudo-lidar estimated point clouds. For this purpose we wanted to find out if pseudo-

lidar estimated point clouds are suitable for flow estimation. Because the pseudo-lidar does not

provide consistent enough point clouds through time, we cannot distinguish static and dynamic

instances , so it is not possible to perform flow estimation on it.
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5 Summary and Outlook

The focus of this contribution is to test if anomaly detection can be performed using pseudo-lidar

point clouds and subsequent flow estimation. An anomaly can result primarily from the fact that

an object is a novelty or that the pattern of the object has not been learned yet. Both cases were

considered.

First, in RQ1, we analyzed if anomalies had higher deviations from lidar to pseudo-lidar than

non-anomalies. Since there is no multimodal anomaly dataset, we had to work with another type

of dataset. KITTI-360 was used, which has corresponding 3D point clouds and 2D images as well

as corresponding instance labels. In KITTI-360, we defined anomalies as those instances that were

not properly segmented in 2D. Then, for all instances in KITTI-360, the distance between pseudo-

lidar and lidar was determined using the chamfer distance. Subsequently, it was analyzed whether

this dissimiliarity in the form of the chamfer distance is greater for anomalies than non-anomalies.

In RQ1, it could be shown that the dissimilarity between the pseudo-lidar and the lidar data is

quantitatively comparable for anomalies and non anomalies. As a result, we determined that the

pseudo-lidar is capable to map anomalies that originate from an unknown pattern in 3D with sim-

ilar performance as non-anomalies. Thus, the dissimilarity between lidar and pseudo-lidar is not

suitable for detecting anomalies. It is important to note that for RQ1 the anomaly was defined by

the instance segmentation performance. Only anomalies based on unseen patterns were found, and

not novelties of unknown class. The challenge here is that an anomaly was defined over the cIoU

threshold and thus, depending on the threshold, more or fewer objects are considered an anomaly.

One important caveat is that the pseudo-lidar was trained on KITTI while the instance segmen-

tation model, in our case a panoptic segmentation model, was trained on Cityscapes. Therefore

certain patterns may be unseen for the pseudo-lidar but seen for the panoptic segmentation model

and vice versa. This may have influenced the result of RQ1.

For RQ2 it was analyzed whether anomalies of type novelty can be mapped in 3D. Since no mul-

timodal anomaly dataset is available, this question could not be evaluated with ground truth. There-

fore, Monte Carlo Dropout was used as uncertainty estimation method and the pseudo-lidar esti-

mated point clouds were qualitatively analyzed. The result was that for Fishyscapes, RoadObsta-

cle21 and Lost and Found the network is not most uncertain on anomaly regions. For Fishyscapes

and Lost and Found, the network is more uncertain for areas that correspond to Cityscapes classes

than for areas that are anomalies. On RoadObstacle21, the used network was more uncertain for

road than for anomaly. Therefore, one can conclude that the quantitative analysis does not give

any reliable information about anomalies. In the qualitative analysis, it was possible to divide

the depth prediction results into three categories. Anomalies that were available in KITTI as depth

maps were mostly well-mapped. Due to blending, some anomalies from Fishyscapes were mapped

ambiguously in 3D. It is therefore likely that participation in the Fishyscapes benchmark will not
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be successful with an approach based on pseudo-lidar predicted point clouds. Most interesting

were the predictions of the net for classes that the net has never seen. Those anomalies were

mostly not mapped in 3D at all, and the neural network simply predicted the background of the

anomaly in those places. This was true for the augmented dataset Fishyscapes as well as for the

real dataset RoadObstacle21. Therefore, it is also suspected that participation with a pseudo-lidar

approach to anomaly detection will not be successful in the SegmentMeIfYouCan benchmark,

which includes the RoadObstacle21 dataset. One might test the hypotheses that finding anoma-

lies via pseudo-lidar is only possible if either the network has enough data to generalize or the

anomaly classes are present in the training data from pseudo-lidar. Therefore, it can be concluded

that the network is overconfident and therefore anomalies cannot be detected using the uncertainty

estimation approach with Bayesian Neural Networks. Finally, the qualitative analysis showed that

the results of the quantitative analysis were dominated by overconfidence. The network mostly did

not get the anomaly mapped in 3D and still the uncertainty for anomaly was not higher than for

the other regions that were mapped correctly in 3D.

In RQ3, it was analyzed whether the depth estimation is consistent through time so that dynamic

and static objects can be distinguished from each other via flow estimation. It has been shown

that AdaBins delivers too noisy results and the noise will have such a big influence on the flow

estimation that it will not enhance the capability in pseudo-lidar to improve the quality of anomaly

detection.

In summary, we conclude that current pseudo-lidar models trained on public depth estimation

datasets are not capable of helping to improve anomaly detection. However, it could be shown that

anomaly detection using pseudo-lidar may work if sufficient data were available.

Therefore, future work could provide larger datasets so that the networks reach higher levels of

generalization. Thereby, it is hoped that also unseen anomalies of type novelty can be mapped in

3D. The KITTI depth estimation dataset with its nearly 80,000 images is apparently not sufficiently

suitable for this purpose. Furthermore, one could also evaluate whether neural networks that work

on video data [91] are suspected to be capable of predicting depth more consistent and thereby

enable their use for anomaly detection through flow. An alternative approach would be to remain

in 2D and predict scene flow on images. This way, one could also look for contradictions with the

panoptic segmentation model. Thereby, one could predict an anomaly if the flow estimation says a

pixel is moving while the panoptic segmentation model says the pixel is of an unmoving class like

street. The advantage of the pseudo-lidar over scene flow approaches is that the pseudo-lidar does

not require hand-labeled datasets. On the other hand, the intermediate step via the pseudo-lidar

could cause information loss, as has been shown in this contribution with the current approaches.

Thus, the pseudo-lidar, when trained on very large datasets, could possibly provide better results

with a self-supervised flow estimation model than a 2D based approach.
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[19] Petra Bevandić, Ivan Krešo, Marin Oršić, and Siniša Šegvić. Simultaneous Semantic

Segmentation and Outlier Detection in Presence of Domain Shift. GCPR 2019, 2019.

[20] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew

Zisserman. The Pascal Visual Object Classes (VOC) Challenge. International Journal of

Computer Vision, 2010.

[21] Oliver Zendel, Katrin Honauer, Markus Murschitz, Daniel Steininger, and

Gustavo Fernández Domínguez. WildDash - Creating Hazard-Aware Benchmarks. In

Computer Vision – ECCV 2018, 2018.

[22] Hermann Blum, Paul-Edouard Sarlin, Juan Nieto, Roland Siegwart, and Cesar Cadena. The

Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. International

Journal of Computer Vision, 129, 2021.

[23] Peter Pinggera, Sebastian Ramos, Stefan Gehrig, Uwe Franke, Carsten Rother, and Rudolf

Mester. Lost and Found: Detecting Small Road Hazards for Self-Driving Vehicles. 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.

64



[24] Hermann Blum, Paul-Edouard Sarlin, Juan Nieto, Roland Siegwart, and Cesar Cadena. The

Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. International

Journal of Computer Vision, 2021.

[25] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,

Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes Dataset

for Semantic Urban Scene Understanding. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[26] Kaican Li, Kai Chen, Haoyu Wang, Lanqing Hong, Chaoqiang Ye, Jianhua Han, Yukuai

Chen, Wei Zhang, Chunjing Xu, Dit-Yan Yeung, Xiaodan Liang, Zhenguo Li, and Hang Xu.

CODA: A Real-World Road Corner Case Dataset for Object Detection in Autonomous

Driving. arXiv preprint: 2203.07724, 2022.

[27] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:

The kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[28] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,

Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal

dataset for autonomous driving. In 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.

[29] Jiageng Mao, Minzhe Niu, Chenhan Jiang, Xiaodan Liang, Yamin Li, Chaoqiang Ye, Wei

Zhang, Zhenguo Li, Jie Yu, Chunjing Xu, et al. One million scenes for autonomous driving:

Once dataset. arXiv preprint arXiv:2106.11037, 2021.

[30] Robin Chan, Krzysztof Lis, Svenja Uhlemeyer, Hermann Blum, Sina Honari, Roland

Siegwart, Pascal Fua, Mathieu Salzmann, and Matthias Rottmann. SegmentMeIfYouCan: A

Benchmark for Anomaly Segmentation. NeurIPS 2021, 2021.

[31] Robin Chan, Matthias Rottmann, and Hanno Gottschalk. Entropy maximization and meta

classification for out-of-distribution detection in semantic segmentation. IEEE/CVF

International Conference on Computer Vision, 2020.

[32] Giancarlo Di Biase, Hermann Blum, Roland Y. Siegwart, and César Cadena. Pixel-wise

anomaly detection in complex driving scenes. 2021 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2021.

[33] Krzysztof Lis, Krishna Nakka, Pascal Fua, and Mathieu Salzmann. Detecting the

Unexpected via Image Resynthesis. 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), 2019.

[34] Kelvin Wong, Shenlong Wang, Mengye Ren, Ming Liang, and Raquel Urtasun. Identifying

Unknown Instances for Autonomous Driving. 3rd Conference on Robot Learning (CoRL

2019), 2019.

65



[35] Liang-Chieh Chen, Huiyu Wang, and Siyuan Qiao. Scaling Wide Residual Networks for

Panoptic Segmentation. arXiv:2011.11675, 2021.

[36] Matthias Rottmann, Pascal Colling, Thomas Hack, Robin Chan, Fabian Hüger, Peter

Schlicht, and Hanno Gottschalk. Prediction Error Meta Classification in Semantic

Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities. In

2020 International Joint Conference on Neural Networks (IJCNN), 2020.

[37] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable

Predictive Uncertainty Estimation using Deep Ensembles. In NIPS’17: Proceedings of the

31st International Conference on Neural Information Processing Systems, 2017.

[38] Deng-Bao Wang, Lei Feng, and Min-Ling Zhang. Rethinking calibration of deep neural

networks: Do not be afraid of overconfidence. In Advances in Neural Information

Processing Systems, 2021.

[39] Matthias Rottmann, Pascal Colling, Thomas Hack, Robin Chan, Fabian Hüger, Peter

Schlicht, and Hanno Gottschalk. Prediction error meta classification in semantic

segmentation: Detection via aggregated dispersion measures of softmax probabilities. In

Conference: 2020 International Joint Conference on Neural Networks (IJCNN), 2020.

[40] Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

[41] Alexey Dosovitskiy and Thomas Brox. Generating Images with Perceptual Similarity

Metrics based on Deep Networks. In NIPS’16: Proceedings of the 30th International

Conference on Neural Information Processing Systems, 2016.

[42] Shuying Liu and Weihong Deng. Very deep convolutional neural network based image

classification using small training sample size. In 2015 3rd IAPR Asian Conference on

Pattern Recognition (ACPR), 2015.

[43] K. J. Joseph, Salman Khan, Fahad Shahbaz Khan, and Vineeth N. Balasubramanian.

Towards Open World Object Detection. In 2021 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2021.

[44] Akshay Dhamija, Manuel Gunther, Jonathan Ventura, and Terrance Boult. The overlooked

elephant of object detection: Open set. In Proceedings of the IEEE/CVF Winter Conference

on Applications of Computer Vision (WACV), March 2020.

[45] Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive

Sciences, 1999.

[46] Jeremias Knoblauch, Hisham Husain, and Tom Diethe. Optimal continual learning has

perfect memory and is NP-hard. In Proceedings of the 37th International Conference on

Machine Learning, 2020.

66



[47] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and

Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository. arXiv:1512.03012, 2015.

[48] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud

auto-encoder via deep grid deformation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[49] Xingyu Liu, Charles R. Qi, and Leonidas J. Guibas. FlowNet3D: Learning Scene Flow in

3D Point Clouds. In 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

[50] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. You only learn one

representation: Unified network for multiple tasks. arXiv:2105.04206, 2021.

[51] Chen Zhang, Zefan Huang, Marcelo H. Ang, and Daniela Rus. Lidar degradation

quantification for autonomous driving in rain. In 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2021.

[52] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor Segmentation

and Support Inference from RGBD Images. In ECCV, 2012.

[53] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single

image using a multi-scale deep network. In Advances in Neural Information Processing

Systems, 2014.

[54] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and Andreas

Geiger. Sparsity invariant cnns. In International Conference on 3D Vision (3DV), 2017.

[55] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation

using adaptive bins. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2021.

[56] Minsoo Song, Seokjae Lim, and Wonjun Kim. Monocular Depth Estimation Using

Laplacian Pyramid-Based Depth Residuals. IEEE Transactions on Circuits and Systems for

Video Technology, 2021.

[57] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision Transformers for Dense

Prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), 2021.

[58] Zeyu Cheng, Yi Zhang, and Chengkai Tang. Swin-Depth: Using Transformers and

Multi-Scale Fusion for Monocular-Based Depth Estimation. IEEE Sensors Journal, 2021.

[59] Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Zhichao Li, Le Zhang, Chunhua Shen,

Ming-Ming Cheng, and Ian Reid. Unsupervised Scale-consistent Depth Learning from

Video. International Journal of Computer Vision, 2021.

67



[60] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional

neural networks. In Proceedings of the 36th International Conference on Machine

Learning, 2019.

[61] Hassan Alhaija, Siva Mustikovela, Lars Mescheder, Andreas Geiger, and Carsten Rother.

Augmented reality meets computer vision: Efficient data generation for urban driving

scenes. International Journal of Computer Vision (IJCV), 2018.

[62] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?

the kitti vision benchmark suite. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2012.

[63] Rohit Mohan and Abhinav Valada. Efficientps: Efficient panoptic segmentation.

International Journal of Computer Vision (IJCV), 2021.

[64] Lorenzo Porzi, Samuel Rota Bulo, Aleksander Colovic, and Peter Kontschieder. Seamless

scene segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2019.

[65] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and Raquel

Urtasun. Upsnet: A unified panoptic segmentation network. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[66] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollar. Panoptic feature pyramid

networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

[67] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder. The

Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In 2017 IEEE

International Conference on Computer Vision (ICCV), 2017.

[68] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh

Chen. Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation. In

Computer Vision – ECCV 2020, 2020.

[69] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In 2017 IEEE

International Conference on Computer Vision (ICCV), 2017.

[70] Qizhu Li, Xiaojuan Qi, and Philip H.S. Torr. Unifying training and inference for panoptic

segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.

[71] Yangxin Wu, Gengwei Zhang, Yiming Gao, Xiajun Deng, Ke Gong, Xiaodan Liang, and

Liang Lin. Bidirectional graph reasoning network for panoptic segmentation. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

68



[72] Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig

Adam, and Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline for

bottom-up panoptic segmentation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2020.

[73] Stefan Andreas Baur, David Josef Emmerichs, Frank Moosmann, Peter Pinggera, Bjorn

Ommer, and Andreas Geiger. SLIM: Self-Supervised LiDAR Scene Flow and Motion

Segmentation. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV),

2021.

[74] Daniel Bogdoll, Felix Schreyer, and J. Marius Zöllner. ad-datasets: a meta-collection of

data sets for autonomous driving. In Proceedings of the 8th International Conference on

Vehicle Technology and Intelligent Transport Systems, 2022.

[75] Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lubing Zhou, Holger Caesar, Oscar

Beijbom, and Abhinav Valada. Panoptic nuscenes: A large-scale benchmark for lidar

panoptic segmentation and tracking. In ICRA, 2022.

[76] How to use nusc and nuim at the same time.

https://web.archive.org/web/20220614123650/https:

//forum.nuscenes.org/t/how-to-use-nusc-and-nuim-at-the-same-time/493,

2020. Accessed: 2022-06-14.

[77] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year, 1000km: The

Oxford RobotCar Dataset. The International Journal of Robotics Research (IJRR), 2017.

[78] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul

Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,

Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao,

Aditya Joshi, and Dragomir Anguelov. Scalability in perception for autonomous driving:

Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.

[79] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss,

and Jurgen Gall. SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR

Sequences. In Proc. of the IEEE/CVF International Conf. on Computer Vision (ICCV),

2019.

[80] Jules Sanchez. recoverkitti360label.

https://web.archive.org/web/20220525101943/https:

//github.com/JulesSanchez/recoverKITTI360label, 2022. Accessed: 2022-05-24.

[81] Finn Sartoris. Anomaly detection in lidar data by combining supervised and self-supervised

methods. Bachelor’s thesis, Karlsruhe Institute of Technology (KIT), 2022.

69

https://web.archive.org/web/20220614123650/https://forum.nuscenes.org/t/how-to-use-nusc-and-nuim-at-the-same-time/493
https://web.archive.org/web/20220614123650/https://forum.nuscenes.org/t/how-to-use-nusc-and-nuim-at-the-same-time/493
https://web.archive.org/web/20220525101943/https://github.com/JulesSanchez/recoverKITTI360label
https://web.archive.org/web/20220525101943/https://github.com/JulesSanchez/recoverKITTI360label


[82] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel dataset and benchmarks for

urban scene understanding in 2d and 3d. arXiv preprint:2109.13410, 2021.

[83] Yair Kittenplon, Yonina C. Eldar, and Dan Raviv. Flowstep3d: Model unrolling for

self-supervised scene flow estimation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2021.

[84] Moritz Menze, Christian Heipke, and Andreas Geiger. Object scene flow. ISPRS Journal of

Photogrammetry and Remote Sensing (JPRS), 2018.

[85] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint 3d estimation of vehicles and

scene flow. In ISPRS Workshop on Image Sequence Analysis (ISA), 2015.

[86] Hassan Alhaija, Siva Mustikovela, Lars Mescheder, Andreas Geiger, and Carsten Rother.

Augmented reality meets computer vision: Efficient data generation for urban driving

scenes. International Journal of Computer Vision (IJCV), 2018.

[87] Yunze Man, Xinshuo Weng, Xi Li, and Kris Kitani. Groundnet: Monocular ground plane

normal estimation with geometric consistency. In Proceedings of the 27th ACM

International Conference on Multimedia, 2019.

[88] Ivan Tishchenko, Sandro Lombardi, Martin R. Oswald, and Marc Pollefeys.

Self-Supervised Learning of Non-Rigid Residual Flow and Ego-Motion. In 2020

International Conference on 3D Vision (3DV), 2020.

[89] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li Fuxin. PointPWC-Net: Cost

Volume on Point Clouds for (Self-)Supervised Scene Flow Estimation. In Computer Vision

– ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,

Proceedings, Part V, 2020.

[90] Himangi Mittal, Brian Okorn, and David Held. Just Go With the Flow: Self-Supervised

Scene Flow Estimation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2020.

[91] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent

video depth estimation. ACM Trans. Graph., 2020.

70


	1 Introduction
	2 State-Of-The-Art
	2.1 Taxonomies of Anomalies in Autonomous Driving
	2.2 Anomaly Detection Datasets and Benchmarks
	2.3 Current Anomaly Detection Approaches
	2.4 Image-Based Anomaly Detection
	2.5 3D Open World Object Detection for Anomaly Detection
	2.6 3D Point Reconstruction Based Anomaly Detection
	2.7 Research Gap and Contribution
	2.8 Pseudo-Lidar
	2.9 Panoptic Segmentation

	3 Method
	3.1 RQ1: Is There a Dissimilarity Between Point Clouds Generated by Pseudo-Lidar and Those Captured by Lidar for Anomalies, and Are These Dissimilarities an Indicator of an Anomaly?
	3.1.1 Dataset Requirements
	3.1.2 Dataset Selection
	3.1.3 Approach

	3.2 RQ2: Is a Pseudo-Lidar Capable of Mapping Anomalies of Type Novelties in 3D?
	3.2.1 Dataset Requirements
	3.2.2 Dataset Selection
	3.2.3 Quantitative Analysis
	3.2.4 Qualitative Analysis

	3.3 RQ3: Is It Possible With a Flow Estimation Approach, Based on Pseudo-Lidar Data, to Find Anomalies of Dynamic Classes?
	3.3.1 Dataset Requirements
	3.3.2 Dataset Selection
	3.3.3 How to Evaluate Pseudo-Lidar Consistency Through Time
	3.3.4 Ground Removal


	4 Evaluation
	4.1 RQ1: Is There a Dissimilarity Between Point Clouds Generated by Pseudo-Lidar and Those Captured by Lidar for Anomalies, and Are These Dissimilarities an Indicator of an Anomaly?
	4.1.1 Configuration
	4.1.2 Answering the Research Question

	4.2 RQ2: Is a Pseudo-Lidar Capable of Mapping Anomalies of Type Novelties in 3D?
	4.2.1 Augmented Dataset
	4.2.2 Non Augmented Anomaly Datasets

	4.3 RQ3: Is It Possible With a Flow Estimation Approach, Based on Pseudo-Lidar Data, to Find Anomalies of Dynamic Classes?

	5 Summary and Outlook
	A List of Figures
	B List of Tables
	C Bibliography

