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Abstract

An elastic deformable body covered with a thin elastic layer is considered. In the
literature, it is well known that the effect of thin layers can be described by impedance
boundary conditions. In this paper, we consider a planar geometry, and compute the
mechanical impedance defined on the exterior surface of the elastic slab. It is given through
a relation between the traction tensor and the displacement. In Fourier space it is a
pseudodifferential operator of order one. After computing the exact mechanical impedance,
we give an approximate impedance problem at order three with respect to the thickness
of the thin elastic layer.

Keywords: Linear elasticity, thin layer, mechanical impedance, Lamé system, abstract differ-
ential system, approximation.

Mathematics Subject Classifications: 35Q74, 35J25, 34B05, 34E05, 35S15.

1 Introduction

Studying physical phenomena defined on objects comprising thin parts required always a par-
ticular treatment. A thin part of a domain can be described through a geometry having a
length which is small enough in one or two dimensions compared to the others [18]. A typical
example of such structures are thin shells, which often give rise to numerical instabilities in
the numerical approximation of the solution [3]. Notably, the small thickness of the thin shell
requires a discretization at the same length scale. This leads to a huge number of meshes, cost-
ing computations, and not precise results. To avoid these numerical instabilities, an analytical
solution was offered. It consists in replacing the initial problem by an equivalent one which
doesn’t take into account any more the thin part. Rather, it is written through a boundary
condition called the impedance boundary condition.
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The notion of impedance boundary condition is widely used in the field of the scattering of
time-harmonic electromagnetic or acoustic waves, where the obstacles are in general coated
with thin shells. For the first time, an impedance boundary condition was formulated by
Leontovich [14]; it was presented as the boundary condition modeling the penetration of a
wave in an imperfectly conducting metal barrier. In the case of the electromagnetic waves
system, the impedance boundary condition links the tangential components of the electric field
to the magnetic field, and it is written on the exterior surface of the obstacle.

For some geometries, it is not possible to write the exact impedance condition. Therefore,
approximations of different orders with respect to the thickness of the coating have been derived
(Enquist and Nédélec [8], Senior and Volakis [19], Bartoli and Bendali [4], Bendali and Lemrabet
[5], Haddar and Joly [12], Poignard [17], Yuferev and Ida [20]).

In [4], N. Bartoli and A. Bendali overcame the numerical instabilities through the development
of an efficient Padé-like approximation for the case of the Helmholtz equation and developed
numerical procedures to efficiently solve the related unusual boundary value problems. In [6],
A. Bendali, F. Mbarek, K. Lemrabet, and P. Sébastien gave a Padé-like approximation of order
three for the diffraction of a time-harmonic electromagnetic wave by an obstacle coated by a
thin shell of a dielectric material, and proved the efficiency of the approximation. In [10], F.
Z. Goffi, K. Lemrabet and T. Arens gave a Padé approximation at order three in the case of a
multi-layered contrasted thin coating.

For the case of elastic deformable bodies, to which we are interested in this research, the state
of the stress and displacement at a point is described through the linear elasticity theory [11].
Here, the use of the impedance boundary conditions was also initiated for modeling the effect
of a thin coating of an elastic body (see for instance A. Abdallaoui [1]). Namely, the mechanical
impedance [2] links the traction and the displacement on the surface separating the elastic body
from the thin shell. Hence, it transforms the transmission boundary problem into an impedance
boundary problem set on the fixed domain defining the elastic body.

In the present work, in section 2, we define the transmission problem for an elastic body Ω−
coated by a thin elastic shell Ωδ, of small thickness δ > 0. We define also the mechanical
impedance as a boundary condition defined on the interface Γ separating Ω− and Ωδ, which
depends strongly on the parameter δ. In section 3, we use the differential operators∇ (gradient),
∇· (divergence), and∇× (curl) to write the Lamé system in the thin shell and recall an existence
and regularity result for a mixed boundary value problem used to define the impedance operator
of the shell. In section 4, we consider the case of a thin slab Ωδ = Γ × (0, δ). We introduce
the tangential gradient (∇Γ), the tangential divergence (divΓ), the surface vector curl (

−−→
curlΓ),

and the scalar surface curl (curlΓ) (for more details see [16]). These operators will be used for
rewriting the Lamé system as a first order differential system for the normal variable, whose
coefficients are differential operators in the tangential variable. The new formulation is called
the abstract Lamé system. Notably, we set the vectors

X (z) = (uT , un)t (·, z) ; Y (z) = (n× (∇× u) ,∇ · u)t (·, z) ,

where the notation t refers to the transpose of a vector field, uT and un are the tangential and
the normal components of the displacement field u. We write the Lamé system as an abstract
differential system of order one in the normal variable z

d

dz

(
X
Y

)
(z) =M

(
X
Y

)
(z) + H(z). (1)
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The entries of the matrixM are differential operators in the tangential directions, and H is a
given vector function.

To any field W defined on Ωδ, we associate a field Ŵ through the partial Fourier transform

Ŵ (ξ, z) =

ˆ

R2

eix·ξW (x, z) dx. (2)

Hence, the system (1) can be written

d

dz

(
X̂

Ŷ

)
(z) = S (M)

(
X̂

Ŷ

)
(z) + Ĥ(z),

where S (M) (the symbol ofM, see for example [7]) is a function of ξ. Then, we compute the
propagator exp (zS (M)) to get(

X̂

Ŷ

)
(z) = exp (zS (M))

(
X̂

Ŷ

)
(0) +

ˆ z

0

(exp((z − t)S (M))) Ĥ (t) dt.

In section 5, we link the traction vector T (z) = ((σn)T , (σn)n)t (·, z) to the displacement vector
X (z) = (uT , un)t (·, z) and the shear and compression vectorY (z) = (n× (∇× u) ,∇ · u)t (·, z).
Here, σ represents the stress tensor.

Using exp (zS (M)), we compute
(
X̂, T̂

)t
(ξ, z) as a function of

(
X̂, T̂

)t
(ξ, 0), such that(

X̂

T̂

)
(ξ, z) =

(
N̂11 N̂12

N̂21 N̂22

)
(ξ, z)

(
X̂

T̂

)
(ξ, 0) +

(
R̂Ĥ

)
(ξ, z) .

For the homogeneous case, the impedance operator is given by its symbol Ẑδ(·) =−
( (
N̂22

)−1

N̂21

)
(·, δ).

In the last section 6, we take an expansion of Ẑδ with respect to the small parameter δ to get
a Padé-like approximation Ẑ∗δ at order three. We prove the existence and uniqueness of the
solution to the approximate impedance value problem.

2 Impedance problem

2.1 Notations

For Ω an open domain in R3, we introduce the following general notations that will be used
throughout the paper: a spatial location x ∈ R3 is written x = (x, z), such that x = (x1, x2).
The normal vector outwardly directed to the open set is denoted n. Vector fields that are defined
on Ω are written through their tangential and normal components, such as u = (uT , un)t, for
uT = n× (u× n) and un = n · u. We highlight that for the sake of simplicity, we denote with
bold letters only 3D vectors, while their tangential components are denoted with non-bold
letters. The identity matrices of sizes 2 and 3 are denoted I3 and I2, respectively.

In this section, we define the transmission problem and rewrite it in the form of an impedance
boundary problem.
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Figure 1: Bounded elastic body Ω− of boundary ∂Ω− = Γ∪ Γ0 and coated with an elastic thin
layer Ωδ of thickness δ and exterior boundary Γδ. n is the outward directed normal.

2.2 The transmission problem

Let Ω− be a bounded and regular open set in R3 and ∂Ω− = Γ ∪ Γ0 its boundary, such that
Γ ∩ Γ0 = ∅ (see Fig. 1). We set

Ωδ = {x /∈ Ω−; dist (x,Γ) < δ} , Γδ = {x /∈ Ω−; dist (x,Γ) = δ} ,

where δ > 0 is a small parameter representing the thickness of the thin shell Ωδ. We suppose
that Ω− and Ωδ are elastic bodies and consider the following transmission boundary value
problem:

1. Equilibrium equations {
∇ · σ− (u−) + f− = 0 in Ω−

∇ · σ (u) + f = 0 in Ωδ.
(3)

In the elastic thin shell Ωδ, we refer by σ to the stress tensor, u to the displacement vector
filed, and f is a given external volume force. Respectively, on the elastic body Ω− the
same ingredients are denoted through the index “−”.

2. Transmission conditions at the interface Γ{
u− = u on Γ

σ−n = σn on Γ,
(4)

where u− (resp. u) is the trace of the displacement vector, defined on Ω− (resp. Ωδ), on the
surface Γ, and n is the outward normal vector to Ω− on Γ. These transmission conditions
mean that the displacement and the traction are continuous through the interface Γ.

3. Dirichlet boundary condition on Γ0

u− = 0 on Γ0. (5)

It means that the body Ω− is clamped on the part Γ0 of its boundary.
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4. Neumann boundary condition on Γδ

σn = g on Γδ, (6)

for g being a given external surface force applied on Γδ.

2.3 Impedance operator

It is well known that if the thickness δ of the elastic shell Ωδ is small enough, solving the
transmission problem via classical numerical methods is not convenient because of numerical
instabilities.

We introduce the mechanical impedance of the thin shell Ωδ, which allows to reduce the trans-
mission problem set on Ω−∪Ωδ (and depending on the small parameter δ) to a boundary value
problem set on the fixed domain Ω−. The equilibrium equation on Ωδ, the transmission condi-
tion on Γ, and the boundary conditions on Γδ are embodied in the form a boundary condition
depending on δ and set on Γ.

The mechanical impedance operator of the thin shell Ωδ is given by

Zδ
(
u|Γ, f ,g

)
= σ (u)n, on Γ, (7)

such that
u = (u1,u2,un)t : Ωδ → R3

is the unique solution to the boundary value problem
−∇ · σ (u) = f in Ωδ

u = ϕ on Γ

σ (u)n = g on Γδ.

After defining the impedance operator, now we can set the impedance boundary problem defined
through this operator.

2.4 Impedance boundary problem

Thanks to the transmission condition (4) written on the surface Γ, and the definition of the
impedance operator (7) given in 2.3, we can write

σ (u−)n|Γ = σ (u)n|Γ = Zδ
(
u|Γ, f ,g

)
= Zδ

(
u−|Γ, f ,g

)
.

Solving the transmission problem (3)-(4)-(5)-(6) is then equivalent to solving the following
impedance problem set on the fixed domain Ω−:

−∇ · σ (u−) = f− in Ω−
u− = 0 on Γ0

σ (u−)n = Zδ
(
u−|Γ, f ;g

)
on Γ.

The small parameter appears only in the impedance operator Zδ. Here, we emphasize that we
cannot reach the exact expression of this operator in all geometries. One can only compute its
approximation with respect to the parameter δ.
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3 The Lamé system on the thin shell

In the case of an isotropic linear elastic shell Ωδ, the stress tensor σ (u) and the deformation
tensor ε (u) := 1

2

(
∇u + (∇u)t

)
are linked by the Hooke’s law [11]

σ (u) = λ tr3 (ε (u)) I3 + 2µε (u) , (8)

where the Lamé coefficients λ and µ characterize the elastic body Ωδ (µ > 0, λ ≥ 0). Here, tr3

is the trace of a matrix of size 3.

3.1 Well known results for the Lamé system

Theorem 1. For a given f in L2
(
Ωδ
)
, ϕ in H 1

2 (Γ), and g in H− 1
2

(
Γδ
)
, the boundary value

problem 
−∇ · σ (u) = f in Ωδ

u = ϕ on Γ

σ (u)n = g on Γδ,

has a unique variational solution u in H1
(
Ωδ
)
. Moreover, for f in Hs

(
Ωδ
)
, ϕ in Hs+ 3

2 (Γ),
and g in Hs+ 1

2

(
Γδ
)
the solution u is in Hs+2

(
Ωδ
)
(See for instance [15]).

We emphasize that the problem defining the impedance operator is linear, we have

Zδ (ϕ, f ,g) = Zδ (ϕ, 0, 0) + Zδ (0, f , 0) + Zδ (0, 0,g) .

Our aim in what follows is to give explicit formula for the impedance operator by expressing
each of its three terms.

3.2 Other expression for the Lamé system

From the definition of the deformation tensor ε, we have tr3 ε (u) = ∇ · u. Further, we have
the following identities ∇ · ((∇ · u) I3) = ∇ (∇ · u) and ∇ ·

(
(∇u)T

)
= ∇ (∇ · u). We recall

also the identity
−→
∆u = ∇ (∇ · u) − ∇ × (∇× u), such that

−→
∆ is the vector laplacian. Using

this fact, we can write the Lamé system ∇ · σ (u) = −f as

(λ+ 2µ)∇ (∇ · u)− µ∇× (∇× u) = −f . (9)

4 The Lamé system in the slab

As the exact expression of the impedance operator is not reachable in all geometries, we are
going to consider in the sequel only the case of a thin slab Ωδ = R2 × (0, δ) of thickness δ > 0,
with the boundaries Γ = R2×{0} and Γδ = R2×{δ}, we set also Γ0 = R2×{−1} (see Fig. 2).
We write an exact impedance boundary condition using a partial Fourier transform and give
stable approximations with respect to the small parameter δ.
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Figure 2: Thin elastic slab Ω− coated with an elastic thin layer Ωδ of thickness δ.

4.1 Surface differential operators

On the surface Γ, we recall the definitions of the surface differential operators.

For a scalar function φ : Ωδ → R, which is well defined on the neighborhood of the surface Γ,
we define the surface gradient applied on φ as ∇Γφ :=

(
∂φ
∂x1
, ∂φ
∂x2

)t
and the surface vector curl

as
−−→
curlΓφ :=

(
∂φ
∂x2
,− ∂φ

∂x1

)t
= − (n×∇Γφ)t.

For a tangent vector field vT : Ωδ → R2, written vT = (v1, v2)t, we define the surface divergence
of vT as divΓ vT := ∂v1

∂x1
+ ∂v2

∂x2
and the scalar surface curl as curlΓ vT := − divΓ (n× vT ).

4.2 Expression of the traction

For describing the stress intensity at a given point, it is sufficient to write the traction vector
T, representing the variation of the resultant forces with respect to an infinitesimal oriented
area. By definition, the traction vector is written

T := σn,

which can be decomposed through its tangential and normal components

T = ((σn)T , (σn)n)t .

From the Hooke’s law (8), we have

σ (u)n =
(
λ tr3 ε (u) I3 + 2µε (u)

)
n

= λ (∇ · u)n + 2µ (∇u)n− µ
(
∇u− (∇u)t

)
n.

A simple algebraic computation gives

(∇u)n =

(
∇Γun
∂un
∂z

)
,
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and (
∇u− (∇u)t

)
n = n× (∇× u) .

Finally, we obtain

σ (u)n =

2µ∇Γun − µn× (∇× u)

2µ
∂un
∂z

+ λ (∇ · u)

 .

In the elasticity theory, the term (∇ · u) (x, z) represents the compression at (x, z) and n ×
(∇× u) (x, z) is the shear stress at (x, z).

4.3 The Lamé system as an abstract differential system

A crucial step for writing the mechanical impedance is to rewrite the Lamé system as a dif-
ferential system whose coefficients are differential operators. Thus the terminology abstract
differential Lamé system. Similar strategy was previously used for the case of the scattering
theory of the electromagnetic waves (see for e.g. [9, 10]). The approach is based mainly on de-
composing the differential operators in the PDEs according to the derivatives in the tangential
and normal directions. At this regard, from the definition of the surface differential operators,
we have

∇× u =

−−→curlΓun −
∂

∂z
(u× n)

curlΓ uT

 (10)

∇ · u = divΓ uT +
∂un
∂z

,

which give

∂

∂z
uT = −n× (∇× u) +∇Γun

∂

∂z
un = (∇ · u)− divΓ uT .

From (10), we get

∇× (∇× u) =

 −−→curlΓ (∇× u)n −
∂

∂z
[(∇× u)× n]

curlΓ (∇× u)T

 ,

which leads to

[∇× (∇× u)]T =
−−→
curlΓ curlΓ uT +

∂

∂z
[n× (∇× u)]

[∇× (∇× u)]n = − divΓ [n× (∇× u)] .

Hence, we can write the Lamé system (9) through its tangential and normal components as

(λ+ 2µ)∇Γ (∇ · u)− µ [∇× (∇× u)]T = −fT

(λ+ 2µ)
∂

∂z
(∇ · u)− µ [∇× (∇× u)]n = −fn,
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and then

µ
∂

∂z
[n× (∇× u)] = (λ+ 2µ)∇Γ (∇ · u)− µ

−−→
curlΓ curlΓ uT + fT

(λ+ 2µ)
∂

∂z
(∇ · u) = −µ divΓ [n× (∇× u)]− fn.

Next, we will be able to write the abstract differential Lamé system whose coefficients are
differential operators in the tangent directions. We denote byM the coefficient matrix, written

M =

(
M11 M12

M21 M22

)
,

for,

M11 =

(
02 ∇Γ

− div Γ 0

)
, M12 =

(
−I2 021

012 1

)
,

M21 =

(
−
−−→
curlΓ curlΓ 021

012 0

)
, M22 =

(
02

(λ+2µ)
µ
∇Γ

− µ
(λ+2µ)

div Γ 0

)
,

we refer by I2 and 02 to the identity and zero matrices of order 2, respectively. While, 021 =
(0, 0)t and 012 = (0, 0). Furthermore, we write

L =

( 1
µ
I2 021

012 − 1
λ+2µ

)
.

Recall that
X (z) = (uT , un)t (·, z) , Y (z) = (n× (∇× u) ,∇ · u)t (·, z) .

Now, we can rewrite the abstract formula for the Lamé system as a differential system of order
one in the normal variable z as

d

dz

(
X
Y

)
(z) =M

(
X
Y

)
(z) +

(
0
Lf

)
. (11)

We emphasize again that the entries of the coefficient matrixM are differential operators for
the tangential variable x.

4.4 Linking the traction to the compression and the shear stress

The relation between the traction vector and the compression and the shear stress can be
written explicitly from their definitions. Recall

T (z) =
(
σ (u)n

)
(z) , such that σ (u)n =

2µ∇Γun − µn× (∇× u)

2µ
∂un
∂z

+ λ (∇ · u)

 .

Then, we can write
T (z) = P1X (z) + P2Y (z) , (12)

with
P1 =

(
02 2µ∇Γ

−2µ div Γ 0

)
and P2 =

(
−µI2 021

012 (λ+ 2µ)

)
.
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We can also write
Y (z) = Q1X (z) +Q2T (z) , (13)

with

Q1 =

(
02 2∇Γ

2µ
(λ+2µ)

divΓ 0

)
and Q2 =

(
− 1
µ
I2 021

012
1

(λ+2µ)

)
.

From the definition of the operator L, we can see that Q2 = −L. These formulas will be used
in the next section for writing the mechanical impedance for a thin shell.

4.5 The differential system via Fourier transform

The solution (X,Y)t (z) to the homogeneous Lamé system (11) for a given initial data (X,Y)t (0)
is written (

X
Y

)
(z) = exp(zM)

(
X
Y

)
(0) ,

where exp(zM) can be obtained explicitly through the partial Fourier transform (2) by solving

d

dz

(
X̂

Ŷ

)
(z) = S (M)

(
X̂

Ŷ

)
(z) . (14)

Here, S (M) refers to the symbol of coefficient matrixM for the Lamé system (11). We write

S (M) =

(
S (M)11 S (M)12

S (M)21 S (M)22

)
.

Direct computation of the Fourier Transform for each matrix Mij, for i, j = 1, 2, gives

S (M)11 (ξ) =

(
02 iξ
−iξt 0

)
, S (M)12 (ξ) =

(
−I2 021

012 1

)
,

S (M)21 (ξ) =

(
(iξ × n) (iξ × n)t 021

012 0

)
, S (M)22 (ξ) =

(
02

(λ+2µ)
µ

iξ

− µ
(λ+2µ)

iξt 0

)
,

such that
iξ =

(
iξ1

iξ2

)
, (iξ × n) =

(
iξ2

−iξ1

)
,

and
(iξ) (iξ)t = −

(
ξ2

1 ξ1ξ2

ξ1ξ2 ξ2
2

)
, (iξ × n) (iξ × n)t = −

(
ξ2

2 −ξ1ξ2

−ξ1ξ2 ξ2
1

)
.

Finally, we write the solution for the non homogeneous Lamé system (11). For a given initial
data (X,Y)t (0), we write(

X
Y

)
(z) = exp(zM)

(
X
Y

)
(0) +

ˆ z

0

exp((z − t)M)

(
0
Lf

)
(t) dt.

More precisely, we have

X (z) = (exp(zM))11 X (0) + (exp(zM))12 Y (0) +

ˆ z

0

(exp((z − t)M))12 Lf (t) dt (15)

Y (z) = (exp(zM))21 X (0) + (exp(zM))22 Y (0) +

ˆ z

0

(exp((z − t)M))22 Lf (t) dt (16)

In the next paragraph, we compute the exponential of the symbol ofM explicitly.
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4.6 Computation of exp (zS (M))

We recall that for
(
X̂, Ŷ

)t
(0) being an initial data, the solution to the homogeneous Lamé

system (14) is written (
X̂

Ŷ

)
(z) = exp

(
zS (M)

)( X̂

Ŷ

)
(0) .

For writing the solution explicitly, we have to compute the exponential of the matrix given
through the symbol ofM, which is not an evident task. In this case, we proceed in a non direct
way. We start by solving the second equation for the system (14) by means of the Helmholtz
decomposition for the displacement field. After that, we solve the first equation.

At first, we use the Helmholtz decomposition of u, written u = Φ + Ψ, with ∇ × Φ = 0 and
∇ ·Ψ = 0. The homogeneous Lamé system (9) is then written

(λ+ 2µ)∇ (∇ · Φ)− µ∇× (∇×Ψ) = 0.

By applying independently the ∇· operator, at first, on the last formula for the Lamé system
and then the ∇× operator, we obtain

∆ (∇ · u) = ∆ (∇ · Φ) = 0
−→
∆ (∇× u) =

−→
∆ (∇×Ψ) = 0.

After applying the partial Fourier transform on the system, the solution to the second order
ODE system for the z−variable is written

Ŷ (ξ, z) = E (ξ) exp(−(δ − z)|ξ|) + F (ξ) exp (−z|ξ|) .

For a fixed ξ and z = 0, we have the following relation

e−δ|ξ|E + F = Ŷ (0) . (17)

From the system (14), we have

d

dz
Ŷ = S (M)21 X̂ + S (M)22 Ŷ.

Thus
|ξ|
(
e−δ|ξ|E− F

)
= S (M)21 X̂ (0) + S (M)22 Ŷ (0) . (18)

From (17) and (18), we obtain the following two equations linking E and F to X̂ (0) and Ŷ (0),
written

2e−δ|ξ|E =

(
I +

1

|ξ|
S (M)22

)
Ŷ (0) +

1

|ξ|
S (M)21 X̂ (0)

2F =

(
I − 1

|ξ|
S (M)22

)
Ŷ (0)− 1

|ξ|
S (M)21 X̂ (0) ,
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and

e(−δ|ξ|)Ŷ (z) =
e−(δ−z)|ξ|

2

(
1

|ξ|
S (M)21 X̂ (0) +

(
I +

1

|ξ|
S (M)22

)
Ŷ (0)

)
(19)

+
e−(δ+z)|ξ|

2

(
− 1

|ξ|
S (M)21 X̂ (0) +

(
I − 1

|ξ|
S (M)22

)
Ŷ (0)

)
=

(
e−(δ−z)|ξ| − e−(δ+z)|ξ|)

2 |ξ|
S (M)21 X̂ (0)

+

((
e−(δ−z)|ξ| + e−(δ+z)|ξ|)

2
+

(
e−(δ−z)|ξ| − e−(δ+z)|ξ|)

2 |ξ|
S (M)22

)
Ŷ (0) .

We emphasize that through the Helmholtz decomposition for the displacement field, we could
explicitly write the field Y expressing the shear stress and compression. This last, will be used
for writing the solution to

d

dz
X̂ = S (M)11 X̂ + S (M)12 Ŷ.

From the ODEs theory, the solution X to the non homogeneous system is written in the
following integral form

X̂ (z) = exp (zS (M)11) X̂ (0) +

zˆ

0

exp
(

(z − t)S (M)11

)
S (M)12 Ŷ (t) dt,

which is expressed at the end in terms of X̂ (0) and Ŷ (0). For writing explicitly the solution,
we make use of computer algebra tools. At first, we have

exp
(
zS (M)11

)
=

 −
1
|ξ|2 (iξ × n) (iξ × n)t − (ez|ξ|+e−z|ξ|)

2|ξ|2 (iξ) (iξ)t
(ez|ξ|−e−z|ξ|)

2|ξ| iξ

−(ez|ξ|−e−z|ξ|)
2|ξ| iξt

(ez|ξ|+e−z|ξ|)
2

 .

Setting

2A (z) =

zˆ

0

(
exp (z − t)S (M)11

)
exp (t |ξ|) dt

2B (z) =

zˆ

0

(
exp (z − t)S (M)11

)
exp (−t |ξ|) dt,

we can write

X̂ (z) =

(
ezS(M)11 +

(
A (z)−B (z)

) 1

|ξ|
S (M)21

)
X̂ (0) (20)

+

((
A (z) +B (z)

)
S (M)12 +

(
A (z)−B (z)

) 1

|ξ|
S (M)12 S (M)22

)
Ŷ (0) .

Straightforward calculations give

A (z) =

 −
(ez|ξ|−1)
|ξ|3 (iξ × n) (iξ × n)t − (ez|ξ|−e−z|ξ|)+2z|ξ|ez|ξ|

4|ξ|3 (iξ) (iξ)t −(ez|ξ|−e−z|ξ|)−2z|ξ|ez|ξ|

4|ξ|2 iξ

(ez|ξ|−e−z|ξ|)−2z|ξ|ez|ξ|

4|ξ|2 (iξ)t
(ez|ξ|−e−z|ξ|)+2z|ξ|ez|ξ|

4|ξ|


12



B (z) =


(e−z|ξ|−1)
|ξ|3 (iξ × n) (iξ × n)t − (ez|ξ|−e−z|ξ|)+2z|ξ|e−z|ξ|

4|ξ|3 (iξ) (iξ)t
(ez|ξ|−e−z|ξ|)−2z|ξ|e−z|ξ|

4|ξ|2 iξ

−(ez|ξ|−e−z|ξ|)−2z|ξ|e−z|ξ|

4|ξ|2 (iξ)t
(ez|ξ|−e−z|ξ|)+2z|ξ|e−z|ξ|

4|ξ|

 .

Finally, after writing the solutions X and Y, given by (20) and (19), we can deduce the formula
of exp (zS (M)), written

exp (zS (M)) =

( (
ezS(M)

)
11

(
ezS(M)

)
12(

ezS(M)
)

21

(
ezS(M)

)
22

)
.

Setting α = µ
λ+2µ

, we get

•
(
ezS(M)

)
11

(ξ, z) = cosh z |ξ|

(
I2

1
|ξ| (tanh z |ξ|) iξ

− 1
|ξ| (tanh z |ξ|) iξt 1

)

•
(
ezS(M)

)
12

(ξ, z) =

cosh z |ξ|


− z (1− α)

iξ (iξ)t

2 |ξ|2
+

tanh z |ξ|
(
− (1 + α)

iξ (iξ)t

2 |ξ|3
+ 2

(iξ × n) (iξ × n)t

2 |ξ|3

) −z (tanh z |ξ|)
(

1−α
α

)
iξ

2|ξ|

z (tanh z |ξ|) (1− α) iξt

2|ξ| −z 1
2

(
1−α
α

)
− (tanh z|ξ|)

8|ξ|

(
1−2α
α

)



•
(
ezS(M)

)
21

(ξ, z) = cosh z |ξ|
(

(tanh z |ξ|) 1
|ξ| (iξ × n) (iξ × n)t 0

0 0

)

•
(
ezS(M)

)
22

(ξ, z) = cosh z |ξ|

(
I2 (tanh z |ξ|) 1

α
iξ
|ξ|

− (tanh z |ξ|)α iξt|ξ| 1

)
.

These formulas will be useful for the next section, in which we compute the mechanical
impedance for a slab elastic body.

5 Mechanical impedance boundary condition

Amechanical impedance condition is a relation linking the displacement vectorX (z) = (uT , un)t (·, z)
to the shear and compression vector Y (z) = (n× (∇× u) ,∇ · u)t (·, z). It can also be seen
as a relation linking the displacement vector X (z) = (uT , un)t (·, z) to the traction field vector
T (z) = ((σn)T , (σn)n)t (·, z) (see [19]). In the following section we show how to transfer the
mechanical impedance from the exterior surface of the elastic thin body to the surface of the
fixed part.
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5.1 Transfer of the impedance condition through the slab

From the Neumann boundary condition (6), we have

g = T (δ) .

Further, from the relation (12) linking the traction to the displacement, shear, and compression,
the impedance condition defined on the surface Γδ is written

g = P1X (δ) + P2Y (δ) .

When replacing the fields X (δ) and Y (δ) by their explicit formulas (15)-(16), the impedance
condition can be transferred from the surface Γδ to the impedance condition on the boundary
Γ as follows:

g = [P1 (exp δM)11 + P2 (exp δM)21]X (0) + [P1 (exp δM)12 + P2 (exp δM)22]Y (0)

+

ˆ z

0

(
P1

(
exp

(
(δ − t)M

))
12

+ P2

(
exp

(
(δ − t)M

))
22

)
Lf (t) dt.

From (13), we have
Y (0) = Q1X (0) +Q2T (0) .

Thus, the transferred impedance condition on the surface Γ is written

g =

[
P1 [(exp δM)11 + (exp δM)12Q1]

+P2 [(exp δM)21 + (exp δM)22Q1]

]
X (0)

+ [P1 (exp δM)12 + P2 (exp δM)22]Q2T (0)

+

ˆ z

0

(
P1

(
exp

(
(δ − t)M

))
12

+ P2

(
exp

(
(δ − t)M

))
22

)
Lf (t) dt.

The last formula represents another way for writing the impedance condition on the surface Γ.
This formula will be given explicitly in the next sub-section by writing the exact formula for
the impedance operator.

However, we can consider the following two special cases. If we consider the boundary condition
Y (δ) = g, it gives

Y (0) =
(

(exp δM)22

)−1
(
g − (exp δM)21X (0)−

ˆ δ

0

(
exp((δ − t)M)

)
22
Lf (t) dt

)
,

or

g =
(

(exp δM)21 + (exp δM)22Q1

)
X (0) + (exp δM)22Q2T (0)

+

ˆ δ

0

(
exp((δ − t)M)

)
22
Lf (t) dt.

Else, the boundary condition X (δ) = g can be transferred into

X (0) =
(

(exp δM)11

)−1
(
g − (exp δM)12 Y (0)−

ˆ δ

0

(
exp((δ − t)M)

)
12
Lf (t) dt

)
.

From these formulations, we need to set some properties of the operators (exp δM)22 and
(exp δM)11, that we show in the following proposition.
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Proposition 2. 1. Let

1

cosh z |ξ|
(
ezS(M)

)
22

(ξ, z) =

(
I2 (tanh z |ξ|) 1

α
iξ
|ξ|

− (tanh z |ξ|)α iξt|ξ| 1

)
.

For fixed z ≥ 0, the operator
1

cosh z|ξ|

(
ezS(M)

)
22

: Hs (R2;C3) → Hs (R2;C3)

φ → 1
cosh z|ξ|

(
ezS(M)

)
22
φ

is linear and continuous for every s in R.

2. The matrix 1
cosh z|ξ|

(
ezS(M)

)
22

is invertible with(
1

cosh z |ξ|
(
ezS(M)

)
22

)−1

=

 −
1
|ξ|2 (iξ × n) (iξ × n)t − 1

(1−tanh2 z|ξ|)
1
|ξ|2 (iξ) (iξ)t − 1

(1−tanh2 z|ξ|)
1
α

(tanh z|ξ|)
|ξ| iξ

1

(1−tanh2 z|ξ|)
α (tanh z|ξ|)

|ξ| iξt 1

(1−tanh2 z|ξ|)

 .

3. Let
Hs

cosh

(
R2;C3

)
=
{
φ ∈ Hs

(
R2;C3

)
: φ cosh z |ξ| ∈ Hs

(
R2;C3

)}
.

The operator ( (
ezS(M)

)
22

)−1
: Hs

cosh (R2;C3) → Hs
cosh (R2;C3)

φ →
( (
ezS(M)

)
22

)−1
φ

is linear and continuous for z ≥ 0.

Proof. 1. The coefficients of the matrix

1

cosh z |ξ|
(
ezS(M)

)
22

(ξ, z) =

 1 0 (tanh z |ξ|) 1
α
iξ1
|ξ|

0 1 (tanh z |ξ|) 1
α
iξ2
|ξ|

− (tanh z |ξ|)α iξ1|ξ| − (tanh z |ξ|)α iξ2|ξ| 1


are bounded.

2. With the help of an algebraic computation software, we can get(
1

cosh z |ξ|
(
ezS(M)

)
22

(ξ, z)

)−1

=


ξ2
2

|ξ|2 + 1

(1−tanh2 z|ξ|)
ξ2
1

|ξ|2 − ξ1ξ2
|ξ|2 + 1

(1−tanh2 z|ξ|)
ξ1ξ2
|ξ|2 − 1

(1−tanh2 z|ξ|)
1
α

(tanh z|ξ|)
|ξ| iξ1

− ξ1ξ2
|ξ|2 + 1

(1−tanh2 z|ξ|)
ξ1ξ2
|ξ|2

ξ2
1

|ξ|2 + 1

(1−tanh2 z|ξ|)
ξ2
2

|ξ|2 − 1

(1−tanh2 z|ξ|)
1
α

(tanh z|ξ|)
|ξ| iξ2

1

(1−tanh2 z|ξ|)
α (tanh z|ξ|)

|ξ| iξ1
1

(1−tanh2 z|ξ|)
α (tanh z|ξ|)

|ξ| iξ2
1

(1−tanh2 z|ξ|)



=

 −
1
|ξ|2 (iξ × n) (iξ × n)t − 1

(1−tanh2 z|ξ|)
1
|ξ|2 (iξ) (iξ)t − 1

(1−tanh2 z|ξ|)
1
α

(tanh z|ξ|)
|ξ| iξ

1

(1−tanh2 z|ξ|)
α (tanh z|ξ|)

|ξ| iξt 1

(1−tanh2 z|ξ|)

 .
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3. We have
1(

1− tanh2 z |ξ|
) = − cosh2 z |ξ| .

Then, we can see that the coefficients of
(

1
cosh z|ξ|

(
ezS(M)

)
22

(ξ, z)
)−1

are bounded by
cosh z |ξ|.

Remark 3. Regarding the operator (exp δM)11, we have(
1

cosh z |ξ|
(
ezS(M)

)
11

(ξ, z)

)−1

=

 −
1
|ξ|2 (iξ × n) (iξ × n)t − 1

(1−tanh2 z|ξ|)
1
|ξ|2 (iξ) (iξ)t − 1

(1−tanh2 z|ξ|)
(tanh z|ξ|)
|ξ| iξ

1

(1−tanh2 z|ξ|)
(tanh z|ξ|)
|ξ| iξt 1

(1−tanh2 z|ξ|)

 .

In the next sub-section, we will give formulations for the mechanical impedance, which are
more developed.

5.2 Expressing the solution (X,T)t (z) for given (X,T)t (0)

The solution (X,T)t (z) of the Lamé system for given (X,T)t (0) can be obtained by the Fourier
transform applied on the relations (12)-(13) linking (X,Y)t and (X,T)t, as well as the solution
(15)-(16).

We have

T̂ (z) = S (P1) X̂ (z) + S (P2) Ŷ (z)

Ŷ (z) = S (Q1) X̂ (z) + S (Q2) T̂ (z) ,

with
S (P1) =

(
02 2µiξ

−2µiξt 0

)
, S (P2) =

(
−µI2 021

012 (λ+ 2µ)

)

S (Q1) =

(
02 2iξ

2µ
(λ+2µ)

iξt 0

)
, S (Q2) =

(
− 1
µ
I2 021

012
1

(λ+2µ)

)
.

Then we use

X̂ (z) =
(
ezS(M)

)
11
X̂(0) +

(
ezS(M)

)
12
Ŷ (0) +

ˆ z

0

(
e(z−t)S(M)

)
12
Lf (t) dt

Ŷ (z) =
(
ezS(M)

)
21
X̂(0) +

(
ezS(M)

)
22
Ŷ (0) +

ˆ z

0

(
e(z−t)S(M)

)
22
Lf (t) dt.
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We get

X̂ (z) =
( (
ezS(M)

)
11

+
(
ezS(M)

)
12
S (Q1)

)
X̂ (0) +

(
ezS(M)

)
12
S (Q2) T̂ (0) +

ˆ z

0

(
e(z−t)S(M)

)
12
L̂f (t) dt

T̂ (z) =
(
S (P1)

(
ezS(M)

)
11

+ S (P2)
(
ezS(M)

)
21

+
(
S (P1)

(
ezS(M)

)
12

+ S (P2)
(
ezS(M)

)
22

)
S (Q1)

)
X̂ (0)

+
(
S (P1)

(
ezS(M)

)
12

+ S (P2)
(
ezS(M)

)
22

)
S (Q2) T̂ (0)

+

ˆ z

0

(
S(P1)

(
e(z−t)S(M)

)
12

+ S(P2)
(
e(z−t)S(M)

)
22

)
L̂f (t) dt. (21)

Hence, we write (
X̂

T̂

)
(z) = N̂ (z)

(
X̂

T̂

)
(0) +

(
R̂1f̂

R̂2f̂

)
(z) (22)

=

(
N̂11 N̂12

N̂21 N̂22

)
(z)

(
X̂

T̂

)
(0) +

(
R̂1f̂

R̂2f̂

)
(z) . (23)

Straightforward, but cumbersome, computations give the following explicit formulas for the
coefficients’ matrix N.

•
1

cosh z |ξ|
N̂11 =

 I2 − z 1
|ξ|

(λ+µ)
(λ+2µ)

(iξ) (iξ)t −
(

1
|ξ| (tanh z |ξ|) µ

(λ+2µ)
+ z (λ+µ)

(λ+2µ)

)
iξ(

−z (λ+µ)
(λ+2µ)

+ 1
|ξ| (tanh z |ξ|) µ

(λ+2µ)

)
iξt 1− z |ξ| (tanh z |ξ|) (λ+µ)

(λ+2µ)



•
1

cosh z |ξ|
N̂12 =


− (tanh z |ξ|) (λ+3µ)

2µ(λ+2µ)
1
|ξ|3 (iξ) (iξt)

−z (λ+µ)
2µ(λ+2µ)

1
|ξ|2 (iξ) (iξt)

− (tanh z |ξ|) 1
µ|ξ|3 (iξ × n) (iξ × n)t

−z 1
|ξ| (tanh z |ξ|) (λ+µ)

2µ(λ+2µ)
iξ

−z 1
|ξ| (tanh z |ξ|) (λ+µ)

2µ(λ+2µ)
iξt −z (λ+µ)

2µ(λ+2µ)
(tanh z |ξ|) (λ+3µ)

2µ(λ+2µ)



•
1

cosh z |ξ|
N̂21 =

 2µ

(
−1

2
1
|ξ| tanh z |ξ| (iξ × n) (iξ × n)t

+ (α− 1) 1
|ξ| (tanh z |ξ|+ z |ξ|) iξiξt

)
2µz |ξ| (α− 1) tanh z |ξ| iξ

2µz |ξ| (α− 1) tanh z |ξ| iξt −2µ |ξ| (α− 1) (tanh z |ξ| − z |ξ|)



•
1

cosh z |ξ|
N̂22 =

 I2 + z
|ξ| (α− 1) tanh z |ξ| iξ (iξ)t

(
α 1
|ξ| tanh z |ξ|+ z (α− 1)

)
(iξ)

−
(
α 1
|ξ| tanh z |ξ|+ z (1− α)

)
(iξ)t (1− z |ξ| (1− α) (tanh z |ξ|))

 .

For writing the impedance condition, we need to analyze the matrix coefficient N̂22.

Proposition 4. The matrix N̂22 (z, ξ) is invertible.
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Proof. The determinant of N̂22 (z, ξ) is given by

detN22 (z, ξ) = cosh z |ξ|Φ (z |ξ|) ,

where Φ : [0,+∞)→ [0,+∞) is defined by

Φ (t) =
(
(α− 1)2 t2

(
1− tanh2 t

)
+
(
1− α2 tanh2 t

))
=

1

2 cosh2 t

((
1− α2

)
cosh 2t+ 2t2 (1− α)2 + α2 + 1 .

The function Φ is bounded and satisfies

Φ (t) > 0 : ∀t ∈ [0,+∞) ,

Φ (0) = 1, lim
t→∞

Φ (t) = 1− α2.

The inverse matrix of N̂22 (z, ξ) is given by(
N̂22

)−1

(z, ξ) =

1

cosh z |ξ|

 − 1
|ξ|2 (iξ × n) (iξ × n)t − (1+z|ξ|(α−1)(tanh z|ξ|))

|ξ|2Φ
iξiξt − (α(tanh z|ξ|)+z|ξ|(α−1))

|ξ|Φ iξ

(α(tanh z|ξ|)+(1−α)z|ξ|)
|ξ|Φ iξt (1+z|ξ|(1−α) tanh z|ξ|)

Φ

 .(24)

Proposition 5. The entries of the principal part of the symbol
(
N̂22

)−1

are bounded by C (α, z)

(C (α, z) > 0 depending only on α and z). For fixed z ∈ (0, δ), the matrix
(
N̂22

)−1

(·, z) is the
symbol of a pseudodifferential operator of order zero.

Proof. The functions

t→ (1± (tanh t) t)

Φ (t) cosh t

t→ (tanh t)± t
Φ (t) cosh t

are bounded for t ≥ 0.

5.3 Impedance operator

Before going deeper for expressing and analyzing the explicit formula of the impedance operator,
we use the following notation. For the sake of simplicity, we write the components of the
operator N̂ given in (22) as

N̂ij(·, z) = N̂ij(z), i, j = 1, 2;

this notation is also used for their inverses, i.e. (N̂ij(·, z))−1 = (N̂ij(z))−1 for i, j = 1, 2.
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From the boundary condition (6) and the solution (23) of the Lamé system given through X
and T, we have

ĝ = T̂ (δ) = N̂21 (δ) ϕ̂ + N̂22 (δ) T̂ (0) + R̂2 (δ) f̂ .

Then, the impedance operator Zδ is given through

T̂ (0) = Ẑδ

(
ϕ̂, f̂ , ĝ

)
=
(
N̂22 (δ)

)−1 (
ĝ − R̂2 (δ) f̂ − N̂21 (δ) ϕ̂

)
.

The linearity of the impedance operator allows to write

Ẑδ

(
ϕ̂, f̂ , ĝ

)
= Ẑδ (ϕ̂, 0, 0) + Ẑδ (0, 0, ĝ) + Ẑδ

(
0, f̂ , 0

)
= Ẑ1

δ (ϕ̂) + Ẑ2
δ (ĝ) + Ẑ3

δ

(
f̂
)
.

In this way, we can write the three terms of the impedance operator as follows:

Ẑ1
δ (ξ) := −

((
N̂22

)−1

N̂21 (δ)

)
(ξ) =

 (
Ẑ1
δ

)
11

(
Ẑ1
δ

)
12(

Ẑ1
δ

)
21

(
Ẑ1
δ

)
22

 (ξ)

Ẑ2
δ (ξ) :=

(
N̂22(δ)

)−1

(ξ) =

 (
Ẑ2
δ

)
11

(
Ẑ2
δ

)
12(

Ẑ2
δ

)
21

(
Ẑ2
δ

)
22

 (ξ)

Ẑ3
δ (ξ) := −

(
N̂22(δ)

)−1

(ξ) R̂2 (δ) =

 (
Ẑ3
δ

)
11

(
Ẑ3
δ

)
12(

Ẑ3
δ

)
21

(
Ẑ3
δ

)
22

 (ξ) .

The operator Ẑ2
δ was written explicitly in (24). Therefore, the focus will be made on more

developing and analyzing the operators Ẑ1
δ as well Ẑ3

δ .

5.3.1 Analysis of the operator Z1
δ

Straightforward computation of Ẑ1
δ (ξ) leads to:

•
(
Ẑ1
δ

)
11

(ξ) =


µ 1
|ξ| tanh δ |ξ| (iξ × n) (iξ × n)t

−2µ 1
Φ

(
1
|ξ| (1 + δ |ξ| (α− 1) (tanh δ |ξ|)) (α− 1) (tanh δ |ξ|+ δ |ξ|)
− 1
|ξ| (α (tanh δ |ξ|) + δ |ξ| (α− 1)) δ |ξ| (α− 1) tanh δ |ξ|

)
iξ (iξ)t



•
(
Ẑ1
δ

)
12

(ξ) = −2µ 1
Φ

(
(1 + δ |ξ| (α− 1) (tanh z |ξ|)) δ |ξ| (α− 1) tanh δ |ξ|

+ (α (tanh δ |ξ|) + δ |ξ| (α− 1)) (α− 1) (tanh δ |ξ| − δ |ξ|)

)
iξ

•
(
Ẑ1
δ

)
21

(ξ) = −2µ 1
Φ

(
− (α (tanh δ |ξ|) + (1− α) δ |ξ|) (α− 1) (tanh δ |ξ|+ δ |ξ|)

+ (1 + δ |ξ| (1− α) tanh δ |ξ|) z |ξ| (α− 1) tanh δ |ξ|

)
(iξ)t

•
(
Ẑ1
δ

)
22

(ξ) = −2µ 1
Φ

(
− (α (tanh δ |ξ|) + (1− α) δ |ξ|) δ |ξ|2 (α− 1) tanh δ |ξ|

− (1 + δ |ξ| (1− α) tanh δ |ξ|) |ξ| (α− 1) (tanh δ |ξ| − z |ξ|)

)
.
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Which can be simplified as

•
(
Ẑ1
δ

)
11

(ξ) =µ
1

|ξ|
tanh δ |ξ| (iξ × n) (iξ × n)t

− 2µ
1

Φ (δ |ξ|)
1

|ξ|
(α− 1)

(
δ |ξ|

(
1− tanh2 δ |ξ|

)
+ tanh δ |ξ|

)
iξ (iξ)t

•
(
Ẑ1
δ

)
12

(ξ) = −2µ 1
Φ(δ|ξ|) (α− 1)

(
(1− α) δ2 |ξ|2

(
1− tanh2 δ |ξ|

)
+ α tanh2 δ |ξ|

)
iξ

•
(
Ẑ1
δ

)
21

(ξ) = 2µ 1
Φ(δ|ξ|) (α− 1)

(
(1− α) δ2 |ξ|2

(
1− tanh2 δ |ξ|

)
+ α tanh2 δ |ξ|

)
(iξ)t

•
(
Ẑ1
δ

)
22

(ξ) = −2µ 1
Φ(δ|ξ|) (α− 1)

(
δ |ξ|

(
1− tanh2 δ |ξ|

)
− tanh δ |ξ|

)
|ξ|.

Proposition 6. The entries of the principal part of the symbol Ẑ1
δ (ξ) are bounded by C (α, δ) |ξ|

(C (α, δ) > 0 depending only on α and δ).

We draw the attention of the reader to the fact that the matrix Ẑ1
δ is the symbol of a pseudod-

ifferential operator of order one.

Proof. The functions t→ t2
(
1− tanh2 t

)
and t→ Φ (t) are bounded for t ≥ 0.

The operator Ẑ1
δ (ξ) = −

(
N̂22(δ)

)−1

N̂21(δ) (ξ) is the symbol of the impedance operator Z1
δ

and
Z1
δ : Hs (Γ) → Hs−1 (Γ)

ϕ = u|Γ → Z1
δ (ϕ) = (σn)|Γ

is bounded.

5.3.2 Analysis of the operator Z3
δ

Now, we move to analyzing the third part of the impedance operator, which represents the
more technical part.

Proposition 7. The operator

Z3
δ : L2 ((0, δ)× R2,R3) → H− 1

2 (R2,R3)
f → Z3

δ (f) ,

defined by its symbol

Ẑ3
δ (f) (ξ) = Ẑ3

δ

(
f̂
)

(ξ) = −
((

N̂22(δ)
)−1

(ξ)
(
R̂2 (δ) f̂

)
(δ, ξ)

)
,

is a linear bounded pseudodifferential operator.
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Proof. First, remember that Q2 = −L. Thus, from (21) we can see that

(R̂2f̂)(δ, ξ) = −
ˆ δ

0

N̂22 (δ − t, ξ) f̂(t)dt.

It can be developed as follows:(
R̂2f̂

)
(δ, ξ) =

−
ˆ δ

0

 cosh (δ − t) |ξ| − (δ − t) |ξ| (sinh (δ − t) |ξ|) (1− α) iξiξ
t

|ξ|2 ((sinh (δ − t) |ξ|)α− (1− α) (δ − t) |ξ| cosh (δ − t) |ξ|) 1
|ξ| iξ

−
(

(1− α) (δ − t) |ξ| (cosh (δ − t) |ξ|) +
(sinh (δ − t) |ξ|)α

)
1
|ξ| iξ

t cosh (δ − t) |ξ| − (δ − t) |ξ| (sinh (δ − t) |ξ|) (1− α)

 f̂(t, ξ)dt.

Then the operators under the integral are written:

?

((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

11

=

1

cosh δ |ξ|

(
− cosh(δ−t)|ξ|

|ξ|2 (iξ × n) (iξ × n)t

+

(
(1− (tanh δ |ξ|) (1− a) δ |ξ|) (cosh (δ − t) |ξ| − (δ − t) |ξ| (sinh (δ − t) |ξ|) (1− α))
+ (a (tanh δ |ξ|)− δ |ξ| (1− a)) ((1− α) (δ − t) |ξ| (cosh (δ − t) |ξ|) + (sinh (δ − t) |ξ|)α)

)
1
|ξ|2Φ

iξiξt

)

?

((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

21

=

1

cosh δ |ξ|

(
((a (tanh δ |ξ|) + δ |ξ| (1− a)) (cosh (δ − t) |ξ|+ (z − t) |ξ| (sinh (δ − t) |ξ|) (1− α)))

− (1 + (1− a) δ |ξ| (tanh δ |ξ|)) (((1− α) (δ − t) |ξ| (cosh (δ − t) |ξ|) + (sinh (δ − t) |ξ|)α))

)
iξt

Φ |ξ|

?

((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

12

=

1

cosh δ |ξ|

(
(1 + (tanh δ |ξ|) (1− a) δ |ξ|) ((sinh (δ − t) |ξ|)α− (1− α) (δ − t) |ξ| cosh (δ − t) |ξ|)

− (a (tanh δ |ξ|)− δ |ξ| (1− a)) (cosh (δ − t) |ξ| − (δ − t) |ξ| (sinh (δ − t) |ξ|) (1− α))

)
iξ

|ξ|Φ

?

((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

22

=

− 1

cosh δ |ξ|
1

Φ

(
(a (tanh δ |ξ|) + δ |ξ| (1− a)) ((sinh (δ − t) |ξ|)α− (1− α) (δ − t) |ξ| cosh (δ − t) |ξ|)

− (1 + (1− a) δ |ξ| (tanh δ |ξ|)) (cosh (δ − t) |ξ| − (δ − t) |ξ| (sinh (δ − t) |ξ|) (1− α))

)
.

Now, we prove that
ˆ δ

0

((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

11

f̂T (t, ξ) dt ∈ H−
1
2

(
R2,R2

)
ˆ δ

0

((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

21

f̂T (t, ξ) dt ∈ H−
1
2

(
R2,R2

)
ˆ δ

0

((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

12

f̂n (t, ξ) dt ∈ H−
1
2

(
R2,R

)
ˆ δ

0

((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

22

f̂n (t, ξ) dt ∈ H−
1
2

(
R2,R

)
.
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We use the hypothesis f̂ in L2 ∈ ((0, δ)× R2,R3) and Cauchy-Schwarz inequality. We highlight
that it is sufficient to prove that

ˆ δ

0

∣∣∣∣(N̂−1
22 (δ, ξ) N̂22 (δ − t, ξ)

)
ij

∣∣∣∣2 dt ≤ C (α, δ) (1 + |ξ|) , 1 ≤ i, j ≤ 2,

with C (α, δ) > 0 (not depending on ξ). We give the sketch of the proof for
(
N̂−1

22 (δ, ξ) N̂22 (δ − t, ξ)
)

11
.

It is clear that this estimate is satisfied for |ξ| bounded. It remains then to prove it for |ξ| large
enough.

The most difficult term to handle is the one having the factor |ξ|2. Expanding the products
and using the equality

(cosh δ |ξ|) (cosh (δ − t) |ξ|)− (sinh δ |ξ|) (sinh (δ − t) |ξ|) = cosh t |ξ| ,

we get((
N̂22

)−1

(δ, ξ) N̂22 (δ − t, ξ)
)

11

=

− cosh (δ − t) |ξ|
cosh δ |ξ|

(iξ × n) (iξ × n)t

|ξ|2
− (1− α)2 δ |ξ|2 (δ − t) cosh t |ξ|

cosh δ |ξ|
iξiξt

|ξ|2 Φ

+
1

cosh δ |ξ|
(cosh (δ − t) |ξ| − (1− α) |ξ| (δ − t) (sinh (δ − t) |ξ|)) iξiξ

t

|ξ|2 Φ

− 1

cosh δ |ξ|
((tanh δ |ξ|) (1− α) δ |ξ|) (cosh (δ − t) |ξ|) iξiξ

t

|ξ|2 Φ

+
1

cosh δ |ξ|
(α tanh δ |ξ|) ((1− α) (δ − t) |ξ| (cosh (δ − t) |ξ|) + (sinh (δ − t) |ξ|)α)

iξiξt

|ξ|2 Φ

− 1

cosh δ |ξ|
(δ |ξ| (1− α) (sinh (δ − t) |ξ|)α)

iξiξt

|ξ|2 Φ
.

Then, we use the estimates

|tanh δ |ξ|| ≤ 1, ∀ξ ∈ R2

∃CN ;
|ξ|N

cosh δ |ξ|
≤ CN ,∀N ∈ N.

We recall the properties of the function Φ:

Φ (t) > 0 ∀t ∈ [0,+∞[ ,

Φ (0) = 1, lim
t→∞

Φ (t) = 1− a2,

and the relations

2 cosh2 s |ξ| = 1 + cosh 2s |ξ|
2 sinh2 s |ξ| = −1 + cosh 2s |ξ| .
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Hence, we get
ˆ δ

0

∣∣∣(N̂−1
22 (δ, ξ) N̂22 (δ − t, ξ)

)
11

∣∣∣2 dt
≤ C1 (α, δ)

1

cosh2 δ |ξ|

(
|ξ|4
ˆ δ

0

(δ − t)2 cosh (2t |ξ|) dt+ |ξ|2
ˆ δ

0

cosh (2 (δ − t) |ξ|) dt+ |ξ|2
ˆ δ

0

(δ − t)2 cosh (2 (δ − t) |ξ|) dt

)
.

Integrating by parts, we obtainˆ δ

0

(δ − t)2 cosh (2t |ξ|) dt =
δ

2 |ξ|2
− 1

4 |ξ|3
+

cosh (2δ |ξ|)
4 |ξ|3ˆ δ

0

cosh (2 (δ − t) |ξ|) dt =
1

2 |ξ|
sinh 2δ |ξ|

ˆ δ

0

(δ − t)2 cosh (2 (δ − t) |ξ|) dt = δ2 1

2 |ξ|
sinh 2δ |ξ| − δ 1

2 |ξ|2
cosh 2δ |ξ|+ 1

4 |ξ|3
sinh 2δ |ξ| .

And we use the fact that

|tanh δ |ξ|| ≤ 1

sinh 2δ |ξ| = 2 sinh δ |ξ| cosh δ |ξ|
cosh 2δ |ξ| = cosh2 δ |ξ|

(
1 + tanh2 δ |ξ|

)
.

Hence, we conclude the existence of a constant C2 (α, δ) (not depending on ξ), such thatˆ δ

0

∣∣∣(N̂−1
22 (δ, ξ) N̂22 (δ − t, ξ)

)
11

∣∣∣2 dt ≤ C2 (α, δ) |ξ| .

The other terms of the operator Ẑ3
δ can be handled similarly.

In the next section, we give the approximate mechanical impedance for the homogeneous case.

6 Approximate mechanical impedance at order three

6.1 The approximate impedance operator

We consider the homogeneous case when f = 0 and g = 0, then the impedance operator is only
given by Z1

δ , such that

Ẑ1
δ (ξ) = −

((
N̂22(δ)

)−1

N̂21(δ)
)

(ξ) .

In order to obtain an approximation at order three with respect to the thickness δ for the
impedance operator, we expand the coefficients of the matrix Ẑ1

δ (ξ) in powers of δ at order
three.

From the numerical point of view, Padé-like approximations are more stable. Therefore, in
this paper we give an approximation of fractional type, and we expand the numerator and the
denominator separately.

We give the following approximations at order three:
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•
1

|ξ|
tanh δ |ξ| = δ

(
1− 1

3
δ2 |ξ|2

)
+ o

(
δ3
)

= δ
1(

1 + 1
3
δ2 |ξ|2

) + o
(
δ3
)

•
1

|ξ|
(α− 1)

(
δ |ξ|

(
1− tanh2 δ |ξ|

)
+ tanh δ |ξ|

)
= 2δ (α− 1)

(
1− 2

3
δ2 |ξ|2

)
+ o

(
δ3
)

= 2δ (α− 1)
1(

1 + 2
3
δ2 |ξ|2

) + o
(
δ3
)

• (α− 1)
(
(1− α) δ2 |ξ|2

(
1− tanh2 δ |ξ|

)
+ α tanh2 δ |ξ|

)
= δ2 |ξ|2 (α− 1) + o

(
δ3
)

• − (α− 1)
(
δ |ξ|

(
1− tanh2 δ |ξ|

)
− tanh δ |ξ|

)
|ξ| = 2

3
δ3 |ξ|4 (α− 1) + o

(
δ3
)
.

Regarding the function Φ, we have

Φ (δ |ξ|) =
1

2 cosh2 z |ξ|
((

1− α2
)

cosh 2δ |ξ|+ 2δ2 |ξ|2 (1− α)2 + α2 + 1
)

= 1 + δ2
(
|ξ|2 (1− 2α)

)
+ o

(
δ3
)
.

Moreover,

(
1 + δ2 |ξ|2 (1− 2α)

)(
1 +

2

3
δ2 |ξ|2

)
= 1 + δ2 1

3
|ξ|2 (5− 6α) + o

(
δ3
)
.

Thus, we can choose the approximations(
Ẑ1∗
δ

)
11

(ξ) = µδ
1(

1 + 1
3
δ2 |ξ|2

) (iξ × n) (iξ × n)t − 2µ (α− 1) 2δ
iξ (iξ)t

1 + δ2 1
3
|ξ|2 (5− 6α)(

Ẑ1∗
δ

)
21

(ξ) = −2µ (α− 1) δ2 |ξ|2 iξt

1 + δ2 1
3
|ξ|2 (5− 6α)(

Ẑ1∗
δ

)
12

(ξ) = 2µ (α− 1) δ2 |ξ|2 iξ

1 + δ2 1
3
|ξ|2 (5− 6α)(

Ẑ1∗
δ

)
22

(ξ) = 2µ (α− 1)
2

3
δ3 |ξ|4

1 + δ2 1
3
|ξ|2 (5− 6α)

.

For the term
(
Ẑ1∗
δ

)
11

(ξ), since α = µ
λ+2µ

, then we have 5− 6α = 5− 6 µ
λ+2µ

= 5λ+4µ
λ+2µ

> 0. Thus,

the term 1 + δ2 1
3
|ξ|2 (5− 6α) is positive for all ξ ∈ R2. Consequently, the operator

1− δ2 (5− 6α)

3
∆Γ : Hs(Γ)→ Hs−2(Γ)

is invertible .

Finally, the approximate mechanical impedance in the form of a differential operator is then
given by

Z1∗
δ ϕ =

(
(Z1∗

δ )11 (Z1∗
δ )12

(Z1∗
δ )21 (Z1∗

δ )22

)(
ϕT
ϕn

)
,
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with

(
Z1∗
δ

)
11
ϕT = δµ

−−→
curlΓ

(
1− 1

3
δ2∆Γ

)−1

curlΓ ϕT − 2µ (1− a) 2δ∇Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

divΓ ϕT

(
Z1∗
δ

)
12
ϕn = 2µ (α− 1) δ2∇Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

∆Γϕn

(
Z1∗
δ

)
21
ϕT = −2µ (α− 1) δ2∆Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

divΓ ϕT

(
Z1∗
δ

)
22
ϕn = 2µ (α− 1)

2

3
δ3∆Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

∆Γϕn.

Remark 8. The bilinear form for the approximate mechanical operator is written

(
Z1∗
δ ϕ,ϕ

)
= δµ

ˆ
Γ

(
1− 1

3
δ2∆

)−1

curlΓ ϕT curlΓ ϕTdΓ

+ δ2µ (α− 1)

ˆ
Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

divΓ ϕT divΓ ϕTdΓ

− δ22µ (α− 1)

ˆ
Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

∆Γϕn divΓ ϕTdΓ

− δ22µ (α− 1)

ˆ
Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

divΓ ϕT∆ΓϕndΓ

+ 2µ (α− 1)
2

3
δ3

ˆ
Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

∆Γϕn∆ΓϕndΓ.

Using Young inequality 2AB ≤ A2γ + 1
γ
B2 with 3

2
< γ < 2, we get

(
Z1∗
δ ϕ,ϕ

)
≥ Cδ


´

Γ

∣∣∣(1− 1
3
δ2∆

)− 1
2 curlΓ ϕT

∣∣∣2 dΓ

+
´

Γ

∣∣∣(1− δ2 1
3

(5− 6α) ∆Γ

)− 1
2 divΓ ϕT

∣∣∣2 dΓ

+
´

Γ

∣∣∣(1− δ2 1
3

(5− 6α) ∆Γ

)− 1
2 ∆ϕn

∣∣∣2 dΓ

 .

6.2 Variational formulation of the approximate impedance problem

We assume that the linear elastic body Ω− is isotropic with Lamé’s coefficients λ− and µ−.

We consider the space

V (Ω−) =
{

(vT , vn) = v ∈ H1 (Ω−) ;v|Γ0 = 0, vn|Γ ∈ H1 (Γ)
}
,

equipped with the inner product

〈u,v〉 = 〈u,v〉H1(Ω−) +
〈
u|Γ ,v|Γ

〉
H1(Γ)

,
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and for u,v in V (Ω−), we set

a
Ω−

(u,v) =

ˆ

Ω−

σ (u−) ε (v−) dΩ−

a1
Γ

(u,v) =

ˆ

Γ

[
µ
(
1− 1

3
δ2∆

)−1
curlΓ uT curlΓ vT

+4µ (1− a)
(
1− δ2 1

3
(5− 6α) ∆Γ

)−1
divΓ uT divΓ v

]
dΓ

a2
Γ

(u,v) =

ˆ

Γ

[
−2µ (1− a)

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1
∆Γun. divΓ vT

−2µ (1− a) divΓ uT
(
1− δ2 1

3
(5− 6α) ∆Γ

)−1
∆Γvn

]
dΓ

a3
Γ

(u,v) =

ˆ

Γ

1

3
µ (1− a) ∆Γun

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

∆ΓvndΓ.

Remark 9. 1. The surface bilinear form a1
Γ

(u,v) is defined for u,v in H1 (Ω−). It involves
only the trace of the extension (tangential component) and δa1

Γ
(u,v) represents the effect

of the thin slab at order one.

2. If we drop the stabilizing terms
(
1− 1

3
δ2∆

)−1 and
(
1− δ2 1

3
(5− 6α) ∆Γ

)−1 we recover the
approximation of order one given in [13]. The slab behaves as a linear elastic surface Γ
whose Lamé’s coefficients are µ and λ∗ = 2µ (1− a) = 2λµ

λ+2µ
.

3. The surface bilinear form a2
Γ

(u,v) is defined for u,v in H1 (Ω−). It involves only the
trace of the extension and the trace of the flexion (normal component). Further, the
forms δa1

Γ
(u,v) + δ2a2

Γ
(u,v) represent the effect of the slab at order two.

4. The definition of a3
Γ

(u,v) requires more regularrity on the trace of the flexion. It is well
defined when the traces of un and vn are in H1 (Γ). The effect of the slab at order three
is given by δa1

Γ
(u,v) + δ2a2

Γ
(u,v) + δ3a3

Γ
(u,v).

Theorem 10. For a given f− in L2 (Ω−), there exists a unique solution u∗− in V (Ω−) solution
to the approximate impedance problem

−∇ · σ
(
u∗−
)

= f− in Ω−
u∗− = 0 on Γ0

σ
(
u∗−
)
n = Z∗δ

(
u∗−
)

on Γ.

Its variational formulation is given by

a
(
u∗−,v−

)
= l (v−) ,∀v− ∈ V (Ω−) ,

with

a = aΩ− + δa1
Γ

+ δ2a2
Γ

+ δ3a3
Γ

l (v−) =

ˆ

Ω−

f−v−dΩ−.

Moreover, u∗− ∈ H2 (Ω−),
(
σ
(
u∗−
)
n
)
T |Γ ∈

(
H3/2 (Γ)

)2, and (u∗n)|Γ ∈ H5/2 (Γ).
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Proof. 1. The existence of the solutions follows form the coercivity estimate

a
Ω−

(u,u) + δa1
Γ

(u,u) + δ2a2
Γ

(u,u) + δ3a3
Γ

(u,u) ≥ Cδ3 ‖u‖2
V(Ω−) .

2. The regularity results are obtained gradually in different steps combining well known
smoothness results for boundary value problems for the Lamé system, the definition of
the approximate impedance boundary condition, and the ellipticity of the operator (Z∗δ )22.

First, since (u∗T )|Γ in
(
H1/2 (Γ)

)2, then (Z∗δ )21 (u∗T ) ∈ H−1/2 (Γ). We also have
(
σ
(
u∗−
)
n
)
n

in H−1/2 (Γ), defined by(
σ
(
u∗−
)
n
)
n

= (Z∗δ )21 (u∗T ) + (Z∗δ )22 (u∗n) ;

from which we deduce that

(Z∗δ )22 u
∗
−n =

1

3
δ3µ2 (1− a) ∆Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

∆Γu
∗
−n ∈ H−1/2 (Γ) .

This in turn implies by the regularity of the elliptic operator (Z∗δ )22 that u∗n ∈ H3/2 (Γ).

Second, the fact that u∗n ∈ H3/2 (Γ) leads to

(Z∗δ )12 (u∗n) = −δ22µ (1− a)∇Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

∆Γu
∗
−n ∈ H1/2 (Γ) ,

and u∗−T in
(
H1/2 (Γ)

)2 gives

(Z∗δ )11 (u∗T ) = δµ
−−→
curlΓ

(
1− 1

3
δ2∆

)−1

curlΓ u
∗
−T

− δ4µ (1− a)∇Γ

(
1− δ2 1

3
(5− 6α) ∆Γ

)−1

divΓ u
∗
−T ∈

(
H1/2 (Γ)

)2
.

Then, the boundary condition(
σ
(
u∗−
)
n
)
T

= (Z∗δ )11 (u∗T ) + (Z∗δ )12 (u∗n)

implies that
(
σ
(
u∗−
)
n
)
T
∈
(
H1/2 (Γ)

)2. Thus, we deduce that
−∇ · σ

(
u∗−
)

= f− in L2 (Ω−)

u∗− = 0 on Γ0(
σ
(
u∗−
)
n
)
T

in
(
H1/2 (Γ)

)2

u∗n in H3/2 (Γ) .

This boundary value problem for the Lamé system implies that u∗− ∈ H2 (Ω−), u∗T ∈(
H3/2 (Γ)

)2, and
(
σ
(
u∗−
)
n
)
∈ H1/2 (Γ) .

Third, from the last result, u∗T ∈
(
H3/2 (Γ)

)2, we get (Z∗δ )21 (u∗T ) ∈ H1/2 (Γ) and

(Z∗δ )22

(
u∗−n
)

=
(
σ
(
u∗−
)
n
)
n
− (Z∗δ )21

(
u∗−T

)
∈ H1/2 (Γ) ,

which gives by the regularity of the elliptic operators (Z∗δ )22, u
∗
n ∈ H5/2 (Γ).
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Finally, from u∗n ∈ H5/2 (Γ), we get (Z∗δ )12 (u∗n) ∈
(
H3/2 (Γ)

)2, and from u∗−T ∈
(
H3/2 (Γ)

)2

we get (Z∗δ )11 (u∗T ) ∈
(
H3/2 (Γ)

)2. Then(
σ
(
u∗−
)
n
)
T

= (Z∗δ )11 (u∗T ) + (Z∗δ )12 (u∗n) ∈
(
H3/2 (Γ)

)2
.

Remark 11. If f− is in Hs (Ω−) (s ≥ 0), we get by applying recursively the same arguments
u∗− ∈ Hs+3/2 (Ω−), u∗n ∈ Hs+5/2 (Γ) , and

(
σ
(
u∗−
)
n
)
T
∈
(
Hs+3/2 (Γ)

)2.
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