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Abstract— A new self-consistent time-domain model for
the simulation of gyrotron traveling wave tubes with a
helically corrugated interaction space (helical gyro-TWTs)
is presented. The new model links classical methods, using
the approach of slowly varying variables together with an
expansion of the electromagnetic field in eigenmodes, and
advanced full-wave PIC solvers. The aim is to significantly
reduce the required calculation time compared to full-wave
PIC solvers, while less strict assumptions are introduced
as in the classical approaches of slowly varying variables.
For the first time, the classical theory of coupled circu-
lar waveguide modes for the description of the operat-
ing electromagnetic eigenmode in the helical interaction
space is combined with a 3D PIC representation of the
electron beam. This allows the simulation of the beam-
wave interaction over a broad bandwidth and at arbitrary
harmonics of the cyclotron frequency. In addition, arbitrary
electron beams (with spreads, offsets of the guiding center
from the symmetry axis, etc.) can be investigated. The new
approach is compared with the full-wave 3D PIC code CST
Microwave Studio. A good agreement of the simulation re-
sults is achieved, while the computing time is significantly
reduced.

Index Terms— Gyrotron traveling wave tube (gyro-TWT),
helically corrugated waveguide, coupled modes method,
particle-in-cell (PIC).

I. INTRODUCTION

NOVEL broadband high-power amplifiers at sub-THz fre-
quencies are of considerable interest for future time-

domain dynamic nuclear polarization (DNP) nuclear magnetic
resonance (NMR) spectroscopy methods such as NOVEL [1]
or TOP [2]. The development of those amplifiers is part of the
current research. A promising candidate are gyrotron travel-
ing wave tubes with a helically corrugated interaction space
(helical gyro-TWTs) [3]. Helical gyro-TWTs can provide the
required bandwidth and a high power at the same time.

In a gyro-amplifier, coherent electromagnetic radiation is
amplified by a stimulated emission of bremsstrahlung from
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a beam of gyrating electrons. The simplest gyro-TWTs use
a circular waveguide as circuit for the electron-wave inter-
action. In [3], an alternative type of gyrotron amplifier is
proposed: a gyro-TWT with a helically corrugated waveguide
as interaction region (HCIR). In the HCIR, the dispersion
is radically changed for longitudinal wavenumbers close to
zero. This allows a resonant electron-wave interaction over
a significantly increased bandwidth. At the same time, the
sensitivity to velocity spreads in the electron beam is reduced.

Besides the use as usual high-power amplifier, helical gyro-
TWTs could be also used for the creation of innovative new
types of microwave sources, such as in [4], where a broad-
band high-power helical gyro-TWT is coupled in a feedback
loop with a saturable cyclotron absorber which enables the
creation of powerful coherent ultra-short pulses. However, the
simulation of such complex sources with 3D full-wave PIC
simulation tools is very time consuming. An accurate and
at the same time fast simulation tool would facilitate the
development.

The approaches for the transient simulation of vacuum
tubes can be split into two generic groups. The first group
consists of Particle-In-Cell (PIC)-codes which usually include
a 3D description of the particle motion and a full-wave
simulation of the RF-field. The commercial software packages
CST Microwave Studio [5] and MAGIC [6] belong to this
group. Those programs are designed for universal application
and can be used for the simulation of almost all types of
vacuum electron tubes. Their disadvantage is the required
high computing effort. Therefore, in the second group of
programs, simplified physical models are used. Considering
the simulation of gyro-devices, particularly classical gyrotron
oscillators, the common codes are based on an eigenmode
expansion of the electromagnetic field and the model of slowly
varying variables. Several specialized programs exist for the
simulation of gyrotron devices, e.g. [7]–[13].

While for the simulation of typical gyrotron devices with
slowly varying circular interaction regions the coupling of dis-
crete modes can be neglected, the helical corrugation provides
an intentional coupling of particular modes. For sufficiently
small corrugation amplitudes, this can be described by the
coupled wave theory [14], [15] (based on the method of
perturbation).

Based on the coupled wave theory, steady-state equations
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were derived in the beginning of the theoretical analysis
of helical gyro-TWTs [3]. The coupled system of equations
for the wave and electrons was usually linearized [3], [15]
which already allowed the analysis of different amplification
regimes and the small-signal gain. For more complex cases,
non-linear self-consistent steady-state equations were analyzed
[16]. However, the analysis of transient phenomena, as for
example required for the previously mentioned source of
coherent pulses [4], is not possible with the averaged models.
Therefore, the first time-domain model for the simulation of
helical gyro-TWTs is presented in [17]. It uses transient cou-
pled wave equations and the wave excitation is derived from
differential equations for the electron transverse momentum.
Two assumptions are made: (1) a sub-relativistic transverse
electron velocity (relativistic effects are ignored); (2) the
variation of the transversal momentum is slow compared
to the high-frequency wave. Therefore, a slow transversal
momentum can be introduced and allows the derivation of
a non-isochronous oscillator equation for the slow transversal
momentum [17].

In this paper, we present an alternative approach for the
simulation of helical gyro-TWTs which does not require the
mentioned assumptions on the electrons transverse momentum
from [17]. The proposed approach can be seen as a hybrid
between classical methods based on slowly varying variables
and 3D full-wave PIC solvers. It combines a 3D PIC handling
of the electron beam with the classical approach of slowly
varying amplitudes and the coupled wave theory for the
description of the electric field. The wave excitation by the
electron beam is described with a source term derived from
the arbitrary 3D beam of macro particles.

The proposed 3D electron beam provides a number of ad-
vantages: It allows a simple modeling and simulation of elec-
tron beams with arbitrary particle distributions (non-laminar
beams, spreads, offset of the guiding center from the symmetry
axis, etc.) and the consideration of inhomogeneities or mis-
alignment of the static magnetic field is possible. Moreover,
the general formulation of the source term allows an excitation
of the field at arbitrary harmonics of the cyclotron resonance.
In future, the individual handling of macro particles in the
beam will enable the inclusion of additional physical effects
such as influences of space-charge fields. Compared to full-
wave PIC simulations, this model retains the significant gain
of simulation speed and it still allows a detailed investigation
and separation of the involved physical effects.

In this paper, the basic equations of the approach (section II)
as well as the numerical solution of those equations are
presented (section III). In section IV, the developed model is
validated against the commercial full-wave PIC solver CST
Microwave Studio [5] and a conclusion is drawn in section V.

II. BASIC EQUATIONS

In a helical gyro-TWT, the beam-wave interaction takes
place in a helically corrugated waveguide with an inner surface

r(ϕ, z)=R+ r̃ cos(m̃ϕ− 2πz/d̃) , (1)

where R is the waveguide mean radius; r̃, m̃ and k̃∥ =

2π/d̃ are the amplitude, azimuthal and axial number of the

corrugation. Two rotating modes TEmA,1 and TEmB,1 are
coupled with each other, if they fulfill the condition [14]

m̃=mA −mB (2)

together with the Bragg resonance condition
2π

d̃
≈ k∥A − k∥B , (3)

where k∥A and k∥B are the axial wavenumbers of the two
coupled modes A and B. In the following, three-fold helically
corrugated waveguides (m̃=3) are investigated exclusively.

For an optimal stability and broadband behavior of the
helical gyro-TWT, the parameters of the three-fold helical
corrugation are chosen such that the two partial waves of
lowest order, namely the TE2,1 and TE1,1 modes, of a regular
waveguide are coupled. From the coupling condition (2) with
m̃=3 it follows that this coupling is only possible if mode B
is a counter-rotating TE−1,1 mode.

For a suppression of higher-order parasitic modes, the radius
R is set such that the TE2,1 mode, which is co-rotating with
the electrons, is near to cut-off at the operation frequency band
and the cut-off frequency of the TE1,1 mode is far below the
operating frequency. Therefore, the Bragg resonance condition
(3) simplifies to:

k∥A ≈ 0 ,

k∥B ≈ k ,

⇒ 2π

d̃
= k̃∥ ≈ k∥B , (4)

where k is the free-space wavenumber. As a consequence of
the Bragg resonance condition (4), the coupling occurs be-
tween the first spatial harmonic of mode B (axial wavenumber
shifted by k̃∥) and the fundamental mode A.

In Fig. 1, the resulting dispersion curve for the helical eigen-
mode is shown together with the cyclotron resonance condition
for the beam-wave interaction. Around zero axial wavenumber,
the helical eigenmode has a nearly constant group velocity
over a broad frequency band. As a result, it can be matched to
resonantly interact with a gyrating electron beam over a broad
bandwidth. A further benefit of the helical eigenmode is its
ability to resonantly interact with an axis encircling electron
beam (so-called large orbit beam) at the second cyclotron
harmonic. This reduces the required magnetic field by a factor
of 2, which is particularly advantageous at frequencies in the
sub-THz range.

A. Wave Equation
The wave equations are simplified by the classical slowly

varying amplitudes approximation [18]. For this, the electric
field is expanded into orthogonal eigenmodes and a baseband
transformation to a carrier frequency ω0, which should be
close to the expected operation frequencies, is performed. As
a consequence, the electric field in the helically corrugated
waveguide at the operation frequency band can be presented
by the two partial waves

EA(t, r, ϕ, z)=Re
{
A(t, z) e jω0t êA(r, ϕ)

}
, (5)

EB(t, r, ϕ, z)=Re
{
B(t, z) e j(ω0t−k̃∥z) êB(r, ϕ)

}
, (6)
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Fig. 1. Schematic dispersion diagram showing the partial waves cou-
pled by the helical corrugation, the operating eigenmode of the helical
waveguide, and the cyclotron resonance condition for an interaction at
the second harmonic.

where j is the imaginary unit, A and B are the amplitudes and
êA,B are the transversal structures of the circular waveguide
eigenmodes A and B (the expressions can be found, e.g. in
[19]).

Setting the carrier frequency ω0 to the cutoff frequency of
mode A, the change of the complex wave envelope A(t, z)
can be assumed as slow compared to the phase term e jω0t.
Consequently, the 1D Helmholtz equation for mode A can be
approximated as [18]

∂2A

∂z2
+ k20∥A− j

2k20
ω0

∂A

∂t

=−µ0 e −jω0t

∫∫
S⊥

∂J

∂t
· ê∗A dS⊥

︸ ︷︷ ︸
=SA

. (7)

The term SA is called source term and describes an excitation
of the field by an external source, e.g. the electron beam. A
derivation of a source term for an arbitrary 3D particle beam
is presented in the following section.

Since mode B is a traveling mode, operated far away from
cut-off, the group velocity of the mode is almost constant for
the operation frequency band. Therefore, the 1D Helmholtz
equation can be further simplified compared to (7) by neglect-
ing dispersion effects:

k̃∥
∂B

∂z
+

k0
c0

∂B

∂t
− j

2

(
k20∥ − k̃2∥

)
B

=
j

2
(−µ0) e −j(ω0t−k̃∥z)

∫∫
S⊥

∂J

∂t
· ê∗B dS⊥

︸ ︷︷ ︸
=SB

. (8)

Finally, a set of two coupled equations describing the eigen-
wave in a helically corrugated waveguide can be formulated:

∂2A

∂z2
− j2

k0
c0

∂A

∂t
+ k20∥AA=SA +CB,AB , (9)

k̃∥
∂B

∂z
+

k0
c0

∂B

∂t
− j

2

(
k20∥B − k̃2∥

)
B=

j

2
CA,BA . (10)

Here, CA,B and CB,A are the coupling factors for the coupling
of mode A to mode B and vice versa. The expressions are
given in [15].

In (10), it is already taken into account that in a helical gyro-
TWT a large orbit electron beam is typically used to enhance
the mode selection and to prevent the excitation of parasitics.
Such an electron beam excites only resonant modes with the
azimuthal indices equal to the electron cyclotron harmonic
number s. As a consequence, SB can be omitted in (10).
However, if a misaligned electron beam or a beam with strong
spreads should be investigated, SB must be taken into account.

B. Source Term
While it is common in the most approaches for the sim-

ulation of gyrotron devices to simplify the source term S
by the Graf’s addition theorem [20], here, the source term
is directly evaluated for an arbitrarily moving particle and an
arbitrary eigenmode ê. In the following, a brief overview of
the derivation of this ‘full’ source term is given.

In (7) and (8), the source term is defined as the time
derivative of a current density J , integrated over the cross
section of the waveguide:

S=µ0

∫∫
S⊥

∂J

∂t
· ê∗ e −jω0t dS⊥ . (11)

For a sum of point particles with position ri, velocity vi and
electric charge qi, the electric current density can be expressed
as

J =
∑
i

qiδ(r− ri)vi , (12)

where δ(r− ri) is the 3D delta function. After applying the
definition of the delta function in cylindrical coordinates to
(11), multiple applications of the chain rule and an integration
over the waveguide cross-section S⊥, the source term Si of a
single particle i calculates as:

Si =µ0qie −jω0t

[
− δ′(z− zi)żivi · ê∗(ri, ϕi)

+ δ(z− zi)v̇i · ê∗(ri, ϕi)

+ δ(z− zi)ṙivi ·
∂ê∗(r, ϕi)

∂r

∣∣∣∣
r=ri

+ δ(z− zi)ϕ̇ivi ·
∂ê∗(ri, ϕ)

∂ϕ

∣∣∣∣
ϕ=ϕi

]
.

(13)

Here, the dot on variables represents the time derivative ∂
∂t .

It is worth emphasizing that no assumptions about the
electron beam, the waveguide, the eigenmode or the cyclotron-
harmonic are made. Therefore, (13) can be applied for arbi-
trary electric fields and waveguides which allows an extension
of the developed program for future applications. Moreover,
this source term is valid for interactions at all cyclotron
harmonics.

III. NUMERICAL SOLUTION

For the numerical solution, a finite difference (FD) scheme
is used. The time domain as well as the spatial domain of
interest are discretized into Nt time steps of length ∆t and
Nz space steps of length ∆z. For the calculation of a new
time step t+∆t, first the field equations (9) and (10) are
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solved. New particles are injected in every time step and with
the known amplitude distribution of the waveguide modes
along the interaction space, the particle positions are updated
(particle pushing). Particles which leave the simulation space
are killed after every particle pushing step. If additional effects
such as space-charge fields or beam neutralization should be
considered, their calculation can be introduced before the
particle pushing. Finally, the source terms Si are calculated
with the known wave amplitudes and the updated particle
positions and velocities. With the updated source terms, the
field equations including the excitation by the electron beam
can be solved in the next time step.

A. Coupled Wave Equations of a HCIR
For the numerical solution of the field equations, the implicit

finite difference Crank-Nicolson scheme [21] is used which is
of second-order, both in time and space. In the Crank-Nicolson
scheme, the explicit first order forward finite difference for
time step t and the implicit first order backward finite differ-
ence for time step t+∆t are combined for a discretization
of the time derivatives. For the spatial derivatives, a central
difference scheme of second order is used. This gives the
following discretization which can be applied to the field
equations (9) and (10):

A=
1

2

(
At+1

z +At
z

)
(14)

∂A

∂t
=

At+1
z −At

z

∆t
(15)

∂A

∂z
=

1

2

(
At+1

z+1 −At+1
z−1

2∆z
+

At
z+1 −At

z−1

2∆z

)
(16)

∂2A

∂z2
=

1

2

(
At+1

z+1 − 2At+1
z +At+1

z−1

∆z2
+

At
z+1 − 2At

z +At
z−1

∆z2

)
(17)

After a discretization of the equations (9) and (10) following
the Crank-Nicolson scheme (14)-(17), a coupled system of
linear equations

DBB+TAA=V A (18)
TBB+DAA=V B (19)

is derived, where DA,B represent (Nz)× (Nz) diagonal ma-
trices and TA,B represent (Nz)× (Nz) tridiagonal matrices.
The coupled equations can be rewritten as a single system of
linear equations(

DB TA

TB DA

)(
B
A

)
=

(
V A

V B

)
(20)

which can be efficiently solved by the ‘Schur-Complement’
method:

G=DA −TBD
−1
B TA (21)

⇒GA=V B −TBD
−1
B V A (22)

⇒B=D−1
B V A −D−1

B TAA . (23)

With this method, the original problem of a (2Nz)× (2Nz)
system of equation is reduced to a (Nz)× (Nz) system of

equations (22) and a simple back-substitution (23). In the given
case, this is possible because the inverse D−1

B for a diagonal
matrix can be easily found.

The so-called Schur complement G is a penta-diagonal ma-
trix. For a solution of the resulting system of linear equations,
optimized algorithms are available, for example the zgbtrs
function in the LAPACK [22].

It should be mentioned that the described method is only
valid, as long as all of the diagonal elements of DB are non-
zero. In the given problem, this corresponds to a non-zero
coupling coefficient C in the equations (9) and (10). This
is fulfilled for all helically corrugated waveguides. For very
small or very large elements in DB, this method becomes
numerical unstable (bad conditioned matrix). However, for
typical coupling coefficients in helical gyro-TWTs and for
floating point types in double precision, we observed that the
method remains numerically stable.

B. Source Term and Equations of Motion
The contributions of the particles to the source term are

calculated with equation (13). For the spacial interpolation
from the particle position to the amplitude nodes, the Dirac
distribution δ(z) and it’s derivative δ′(z) must be numerically
evaluated. Because the amplitude nodes are equally distributed
along the z axis with step-width ∆z, δ(z) can be approximated
by a one-variable function Φ(x) that scales with the step-width
in the following manner:

δ(z)→ 1

∆z
Φ(

z

∆z
)=

1

∆z
Φ(ẑ) with ẑ≡ z

∆z
, (24)

δ′(z)→ 1

∆z2
Φ′(ẑ) . (25)

For the function Φ(ẑ), the cosine-approximation is used (a
detailed derivation can be found in [23]). It allows a fast
numerical evaluation and has a continuous derivative:

Φ(ẑ)=

{
1
4

(
1+ cos πẑ

2

)
, |ẑ| ≤ 2

0, otherwise
(26)

Φ′(ẑ)=

{
−1
8 sin πẑ

2 , |ẑ| ≤ 2

0, otherwise .
(27)

After the electromagnetic field is known (solution of the
field equations from the first step and the optional additional
fields such as space-charge fields), the particle positions and
velocities are updated. This is done by solving the Lorentz
equation

dp

dt
= q (E+v×B) , (28)

where p, v and q are the relativistic momentum, the velocity
and the charge of a particle. E and B are the electric and
magnetic fields. For the integration of (28), various particle
integrators (particle pushers) have already been developed
[24]. The most of these algorithms are suitable for the given
propose. So far, the developed tool was successfully tested
with an explicit fourth-order Runge-Kutta method [25] and
the well known Boris algorithm [26].

In the proposed algorithm, the time step length ∆t is
determined by the particle pushing step. To allow an accurate
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sampling of the gyration of the electrons, time steps between
2π

50ωH
and 2π

100ωH
have shown good results with the Boris and

the Runge-Kutta method. If additional effects such as space-
charge are included, a smaller time-step may be required.

The required spatial resolution ∆z is determined by the
solution of the wave amplitudes. An accurate sampling of the
spacial phase change of the slow wave has been shown crucial
and therefore a ∆z of smaller than 1

360(k0−k̃∥)
should be used.

IV. COMPARISON WITH FULL-WAVE PIC SIMULATIONS

The algorithm presented above is implemented in an object-
oriented framework with the programming language C++. One
advantage of the PIC approach is its excellent suitability for a
solution in parallel. Therefore, the developed implementation
utilizes parallelization on multi-core central processing units
(CPUs). In the following, our implementation will be referred
to as ‘simpleRick’.

For the validation of the proposed approach, simulations
are performed and compared with the commercial full-wave
PIC tool CST Microwave Studio [5]. Two different setups are
investigated: a W-band helical gyro-TWT for radar and com-
munication applications with a center frequency of 94GHz and
a sub-THz gyro-TWT for spectroscopy applications around
263GHz. For both setups, the gain at saturated output power
for different frequencies is compared. To avoid the requirement
of many time consuming simulations with different input-
signal frequencies, a frequency-chirped signal with sufficient
power is used as input for the time-domain simulations. In a
post-processing step, the resulting frequency-modulated output
signal is transformed to frequency-domain and the gain for
different frequencies is calculated.

A. W-Band Helical Gyro-TWT
The W-band gyro-TWT has a three-fold helical interaction

region with R=1.45mm, r̃=0.23mm, d̃=3.2mm and a
length of L=35 d̃. It is operated with an electron beam current
of 1.5A, a beam voltage of Ub =50 kV and a pitch factor of
α= v⊥/v∥ =1.0 at a constant magnetic field of 1.82T.

For the CST MS simulation model, a spatial discretization of
dx= dy=0.025λ in the transversal dimension and dz=0.03λ
in the longitudinal dimension is used which results in 4 · 106
mesh cells. While in [27] an even finer discretization is rec-
ommended, the chosen values have shown a good compromise
between accuracy and calculation time. The electron beam is
modeled by 200 · 103 macro particles.

In the simpleRick setup, a spacial discretization of dz=
0.01λ is used. The number of macro particles is chosen simi-
larly to the CST MS simulation to allow a good comparability.
The used time steps of around 0.15 ps are also chosen similarly
for both simulation tools.

For CST MS, the simulation takes 5:30 h on a desktop
computer with a 12 core AMD RyzenTM 9 5900X CPU. In
comparison, the simulation with simpleRick takes only 0:20 h
on the same machine and is thus significantly faster.

In Fig. 2a, the simulated gain over the frequency is shown
for a 1W input signal. A maximal gain of roughly 35 dB is
simulated by both simulation tools. The frequency dependency

and the simulated 3 dB bandwidth of 7.5GHz is in a good
agreement between the both simulation tools. However, the
gain curve simulated by the method presented here is shifted
towards higher frequencies by about 0.75GHz. In addition, the
gain simulated with simpleRick drops faster for frequencies
below 87GHz. The reason for the differences at low frequen-
cies is the utilized coupled modes method. Especially for lower
frequencies, the inaccuracies of the coupled modes equations
increase because the coupled TE1,1 mode is assumed to
be non-dispersive at the investigated frequencies (see (10)).
Therefore, the approximated dispersion relation differs slightly
from the real dispersion which influences the beam-wave
interaction.

B. Sub-THz Helical Gyro-TWT
The helically corrugated interaction region of the sub-

THz gyro-TWT has a mean radius of R=0.528mm with a
corrugation of r̃=0.08mm and d̃=1.11mm at a total length
of L=35 d̃. It is operated with a 0.4A electron beam with a
beam voltage of Ub =40 kV and a pitch factor of α=1.0 at
a constant magnetic field of 5.015T.

A similar spacial discretization as in the previous example
is used which results in 2 · 106 mesh cells for the CST model.
For both simulation tools, a time step of dt=0.05 ps is used
and the electron beam is modeled by 100 · 103 macro particles.
A spatial discretization of dx= dy=0.025λ in the transversal
dimension and dz=0.03λ in the longitudinal dimension is
used for the CST MS simulation setup which results in 4 · 106
mesh cells.

While the simulation with CST MS takes 9:30 h on the
utilized computer, the simulation with the method presented in
this paper requires only 0:35 h. Therefore, in both examples,
W-band and sub-THz helical gyro-TWT, a speed-up of about
16 is observed.

In Fig. 2b, the corresponding simulated gain curves are
shown. The curves are in good agreement between both sim-
ulation models. The new simulation model predicts a slightly
higher gain than CST MS (+0.5 dB) and again a slight shift
of the gain curve by 1GHz towards higher frequencies is
observed. However, the overall shape of the curves are in a
great agreement.

V. CONCLUSION

The presented approach for the simulation of gyro-TWTs
with HCIR is a link between classical methods with slowly
varying values approaches and full-wave PIC solvers. The
basic equations as well as the numerical solution of the new
hybrid model were presented and the new developed model
was validated against the commercial full-wave PIC solver
CST MS. A good agreement between the simulation results is
observed while the computing time is significantly reduced.

The new approach is in particular well suited for the initial
design process of a tube and automated synthesis/optimization
procedures where a high number of simulations is required.

If more detailed investigations are required, further effects
can easily be added to the model. For example, space-charge
effects can be added if an additional space-charge field is
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Fig. 2. Comparison of the frequency dependent saturated gain simulated with CST MS and simpleRick. (a) For a W-band helical gyro-TWT; (b)
For a sub-THz helical gyro-TWT.

calculated in each particle pushing step, e.g. using the method
presented in [28]. Therefore, advanced effects can also be
studied with the proposed model. The advantage is that the
influences of all these effects can be well separated and
individually investigated, which is often difficult in full-wave
PIC approaches.

However, each additional extension of the model slows
down the simulations and beyond a certain threshold, using
a highly optimized commercial full-wave PIC solver such as
CST MS will become faster. Furthermore, if an HCIR with
a strong corrugation (r̃ > λ/10) is investigated, the coupled
modes approach loses its validity and again a full-wave PIC
solver is the appropriate choice. In future, this limitation can
be addressed if the circular waveguide eigenmodes would
be replaced by numerically calculated eigenmodes of the
HCIR. The advantage of the proposed PIC approach is, that
the particle handling and the source term calculation will
work also with numerically calculated eigenmodes without any
changes.

Finally, a full-wave PIC solver is also the appropriate choice
for the final verification of a newly developed design.
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