
On dynamical low-rank integrators
for matrix differential equations

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der KIT-Fakultät für Mathematik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Stefan Schrammer

Tag der mündlichen Prüfung: 13. Juli 2022

1. Referentin: Prof. Dr. Marlis Hochbruck
2. Referent: PD Dr. Markus Neher
3. Referent: Assoz. Prof. Lukas Einkemmer, PhD

This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Acknowledgement

I gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) – Project-ID 258734477 – SFB 1173.

I continue in German.

Mein erster Dank gebührt meiner Betreuerin Prof. Dr. Marlis Hochbruck. Nach meiner Rückkehr ans
KIT im Anschluss an mein Referendariat hat sie Vertrauen in mich gesetzt und mich gefördert. Sie gab
mir erste Einblicke in mathematische Forschung und nahm mich nach Ende meines Masterstudiums in
ihre Gruppe auf. Ihre Art Mathematik zu vermitteln hat mich sehr geprägt, und für die Unterstützung
damals wie heute bin ich ihr sehr dankbar.

Ebenso danken möchte ich PD Dr. Markus Neher, der überhaupt erst dazu geführt hat, dass ich mich
für eine Rückkehr an die Universität entschieden habe. Er gab mir das Selbstvertrauen, das Ziel Pro-
motion zu verfolgen. Seine zahlreichen Anmerkungen und Korrekturvorschläge haben meine Dissertation
wesentlich verbessert, und ich bedanke mich bei ihm für seine Hilfe und seinen Rat während der letzten
Jahre.

Dank gilt auch Assoz. Prof. Lukas Einkemmer, PhD, für die Bereitschaft die vorliegende Dissertation
ebenfalls zu begutachten.

Sehr danken möchte ich ebenso PD Dr. Volker Grimm, der mich in einer schwierigen Phase mit seinem
offenen Ohr und seiner Zeit entscheidend unterstützt hat. Der erfolgreiche Abschluss meiner Promotion
ist auch sein Verdienst.

Zuletzt danke ich der gesamten erweiterten Arbeitsgruppe mit allen aktuellen und ehemaligen Kol-
legen für die gemeinsame Zeit und die moralische Unterstützung während meiner gesamten Promotion.
Hervorzuheben sind dabei Benjamin und Jan, die sich nicht davor gescheut haben auch die vorläufigsten
Versionen meiner Dissertation zu lesen.

iii

Abstract

This thesis is concerned with dynamical low-rank integrators for matrix differential equations, typically
stemming from space discretizations of partial differential equations. We first construct and analyze a
dynamical low-rank integrator for second-order matrix differential equations, which is based on a Strang
splitting and the projector-splitting integrator, a dynamical low-rank integrator for first-order matrix
differential equations proposed by Lubich and Osedelets in 2014. For the analysis, we derive coupled
recursive inequalities, where we express the global error of the scheme in terms of a time-discretization
error and a low-rank error contribution. The first can be treated with Taylor series expansion of the
exact solution. For the latter, we make use of an induction argument and the convergence result derived
by Kieri, Lubich, and Walach in 2016 for the projector-splitting integrator.

From the original method, several variants are derived which are tailored to, e.g., stiff or highly
oscillatory second-order problems. After discussing details on the implementation of dynamical low-
rank schemes, we turn towards rank-adaptivity. For the projector-splitting integrator we derive both a
technique to realize changes in the approximation ranks efficiently and a heuristic to choose the rank
appropriately over time. The core idea is to determine the rank such that the error of the low-rank
approximation does not spoil the time-discretization error. Based on the rank-adaptive pendant of the
projector-splitting integrator, rank-adaptive dynamical low-rank integrators for (stiff and non-stiff) first-
order and second-order matrix differential equations are derived. The thesis is concluded with numerical
experiments to confirm our theoretical findings.

v

Contents

1 Motivation and Introduction 1

2 Differential geometry for embedded submanifolds of the Euclidean space 5
2.1 Notation . 6
2.2 The manifoldsMr and Vm,r . 7
2.3 Tangent spaces to embedded submanifolds . 8
2.4 Orthogonal projectors onto tangent spaces . 12

3 Dynamical low-rank approximation for first-order matrix differential equations 15
3.1 Differential equations on embedded submanifolds . 15
3.2 Dynamical low-rank approximation . 17
3.3 Dynamical low-rank approximation for stiff first-order matrix differential equations 22
3.4 Other dynamical low-rank integrators for first-order problems 23

3.4.1 Time integration of (skew-)Hermitian low-rank matrices 23
3.4.2 Unconventional robust dynamical low-rank integrator 24

4 Dynamical low-rank approximation for second-order matrix differential equations 27
4.1 The leapfrog scheme . 28
4.2 The St-LO scheme . 29

4.2.1 Error analysis of the St-LO scheme . 34
4.2.2 Outlook: Error analysis of the St-LO scheme for semilinear stiff problems 43

4.3 Stiff problems . 48
4.4 Highly oscillatory problems . 51

4.4.1 Gautschi-type integrators . 51
4.4.2 A low-rank version of Gautschi-type integrators . 52

4.5 Approximation to A′ in the tangent space . 53

5 Implementation of dynamical low-rank integrators 59
5.1 Implementation of low-rank matrix products for dynamical low-rank integrators 60

5.1.1 Linear right-hand sides . 60
5.1.2 Nonlinear entrywise functions . 61

vii

5.1.3 Power functions . 61
5.2 Computation of matrix functions . 63

5.2.1 Implementation by diagonalization . 63
5.2.2 Krylov subspace methods . 64

5.3 Implementation of the low-rank Gautschi method . 67
5.4 Splitting for second-order matrix differential equations . 71

6 Rank-adaptivity 75
6.1 Selecting the rank . 76
6.2 Choice of tolerance . 77

6.2.1 Time-discretization error estimation via Richardson extrapolation 79
6.2.2 Low-rank error estimation . 80
6.2.3 Tolerance threshold . 80

6.3 Rank-adaptive algorithms . 81

7 Numerical experiments 85
7.1 Stiff first-order matrix differential equations . 86

7.1.1 Nonlinear fractional Ginzburg–Landau equation 86
7.1.2 Nonlinear fractional Schrödinger equation . 88

7.2 Second-order matrix differential equations . 88
7.2.1 Homogeneous wave equation . 89
7.2.2 Laser-plasma interaction . 91
7.2.3 Sine-Gordon equation . 93

A Collection of results from linear algebra 97
A.1 The singular value decomposition . 97
A.2 The QR factorization . 99
A.3 Kronecker products and sums . 99
A.4 Special matrices . 101
A.5 Matrix functions . 102

B A short note on splitting methods 105

Bibliography 108

1

CHAPTER 1

Motivation and Introduction

Motivation

Many natural phenomena can be modeled by ordinary and partial differential equations. Their solutions
help to give a precise description of a natural phenomenon. However, only for a limited number of
problems the exact solution to the respective differential equation is known. Therefore, numerical schemes
are used to compute approximations of sufficient accuracy to these exact solutions. For this, the problems,
which are often continuous in time and space, need to be turned into finite dimensional problems. One
approach is the method of lines, where first the spatial variable is discretized, while the time remains
continuous. This yields a system of ordinary differential equations, which can be written as a matrix
differential equation. In this thesis, we start from this situation, and only consider the integration in
time.

The proper description of certain natural effects often requires a huge number of equations or a fine
resolution in the discretizations in both space and time. Therefore, the matrix differential equations
resulting from a discretization in space possess large dimensions. Although the computational power
has increased significantly in the past, sometimes the sizes of the problems are too large for a standard
integrator to yield approximations in a reasonable amount in time. Therefore, model reduction techniques
have been derived in order to reduce the computational costs.

Dynamical low-rank integrators have been introduced in [Koch and Lubich, 2007] to approximate
solutions of first-order matrix differential equations of type

A′(t) = F
(
A(t)

)
, A(0) = A0 ∈ Cm×n,

which have large dimension but can be well-approximated by matrices of low rank. It was shown, that
these matrices admit a factorization similarly to the singular value decomposition. Instead of working with
matrices of full size m×n, the new ansatz allows one to derive differential equations for the factors of the
low-rank approximation, and working with the factors instead of the full matrices reduces both computa-

2 Chapter 1. Motivation and Introduction

tional effort and required storage significantly. A drawback of the proposed method is its ill-conditioning
in the presence of small singular values. This situation is commonly known as overapproximation and
occurs if the approximation rank exceeds the true rank of the solution.

In [Lubich and Oseledets, 2014], a projector-splitting integrator was introduced, which is robust in the
case of overapproximation. Together with a variant derived in [Ceruti and Lubich, 2021], it has been
applied successfully to a variety of first-order matrix differential equations. Examples are the Vlasov–
Poison equations in [Einkemmer and Lubich, 2018], Vlasov–Maxwell equations in [Einkemmer et al.,
2020], Schrödinger equations in [Ceruti and Lubich, 2021], Burgers’ equation with uncertainty in [Kusch
et al., 2022], Boltzmann equations in [Kusch and Stammer, 2022], and many more. However, to the best
of our knowledge, for second-order matrix differential equations

A′′(t) = F
(
A(t)

)
, A(0) = A0, A′(0) = B0,

no dynamical low-rank integrator has been proposed so far.

Aims and main results

The main objectives of this thesis are the derivation, analysis, and implementation of dynamical low-rank
integrators for computing low-rank approximations to the solutions of second-order matrix differential
equations of the above form. The construction of these methods is based on the projector-splitting
integrator derived in [Lubich and Oseledets, 2014]. The obvious strategy of reformulating the second-
order differential equation into a first-order system and applying the projector-splitting integrator to
compute approximations to A and A′ behaved poorly in our numerical experiments. We thus propose
to combine the projector-splitting integrator with a Strang splitting. The resulting scheme is named the
St-LO method as an abbreviation for Strang splitting combined with the integrator introduced by Lubich
and Oseledets. We shall see that this new method is closely related to the leapfrog scheme, one of the
most popular numerical methods for computing approximations to second-order differential equations.
Moreover, we perform a detailed error analysis of the St-LO scheme and show that the global error of
the scheme is identical to the error of the leapfrog scheme, up to low-rank error contributions.

Based on the original method, we derive modifications of the St-LO scheme. This includes a variant
which preserves certain geometric properties, and a method tailored to stiff second-order matrix differ-
ential equations. We also provide a dynamical low-rank integrator for highly oscillatory second-order
differential equations which is derived from Gautschi-type schemes.

As another task, we consider rank-adaptivity for dynamical low-rank integrators for both first-order
and second-order matrix differential equations. This has already been done in the past for the first-order
case, e.g., [Ceruti et al., 2022; Dektor et al., 2021; Hesthaven et al., 2022]. However, the proposed ansatzes
differ substantially and do not necessarily generalize to the dynamical low-rank integrators for second-
order matrix differential equations. We therefore propose a new ansatz for choosing the rank adaptively.
Based on an estimator of the time-discretization error, our strategy is designed such that the convergence
in time is not impaired by the low-rank error. In other words, the rank-adaptive schemes are constructed
in a way that they do not reduce the order of the underlying splitting method when applied to the full
problem. This new ansatz is applicable to all dynamical low-rank integrators revised and constructed in
this thesis.

3

Outline

This thesis is organized as follows. We first recall in Chapter 2 the most relevant topics of differential
geometry, which are required for the construction of dynamical low-rank integrators for first-order matrix
differential equations in Chapter 3. There, we also present variants of the original methods, which are
either tailored to specific problems or posses unique properties.

Chapter 4 is devoted to the construction of dynamical low-rank integrators for second-order matrix
differential equations based on the schemes discussed in Chapter 3. We construct the St-LO scheme and
prove a second-order error bound in time. Moreover, we derive variants of the St-LO scheme for highly
oscillatory and stiff problems, respectively.

In Chapter 5 we focus on details of the implementation of dynamical low-rank integrators. We
especially illustrate how to implement the schemes such that no matrices of full dimension appear in any
intermediate step.

We propose a novel ansatz for controlling the approximation rank of a dynamical low-rank integrator
in Chapter 6. We explain in detail the heuristics which are the basis for the rank-adaptivity, and also
provide information regarding the individual rank-adaptive dynamical low-rank integrators constructed
from the new ansatz.

We finalize this thesis with numerical experiments for first-order and second-order matrix differential
equations, cf. Chapter 7, to illustrate our theoretical findings as well as the performance of both fixed-rank
and rank-adaptive dynamical low-rank integrators.

4 Chapter 1. Motivation and Introduction

5

CHAPTER 2

Differential geometry for embedded submanifolds of the Euclidean space

In the derivation of dynamical low-rank integrators for first-order matrix differential equations, differential
geometry plays an important role. We hence start this thesis with an overview of the most relevant
topics utilized in the construction of the dynamical low-rank integrators for first-order and second-order
problems, respectively. The solutions to the matrix differential equations which we consider in this thesis
are in general complex matrices of size m × n. Such matrices can be viewed as points or vectors in the
real Euclidean space of dimension 2mn. Imposing restrictions like symmetry, invertibility, or a fixed or
constraint rank defines a subset of the Euclidean space. Often, these subsets are manifolds, commonly
denoted by embedded submanifolds. We thus restrict ourselves to the embedded case and introduce
further concepts like tangent spaces and orthogonal projections only for embedded submanifolds. Readers
interested in a more general approach to differential geometry are referred to, e.g., [Lee, 2012]. Additional
information on the interplay of numerics and differential geometry are presented, e.g., in [Absil et al.,
2008].

Throughout, we mainly deal with two particular embedded submanifolds, namely the low-rank mani-
foldMr and the Stiefel manifold Vm,r introduced in Section 2.2. They are of high interest, since dynamical
low-rank integrators search for approximations to the solutions of matrix differential equations in Mr,
whose elements can be partly characterized by elements in Vm,r. Understanding both manifolds and their
properties thus allows us to understand the construction of dynamical low-rank integrators for first-order
matrix differential equations as it was done in [Koch and Lubich, 2007] and [Lubich and Oseledets, 2014],
and also enables us to adapt the ideas used for first-order matrix differential equations to second-order
matrix differential equations in Chapter 4.

The characterization of embedded submanifolds is possible in many ways, where some of them are
more straight-forward than others. We follow the approach presented in [Boumal, 2020] and use so-called
local defining functions to introduce submanifolds of the Euclidean space. For this, we first have to give
a proper description of the Euclidean space. Afterwards, we introduce the manifoldsMr and Vm,r. This
is followed by the definition of tangent spaces, and we will construct the tangent spaces to bothMr and

6 Chapter 2. Differential geometry for embedded submanifolds of the Euclidean space

Vm,r. Lastly, we derive the orthogonal projector onto the tangent space toMr, as it plays a key role in
the construction of all dynamical low-rank integrators considered in this thesis.

The following chapter is mainly based on [Boumal, 2020]. If not stated otherwise, the presented
definitions and theorems are taken from there. However, in the literature mostly the real case is treated,
while for us the complex case is more relevant. We hence transfer all results immediately to the complex
case. This requires attention in the choice of subspaces of the Euclidean space and their dimension. The
overall strategy remains the same.

2.1 Notation

Let E denote a linear space over the real numbers. Examples for E are Rn, Rm×n or Sym(n), which denote
the space of real vectors of length n, real matrices of dimension m×n, and real symmetric n×n matrices,
respectively. Every finite dimensional linear space E is isomorphic to Rd, where d is the dimension of
E . An inner product on a linear space E is denoted by 〈·, ·〉, and the norm of some element u ∈ E is
‖u‖ =

√
〈u, u〉. The standard inner product over Rn is given as

〈u, v〉 = uT v =
n∑

j=1
ujvj

with associated norm

‖u‖2 =

√√√√
n∑

j=1
u2
j .

Likewise, the standard inner product for linear matrix spaces like Rm×n is the so-called Frobenius inner
product with the associated Frobenius norm,

〈U, V 〉F = tr(UTV) =
m∑

i=1

n∑

j=1
UijVij , ‖U‖F =

√√√√
m∑

i=1

n∑

j=1
U2
ij .

The notation tr(M) =
∑
iMii denotes the trace of a square matrix M , which is given as the sum of the

diagonal entries. Throughout this thesis, we will mostly use the Frobenius norm for matrices and hence
simply write ‖ · ‖ instead of ‖ · ‖F . Whenever a different matrix norm is chosen we will indicate this
separately.

Similarly, one can consider vectors and matrices over the complex field. We identify Cn with R2n

by separating the real and imaginary parts of a vector in Cn into two vectors is Rn. Likewise, the set
of complex matrices Cm×n is a real linear space with dimension 2mn. The standard inner product and
norm are then given as

〈U, V 〉 = Re tr(UHV), ‖U‖ =

√√√√
m∑

i=1

n∑

j=1
|Uij |2.

Remark 2.1. Throughout, we treat all spaces E as real spaces. If the elements of E are complex
valued, the dimension of the space is thus determined by counting the degrees of freedom for both the
real and imaginary part of an element in E . �

2.2. The manifoldsMr and Vm,r 7

The differential of a function between (distinct) Euclidean spaces E and E ′ is the linear map

DF (x) : E → E ′, DF (x)[v] = lim
t→0

F (x+ tv)− F (x)
t

= d
dtF (x+ tv)

∣∣∣∣
t=0

.

This allows one to introduce embedded submanifolds:

Definition 2.2. Let M be a subset of a linear space E with dimension d. M is called (smooth)
embedded submanifold of E if either one of the following holds:

1. M is an open subset of E. Then we also call M an open submanifold. If M = E, we also call
it a linear manifold.

2. For a fixed integer k ≥ 1 and for each x ∈M there exists a neighborhood U of x in E and a smooth
function h : U → Rk such that the following two conditions hold:

(a) If y is in U , then h(y) = 0 if and only if y ∈M, or equivalently

M∩ U = h−1(0) = {y ∈ U | h(y) = 0},

and

(b) rank Dh(x) = k.

Such a function h is called a local defining function forM at x.

The linear space E is also called embedding space.

2.2 The manifolds Mr and Vm,r

Next, we introduce two examples of embedded submanifolds. They will arise multiple times throughout
this thesis.

Let
Mm,n

r =Mr =
{
Y ∈ Cm×n | rank Y = r < min{m,n}

}
.

In the literature, Mr is often called the set of fixed-rank matrices. We are mainly interested in the
situation r � min{m,n}, so we callMr the low-rank manifold throughout.

Next, for r ≤ m we consider the set

Vm,r = {U ∈ Cm×r | UHU = Ir}.

This set is called the Stiefel manifold. For r = m we have the special case of the group of unitary
m ×m matrices, while for r = 1 we have the unit sphere in Cm. Vm,r is an embedded submanifold of
Cm×r ∼= R2mr.

The proofs that bothMr and Vm,r are indeed submanifolds can be found in [Boumal, 2020, Sections
7.5 and 7.3]. In both cases, the proof is done by construction of a local defining function, which by
Definition 2.2 yields the stated result. Note that in [Boumal, 2020] only the real case is discussed. With
the same strategy one can show that also in the complex case the sets Mr and Vm,r are embedded
submanifolds. However, one has to be careful with the dimensions of the arising vector spaces.

8 Chapter 2. Differential geometry for embedded submanifolds of the Euclidean space

2.3 Tangent spaces to embedded submanifolds

As we will encounter soon, not only embedded submanifolds will play an important role within this thesis,
but also the so-called tangent spaces to such manifolds. They are especially of interest when one considers
differential equations on embedded manifolds. In this section, we first give a proper definition of these
spaces. Afterwards, we construct the tangent spaces to the manifoldsMr and Vm,r.

Definition 2.3 ([Hairer et al., 2006, Section IV.5.1] and [Boumal, 2020, Definition 3.10]). Let M be
an embedded submanifold of the Euclidean space E with dimension k. For x ∈M define

TxM =
{
v ∈ Rk

∣∣∣∣∣
there exists a differentiable path γ : (−ε, ε)→ Rk

with γ(t) ∈M for all t, γ(0) = x, γ′(0) = v

}
. (2.1)

That is, v is in TxM if and only if there exists a smooth curve onM passing through x with velocity v.
We call TxM the tangent space to M at x. Vectors in TxM are called tangent vectors to M at

x. The dimension of TxM is called the dimension of M and is denoted by dimM.

With Definitions 2.2 and 2.3, one immediately gets the following result:

Corollary 2.4. IfM is an open submanifold of some Euclidean space E, it holds that

dimM = dim TxM = dim E .

Otherwise,
dimM = dim TxM = dim E − k,

where k is the rank of the differential Dh(x) and h is any local defining function forM.

Remark 2.5. For every embedded submanifold M, the tangent space TxM is a linear subspace of
the embedding Euclidean space E . �

Example 2.6. The dimension of the low-rank manifoldMr is

dimMr = 2r(m+ n− r). (2.2)

For the Stiefel manifold Vm,r we have

dimVm,r = 2mr − r2. (2.3)

◦

Remark 2.7. For fixed rank r, the dimension ofMr grows linearly in (m+ n), while the dimension
of the embedding space Cm×n grows as mn. As pointed out in [Boumal, 2020, Section 7.5], this means
that large matrices of small rank can be encoded with a small amount of memory. For any Y ∈Mr one
way is to choose the reduced singular value decomposition

Y = ŨΣ̃Ṽ
H
, Ũ ∈ Vm,r, Ṽ ∈ Vn,r, Σ̃ = diag(σ1, . . . , σr), (2.4)

where σ1 ≥ · · · ≥ σr > 0 are the ordered singular values of Y. Note that such a decomposition is
unique up to complex signs, i.e., complex scalar factors of absolute value 1. For our purposes, it is more
convenient to use decompositions like

Y = USVH , U ∈ Vm,r, V ∈ Vn,r, S ∈ Cr×r invertible. (2.5)

2.3. Tangent spaces to embedded submanifolds 9

The memory required to store the factorization in (2.5) is slightly larger compared to (2.4). Also, the
factorization (2.5) is not unique. For arbitrary unitary matrices Q,P ∈ Cr×r

USVH = UQQHSPPHVH = (UQ)(QHSP)(VP)H = ÛŜV̂
H
,

where Û ∈ Vm,r and V̂ ∈ Vn,r are elements of the respective Stiefel manifolds and Ŝ is invertible.
The decomposition (2.5) is the basis for the construction of all numerical integrators in Chapter 3 and
Chapter 4, respectively. �

The definition of a tangent space via smooth curves is in general not helpful to determine the tangent
space to a given embedded submanifold M of E . However, there is a way to construct tangent spaces
based on local defining functions:

Theorem 2.8 ([Boumal, 2020, Theorem 3.8]). Let M be an embedded submanifold of E. Consider
x ∈ M and the set TxM as given in (2.1). If M is an open submanifold, then TxM = E. Otherwise,
TxM = ker Dh(x), where h is any local defining function at x.

For the two examples of embedded submanifolds Mr and Vm,r we now determine the respective
tangent spaces. We start with the tangent space to Vm,r.

Example 2.9. The tangent space to Vm,r is

TXVm,r = {V ∈ Cm×r | XHV + VHX = 0}
= {V ∈ Cm×r | XHV ∈ Skew(r)},

(2.6)

where Skew(r) denotes the set of skew-Hermitian matrices of size r,

Skew(r) = {Z ∈ Cr×r | ZH = −Z}.

As pointed out in [Boumal, 2020, Section 7.3], sometimes it is convenient to parameterize tangent vectors
of Vm,r explicitly. This explicit representation is derived by completing X to a unitary basis of Cm×m.
However, the implicit characterization via (2.6) is sufficient for now.

The dimension of TXVm,r is

dim TXVm,r = dimVm,r = 2mr − r2, (2.7)

which is a direct consequence of Corollary 2.4 together with (2.3). ◦

Remark 2.10. Any element in Skew(r) has one single degree of freedom per diagonal element, since
the diagonal is purely imaginary. The entries above the diagonal have two degrees of freedom and
determine implicitly the entries below the diagonal. Hence, the dimension of Skew(r) is

dim Skew(r) = r + 2 · r(r + 1)
2 = r2. (2.8)

�

We introduce the short-hand notation

A′(t) = d
dtA(t)

for the derivative with respect to the time t of some matrix valued function t 7→ A(t). If U(t) denotes a
time-dependent element of the Stiefel manifold Vm,r, the time derivative U′(t) is contained in the tangent
space to Vm,r at U(t):

10 Chapter 2. Differential geometry for embedded submanifolds of the Euclidean space

Corollary 2.11. Let U : [0, T]→ Vm,r, t 7→ U(t) be a smooth mapping. Then

U′(t) ∈ TU(t)Vm,r.

Proof. Since U is smooth, it holds by the product rule that

U(t)HU(t) = Ir =⇒ d
dt (U(t)HU(t)) = U′(t)HU(t) + U(t)HU′(t) = 0

for all t. Thus, U(t)HU′(t) ∈ Skew(r), and the assertion follows from (2.6).

Before we derive the tangent space toMr, we first want to give an impression of how tangent elements
to some Y = USVH ∈Mr satisfying (2.5) may look like. For this, consider the smooth mappings

U : R→ Vm,r, t 7→ U(t), S : R→ Cr×r, t 7→ S(t), V : R→ Vn,r, t 7→ V(t)

such that U(0) = U, S(0) = S, and V(0) = V. Then

Y(t) = U(t)S(t)V(t)H (2.9)

is smooth and Y(0) = Y. By the product rule, the velocity of Y(t) at zero is

Y′(0) = U′(0)S(0)V(0)H + U(0)S′(0)V(0)H + U(0)S(0)V′(0)H ,

and is hence contained in the tangent space TY(0)M by Definition 2.3. Due to Corollary 2.11, it holds
that U′(0) ∈ TU(0)Vm,r and V′(0) ∈ TV(0)Vn,r, respectively. Any Z satisfying

Z = δUSVH + UδSVH + USδV H , δU ∈ TUVm,r, δV ∈ TVVn,r, δS ∈ Cr×r (2.10)

is therefore contained in the tangent space TYMr toMr at Y.
In the following, we show that in fact all elements in TYMr satisfy (2.10). This is achieved by studying

the extended tangent map introduced in [Koch and Lubich, 2007] for the real case. We adopt their ansatz
but adapt it to the complex case. Again, this requires attention when determining the dimensions of the
arising spaces.

Example 2.12 (Tangent space to Mr). For Y = USVH ∈ Mr consider the extended tangent map
of (S,U,V) 7→ Y as in (2.5),

π :




Cr×r × TUVm,r × TVVn,r → TYMr × Skew(r)× Skew(r),

(δS, δU, δV) 7→ (δUSVH + UδSVH + USδV H ,UHδU,VHδV).

Obviously, this map is linear. Now assume (δS, δU, δV) ∈ kerπ, i.e.,

δUSVH + UδSVH + USδV H = 0,

UHδU = 0,

VHδV = 0.

Multiplication of the first equation with UH from the left and V from the right yields

0 = UHδUSVHV + UHUδSVHV + UHUSδV HV = UHUδSVHV = δS

2.3. Tangent spaces to embedded submanifolds 11

due to U ∈ Vm,r, V ∈ Vn,r, and the remaining two equations. Likewise, multiplication of the first
equation with VS−1 from the right gives δU = 0, while multiplication with S−1UH from the left yields
δV = 0. As a consequence, the kernel of π is trivial.

We now compare the dimensions of the vector spaces on both sides of the map π. From (2.7) we
obtain

dim(Cr×r × TUVm,r × TVVn,r) = 2r2 + (2mr − r2) + (2nr − r2) = 2r(m+ n). (2.11)

Though we have no explicit representation of TYMr yet, we conclude from Corollary 2.4 and (2.2) that

dim TYMr = 2r(m+ n− r),

which together with (2.8) yields

dim(TYMr × Skew(r)× Skew(r)) = 2r(m+ n− r) + r2 + r2 = 2r(m+ n). (2.12)

Comparing (2.11) with (2.12) reveals that the dimensions of the spaces on both sides of π coincide. Since
in addition the kernel is trivial, π is an isomorphism. Hence, all elements in the tangent space TYMr

satisfy (2.10), and the tangent space toMr at Y = USVH reads

TYMr = {δUSVH + UδSVH + USδV H | δS ∈ Cr×r, δU ∈ TUVm,r, δV ∈ TVVn,r}. (2.13)

An alternative representation of TYMr is derived in [Boumal, 2020, Section 7.5] based on the smooth
curve (2.9) onMr, namely

TYMr = {UMVH + ŨVH + UṼ
H | M ∈ Cr×r, Ũ ∈ Cm×r, Ṽ ∈ Cn×r, }

{and UHŨ = 0 = VHṼ}.
(2.14)

The reformulation

UMVH + ŨVH + UṼ
H

=
[
U Ũ

] [M Ir

Ir 0

] [
V Ṽ

]H
(2.15)

shows that any element in TYMr has rank at most 2r.
Section 7.5 in [Boumal, 2020] also contains a third representation of TYMr,

TYMr =
{[

U U⊥
] [A B

C 0

] [
V V⊥

]
| A,B,C are arbitrary

}
, (2.16)

where
[
U U⊥

]
and

[
V V⊥

]
form unitary bases of Cm×m and Cn×n, respectively. This representation

is not used in practice, as the memory required to store U⊥ and V⊥ by far exceeds the memory required
to store U and V if r is small compared to m,n. However, (2.16) sometimes comes in handy when one
is interested in particular analytical calculations. ◦

Similarly to Corollary 2.11, we show that the time-derivative of an element A(t) ∈ Mr is contained
in the tangent space toMr at A(t):

Corollary 2.13. Let A : [0, T]→Mr, t 7→ A(t) be smooth. Then it holds

A′(t) ∈ TA(t)Mr.

12 Chapter 2. Differential geometry for embedded submanifolds of the Euclidean space

Proof. For A(t) ∈Mr we have by (2.5) the decomposition

A(t) = U(t)S(t)V(t)H ,

where U(t) ∈ Vm,r, V(t) ∈ Vn,r, and S(t) ∈ Cr×r are smooth. By the product rule, we have

A′(t) = d
dt (U(t)S(t)V(t)H)

= U′(t)S(t)V(t)H + U(t)S′(t)V(t)H + U(t)S(t)V′(t)H . (2.17)

The derivatives of U and V satisfy U′(t) ∈ TU(t)Vm,r and V′(t) ∈ TV(t)Vn,r due to Corollary 2.11, while
S′(t) ∈ Cr×r is a square matrix. Hence, (2.17) satisfies the representation (2.13) of elements in the
tangent space toMr, which proves the claim.

2.4 Orthogonal projectors onto tangent spaces

Our last topic within the field of differential geometry is the construction of orthogonal projectors onto
tangent spaces to embedded manifolds.

Any Euclidean space is equipped with an inner product, and from Remark 2.5 we know that the
tangent space to an embedded submanifold is a linear subspace of the embedding space E . Therefore it
is convenient to equip tangent spaces of embedded submanifolds with the inner product of E , restricting
it to the elements of the tangent space. This allows us to define orthogonal projectors:

Definition 2.14. LetM be an embedded submanifold of a Euclidean space E equipped with the inner
product 〈·, ·〉. A linear operator

Π̃x : E → TxM⊆ E

with Π̃x ◦ Π̃x = Π̃x is a projector. It is orthogonal, if

〈u− Π̃xu, v〉 = 0

holds for any u ∈ E and v ∈ TxM.

In some cases it is possible to construct such projectors by looking at the normal space to some
manifold:

Definition 2.15. The normal space to an embedded manifoldM is the orthogonal complement (with
respect to the induced metric) of the tangent space toM,

NxM = (TxM)⊥ = {u ∈ E | 〈u, v〉 = 0 for all v ∈ TxM} ⊆ E .

Example 2.16 (Orthogonal projector onto TYMr). We equipMr with the Frobenius inner product
introduced in Section 2.1. Recall that any Y ∈Mr has a decomposition into factors U,S,V like

Y = USVH , U ∈ Vm,r, V ∈ Vn,r, S ∈ Cr×r invertible,

see also (2.5).

2.4. Orthogonal projectors onto tangent spaces 13

To determine the orthogonal projector, we follow the approach presented in [Boumal, 2020, Section
7.5], which is based on the normal space ofMr at Y. Here, we make use of the third representation of
TYMr given in (2.16). We conclude

NYMr = {U⊥WVH
⊥ | W ∈ C(m−r)×(n−r) arbitrary}.

The orthogonal projection of some Z ∈ Cm×n onto TYMr therefore satisfies both

Π̃YZ = UMVH + ŨVH + UṼ
H
, (2.18)

see (2.14), and
Z − Π̃YZ = U⊥WVH

⊥

for some W . Adding these equations yields

Z = UMVH + ŨVH + UṼ
H

+ U⊥WVH
⊥ . (2.19)

We define
ΠU = UUH , Π⊥U = Im −ΠU, ΠV = VVH , Π⊥V = In −ΠV. (2.20)

Clearly, due to U ∈ Vm,r and V ∈ Vn,r, it holds that

ΠUΠU = ΠU, ΠVΠV = ΠV as well as ΠUΠ⊥U = 0, ΠVΠ⊥V = 0.

The matrices ΠU and ΠV are orthogonal projectors onto the column spaces of U and V, while Π⊥U and
Π⊥V are the projectors onto the respective orthogonal complements. From

UHU = Ir, UHŨ = 0, UHU⊥ = 0,

VHV = Ir, VHṼ = 0, VHV⊥ = 0,

and (2.19) we obtain the identities

ΠUZΠV = UMVH , Π⊥UZΠV = ŨVH , ΠUZΠ⊥V = UṼ
H
.

Plugging these back into (2.18) results in

Π̃YZ = ΠUZΠV + Π⊥UZΠV + ΠUZΠ⊥V
= ΠUZΠV + ZΠV −ΠUZΠV + ΠUZ −ΠUZΠV

= ZΠV −ΠUZΠV + ΠUZ. (2.21)

◦

14 Chapter 2. Differential geometry for embedded submanifolds of the Euclidean space

15

CHAPTER 3

Dynamical low-rank approximation for first-order matrix differential equations

This chapter is concerned with the solution of first-order matrix differential equations of form

A′(t) = F
(
A(t)

)
, t ∈ [0, T], A(0) = A0 ∈ Cm×n. (3.1)

Numerous integrators have been constructed for computing approximations to the exact solution A(t) of
(3.1). Many of them are tailored to the right-hand side of the problem or desired (geometric) properties
of the approximations. An extensive collection of such methods can be found, e.g., in [Hairer et al., 2006,
1993; Hairer and Wanner, 2010].

Here, we are interested in computing approximations A ≈ A which satisfy the rank constraint

rank A = r � min{m,n}.

In other words, we search for approximations to the exact solution of (3.1) which are contained in the
low-rank manifold Mr introduced in Section 2.2. Clearly this is only reasonable if the exact solution
can be well approximated by a matrix of small rank r. For this chapter we therefore assume that this is
indeed the case.

In the following, we first consider differential equations on manifolds. Afterwards we introduce the
possibly most fundamental concept for the purposes of this thesis, namely the dynamical low-rank approx-
imation. This is followed by an overview of some variants of the original methods proposed throughout
the recent years.

3.1 Differential equations on embedded submanifolds

As a starting point, we first discuss first-order differential equations, whose solutions are naturally con-
tained in an embedded submanifoldM of the Euclidean space.

16 Chapter 3. Dynamical low-rank approximation for first-order matrix differential equations

Definition 3.1. Let M be an embedded submanifold of E = Rd. We call the first-order differential
equation

a′(t) = f
(
a(t)

)
, t ∈ [0, T], a(0) = a0, (3.2)

a differential equation on the manifold M, if

a0 ∈M implies a(t) ∈M for all t ∈ [0, T].

The next theorem formulates a criterion for differential equations on a manifold.

Theorem 3.2 ([Hairer et al., 2006, p. 115, Theorem 5.2]). Let M be an embedded submanifold of
the Euclidean space E. The first-order differential equation a′ = f(a) as in Definition 3.1 is a differential
equation onM if and only if

f(a) ∈ TaM for all a ∈M.

Example 3.3. Consider the first-order matrix differential equation

A′(t) = LA(t), t ∈ [0, T], A(0) = A0 ∈Mr, (3.3)

where L ∈ Cm×m. We evaluate the right-hand side at some element A ∈ Mr with the factorization
A = USVH , and project the result onto the tangent space TAMr by applying the orthogonal projector
given in (2.21). The orthogonal projector Π̃A onto TAMr satisfies

Π̃A(LA) = LAΠV −ΠULAΠV + ΠULA = LAVVH −UUHLAVVH + UUHLA = LA,

and thus LA ∈ TAMr. We conclude from Theorem 3.2 that A(t) ∈Mr for all t ∈ [0, T].
For this particular right-hand side we are able to obtain the same result directly from Definition 3.1.

The exact solution of (3.3) is
A(t) = exp(tL)A0.

It is well known, that exp(tL) is invertible for all t ∈ R, L ∈ Cm×m, cf. [Hall, 2015, Proposition 2.3].
Since multiplication with a full-rank matrix preserves the rank, it holds that

rankA(t) = rank
(

exp(tL)A0
)

= rank A0 = r,

thus A(t) ∈Mr for all t ∈ [0, T]. ◦

Theorem 3.2 has an important impact on the choice of a numerical method when approximating
solutions of differential equations of type (3.2). If the unknown solution is contained in the manifoldM,
it is favorable to compute numerical approximations which are also contained inM. Standard schemes
like Runge-Kutta methods do not yield such approximations directly. The standard projection method
given in Algorithm 1, [cf. Hairer et al., 2006, p. 110, Algorithm 4.2], yields approximations contained
in M = Mr. The orthogonal projector Π which computes the low-rank matrix A = ΠA is implicitly
characterized by the best-approximation condition

A = argmin
Y∈Mr

‖Y−A‖. (3.4)

The solution A ∈ Mr can be computed by a truncated singular value decomposition, where one only
keeps the r largest singular values and omits all others, cf. Theorem A.8.

3.2. Dynamical low-rank approximation 17

Algorithm 1: Standard projection method
Assume that Ak ∈M. One step Ak 7→ Ak+1 ∈M is performed like

1 Compute one step of a numerical integrator with initial Ak, yielding Ak+1.
2 Project Ak+1 back onto the manifold with a suitable projection, obtain Ak+1 ∈M.

We now return to the problem of finding a low-rank approximation to the exact solution A(t) of (3.1).
For small dimensions, we employ the standard projection method, where we compute approximations
Ak ≈ A(tk) with a standard numerical scheme, and then compute the rank-r best-approximation Ak to
Ak by the truncated singular value decomposition afterwards. However, if the dimension of the problem
is large, the truncated singular value decomposition is expensive and the standard projection method is
not practical anymore.

3.2 Dynamical low-rank approximation

A cheap alternative to the standard projection method was introduced in [Koch and Lubich, 2007], the
so-called dynamical low-rank approximation. The basic concepts have been formulated for the simpler
problem of determining a low-rank approximation dynamically to a given, time-dependent matrix A(t) ∈
Cm×n. The approximations are contained in the low-rank manifold permanently, so that no subsequent
projection ontoMr is required.

The core idea of the new ansatz is to replace (3.4) by

‖A′(t)−A′(t)‖ != min. (3.5)

If A(t) is contained in the low-rank manifold Mr, its derivative is an element of the tangent space
TA(t)Mr toMr at A(t), see Corollary 2.13.

To get an idea of the situation, recall that Mr is an embedded submanifold of the Euclidean space.
In Figure 3.1, the derivatives of A and A are displayed as vectors in the embedding Euclidean space.
For given A′, ‖A′ − A′‖ becomes minimal if the vector A′ − A′ is perpendicular to the tangent space
TA(t)Mr. In other words, (3.5) is equivalent to the following Galerkin condition on TA(t)Mr (we omit
the argument t): find A′ ∈ TAMr satisfying

〈A′ −A′, δA〉 = 0 for all δA ∈ TAMr. (3.6)

From this formulation, differential equations for the factors of A are derived:

Proposition 3.4 ([Koch and Lubich, 2007, Proposition 2.1]). For the map A : [0, T] → Mr, t 7→
A(t) = A = USVH ∈ Mr with nonsingular S ∈ Cr×r and with U ∈ Vm,r, V ∈ Vn,r, condition (3.6) is
equivalent to A′ = U′SVH + US′VH + US(V′)H , where

S′ = UHA′V,

U′ = Π⊥UA′VS−1, (3.7)

V′ = Π⊥V(A′)HUS−H ,

with the orthogonal projections Π⊥U,Π⊥V as given in (2.20).

18 Chapter 3. Dynamical low-rank approximation for first-order matrix differential equations

TAMr

A′ = Π̃AA′

A′
A′ −A′

0

Figure 3.1. Graphical illustration of the Galerkin condition (3.6). Only for A′−A′ perpendicular to TAMr the
minimizing condition (3.5) is satisfied. For given A′, this is only the case for A′ = Π̃AA

′ with Π̃A from (2.21).

The differential equations (3.7) may be solved numerically with a standard integration scheme, e.g.,
implicit Runge-Kutta methods. Unfortunately, it was shown that the proposed ansatz suffers from
overapproximation, i.e., if r > rankA. Then singular values with value zero are introduced in the
approximation A = USVH , which causes the factor S to be singular. Since the inverse of S is required
in the updates for the factors U and V, matrices S with tiny singular values turn the computation highly
unstable.

In [Lubich and Oseledets, 2014], the authors propose a different ansatz for dynamical low-rank ap-
proximation. It is also based on the Galerkin condition (3.6), but does not suffer from overapproximation.
The solution of the minimization problem can be given in terms of the orthogonal projector Π̃A onto
TAMr, cf. (2.21), see also Figure 3.1:

A′ = Π̃AA
′ = A′ΠV −ΠUA

′ΠV + ΠUA
′. (3.8)

Combined with an initial value A0 ∈ Mr, typically determined as the rank-r best-approximation to
A0, this yields an evolution equation for A(t) whose solution is contained in Mr for all times t due to
Theorem 3.2. Unfortunately, the projected differential equation cannot be solved exactly in general. As a
remedy, the authors suggest to perform a Lie-Trotter splitting with step size τ > 0 on the right-hand side
of (3.8) (for a short note on splitting methods we refer to Appendix B). This yields the three subproblems

A′I = A′ΠVI on [0, τ], AI(0) = A0,

A′II = −ΠUIIA
′ΠVII on [0, τ], AII(0) = AI(τ), (3.9)

A′III = ΠUIIIA
′ on [0, τ], AIII(0) = AII(τ).

All subproblems in (3.9) can be solved exactly on the low-rank manifoldMr if suitable additional con-
ditions on the derivatives of U and V are imposed, cf. [Lubich and Oseledets, 2014, Lemma 3.1]:

AI(t) = UI(t)SI(t)VI(t)H , with (UISI)′ = A′VI, V′I = 0,

AII(t) = UII(t)SII(t)VII(t)H , with S′II = −UH
IIA
′VII, U′II = 0, V′II = 0,

AIII(t) = UIII(t)SIII(t)VIII(t)H , with (VIIISHIII)′ = (A′)HUIII, U′III = 0.

3.2. Dynamical low-rank approximation 19

Then, the solutions read

AI(t) =
(
UI(0)SI(0) + (A(t)−A(0))VI(0)

)
VI(0)H ,

AII(t) = UII(0)
(
SII(0)−UII(0)H(A(t)−A(0))VII(0)

)
VII(0)H ,

AIII(t) = UIII(0)
(
SIII(0)VIII(0)H + UIII(0)H(A(t)−A(0))

)
.

Finally, one obtains A1 = AIII(τ) as a low-rank approximation to A(τ).
Overall, given a low-rank decomposition of A0 = U0S0VH

0 ≈ A(0) and introducing the increment
∆A = A(τ)−A(0), this yields the three update steps

U1Ŝ1 = U0S0 + ∆AV0,

S̃0 = Ŝ1 −UH
1 ∆AV0,

V1SH1 = V0S̃
H

0 + ∆AHU1,

(3.10)

which allow to compute the approximation A1 = U1S1VH
1 = AIII(τ) ≈ A(τ) dynamically, see also

Algorithm 2.

Remark 3.5. Note that in all three update steps in (3.10) matrices of column dimension r are
computed. It is thus beneficial to implement the updates such, that also in all intermediate calculations
the column dimension of all contributing matrices does not exceed r. This requires special attention on
the implementation of the projector-splitting integrator. �

To continue the integration, one uses A1 as initial value for the next integration step and the new
increment ∆A = A(2τ)− A(τ), and so on. Repeating this k times gives an approximation Ak ≈ A(kτ).
The numerical method has been named projector-splitting integrator in [Lubich and Oseledets, 2014].

Algorithm 2: Projector-splitting integrator for low-rank approximations to given time-
dependent matrices [Lubich and Oseledets, 2014, Section 3.2], single time step

1 prsi(U,S,V, r,∆A)
Input : factors U,S,V of rank-r approximation A = USVH ≈ A(t) with U ∈ Vm,r, V ∈ Vn,r,

S ∈ Cr×r, increment ∆A = A(t+ τ)−A(t)

2 K̃ = ∆AV
3 K = US + K̃
4 compute reduced QR-decomposition U1Ŝ1 = K
5 S̃0 = Ŝ1 −UH

1 K̃
6 L = VS̃

H

0 + ∆AHU1

7 compute reduced QR-decomposition V1SH1 = L

8 Return U1,S1,V1,L
Output: factors U1,S1,V1 of rank-r approximation A1 = U1S1VH

1 ≈ A(t+ τ) and L = V1SH1
with U1 ∈ Vm,r, V1 ∈ Vn,r, S1 ∈ Cr×r

In [Koch and Lubich, 2007], the authors list several reasons, why the technique of dynamical low-rank
approximation is superior to the standard projection method. Most important for us, the ansatz extends

20 Chapter 3. Dynamical low-rank approximation for first-order matrix differential equations

straightforwardly to computing a low-rank approximation to the unknown solution of a first-order matrix
differential equation of type (3.1). Substituting (3.1) into (3.8) yields

A′ = Π̃AF (A).

Unless the exact solution is known, A is replaced by its low-rank approximation A in F to obtain

A′ = Π̃AF (A), A(0) = A0 ≈ A0. (3.11)

Again, using the representation of the projector and performing a Lie-Trotter splitting gives rise to three
subproblems. If these can be solved exactly, one can formulate Algorithm 3, which is a projector-splitting
integrator for computing low-rank approximations to the unknown solution of (3.1), cf. [Ceruti and
Lubich, 2021, Section 2]. Note that the update step for the S matrix can be interpreted as a backwards
step in time due to the negative sign in the right-hand side of the respective subproblem, while the other
two updates can be seen as forward steps.

Algorithm 3: Projector-splitting integrator for low-rank approximations to unknown solution
A(t) to (3.1), single time step

1 prsiF(U,S,V, r, τ, F)
Input : factors U,S,V of rank-r approximation A = USVH ≈ A(t) with U ∈ Vm,r, V ∈ Vn,r,

S ∈ Cr×r, step size τ , right-hand side F

2 Solve
K′(t) = F

(
K(t)VH

)
V, K(0) = US,

for t ∈ [0, τ] and compute a QR-decomposition U1Ŝ1 = K(τ).
3 Solve

S′(t) = −UH
1 F
(
U1S(t)VH

)
V, S(0) = Ŝ1,

for t ∈ [0, τ] and set S̃0 = S(τ).
4 Solve

L′(t) = F
(
U1L(t)H

)HU1, L(0) = VS̃
H

0 ,

for t ∈ [0, τ] and compute a QR-decomposition V1SH1 = L1 = L(τ).

5 Return U1,S1,V1,L1

Output: factors U1,S1,V1 of rank-r approximation A1 = U1S1VH
1 ≈ A(t+ τ) and L1 = V1SH1

with U1 ∈ Vm,r, V1 ∈ Vn,r, S1 ∈ Cr×r

In general, the subproblems in Algorithm 3 cannot be solved exactly. Then it is necessary to employ
a numerical method for solving the differential equations for K,S, and L in Algorithm 3 approximately,
e.g., a Runge-Kutta method. The simplest choice is the explicit Euler method of order 1 with step size
τ . In contrast to Algorithm 2, it is not possible to reuse quantities from previous substeps of the scheme.
Instead, the right-hand side F needs to be evaluated at the current low-rank approximation and hence
three times per step. For a Runge-Kutta method with s internal stages, the right-hand side obviously
needs to be evaluated 3s times.

Unlike the dynamical low-rank integrator constructed from Proposition 3.4, the projector-splitting
integrator as in Algorithm 3 has the favorable property of being robust with respect to the presence of

3.2. Dynamical low-rank approximation 21

small singular values of the solution A to (3.1) or its approximation A. This also includes the case of
overapproximation, where the low-rank factor S is not invertible.

Theorem 3.6 (Robust error bound, [Kieri et al., 2016, Theorem 2.1]). Let A(t) denote the solution
of (3.1). Assume the following conditions:

1. F is Lipschitz-continuous and bounded: there exist L,B > 0 such that for all Y, Ỹ ∈ Cm×n and
0 ≤ t ≤ T it holds that

‖F (Y)− F (Ỹ)‖ ≤ L‖Y − Ỹ ‖, ‖F (Y)‖ ≤ B.

2. F (A) is in the tangent space TAMr up to a small remainder,

‖Π̃⊥AF (A)‖ ≤ ε

for all A ∈Mr in a neighborhood of A(t) and 0 ≤ t ≤ T .

3. The initial value A(0) and the starting value A0 ∈Mr are δ-close,

‖A(0)−A0‖ ≤ δ.

Denote by Ak the rank-r approximation to A(tk) obtained after k steps of Algorithm 3 and step size
τ > 0. Then, the error satisfies for all k with tk ≤ T

‖A(tk)−Ak‖ ≤ c0δ + c1ε+ c2τ,

where for an upper bound τ0 ≥ τ on the step size the constants are explicitly given as

c0 = eLT , c1 = (4 + 3 eLτ0)eLT −1
L

, c2 = (9 + 4 eLτ0 B eLT −1),

and hence are independent of the singular values of the exact or approximate solution.

When the subproblems in Algorithm 3 are not solved exactly but approximately with a numerical
method, an additional error is introduced. This error is bounded in terms of the local errors in the
respective inexact substeps, where the constants are independent of small singular values, cf. [Kieri et al.,
2016, Section 2.6.3].

A similar result for the projector-splitting integrator with increments, cf. Algorithm 2, is obtained as
a byproduct from the above. Interestingly, the error bound becomes independent of the step size τ :

Theorem 3.7 ([Kieri et al., 2016, Section 2.6.1]). Let

A(t) = X(t) +R(t) with X(t) ∈Mr, ‖R(0)‖ ≤ δ, ‖R′(t)‖ ≤ ε.

Then the error between A(tk) and the low-rank approximation Ak ≈ A(tk) computed by performing k
steps with Algorithm 2 is bounded by

‖A(tk)−Ak‖ ≤ δ + 7tkε.

Note that if R(t) = 0 for all t, i.e., A(t) ∈ Mr is in fact for all t a rank-r matrix, then δ = ε = 0 and
Algorithm 2 computes Ak = A(tk) exactly. This favorable property is also called the exactness property
and was first proven in [Lubich and Oseledets, 2014, Theorem 4.1].

22 Chapter 3. Dynamical low-rank approximation for first-order matrix differential equations

Remark 3.8. Permuting the order of the substeps in the Lie-Trotter splitting yields alternative
algorithms for the dynamical low-rank approximation of the solution to (3.1). However, the exactness
property is only satisfied for the ordering as in (3.9) or by interchanging steps I and III. The proof of the
exactness property for the latter case is done similarly to the proof in [Lubich and Oseledets, 2014]. �

3.3 Dynamical low-rank approximation for stiff first-order ma-
trix differential equations

Consider the semilinear first-order equation

A′(t) = L1A(t) +A(t)L2 + f
(
A(t)

)
, t ∈ [0, T], A(0) = A0 ∈ Cm×n, (3.12)

where L1 ∈ Cm×m and L2 ∈ Cn×n are constant matrices and f is a nonlinearity. Such equations typically
originate from the space discretization of PDEs. In this context, L1 and L2 are discretized counterparts
of differential operators. When the norms of L1 and L2 become large for fine grids, (3.12) becomes a
stiff matrix differential equation. Explicit numerical integrators such as the projector-splitting integrator
usually suffer from severe step size restrictions when they are applied to such equations.

In [Ostermann et al., 2019], the special case L2 = LH1 was considered. It was proposed to split the
right-hand side of (3.12) into the stiff linear part, L1A(t) + A(t)L2, and the nonstiff nonlinear part,
f
(
A(t)

)
, and to apply a Lie-Trotter splitting. This yields a method of order 1. Solving the subproblems

exactly or with some standard numerical scheme does not necessarily preserve the rank of the initial value
A0. Hence, the resulting method might yield a full-rank solution. A low-rank integrator for first-order
equations of the type (3.12) is obtained by solving

A′lin(t) = L1Alin(t) +Alin(t)L2, (3.13a)

A′non(t) = f
(
Anon(t)

)
, (3.13b)

on the low-rank manifoldMr. For the linear subproblem, with an initial value A0 ∈ Mr, the solutions
of the linear subproblem are also inMr:

Lemma 3.9. Let A0 ∈ Mr be the initial value for the linear subproblem (3.13a). Then the solution
of (3.13a) is also inMr for all t > 0.

Proof. We first show, that the right-hand side of (3.13a) evaluated at A ∈ Mr remains invariant under
orthogonal projection onto TAMr with Π̃A given in (2.21):

Π̃A(L1A + AL2) = L1AVVH −UUHL1AVVH + UUHL1A + AL2VVH −UUHAL2VVH

+ UUHAL2

= L1A−UUHL1A + UUHL1A + AL2VVH −AL2VVH + AL2

= L1A + AL2.

From Theorem 3.2 we conclude that the exact solution Alin(t) of

A′lin(t) = L1Alin(t) + Alin(t)L2, Alin(0) = A0
lin ∈Mr, (3.14)

satisfies Alin(t) ∈Mr for all t ≥ 0.

3.4. Other dynamical low-rank integrators for first-order problems 23

The exact solution of (3.14) can be given in terms of the matrix exponential and reads

Alin(t) = etL1 A0
lin etL2 , t ≥ 0. (3.15)

This is verified by straightforward calculation: Obviously, Alin(0) = A0
lin. Further, by the product rule

and Theorem A.21 the derivative of Alin is given by

A′lin(t) = L1 etL1 A0
lin etL2 + etL1 A0

lin etL2 L2 = L1Alin(t) + Alin(t)L2.

A low-rank approximation A1 ≈ A(τ) is obtained by solving the projected second subproblem

A′non(t) = Π̃Anon(t)f
(
Anon(t)

)
, t ∈ [0, τ], Anon(0) = Alin(τ) ∈Mr,

approximately with Algorithm 3. Iterating k times yields the approximation Ak ≈ A(tk). A single time
step of the low-rank integrator is presented in Algorithm 4.

Algorithm 4: Projector-splitting integrator for stiff semilinear first-order ODEs (3.12)
[Ostermann et al., 2019], single time step

prsistiff(U,S,V, r, τ, L1, L2, f)
Input : factors U,S,V of rank-r approximation A ≈ A(t) with U ∈ Vm,r, V ∈ Vn,r, S ∈ Cr×r,

step size τ , matrices L1 and L2, right-hand side f

First subproblem – evaluate the action of the matrix exponential on the factors
3 Compute QR-decomposition of ŨS1 = eτL1 U, S1 invertible, Ũ orthonormal
4 Compute QR-decomposition of ṼS2 = eτLH2 V, S2 invertible, Ṽ orthonormal
5 Set S̃ = S1SSH2
Second subproblem – solve nonlinear subproblem approximately onMr

7 U1,S1,V1,L1 = prsiF(Ũ, S̃, Ṽ, r, τ, f)
8 Return U1,S1,V1,L1

Output: factors U1,S1,V1 of rank-r approximation A1 = U1S1VH
1 ≈ A(t+ τ) and L1 = V1SH1

with U1 ∈ Vm,r, V1 ∈ Vn,r, S1 ∈ Cr×r

3.4 Other dynamical low-rank integrators for first-order pro-
blems

3.4.1 Time integration of (skew-)Hermitian low-rank matrices

Next we consider matrix differential equations whose solutions are (skew-)Hermitian. In [Ceruti and
Lubich, 2020], a (skew-)symmetry preserving dynamical low-rank integrator was constructed. Though it
was proposed only for real matrices, it straightforwardly generalizes to the complex case. The right-hand
side F is assumed to satisfy

F
(
A(t)

)
is (skew-)Hermitian whenever A(t) ∈ Cm×n is (skew-)Hermitian.

Then, the solution of the matrix differential equation (3.1) is (skew-)Hermitian if the initial value is
(skew-)Hermitian, and the same holds for the projected differential equation (3.11). Hence, the low-rank

24 Chapter 3. Dynamical low-rank approximation for first-order matrix differential equations

approximation A ≈ A admits a decomposition like A = USUH . The modified integrator shares the
first substep with the projector-splitting integrator as in Algorithm 3. The second substep however is
changed, and due to V = U the third substep is not necessary. A single time step of the variant is
presented in Algorithm 5. Though the method is derived by non-trivial modifications of the projector-
splitting integrator, the authors of [Ceruti and Lubich, 2020] point out that it cannot be interpreted as
a splitting integrator.

Algorithm 5: (Skew-)Hermitian preserving integrator [Ceruti and Lubich, 2020, Algorithm 1]

1 prsiskew(U,S, r, τ, F)
Input : factors U,S of rank-r approximation A = USUH ≈ A(t) with U ∈ Vm,r, S ∈ Cr×r,

step size τ , right-hand side F

2 Solve
K′(t) = F

(
K(t)UH

)
U, K(0) = US,

for t ∈ [0, τ] and compute a QR-decomposition U1R = K(τ).
3 Solve

S′(t) = UH
1 F
(
U1S(t)UH

1
)
U1, S(0) = UH

1 A0U1

for t ∈ [0, τ] and set S1 = S(τ).

4 Return U1,S1

Output: factors U1,S1 of rank-r approximation A1 = U1S1UH
1 ≈ A(t+ τ) with U1 ∈ Vm,r,

S1 ∈ Cr×r

It was shown in [Ceruti and Lubich, 2020, Section 3.2], that both the exactness property and the
robust error bound hold verbatim for the new integrator Algorithm 5.

3.4.2 Unconventional robust dynamical low-rank integrator

In [Ceruti and Lubich, 2021], the authors introduced another dynamical low-rank integrator for first-
order matrix differential equations (3.1), which was named the unconventional robust integrator. It can
be viewed as a variant of the projector-splitting integrator, and it is applicable to both the problem of
finding low-rank approximations to given, time-dependent matrices and to the unknown solution of a
first-order matrix differential equation (3.1). Furthermore, it was shown that also for this integrator the
exactness property and the robust error bound Theorem 3.6 are valid.

There are three main differences between the projector-splitting integrator and the unconventional
robust integrator, cf. [Ceruti and Lubich, 2021, Section 3]:

1. The projector-splitting integrator is a sequential algorithm, the substeps cannot be carried out in
parallel. This is different for the new integrator, where the matrices K and L as in Algorithm 2
and Algorithm 3, respectively, can be computed simultaneously.

2. The update step for the matrix S is now a forward time step, while in the projector-splitting
integrator it is a backwards step. Note that this is especially relevant for strongly dissipative
problems, where a backwards step might cause stability issues.

3.4. Other dynamical low-rank integrators for first-order problems 25

3. The unconventional robust integrator preserves (skew-)symmetry, which is not true for the projector-
splitting integrator.

A single time step of the unconventional robust integrator is presented in Algorithm 6.

Algorithm 6: Unconventional robust integrator [Ceruti and Lubich, 2021, Section 3.1]

1 prsirobust(U,S,V, r, τ, F)
Input : factors U,S,V of rank-r approximation A0 = USVH ≈ A(t) with U ∈ Vm,r, V ∈ Vn,r,

S ∈ Cr×r, step size τ , right-hand side F

2 Solve
K′(t) = F

(
K(t)VH

)
V, K(0) = US,

for t ∈ [0, τ]. Compute a QR-decomposition U1R1 = K(τ) and define M = UH
1 U.

3 Solve
L′(t) = F

(
UL(t)H

)HU, L(0) = VSH ,

for t ∈ [0, τ]. Compute a QR-decomposition V1R̃1 = L(τ) and define N = VH
1 V.

4 Solve
S′(t) = UH

1 F
(
U1S(t)VH

1
)HV1, S(0) = MSNH ,

for t ∈ [0, τ] and set S1 = S(τ).

5 Return U1,S1,V1

Output: factors U1,S1,V1 of rank-r approximation A1 = U1S1VH
1 ≈ A(t+ τ) with U1 ∈ Vm,r,

V1 ∈ Vn,r, S1 ∈ Cr×r

26 Chapter 3. Dynamical low-rank approximation for first-order matrix differential equations

27

CHAPTER 4

Dynamical low-rank approximation for second-order matrix differential
equations

While dynamical low-rank approximation for first-order matrix differential equations has been studied
extensively in the past, to the best of our knowledge second-order matrix differential equations have not
been considered so far. A prototype of such an equation is given by

A′′(t) = F
(
A(t)

)
∈ Cm×n, t ∈ [0, T], A(0) = A0, A′(0) = B0, (4.1)

where we assume the right-hand side F to be Lipschitz continuous with a moderate Lipschitz constant.
For such equations, numerous integrators are provided in the literature. Many of them are tailored to
properties of the right-hand side F or of the exact solution A of (4.1). However, solving (4.1) under a
rank constraint on the approximations to the exact solution and its derivative has not yet been presented.

In this chapter, we derive dynamical low-rank integrators for second-order matrix differential equations
of form (4.1) based on the projector-splitting integrator. The first scheme is constructed from the first-
order formulation of the problem (4.1), which we combine with a splitting ansatz and the ideas presented
in Section 3.2. Before we do so we first revise the leapfrog scheme, which presumably is the most
prominent scheme for computing approximations to the solution of (4.1). One of the possibilities to
derive this numerical method is based on the first-order formulation and a splitting ansatz. This is the
basis for the construction of our dynamical low-rank integrator for the second-order matrix differential
equation (4.1). We shall see, that the connection between the leapfrog and our low-rank scheme goes
beyond the construction, and both schemes share several properties. Sections 4.2.1 and 4.2.2 are devoted
to a detailed error analysis of the novel integrator. In the rest of this chapter, we design variants of
the original ansatz which are tailored to specific properties of either the numerical approximation or the
right-hand side of (4.1).

The construction of the schemes in Section 4.2 and Section 4.3 as well as the theoretical results in
Section 4.2.1 have been submitted for publication in [Hochbruck et al., 2022a]. Here we provide more
detailed information concerning the derivation of the respective dynamical low-rank integrators and the

28 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

proofs in Section 4.2.1.

4.1 The leapfrog scheme

The probably most common method for solving (4.1) is the leapfrog scheme, an explicit time-integration
scheme also known as the Störmer scheme in the context of astronomy or as the Verlet scheme in the
context of molecular dynamics.

One possibility of deriving the leapfrog scheme is based on the first-order formulation
[
A(t)
B(t)

]′
=
[

B(t)
F
(
A(t)

)
]
,

[
A(0)
B(0)

]
=
[
A0

B0

]
(4.2)

of (4.1), where B(t) = A′(t). Following [Hairer et al., 2003, Section 1.5], splitting (4.2) into two subprob-
lems yields [

A(t)
B(t)

]′
=
[

0
F
(
A(t)

)
]
,

[
A(t)
B(t)

]′
=
[
B(t)

0

]
.

Both problems can be solved explicitly with solutions
[
A(t)
B(t)

]
=
[

A0

B0 + tF (A0)

]
and

[
A(t)
B(t)

]
=
[
A0 + tB0

B0

]
,

respectively. Performing a standard Strang splitting (cf. Appendix B) with step size τ > 0 then yields

Bk+ 1
2

= Bk + τ

2F (Ak),

Ak+1 = Ak + τBk+ 1
2
,

Bk+1 = Bk+ 1
2

+ τ

2F (Ak+1),

k = 0, 1, (4.3)

Combining the second substep for B in the kth step with the first substep of the (k + 1)st step leads to
a variant of the leapfrog scheme, which computes approximations to A′ on a staggered grid,

Bk+ 1
2

= Bk− 1
2

+ τF (Ak),

Ak+1 = Ak + τBk+ 1
2
,

k = 1, 2, . . . , (4.4a)

where for k = 0 we set

B 1
2

= B0 + τ

2F (A0),

A1 = A0 + τB 1
2
.

(4.4b)

Based on the recursion (4.4), a second variant of the leapfrog scheme can be derived. For k ≥ 1 it
holds

Ak+1 = Ak + τBk+ 1
2

= Ak + τBk− 1
2

+ τ2F (Ak)

= Ak + (Ak −Ak−1) + τ2F (Ak),

4.2. The St-LO scheme 29

or equivalently

Ak+1 − 2Ak +Ak−1 = τ2F (Ak), (4.5a)

which is also known as the two-step formulation of the leapfrog scheme. For the starting value

A1 = A0 + τB0 + τ2

2 F (A0) (4.5b)

it is equivalent to the one-step formulation.
Both the one-step formulation (4.4) and the two-step formulation (4.5) require the same computational

effort. However, the one-step formulation is numerically more stable than (4.5), see [Hairer et al., 1993,
p. 472].

The leapfrog scheme has several favorable properties. It is easy to implement, it is second-order
convergent in time for nonstiff problems, and it is a symplectic integrator, which makes it of interest also
in geometric numerical integration, cf. [Hairer et al., 2003, 2006]. However, the scheme does not preserve
the rank of its initial values A0, B0, i.e., in general

rankAk 6= rankA0, rankBk 6= rankB0, k = 1, 2,

Therefore the leapfrog scheme does not qualify as a low-rank integrator for computing low-rank approxi-
mations to the exact solution to (4.1) starting from low-rank initial values A0 ≈ A0, B0 ≈ B0. Still, due
to its favorable properties, we will use the leapfrog scheme as basis for the construction of a dynamical
low-rank integrator tailored to the numerical integration of (4.1).

4.2 The St-LO scheme

In the spirit of Section 3.2, it appears natural to derive a dynamical low-rank integrator for second-order
matrix differential equations based on the first-order formulation (4.2) of (4.1). Numerical tests indicate
however, that the naive approach of applying the ideas of the first-order case directly on (4.2) yields
bad results in some cases, see Section 7.2.1. We suspect that the direct application of the projector-
splitting integrator for first-order problems ignores some inherent structure of the second-order problem.
To overcome this, we derive a dynamical low-rank integrator based on (4.4).

The main idea is to regard the update steps for the approximations Bk+ 1
2
≈ A′(tk+ 1

2
) and Ak+1 ≈

A(tk+1) as displayed in (4.4) as solutions at σ = τ to first-order differential equations with constant
right-hand sides,

B′(σ) = F (Ak), B(0) = Bk− 1
2
,

A′(σ) = Bk+ 1
2
, A(0) = Ak.

In order to derive a dynamical low-rank scheme, assume we are given low-rank approximations Ak ≈ A(tk)
and Bk− 1

2
≈ B(tk− 1

2
). Then, low-rank approximations Ak+1 ≈ A(tk+1) and Bk+ 1

2
≈ A′(tk+ 1

2
) are

obtained by approximately solving

B̃′k− 1
2
(σ) = F (Ak), B̃k− 1

2
(0) = Bk− 1

2
, σ ∈ [0, τ], k ≥ 1, (4.6a)

Ã′k(σ) = Bk+ 1
2
, Ãk(0) = Ak, σ ∈ [0, τ], k ≥ 0, (4.6b)

30 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

employing the projector-splitting integrator. For k = 0, we start from

B̃′0(σ) = F (A0), B̃0(0) = B0, σ ∈ [0, τ2]. (4.6c)

All problems (4.6) can be solved exactly, with solutions

B̃k− 1
2
(σ) = Bk− 1

2
+ σF (Ak), σ ∈ [0, τ], k≥ 1, (4.7a)

Ãk(σ) = Ak + σBk+ 1
2
, σ ∈ [0, τ], k≥ 0, (4.7b)

B̃0(σ) = B0 + σF (A0), σ ∈ [0, τ2]. (4.7c)

Since we aim for computing dynamical low-rank approximations to given, time-dependent matrices, we
can make use of the projector-splitting integrator with increments, cf. Algorithm 2.

Remark 4.1. Denote the numerical flow of the projector-splitting integrator by φ[prsi]. For a given,
time-dependent matrix A(t), the computation of the low-rank approximation A1 ≈ A(τ) via the projector-
splitting integrator, started from the low-rank initial value A0 ≈ A(0) and the increment ∆A = Ã1−A0

is expressed as
A1 = φ

[prsi]
∆A (Ã1).

Here, Ã1 is an approximation to A(τ) of arbitrary rank. If Ã1 itself originates from a single step of some
numerical scheme with flow φ and initial value A0, i.e., Ã1 = φτ (A0), we use the notation

A1 = φ[prsi]
τ ◦ φτ (A0). �

With the above notation, the computation of the low-rank approximations can be expressed as

Bk+ 1
2

= φ
[prsi]
∆B

k− 1
2

(
B̃k− 1

2
(τ)
)
, k ≥ 1, (4.8a)

Ak+1 = φ
[prsi]
∆Ak

(
Ãk(τ)

)
, k ≥ 0, (4.8b)

B 1
2

= φ
[prsi]
∆B0

(
B̃0(τ2)

)
. (4.8c)

The increments ∆A and ∆B, which are required to perform the scheme, are given as

∆Bk− 1
2

= B̃k− 1
2
(τ)− B̃k− 1

2
(0) = τF (Ak), k ≥ 1,

∆Ak = Ãk(τ)− Ãk(0) = τBk+ 1
2
, k ≥ 0,

∆B0 = B̃0(τ2)− B̃0(0) = τ

2F (A0).

The resulting dynamical low-rank integrator for second-order matrix differential equations is named St-
LO scheme, for Strang splitting combined with the projector-splitting integrator as introduced by Lubich
and Oseledets. A single time step of the scheme is presented in Algorithm 7. For decompositions

Ak = UkSkVH
k ∈MrA , Bk− 1

2
= Tk− 1

2
Rk− 1

2
WH

k− 1
2
∈MrB ,

where

Uk ∈ Vm,rA , Vk ∈ Vn,rA , Sk ∈ CrA×rA , (4.9a)

Tk− 1
2
∈ Vm,rB , Wk− 1

2
∈ Vn,rB , Rk− 1

2
∈ CrB×rB , (4.9b)

this algorithm computes the factors of the approximations Ak+1 = Uk+1Sk+1VH
k+1 ≈ A(tk+1) and

Bk+ 1
2

= Tk+ 1
2
Rk+ 1

2
WH

k+ 1
2
≈ B(tk+ 1

2
). These factors satisfy again (4.9).

4.2. The St-LO scheme 31

Algorithm 7: Dynamical low-rank integrator for second-order ODEs, St-LO, single time step
1 stlo(U,S,V,T,R,W, rA, rB, τ, F)
Input : factors U,S,V of rank-rA approximation A = USVH ≈ A(t) satisfying (4.9a), factors

T,R,W of rank-rB approximation B = TRWH ≈ A′(t− τ
2) satisfying (4.9b), step

size τ , right-hand side F
2 B-step: T1,R1,W1,L = prsi

(
T,R,W, rB,∆B

)
where ∆B = τF (USVH)

3 A-step: U1,S1,V1,L1 = prsi
(
U,S,V, rA,∆A

)
where ∆A = τT1LH

4 Return U1,S1,V1,L1,T1,R1,W1

Output: factors U1,S1,V1 of rank-rA approximation A1 = U1S1VH
1 ≈ A(t+ τ) satisfying

(4.9a), L1 = V1SH1 , factors T1,R1,W1 of rank-rB approximation
B1 = T1R1WH

1 ≈ A′(t+ τ
2) satisfying (4.9b)

Remark 4.2. In the B-step of the St-LO scheme, the increment ∆B is given in terms of the right-hand
side F evaluated at some low-rank matrix decomposed into low-rank factors U,S, and V. The efficient
implementation of this scheme requires to compute products of form F (USVH)W and F (USVH)HT,
respectively, without computing the full-size matrix USVH explicitly. This is similar to the general
projector-splitting integrator, cf. Algorithm 3, where the products F (USVH)V and F (USVH)HU arise.
For the A step however, due to the factorization of the increment like ∆A = TLH , we simply compute
the products ∆AV and ∆AHU by clever ordering of the matrix products. �

By construction, the St-LO method can be viewed as a low-rank pendant to the leapfrog scheme. For
consistency, it would be favorable if the methods would yield the same approximations if the chosen ranks
rA and rB are sufficiently large. For rA = rB = min{m,n}, the St-LO and the leapfrog scheme indeed
compute the same approximations.

Theorem 4.3. If the approximation ranks rA and rB for computing low-rank approximations A ≈ A
and B ≈ A′, respectively, are chosen as rA = rB = min{m,n}, then the solutions computed by the
St-LO scheme, cf. Algorithm 7, and the leapfrog scheme (4.4) coincide. Note that this especially means
B0 = B(0) and A0 = A(0).

Proof. Without loss of generality, we assume m ≥ n. Otherwise, we consider the conjugate transpose.
We also introduce the set

M≤r =
{
X ∈ Cm×n | rankX ≤ r

}

of complex m× n matrices with rank at most r. Obviously, any element ofM≤r admits a factorization
similarly to (2.5). However, the S-factor is now allowed to be singular.

We start with the first substep of the integration by the St-LO scheme. We denote by B 1
2

=
T 1

2
R 1

2
WH

1
2
≈ A′(τ2) the low-rank approximation computed from the initial values A0 = U0S0VH

0 ∈M≤n
and B0 = T0R0WH

0 ∈M≤n and let furthermore ∆B = τ
2F (A0). Then it holds

V0,W0 ∈ Vn,n ⇐⇒ V0VH
0 = W0WH

0 = In. (4.10)

32 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

By the update steps (3.10) of the projector-splitting integrator, B 1
2
satisfies

B 1
2

= T 1
2
R 1

2
WH

1
2

= T 1
2
(R̃0WH

0 + TH
1
2

∆B)

= T 1
2
R̃0WH

0 + ΠT 1
2

∆B

= T 1
2
(R̂ 1

2
−TH

1
2

∆BW0)WH
0 + ΠT 1

2
∆B

= T 1
2
R̂ 1

2
WH

0 −ΠT 1
2

∆BΠW0 + ΠT 1
2

∆B

= (T0R0 + ∆BW0)WH
0 −ΠT 1

2
∆BΠW0 + ΠT 1

2
∆B

= B0 + ∆BΠW0 −ΠT 1
2

∆BΠW0 + ΠT 1
2

∆B

in terms of the projections onto the column spaces of T 1
2
and W0, respectively, cf. (2.20). Due to (4.10),

ΠW0 = W0WH
0 = In, so that

B 1
2

= B0 + ∆B −ΠT 1
2

∆B + ΠT 1
2

∆B

= B0 + τ

2F (A0).

Since B0 = B(0) and A0 = A(0), this is indeed the first substep of the leapfrog scheme (4.4), thus
B 1

2
= B 1

2
. Denoting ∆A = τB 1

2
, performing similar steps as above yields

A1 = A0 + ∆AΠV0 −ΠU1∆AΠV0 + ΠU1∆A,

where A1 = U1S1VH
1 is the result of the second substep of the St-LO scheme. Again, due to (4.10)

ΠV0 = In holds and hence

A1 = A0 + ∆A = A0 + τB 1
2

= A(0) + τB 1
2
,

which coincides with the second substep of the leapfrog scheme (4.4) and thus A1 = A1. A simple
induction argument yields the assertion.

Based on the one-step formulation (4.3) of the leapfrog scheme, it is possible to derive a variant of
the St-LO scheme which computes approximations to A and A′ on the same time-grid. However, the
computational effort roughly doubles, since the right-hand side F has to be evaluated twice as many
times per time step. For later use, it is convenient to formulate this variant for the modified second-order
matrix differential equation

A′′(t) = ω2F
(
A(t)

)
, t ∈ [0, T], A(0) = A0, A′(0) = ω2B0, (4.11)

for some real number ω ≥ 0. The equivalent first-order system reads
[
A(t)
B(t)

]′
=
[
ω2B(t)
F
(
A(t)

)
]

=
[
ω2B(t)

0

]
+
[

0
F
(
A(t)

)
]
. (4.12)

Similar steps as above lead to Algorithm 8, which is a dynamical low-rank integrator for (4.11).

4.2. The St-LO scheme 33

Algorithm 8: Dynamical low-rank integrator for second-order ODEs (4.11), single time step

1 stlovar(U,S,V,T,R,W, rA, rB, τ, F, ω)
Input : factors U,S,V of rank-rA approximation A = USVH ≈ A(t) satisfying (4.9a), factors

T,R,W of rank-rB approximation B = TRWH ≈ A′(t) satisfying (4.9b), step size τ ,
right-hand side F , weight ω

2 B-step: T 1
2
,R 1

2
,W 1

2
,L = prsi

(
T,R,W, rB,∆B

)
where ∆B = τ

2F (USVH)

3 A-step: U1,S1,V1,L1 = prsi
(
U,S,V, rA,∆A

)
where ∆A = ω2τT 1

2
LH

4 B-step: T1,R1,W1,L = prsi
(
T 1

2
,R 1

2
,W 1

2
, rB,∆B

)
where ∆B = τ

2F (U1S1VH
1)

5 Return U1,S1,V1,L1,T1,R1,W1

Output: factors U1,S1,V1 of rank-rA approximation A1 = U1S1VH
1 ≈ A(t+ τ) satisfying

(4.9a), L1 = V1SH1 , factors T1,R1,W1 of rank-rB approximation
B1 = T1R1WH

1 ≈ A′(t+ τ) satisfying (4.9b)

Lastly, we derive a dynamical low-rank integrator for second-order matrix differential equations (4.1)
based on the two-step formulation (4.5) of the leapfrog scheme,

Ak+1 − 2Ak +Ak−1 = τ2F (Ak), k ≥ 1,

A1 = A0 + τB0 + τ2

2 F (A0).

We name the new method stlotwostep scheme, although it is not dircetly derived from a Strang splitting.
Given rank-rA and rank-rB approximations A0 ≈ A0, B0 ≈ B0, we compute A1 ≈ A(t1) by approxi-

mating the starting value A1 of the leapfrog scheme employing the projector-splitting integrator, cf. Al-
gorithm 2. I.e., starting from A0 we perform one step of the prsi method with increment ∆A = Ã1−A0,
where

Ã1 = A0 + τB0 + τ2

2 F (A0).

Similarly, for k ≥ 1, we obtain the low-rank approximations Ak+1 ≈ A(tk+1) via

Ãk+1 = 2Ak −Ak−1 + τ2F (Ak), (4.13a)

Ak+1 = φ
[prsi]
∆A (Ak), ∆A = Ãk+1 −Ak. (4.13b)

Here we made use of the notation introduced in Remark 4.1 for the flow of the prsi scheme. Obviously,
the matrix Ãk+1 in (4.13) should not be computed explicitly. For an efficient scheme, its representation
in terms of the low-rank matrices Ak and Ak−1 (or more precisely: in terms of their low-rank factors)
should be incorporated in the implementation.

Remark 4.4. The update steps for computing A1 = U1S1VH
1 ≈ A(t1) by the projector-splitting

integrator are given as

U1Ŝ1 = U0S0 + ∆AV0,

S̃0 = Ŝ1 −UH
1 ∆AV0,

V1SH1 = V0S̃
H

0 + ∆AHU1,

34 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

cf. (3.10). If the projector-splitting integrator is started from the low-rank matrix A0 = U0S0VH
0 , the

increment takes the form

∆A = Ã1 −A0 = Ã1 −U0S0VH
0 .

Then it is

U1Ŝ1 = U0S0 + ∆AV0

= U0S0 + (Ã1 −A0)V0

= U0S0 + Ã1V0 −U0S0VH
0 V0

= Ã1V0.

This yields
S̃0 = Ŝ1 −UH

1

(
U1Ŝ1 −U0S0

)
= UH

1 U0S0

and

V1SH1 = V0S̃
H

0 + ∆AHU1

= V0SH0 UH
0 U1 + (Ã1 −A0)HU1

= V0SH0 UH
0 U1 + ÃH1 U1 −V0SH0 UH

0 U1

= ÃH1 U1.

We thus end up with only two QR decompositions

U1Ŝ1 = Ã1V0,

V1SH1 = ÃH1 U1,
(4.14)

for computing A1 ≈ Ã1 ≈ A(t1). �

4.2.1 Error analysis of the St-LO scheme

In the following, we analyze the error of the St-LO scheme (Algorithm 7) when applied to (4.1), where
the right-hand side F is assumed to be Lipschitz-continuous with a moderate Lipschitz constant LF , i.e.,

‖F (Y)− F (Ỹ)‖ ≤ LF ‖Y − Ỹ ‖ for all Y, Ỹ ∈ Cm×n. (4.15)

Assumption 4.5. The exact solution A : [0, T]→ Cm×n of (4.1) is in C4([0, T]). Furthermore, there
are low-rank matrices XA(t) ∈MrA ,XB(t) ∈MrB such that

A(t) = XA(t) +RA(t), ‖RA(0)‖ ≤ %A, ‖R′A(t)‖ ≤ %′A, (4.16a)

B(t) = A′(t) = XB(t) +RB(t), ‖RB(0)‖ ≤ %B , ‖R′B(t)‖ ≤ %′B . (4.16b)

Additionally, there exist sufficiently large constants γA and γB, such that for all YA(t), YB(t) ∈ Cm×n

with
‖A(t)− YA(t)‖ ≤ γA, ‖B(t)− YB(t)‖ ≤ γB ,

4.2. The St-LO scheme 35

the bounds (4.16) are also satisfied, i.e., there are low-rank matrices X̃A(t) ∈ MrA , X̃B(t) ∈ MrB such
that

YA(t) = X̃A(t) + R̃A(t), ‖R̃A(0)‖ ≤ %A, ‖R̃′A(t)‖ ≤ %′A,
YB(t) = X̃B(t) + R̃B(t), ‖R̃B(0)‖ ≤ %B , ‖R̃′B(t)‖ ≤ %′B .

Recall, that we denote the low-rank approximations defined in (4.8) by Ak ≈ A(tk) and Bk+ 1
2
≈

B(tk+ 1
2
), respectively. Further we have for σ ∈ [0, τ] the auxiliary quantities

Ãk(σ) = Ak + σBk+ 1
2
,

B̃k− 1
2
(σ) = Bk− 1

2
+ σF (Ak),

cf. (4.7).
For better readability, we introduce the following notation: For approximations Ak ≈ A(tk), Bk+ 1

2
≈

B(tk+ 1
2
) obtained by the St-LO scheme and Ãk and B̃k− 1

2
, we write

EkA = ‖A(tk)−Ak‖, E
k+ 1

2
B = ‖B(tk+ 1

2
)−Bk+ 1

2
‖, k ≥ 0,

Ẽ0
A = 0, Ẽ

1
2
B = ‖B(t 1

2
)− B̃0(t 1

2
)‖,

ẼkA = ‖A(tk)− Ãk−1(τ)‖, Ẽ
k+ 1

2
B = ‖B(tk+ 1

2
)− B̃k− 1

2
(τ)‖, k ≥ 1,

Ê0
A = E0

A, Ê
1
2
B = ‖B̃0(t 1

2
)−B 1

2
‖,

ÊkA = ‖Ãk−1(τ)−Ak‖, Ê
k+ 1

2
B = ‖B̃k− 1

2
(τ)−Bk+ 1

2
‖, k ≥ 1.

By the triangle inequality, we have

E
k+ 1

2
B ≤ Ẽk+ 1

2
B + Ê

k+ 1
2

B and Ek+1
A ≤ Ẽk+1

A + Êk+1
A , k ≥ 0. (4.19)

The analysis of the St-LO scheme is performed in two steps. First, we derive recursive inequalities
for Ek+1

A and Ek+ 1
2

B . Essential in their derivation is the Taylor series expansion of the exact solution A
and its derivative. As the St-LO scheme yields approximations to A′ on a staggered grid, we need an
expansion of the exact solution where the derivative is evaluated on the staggered grid as well. For this,
we recall Taylor’s theorem:

Theorem 4.6 (Taylor’s theorem). Let u : I ⊆ R→ Rd, t 7→ u(t) be (p+ 1) times differentiable. Then
it holds for all a and t in I

u(t) =
p∑

j=0

u(j)(a)
j! (t− a)j +

∫ t

a

(t− ξ)p
p! u(p+1)(ξ) dξ.

The remainder satisfies the bound
∥∥∥∥
∫ t

a

(t− ξ)p
p! u(p+1)(ξ) dξ

∥∥∥∥ ≤ max
ξ∈[a,t]

‖u(p+1)(ξ)‖ |(t− a)p+1|
(p+ 1)! .

Corollary 4.7. Let u : [0, T]→ Cm×n with u ∈ C3([0, T]) and τ > 0. Then, as long as t+ τ ≤ T ,

u(t+ τ) = u(t) + τu′
(
t+ τ

2
)

+ ∆u,

where the remainder ∆u is bounded by

‖∆u‖ ≤
τ3

24 max
t∈[0,T]

‖u′′′(t)‖.

36 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

Proof. By Theorem 4.6 it is

u(t+ τ) = u
(
t+ τ

2
)

+ τ

2u
′(t+ τ

2
)

+ τ2

4 u
′′(t+ τ

2
)

+
∫ t+τ

t+ τ
2

(t+ τ − ξ)2

2 u′′′(ξ) dξ,

u
(
t) = u

(
t+ τ

2
)
− τ

2u
′(t+ τ

2
)

+ τ2

4 u
′′(t+ τ

2
)
−
∫ t+ τ

2

t

(t− ξ)2

2 u′′′(ξ) dξ.

Subtracting both equations yields

u(t+ τ)− u(t) = τu′
(
t+ τ

2
)

+ ∆u,

where

‖∆u‖ =
∥∥∥∥∥

∫ t+ τ
2

t

(t− ξ)2

2 u′′′(ξ) dξ +
∫ t+τ

t+ τ
2

(t+ τ − ξ)2

2 u′′′(ξ) dξ
∥∥∥∥∥

≤ max
ξ∈[t,t+ τ

2]
‖u′′′(ξ)‖

∫ t+ τ
2

t

(t− ξ)2

2 dξ + max
ξ∈[t+ τ

2 ,t+τ]
‖u′′′(ξ)‖

∫ t+τ

t+ τ
2

(t+ τ − ξ)2

2 dξ

≤ τ3

48

(
max

ξ∈[t,t+ τ
2]
‖u′′′(ξ)‖+ max

ξ∈[t+ τ
2 ,t+τ]

‖u′′′(ξ)‖
)

≤ τ3

24 max
t∈[0,T]

‖u′′′(t)‖,

and thus the assertion.

With Corollary 4.7, we are able to derive the desired recursive inequalities:

Lemma 4.8. Let A : [0, T] → Cm×n with A ∈ C4([0, T]) be the exact solution of (4.1) with initial
values A0, B0 ∈ Cm×n and B = A′. Moreover, denote by Bk− 1

2
∈ MrB and Ak ∈ MrA the low-rank

approximations obtained by the St-LO scheme after k steps started with initial values A0 ∈ MrA ,B0 ∈
MrB . Then, the errors introduced in (4.18) satisfy

E
1
2
B ≤ E0

B + τ

2 LFE0
A + Ê

1
2
B + CLF

B τ2, (4.20a)

E
k+ 1

2
B ≤ Ek−

1
2

B + τLFEkA + Ê
k+ 1

2
B + CLF

B τ3 for k ≥ 1, (4.20b)

Ek+1
A ≤ EkA + τE

k+ 1
2

B + Êk+1
A + CLF

A τ3 for k ≥ 0, (4.20c)

where CLF
A and CLF

B are given explicitly as

CLF
A = max

t∈[0,T]

1
24‖A

′′′(t)‖, CLF
B = max

{
max
t∈[0, τ2]

1
8‖A

′′′(t)‖, max
t∈[0,T]

1
24‖A

(4)(t)‖
}
.

Proof. We use Taylor series expansion for B(t 1
2
) and get

B(t 1
2
) = B(0) + τ

2B
′(0) +

∫ τ
2

0

(τ
2 − ξ

)
B′′(ξ) dξ

= B0 + τ

2F (A0) +
∫ τ

2

0

(τ
2 − ξ

)
B′′(ξ) dξ.

Hence

‖B(t 1
2
)−

(
B0 + τ

2F (A0)
)
‖ ≤ τ2

8 max
t∈[0, τ2]

‖A′′′(t)‖ ≤ CLF
B τ2. (4.21)

4.2. The St-LO scheme 37

Furthermore we have by Corollary 4.7

‖A(tk+1)−
(
A(tk) + τB(tk+ 1

2
)
)
‖ ≤ CLF

A τ3, k ≥ 0, (4.22a)

‖B(tk+ 1
2
)−

(
B(tk− 1

2
) + τF (A(tk))

)
‖ ≤ CLF

B τ3, k ≥ 1. (4.22b)

Hence for k = 0, we have

Ẽ
1
2
B ≤ ‖B0 + τ

2F (A0)− (B0 + τ

2F (A0))‖+ CLF
B τ2

≤ E0
B + τ

2 LFE0
A + CLF

B τ2 (4.23)

by (4.21), (4.7c), and (4.15). Employing (4.19) shows (4.20a). Likewise, for k ≥ 1 we have by (4.7),
(4.15), and (4.22b)

Ẽ
k+ 1

2
B ≤ Ek−

1
2

B + τLFEkA + CLF
B τ3, (4.24)

and by (4.19) thus (4.20b).
For k ≥ 0, (4.22a) yields together with (4.19) and (4.7)

Ek+1
A ≤ ‖A(tk) + τA′(tk+ 1

2
)−

(
Ak + τBk+ 1

2

)
‖+ Êk+1

A + CLF
A τ3

≤ EkA + τE
k+ 1

2
B + Êk+1

A + CLF
A τ3,

hence (4.20c).

For the next considerations, it is helpful to have a slightly different representation of the errors Ek+1
A

and Ek+ 1
2

B .

Corollary 4.9. Let the assumptions of Lemma 4.8 be satisfied. Then it holds

E1
A ≤ (1 + τ2

2 LF)E0
A + τE0

B + τÊ
1
2
B + Ê1

A + (CLF
A + CLF

B)τ3, (4.25a)

Ek+1
A ≤ (1 + τ2LF)EkA + τE

k− 1
2

B + τÊ
k+ 1

2
B + Êk+1

A + (CLF
A + CLF

B τ)τ3 for k ≥ 1, (4.25b)

E
k+ 1

2
B ≤ (1 + τ2LF)Ek−

1
2

B + τLFEk−1
A + τLF ÊkA + Ê

k+ 1
2

B + CLF
A LF τ4 + CLF

B τ3 for k ≥ 1. (4.25c)

Proof. (4.25a) is obtained by replacing E
1
2
B in (4.20c) for k = 0 by (4.20a). Similarly, (4.25b) follows from

replacing Ek+ 1
2

B in (4.20c) by (4.20b). Note, that (4.25a) and (4.25b) imply

Ẽ1
A ≤

(
1 + τ2

2 LF
)
E0
A + τE0

B + τÊ
1
2
B + (CLF

A + CLF
B)τ3 (4.26)

and

Ẽk+1
A ≤ (1 + τ2LF)EkA + τE

k− 1
2

B + τÊ
k+ 1

2
B + (CLF

A + CLF
B τ)τ3. (4.27)

Lastly, replacing EkA in (4.20b) by (4.20c) for k − 1 yields (4.25c).

In [Kieri et al., 2016, Section 2.6.1] it was shown that the error between a time-dependent matrix
A(t) ∈ Cm×n satisfying (4.16a) and the rank-rA approximation Y1 ≈ A(τ) computed with the projector-
splitting integrator (Algorithm 2) started from XA(0) ∈MrA is bounded by

‖A(τ)− Y1‖ ≤ %A + 7τ%′A. (4.28)

38 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

In the next lemma we eliminate Êk+ 1
2

B and Êk+1
A from (4.25) by using this relation. Also, we substitute

(4.20b) into (4.25b) to obtain a recursion of Ek+1
A in terms of the global errors EjA for j = 0, . . . , k.

Lemma 4.10. Let the assumptions of Lemma 4.8 be satisfied. Furthermore, assume that

E0
A ≤ %A, E0

B ≤ %B . (4.29)

If Assumption 4.5 holds, then for all k such that tk+3 ≤ T , the errors Ek+ 1
2

B and Ek+1
A defined in (4.18)

satisfy

E
k+ 1

2
B ≤ %B + 7tk+1%

′
B + τLF

k∑

j=0
EjA + CLF

B τ2(1 + tk) (4.30a)

and

Ek+1
A ≤ %A + tk+1%B + τLF

k∑

j=0
tk+1−jE

j
A + 7tk+1%

′
A + 7

2 tk+1tk+2%
′
B

+
(

(CLF
A + CLF

B)tk+1 + 1
2 tktk+1C

LF
B

)
τ2,

(4.30b)

respectively.

Proof. The proof is done by induction on k. First, we show that the errors Ẽk+1
A and Ẽk+ 1

2
B are uniformly

bounded by suitable constants γA and γB . Then the auxiliary solutions Ã and B̃ are sufficiently close to
the exact solutions A and B, and hence they admit decompositions like (4.16) by Assumption 4.5. Since
the approximations A and B are rank-rA and rank-rB approximations to Ã and B̃ computed with the
projector-splitting integrator (cf. Algorithm 2) started from initial values of rank rA and rB, respectively,
the local errors Êk+1

A and Êk+ 1
2

B are bounded by

Ê
1
2
B ≤

7
2τ%

′
B , Ê

k+ 1
2

B ≤ 7τ%′B , k ≥ 1, Êk+1
A ≤ 7τ%′A, k ≥ 0, (4.31)

cf. (4.28). The estimate on the global error then follows directly from (4.19).
For k = 0 we deduce from (4.23) and (4.29)

Ẽ
1
2
B ≤ %B + τ

2 LF %A + CLF
B τ2.

By Assumption 4.5, if γB ≥ %B + τ

2 LF %A + CLF
B τ2, then by (4.20a) and (4.31) it holds

E
1
2
B ≤ %B + τ

2 LFE0
A + 7τ2%

′
B + CLF

B τ2

< %B + τLFE0
A + 7t1%′B + CLF

B τ2, (4.32)

which precisely is (4.30a) for k = 0.
Likewise, by (4.26), (4.29), and (4.32) it holds

Ẽ1
A ≤ %A + τ2LFE0

A + τ%B + 7τ2%′B + (CLF
A + CLF

B)τ3. (4.33)

Choosing γA as the right-hand side of (4.33), we get by Assumption 4.5 and (4.31)

E1
A ≤ %A + τ2LFE0

A + t1%B + 7t1%′A + 7
2 t1t2%

′
B + (CLF

A + CLF
B)t1τ2,

4.2. The St-LO scheme 39

which shows that (4.30b) indeed holds for k = 0.
Assume now that (4.30) is true for some arbitrary, but fixed k − 1 ∈ N0. Using the Gronwall-type

Lemma 4.13 below we find from (4.30b) for j = 1, . . . , k

EjA ≤ e
√

LF tkM j
A, (4.34)

where
M j
A = %A + tj%B + 7tj%′A + 7

2 tjtj+1%
′
B +

(
(CLF

A + CLF
B)tj + 1

2 tj−1tjC
LF
B

)
τ2.

By (4.29), this bound is also valid for j = 0. From (4.24) and (4.30a) we obtain

Ẽ
k+ 1

2
B ≤ Ek−

1
2

B + τLFEkA + CLF
B τ3

≤
(
%B + 7tk%′B + τLF

k−1∑

j=0
EjA + CLF

B τ2(1 + tk−1)
)

+ τLFEkA + CLF
B τ3

= %B + 7tk%′B + τLF
k∑

j=0
EjA + CLF

B τ2(1 + tk). (4.35)

Plugging (4.34) into (4.35) yields

Ẽ
k+ 1

2
B ≤ %B + 7tk%′B + CLF

B τ2(1 + tk)

+ LF e
√

LF tk
k∑

j=0
τ
(
%A + tj%B + 7tj%′A + 7

2 tjtj+1%
′
B +

(
(CLF

A + CLF
B)tj + 1

2 tj−1tjC
LF
B

)
τ2
)
.

Due to
k∑

j=0
τ = tk+1,

k∑

j=0
τtj = 1

2 tktk+1,

k∑

j=0
τtjtj+1 = 1

3 tktk+1tk+2,

k∑

j=0
τtj−1tj = 1

3 tk−1tktk+1,

we have

Ẽ
k+ 1

2
B ≤ %B + 7tk%′B + CLF

B τ2(1 + tk)

+ LF e
√

LF tk
(
tk+1%A + 1

2 tktk+1%B + 7
2 tktk+1%

′
A + 7

6 tktk+1tk+2%
′
B

+
(1

2(CLF
A + CLF

B)tktk+1 + 1
6C

LF
B tk−1tktk+1

)
τ2
)

=
(
%B + 7tk%′B + LF e

√
LF tk

(
tk+1%A + 1

2 tktk+1%B + 7
2 tktk+1%

′
A + 7

6 tktk+1tk+2%
′
B

))

+ τ2
(
CLF
B (1 + tk) + LF e

√
LF tk

(1
2(CLF

A + CLF
B)tktk+1 + 1

6C
LF
B tk−1tktk+1

))
.

Thus, for 0 ≤ tk+2 ≤ T , there are constants CB(T), C̃B(T) depending on LF , %A, %B , %′A, %′B , CLF
A , and

CLF
B such that

Ẽ
k+ 1

2
B ≤ CB(T) + τ2C̃B(T).

If Assumption 4.5 holds for some γB ≥ CB(T) + τ2C̃B(T), we obtain from (4.31) the estimate Êk+ 1
2

B ≤
7τ%′B . Then (4.19) yields together with (4.35)

E
k+ 1

2
B ≤ %B + 7tk+1%

′
B + τLF

k∑

j=0
EjA + CLF

B τ2(1 + tk),

40 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

which is (4.30a).
Similarly, using (4.27) and the induction hypothesis, we get

Ẽk+1
A ≤

(
%A + tk%B + τLF

k−1∑

j=0
tk−jE

j
A + 7tk%′A + 7

2 tktk+1%
′
B

+
(
(CLF

A + CLF
B)tk + 1

2 tk−1tkC
LF
B

)
τ2
)

+ τ2LFEkA

+ τ
(
%B + 7tk%′B + τLF

k−1∑

j=0
EjA + CLF

B τ2(1 + tk−1)
)

+ 7τ2%′B + (CLF
A + CLF

B τ)τ3

= %A + tk+1%B + τLF
k∑

j=0
tk+1−jE

j
A + 7tk%′A + 7

2 tk+1tk+2%
′
B

+
(
(CLF

A + CLF
B)tk+1 + 1

2 tktk+1C
LF
B

)
τ2.

(4.36)

Employing the bound (4.34) on EjA yields together with the identities
k∑

j=0
τtk+1−j = 1

2 tk+1tk+2,

k∑

j=0
τtk+1−jtj = 1

6 tktk+1tk+2,

k∑

j=0
τtk+1−jtjtj+1 = 1

12 tktk+1tk+2tk+3,

k∑

j=0
τtk+1−jtj−1tj = 1

12 tk−1tktk+1tk+2,

the bound

Ẽk+1
A ≤ %A + tk+1%B + 7tk%′A + 7

2 tk+1tk+2%
′
B +

(
(CLF

A + CLF
B)tk+1 + 1

2 tktk+1C
LF
B

)
τ2

+ LF e
√

LF tk
(1

2 tk+1tk+2%A + 1
6 tktk+1tk+2%B + 7

6 tktk+1tk+2%
′
A + 7

24 tktk+1tk+2tk+3%
′
B

+
(1

6(CLF
A + CLF

B)tktk+1tk+2 + 1
24C

LF
B tk−1tktk+1tk+2

)
τ2
)

=
(
%A + tk+1%B + 7tk%′A + 7

2 tk+1tk+2%
′
B

+ LF e
√

LF tk
(1

2 tk+1tk+2%A + 1
6 tktk+1tk+2%B + 7

6 tktk+1tk+2%
′
A + 7

24 tktk+1tk+2tk+3%
′
B

))

+ τ2
(

(CLF
A + CLF

B)tk+1 + 1
2 tktk+1C

LF
B

+ LF e
√

LF tk
(1

6(CLF
A + CLF

B)tktk+1tk+2 + 1
24C

LF
B tk−1tktk+1tk+2

))
.

For 0 ≤ tk+3 ≤ T hence there are constants CA(T), C̃A(T) depending on LF , %A, %B , %′A, %′B , CLF
A , and

CLF
B such that

Ẽk+1
A ≤ CA(T) + τ2C̃A(T).

By possibly increasing γA, we now assume that Assumption 4.5 holds for γA ≥ CA(T) + τ2C̃A(T). Then
we have Êk+1

A ≤ 7τ%′A by (4.31). Finally, we conclude from (4.36) and (4.19)

Ek+1
A ≤ %A + tk+1%B + τLF

k∑

j=0
tk+1−jE

j
A + 7tk+1%

′
A + 7

2 tk+1tk+2%
′
B

+
(

(CLF
A + CLF

B)tk+1 + 1
2 tktk+1C

LF
B

)
τ2.

4.2. The St-LO scheme 41

This completes the proof.

With Lemma 4.10 we are now able to prove a global error bound.

Theorem 4.11. If the assumptions of Lemma 4.10 are satisfied, then, as long as tk+3 ≤ T , the global
error Ek+1

A is bounded by

Ek+1
A ≤

(
%A + T%B + 7T%′A + 7

2T
2%′B + ((CLF

A + CLF
B)T + 1

2C
LF
B T 2)τ2) e

√
LFT .

Proof. The bound for Ek+1
A is a direct consequence of (4.34) with j = k + 1.

The error of the St-LO scheme in Algorithm 7 is hence a combination of two error contributions: an
error caused by the low-rank approximations on the one hand, and a time discretization error stemming
from the leapfrog scheme.

Remark 4.12. If rA = rB = min{m,n}, all constants %A, %B , %′A, and %′B vanish. We are then left
with the time-discretization error, which coincides with the global error of the leapfrog scheme when it
is applied to (4.1). This is no surprise, since by Theorem 4.3 we already know that in this situation the
St-LO and leapfrog schemes are equivalent. �

In the proof of Theorem 4.11 we make use of the following Gronwall-type lemma.

Lemma 4.13. Let τ,L ≥ 0 and {Mk}k≥0 a nonnegative, monotonically increasing sequence. If the
nonnegative sequence {Ek}k≥0 satisfies

Ek ≤Mk + τ2L
k−1∑

j=0
(k − j)Ej ,

then

Ek ≤Mk e
√

Ltk .

Proof. Define εk := Ek/Mk for all k ≥ 0. The sequence {εk}k≥0 is nonnegative and satisfies

εk ≤ 1 + τ2L
k−1∑

j=0
(k − j) Ej

Mj

Mj

Mk
≤ 1 + τ2L

k−1∑

j=0
(k − j)εj (4.37)

due to the monotonicity of {Mk}k≥0. Application of [Carle et al., 2020, Lemma 3.8] to (4.37) yields the
bound

εk ≤ e
√

Ltk ,

and multiplication with Mk on both sides of the inequality hence the desired result.

Similarly as for Ek+1
A we can derive a global error bound for Ek+ 1

2
B based on the coupled recursions

in Corollary 4.9. However, we will interchange the roles of the error contributions, i.e., we will now give
representations of Ek+ 1

2
B and EkA which only depend on the previous errors Ej+

1
2

B , j = 0, . . . , k − 1, but
not on EjA.

42 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

Lemma 4.14. Let the assumptions of Lemma 4.10 be satisfied. Then for k ≥ 1 such that tk+3 ≤ T ,
the errors Ek+ 1

2
B and EkA satisfy

EkA ≤ %A + 7tk%′A + τ

k−1∑

j=0
E
j+ 1

2
B + CLF

A tkτ
2, (4.38a)

E
k+ 1

2
B ≤ E

1
2
B + tkLF %A + 7

2 tktk+1LF %′A + 7tk%′B + τ2LF
k−1∑

j=0
(k − j)Ej+

1
2

B +
(1

2C
LF
A LF tktk+1 + CLF

B tk
)
τ2.

(4.38b)

Proof. We perform the proof again by induction. Furthermore, with the same argument as in the proof
of Lemma 4.10, we will immediately bound the errors ÊkA and Êk+ 1

2
B according to (4.31), since we will be

again able to choose appropriate values for γA and γB .
For k = 0, (4.20c) reads

E1
A ≤ E0

A + Ê1
A + τE

1
2
B + CLF

A τ3

≤ %A + 7τ%′A + τE
1
2
B + CLF

A τ3,

which is (4.38a) for k = 1. Likewise, (4.25c) yields

E
3
2
B ≤ (1 + τ2LF)E

1
2
B + τLFE0

A + τLF Ê1
A + Ê

3
2
B + CLF

A LF τ4 + CLF
B τ3

≤ (1 + τ2LF)E
1
2
B + τLF %A + 7τ2LF %′A + 7τ%′B + CLF

A LF τ4 + CLF
B τ3,

and thus (4.38b) for k = 1.
Assume now, that (4.38) holds for some k − 1 ∈ N. (4.20c) and the induction hypothesis yield

EkA ≤ Ek−1
A + τE

k− 1
2

B + ÊkA + CLF
A τ3

≤
(
%A + 7tk−1%

′
A + τ

k−2∑

j=0
E
j+ 1

2
B + CLF

A tk−1τ
2)+ τE

k− 1
2

B + 7τ%′A + CLF
A τ3

≤ %A + 7tk%′A + τ

k−1∑

j=0
E
j+ 1

2
B + CLF

A tkτ
2.

(4.25c) yields together with the induction hypothesis and (4.38a)

E
k+ 1

2
B ≤ (1 + τ2LF)Ek−

1
2

B + τLFEk−1
A + τLF ÊkA + Ê

k+ 1
2

B + CLF
A LF τ4 + CLF

B τ3

≤
(
E

1
2
B + tk−1LF %A + 7

2 tk−1tkLF %′A + 7tk−1%
′
B + τ2LF

k−2∑

j=0
(k − 1− j)Ej+

1
2

B

+
(1

2C
LF
A LF tk−1tk + CLF

B tk−1)τ2
)

+ τ2LFE
k− 1

2
B + τLF

(
%A + 7tk−1%

′
A + τ

k−2∑

j=0
E
j+ 1

2
B + CLF

A tk−1τ
2
)

+ 7τ2LF %′A + 7τ%′B + CLF
A LF τ4 + CLF

B τ3

≤ E
1
2
B + tkLF %A + 7

2 tktk+1LF %′A + 7tk%′B + τ2LF
k−1∑

j=0
(k − j)Ej+

1
2

B +
(1

2C
LF
A LF tktk+1 + CLF

B tk
)
τ2.

This completes the proof.

4.2. The St-LO scheme 43

Theorem 4.15. If the assumptions of Lemma 4.8 are satisfied, then the global error Ek+ 1
2

B is bounded
by

E
k+ 1

2
B ≤ e

√
LF tkM

k+ 1
2

B ,

for

M
k+ 1

2
B = %B + tk+ 1

2
LF %A + 7tk+ 1

2
%′B + 7

2 tktk+1LF %′A +
(1

2C
LF
A LF tktk+1 + (1 + tk)CLF

B

)
τ2.

Proof. We start by bounding the first E
1
2
B in (4.38b) from above by (4.20a). This gives

E
k+ 1

2
B ≤

(
E0
B + τ

2 LFE0
A + Ê

1
2
B + CLF

B τ2)+ tkLF %A + 7
2 tktk+1LF %′A + 7tk%′B + τ2LF

k−1∑

j=0
(k − j)Ej+

1
2

B

+
(1

2C
LF
A LF tktk+1 + CLF

B tk
)
τ2

≤ %B + tk+ 1
2
LF %A + 7tk+ 1

2
%′B + 7

2 tktk+1LF %′A +
(1

2C
LF
A LF tktk+1 + (1 + tk)CLF

B

)
τ2

+ τ2LF
k−1∑

j=0
(k − j)Ej+

1
2

B

= M
k+ 1

2
B + τ2LF

k−1∑

j=0
(k − j)Ej+

1
2

B .

Application of Lemma 4.13 then yields the stated result.

So far, we can only provide the analysis of the St-LO scheme for the nonstiff case. In the following,
we provide an outlook on how the stiff case might be tackled.

4.2.2 Outlook: Error analysis of the St-LO scheme for semilinear stiff pro-
blems

We now turn to the semilinear problem

A′′(t) = −Ω2
1A(t)−A(t)Ω2

2 + f
(
A(t)

)
∈ Cm×n, t ∈ [0, T], A(0) = A0, A′(0) = B0, (4.39)

where Ω2
1 ∈ Rm×m and Ω2

2 ∈ Rn×n are symmetric positive definite matrices with possibly large norm,
and f : C→ C is a globally Lipschitz continuous function with constant Lf > 0, i.e.,

|f(a)− f(b)| ≤ Lf |a− b| for all a, b ∈ C.

The evaluation of f at A is performed entrywise, i.e.,

f(A)ij = f(Aij), i = 1, . . . ,m, j = 1, . . . , n.

Since f is Lipschitz continuous, we have for all A,B ∈ Cm×n

‖f(A)− f(B)‖2 =
m∑

i=1

n∑

j=1
|f(Aij)− f(Bij)|2 ≤

m∑

i=1

n∑

j=1
L2
f |Aij −Bij |2 = L2

f‖A−B‖2. (4.40)

In [Carle et al., 2020] and recently in [Carle, 2021], a general class of two-step schemes for the numerical
solution of the second-order semilinear differential equation

a′′(t) = −L̃a(t) + f
(
a(t)

)
∈ Cm, t ∈ [0, T], a(0) = a0, a′(0) = b0, (4.41)

44 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

was studied. Here, L̃ ∈ Rm×m is a symmetric positive definite matrix, and f : Cm → Cm is a globally
Lipschitz continuous nonlinearity. The leapfrog scheme (4.5) is a special case of these general methods.
In [Carle et al., 2020], the following result for the leapfrog scheme was derived:

Theorem 4.16 ([Carle et al., 2020, Theorem 4.3]). Let ϑ ∈ (0, 1] and define the step size τ (ϑ)
SSR via

τ
(ϑ)
SSR =

√
4ϑ2

‖L̃‖2
. (4.42)

Let f : Cm → Cm be globally Lipschitz continuous with constant Lf , i.e.,

‖f(a)− f(b)‖2 ≤ Lf‖a− b‖2 for all a, b ∈ Cm.

In addition, assume that the exact solution a of (4.41) satisfies a ∈ C4([0, T]). Then, for τ ≤ τ
(1)
SSR and

tk ≤ T we have for the approximations ak of the scheme (4.5)

‖a(tk)− ak‖2 ≤ (1
2C1T

2 + C2T) e
√

LfT τ2,

where the constants C1, C2 are independent of ‖L̃‖2, k, and τ .

Observe that the norm of L̃ causes a restriction on the step size, but the global error bound is
independent of L̃.

By application of the vectorization operator vec, which maps a matrix A ∈ Cm×n to a vector a ∈ Cmn

by stacking its columns upon each other, the matrix differential equation (4.39) is a special case of (4.41)
with L̃ = Ω2

1⊕Ω2
2 ∈ Rmn×mn, cf. Definition A.15. By Definition A.10, Theorem A.11, and the symmetry

of Ω2
1 and Ω2

2 it holds

L̃T = (Ω2
1 ⊕ Ω2

2)T = (In ⊗ Ω2
1 + Ω2

2 ⊗ Im)T = In ⊗ (Ω2
1)T + (Ω2

2)T ⊗ Im = L̃,

so that L̃ is symmetric. Since both Ω2
1 and Ω2

2 are positive definite matrices, we deduce from Theorem A.16
that the same is valid for L̃. Moreover,

‖f(a)− f(b)‖2 = ‖f(A)− f(B)‖ ≤ Lf‖A−B‖ = Lf‖a− b‖2, for all a, b ∈ Cmn.

Using Theorem A.13, one can show that the leapfrog scheme applied to (4.41) yields the same approx-
imations up to vectorization as if it is applied to (4.39). We therefore obtain the following result as an
immediate consequence of Theorem 4.16:

Corollary 4.17. Let f : Cm×n → Cm×n satisfy (4.40) and assume that the exact solution A of (4.39)
satisfies A ∈ C4([0, T]). Then, for τ ≤ τ (1)

SSR, where τSSR is given in (4.42) with L̃ = Ω2
1 ⊕Ω2

2, and tk ≤ T
we have for the approximations Ak of the scheme (4.5)

‖A(tk)−Ak‖ ≤ (1
2C1T

2 + C2T) e
√

LfT τ2,

where the constants C1, C2 are independent of ‖L̃‖2, k and τ .

Since it is possible to derive a bound on the global error of the leapfrog scheme which does not involve
the norms of the matrices Ω2

1 and Ω2
2 we are optimistic that the same is possible for the St-LO scheme.

In the spirit of Section 4.2.1 we expect that the global error of the St-LO scheme admits a bound which
is of the same form as in Corollary 4.17, with additional low-rank error contributions.

4.2. The St-LO scheme 45

In the following, we adapt the technique which was used in [Carle et al., 2020] and [Carle, 2021] to
prove Theorem 4.16 and thus work with the vectorized formulation of (4.39) throughout. We abbreviate

ak = vec Ak, bk− 1
2

= vec Bk− 1
2
,

for the low-rank approximations Ak ≈ A(tk) and Bk− 1
2
≈ A′(tk− 1

2
) to the exact solution of (4.39) and

its derivative, respectively. Furthermore, we will make multiple use of the identity

‖A‖ = ‖ vecA‖2 for all A ∈ Cm×n,

without always indicating this explicitly. For A ∈ C`([0, T]), ` ∈ N, we abbreviate bounds on the `th
derivative of A by

N
(`)
t = max

0≤ξ≤t
‖A(`)(ξ)‖, ` = 1, 2,

Besides, we denote by

d(`),±
k =

∫ tk±1

tk

(tk±1 − ξ)`
`! A(`+1)(ξ) dξ

the remainder terms of the `th order Taylor expansion of A(tk±1) at tk. By Theorem 4.6, they are
bounded by

‖d(`),+
k ‖ ≤ τ `+1

(`+ 1)! max
tk≤t≤tk+1

‖A(`+1)(t)‖, ‖d(`),−
k ‖ ≤ τ `+1

(`+ 1)! max
tk−1≤t≤tk

‖A(`+1)(t)‖.

We continue by stating two results which are required for the analysis. The first one allows us to write
the kth approximation of the leapfrog scheme explicitly in terms of the starting values a0 and a1, and
the nonlinearity f evaluated at previous approximations:

Theorem 4.18 ([Carle, 2021, Theorem 3.18]). Let τ ≤ τ (1)
SSR. For the approximations of the two-step

scheme (4.5) with starting value a1 = a0 + τb0 + τ2

2 f(a0) applied to (4.41) we have

ak = cos(kΦ)a0 + Sk(a1 − cos Φa0) + τ2
k−1∑

j=1
Sk−jf(aj), S` = sin(`Φ)

sin Φ (` ∈ N0),

where Φ ∈ Rm×m is a symmetric matrix with spectrum in [0, π] which is uniquely defined by

cos Φ = I − 1
2τ

2L̃ and satisfies sin Φ =
(
τ2L̃(I − 1

4τ
2L̃)
) 1

2 .

For the following, we need a bound of the difference S`+1 − S`.

Lemma 4.19. Let S` be defined as in Theorem 4.18 and ϑ ∈ (0, 1). Then it holds for every ` ∈ N0

‖S`+1 − S`‖2 ≤





2`+ 1, τ ≤ τ (1)
SSR,

1√
1− ϑ2

, τ ≤ τ (ϑ)
SSR.

(4.43)

Proof. In [Carle, 2021, Lemma 3.23 and Example 3.26] it was shown that the norm of the matrices S` is
bounded by

τ‖S`‖2 ≤





τ`, τ ≤ τ (1)
SSR,

‖L̃− 1
2 ‖2√

1− ϑ2
, τ ≤ τ (ϑ)

SSR, ϑ ∈ (0, 1).
(4.44)

46 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

The first bound in (4.43) is a direct consequence of (4.44). For the second, recall that L̃ is real and
symmetric, and therefore orthogonally diagonalizable. It hence suffices to study the eigenvalues φ of Φ.
Using the trigonometric identities

sin θ − sinϕ = 2 sin
(θ − ϕ

2

)
cos
(θ + ϕ

2

)
and sin(2θ) = 2 sin(θ) cos(θ), θ, ϕ ∈ R,

we obtain
∣∣∣∣∣
sin
(
(`+ 1)φ

)
− sin(`φ)

sinφ

∣∣∣∣∣ =
∣∣∣∣∣
2 sin

(
φ
2
)

cos
(2`+1

2 φ
)

sinφ

∣∣∣∣∣ =
∣∣∣∣∣
cos
(2`+1

2 φ
)

cos φ2

∣∣∣∣∣ ≤
∣∣∣∣∣

1
cos φ2

∣∣∣∣∣ ≤
1√

1− ϑ2
.

The last inequality follows from the proof of [Carle, 2021, Lemma 3.23(b)].

In the next lemma, we derive an explicit representation of the global error between the exact solution
of (4.41) and its low-rank approximation computed with the St-LO scheme. Inserting the low-rank
approximations into the leapfrog update steps yields the defects δk+1

A and δk+ 1
2

B defined via

Bk+ 1
2

= Bk− 1
2

+ τ(−Ω2
1Ak −AkΩ2

2 + f(Ak)) + δ
k+ 1

2
B , (4.45a)

Ak+1 = Ak + τBk+ 1
2

+ δk+1
A . (4.45b)

By Section 4.2.1 they can also be written as

δk+1
A = Ãk(τ)−Ak+1 and δ

k+ 1
2

B = B̃k− 1
2
(τ)−Bk+ 1

2
,

where Ãk and B̃k− 1
2
are given in (4.7).

Lemma 4.20. The global error ek = a(tk)− ak between the exact solution of (4.41) and its low-rank
approximation computed with the St-LO scheme satisfies

e1 = (I − τ2

2 L̃)e0 + τ(b0 − b0) + τ2

2
(
f(a0)− f(a0)

)
+ vec

(
δ − τδ

1
2
B − (δ1

A − δ0
A)
)
, (4.46)

and

ek = cos(kΦ)e0 + τSk(b0 − b0) + τ2
k−1∑

j=0
ζjSk−j

(
f(a(tj))− f(aj)

)
+ Sk vec δ +

k−1∑

j=1
Sk−j vec dj

− τ
k−1∑

j=0
Sk−j vec δj+

1
2

B −
k−1∑

j=0
Sk−j vec(δj+1

A − δjA), k > 1.

(4.47)

Proof. We show that the global error satisfies the leapfrog recurrence (4.5) up to a defect. By inserting
the exact solution of (4.41) into (4.5), one gets as in [Carle, 2021, Section 3.4]

a(tk+1)− 2a(tk) + a(tk−1) = −τ2L̃a(tk) + τ2f
(
a(tk)

)
+ vec dk,

and
a(τ) = (I − τ2

2 L̃)a0 + τb0 + τ2

2 f(a0) + vec δ.

The defects dk and δ are bounded by

‖dk‖ ≤
τ4

24 max
t∈[tk,tk+1]

‖A(4)(t)‖+ τ4

24 max
t∈[tk−1,tk]

‖A(4)(t)‖ ≤ C1τ
4,

4.2. The St-LO scheme 47

and
‖δ‖ ≤ τ3

8 N
(3)
τ
2

+ τ3

24N
(3)
τ ≤ C2τ

3,

respectively. From (4.45) we have for k ≥ 1

ak+1 − 2ak + ak−1 = (ak+1 − ak)− (ak − ak−1)

= τbk+ 1
2

+ vec δk+1
A − τbk− 1

2
− vec δkA

= τ
(
bk− 1

2
+ τ(−L̃ak + f(ak)) + vec δk+ 1

2
B

)
+ vec δk+1

A − τbk− 1
2
− vec δkA

= −τ2L̃ak + τ2f(ak) + vec
(
τδ
k+ 1

2
B + (δk+1

A − δkA)
)
,

and the approximations ak satisfy the two-step leapfrog recurrence up to a defect given in terms of the
defects δk+1

A , δkA, and δ
k+ 1

2
B , respectively. For k = 0 it is

a1 = a0 + τb 1
2

+ vec δ1
A

= a0 + τ
(
b0 + τ

2 (−L̃a0 + f(a0)) + vec δ
1
2
B

)
+ vec δ1

A

= (I − τ2

2 L̃)a0 + τb0 + τ2

2 f(a0) + vec
(
τδ

1
2
B + δ1

A − δ0
A

)
,

where δ0
A = 0. Overall, the error ek = a(tk)− ak satisfies the two-step recursion

ek+1 − 2ek + ek−1 = −τ2L̃ek + τ2(f(a(tk)− f(ak)
)

+ vec
(
dk − τδk+ 1

2
B − (δk+1

A − δkA)
)
, k > 1.

For k = 1 it is

e1 = (I − τ2

2 L̃)e0 + τ(b0 − b0) + τ2

2
(
f(a0)− f(a0)

)
+ vec

(
δ − τδ

1
2
B − (δ1

A − δ0
A)
)
,

hence (4.46). Overall, ek satisfies (4.5) up to a defect. Application of Theorem 4.18 then yields the
representation (4.47) of ek.

In [Carle, 2021], a bound on the error ek was derived by bounding all contributions on the right-hand
side of (4.47) individually, and making use of Lemma 4.13 afterwards. However, it was mentioned that
for a uniform bound in k the defects need to be bounded like Cτ2 for some C > 0. By the above, this is
true for the defects δ and dj . For the defects δj+

1
2

B and δjA we can relax this condition to bounds like

‖δkA‖ ≤ Cτ, ‖δk+ 1
2

B ‖ ≤ Cτ, C > 0, (4.48)

and still obtain a uniform bound in k: Suppose (4.48) is satisfied for all k with tk+1 ≤ T . By (4.44) it
holds for τ ≤ τ (1)

SSR

‖τ
k−1∑

j=0
Sk−j vec δj+

1
2

B ‖2 ≤ τ
k−1∑

j=0
‖Sk−j‖2 ‖δj+

1
2

B ‖ ≤ Cτ2
k−1∑

j=0
(k − j) ≤ 1

2Ctktk+1 ≤
1
2CT

2.

Using δ0
A = 0, the last sum in (4.47) can be rewritten into

k−1∑

j=0
Sk−j vec(δj+1

A − δjA) = S1 vec δkA +
k−1∑

j=1
(Sj+1 − Sj) vec δk−jA .

48 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

Under the stronger step size restriction τ ≤ τ
(ϑ)
SSR, ϑ ∈ (0, 1), we can make use of the second bound in

(4.43) to obtain

∥∥∥
k−1∑

j=0
Sk−j vec(δj+1

A − δjA)
∥∥∥

2
≤ ‖S1 vec δkA‖2 +

k−1∑

j=1
‖(Sj+1 − Sj) vec δk−jA ‖2

≤ Cτ +
k−1∑

j=1

1√
1− ϑ2

Cτ

≤ CT 1√
1− ϑ2

.

Unfortunately, so far there are no analytical results yielding the bounds (4.48) independent of L̃. Thus,
it is not yet possible to derive a global error bound for the St-LO scheme which is of similar form as the
bound in Corollary 4.17, and is fully independent of the norms of Ω2

1 and Ω2
2. This issue will be addressed

in the future.

4.3 Stiff problems

We now develop a dynamical low-rank integrator for semilinear second-order matrix differential equations
of the form

A′′(t) = −Ω2
1A(t)−A(t)Ω2

2 + f
(
A(t)

)
, t ∈ [0, T], A(0) = A0, A′(0) = B0, (4.49)

see also (4.39). In contrast to Section 4.2.2, here Ω1 ∈ Cm×m and Ω2 ∈ Cn×n are constant, positive
semidefinite matrices. The nonlinearity f is Lipschitz continuous with moderate Lipschitz constant. It
was shown, that though the global error of the leapfrog scheme (4.5) applied to (4.49) is independent
of the matrices Ω1 and Ω2, they induce a restriction on the step size τ , cf. Corollary 4.17. Due to the
strong connection between the leapfrog and the St-LO scheme, we suspect that the same holds for the
latter. However, this is unsatisfactory in the situation, where (4.49) originates from a space-discretized
wave-type equation. Then the linear part of the right-hand side corresponds to the discretization of the
Laplacian. If the resolution in space is fine, the norms of Ω1 and Ω2 become large and cause a severe
restriction on the step size. The objective of this section is to derive a variant of the St-LO scheme which
exploits the structure of the right-hand side and allows for larger step sizes than the original ansatz. This
is achieved by performing an additional splitting.

The construction of the dynamical low-rank integrator tailored to the problem (4.49) is based on the
first-order formulation

[
A(t)
B(t)

]′
=
[

B(t)
−Ω2

1A(t)−A(t)Ω2
2 + f(A(t))

]
=
[
ω2

1B(t)
−Ω2

1A(t)

]
+
[
ω2

2B(t)
−A(t)Ω2

2

]
+
[
ω2

3B(t)
f
(
A(t)

)
]
,

where we introduced weights ωj ≥ 0, j = 1, 2, 3, satisfying

ω2
1 + ω2

2 + ω2
3 = 1,

4.3. Stiff problems 49

see also Appendix B. The split equations then read

[
A(t)
B(t)

]′
=
[
ω2

1B(t)
−Ω2

1A(t)

]
=
[

0 ω2
1I

−Ω2
1 0

][
A(t)
B(t)

]
, (4.50a)

[
A(t) B(t)

]′
=
[
ω2

2B(t) −A(t)Ω2
2

]
=
[
A(t) B(t)

] [0 −Ω2
2

ω2
2I 0

]
, (4.50b)

[
A(t)
B(t)

]′
=
[
ω2

3B(t)
f
(
A(t)

)
]
. (4.50c)

We denote the exact flows (cf. Definition B.1) of the three subproblems in (4.50) by ϕ[Ω1], ϕ[Ω2], and ϕ[f],
respectively. A splitting method for solving (4.49) can be derived by applying theses flows in a symmetric
way, which gives

φτ = ϕ
[Ω1]
τ
2
◦ ϕ[Ω2]

τ
2
◦ ϕ[f]

τ ◦ ϕ[Ω2]
τ
2
◦ ϕ[Ω1]

τ
2

. (4.51)

In order to construct a low-rank scheme, we follow the idea in [Ostermann et al., 2019], see also Section 3.3,
and replace all flows by low-rank flows in the splitting scheme (4.51). As the last subproblem (4.50c) is
of the form (4.12), a low-rank approximation to the exact solution is readily obtained by the variant of
the St-LO scheme presented in Algorithm 8. Hence, we replace the flow ϕ[f] by the numerical flow of
Algorithm 8, which we denote by φ[stlo]. It thus remains to replace the flows ϕ[Ω1] and ϕ[Ω2] appropriately
by low-rank flows.

Consider the subproblem (4.50a) first, where the initial values to the problem are low-rank matrices
A0 ∈MrA and B0 ∈MrB . The exact solution to (4.50a) is

[
A(t)
B(t)

]
= exp

(
t

[
0 ω2

1I

−Ω2
1 0

])[
A0

B0

]
=
[

cos(ω1tΩ1) ω2
1t sinc(ω1tΩ1)

−tΩ2
1 sinc(ω1tΩ1) cos(ω1tΩ1)

][
A0

B0

]
, (4.52)

cf. Section A.5. By Theorem A.2, the ranks of A and A′ satisfy

rankA(t), rankA′(t) ≤ rank A0 + rank B0 = rA + rB for all t ≥ 0,

so that the exact flow ϕ[Ω1] of (4.50a) does not preserve the ranks of its input values in general. Yet, the
exact solution to the problem is known in closed form, so we can compute low-rank approximations to
A and B by the projector-splitting integrator with increments, cf. Algorithm 2. Note that the modified
routine (4.14) can be employed to compute A1 = U1S1VH

1 ≈ A(τ) and B1 = T1R1WH
1 ≈ A′(τ), since

in both cases the algorithm is started from a low-rank initial value.
For (4.50b), it is convenient to look at the conjugate transpose of the differential equation,

[
AH(t)
BH(t)

]′
=
[

0 ω2
2I

−(Ω2
2)H 0

][
AH(t)
BH(t)

]
,

[
AH(0)
BH(0)

]
=
[
AH

0

BH
0

]
.

As in (4.52),
[
AH(t)
BH(t)

]
=
[

cos(ω2tΩH2) ω2
2t sinc(ω2tΩH2)

−t(Ω2
2)H sinc(ω2tΩH2) cos(ω2tΩH2)

][
AH

0

BH
0

]
,

50 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

or equivalently

[
A(t) B(t)

]
=
[
A0 B0

] [cos(ω2tΩH2)H −tΩ2
2 sinc(ω2tΩH2)H

ω2
2t sinc(ω2tΩH2)H cos(ω2tΩH2)H

]

=
[
A0 B0

] [cos(ω2tΩ2) −tΩ2
2 sinc(ω2tΩ2)

ω2
2t sinc(ω2tΩ2) cos(ω2tΩ2)

]

by Theorem A.21. We can again compute a low-rank approximation to the exact solutions A and B by
the recurrence displayed in (4.14).

With Remark 4.1, the numerical flows of computing low-rank approximations to the exact solutions
of (4.50a) and (4.50b) by the modified routine (4.14) are given as

φ[Ω1]
τ = φ[prsi]

τ ◦ ϕ[Ω1]
τ , and φ[Ω2]

τ = φ[prsi]
τ ◦ ϕ[Ω2]

τ ,

respectively. Hence, we define the numerical flow of a dynamical low-rank integrator tailored to the stiff
second-order problem (4.49) as

φ[stlostiff]
τ = φ

[Ω1]
τ
2
◦ φ[Ω2]

τ
2
◦ φ[stlo]

τ ◦ φ[Ω2]
τ
2
◦ φ[Ω1]

τ
2

.

One single step of the method, which we call stlostiff, is then given as
[
Ak+1

Bk+1

]
= φ[stlostiff]

τ

[
Ak

Bk

]
, k = 0, 1, . . . ,

and the overall scheme reads [
Ak+1

Bk+1

]
=
(
φ[stlostiff]
τ

)k+1
[
A0

B0

]
. (4.53)

A computationally cheaper variant is
[
Ak+1

Bk+1

]
= φ

[Ω1]
τ
2
◦ φ[Ω2]

τ
2
◦ φ[stlo]

τ ◦ φ[Ω2]
τ
2
◦
(
φ[Ω1]
τ ◦ φ[Ω2]

τ
2
◦ φ[stlo]

τ ◦ φ[Ω2]
τ
2

)k ◦ φ[Ω1]
τ
2

[
A0

B0

]
, (4.54)

which is obtained by formally combining the last substep of the kth full step with the first substep of the
subsequent full step. Note that the approximations Ak+1 and Bk+1 computed with the scheme (4.53)
and its variant (4.54) will not coincide, since in general

φ
[Ω1]
τ
2
◦ φ[Ω1]

τ
2

= φ
[prsi]
τ
2

◦ ϕ[Ω1]
τ
2
◦ φ[prsi]

τ
2

◦ ϕ[Ω1]
τ
2
6= φ[prsi]

τ ◦ ϕ[Ω1]
τ = φ[Ω1]

τ ,

as the flows φ[prsi] and ϕ[Ω1] do not commute.
A special situation occurs if the weight ωi of the ith subproblem in (4.50) is zero. For ω1 = 0, we have

[
A(t)
B(t)

]
=
[
Im 0
−tΩ2

1 Im

][
A0

B0

]
=
[

A0

B0 − tΩ2
1A0

]
.

If ω2 = 0, the solution to the second subproblem (4.50b) reads

[
A(t) B(t)

]
=
[
A0 B0

] [In −tΩ2
2

0 In

]
=
[
A0 B0 − tA0Ω2

2

]
,

4.4. Highly oscillatory problems 51

and for ω3 = 0 we have for the solution to the last subproblem (4.50c)
[
A(t)
B(t)

]
=
[

A0

B0 + tf
(
A0
)
]
.

None of these solutions involve matrix functions of Ω1 or Ω2, and all problems can be solved exactly with
only small computational effort. We therefore treat these cases separately in the implementation of the
stlostiff scheme.

Remark 4.21. It may appear attractive to perform a splitting like
[
A(t)
B(t)

]′
=
[

B(t)
−Ω2

1A(t)−A(t)Ω2
2 + f(A(t))

]
=
[

ω̃2
1B(t)

−Ω2
1A(t)−A(t)Ω2

2

]
+
[
ω̃2

2B(t)
f
(
A(t)

)
]
, ω̃2

1 + ω̃2
2 = 1,

(4.55)
instead of (4.50). The nonlinear subproblem can be treated with the variant Algorithm 8 of the St-LO
scheme. However, the linear subproblem cannot be implemented (storage) efficiently (see the discussion
in Section 5.4), which is why we do not pursue this approach further. �

4.4 Highly oscillatory problems

In this section, we design a dynamical low-rank integrator for a special case of the second-order problem
(4.1), namely

A′′(t) = −Ω2A(t) + f
(
A(t)

)
∈ Cm×n, t ∈ [0, T], A(0) = A0, A′(0) = B0, (4.56)

with a symmetric, positive definite matrix Ω with arbitrary large norm ω = ‖Ω‖2. The nonlinear right-
hand side f is assumed to be Lipschitz continuous. By the variation-of-constants formula we have
[
A(t+ τ)
A′(t+ τ)

]
=
[

cos(τΩ) τ sinc(τΩ)
−τΩ2 sinc(τΩ) cos(τΩ)

][
A(t)
A′(t)

]
+

τ∫

0

[
Ω−1 sin

(
(τ − σ)Ω

)

cos
(
(τ − σ)Ω

)
]
f
(
A(t+ σ)

)
dσ. (4.57)

Such problems are often highly oscillatory: Due to the large eigenvalues of Ω the solution of (4.56)
oscillates heavily. These oscillations are challenging in the construction of numerical integrators for
(4.56).

In the following, we first revise trigonometric integrators for the numerical approximation to (4.57)
before we construct a dynamical low-rank scheme.

4.4.1 Gautschi-type integrators

For second-order problems, the leapfrog scheme from Section 4.1 is considered the standard integration
scheme. However, for problems of type (4.56), it suffers from a step size restriction due to stability issues,
cf. Section 4.2.2. Even for the linear case f ≡ 0, the step sizes τ have to be chosen such that τω < 2
is satisfied, where ω = ‖Ω‖2 is again the largest frequency of the linear problem, cf. [Hairer et al., 2006,
Section XIII.1].

In [Gautschi, 1961], a method for computing a numerical solution to (4.56) was proposed. It gives
the exact solution for arbitrary Ω if f ≡ const. A first modification of this ansatz was introduced

52 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

in [Deuflhard, 1979], and numerous people worked on improvements of the original method. All these
methods share the following one-step formulation which is motivated by the representation (4.57) of the
exact solution, cf. [Hairer et al., 2006, Section XIII.2.2]:

Ak+1 = cos(τΩ)Ak + τ sinc(τΩ)Bk + τ2

2 Ψfk, (4.58a)

Bk+1 = −τΩ2 sinc(τΩ)Ak + cos(τΩ)Bk + τ

2 (Ψ0fk + Ψ1fk+1). (4.58b)

Here, we used the abbreviations

fk = f(ΦAk), Ψ = ψ(τΩ), Ψ0 = ψ0(τΩ), Ψ1 = ψ1(τΩ), Φ = φ(τΩ), (4.59)

with even, real valued filter functions ψ,ψ0, ψ1, and φ satisfying ψ(0) = ψ0(0) = ψ1(0) = φ(0) = 1.
Hence, the methods involve (trigonometric) functions of the matrix Ω.

The purpose of the filter functions (4.59) is to give a substantial improvement over the original method
introduced by Gautschi. They have to be chosen depending on the desired properties of the scheme. In
the following, we choose the functions as in [Grimm and Hochbruck, 2006],

ψ(ξ) = sinc3(ξ), ψ0(ξ) = cos(ξ) sinc2(ξ), ψ1(ξ) = sinc2(ξ), φ(ξ) = sinc(ξ), (4.60)

which yields a symmetric scheme conserving the energy up to order τ . For simplicity, we will refer to
the method (4.58) with the choice (4.60) of filter functions as Gautschi method, though it is in fact a
method of Gautschi-type. Note, that this particular Gautschi-type scheme only solves problems (4.56)
with f ≡ 0 exactly.

Remark 4.22. For Ω = 0, the scheme (4.58) reduces to the leapfrog scheme applied to (4.56). �

4.4.2 A low-rank version of Gautschi-type integrators

Before we develop a dynamical low-rank integrator for the full problem (4.56), we first turn our attention
to the homogeneous case f ≡ 0 and low-rank initial values A0,B0 with

rank A0 = rA, rank B0 = rB

as usual. The solution then reads
[
A(t)
A′(t)

]
=
[

cos(tΩ) t sinc(tΩ)
−tΩ2 sinc(tΩ) cos(tΩ)

][
A0

B0

]
=
[

cos(tΩ)A0 + t sinc(tΩ)B0

−tΩ2 sinc(tΩ)A0 + cos(tΩ)B0

]
.

In Section 4.3 we already noted, that the ranks of A(t) and A′(t) are bounded by r∗ = rA+rB. This means,
if we compute low-rank approximations to A(τ) and A′(τ) employing the projector-splitting integrator
with increments, cf. Algorithm 2, and approximation rank r∗, we compute matrices A1,B1 ∈ Mr∗

satisfying A1 = A(τ) and B1 = A′(τ) due to the exactness property [Lubich and Oseledets, 2014,
Theorem 4.1]. We also immediately get a low-rank factorization of A1 and B1 per construction. These
then allow to perform a new step of the projector-splitting integrator to compute A2 = A(2τ) and
B2 = A′(2τ) in factorized form and so on.

Remark 4.23. Since we use the approximation rank r∗ in the projector-splitting integrator, we could
compute the exact solution A(t) in factorized form at any time by simply performing one single step of
the integrator with step size τ = t. As soon as f 6≡ 0, this is not possible anymore. �

4.5. Approximation to A′ in the tangent space 53

Starting the projector-splitting integrator requires initial values A0 = A0 and B0 = B0 of rank r∗,
i.e.,

A0 = U0S0VH
0 , B0 = T0R0WH

0 , U0,T0 ∈ Vm,r∗ , V0,W0 ∈ Vn,r∗ , S0,R0 ∈ Cr
∗×r∗

.

Neither S0 nor R0 are invertible, since the initial values A0 and B0 are now over-approximated with
rank r∗. The application of the projector-splitting integrator to compute the low-rank matrices A1

and B1 is nevertheless justified, since the exact solution will be of rank r∗ in general and hence the
over-approximation only occurs in the approximation of the initial values.

We now return to the full problem (4.56). A low-rank counterpart of the Gautschi method (4.58)
is straightforwardly constructed based on its update sequences: Given approximations A0 ≈ A0 and
B0 ≈ B0 of rank rA and rB to the initial values of (4.57), we obtain low-rank approximations A1 ≈ A(τ),
B1 ≈ A′(τ) by first computing A1 and B1 as in (4.58), starting from A0 and B0. Afterwards, we get A1

and B1 as rank-rA and rank-rB approximations to A1 and B1 via the projector-splitting integrator. If we
denote the numerical flow of the full-rank Gautschi method (4.58) by φ[G], then its low-rank equivalent
can be expressed via (cf. Remark 4.1)

[
A1

B1

]
= φ[G,lr]

τ

[
A0

B0

]
= φ[prsi]

τ ◦ φ[G]
τ

[
A0

B0

]
. (4.61)

Though the low-rank version of the Gautschi method is easily derived, its efficient implementation is
challenging. We postpone the presentation of the details to Chapter 5.

4.5 Approximation to A′ in the tangent space

The St-LO scheme is constructed such that the approximation ranks rA and rB for computing low-rank
approximations A and B to the exact solution A of (4.1) and its derivative A′ are independent from each
other. This especially means that A and B might belong to distinct low-rank manifolds.

In Corollary 2.13 it was shown, that the (time) derivative of a low-rank matrix A(t) ∈MrA is always
contained in the tangent space TA(t)MrA . Sometimes, one might want to conserve this property also for
the approximations A and B, i.e., one is interested in approximations Ak ≈ A(tk), Bk ≈ A′(tk) satisfying

Bk ∈ TAk
MrA for all k = 0, 1, (4.62)

We shall see in the numerical experiments, cf. Chapter 7, that the rank-adaptive variant of the new
integrator (see Section 6.3) benefits from this property. I.e., there are situations where the accuracy
is higher compared to the rank-adaptive variant of the St-LO scheme, while the approximation rank is
smaller throughout the integration.

Remark 4.24. We already know from the representation (2.15) of elements in the tangent space to
the low-rank manifold MrA , that the rank of such an element is bounded by 2rA. However, it is not
sufficient to choose rB = 2rA in the St-LO scheme to conserve the tangent space relation between B and
A, as the manifoldM2rA does not coincide with the tangent space TAMrA . �

The desired dynamical low-rank integrator for (4.1) is constructed from the non-staggered one-step
formulation of the leapfrog scheme (4.3). Hence, the variant computes approximations to A and A′ on
the same time-grid, whereas the St-LO scheme yields approximations to A′ on a staggered grid.

54 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

Let k ∈ N and let Ak ≈ A(tk), Bk ≈ A′(tk) be approximations to the exact solution to (4.1) and its
derivative satisfying Ak ∈MrA and Bk ∈ TAk

MrA , respectively. Since the rank of Bk is bounded from
above by 2rA, we can find a factorization of Bk like

Bk = TkRkWH
k , Tk ∈ Vm,2rA , Wk ∈ Vn,2rA , Rk ∈ C2rA×2rA , (4.63)

where Rk might by singular. We now compute approximations Ak+1 ∈ MrA and Bk+1 ∈ TAk
MrA by

the following update steps:

1. Compute a rank-2rA approximation to A′(tk + τ
2) by approximately solving

B̃′(σ) = F (Ak), σ ∈ [0, τ2], B̃(0) = Bk,

using the projector-splitting integrator. This yields an approximation Bk+ 1
2

= Tk+ 1
2
Rk+ 1

2
WH

k+ 1
2
∈

M2rA .

2. Compute a rank-rA approximation to A(tk + τ) by approximately solving

Ã′(σ) = Bk+ 1
2
, σ ∈ [0, τ], Ã(0) = Ak,

using the projector-splitting integrator, yielding Ak+1 = Uk+1Sk+1VH
k+1 ∈MrA .

3. Finally, compute
B̃k+1 = Bk+ 1

2
+ τ

2F (Ak+1),

and obtain Bk+1 by projection,
Bk+1 = Π̃Ak+1B̃k+1.

This indeed yields Bk+1 ∈ TAk+1MrA .

For an efficient scheme, it is favorable if this update sequence naturally yields a low-rank decomposition
of Bk+1 similar to (4.63). Furthermore, computing B̃k+1 explicitly, i.e., its full-dimensional form, and
performing the projection afterwards neglects the benefits admitted by the low-rank factorization which
usually is available for dynamical low-rank schemes. Therefore the third substep needs to be handled
carefully in order to maintain efficiency.

We first consider a simpler, but related situation: For given Z ∈ Cm×n and A = USVH ∈ MrA ,
we want to compute a low-rank decomposition of Π̃AZ = TRWH ∈ TAMrA , where the factors satisfy
T ∈ Vm,2rA ,W ∈ Vn,2rA , and R ∈ C2rA×2rA as in (4.63). From the representation (2.21) of the
orthogonal projector onto TAMrA , we get

Π̃AZ = ZΠV −ΠUZΠV + ΠUZ

= ΠUZΠV + Π⊥UZΠV + ΠUZΠ⊥V
= U(UHZV)VH + (Π⊥UZV)VH + U(UHZΠ⊥V). (4.64)

We now set

M = UHZV ∈ CrA×rA , Ũ = (Π⊥UZV) ∈ Cm×rA , Ṽ = (UHZΠ⊥V)H ∈ Cn×rA ,

4.5. Approximation to A′ in the tangent space 55

where UHŨ = 0 and VHṼ = 0. Thus (4.64) matches the representation (2.15) of elements in the tangent
space TAMrA , and we directly obtain the factorization

Π̃AZ = T̃R̃W̃
H

=
[
U Ũ

] [M IrA

IrA 0

] [
V Ṽ

]H
.

However, the factors T̃ and W̃ are not elements of the Stiefel-manifolds Vm,2rA and Vn,2rA , respectively,
since in general neither Ũ nor Ṽ are orthonormal. We therefore compute subsequent QR-decompositions

TRT = T̃, T ∈ Vm,2rA , WRW = W̃, W ∈ Vn,2rA .

Setting R = RTR̃RH
W finally yields the desired factorization.

Remark 4.25. If the matrix Ũ has full rank rA, it is not necessary to compute the QR-decomposition
of T̃ but it suffices to decompose Ũ instead: Denote by QŨRŨ = Ũ the QR-decomposition of Ũ. By
assumption, RŨ is invertible and hence

UHŨ = UHQŨRŨ = 0 =⇒ UHQŨ = 0, where U ∈ Vm,rA , QŨ ∈ Vm,rA .

Then T̃ admits the decomposition

T̃ = TRT =
[
U QŨ

] [IrA 0
0 RŨ

]
, T ∈ Vm,2rA .

Likewise, if Ṽ has full rank rA, with the same argument one shows the decomposition

W̃ = WRW =
[
V QṼ

] [IrA 0
0 RṼ

]
,

where QṼRṼ = Ṽ is the QR-decomposition of Ṽ and W ∈ Vn,2rA . �

Overall, the efficient implementation of the third substep above hence depends on the efficient com-
putation of the matrices M, Ũ, and Ṽ. In our particular case we have Z = B̃k+1 = Bk+ 1

2
+ τ

2F (Ak+1),
which allows us to compute these by clever ordering of the matrix-products: Define

Y = ZVk+1

= (Tk+ 1
2
Rk+ 1

2
WH

k+ 1
2

+ τ

2F (Uk+1Sk+1VH
k+1))Vk+1

= (Tk+ 1
2
Rk+ 1

2
)(WH

k+ 1
2
Vk+1) + τ

2F (Uk+1Sk+1VH
k+1)Vk+1

= (Tk+ 1
2
Rk+ 1

2
)X + τ

2K,

where
X = WH

k+ 1
2
Vk+1, K = F (Uk+1Sk+1VH

k+1)Vk+1.

Then it is
M = UH

k+1Y, as well as Ũ = Y−Uk+1M.

With
L = F (Uk+1Sk+1VH

k+1)HUk+1, X = TH
k+ 1

2
Uk+1,

56 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

and

Ỹ = ZHUk+1

= Wk+ 1
2
RH
k+ 1

2
TH
k+ 1

2
Uk+1 + τ

2F (Uk+1Sk+1VH
k+1)HUk+1

= Wk+ 1
2
RH
k+ 1

2
X + τ

2L,

one then obtains
Ṽ = Ỹ−Vk+1MH ,

see also Algorithm 9. We thus make use of the available factorization of Bk+ 1
2
as well as the efficient

routines for computing products F (A)V and F (A)HU like mentioned in Remark 4.2. A single time step
of the overall scheme for the integration of (4.1) with property (4.62) is presented in Algorithm 10.

Algorithm 9: Projection step according to Section 4.5 for usage in Algorithm 10
1 projection(U,S,V,T,R,W, rA, τ, F)
Input : factors U,S,V of A = USVH ∈MrA satisfying (4.9a), factors T,R,W of

B = TRWH ∈M2rA satisfying (4.9b) with rB = 2rA, step size τ , right-hand side F

2 K = F (USVH)V
3 X = WHV
4 Y = TRX + τ

2K

5 M = UHY
6 Ũ = Y−UM

7 L = F (USVH)HU
8 X = THU
9 Ỹ = WRHX + τ

2L

10 Ṽ = Ỹ−VMH

11 T̃1 =
[
U Ũ

]
, W̃1 =

[
V Ṽ

]
, R̃1 =

[
M IrA

IrA 0

]

12 Compute reduced QR-decompositions T1RT = T̃1 and W1RW = W̃1

13 Set R1 = RTR̃1RH
W

14 Return T1,R1,W1

Output: factors T1,R1,W1 of B1 = Π̃A
(
B + τ

2F (A)
)
∈ TAMrA satisfying (4.63)

4.5. Approximation to A′ in the tangent space 57

Algorithm 10: Dynamical low-rank integrator for second-order problems (4.1) with approxima-
tions satisfying (4.62), single time step

1 stlotangent(U,S,V,T,R,W, rA, τ, F)
Input : factors U,S,V of rank-rA approximation A = USVH ≈ A(t), factors T,R,W of

approximation B ∈ TAMrA satisfying (4.63), B = TRWH ∈ TAMrA , step size τ ,
right-hand side F

2 B-step: T 1
2
,R 1

2
,W 1

2
,L = prsi

(
T,R,W, rB,∆B

)
where ∆B = τ

2F (USVH)

3 A-step: U1,S1,V1,L1 = prsi
(
U,S,V, rA,∆A

)
where ∆A = τT1LH

4 B-step: T1,R1,W1 = projection
(
U1,S1,V1,T 1

2
,R 1

2
,W 1

2
, τ, F

)

5 Return U1,S1,V1,L1,T1,R1,W1

Output: factors U1,S1,V1 of rank-rA approximation A1 = U1S1VH
1 ≈ A(t+ τ) satisfying

(4.9a), L1 = V1SH1 , factors T1,R1,W1 of approximation B1 ∈ TA1MrA satisfying
(4.63), B1 = T1R1W1 ≈ A′(t+ τ)

58 Chapter 4. Dynamical low-rank approximation for second-order matrix differential equations

59

CHAPTER 5

Implementation of dynamical low-rank integrators

In the previous chapters we revised and introduced several dynamical low-rank integrators for first- and
second-order matrix differential equations. As already mentioned, all these integrators, despite their
differences, share one fundamental difficulty, namely their efficient implementation. For us, efficient
implementation is twofold: On the one hand, we aim for a fast computation, i.e., we want the methods
to yield low-rank approximations in a short amount of time. On the other hand, we also want an efficient
storage management. In particular we aim for an implementation of the schemes that avoids computations
with matrices of size m× n. This is motivated by the fact that all dynamical low-rank integrators yield
approximations in factorized form, with factors of r columns, where r ∈ N is the approximation rank.
Also, all update steps of all dynamical low-rank integrators are performed such that only matrices of
column dimension r are updated. Recall that for any dynamical low-rank integrator discussed within this
thesis, the right-hand side F always appears in a matrix product with a matrix E of column dimension
r. Computing the product F (A)E based on the low-rank decomposition of A is crucial for all dynamical
low-rank integrators. This is discussed in detail in Section 5.1.

Furthermore, we comment on the situation where we have matrix functions (cf. Definition A.20)
involved in the dynamical low-rank schemes. This is the case for the prsistiff (cf. Section 3.3), the
stlostiff (cf. Section 4.3), and the gautschilr (cf. Section 4.4.2) schemes. The calculation of, e.g.,
the matrix exponential usually suffers from long computation times if the dimension of the argument is
large. In Section 5.2 we focus on two solutions of this problem: Implementation by diagonalization of the
argument, e.g., by FFT routines, and iterative methods.

In Section 5.3, we proceed with the implementation of the gautschilr method postponed from
Section 4.4.2.

60 Chapter 5. Implementation of dynamical low-rank integrators

5.1 Implementation of low-rank matrix products for dynamical
low-rank integrators

In this section, we comment on the implementation of the products

F (A)E, E ∈ Cn×r, (5.1)

for A given by its low-rank factorization A = USVH ∈ Mr. Here F is the right-hand side of the first-
order matrix differential equation (3.1) or the second-order matrix differential equation (4.1), respectively,
and E is an arbitrary slim matrix. The aim is to avoid to compute the mn entries of A explicitly. In
most cases, this requires a non-intuitive computation of the products in (5.1). The implementation of
products F (A)HE for E ∈ Cm×r is realized analogously.

As presented in Chapter 3, the projector-splitting integrator does not only yield the factors U, S,
and V of A, but also the product L = VSH at no additional cost. As a consequence, we present the
implementation of the products in (5.1) starting from the decomposition

A = ULH , U ∈ Vm,r, L ∈ Cn×r. (5.2)

Remark 5.1. One could exchange the projector-splitting integrator by the unconventional robust
integrator, cf. Section 3.4.2, in all dynamical low-rank integrators for first-order and second-order matrix
differential equations, respectively. Then the matrix L = VSH is not provided by the algorithms.
However, if r is small compared to n, the computation of the product L from the factors V and S is
cheap. �

In the following, we first consider linear functions F in (5.1). Afterwards, we focus on a general
approach for computing products of type (5.1) when the right-hand side is evaluated entrywise. As a
special case, we consider monomials. Any linear combination of these types of right-hand sides can be
implemented by combining the presented strategies.

5.1.1 Linear right-hand sides

Consider F : Cm×n → Cm×n given by

F (A) = L1A + AL2,

where L1 ∈ Cm×m and L2 ∈ Cn×n. We have

F (A)E = (L1A + AL2)E

= L1ULHE + ULHL2E

= L1
(
U(LHE)

)
+ U

(
LH(L2E)

)
. (5.3)

Computing from the inner parentheses to the outer ones ensures that no matrix with more than r columns
is involved, and hence yields a storage-economical implementation.

We point out that the above approach generalizes straightforwardly to the situation, where L1 or L2

are given in a factorized form, e.g., in a decomposition like

L1 = QHΩ2
1Q, Q ∈ Cm×m orthonormal.

5.1. Implementation of low-rank matrix products for dynamical low-rank integrators 61

5.1.2 Nonlinear entrywise functions

Consider now the product

C = f(A)E, E ∈ Cn×r arbitrary, (5.4)

where f : C→ C and

f(A)ij = f(Aij) for all i = 1, . . . ,m, j = 1, . . . , n.

Based on the representation (5.2) of A ∈Mr, we can compute the product (5.4) storage-economical.
Denote the ith standard basis vector of Rm as ei. Since f is entrywise evaluated, the first column of

C can be expressed via

eTi C = f(eTi A)E ∈ C1×r, i = 1, . . . ,m.

A is available in factorized form, so that we can compute the ith row of A by the slim matrices U and
L via

eTi A = (eTi U)LH ∈ C1×n, i = 1, . . . ,m.

The products are computed quickly if r is small. This sequence of operations can be carried out for every
row index i independently, and thus the computation of the rows of the solution C = f(A)E can be done
in parallel.

This general approach for computing the low-rank products (5.4) can be used for all entrywise eval-
uated functions f , including polynomials of arbitrary degree, trigonometric functions, exponential or
logarithmic functions, and any combination of these. However, especially when the rank r is very small
compared to the dimensions m and n of A ∈ Mr, there are situations where one can achieve a slightly
faster computation. Such alternatives are often tailored to the respective right-hand side f and thus can-
not be generalized. One specific example we nevertheless want to discuss are entrywise power functions.
This is done in the next section.

5.1.3 Power functions

We here consider the special choice f(z) = zpzq, p, q ∈ N, p+q ≥ 2 for z ∈ C, where z denotes the complex
conjugate of z. The entrywise evaluation of f can be written in terms of the Hadamard product •,

f(A) = A •A • . . . •A︸ ︷︷ ︸
p times

•A •A • . . . •A︸ ︷︷ ︸
q times

.

We denote the jth column of a matrix A ∈ Cm×n by Aj . The matrix A = ULH ∈ Mr as in (5.2) can
then be expressed as the following sum of rank 1 matrices,

A = ULH =
r∑

j=1
UjLHj . (5.5)

The Hadamard product is distributive and satisfies

(UjLHj) • (UkLHk) = (Uj •Uk)(Lj • Lk)H , 1 ≤ j, k ≤ r,

62 Chapter 5. Implementation of dynamical low-rank integrators

cf. [Styan, 1973, Section 2]. Hence, for E ∈ Cn×r it holds

f(A)E =



(r∑

j1=1
Uj1LHj1

)
• . . . •

(r∑

jp=1
UjpLHjp

)
•
(r∑

k1=1
Uk1LHk1

)
• . . . •

(r∑

kq=1
UkqLHkq

)

E

=




r∑

j1,...,jp,
k1,...,kq=1

(Uj1 • . . . •Ujp •Uk1 • . . . •Ukq)(Lj1 • . . . • Ljp • Lk1 • . . . • Lkq)H


E

=
r∑

j1,...,jp,
k1,...,kq=1

(Uj1 • . . . •Ujp •Uk1 • . . . •Ukq)
(

(Lj1 • . . . • Ljp • Lk1 • . . . • Lkq)HE
)
.

We now consider the special case of the cubic nonlinearity

f(A) = A •A •A.

We then have

f(A)E =
r∑

j,k,`=1
Ujk`LHjk`, where Ujk` = Uj •Uk •U`, Ljk` = Lj • Lk • L`.

Due to the symmetry of Ujk` and Ljk` in j and `, respectively, this can be rewritten as

f(A)E =
r∑

k=1

[r∑

j=1
(U2

j •Uk)
(
(L2

j • Lk)HE
)

+ 2
r∑

j=1

j−1∑

`=1
Ujk`(LHjk`E)

]
. (5.6)

Here one avoids computing the same matrices multiple times, which speeds up the computation.
Lastly, with regard to Section 7.2.2 below, we consider

f(A) = χ •A •A •A,

where

χij =





1, η ≤ i ≤ ξ and µ ≤ j ≤ ν,
0, else,

and η, ξ, µ, and ν are fixed integer values satisfying

1 ≤ η ≤ ξ ≤ m, 1 ≤ µ ≤ ν ≤ n.

The matrix χ admits the alternative representation

χ =



Oη−1

1ξ−η+1

Om−ξ






Oµ−1

1ν−µ+1

On−ν




T

=: 1̃m1̃n.

Here, Om×n and 1m×n are the matrices of dimension m × n with all entries being zeros and ones,
respectively, and Om = Om×1 and 1m = 1m×1. Hence, χ can be seen as a restriction matrix. In the
following, we denote the restriction of some vector x ∈ Cm to its ηth to ξth entries by ϑ(x) ∈ Cξ−η+1,
and the restriction of some vector y ∈ C1×n ∼= Cn to its µth to νth entries by %(y) ∈ Cν−µ+1. Since for
the Hadamard product it holds for any A ∈ Cm×n, x ∈ Rm, and y ∈ Rn, cf. [Styan, 1973, Section 2],

(xyT) •A = diag(x)Adiag(y),

5.2. Computation of matrix functions 63

we have from (5.5)

(χ •A)E =
[
(1̃m1̃n) •A

]
E

=
[
diag(1̃m)A diag(1̃n)

]
E

=
[

diag(1̃m)
(r∑

j=1
UjLHj

)
diag(1̃n)

]
E

=
[r∑

j=1

(
diag(1̃m)Uj

)
LHj
](

diag(1̃n)E
)

=




O(η−1)×r
r∑
j=1

ϑ(Uj)%(Lj)H%(E)

O(m−ξ)×r


 . (5.7)

Hence, it suffices to compute the small matrices ϑ(Uj)%(Lj)H%(E) and summing them up. The imple-
mentation of (χ •A •A •A)E is realized by combining (5.6) and (5.7).

5.2 Computation of matrix functions

As seen in Sections 3.3, 4.3, and 4.4.2, the constructed dynamical low-rank integrators tailored to stiff
matrix differential equations and oscillatory problems contain matrix functions. Thus, for a matrix
L ∈ Cm×m we are interested in the computation of g(τL)E, where E ∈ Cn×r, τ > 0, and g is an
arbitrary analytic function. For time integration, the most relevant is the matrix exponential eτL, which
is present in the prsistiff integrator introduced in Section 3.3. Further examples are

cos(τL), sinc(τL), L2 sinc(τL), (5.8)

but also the filter functions (4.59) arising in Gautschi-type methods.

5.2.1 Implementation by diagonalization

Assume that L ∈ Cm×m admits the decomposition

L = Q−1ΛQ, Λ = diag(λi) ∈ Cm×m diagonal, Q ∈ Cm×m invertible.

By Theorem A.21 it is
g(τL) = Q−1g(τΛ)Q, (5.9)

and the argument of the matrix function is now diagonal, namely

g(τΛ) = diag
(
g(τλi)

)
.

If Q and Q−1 are known, the computation of g(τL)E can be realized by successive matrix multiplication
similarly to (5.3). Together with (5.9) all matrix functions in (5.8) can be computed exactly, up to
round-off errors.

While the computation of g(τL)E by diagonalization seems favorable, it might suffer from great effort.
Often L is sparse, which is common if L originates from the space discretization of a first or second-order

64 Chapter 5. Implementation of dynamical low-rank integrators

partial differential operator. Unfortunately, the matrix Q is in general dense, and the multiplication of Q
with a vector requires O(m2) operations. We therefore use this ansatz when the multiplication with Q is
of reasonable computational effort, e.g., if Q = Fm is the discrete Fourier matrix. Then, a multiplication
with Fm takes O(m logm) operations as soon as FFT routines are employed.

Remark 5.2. Due to its relation to the discrete Fourier transform, we also compute the matrix
function g(τL) exactly when L is diagonalizable by the discrete cosine or sine transform (DCT/DST), cf.
[Strang, 1999]. A typical case, where the DCT can be used is when L stems from the space discretization of
a second-order partial differential operator with homogeneous Neumann/Dirichlet boundary conditions.
In Chapter 7 we will encounter an example, where such a situation arises. �

5.2.2 Krylov subspace methods

If L is sparse, the multiplication with L typically requires O(m) operations. In such situations, iterative
methods like polynomial or rational Krylov subspace methods are better suited to compute g(τL)E.
Here, we discuss iterative methods for computing products of the form

g(τL)E, L ∈ Cm×m, E ∈ Cm×r. (5.10)

Since
g(τL)E =

[
g(τL)E1 · · · g(τL)Er

]
,

where Ej denotes the jth column of E, all columns of the product (5.10) can be computed independently.
It hence suffices to consider products of the form

g(τL)v, v ∈ Cm. (5.11)

Krylov subspace methods have been studied extensively for computing approximations to (5.11) and
have been shown to yield reliable results with reasonable effort. Their application is of special interest
if the matrix L is sparse, since in this case a multiplication with L is cheap. The following review on
Krylov subspace approximations is based on [Hochbruck et al., 2015] and [Göckler, 2014].

Polynomial Krylov subspace methods search for an approximation to the product (5.11) in the Krylov
subspace

K`(L, v) = span{v, Lv, . . . , L`−1v} = {p(L) | p ∈ P`−1}, ` ≥ 1,

where we denote by P` the space of polynomials with degree less than or equal to `. The approximation
of (5.11) proceeds in two steps: First, an orthonormal basis of K` is computed, which can be done by the
Arnoldi procedure described in Algorithm 11. Given an orthonormal basis V`, the new basis vector v`+1

is derived from

ṽ`+1 = Lv` −
∑̀

j=1
hj,`v`, v`+1 = 1

h`+1,`
ṽ`+1, h`+1,` = ‖ṽ`+1‖.

By construction, vHj v`+1 = 0 for j = 1, . . . , `, hence the coefficients satisfy hj,` = vHj Av`. Collecting the
coefficients in the matrix H` = (hi,j)`i,j=1 ∈ C`×` we thus have the relation

LV` = V`H` + h`+1,`v`+1e
T
` , V H` V` = I`, V` ∈ Cm×`,

5.2. Computation of matrix functions 65

where e` denotes the `th standard basis vector of Rm. H` is an unreduced upper Hessenberg matrix, cf.
Definition A.19. Since V` is orthonormal, it is

V H` LV` = V H` (V`H` + h`+1,`v`+1e
T
`)

= H` + h`+1,`V
H
` v`+1︸ ︷︷ ︸

=0

eT`

= H`.

However, V`V H` 6= Im if ` < m, and hence, in general,

L 6= V`V
H
` LV`V

H
` = V`H`V

H
` .

Yet the matrix V`H`V
H
` approximates the argument L of the matrix function in (5.11). More precisely,

H` is the projection of L onto the subspace K`. This motivates the approximation

g(τL)v ≈ g(τV`H`V
H
`)v = V`g(τH`)V H` v, (5.12)

where the last equality holds by Theorem A.21. Sometimes, already for `� m, the approximation (5.12)
is sufficiently accurate. This is advantageous, since then the function g only has to be evaluated at some
small matrix H` instead of the large matrix L ∈ Cm×m. This can be done by algorithms derived for
dense matrices, e.g., by diagonalization, cf. [Higham, 2008].

Algorithm 11: Arnoldi process
Input : L ∈ Cm×m, v ∈ Cm

1 v1 = v/‖v‖
2 for ` = 1, 2, . . . do
3 for j = 1, . . . , ` do
4 hj,` = vHj Lv`

5 end
6 ṽ`+1 = Lv` −

∑`
j=1 hj,`vj

7 h`+1,` = ‖ṽ`+1‖
8 v`+1 = ṽ`+1/h`+1,`

9 end

We adapt the implementation of the polynomial Krylov subspace as provided in [Hochbruck et al.,
2015, Algorihm 1], which includes several further ideas. E.g., the index ` is prohibited to exceed the
number maxiter ∈ N. This ensures that the Hessenberg matrix H` remains small compared to L for
appropriately chosen maxiter.

In [Hochbruck and Lubich, 1997] it was shown that the error of the Krylov approximations to the
matrix exponential always decays superlinearly, and that this decay starts at ` ≈ τ‖L‖2 iteration steps for
discretizations of hyperbolic problems. Hence, if the norm of L is large and maxiter is chosen too small,
this regime is not reached. Then, one either has to reduce the step size τ (i.e., by adding a substepping
algorithm, see, e.g., [Al-Mohy and Higham, 2011]), or some kind of restarting procedure has to be used,
cf. [Eiermann et al., 2011].

66 Chapter 5. Implementation of dynamical low-rank integrators

Another remedy to this shortcoming is to use rational Krylov methods instead of the polynomial
variant. They have been developed in [Ruhe, 1984] and are based on the rational Krylov subspace

Q`(L, v) := q`−1(L)−1K`(L, v) = {s(L)v | s ∈ P`−1
q`−1

}, ` ≥ 1,

where the polynomial q`−1 ∈ P`−1 is assumed to have no roots in the spectrum of L. This ensures that
the inverse of q`−1(L) exists. With Theorem A.21, one obtains the alternative representation

Q`(L, v) = K`(L, q`−1(L)−1v).

The properties of the rational Krylov subspace approximation strongly depend on the polynomial q`−1.
We restrict ourselves to the particular choice

q`−1(z) = (γ − z)`−1, γ > 0,

which yields the so-called shift-and-invert Krylov subspace Q`(L, v) with

Q`(L, v) = K`
(
(γI − τL)−1, v

)
= span

{
v, (γI − τL)−1

v, . . . , (γI − τL)−(`−1)v
}
.

The Arnoldi algorithm now computes an orthonormal basis V` and an upper Hessenberg matrix H` such
that

(γI − τL)−1V` = V`H` + h`+1,`v`+1e
T
` , V H` V` = I`, (5.13)

or equivalently
(τL− γI)V`H` = −V` + (γI − τL)h`+1,`v`+1e

T
` . (5.14)

Multiplication of (5.14) with V H` from the left yields

V H` (τL− γI)V`H` = −V H` V` + V H` (γI − τL)h`+1,`v`+1e
T
`

⇐⇒ V H` (τL)V`H` = −I + γH` + γh`+1,` V
H
` v`+1︸ ︷︷ ︸

=0

eT` − h`+1,`V
H
` (τL)v`+1e

T
`

⇐⇒ Ĥ` := V H` (τL)V` = γI −H−1
` − h`+1,`V

H
` (τL)v`+1e

T
` H
−1
` (5.15)

Similarly as for the polynomial case, we end up with the rational approximation

g(τL)v ≈ V`g(Ĥ`)V H` v

to (5.11).
In [Hochbruck et al., 2015, Algorithm 2], we find an implementation of the shift-and-invert Krylov

method, which we adapt for our numerical experiments. It was pointed out in [Hochbruck et al., 2015,
p. 250], that the last term in (5.15) can be neglected. Either way, in each step of the method linear
systems of equations have to be solved, cf. (5.13). In practice, these are not solved exactly but again with
some iterative method, e.g., a preconditioned Krylov subspace method. For the special case of L being
a Toeplitz matrix, cf. Definition A.17, we do this as presented in [Lee et al., 2010]. There the authors
exploit the special structure admitted by Toeplitz matrices in order to derive a fast and reliable variant
of the shift-and-invert Krylov subspace method tailored to this case. The combination of their approach
and [Hochbruck et al., 2015, Algorithm 2] is used in our numerical experiments in order to evaluate (5.11)
for this particular case.

5.3. Implementation of the low-rank Gautschi method 67

5.3 Implementation of the low-rank Gautschi method

We now develop an efficient implementation of the low-rank Gautschi method introduced in Section 4.4.2,
and show how to compute the low-rank approximations A1 and B1 in (4.61). Recall that Ω is symmetric
and positive definite, hence its eigenvalues are real. In the following, we restrict ourselves to the case,
where Ω is Fourier diagonalizable, i.e.,

Ω = F−1
m ΛFm, Λ ∈ Rm×m diagonal, Fm discrete Fourier transform matrix. (5.16)

Remark 5.3. 1. Throughout, for any A ∈ Cm×n we call the matrix FmA living in Fourier space,
while A lives in physical space. The discrete Fourier-transform operator Fm hence transforms from
physical space into the Fourier space, respectively, and its inverse F−1

m into the opposite direction.

2. For simplicity, we will treat the discrete Fourier-transform as a matrix in all calculations in this
section. Note that F−Hm = 1

mFm and

FHmFm = mF−1
m Fm = mI, (5.17)

so that Fm is orthogonal, but not unitary. �

The main difficulty in the implementation of the low-rank Gautschi method is imposed by the filter
functions. In particular, the right-hand side f is not evaluated at some low-rank approximation Ak ≈
A(tk), but the filtered counterpart ΦAk according to (4.59).

Due to (5.16), we compute the matrix functions in (4.57), (4.58), and (4.59) exactly by (5.9):

f(τΩ) = F−1
m f(τΛ)Fm, f(ξ) ∈ {cos(ξ), sinc(ξ),−ξ2 sinc(ξ), ψ(ξ), ψ0(ξ), ψ1(ξ), φ(ξ)}.

We abbreviate
Ak = FmAk, Bk = FmBk, k ∈ N0.

Then, the update steps of the full-rank Gautschi scheme read (5.18a) (5.18b)

Ak+1 = F−1
m

(
cos(τΛ)Ak + τ sinc(τΛ)Bk + τ2

2 ψ(τΛ)Fmf(F−1
m φ(τΛ)Ak)

)
, (5.18a)

Bk+1 = F−1
m

(
− τΛ2 sinc(τΛ)Ak + cos(τΛ)Bk

+ τ

2 (ψ0(τΛ)Fmf(F−1
m φ(τΛ)Ak) + ψ1(τΛ)Fmf(F−1

m φ(τΛ)Ak+1))
)
.

(5.18b)

Hence, for computing Ak+1 and Bk+1, 6 and 5 (inverse) FFTs are required, respectively. Note, that the
matrix Fmf(F−1

m φ(τΛ)Ak) can be reused from the A-step. We now focus on the numerous (inverse)
Fourier transformations in (5.18). We want to compute low-rank approximations Ak and Bk to the
exact solution of (4.56) with as few (inverse) Fourier transformations as possible. The crucial idea is to
compute low-rank approximations in Fourier space rather than in physical space. This is possible, since
the Fourier transformation preserves the rank:

A ∈Mr ⇐⇒ FmA ∈Mr ⇐⇒ F−1
m A ∈Mr.

We conclude, that FmA admits a low-rank decomposition into factors U ∈ Vm,r, S ∈ Cr×r, and V ∈ Vn,r.
By the associativity of the matrix product, we have

FmA = Fm(USVH) = (FmU)SVH .

68 Chapter 5. Implementation of dynamical low-rank integrators

This already resembles the desired factorization, but the factor FmU is not contained in the Stiefel
manifold Vm,r, since by (5.17) we have

(FmU)H(FmU) = UHFHmFmU = mUHU = mI.

However, by rescaling the factors we get

FmA =
(1√

m
FmU

)
(
√
mS)VH = USVH , where U ∈ Vm,r, S ∈ Cr×r, V ∈ Vn,r. (5.19)

One can compute a low-rank factorization of the Fourier transformation of some low-rank matrix by
the projector-splitting integrator in Fourier space:

Lemma 5.4. Let A(t) ∈ Cm×n be a time-dependent matrix of arbitrary rank, Ak ≈ A(tk) a rank-r
approximation with the factorization Ak = UkSkVH

k ∈ Mr and Ak+1 ≈ A(tk+1) an arbitrary approxi-
mation computed with a standard scheme. Denote by Ak+1 ∈Mr the low-rank approximation to A(tk+1)
computed by the projector-splitting integrator with increment ∆A = Ak+1 −Ak.

Then Ak+1 = Uk+1Sk+1VH
k+1, where the factors Uk+1,Sk+1, and Vk+1 result from one step of the

projector-splitting integrator, cf. Algorithm 2, with increment Fm∆A.

Proof. Without loss of generality we consider k = 0. We recall the update steps of the projector-splitting
integrator for computing A1 ≈ A(τ):

U1Ŝ1 = U0S0 + (A1 −A0)V0 = A1V0, (5.20a)

S̃0 = Ŝ1 −UH
1 (A1 −A0)V0 = UH

1 A1V0 −UH
1 A1V0 + UH

1 U0S0VH
0 V0 = UH

1 U0S0, (5.20b)

V1SH1 = V0S̃
H

0 + (A1 −A0)HU1 = V0SH0 UH
0 U1 +AH1 U1 −V0SH0 UH

0 U1 = AH1 U1. (5.20c)

In Fourier space, we first need a factorization of the Fourier transformation A0 of A0. By (5.19),

A0 = U0S0VH
0 =

(1√
m
FmU0)(

√
mS0)VH

0 .

The first substep of the projector-splitting integrator with increment FmA1 −A0 reads

U1Ŝ1 = U0S0 + (FmA1 −A0)V0 = FmA1V0.

Replacing A1V0 by (5.20a) yields

U1Ŝ1 = Fm(U1Ŝ1) =
(1√

m
FmU1

)
(
√
mŜ1).

Since the QR-decomposition is unique up to a unitary diagonal matrix, there exists D1 ∈ Cr×r such that

U1 = 1√
m
FmU1D1, Ŝ1 =

√
mDH

1 Ŝ1,

cf. Section A.2. For the second substep in Fourier space, we have

S̃0 = Ŝ1 − UH
1 (FmA1 −A0)V0

= UH
1 FmA1V0 − UH

1 FmA1V0 + UH
1 FmA0V0

= 1√
m
DH

1 UH
1 FHmFmU0S0

=
√
mDH

1 UH
1 U0S0

=
√
mDH

1 S̃0,

5.3. Implementation of the low-rank Gautschi method 69

where we replaced UH
1 U0S0 by (5.20b) in the last step. Finally, the third substep yields

V1SH
1 = V0S̃

H

0 + (FmA1 −A0)HU1

=
√
mV0SH0 UH

0 U1D1 + 1√
m
AH1 FHmFmU1D1 −

1√
m

AH
0 FHmFmU1D1

=
√
mAH

1 U1D1

= V1(
√
mDH

1 S1)H

by (5.20c). Again, there exists a unitary diagonal matrix D2 ∈ Cr×r with

V1 = V1D2 S1 =
√
mDH

1 S1D2.

Altogether, we thus have

U1S1VH
1 =

(1√
m
FmU1D1

)
(
√
mDH

1 S1D2)(V1D2)H

= FmU1D1D
H
1 S1D2D

H
2 VH

1

= FmA1 = A1,

which proves the claim. Note that we can employ the modified update sequence (4.14) also in Fourier
space.

The impact of Lemma 5.4 is considerable: Denote by Ak+1, Bk+1 the approximations to A(tk+1)
and A′(tk+1) computed with a single step of the Gautschi scheme (4.58) started from the low-rank
approximations Ak,Bk. If we want to compute a low-rank approximation Ak+1 to Ak+1, we can instead
compute a low-rank approximation Ak+1 ≈ FmAk+1, and similarly for Bk+1:(5.21a) (5.21b)

Ak+1 ≈ FmAk+1 = cos(τΛ)Ak + τ sinc(τΛ)Bk + τ2

2 ψ(τΛ)Fmf
(
F−1
m φ(τΛ)Ak

)
, (5.21a)

Bk+1 ≈ FmBk+1 = −τΛ2 sinc(τΛ)Ak + cos(τΛ)Bk

+ τ

2 (ψ0(τΛ)Fmf(F−1
m φ(τΛ)Ak) + ψ1(τΛ)Fmf(F−1

m φ(τΛ)Ak+1)).
(5.21b)

The representations of Ak+1 and Bk+1 in terms of the matrices Ak, Bk, and Ak+1 reveal that a low-rank
approximation in Fourier space is sufficient to compute the next step of the low-rank Gautschi method.
If

f(F−1
m A) = F−1

m f(A)

is true for each A ∈ Cm×n, it is possible to carry out the whole computation in Fourier space. Then one
could first transform the initial values A0 ∈MrA and B0 ∈MrB into Fourier space, iterate k times and
transform the approximations back to physical space with the inverse Fourier transform.

Given decompositions Ak = UkSkVH
k ∈ MrA and Bk = T kRkWH

k ∈ MrB , recall that we have to
compute the products

FmAk+1Vk, (FmAk+1)HUk+1, FmBk+1Wk, and (FmBk+1)HT k+1, (5.22)

where FmAk+1 is given in (5.21a) and FmBk+1 in (5.21b), respectively, in order to compute the low-rank
approximations Ak+1 and Bk+1. In the following, we explain in detail how to compute these products.
For this, assume we are already given the matrices

LA = VkSH
k , LB = WkRH

k , Ũ = F−1
m φ(τΛ)Uk (5.23)

70 Chapter 5. Implementation of dynamical low-rank integrators

from the previous step of the iteration. Moreover, we also assume that the diagonal matrices

f(τΛ), ff(ξ) ∈ {cos(ξ), sinc(ξ),−ξ2 sinc(ξ), ψ(ξ), ψ0(ξ), ψ1(ξ), φ(ξ)}

have been computed and stored beforehand. Lastly, for simplicity we only consider the case rA = rB = r.
The extension to rA 6= rB is straightforward.

We start the current A-step by firstly computing and storing the matrices

YU = UkSk ∈ Cm×r, YT = T kRk ∈ Cn×r, X = WH
k Vk ∈ Cr×r.

This allows us to compute the matrix

K = cos(τΛ)YU + τ sinc(τΛ)YTX (5.24)

by successive matrix multiplication from right to left, and matrix addition. It remains to compute

τ2

2 ψ(τΛ)Fmf(F−1
m φ(τΛ)Ak)Vk

for finalizing the first product in (5.22). As we have seen in Section 5.1, for the evaluation of the right-
hand side f , a decomposition of the argument of f into factors Ũ ∈ Cm×r and L̃ ∈ Cn×r is mandatory.
However, apart from their dimension, no further properties are imposed on these factors. Per construction,
Ak admits the decomposition Ak = UkSkVH

k , hence the product f(F−1
m φ(τΛ)Ak)Vk can be computed

as presented in Section 5.1, with the factors

Ũ = F−1
m φ(τΛ)Uk, L̃ = VkSH

k .

Comparison to (5.23) reveals, that Ũ = Ũ and L̃ = LA, i.e., both quantities do not have to be computed
but are already available from the previous iteration step. Overall, this enables us to compute the product

Y = f(F−1
m φ(τΛ)Ak)Vk = f(ŨLHA)Vk

efficiently. The matrix K in (5.24) is then updated to

K← K + τ2

2 ψ(τΛ)FmY,

where we compute the arising products again from right to left. Overall, this yields

K = FmAk+1Vk = Uk+1S by QR-decomposition. (5.25)

Remark 5.5. Observe that reusing Ũ in (5.23) saved one inverse Fourier transform. Thus, for com-
puting K in (5.25) only a single Fourier transformation is required. �

The second product in (5.22) is now performed similarly. We first have

L1
A = LAUH

k cos(τΛ)Uk+1 + τLBT H
k sinc(τΛ)Uk+1.

Secondly, it is

Z =
(
ψ(τΛ)Fmf(F−1

m φ(τΛ)Ak)
)HUk+1

= f(ŨLHA)H(Fm)Hψ(τΛ)HUk+1

= mf(ŨLHA)H(F−1
m ψ(τΛ)Uk+1).

5.4. Splitting for second-order matrix differential equations 71

We thus can again make use of the efficient routines of Section 5.1 for the computation of Z. L1
A is then

updated as

L1
A ← L1

A + τ2

2 Z.

Computing the QR-decomposition of L1
A yields the factors Vk+1 and SH

k+1. This finalizes the A-step of
the low-rank Gautschi method.

We now turn to the B-step of the scheme. Both Ak and Ak+1 are needed to compute the step, but
since we computed the A-step completely, we have both matrices available in means of their factors. We
first compute

K̂ = −τΛ2 sinc(τΛ)YUXH + cos(τΛ)YT ,

again from right to left. Next, we set

Ũ1 = F−1
m φ(τΛ)Uk+1.

Then the product

Ŷ = (ψ0(τΛ)Fmf(F−1
m φ(τΛ)Ak) + ψ1(τΛ)Fmf(F−1

m φ(τΛ)Ak+1))Wk

= ψ0(τΛ)Fmf(ŨLHA)Wk + ψ1(τΛ)Fmf(Ũ1(L1
A)H)Wk

can be performed analogously as before for the A-step based on the ansatz in Section 5.1. Updating
K̂← K̂ + Ŷ and computing the QR-decomposition K̂ = T k+1R yields the factor T k+1 of Bk+1. Lastly,
with

L1
B = −τ2VkYH

U Λ2 sinc(τΛ)T k+1 + WkYH
T cos(τΛ)T k+1

and

Ẑ = (ψ0(τΛ)Fmf(F−1
m φ(τΛ)Ak) + ψ1(τΛ)Fmf(F−1

m φ(τΛ)Ak+1))HT k

= m
(
f(ŨLHA)H(F−1

m ψ0(τΛ)T k+1) + f(Ũ1(L1
A)H)H(F−1

m ψ1(τΛ)T k+1)
)
,

we get
L1

B ← L1
B + Ẑ, L1

B = Wk+1RH
k+1 by QR-decomposition.

This finalizes the B-step of the low-rank Gautschi method. The quantities Ũ1, L1
A, and L1

B are stored
and reused in the subsequent full step of the iteration. Overall, we require three Fourier transformations
(one for the A-step, two for the B-step) and four inverse transformations (one for the A-step, three for
the B-step). This is a significant reduction of Fourier operations compared to a naive implementation
based on (5.21) and the projector-splitting integrator, which requires in total twelve Fourier operations.

5.4 Splitting for second-order matrix differential equations

We return to the stiff second-order matrix differential equation (4.49),

A′′(t) = −Ω2
1A(t)−A(t)Ω2

2 + f
(
A(t)

)
, A(0) = A0, A′(0) = B0,

and consider again the splitting (4.55)
[
A(t)
B(t)

]′
=
[

B(t)
−Ω2

1A(t)−A(t)Ω2
2 + f(A(t))

]
=
[

ω̃2
1B(t)

−Ω2
1A(t)−A(t)Ω2

2

]
+
[
ω̃2

2B(t)
f
(
A(t)

)
]
, ω̃2

1 + ω̃2
2 = 1,

72 Chapter 5. Implementation of dynamical low-rank integrators

instead of (4.50). Here the whole linear part is separated from the nonlinear part like it is done in the
construction of the variant prsistiff of the projector-splitting integrator, see Section 3.3. For simplicity,
let ω̃1 = 1 and ω̃2 = 0 in the following. The exact solution to the first (linear) subproblem

A′′(t) = −Ω2
1A(t)−A(t)Ω2

2, t ∈ [0, T], A(0) = A0, A′(0) = B0,

can be given explicitly in terms of the matrix exponential. By vectorization, the above differential
equation takes the form

vecA′′(t) = −Ω2 vecA(t), Ω2 = Ω2
1 ⊕ (Ω2

2)T ,

cf. Definition A.15, or equivalently in first-order formulation
[

vecA(t)
vecB(t)

]′
=
[

0 I

−Ω2 0

][
vecA(t)
vecB(t)

]
.

We immediately conclude
[

vecA(t)
vecB(t)

]
= exp

(
t

[
0 I

−Ω2 0

])[
vec A0

vec B0

]
=
[

cos(tΩ) t sinc(tΩ)
−tΩ2 sinc(tΩ) cos(tΩ)

][
vec A0

vec B0

]
.

Consider now the situation, that both Ω1 and Ω2 are Fourier-diagonalizable,

Ω1 = F−1
m Λ1Fm, Ω2 = F−1

n Λ2Fn, Λ1,Λ2 diagonal.

Then one can compute the matrix exponential exactly by diagonalization, cf. Section 5.2. We define

F = F−Tn ⊗Fm, Λ2 = Λ2
1 ⊕ Λ2

2 ∈ Cmn×mn,

and note that Λ2 is diagonal. By the rules of the Kronecker product, see Theorem A.11, we have

F−1Λ2F = (FTn ⊗F−1
m)(In ⊗ Λ2

1 + Λ2
2 ⊗ Im)(F−Tn ⊗Fm)

=
[
FTn ⊗F−1

m Λ2
1 + FTn Λ2

2 ⊗F−1
m

]
(F−Tn ⊗Fm)

= In ⊗F−1
m Λ2

1Fm + FTn Λ2
2F−Tn ⊗ Im

= Ω2
1 ⊕ (Ω2

2)T ,

so that we found a diagonalization of the Kronecker sum Ω2
1⊕ (Ω2

2)T . Overall, this shows that the matrix
exponential above admits the alternative representation

exp
(
t

[
0 I

−Ω2 0

])
=
[
F−1

F−1

][
cos(tΛ) t sinc(tΛ)

−tΛ2 sinc(tΛ) cos(tΛ)

][
F
F

]
.

The computation of the exact solution A(t) hence requires to compute and store the diagonal matrices
cos(tΛ), t sinc(tΛ), and −tΛ2 sinc(tΛ), all with mn entries. This is contrary to the aims of never having
to compute or store a matrix of full dimension m× n at any intermediate step of the integration.

If Ω1 or Ω2 are not (Fourier-)diagonalizable, the computation of the matrix exponential is realized
by iterative methods, cf. Section 5.2.2. However, also in this case a (storage) efficient implementation
is not possible, since then the products arising in the update steps of the projector-splitting integrator
cannot be computed without computing A(t) and B(t) explicitly. Recall, that the product A(τ)E for

5.4. Splitting for second-order matrix differential equations 73

some E ∈ Cn×r is essential in these steps. Since the exact solution is only available in vectorized form,
we consider this product in vectorized form also. By Theorem A.14, we then have

vec(A(τ)E) = (ET ⊗ Im) vecA(τ) = (ET ⊗ Im)
(

cos(τΩ) vec A0 + τ sinc(τΩ) vec B0
)
,

or equivalently

A(τ)E = vec−1
m,n

(
cos(τΩ) vec A0

)
E + vec−1

m,n

(
t sinc(τΩ) vec B0

)
E,

where vec−1
m,n denotes the devectorization, cf. Definition A.12. Neither of the addends can be computed

without computing vectors of length mn, and therefore we cannot compute the product A(τ)E storage
efficiently. The same holds for the product A(τ)HE for E ∈ Cm×r, and therefore none of the update steps
of the projector-splitting integrator can be performed storage-economical. These difficulties motivate the
splitting as in (4.50) for the construction of the stlostiff scheme.

74 Chapter 5. Implementation of dynamical low-rank integrators

75

CHAPTER 6

Rank-adaptivity

For all dynamical low-rank integrators discussed in the previous chapters it is required to fix the ap-
proximation rank at the beginning of the integration. It is important to choose it carefully: If the
approximation rank is too small, the low-rank approximation lacks accuracy since the low-rank error
dominates the time-discretization error. Conversely, if the rank is chosen too large, the algorithms be-
come inefficient. However, in many applications the appropriate choice of this rank is not known a priori,
and it might also vary over time.

Several strategies of rank-adaptivity for dynamical low-rank integrators have been proposed in the
past. E.g., in [Dektor et al., 2021], rank-adaptivity for tensor methods for high-dimensional PDEs was
based on a functional tensor train series expansion. For finite-dimensional parametrized Hamiltonian
systems modeling non-dissipative phenomena, a rank-adaptive structure-preserving reduced basis method
was introduced in [Hesthaven et al., 2022]. In [Ceruti et al., 2022] a rank-adaptive strategy for the
unconventional robust integrator (cf. Section 3.4.2) was derived. It makes use of unique properties of this
specific scheme and cannot be generalized to other dynamical low-rank integrators.

We introduce a general strategy for choosing the rank adaptively, which is applicable for all dynamical
low-rank integrators discussed in this thesis. The ansatz has been submitted for publication in [Hochbruck
et al., 2022b]. It is designed such that the only input parameter is the step size of the underlying splitting
method, i.e., the Lie-Trotter splitting for first-order and the Strang splitting for second-order matrix
differential equations. The aim is to ensure that the low-rank error of the adaptive dynamical low-rank
approximation does not reduce the approximation order of the respective underlying splitting scheme
applied to the full problem. For this, we propagate one additional singular value which is used to accept
or reject the current integration step and allows one to choose the rank for the next step. These decisions
are made based on an estimator of the local time-discretization error.

In the following, we first present a strategy to select the appropriate rank adaptively based on a given
tolerance threshold and on the singular values of the numerically computed approximation. We also show
how to switch between low-rank manifolds of distinct rank. The corresponding technique was already

76 Chapter 6. Rank-adaptivity

proposed in [Lubich and Oseledets, 2014] and recently also in [Hu and Wang, 2021]. Afterwards, we
propose a heuristic for choosing the tolerance threshold and derive a computable criterion by combination
of estimators for time-discretization and low-rank errors. Also, we comment shortly on the several rank-
adaptive schemes derived from this ansatz and highlight specific properties.

6.1 Selecting the rank

The main idea of our ansatz in rank-adaptivity is to approximate the solution to (3.1) or (4.1) by a
matrix of rank rk in the kth time step, but to propagate a solution with one additional singular value.
I.e., the low-rank approximations are computed in the manifoldMrk+1. The supplementary information
available by the added singular value is used as an indicator whether the rank for the current or next time
step has to be adjusted. For simplicity, we first restrict ourselves to the projector-splitting integrator.
The extension to the other dynamical low-rank integrators is provided in Section 6.3.

Given the factors Uk,Sk,Vk of a low-rank approximation Ak = UkSkVH
k ∈Mrk+1, Ak ≈ A(tk), one

step of the projector-splitting integrator computes the factors Uk+1,Sk+1,Vk+1 of the approximation
Ak+1 ≈ A(tk). Due to the orthogonality of Uk+1 and Vk+1, the singular values of Ak+1 are the singular
values of the small matrix Sk+1. We compute the singular value decomposition of Sk+1,

Sk+1 = Pk+1Σ̂k+1QH
k+1, Σ̂k+1 = diag(σ̂(k+1)

1 , . . . , σ̂(k+1)
rk

, σ̂
(k+1)
rk+1),

where Pk+1,Qk+1 ∈ Vrk+1,rk+1 and σ̂
(k+1)
1 ≥ . . . ≥ σ̂

(k+1)
rk ≥ σ̂

(k+1)
rk+1 ≥ 0. The reduced singular value

decomposition of Ak+1 then reads

Ak+1 = (Uk+1Pk+1)Σ̂k+1(Vk+1Qk+1)H .

Given a tolerance tolk+1, we determine the rank r? = rk+1 such that

σ̂
(k+1)
r?+1 < tolk+1 ≤ σ̂

(k+1)
r? . (6.1)

We distinguish three cases:

1. Augmentation case: If σ̂(k+1)
rk+1 ≥ tolk+1, the step is rejected. Defining r?k = rk + 1, the step is

recalculated with rank r?k + 1. Hence, we need low-rank factors with column dimension r?k + 1,
which is not true for the factors Uk,Sk, and Vk. We therefore append a zero entry to Sk,

S?k =
[
Sk 0
0 0

]
∈ C(r?k+1)×(r?k+1). (6.2a)

The matrices Uk and Vk are augmented by appending unit vectors u ∈ Cm and v ∈ Cn such that

U?
k =

[
Uk u

]
∈ Vm,r?

k
+1, V?

k =
[
Vk v

]
∈ Vn,r?

k
+1. (6.2b)

Numerical tests indicate, that choosing u and v as random vectors and orthonormalizing them
against Uk and Vk is reliable and robust. Clearly, U?

kS?k(V?
k)H = UkSkVH

k = Ak, i.e., the initial
value of the current step has not changed. However, the numerical approximation is now able
to evolve to rank r?k + 1. Starting from the new factorization of Ak in terms of the matrices

6.2. Choice of tolerance 77

U?
k,S?k, and V?

k, the (k + 1)-st integration step is recomputed, yielding the approximation A?
k+1 =

U?
k+1S?k+1(V?

k+1)H . This procedure is repeated until

σ̂
(k+1)
r?
k
+1 < tolk+1 ≤ σ̂

(k+1)
r?
k

is satisfied, see also Algorithm 12. Then, the step is finally accepted and the rank for the next step
is chosen as r? = r?k. The initial values for the next step are

Uk+1 = U?
k+1, Sk+1 = S?k+1, Vk+1 = V?

k+1,

all of column dimension r?k + 1.

2. Reduction case: If σ̂(k+1)
rk < tolk+1, an accurate approximation is also available with a smaller

rank. The step is accepted, but the rank for the next step is determined by

r? = max
{

argmin{j | σ̂(k+1)
j < tolk+1}, rk − 2

}
,

i.e., the rank is either reduced by 1 or 2. Hence, the rank decays slowly, which prevents sudden
drops of the rank. As initial values for the next step, one chooses

Sk+1 = ĨTΣk+1Ĩ , Uk+1 = (Uk+1Pk+1)Ĩ , Vk+1 = (Vk+1Qk+1)Ĩ ,

where

Ĩ =
[
Irk+1+1

0

]
∈ R(rk+1)×(rk+1+1).

In order to prevent rank-oscillations, rank-reduction is prohibited within the first 10 steps after an
augmentation step.

3. Persistent case: If (6.1) is satisfied, the step is accepted and r? = rk.

6.2 Choice of tolerance

It remains to choose a tolerance threshold tolk, k = 0, 1, . . . in (6.1). The possibly easiest choice is to
employ an absolute tolerance threshold which is independent of the iteration index k,

tolk = abstol, k = 0, 1,

Then all singular values which are smaller than abstol are discarded in the low-rank approximation.
However, the trajectories of the singular values are ignored. This might cause issues, especially if the
largest singular value becomes smaller over time. If it falls below abstol, all singular values are discarded.

A straightforward adjustment is to either require r ≥ 1 or to introduce a fixed relative tolerance
reltol and to define

tolk = σ̂
(k)
1 · reltol, k = 0, 1, . . . , (6.3)

where σ̂
(k)
1 denotes the largest singular value of the numerical approximation Ak. Now the trajectory of

the largest singular value is taken into account. Even if the singular value drops significantly over time,
the low-rank approximation is always at least of rank 1.

78 Chapter 6. Rank-adaptivity

Algorithm 12: Augmentation
1 augmentation(U,S,V,∆A, r, tol)
Input : factors U,S,V of rank-(r + 1) approximation A = USVH with U ∈ Vm,r+1,

V ∈ Vn,r+1, S ∈ C(r+1)×(r+1), functions for products with ∆A, tolerance tol
2

3 ready = False
4 while not ready do
5 r = r + 1
6 choose u ∈ Cm orthonormal to U (e.g., random)
7 choose v ∈ Cn orthonormal to V (e.g., random)
8 compute U = U?, S = S?, V = V? as in (6.2)
9 U,S,V,L = prsi(U,S,V, r + 1,∆A)

10 compute singular values σ̂1, . . . , σ̂r+1 of S
11 ready = (σ̂r+1 < tol)
12 end
13 Return U,S,V,L, r

Output: factors U,S,V of rank-(r + 1) approximation to A + ∆A and L = VSH with
U ∈ Vm,r+1, V ∈ Vn,r+1, S ∈ C(r+1)×(r+1)

A major drawback of the ansatz in (6.3) is that a suitable choice of reltol is in general not known
beforehand. Obviously, the smaller reltol, the more singular values can be taken into account. This
enlarges the approximation quality, but also increases the computational effort. Larger values of reltol
reduce the effort, but a good approximation may not be guaranteed anymore.

We propose a different ansatz for choosing tol. Instead of linking the tolerance threshold to the
trajectory of the largest singular value, we take the time-discretization error into account. This is moti-
vated by the results in Theorem 3.6 for the projector-splitting integrator and Theorem 4.11 for the St-LO
scheme. There it was shown that for both low-rank schemes the global error splits into a low-rank error
and a time-discretization error contribution. Clearly, if the time-discretization error is already large,
the approximation rank can be chosen smaller, maintaining the convergence order. Contrary, a small
time-discretization error might be spoiled by a large low-rank approximation error, thus a larger approx-
imation rank should be chosen. We therefore suggest to construct rank-adaptive dynamical low-rank
integrators based on balancing the low-rank approximation and the time-discretization errors such that
the convergence order (and the time-discretization error) is not impaired by the low-rank error.

The error analysis of the projector-splitting integrator provided in [Kieri et al., 2016], see also Theo-
rem 3.6, shows exponential growth of the error w.r.t. the final time T . For the St-LO scheme we have seen
a similar behavior, cf. Theorem 4.11. However, numerical experiments indicate that this is a pessimistic
bound, and the errors grow much slower in T . Since the exact behavior of the global error w.r.t. T is in
general not known, we use an estimator for the time-discretization error, which is the basis for computing
the tolerance threshold tol.

6.2. Choice of tolerance 79

6.2.1 Time-discretization error estimation via Richardson extrapolation

In our implementation, we approximate the evolution of the error by monotonically increasing piecewise
linear functions. The respective slopes are recalculated every M steps, where M ∈ N is suitably chosen.
The practical estimation of the time-discretization error is done as follows:

Starting from an approximation A`M ≈ A(t`M), we compute an approximation to A(t`M+1) with
the rank-adaptive integrator and step size τ . In this step, we prevent rank-reduction. The (propagated)
numerical approximation A`M+1 possesses rank r∗ = r`M+1 + 1. The subsequent time step is now
performed with rank r∗, which yields the approximation A`M+2. In parallel, we perform four steps with
step size τ

2 and approximation rank r∗, started from A`M . By this, we obtain alternative (and in general
more accurate) approximations Ă`M+1 ≈ A(t`M+1) and Ă`M+2 ≈ A(t`M+2). If the chosen method
converges with order p ∈ N in time, Richardson extrapolation [Zlatev et al., 2017] allows one to estimate
the propagated errors of A`M+1 and A`M+2 as

‖A(t`M+1)−A`M+1‖ ≈
2p

2p − 1‖A`M+1 − Ă`M+1‖ =: errI
`,

and

‖A(t`M+2)−A`M+2‖ ≈
2p

2p − 1‖A`M+2 − Ă`M+2‖ =: errII
` ,

cf. [Constantinescu, 2018, Section 5]. We let

ζ` = errII
`

2errI
`

,

and define the quantity err` recursively via

err`+1 = err` +Mζ`errI
`, ` = 0, 1, . . . , err0 = 0.

The estimation of the propagated error of Ak ≈ A(tk) for k = `M + j then reads

‖A(t`M+j)−A`M+j‖ ≈ err` + jζ`errI
` =: tdek, j = 1, 2, . . . ,M. (6.4)

Remark 6.1. Computing the norm of the difference of the low-rank matrices A and Ă should not
involve the matrices themselves, but their low-rank factors. By the rules of the Frobenius norm and inner
product (cf. Theorem A.7), it is

‖A− Ă‖2 = ‖USVH − ŬS̆V̆H‖2

= ‖USVH‖2 − 2 Re〈USVH , ŬS̆V̆H〉+ ‖ŬS̆V̆H‖2

= ‖S‖2 + ‖S̆‖2 − 2 Re tr(VSHUHŬS̆V̆H)

= ‖S‖2 + ‖S̆‖2 − 2 Re tr
(
(V̆HV)SH(UHŬ)S̆

)
,

where the last equality holds by the identity tr(AB) = tr(BA). This representation allows us to compute
the norm of the distance between A and Ă without having to compute or store any matrix of full
dimension in any intermediate step. However, it was numerically observed that this expression suffers
from cancellation. With the orthogonal projector ΠU = UUH onto the column space of U and the

80 Chapter 6. Rank-adaptivity

orthogonal projector Π⊥U = Im − ΠU onto its orthogonal complement, see (2.20), we rewrite Ă as the
sum

Ă = ΠUĂ + Π⊥UĂ.

This yields

‖A− Ă‖2 = ‖USVH −ΠUŬS̆V̆H −Π⊥UŬS̆V̆H‖2

= ‖U(SVH −UHŬS̆V̆H)‖2 + ‖Π⊥UŬS̆V̆H‖2

= ‖SVH − (UHŬ)S̆V̆H‖2 + ‖ŬS̆−U(UHŬ)S̆‖2,

which we observed to be more robust in our examples. �

6.2.2 Low-rank error estimation

For estimating the low-rank approximation error, consider first the exact solution A at time tk+1 and
denote its singular values by σ1 ≥ . . . ≥ σn ≥ 0. The rank-rk+1 best-approximation Abest

k+1 to A(tk+1)
fulfills

‖A(tk+1)−Abest
k+1‖2

‖A(tk+1)‖2 =
σ2
rk+1+1 + . . .+ σ2

n

σ2
1 + . . .+ σ2

n

≤
(n− rk+1)σ2

rk+1+1

‖Abest
k+1‖2

,

so that
‖A(tk+1)−Abest

k+1‖ ≤ σrk+1+1
‖A(tk+1)‖
‖Abest

k+1‖
√
n− rk+1.

The bound in the numerator is a worst case estimate, where all singular values σrk+1+1, . . . , σn are of the
same size. In practice, this is often not the case, especially if A is well-approximated by a low-rank matrix.
Neither the singular values of the exact solution are known, nor the best-approximation Abest

k+1. For a
computable bound, we therefore replace the singular values σi of A(tk+1) by the singular values σ̂

(k+1)
i

of the low-rank approximation Ak+1, and the best-approximation Abest
k+1 by Ak+1. The unknown ratio

between the norms of the exact solution and the low-rank approximation is estimated as 1. Altogether,
this gives

‖A(tk+1)−Ak+1‖ . σ̂
(k+1)
rk+1+1

√
n− rk+1.

6.2.3 Tolerance threshold

The combination of the estimators of time-discretization and low-rank approximation error finally yields
a computable threshold tol. Enforcing the low-rank error to fall below the time-discretization error
yields the inequality

σ̂
(k+1)
rk+1+1

√
n− rk+1 ≤ tdek+1,

where tdek+1 is given in (6.4). Solving for σ̂(k+1)
rk+1+1 yields the condition

σ̂
(k+1)
rk+1+1 ≤

tdek+1√
n− rk+1

= err` + jζ`errI
`√

n− rk+1
=: tolk+1, k + 1 = `M + j. (6.5)

Though these heuristics work well in our numerical experiments, cf. Chapter 7, they are only reliable
if the low-rank approximation error is small compared to the time-discretization error right from the start
of the integration. Therefore it is required to determine a suitable initial rank r0.

6.3. Rank-adaptive algorithms 81

In our implementation, we use the following heuristic: We start the iteration from a low-rank approxi-
mation to A0 with rank r0 = 5 and perform ν steps (with ν small, e.g., ν = 5). In this phase, we prohibit
rank reduction. Let r∗ denote the number of singular values of Aν ≈ A(tν) which are greater or equal
to tolν given in (6.5). If r∗ < r0, we continue the integration with rν+1 = r∗. Otherwise, we rerun the
initializing process for r0 multiplied by 2, until r∗ < r0 holds.

Remark 6.2. By design, if r∗ & r0, i.e., r∗ is just slightly larger than r0, the rank r0 is doubled and
might cause a significant overestimation of the initial rank for the first ν steps. The favorable property
of the dynamical low-rank integrators to be robust with respect to the presence of small singular values,
which is inherited from the projector-splitting integrator, ensures that the approximation quality does
not deteriorate even in this situation. Also, since we overestimate the rank only in the first ν steps, the
computational overhead is small. �

6.3 Rank-adaptive algorithms

The rank-adaptive version of the projector-splitting integrator Algorithm 2 is called raprsi for rank-
adaptive projector-splitting integrator in the following. A single step of the raprsi scheme is given in
Algorithm 13.

Algorithm 13: Rank-adaptive projector-splitting integrator, single step
1 raprsi(U,S,V, r,∆A, p)
Input : factors U,S,V of rank-(r + 1) approximation A = USVH ≈ A(t) with U ∈ Vm,r+1,

V ∈ Vn,r+1, S ∈ C(r+1)×(r+1), functions for products with ∆A
2

3 U1,S1,V1,L1 = prsi
(
U,S,V, r + 1,∆A

)

4 compute SVD S1 = PΣ̂QH where Σ̂ = diag(σ̂1, . . . , σ̂r+1)
5 compute tol according to Section 6.2
6 if σ̂r < tol then
7 r1 = argmin{j | σ̂j+1 < tol}
8 Ĩ =

[
Ir1+1 0

]T ∈ C(r+1)×(r1+1)

9 U1 = (U1P)Ĩ
10 S1 = ĨT Σ̂Ĩ

11 V1 = (V1Q)Ĩ
12 L1 = V1SH1
13 else if σ̂r+1 ≥ tol then
14 U1,S1,V1,L1, r1 = augmentation(U,S,V,∆A, r, tol)
15 Return U1,S1,V1,L1, r1

Output: factors U1,S1,V1 of rank-(r1 + 1) approximation A1 = U1S1VH
1 ≈ A(t+ τ) and

L1 = V1SH1 with U1 ∈ Vm,r1+1, V1 ∈ Vn,r1+1, S1 ∈ C(r1+1)×(r1+1)

The rank-adaptive equivalent of the prsistiff scheme (cf. Section 3.3) is named raprsistiff. Since
the linear subproblem (3.13a) preserves the rank of its initial value, rank-adaptivity is only applied in

82 Chapter 6. Rank-adaptivity

the integration of the nonlinear subproblem (3.13b). One single time step of the raprsistiff is hence
obtained by replacing the prsiF scheme in line 7 of Algorithm 4 by the raprsi method.

Similarly, we derive a rank-adaptive version of the St-LO scheme by replacing the prsi routines in
lines 2 and 3 in Algorithm 7 by the raprsi scheme. This new integrator is named rank-adaptive St-LO
(rastlo) scheme. A rank-adaptive version of the stlovar scheme is derived in the same way and is
named rastlovar.

With the same idea we obtain the rastlotangent scheme as rank-adaptive counterpart to the
stlotangent method given in Algorithm 10. Note that for this integrator rank-adaptivity is only used in
the A-step of the integration (line 3), since the approximation rank rA implicitly determines the column
dimension of the low-rank factors of the approximation B ≈ A′, see also (4.63).

For stiff second-order matrix differential equations (4.49), we equip the integrator stlostiff displayed
in (4.53) with the adaptivity schemes described above. For the sake of efficiency, the rank is only allowed
to change in the integration of the nonlinear subproblem, though the linear subproblems in general do not
preserve the rank. Only if rank-augmentation needs to be performed, the affected substeps of Algorithm 8
are recomputed. The resulting rank-adaptive scheme is named rastlostiff.

Rank-adaptivity for the St-LO scheme

In contrast to all other dynamical low-rank integrators discussed within this thesis, the St-LO scheme
computes approximations to A and A′ on a staggered grid. This causes a problem in the computation of
the tolerance threshold as presented in Section 6.2. Richardson extrapolation expects the local time-dis-
cretization error to converge with order p+ 1 if the method converges globally with order p. However, if
the approximations are not computed on the same grid, this property is violated, which can already be
observed for the leapfrog scheme: Consider the linear problem

A′′(t) = LA(t), t ∈ [0, T], A(0) = A0, A′(0) = B(0),

and compute two sets of approximations to A(t2) and A′(t 3
2
). The first one is obtained by performing

one step of the leapfrog scheme in its staggered formulation (4.4a) with step size τ , started from approx-
imations A1 ≈ A(t1), B 1

2
≈ A′(t 1

2
). This yields the approximations A2 ≈ A(t2) and B 3

2
≈ A′(t 3

2
). The

second set Ă2, B̆ 3
2
results from performing two steps of the scheme (4.4a) with step size τ

2 , also started
from A1, B 1

2
. Straightforward calculation yields the expressions

B 3
2

= B 1
2

+ τLA1,

A2 = A1 + τB 1
2

+ τ2LA1,

as well as

B̆ 3
2

= B 1
2

+ τLA1 + τ2

4 LB
1
2

+ τ3

8 L
2A1,

Ă1 = A1 + τB 1
2

+ 3τ2

4 LA1 + τ3

8 LB
1
2

+ τ4

16L
2A1.

Comparison of B 3
2
and B̆ 3

2
shows that the error between these quantities is of order O(τ2), and the same

holds for the error between A2 and Ă2. Thus, also for general right-hand sides F (A) we cannot expect
Richardson extrapolation to yield proper results if the approximations are not computed on the same
grid.

6.3. Rank-adaptive algorithms 83

A remedy for this issue is to modify the rastlo routine. After performing `M steps, one is given
the approximations B`M− 1

2
and A`M . Computing a subsequent B-step with step size τ

2 yields B`M ≈
A′(t`M). Since now the approximations to A and its derivative are given on the same grid, the estimation
of the time-discretization error as explained in Section 6.2.1 is reliable. For this estimation however the
St-LO scheme needs to be replaced by the rastlovar scheme in order to remain on a non-staggered time
grid. This gives the approximations B`M+2 and A`M+2. For proceeding the simulation, the next B-step
is performed again with halved step size τ

2 , and all further A- and B-steps are carried out with step size
τ until one reaches the approximations B(`+1)M− 1

2
and A(`+1)M . Then one repeats the whole procedure.

84 Chapter 6. Rank-adaptivity

85

CHAPTER 7

Numerical experiments

We conclude this thesis with numerical experiments for matrix differential equations resulting from space
discretizations of PDEs. They illustrate the performance of the constructed fixed-rank and rank-adaptive
dynamical low-rank integrators for first-order and second-order matrix differential equations.

All considered PDEs are imposed on a rectangular domain

Ω = [−Lx, Lx]× [−Ly, Ly] ⊂ R2. (7.1)

For the discretization in space, we use a uniform mesh with n grid points in x- and m grid points in
y-direction, respectively. We denote with

hx = 2Lx
n
, hy = 2Ly

m
, m, n ∈ N,

the mesh size in x- and y-direction, respectively. The mesh Ωh depends on the chosen boundary conditions:

1. Dirichlet boundary conditions

Ωh = {(xj , yi) | xj = −Lx + jhx, yi = −Ly + ihy, 1 ≤ j ≤ n− 1, 1 ≤ i ≤ m− 1}, (7.2)

2. periodic boundary conditions

Ωh = {(xj , yi) | xj = −Lx + jhx, yi = −Ly + ihy, 1 ≤ j ≤ n, 1 ≤ i ≤ m},

3. Neumann boundary conditions

Ωh = {(xj , yi) | xj = −Lx + jhx, yi = −Ly + ihy, 0 ≤ j ≤ n, 0 ≤ i ≤ m}. (7.3)

Errors of the low-rank approximations are measured w.r.t. numerically computed reference solutions,
unless the exact solution of the respective problem is known. Since we are only interested in the time-
discretization error, reference solution and low-rank solutions are computed on the same spatial grid.
Moreover, we always compute relative global errors at tk = T ,

err = ‖Ak −Ak‖
‖Ak‖

,

86 Chapter 7. Numerical experiments

between the reference solution A and the low-rank approximation A, as these approximate the relative
discrete L2-norm of the respective functions.

For the rank-adaptive dynamical low-rank integrators, the computation of the tolerance threshold as
presented in Section 6.2.1 is performed with M = 100, i.e., every 100 steps we perform four additional
steps with step size τ

2 . This increases the computational effort by 4%. Choosing smaller values for M
improves the estimation of the time-discretization error, but also increases the computational cost. In
one of our experiments, we found that M = 10 was necessary.

All algorithms have been implemented in Python. The codes for recreating the figures in this chapter
are available from [Schrammer, 2022].

7.1 Stiff first-order matrix differential equations

In this section, we consider stiff first-order matrix differential equations of the form (3.12). For such
problems, a dynamical low-rank integrator has already been proposed in [Ostermann et al., 2019], see
also the prsistiff scheme (cf. Algorithm 4) in Section 3.3. The purpose of this section is to test the
rank-adaptive variant of the prsistiff method as it has been designed in Section 6.3.

7.1.1 Nonlinear fractional Ginzburg–Landau equation

The cubic Ginzburg–Landau equation is used to describe a variety of physical phenomena, e.g., super-
conductivity, superfluidity, and others, cf. [Aranson and Kramer, 2002]. In [Tarasov and Zaslavsky,
2005], the authors derived a fractional generalization of the Ginzburg–Landau equation. Discretization
in space by the second-order fractional centered difference method proposed in [Çelik and Duman, 2012]
and homogeneous Dirichlet boundary conditions yields the stiff semilinear first-order matrix differential
equation

A′(t) = −DyA(t)−A(t)Dx − (κ+ iξ)|A(t)|2A(t) + γA(t), t ∈ [0, T], A(0) = A0, (7.4)

where Dx and Dy are symmetric Toeplitz matrices with first columns

ν + iη
hαx

[
gα0 , g

α
1 , . . . , g

α
n−2
]T and ν + iη

hβy

[
gβ0 , g

β
1 , . . . , g

β
m−2

]T
,

cf. Definition A.17. Here, i =
√
−1, ν, κ > 0, η, ξ, γ ∈ R, and 1 < α, β < 2 denote given parameters, and

gµk = (−1)kΓ(1 + µ)
Γ(µ/2− k + 1)Γ(µ/2 + k + 1) , µ ∈ {α, β}, k ∈ Z,

where Γ(·) denotes the Gamma function.

Remark 7.1. Since Γ(z)→ 0 for z → −∞ and Γ(z)→∞ for z →∞, respectively, the computation
of the denominator of gµk is numerically unstable if k becomes large. By using the property

Γ(z + 1) = zΓ(z) for − z /∈ N

for the Gamma function one obtains the alternative representation

Γ(µ/2− k + 1)Γ(µ/2 + k + 1) = Γ2(µ/2 + 1)
k∏

i=1

µ/2 + i

µ/2− k + i
.

7.1. Stiff first-order matrix differential equations 87

10−3 10−2

10−4

10−3

10−2

10−1

τ

(α, β) = (1.2, 1.9)

O(τ)
prsistiff
raprsistiff, M = 100
raprsistiff, M = 10

0 1

10−8

10−6

10−4

10−2

100

102

t

(α, β) = (1.2, 1.9)

Figure 7.1. Fractional Ginzburg–Landau equation, first experiment with A0 from (7.5). The left picture shows
the relative global error at T = 1 for (α, β) = (1.2, 1.9), where the fixed-rank approximation (yellow) is computed
with r = 5. The rank-adaptive approximation was computed with M = 100 (orange) and M = 10 (blue). The
trajectories of the ten largest singular values of the reference solution (gray), the singular values of raprsistiff

(M = 10) for τ = 10−3 (blue), and the computed tolerance threshold (red, dashed) are displayed on the right.

The computation of the denominator based on this representation was observed to be more stable in our
experiments. �

In [Zhang et al., 2020], (7.4) was solved approximately with the linearized second-order backward
differential scheme (LBDF2). A fixed-rank dynamical low-rank integrator for (7.4) based on the con-
siderations from [Ostermann et al., 2019] was proposed in [Zhao et al., 2021]. We compute low-rank
approximations to the exact solution of (7.4) with the prsistiff and the raprsistiff schemes. The
solution of the linear subproblem in (7.4) is of the form (3.15) with L1 = −Dy and L2 = −Dx, respec-
tively. Since Dx and Dy are both Toeplitz matrices, we use the method proposed in [Lee et al., 2010] for
computing the action of the matrix exponential, see also Section 5.2.2.

For our tests, we use the parameter sets from [Zhao et al., 2021]. The first one is given as Lx = Ly = 10,
m = n = 512, ν = η = κ = ξ = γ = 1, T = 1, (α, β) = (1.2, 1.9), with initial value

(A0)ij = 2 sech(xj) sech(yi) exp
(
i(xj + yi)

)
, i, j = 1, . . . ,m− 1. (7.5)

The reference solution is computed with the LBDF2 method and step size τ = 10−4. The relative
global errors of the low-rank approximations at time T are displayed in Figure 7.1. For large step
sizes, the approximations computed with the raprsistiff method show large errors. This is due to
an overestimation of the time-discretization error, which causes a tolerance threshold so large that the
second largest singular value is discarded. This unfortunate behavior does not appear for M = 10.

For the second experiment, the parameters are chosen as Lx = Ly = 8, m = n = 512, ν = κ = 1,
η = 0.5, ξ = −5, γ = 3, T = 1, (α, β) = (1.2, 1.9), with initial value

(A0)ij = exp
(
− 2(x2

j + y2
i)
)

exp
(
i(S0)ji

)
, (S0)ij = (exj+yi + e−xj−yj)−1, i, j = 1, . . . ,m− 1. (7.6)

Figure 7.2 shows the relative global errors at time T = 1. The curves for the fixed-rank and rank-adaptive

88 Chapter 7. Numerical experiments

10−3 10−2

10−3

10−2

10−1

τ

(α, β) = (1.2, 1.9)

O(τ)
prsistiff
raprsistiff

0 1

10−5

10−3

10−1

101

t

(α, β) = (1.2, 1.9)

Figure 7.2. Fractional Ginzburg–Landau equation, second experiment with A0 from (7.6). The left picture
shows the relative global error at T = 1 for (α, β) = (1.2, 1.9), where the fixed-rank approximation is computed
with r = 8. The trajectories of the ten largest singular values of the reference solution (gray), the singular values
of raprsistiff for τ = 10−3 (orange), and the computed tolerance threshold (red, dashed) are displayed on the
right.

integrators now align almost perfectly.
Similar results for both experiments were observed for the parameters (α, β) = (1.5, 1.5),(1.7, 1.3),

and (1.9, 1.2) and are available from [Schrammer, 2022].

7.1.2 Nonlinear fractional Schrödinger equation

The nonlinear fractional Schrödinger equation, cf. [Zhao et al., 2014], is a special case of the nonlinear
fractional Ginzburg–Landau equation with ν = κ = γ = 0. In the limit α, β → 2 it becomes the classical
Schrödinger equation.

For our experiment we take the parameters and the initial value from [Zhao et al., 2014], namely
Lx = Ly = 10, n = m = 512, η = 1, ξ = −2, T = 0.2, (α, β) = (1.2, 1.9), and

(A0)ij = sech(xj) sech(yi) exp
(
i(xj + yi)

)
, i, j = 1, . . . ,m− 1.

We compute low-rank approximations to the exact solution of the problem again with the prsistiff and
raprsistiff methods. A reference solution is computed with the LBDF2 method, using the step size
2 ·10−5. The results of our experiment are displayed in Figure 7.3. Again, the relative global error curves
of the fixed-rank and rank-adaptive schemes match nearly perfectly and clearly indicate convergence of
order 1. The results for other choices of α and β are provided in [Schrammer, 2022].

7.2 Second-order matrix differential equations

We proceed with second-order matrix differential equations of the form (4.1). We here use all dynami-
cal low-rank integrators stlo, stlotwostep, stlostiff, gautschilr, and stlotangent constructed in

7.2. Second-order matrix differential equations 89

10−4 10−3

10−5

10−4

10−3

τ

(α, β) = (1.2, 1.9)

O(τ)
prsistiff
raprsistiff

0 0.2
10−12

10−9

10−6

10−3

100

t

(α, β) = (1.2, 1.9)

Figure 7.3. Fractional Schrödinger equation. The left picture shows the relative global error at T = 0.2 for
(α, β) = (1.2, 1.9), where the fixed-rank approximation is computed with r = 5. The trajectories of the ten largest
singular values of the reference solution (gray), the singular values of raprsistiff (M = 100) for τ = 4 · 10−4

(orange), and the computed tolerance threshold (red, dashed) are displayed on the right.

Chapter 4 to compute low-rank approximations to the exact solutions of (4.1). Moreover, we apply their
rank-adaptive versions rastlo, rastlostiff, and rastlotangent.

7.2.1 Homogeneous wave equation

For our first example of a second-order differential equation we consider the homogeneous wave equation

∂2
t a(t, x, y) = ∆a(t, x, y), t ∈ [0, T], (x, y) ∈ Ω,

subject to periodic boundary conditions and suitably chosen initial values

a(0, x, y) = ã0(x, y), ∂ta(0, x, y) = b̃0(x, y), (x, y) ∈ Ω.

The domain Ω is given in (7.1) with Lx = 300π and Ly = 600π. For the discretization in space we follow
the approach in [Schweitzer, 2008, Section 4.1.3] and use fourth order finite differences in x-direction and a
pseudospectral method in y-direction. The motivation for this particular discretization is the application
in the next experiment in Section 7.2.2. We thus end up with the linear second-order matrix differential
equation

A′′(t) = LA(t), A(0) = Ã0, A′(0) = B̃0, (7.7)

with

(Ã0)ij = 0.12 exp
(
− y2

i

l20
−
x2
j

w2
0

)
, (B̃0)ij =

(
− 2yi

l20

)
(Ã0)ij , i = 1, . . . ,m, j = 1, . . . , n.

The parameters are chosen as l0 = 10π and w0 = 100π. The discrete Laplacian L acts on A(t) via

LA(t) = F−1
m D2

yFmA(t) +A(t)Dx,

90 Chapter 7. Numerical experiments

0 15π 30π 45π
10−4

101

106

1011

1016

t

8τ0
4τ0
2τ0
τ0

8 16 32 64 128 256 512 1024

10−9

10−8

10−7

10−6

10−5

10−4

10−3

τ/τ0

stlo
stlostiff
O(τ2)

Figure 7.4. Homogeneous wave equation. Left: Relative global error in A between exact solution of (7.7) and
low-rank approximations computed with the projector-splitting integrator for t ∈ [0, 45π] and different step sizes,
shown from the first time step. Right: Relative global error in A between exact solution of (7.7) and low-rank
approximations at T = 45π. The stlostiff scheme allows for larger step sizes compared to the stlo scheme.

where Dx ∈ Rn×n denotes the symmetric Toeplitz matrix (cf. Definition A.17) with first column

− 1
12h2

x

[30,−16, 1, 0, . . . , 1,−16]T ,

and Dy ∈ Cm×m is given by

Dy = iπ
Ly

diag
(

0, . . . , m2 − 1,−m2 , . . . ,−1
)
.

Projector-splitting integrator applied to the equivalent first-order system

In the following, we first study the performance of the projector-splitting integrator when it is applied to
the equivalent first-order system (4.2) of (7.7). For m = 4096 and n = 512 discretization points in y- and
x-direction, respectively, we compute a numerical approximation with rA = 20 and different multiples of
the step size τ0 = Ly/(160m). The results are displayed in Figure 7.4 (left picture). While for τ = τ0 the
relative global error remains small, the error for the larger step sizes grows rapidly w.r.t. t. Also, the larger
the step sizes, the earlier the numerical approximation with the projector-splitting integrator becomes
unstable. Hence, even for the homogeneous case, the naive approach for computing a dynamical low-rank
approximation based on the first-order formulation (4.2) of (7.7) and the projector-splitting integrator
fails. This emphasizes the necessity of designing dynamical low-rank integrators for second-order matrix
differential equations differently.

Behavior of stlo and stlostiff for larger step sizes

A second aspect we examine is the behavior of the stlo and stlostiff schemes for larger step sizes,
without effects caused by nonlinear terms. For the same number of discretization points as above, we
compute the relative global error in A between the exact solution of (7.7) and the low-rank approximations
computed with rA = rB = 20 at T = 45π. The results of this experiment are shown in Figure 7.4 (right
picture). Clearly, the stlostiff scheme does not only yield significantly smaller errors, but also allows

7.2. Second-order matrix differential equations 91

for larger step sizes compared to the stlo scheme. Hence, the application of a dynamical low-rank
integrator which exploits the structure of the right-hand side of (7.7) is beneficial in this experiment.

7.2.2 Laser-plasma interaction

As a second example for second-order problems, we consider a reduced model of laser-plasma interaction
from [Karle et al., 2006, 2008; Schweitzer, 2008]. It is given by a wave equation with space-dependent cubic
nonlinearity on a rectangular domain Ω given in (7.1) with periodic boundary conditions. Discretization
in space as is Section 7.2.1 yields the second-order matrix differential equation

A′′(t) = LA(t)− 0.3χ •
(
A(t)− 1

2A(t) •A(t) •A(t)
)

= F
(
A(t)

)
, A(0) = A0, A′(0) = B0. (7.8)

As initial values we use

(A0)ij = 0.12 exp
(
− y2

i

l20
−
x2
j

w2
0

+ iyi
)
, (B0)ij =

(
− 2yi

l20
− i
)

(A0)ij , i = 1, . . . ,m, j = 1, . . . , n.

As pointed out in [Karle et al., 2006], this choice of initial conditions turns the solution to the problem
(7.8) highly oscillatory in longitudinal direction. Equation (7.8) models the propagation of a laser pulse
of wavelength λ0 in the direction of the positive y-axis through vacuum and through a strongly localized
plasma barrier. The plasma is located between y = 50π and y = 300π and has constant density 0.3. The
localization is modeled by the matrix χ ∈ Rm×n with entries

χij =





1, 50π ≤ yi ≤ 300π,

0, else,

and is thus of the form as in Section 5.1.3 with µ = 1 and ν = n. The interaction between the pulse and
the plasma is modeled by a cubic nonlinearity. As in [Karle et al., 2008] we use the parameters λ0 = π,
l0 = 10π, w0 = 100π, Lx = 300π, and Ly = 600π.

Form = 8192 and n = 1024 discretization points in longitudinal and transversal direction, respectively,
we compute fixed and variable low-rank approximations to the solution of (7.8) for different step sizes.
The reference solution was computed with the Gautschi-type method studied in [Schweitzer, 2008] and
step size τ0 = Ly/(80m). For the low-rank approximations we used τ = 2kτ0, k = 2, . . . , 6. All fixed-rank
integrators were performed with rA = rB = 4. For the methods stlostiff and rastlostiff we used
the weights

ω2
1 = 2

3 , ω2
2 = 0, ω2

3 = 1
3 ,

which is motivated by the fact that the pulse mainly travels along the y-axis, i.e., in longitudinal direction.
The top row in Figure 7.5 shows the relative global errors in A and B at T = 600π between the

reference solution and the low-rank approximations. For comparison, we also computed approximations
with the leapfrog scheme. As one can observe, all integrators show convergence of order 2. For the
convergence in A, the curves for the stlo, rastlo, stlotangent, rastlotangent, stlotwostep, and
leapfrog schemes align almost perfectly, whereas the leapfrog method yields slightly smaller errors in
B for small step sizes. The accuracy of the low-rank methods and the leapfrog scheme is comparable,
but the dynamical low-rank integrator provide the results with significantly less storage requirements.
Instead of storing arrays of size m× n, we only need to store matrices of dimension m× rA, n× rA, and

92 Chapter 7. Numerical experiments

rA × rA. For the chosen values for m,n, and rA this means that the low-rank schemes require less than
0.5% of the memory the leapfrog scheme needs. The rank-adaptive dynamical low-rank integrators choose
approximation ranks up to r = 3 (stlo and stlotangent schemes) and r = 4 (stlostiff scheme).

The gautschilr scheme yields smaller errors than the methods listed above, and the stlostiff
and rastlostiff methods, whose curves are almost indistinguishable, yield even smaller errors. This
behavior is explained by the construction of these methods, where the structure of the right-hand side is
better taken into account than in the other schemes, cf. Section 4.3 and Section 4.4.2.

4 8 16 32 64
10−3

10−2

10−1

100

τ/τ0

4 8 16 32 64
10−3

10−2

10−1

100

τ/τ0

0 300π 600π

10−9

10−8

10−7

10−6

10−5

10−4

10−3

t

O(τ2) stlo rastlo stlotangent rastlotangent
leapfrog stlostiff rastlostiff stlotwostep gautschilr

Figure 7.5. Laser-plasma interaction. Top: Relative global error in A (left) and B (right) between reference
solution and low-rank approximations at T = 600π. Bottom: Relative error in the maximal intensity for τ = 4τ0.
The fixed-rank methods were computed with rA = rB = 4, the rank-adaptive methods with M = 100.

In physics, the maximal intensity
max
i,j
|Aij(t)|2

of the propagating pulse over time is sometimes of higher interest that A itself. The bottom picture
of Figure 7.5 shows the relative error between the maximal intensity of the reference solution and the
maximal intensity of the low-rank methods and the leapfrog scheme.

Figure 7.6 shows the absolute value and the real part of the reference solution and the low-rank
approximations computed with the stlo and stlostiff schemes with step size τ = 4τ0 at t = 37.5π

7.2. Second-order matrix differential equations 93

and x = 0. The left picture shows the laser pulse, which moves to the right, while the right picture
shows a small reflection moving into the opposite direction. In both pictures, the high oscillations are
clearly visible. The curves for the three methods in the left picture are nearly indistinguishable. The
right picture shows very small differences in the approximation of the reflection (note the scale of 10−7

which is below the tolerance threshold): Neither the stlo nor the stlostiff scheme compute a reflection
of the same absolute value as the Gautschi reference solution. However, the phase of the oscillations is
captured well by the stlostiff scheme, while the stlo method shows some phase drift.

0 50 100 150 200 250

−0.1

−5 · 10−2

0

5 · 10−2

0.1

y
−200 −150 −100 −50 0

−5

0

5

·10−7

y

Gautschi stlo stlostiff

Figure 7.6. Laser-plasma interaction. Absolute value and real part of reference solution and low-rank approxi-
mations computed with the stlo and stlostiff schemes at t = 37.5π, x = 0, and step size τ = 4τ0.

The fact that the accuracy of the rank-adaptive integrators is comparable to the one of their fixed-rank
variants indicates, that the heuristics for determining the tolerance threshold also works nicely for this
experiment. The trajectories of the singular values of the rank-adaptive integrators together with the
first ten singular values of the reference solution and the respective tolerance thresholds are presented in
Figure 7.7.

7.2.3 Sine-Gordon equation

In our last experiment we consider the two-dimensional sine-Gordon equation on the domain Ω from
(7.1) with homogeneous Neumann boundary conditions, cf. [Bratsos, 2005]. Using finite differences of
order two on the grid (7.3) with Lx = Ly = 7 and m = n = 1001 discretization points in both x- and
y-direction, we obtain the semi-discretized second-order matrix differential equation

A′′(t) = DA(t) +A(t)DT − Φ • sin
(
A(t)

)
, t ∈ [0, T], A(0) = A0, A′(0) = B0.

Here, we denote by sin(A) the entrywise evaluation of the sine function. The matrix D is given by

D = 1
h2




−2 2
1 −2 1

.
1 −2 1

2 −2



∈ R(m+1)×(m+1), h = 2Lx

m
.

94 Chapter 7. Numerical experiments

0 300π 600π

10−7

10−5

10−3

10−1

101

t

0 300π 600π

10−7

10−5

10−3

10−1

101

t

0 300π 600π

10−7

10−5

10−3

10−1

101

t

Figure 7.7. Laser-plasma interaction. Trajectories of the ten largest singular values of the reference solution
(gray) together with the trajectories of the singular values of the rank-adaptive dynamical low-rank integrators
(left: rastlo, middle: rastlotangent, right: rastlostiff) for τ = 4τ0 and the respective computed tolerance
thresholds (red, dashed).

According to [Strang, 1999], D is diagonalizable by the discrete cosine transform (DCT-1). This allows an
efficient implementation by diagonalization of the matrix functions in the stlostiff and rastlostiff
methods. For these we use the weights

ω2
1 = ω2

2 = ω2
3 = 1

3 ,

since there is no preferred direction of propagation.
For our first experiment, we use the initial values

(A0)ij = 4 arctan exp
(
xj − 3.5

0.954

)
, (B0)ij = 0.629 sech

(
xj − 3.5

0.954

)
,

and

Φij = 1 + sech2
√
x2
j + y2

i ,

i, j = 0, . . . ,m. This particular choice yields a line soliton in an inhomogeneous medium [Bratsos, 2007,
Section 3.1.3]. The reference solution is computed by the leapfrog scheme on the same spatial grid with
step size τ0 = 2.5 · 10−5.

The top row of Figure 7.8 shows the relative global errors in A and B between the low-rank ap-
proximations and the reference solution. Convergence order two is observed for all methods. For the
approximations in A, the fixed-rank integrators are slightly more accurate than their rank-adaptive pen-
dants, probably because they use a higher rank. For the approximations in B, the approximation quality
of the rank-adaptive versions is as good as for the fixed-rank integrators. For comparison, we also com-
puted approximations with the leapfrog scheme. As in the laser-plasma interaction the errors induced by
the leapfrog scheme are not significantly smaller than the ones by the low-rank methods.

The bottom row of Figure 7.8 displays the evolution of the approximation rank rA for τ = 160τ0 and
τ = 4τ0, respectively. As one observes, the rank is small at the beginning but grows with ongoing time.
Also, for τ = 160τ0 approximations are computed with at most 10 singular values, and hence the storage
effort is roughly halved compared to the fixed-rank schemes.

7.2. Second-order matrix differential equations 95

10−4 10−3

10−9

10−8

10−7

10−6

10−5

10−4

10−3

τ
10−4 10−3

10−5

10−4

10−3

10−2

τ

0 2 4 6 8
0

5

10

15

t

0 2 4 6 8
0

5

10

15

t

O(τ2) stlo rastlo stlotangent rastlotangent
stlostiff rastlostiff stlotwostep leapfrog

Figure 7.8. Sine-Gordon equation, first setting. Top: Relative global error in A (left) and B (right) between
reference solution and low-rank approximations at T = 9. Bottom: Rank evolution of the approximations A
computed with the rank-adaptive dynamical low-rank integrators for τ = 160τ0 (left) and τ = 4τ0 (right). For
the fixed-rank integrators, we used rA = rB = 20, for the rank-adaptive methods M = 100.

In a second setting, we consider the symmetric perturbation of a static line soliton [Bratsos, 2007,
Section 3.1.2] with Φij = 1, (B0)ij = 0, and

(A0)ij = 4 arctan exp
(
xj + 1− 2

cosh(yi + 7) −
2

cosh(yi − 7)

)
, i, j = 0, . . . ,m.

Figure 7.9 shows a similar behavior of the methods as in the first setting. For the rank-adaptive schemes
and τ = 4τ0 however, the initial rank is rather large, and drops significantly after a few steps. As
explained in Remark 6.2, the initial guess r1 = 5 is doubled repeatedly until the criterion for continuing
the integration beyond the first ν steps is satisfied. In this particular experiment, an initial rank of ∼ 23
is sufficient. The guesses 5, 10, and 20 are hence rejected, until r0 = 40 is accepted and rank-reduction
applies in the subsequent integration steps.

96 Chapter 7. Numerical experiments

10−4 10−3

10−9

10−8

10−7

10−6

10−5

τ
10−4 10−3

10−6

10−5

10−4

10−3

τ

0 2 4 6 8 10
0

10

20

30

40

t

0 2 4 6 8 10
0

10

20

30

40

t

O(τ2) stlo rastlo stlotangent rastlotangent
stlostiff rastlostiff stlotwostep

Figure 7.9. Sine-Gordon equation, second setting. Top: Relative global error in A (left) and B (right) between
reference solution and low-rank approximations at T = 11. Bottom: Rank evolution of the approximations A
computed with the rank-adaptive dynamical low-rank integrators for τ = 160τ0 (left) and τ = 4τ0 (right). For
the fixed-rank integrators, we used rA = rB = 50, for the rank-adaptive methods M = 100.

97

APPENDIX A

Collection of results from linear algebra

In this chapter, we briefly collect some definitions and results of linear algebra we use throughout this
thesis. If not stated otherwise, the following definitions and theorems are taken from [Trefethen and Bau,
1997] and [Horn and Johnson, 1990].

A.1 The singular value decomposition

We start this section with the definition of the rank of a matrix:

Definition A.1. The column rank of a matrix is the dimension of its column space, e.g., the space
spanned by its columns. Similarly, the row rank of a matrix is the dimension of its row space.

For each matrix, column rank and row rank are equal, so that we mostly do not distinguish between
column and row rank. We call a m × n a matrix of full rank, of is has the maximal possible rank
min{m,n}. For the rank of the sum and the product of matrices, the following theorem holds:

Theorem A.2. Let A,B ∈ Cm×n and C ∈ Cn×k with arbitrary m,n, k ∈ N. Then

1. rank(A+B) ≤ rank(A) + rank(B)

2. rank(AC) ≤ min{rank(A), rank(C)}

We now introduce the singular value decomposition, which is often referred to as “full” singular value
decomposition in the literature. In the following, we call a matrix U ∈ Cm×n unitary if its columns are
orthonormal.

Definition A.3. Let m and n be arbitrary natural numbers. Given A ∈ Cm×n, not necessarily of full
rank, a singular value decomposition of A is a factorization

A = Û Σ̂V̂ H (A.1)

98 Appendix A. Collection of results from linear algebra

where

Û ∈ Cm×m is unitary,

V̂ ∈ Cn×n is unitary,

Σ̂ ∈ Rm×n is diagonal.

In addition, it is assumed that the diagonal entries σj of Σ̂ are nonnegative and in nonincreasing order,
e.g., σ1 ≥ . . . ≥ σk ≥ 0 where k = min{m,n}.

For the singular value decomposition, the following uniqueness property holds:

Theorem A.4. Every matrix A ∈ Cm×n has a singular value decomposition (A.1). Furthermore, the
singular values {σj} are uniquely determined, and, if A is square and the σj are distinct, the left and
right singular vectors {Ûj} and {V̂j} are uniquely determined up to complex signs (i.e., complex scalar
factors of absolute value 1).

Besides the full singular value decomposition, there is a reduced variant:

Definition A.5. Let m ≥ n and consider A ∈ Cm×n with rankA = p ≤ n. Then the reduced
singular value decomposition of A reads

A = UΣV H , (A.2)

where U ∈ Cm×p and V ∈ Cn×p are unitary matrices, and Σ ∈ Rp×p is a square diagonal matrix with
positive real entries.

Next, we introduce the Frobenius and spectral norm for matrices:

Definition A.6. The Frobenius norm of a matrix A ∈ Cm×n is defined as

‖A‖F =

√√√√
m∑

i=1

n∑

j=1
|Aij |2,

and the spectral norm norm of A is defined as

‖A‖2 = max
‖x‖2
‖Ax‖2, x ∈ Cn.

In the following theorems we collect some properties of the Frobenius and the spectral norms.

Theorem A.7. Let A ∈ Cm×n and let p ≤ min{m,n} denote the number of nonzero singular values
σi of A. Furthermore, denote by span{x, y, . . . , z} the space spanned by the vectors x, y, . . . , z. Then the
following holds:

1. The rank of A is p.

2. ‖A‖2F = tr(AHA) = tr(AAH).

3. ‖A‖2F = σ2
1 + . . .+ σ2

p.

4. ‖A‖2 = σ1.

A.2. The QR factorization 99

5. range(A) = span{U1, . . . , Up}, where Uj denotes the jth column of U in (A.2).

6. A is the sum of r rank-one matrices:

A =
p∑

j=1
σjUjV

H
j .

7. For any unitary U ∈ C`×m, ` ≥ m, and any unitary V ∈ Cn×k, n ≥ k, we have

‖UAV H‖2 = ‖A‖2, ‖UAV H‖F = ‖A‖F .

8. For any B ∈ Cm×n,

‖A−B‖2F = ‖A‖2F − 2 Re tr(AHB) + ‖B‖2F .

Given a matrix A ∈ Cm×n and an approximation rank r, the singular value decomposition allows to
determine the rank-r best-approximation to A:

Theorem A.8. For any r with 0 ≤ r ≤ p = rankA, define

Ar =
r∑

j=1
σjUjV

H
j .

Then

‖A−Ar‖F = inf
B∈Cm×n

rank(B)≤r

‖A−B‖F =
√
σ2
r+1 + . . .+ σ2

p.

Ar is also called the rank-r best-approximation to A.

A.2 The QR factorization

Definition A.9 ([Trefethen and Bau, 1997, Lecture 7]). Let A ∈ Cm×n. Then there exists a factor-
ization

A = QR,

where Q ∈ Vm,n and R is an n × n upper triangular matrix. Such a factorization is called a reduced
QR factorization/decomposition of A.

The QR factorization is not unique:

A = Q1R1 = (Q1D)(DHR1) = Q2R2,

where D ∈ Cn×n is diagonal and satisfies DHD = DDH = I.

A.3 Kronecker products and sums

This section is devoted to the Kronecker products and sums, and related topics.

100 Appendix A. Collection of results from linear algebra

Definition A.10. Let A ∈ Cm×n and B ∈ Cp×q. The Kronecker product A ⊗ B is the mp × nq
block matrix

A⊗B =




A11B A12B · · · A1nB

A21B A22B · · · A2nB
...

...
. . .

...
Am1B Am2B · · · AmnB



.

If A ∈ Cm×m and B ∈ Cn×n, the Kronecker sum is defined as

A⊕B = In ⊗A+B ⊗ Im.

Theorem A.11 (Properties of the Kronecker product, cf. [Van Loan, 2000, Section 1]).

1. Let A,B,C ∈ Cm×n and c ∈ C a scalar. Then the following identities hold:

A⊗ (B + C) = A⊗B +A⊗ C,
(A+B)⊗ C = A⊗ C +B ⊗ C,

(cA)⊗B = A⊗ (cB) = c(A⊗B),

(A⊗B)⊗ C = A⊗ (B ⊗ C),

(A⊗B)T = AT ⊗BT ,
(A⊗B)H = AH ⊗BH .

If A and B are square and invertible, we also have

(A⊗B)−1 = A−1 ⊗B−1.

2. Let A,B,C and D be matrices of such sizes that the products AC and BD can be formed. Then

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Definition A.12. Let A ∈ Cm×n. The map vec : Cm×n → Cmn which maps A to a vector by stacking
the columns of A above each other,

vecA =
[
A11 · · · Am1 A12 · · · Am2 · · · A1n · · · Amn

]T
,

is called vectorization of A. Its inverse map vec−1
m,n : Cmn → Cm×n is called devectorization. Note

that for the devectorization the dimension of the output matrix needs to be stated explicitly.

Theorem A.13. Let A,B ∈ Cm×n and α ∈ C. The vectorization map vec satisfies the following
properties:

1. vec(A+B) = vecA+ vecB,

2. vec(αA) = α vecA,

3. ‖A‖ = ‖ vecA‖2.

The Kronecker product and vectorization are compatible:

A.4. Special matrices 101

Theorem A.14 ([Henderson and Searle, 1980/81, Section 2.3]). For arbitrary matrices A ∈ Cm×n,
B ∈ Cn×k, C ∈ Ck×p, it holds

vec(ABC) = (CT ⊗A) vecB.

The Kronecker sum plays an important role in the solution of particular matrix equations, e.g., the
Sylvester equation:

Definition A.15 ([Van Loan, 2000, Section 2]). Let L1 ∈ Cm×m, L2 ∈ Cn×n, and A,X ∈ Cm×n.
The Sylvester equation is a matrix equation of the form

X = L1A+AL2.

With the vectorization operator vec, this equation can be written as

vecX = (L1 ⊕ LT2) vecA = (In ⊗ L1 + LT2 ⊗ Im) vecA.

We end this section with a theorem concerning the eigenvalues of a Kronecker sum.

Theorem A.16 ([Horn and Johnson, 1994, Section 4.4]). Let A ∈ Cm×m and B ∈ Cn×n have the
eigenvalues λi, i = 1, . . . ,m and µj, j = 1, . . . , n, respectively. Then the Kronecker sum A ⊕ B has the
eigenvalues λi + µj, i = 1, . . . ,m, j = 1, . . . , n.

A.4 Special matrices

Next, we consider special matrices which appear in this thesis.

Definition A.17. A Toeplitz matrix is a matrix A ∈ Cm×n, in which each diagonal from left to
right is constant. If m = n, then A has the form

A =




a0 a−1 a−2 · · · · · · a−m+1

a1 a0 a−1
. . .

...

a2 a1
.

...
...

. a−1 a−2
...

. . . a1 a0 a−1

am−1 · · · · · · a2 a1 a0




.

A circulant matrix C(z) ∈ Cm×m is a square Toeplitz matrix which is fully specified by the first column
z. The remaining columns of C(z) are cyclic permutations of z:

C(z) =




z0 zm−1 · · · z2 z1

z1 z0 zm−1 z2
... z1 z0

. . .
...

zm−2
. zm−1

zm−1 zm−2 · · · z1 z0




.

102 Appendix A. Collection of results from linear algebra

Theorem A.18 ([Golub and Van Loan, 2013, Theorem 4.8.2]). A circulant matrix C(z) ∈ Cm×m is
Fourier-diagonalizable, i.e.,

C(z) = F−1
m ΛFm, Λ = diag(Fmz).

Here, Fm denotes the discrete Fourier transform matrix.

Definition A.19. An upper Hessenberg matrix is a matrix H ∈ Cm×m whose entries are zero
below the first subdiagonal, i.e.,

H =




h1,1 h1,2 h1,3 · · · h1,m

h2,1 h2,2 h2,3 · · · h2,m

0 h3,2 h3,3 · · · h3,m
...

.
...

0 · · · 0 hm,m−1 hm,m



.

We call H unreduced, if the matrix has no zero subdiagonal entries.

A.5 Matrix functions

We end this chapter with some notes on matrix functions.

Definition A.20 (Matrix functions). Let the power series

g(z) =
∞∑

k=0
akz

k

possess the radius of convergence % > 0. Assume

ρ(L) = max{|λ| | λ eigenvalue of L} < %,

where ρ(L) denotes the spectral radius of the matrix L ∈ Cm×m. Then we define the matrix function

g(L) :=
∞∑

k=0
akL

k.

In the next theorem, we collect some properties of matrix functions.

Theorem A.21 ([Higham, 2008, Theorem 1.13]). Let L ∈ Cm×m and let

g(z) =
∞∑

k=0
akz

k

be the power series of g with radius of convergence % > ρ(L). Then the following holds:

1. The matrix function g(L) commutes with L, i.e., g(L)L = Lg(L).

2. g(L)T = g(LT).

3. If ak ∈ R for all k ∈ N0, then g(L)H = g(LH).

4. If L is an upper (or lower) block triangular matrix, so is G = g(L). In addition, Gii = g(Lii).

A.5. Matrix functions 103

5. Let
L = S1L̃S2, L̃ ∈ C`×`, S1 ∈ Cm×`, S2 ∈ C`×m,

where S2S1 = I`. Then g(L) = S1g(L̃)S2.

Theorem A.22 ([Higham, 2008, Section 2.1]). Let Ω ∈ Cm×m be a Hermitian, positive semidefinite
matrix. Then it holds

exp
(
t

[
0 I

−Ω2 0

])
=
[

cos(tΩ) t sinc(tΩ)
−tΩ2 sinc(tΩ) cos(tΩ)

]
.

Corollary A.23. Let Ω ∈ Cm×m be a Hermitian, positive semidefinite matrix and ω > 0 a scalar.
Then

exp
(
t

[
0 ω2I

−Ω2 0

])
=
[

cos(ωtΩ) ω2t sinc(ωtΩ)
−tΩ2 sinc(ωtΩ) cos(ωtΩ)

]
.

Proof. We rewrite the argument of the matrix exponential as

exp
(
t

[
0 ω2I

−Ω2 0

])
= exp

(
(ω2t)

[
0 I

−
(1
ωΩ
)2 0

])
.

The assertion now directly follows from Theorem A.22.

104 Appendix A. Collection of results from linear algebra

105

APPENDIX B

A short note on splitting methods

A fundamental concept which we use throughout this thesis in order to solve first-order or second-order
matrix differential equations are splitting methods. They are essential in the construction of all dynamical
low-rank integrators. Here, we give a brief overview of the two most relevant splitting schemes and their
derivation. More details on (general) splitting schemes can be found in [Hairer et al., 2006, Section II.5].

We first introduce the notion of a flow over time:

Definition B.1 ([Hairer et al., 2006, Section I.1.1]). Consider the first-order differential equation

a′(t) = f
(
a(t)

)
, t ∈ [0, T], a(0) = a0, (B.1)

where a(t) might be a scalar, a vector, or a matrix. The flow of this differential equation is the mapping,
which associates the value a(t) of the solution with initial value a(0) = a0. This map, denoted by ϕt is
thus defined by

ϕt(a0) = a(t) if a(0) = a0.

Assume now that the right-hand side of the first-order differential equation (B.1) can be split into

a′(t) = f1
(
a(t)

)
+ f2

(
a(t)

)
,

and the exact flows ϕ[f1]
t and ϕ

[f2]
t of the equations a′ = f1(a) and a′ = f2(a), respectively, can be

calculated explicitly. Then, for a given step size τ > 0, starting from the initial value a0, one can solve
the first subproblem in [0, τ] to obtain a value a 1

2
, and from this value solve the second subproblem in

[0, τ] to obtain an approximation a1 ≈ a(τ). The flow φt of the resulting numerical method reads

φτ = ϕ[f2]
τ ◦ ϕ[f1]

τ ,

and is often called the Lie-Trotter splitting. This method gives approximations of order 1 to the exact
solution of (B.1), which is easily seen by Taylor series expansion. Alternatively, one could exchange the
flows, which yields

φ∗τ = ϕ[f1]
τ ◦ ϕ[f2]

τ ,

106 Appendix B. A short note on splitting methods

a0

a(τ)

ϕτ (a0)

a1

a 1
2

ϕτ (a0)

ϕ
[f1]
τ

ϕ
[f2]
τ

φτ (a0)

a0

a(τ)

ϕτ (a0)

a 1
2

a1

ϕ
[f2]
τ

ϕ
[f1]
τ

φ∗
τ (a0)

a0

a(τ)

ϕτ (a0)

a1

ϕ
[f1]
τ
2

ϕ
[f1]
τ
2

ϕ
[f2]
τ

φ
[S]
τ (a0)

Figure B.1. Graphical illustration of the Lie-Trotter splitting (left), its adjoint (middle), and the Strang splitting
(right).

which is the adjoint of the first method:

Definition B.2 ([Hairer et al., 2006, Section II.3, Definition 3.1]). The adjoint method φ∗τ of a
method φτ is the inverse of the original method with reversed time step −τ , i.e.,

φ∗τ := φ−1
−τ .

In other words, a1 = φ∗τ (a0) is implicitly defined by φ−τ (a1) = a0. A method for which φ∗τ = φτ is called
symmetric.

A symmetric version is defined via

φ[S]
τ = ϕ

[f1]
τ
2
◦ ϕ[f2]

τ ◦ ϕ[f1]
τ
2
,

which is known as Strang splitting. It can also be seen as a composition of the Lie-Trotter splitting with
its adjoint with halved step size, since

φ∗τ
2
◦ φ τ

2
= ϕ

[f1]
τ
2
◦ ϕ[f2]

τ
2
◦ ϕ[f2]

τ
2
◦ ϕ[f1]

τ
2

= φ[S]
τ .

Due to its symmetry, the Strang splitting yields approximations of order 2.
Both approaches for constructing the Lie-Trotter splitting and the Strang splitting, respectively, can

be generalized: Firstly, if the exact flow of say the second subproblem is not known, it can be replaced by
the numerical flow φ

[f2]
t of an arbitrary numerical method applied to a′ = f2(a). The Lie-Trotter splitting

then reads
φτ = φ[f2]

τ ◦ ϕ[f1]
τ . (B.2)

If the flow φ
[f2]
t yields approximations of at least order 1, (B.2) still is a first-order method.

If the right-hand side of (B.1) is given as

a′ = f1(a) + f2(a) + . . .+ fN (a),

for some N ∈ N, the Lie-Trotter splitting takes the form

φτ = ϕ[fN]
τ ◦ . . . ◦ ϕ[f2]

τ ◦ ϕ[f1]
τ ,

107

while the Strang splitting then reads

φ[S]
τ = ϕ

[f1]
τ
2
◦ . . . ◦ ϕ[fN−1]

τ
2

◦ ϕ[fN]
τ ◦ ϕ[fN−1]

τ
2

. . . ◦ ϕ[f1]
τ
2
.

In order to perform a splitting scheme for solving a second-order differential equation of form

a′′(t) = f
(
a(t)

)
= f1

(
a(t)

)
+ . . .+ fN

(
a(t)

)
, t ∈ [0, T], a(0) = a0, a′(0) = b0, (B.3)

approximately, we rewrite the differential equation into an equivalent first-order system,
[
a(t)
b(t)

]′
=
[

b(t)
f
(
a(t)

)
]

=
[

b(t)
f1
(
a(t)

)
+ . . .+ fN

(
a(t)

)
]
.

The right-hand side can now be rewritten into
[

b(t)
f1
(
a(t)

)
+ . . .+ fN

(
a(t)

)
]

=
[
α1b(t)
f1
(
a(t)

)
]

+ . . .+
[
αNb(t)
fN
(
a(t)

)
]
,

where we introduced scalar weights αi, i = 1, . . . , N , which satisfy

α1 + . . .+ αN = 1.

Then, the Lie-Trotter splitting and the Strang splitting are defined as above. Formally, the weights are
allowed to be any real or complex number. A natural choice for the αi however is

αi = 1
N
, i = 1, . . . , N.

Another way of performing a splitting for the second-order differential equation (B.3) is to rewrite the
right-hand side of the first-order formulation as

[
b(t)

f
(
a(t)

)
]

=
[

0
f
(
a(t)

)
]

+
[
b(t)
0

]
. (B.4)

It can be viewed as a special case of the above, where

f1(a) = f(a), f2(a) = 0, α1 = 0, α2 = 1.

The leapfrog scheme can be derived by performing a Strang splitting based on (B.4), cf. Section 4.1.

108 Appendix B. A short note on splitting methods

Bibliography 109

Bibliography

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press,
2008. URL https://press.princeton.edu/absil.

A. H. Al-Mohy and N. J. Higham. Computing the action of the matrix exponential, with an application to exponential
integrators. SIAM J. Sci. Comput., 33(2):488–511, 2011. doi:10.1137/100788860.

I. S. Aranson and L. Kramer. The world of the complex ginzburg-landau equation. Rev. Mod. Phys., 74:99–143, 2002.
doi:10.1103/RevModPhys.74.99.

N. Boumal. An introduction to optimization on smooth manifolds. Available online, 2020. URL http://www.nicolasboumal.

net/book.
A. Bratsos. The solution of the two-dimensional sine-gordon equation using the method of lines. Journal of Computational

and Applied Mathematics, 206(1):251–277, 2007. doi:10.1016/j.cam.2006.07.002.
A. G. Bratsos. An explicit numerical scheme for the sine-Gordon equation in 2+1 dimensions. Appl. Numer. Anal. Comput.

Math., 2(2):189–211, 2005. doi:10.1002/anac.200410035.
C. Carle. On leapfrog-Chebyshev schemes for second-order differential equations. PhD thesis, Karlsruhe Institute of

Technology, 2021. doi:10.5445/IR/1000147725.
C. Carle, M. Hochbruck, and A. Sturm. On leapfrog-Chebyshev schemes. SIAM J. Numer. Anal., 58(4):2404–2433, 2020.

doi:10.1137/18M1209453.
C. Çelik and M. Duman. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative.

J. Comput. Phys., 231(4):1743–1750, 2012. doi:10.1016/j.jcp.2011.11.008.
G. Ceruti, J. Kusch, and C. Lubich. A rank-adaptive robust integrator for dynamical low-rank approximation. BIT, pages

1–26, 2022. doi:10.1007/s10543-021-00907-7.
G. Ceruti and C. Lubich. Time integration of symmetric and anti-symmetric low-rank matrices and Tucker tensors. BIT,

60(3):591–614, 2020. doi:10.1007/s10543-019-00799-8.
G. Ceruti and C. Lubich. An unconventional robust integrator for dynamical low-rank approximation. BIT, pages 591–614,

2021. doi:10.1007/s10543-021-00873-0. Online first.
E. M. Constantinescu. Generalizing global error estimation for ordinary differential equations by using coupled time-stepping

methods. J. Comput. Appl. Math., 332:140–158, 2018. doi:10.1016/j.cam.2017.05.012.
A. Dektor, A. Rodgers, and D. Venturi. Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. J. Sci.

Comput., 88(2):Paper No. 36, 27, 2021. doi:10.1007/s10915-021-01539-3.
P. Deuflhard. A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math.

Phys., 30(2):177–189, 1979. doi:10.1007/BF01601932.
M. Eiermann, O. G. Ernst, and S. Güttel. Deflated restarting for matrix functions. SIAM J. Matrix Anal. Appl., 32(2):

621–641, 2011. doi:10.1137/090774665.
L. Einkemmer and C. Lubich. A low-rank projector-splitting integrator for the vlasov–poisson equation. SIAM Journal on

Scientific Computing, 40(5):B1330–B1360, 2018. doi:10.1137/18M116383X.

https://press.princeton.edu/absil
https://doi.org/10.1137/100788860
https://doi.org/10.1103/RevModPhys.74.99
http://www.nicolasboumal.net/book
http://www.nicolasboumal.net/book
https://doi.org/10.1016/j.cam.2006.07.002
https://doi.org/10.1002/anac.200410035
https://doi.org/10.5445/IR/1000147725
https://doi.org/10.1137/18M1209453
https://doi.org/10.1016/j.jcp.2011.11.008
https://doi.org/10.1007/s10543-021-00907-7
https://doi.org/10.1007/s10543-019-00799-8
https://doi.org/10.1007/s10543-021-00873-0
https://doi.org/10.1016/j.cam.2017.05.012
https://doi.org/10.1007/s10915-021-01539-3
https://doi.org/10.1007/BF01601932
https://doi.org/10.1137/090774665
https://doi.org/10.1137/18M116383X

110 Bibliography

L. Einkemmer, A. Ostermann, and C. Piazzola. A low-rank projector-splitting integrator for the vlasov–maxwell equations
with divergence correction. Journal of Computational Physics, 403:109063, 2020. doi:10.1016/j.jcp.2019.109063.

W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math.,
3:381–397, 1961. doi:10.1007/BF01386037.

T. Göckler. Rational Krylov Subspace Methods for phi-Functions in Exponential Integrators. Dissertation, Karlsruhe
Institute of Technology (KIT), 2014. doi:10.5445/IR/1000043647.

G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns
Hopkins University Press, Baltimore, MD, fourth edition, 2013.

V. Grimm and M. Hochbruck. Error analysis of exponential integrators for oscillatory second-order differential equations.
J. Phys. A, 39(19):5495–5507, 2006. doi:10.1088/0305-4470/39/19/S10.

E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration illustrated by the störmer–verlet method. Acta
Numerica, 12:399–450, 2003. doi:10.1017/S0962492902000144.

E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration : structure-preserving algorithms for ordinary differ-
ential equations. Springer series in computational mathematics ; 31. Springer, Berlin, 2. ed. edition, 2006. doi:10.1007/3-
540-30666-8.

E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations I: Nonstiff problems, volume 8 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 1993. doi:10.1007/978-3-540-78862-1.

E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 2010. doi:10.1007/978-3-642-05221-7. Stiff and differential-algebraic problems,
Second revised edition, paperback.

B. C. Hall. Lie groups, Lie algebras, and representations, volume 222 of Graduate Texts in Mathematics. Springer, Cham,
second edition, 2015. doi:10.1007/978-3-319-13467-3. An elementary introduction.

H. V. Henderson and S. R. Searle. The vec-permutation matrix, the vec operator and Kronecker products: a review. Linear
and Multilinear Algebra, 9(4):271–288, 1980/81. doi:10.1080/03081088108817379.

J. S. Hesthaven, C. Pagliantini, and N. Ripamonti. Rank-adaptive structure-preserving model order reduction of Hamiltonian
systems. ESAIM Math. Model. Numer. Anal., 56(2):617–650, 2022. doi:10.1051/m2an/2022013.

N. J. Higham. Functions of matrices: Theory and computation. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008. doi:10.1137/1.9780898717778.

M. Hochbruck and C. Lubich. On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer.
Anal., 34(5):1911–1925, 1997. doi:10.1137/S0036142995280572.

M. Hochbruck, M. Neher, and S. Schrammer. Dynamical low-rank integrators for second-order matrix differential equations.
CRC 1173 Preprint 2022/12, Karlsruhe Institute of Technology, 2022a. doi:10.5445/IR/1000143003.

M. Hochbruck, M. Neher, and S. Schrammer. Rank-adaptive dynamical low-rank integrators for first-order and
second-order matrix differential equations. CRC 1173 Preprint 2022/13, Karlsruhe Institute of Technology, 2022b.
doi:10.5445/IR/1000143198.

M. Hochbruck, T. Pažur, A. Schulz, E. Thawinan, and C. Wieners. Efficient time integration for discontinuous Galerkin
approximations of linear wave equations [Plenary lecture presented at the 83rd Annual GAMM Conference, Darmstadt,
26th–30th March, 2012]. ZAMM Z. Angew. Math. Mech., 95(3):237–259, 2015. doi:10.1002/zamm.201300306.

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1990. Corrected reprint of the
1985 original.

R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge, 1994. Corrected reprint
of the 1991 original.

J. Hu and Y. Wang. An adaptive dynamical low rank method for the nonlinear boltzmann equation, 2021. URL https:

//arxiv.org/abs/2112.02695.
C. Karle, J. Schweitzer, M. Hochbruck, E. W. Laedke, and K. H. Spatschek. Numerical solution of nonlinear wave equations

in stratified dispersive media. J. Comput. Phys., 216(1):138–152, 2006. doi:10.1016/j.jcp.2005.11.024.
C. Karle, J. Schweitzer, M. Hochbruck, and K. H. Spatschek. A parallel implementation of a two-dimensional

fluid laser-plasma integrator for stratified plasma-vacuum systems. J. Comput. Phys., 227(16):7701–7719, 2008.
doi:10.1016/j.jcp.2008.04.024.

E. Kieri, C. Lubich, and H. Walach. Discretized dynamical low-rank approximation in the presence of small singular values.
SIAM J. Numer. Anal., 54(2):1020–1038, 2016. doi:10.1137/15M1026791.

https://doi.org/10.1016/j.jcp.2019.109063
https://doi.org/10.1007/BF01386037
https://doi.org/10.5445/IR/1000043647
https://doi.org/10.1088/0305-4470/39/19/S10
https://doi.org/10.1017/S0962492902000144
https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1007/978-3-319-13467-3
https://doi.org/10.1080/03081088108817379
https://doi.org/10.1051/m2an/2022013
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/S0036142995280572
https://doi.org/10.5445/IR/1000143003
https://doi.org/10.5445/IR/1000143198
https://doi.org/10.1002/zamm.201300306
https://arxiv.org/abs/2112.02695
https://arxiv.org/abs/2112.02695
https://doi.org/10.1016/j.jcp.2005.11.024
https://doi.org/10.1016/j.jcp.2008.04.024
https://doi.org/10.1137/15M1026791

Bibliography 111

O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix Analysis and Applications, 29(2):
434–454, 2007. doi:10.1137/050639703.

J. Kusch, G. Ceruti, L. Einkemmer, and M. Frank. Dynamical low-rank approximation for Burgers’ equation with uncer-
tainty. Int. J. Uncertain. Quantif., pages 1–24, 2022. doi:10.1615/Int.J.UncertaintyQuantification.2022039345. Online
first.

J. Kusch and P. Stammer. A robust collision source method for rank adaptive dynamical low-rank approximation in
radiation therapy. CRC 1173 Preprint 2022/5, Karlsruhe Institute of Technology, 2022. doi:10.5445/IR/1000141755.

J. M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, New York, NY, 2nd edition, 2012.
doi:10.1007/978-1-4419-9982-5.

S. T. Lee, H.-K. Pang, and H.-W. Sun. Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J.
Sci. Comput., 32(2):774–792, 2010. doi:10.1137/090758064.

C. Lubich and I. Oseledets. A projector-splitting integrator for dynamical low-rank approximation. BIT Numerical Math-
ematics, 54(1):171–188, 2014. doi:10.1007/s10543-013-0454-0.

A. Ostermann, C. Piazzola, and H. Walach. Convergence of a low-rank Lie-Trotter splitting for stiff matrix differential
equations. SIAM J. Numer. Anal., 57(4):1947–1966, 2019. doi:10.1137/18M1177901.

A. Ruhe. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl., 58:391–405, 1984.
doi:10.1016/0024-3795(84)90221-0.

S. Schrammer. Codes for numerical experiments, 2022. doi:10.5445/IR/1000148858.
J. Schweitzer. Numerical Simulation of Relativistic Laser–Plasma Interaction. Phd thesis, Heinrich Heine University

Düsseldorf, 2008. URL https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=8401.
G. Strang. The discrete cosine transform. SIAM Rev., 41(1):135–147, 1999. doi:10.1137/S0036144598336745.
G. P. H. Styan. Hadamard products and multivariate statistical analysis. Linear Algebra Appl., 6:217–240, 1973.

doi:10.1016/0024-3795(73)90023-2.
V. E. Tarasov and G. M. Zaslavsky. Fractional ginzburg–landau equation for fractal media. Physica A: Statistical Mechanics

and its Applications, 354:249–261, 2005. doi:10.1016/j.physa.2005.02.047.
L. N. Trefethen and D. Bau, III. Numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1997. doi:10.1137/1.9780898719574.
C. F. Van Loan. The ubiquitous kronecker product. Journal of Computational and Applied Mathematics, 123(1):85–100,

2000. doi:10.1016/S0377-0427(00)00393-9. Numerical Analysis 2000. Vol. III: Linear Algebra.
Q. Zhang, X. Lin, K. Pan, and Y. Ren. Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg-

Landau equation. Comput. Math. Appl., 80(5):1201–1220, 2020. doi:10.1016/j.camwa.2020.05.027.
X. Zhao, Z.-z. Sun, and Z.-p. Hao. A fourth-order compact adi scheme for two-dimensional nonlinear space fractional

schrödinger equation. SIAM Journal on Scientific Computing, 36(6):A2865–A2886, 2014. doi:10.1137/140961560.
Y.-L. Zhao, A. Ostermann, and X.-M. Gu. A low-rank Lie-Trotter splitting approach for nonlinear fractional complex

Ginzburg-Landau equations. J. Comput. Phys., 446:Paper No. 110652, 12, 2021. doi:10.1016/j.jcp.2021.110652.
Z. Zlatev, I. Dimov, I. Faragó, and Ágnes Havasi. Richardson Extrapolation: Practical Aspects and Applications. De

Gruyter, 2017. doi:10.1515/9783110533002.

https://doi.org/10.1137/050639703
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2022039345
https://doi.org/10.5445/IR/1000141755
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1137/090758064
https://doi.org/10.1007/s10543-013-0454-0
https://doi.org/10.1137/18M1177901
https://doi.org/10.1016/0024-3795(84)90221-0
https://doi.org/10.5445/IR/1000148858
https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=8401
https://doi.org/10.1137/S0036144598336745
https://doi.org/10.1016/0024-3795(73)90023-2
https://doi.org/10.1016/j.physa.2005.02.047
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1016/S0377-0427(00)00393-9
https://doi.org/10.1016/j.camwa.2020.05.027
https://doi.org/10.1137/140961560
https://doi.org/10.1016/j.jcp.2021.110652
https://doi.org/10.1515/9783110533002

	Motivation and Introduction
	Differential geometry for embedded submanifolds of the Euclidean space
	Notation
	The manifolds Mr and Vmr
	Tangent spaces to embedded submanifolds
	Orthogonal projectors onto tangent spaces

	Dynamical low-rank approximation for first-order matrix differential equations
	Differential equations on embedded submanifolds
	Dynamical low-rank approximation
	Dynamical low-rank approximation for stiff first-order matrix differential equations
	Other dynamical low-rank integrators for first-order problems
	Time integration of (skew-)Hermitian low-rank matrices
	Unconventional robust dynamical low-rank integrator

	Dynamical low-rank approximation for second-order matrix differential equations
	The leapfrog scheme
	The St-LO scheme
	Error analysis of the St-LO scheme
	Outlook: Error analysis of the St-LO scheme for semilinear stiff problems

	Stiff problems
	Highly oscillatory problems
	Gautschi-type integrators
	A low-rank version of Gautschi-type integrators

	Approximation to B in the tangent space

	Implementation of dynamical low-rank integrators
	Implementation of low-rank matrix products for dynamical low-rank integrators
	Linear right-hand sides
	Nonlinear entrywise functions
	Power functions

	Computation of matrix functions
	Implementation by diagonalization
	Krylov subspace methods

	Implementation of the low-rank Gautschi method
	Splitting for second-order matrix differential equations

	Rank-adaptivity
	Selecting the rank
	Choice of tolerance
	Time-discretization error estimation via Richardson extrapolation
	Low-rank error estimation
	Tolerance threshold

	Rank-adaptive algorithms

	Numerical experiments
	Stiff first-order matrix differential equations
	Nonlinear fractional Ginzburg–Landau equation
	Nonlinear fractional Schrödinger equation

	Second-order matrix differential equations
	Homogeneous wave equation
	Laser-plasma interaction
	Sine-Gordon equation

	Collection of results from linear algebra
	The singular value decomposition
	The QR factorization
	Kronecker products and sums
	Special matrices
	Matrix functions

	A short note on splitting methods
	Bibliography

