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We compute the matching coefficients between QCD and nonrelativistic QCD for external vector, axial-
vector, scalar, and pseudoscalar currents up to three-loop order. We concentrate on the nonsinglet
contributions and present precise numerical results with an accuracy of about ten digits. For the vector
current the results from Marquard et al. [Phys. Rev. D 89, 034027 (2014)] are confirmed, increasing the
accuracy by several orders of magnitude.
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I. INTRODUCTION

The construction of effective field theories with quantum
chromodynamics (QCD) as a starting point is a very
successful approach in order to describe a number of
different phenomena, which involve different energy scales
following a large hierarchy. A popular example in this
context is nonrelativistic QCD (NRQCD), which describes
systems with two heavy quarks moving with small relative
velocity. Prominent applications are the threshold produc-
tion of top-quark pairs in electron-positron annihilation and
properties of charmonium and bottomonioum bound states.
For comprehensive reviews we refer to Refs. [1–4].
For the construction of the effective theories one con-

siders Green functions in the full and effective theories and
requires that they are equal up to corrections in the small
expansion parameter, which in the case of NRQCD are
power-suppressed terms in the inverse heavy quark massm.
Such calculations, usually referred to as matching calcu-
lations, fix the couplings of the operators in the effective
theory. These couplings are typically denoted as matching
coefficients.
In this paper we consider QCD and NRQCD as full and

effective theories and compute the matching coefficients of
external vector, axial-vector, scalar, andpseudoscalar currents

up to three-loop order in perturbation theory. For this purpose
it is necessary to compute vertex corrections involving one of
the currents and a quark-anti-quark pair. We concentrate on
the nonsinglet contributions where the external currents
directly couple to the external quarks. Sample Feynman
diagrams up to three loops are shown in Fig. 1.
From the phenomenological point of view the vector

current is certainly most important. It enters as building
block to the threshold production of top-quark pairs [5] and
the decay width of the ϒð1SÞ meson [6,7]. Its Abelian
contribution is an important ingredient to the hyperfine
splitting of positronium [8]. As possible applications of the
scalar and pseudoscalar matching coefficient one could
imagine the decay of CP-even or CP-odd Higgs bosons
with mass M into two quarks with mass m ≈M=2.
Starting point for the matching calculation are the vector,

axial-vector, scalar, and pseudoscalar currents in QCD,
which we define as

jμv ¼ ψ̄γμψ ; jμa ¼ ψ̄γμγ5ψ ;

js ¼ ψ̄ψ ; jp ¼ ψ̄ iγ5ψ : ð1Þ

Note that the anomalous dimensions of the vector and
axial-vector current are zero, whereas js and jp involve
nontrivial renormalization constants.
Expanding the spinors in Eq. (1) for jp⃗j ≪ m, where p⃗ is

the momentum of the antiquark in the final state, one finds
the currents in the effective theory,

j̃kv ¼ ϕ†σkχ; j̃ka ¼
1

2m
ϕ†½σk; p⃗ · σ⃗�χ;

j̃s ¼ −
1

m
ϕ†p⃗ · σ⃗χ; j̃p ¼ −iϕ†χ; ð2Þ

where ϕ and χ are two-component Pauli spinors.
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The currents in Eqs. (1) and (2) are used to form
renormalized vertex functions with two external on shell
quarks, which we denote by Γxðq1; q2Þ and Γ̃x with
x ∈ fv; a; s; pg, respectively. q1 and q2 correspond to the
momenta of the quark and antiquark with q21 ¼ q22 ¼ m2,
where m is the quark mass. We apply an asymptotic
expansion around s ¼ 4m2 [9,10], where s is themomentum
squared of the external current, which leads to

Z2ZxΓxðq1; q2Þ ¼ cxZ̃2Z̃−1
x Γ̃x þ…: ð3Þ

The ellipses denote terms suppressed by at least two inverse
powers of the heavy quark mass. It is understood that
Γxðq1; q2Þ is expressed in terms of the heavy quark mass in
the on shell scheme and the strong coupling in the MS
scheme. Z2 and Z̃2 are the on shell wave function renorm-
alization constants. Z2 is needed up to three loops [11,12],
whereas Z̃2 ¼ 1 since the quantum corrections in NRQCD
only involve scaleless integrals that are set to zero in
dimensional regularization. Also for Γ̃x only tree-level
contributions are needed since the soft, potential, and
ultrasoft contributions are present on both sides of Eq. (3)
and cancel such that only the hard contribution of Γxðq1; q2Þ
has to be computed.Zx is the renormalization constant of the
current in full QCD, which is given by Zv ¼ Za ¼ 1 and
Zs ¼ Zp ¼ Zm. Here Zm is the on shell quark mass
renormalization constant defined via m ¼ Zmm0, where
m0 is the bare heavy quark mass. Z̃x is the renormalization
constant of the current in NRQCD, which is determined
from the infrared divergences of cx. Z̃x deviates from

1 starting at order α2s. The computation of the matching
coefficient cx is the main purpose of this work.
Two-loop corrections to cv have been computed for the

first time in Refs. [13,14] and in Ref. [15] two-loop
corrections to all four currents have been considered,
including the singlet contributions. Three-loop corrections
to cv have been computed in Refs. [16–18]. In these works
the reduction to master integrals has been performed ana-
lytically. However, most of the master integrals have only
been computed numericallywith thehelp of FIESTA [19].As a
consequence the coefficients of some color structures are
only known with an uncertainty of a few percent. This is
sufficient for most phenomenological applications. It is
nevertheless desirable to have an independent cross check
with improved accuracy. This is provided in this work.
In the next section we provide details on our calculation

and describe our method to extract the matching coefficient
from results for the form factors. In Sec. III we present our
results for the matching coefficients and the anomalous
dimension of the currents in the effective theory. Section IV
contains a brief summary.

II. TECHNICAL DETAILS

For the computation of the hard part of the vertex
diagrams we apply the method developed in Ref. [20].
We profit from the findings of Refs. [21,22] where results
for massive form factors with external vector, axial-vector,
scalar, and pseudoscalar currents have been computed.
They can be decomposed into six form factors given by

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Sample Feynman diagrams at one-, two-, and three-loop order for the current-quark-anti-quark vertex corrections. Solid and
curly lines denote quarks and gluons, respectively. The cross represents the coupling to the external current. In this work we only
consider nonsinglet contributions (a)–(g) and neglect the singlet contributions (h).
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Γv
μðq1; q2Þ ¼ Fv

1ðsÞγμ −
i
2m

Fv
2ðsÞσμνqν;

Γa
μðq1; q2Þ ¼ Fa

1ðsÞγμγ5−
1

2m
Fa
2ðsÞqμγ5;

Γsðq1; q2Þ ¼ mFsðsÞ;
Γpðq1; q2Þ ¼ imFpðsÞγ5; ð4Þ

where σμν ¼ i½γμ; γν�=2 and s is the invariant mass of the
external current. The quantity Γxðq1; q2Þ in Eq. (3) is
obtained from the hard part of the form factors evaluated at
s ¼ 4m2 through

Γv ¼ ðFv
1 þ Fv

2Þjhard;s¼4m2 ;

Γa ¼ Fa
1jhard;s¼4m2 ;

Γs ¼ Fsjhard;s¼4m2 ;

Γp ¼ Fpjhard;s¼4m2 ; ð5Þ
which is discussed in more detail in the remainder of this
section.
The basic idea of Ref. [20] is to construct expansions of

the master integrals for various values of s=m2 with the help
of the corresponding differential equations. The uncon-
strained coefficients of the expansions are fixed by match-
ing two neighboring expressions at an intermediate point.
The starting point in Refs. [21,22] is s ¼ 0 where all
master integrals can be computed analytically. In order to
arrive at the threshold s ¼ 4m2 we perform expansions for
s=m2 ¼ 1; 2; 5=2; 3; 7=2, and 4.
The expansion around s=m2 ¼ 4 uses the variable

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

s
m2

r
: ð6Þ

It contains both even and odd powers of x accompanied by
lnðxÞ terms, since it comprises the contributions from all
regions present close to threshold. In particular, each loop
momentum can have one of the following scalings [9]1:

(i) hard (h): k0 ∼m, ki ∼m,
(ii) potential (p): k0 ∼ x2 ·m, ki ∼ x ·m,
(iii) soft (s): k0 ∼ x ·m, ki ∼ x ·m,
(iv) ultrasoft (u): k0 ∼ x2 ·m, ki ∼ x2 ·m.

For the matching coefficients we only need the region
where all loop momenta are hard. Here only even powers of
x and no lnðxÞ terms are present.
Using the scalings from above, we see that in each region

the integral is given as x−nϵ multiplied by a Taylor
expansion in x, with an integer n, which can be derived
from the scaling of the loop momenta in the respective
region. Here ϵ ¼ ð4 − dÞ=2 where d is the space-time
dimension. We can insert this ansatz into the system of
differential equations for the master integrals and obtain a

system of linear equations for the expansion coefficients.
For each region the system is reduced to a small set of
undetermined boundary constants with the help of a version
of KIRA [23,24] with FIREFLY [25,26] optimized for solving
systems without variables. After summing the contributions
from all regions we obtain again the results for the master
integrals in full kinematics. We can therefore numerically
match the yet undetermined boundary constants with the
numerical results computed in Ref. [21]. Substituting the
numerical solutions into the ansatz for the x−0 ϵ scaling
provides the master integrals in the hard expansion.
Let us in the following discuss the calculation in more

detail. At two-loop order we find the following scalings for
the different regions:

(i) x−0ϵ: (h-h),
(ii) x−2ϵ: (h-p), (h-s),
(iii) x−4ϵ: (h-u), (p-p), (s-s), (p-s),
(iv) x−6ϵ: (p-u), (s-u),
(v) x−8ϵ: (u-u),

where the list on the right of the colon specifies the scaling
of the two loop momenta. Some of the combinations might
vanish due to the presence of scaleless integrals. However,
in our approach we do not have to pay attention to this.
Since only the spacial parts get continued into (d − 1)
dimensions, potential and soft regions of the loop momenta
lead to the same ϵ-dimensional scalings. The pure ultrasoft
region ∼x−8ϵ does not contribute, which we checked by an
explicit calculation. For the two-loop calculation we there-
fore have to consider four independent expansions. Note
that the individual regions contributing to one of the x−nϵ

scalings might develop higher poles in the dimensional
regulator ϵ than the sum. These higher poles lead to
Sudakov-like double logarithms that are not present in
the threshold expansion considered here. We therefore do
not have to extend the ansatz to higher poles in ϵ compared
to the full calculation in Ref. [21].
At three loop order we have the scalings
(i) x−0ϵ: (h-h-h),
(ii) x−2ϵ: (h-h-p), (h-h-s),
(iii) x−4ϵ: (h-h-u), (h-p-p), (h-s-s), (h-p-s),
(iv) x−6ϵ: (h-p-u), (h-s-u), (p-p-p), (p-p-s), (p-s-s), (s-s-s),
(v) x−8ϵ: (h-u-u), (u-p-p), (u-p-s), (u-s-s),
(vi) x−10ϵ: (u-u-p), (u-u-s),
(vii) x−12ϵ: (u-u-u),
which means that we have to construct six independent
expansions since the pure-ultrasoft contribution vanishes.
After the reduction to boundary constants we are left with
(568, 125, 248, 402, 236, 51) undetermined coefficients for
the scalings x−0ϵ;…; x−10ϵ. They can be reduced by utilizing
information about the master integrals from the full calcu-
lation. On the one hand, we know some integrals analytically,
especially thosewhich do not depend on s. They can be fixed
from the expansion around s ¼ 0. Furthermore, some of the ϵ
poles also do not have a s dependence and thus also they are
available from the calculation performed for s ¼ 0. On the

1Note that in Ref. [9] the variable y ¼ 1 − s=ð4m2Þ ¼ x2=4 has
been used.
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other hand, we know the leading power in x for each integral
from the full result. This knowledge implies relationsbetween
the boundary constants from different regions which leads to
a reduction of the number of independent boundary constants
from 1630 to 578. They are determined as follows: After
obtaining the symbolic expansions for each region we equate
the sumof all regionswith the numerical evaluation of the full
result at s ¼ 3.75m2 from Ref. [21] and solve the resulting
linear system for the 578 boundary constants. In particular all
568 coefficients from the pure-hard regions of all 422 master
integrals are obtained by this procedure, whereas the regions
which scale as x−nϵ with n > 0 cannot be disentangled. This
is sufficient for the application in the present paper.
Let us mention that in case one wants to construct results

for each individual region further information is needed. It
can be obtained by determining for each region of every
master integral the leading power in x. Here the program
ASY.M [27,28] can be used. In this way one obtains relations
for each individual region instead of only for the sum of all
of them.
Nextwe insert the hard regions of themaster integrals into

the amplitudes for the form factors. It contains terms scaling
with inverse powers of ðs − 4m2Þ from the reduction of the
master integrals with full kinematics. It is a nontrivial check
that the limit s → 4m2 exists. In factwe have checked that all

inverse powers of ðs − 4m2Þ have coefficients below
3 × 10−11, which is the precision of our calculation.
Inserting the form factors into Eq. (5) we finally obtain
the vertex functions Γx entering the matching equation (3).
As a further check we keep the QCD gauge parameter ξ and
observe that it vanishes after renormalization.

III. THREE-LOOP MATCHING COEFFICIENTS

Once all ingredients for the left-hand side of Eq. (3) are
available we can solve it for cx order by order in αs. At one-
loop order all quantities with a tilde on the right-hand side
are equal to 1. At order α2s infrared divergences are left on
the left-hand side, which are absorbed into Z̃x. Finally, at
order α3s one has to take care of the interference term of Z̃−1

x
and the one-loop result of cx, which is needed up to order ϵ.
The remaining infrared divergences are again absorbed into
Z̃x. We parametrize the perturbative results in this section
by the strong coupling in the effective theory with nl active

quark flavors, which we denote by αðnlÞs .
Let us in a first step provide the results for the

renormalization constants that are obtained by subtracting
the remaining infrared divergences in a minimal way. For
the vector current we have

Z̃v ¼ 1þ
�
αðnlÞs ðμÞ

π

�2 CFπ
2

ϵ

�
1

12
CF þ 1

8
CA

�
þ
�
αðnlÞs ðμÞ

π

�3

CFπ
2

�
C2
F

�
5

144ϵ2
þ
�
43

144
−
1

2
l2 þ

5

48
Lμ

�
1

ϵ

�

þ CFCA

�
1

864ϵ2
þ
�
113

324
þ 1

4
l2 þ

5

32
Lμ

�
1

ϵ

�
þ C2

A

�
−

1

16ϵ2
þ
�
2

27
þ 1

4
l2 þ

1

24
Lμ

�
1

ϵ

�

þ Tnl

�
CF

�
1

54ϵ2
−

25

324ϵ

�
þ CA

�
1

36ϵ2
−

37

432ϵ

��
þ CFTnh

1

60ϵ

�
þOðα4sÞ; ð7Þ

which agrees with the explicit calculations in the effective theory from Refs. [14,16,29,30]. In Eq. (7) CF ¼ ðN2
c − 1Þ=ð2NcÞ

andCA ¼ 2TNc are the quadratic Casimir operators of the SUðNcÞ gauge group in the fundamental and adjoint representation,
respectively, nl is the number of massless quark flavors, and T ¼ 1=2. Furthermore we have Lμ ¼ lnðμ2=m2Þ and l2 ¼ lnð2Þ.
For the remaining three currents our results read

Z̃a ¼ 1þ
�
αðnlÞs ðμÞ

π

�2 CFπ
2

ϵ

�
1

24
CA þ 5

48
CF

�
þ
�
αðnlÞs ðμÞ

π

�3

CFπ
2

�
C2
F

�
215

864
−
l2
3

�
1

ϵ

þ CFCA

�
−

25

576ϵ2
þ
�
1

18
l2 þ

35

576
Lμ þ

1433

5184

�
1

ϵ

�
þ C2

A

�
−

1

48ϵ2
þ
�
5

36
l2 þ

1

72
Lμ þ

17

324

�
1

ϵ

�

þ Tnl

�
CF

�
5

216ϵ2
−

83

1296ϵ

�
þ CA

�
1

108ϵ2
−

53

1296ϵ

���
;

Z̃s ¼ 1þ
�
αðnlÞs ðμÞ

π

�2 CFπ
2

ϵ

�
1

24
CA þ 1

6
CF

�
þ
�
αðnlÞs ðμÞ

π

�3

CFπ
2

�
C2
F

�
65

216
−
1

3
l2

�
1

ϵ

þ CFCA

�
−

7

96ϵ2
þ
�
461

1296
þ 1

18
l2 þ

25

288
Lμ

�
1

ϵ

�
þ C2

A

�
−

1

48ϵ2
þ
�
17

324
þ 5

36
l2 þ

1

72
Lμ

�
1

ϵ

�

þ Tnl

�
CF

�
1

27ϵ2
−

29

324ϵ

�
þ CA

�
1

108ϵ2
−

53

1296ϵ

���
;
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Z̃p ¼ 1þ
�
αðnlÞs ðμÞ

π

�2 CFπ
2

ϵ

�
1

8
CA þ 1

4
CF

�
þ
�
αðnlÞs ðμÞ

π

�3

CFπ
2

�
C2
F

�
5

144ϵ2
þ
�
31

144
−
1

2
l2 þ

5

48
Lμ

�
1

ϵ

�

þ CFCA

�
−

5

96ϵ2
þ
�
199

432
þ 1

4
l2 þ

29

96
Lμ

�
1

ϵ

�
þ C2

A

�
−

1

16ϵ2
þ
�
2

27
þ 1

4
l2 þ

1

24
Lμ

�
1

ϵ

�

þ Tnl

�
CF

�
1

18ϵ2
−

11

108ϵ

�
þ CA

�
1

36ϵ2
−

37

432ϵ

��
þ CFTnh

1

60ϵ

�
: ð8Þ

Note that our method only provides numerical results for
the pole parts. However, the precision is sufficiently high
such that the analytic results can be reconstructed using the
partial sum of least squares (PSLQ) algorithm [31].
The renormalization constants are related to the anoma-

lous dimensions via

γx ¼
d lnðZ̃xÞ
d lnðμÞ ; ð9Þ

which leads to

γx ¼−4
�
αðnlÞs

π

�2

Z̃ð2;−1Þ
x −6

�
αðnlÞs

π

�3

Z̃ð3;−1Þ
x þOðα4sÞ; ð10Þ

where Z̃ða;bÞ
x denotes the contribution to Z̃ at order αasϵb.

For the perturbative expansion of cx we set the renorm-
alization scale of the strong coupling constant to μ2 ¼ m2

and write

cx ¼ 1þ αðnlÞs ðmÞ
π

cð1Þx þ
�
αðnlÞs ðmÞ

π

�2

cð2Þx

þ
�
αðnlÞs ðmÞ

π

�3

cð3Þx þOðα4sÞ: ð11Þ

The three-loop coefficient is further decomposed according
to the color structures as

cð3Þx ¼ CF½C2
Fc

x
FFF þ CFCAcxFFA þ C2

Ac
x
FAA

þ TnlðCFcxFFL þ CAcxFAL þ TnhcxFHL þ TnlcxFLLÞ
þ TnhðCFcxFFH þ CAcxFAH þ TnhcxFHHÞ�
þ singlet terms: ð12Þ

In the following we present result for cx where for
completeness also the one- and two-loop results are shown.
For the vector current our results read:

cð1Þv ¼−2CF;

cð2Þv ¼
�
−
151

72
þ 89

144
π2−

5

6
π2l2−

13

4
ζð3Þ

�
CACF

þ
�
23

8
−
79

36
π2þπ2l2−

1

2
ζð3Þ

�
C2
F

þ
�
22

9
−
2

9
π2
�
CFTnhþ

11

18
CFTnl

−
1

2
π2
�
1

2
CAþ

1

3
CF

�
CFLμ;

cvFFF ¼ 36.49486246þ
�
−

9

16
þ3

2
l2

�
π2Lμ−

5

32
π2L2

μ;

cvFFA ¼−188.0778417þ
�
−

59

108
−
3

4
l2

�
π2Lμ−

47

576
π2L2

μ;

cvFAA ¼−97.73497327þ
�
−
2

9
−
3

4
l2

�
π2Lμþ

1

6
π2L2

μ;

cvFFL ¼ 46.69169291þ 25

108
π2Lμ−

1

18
π2L2

μ;

cvFAL ¼ 39.62371855þ 37

144
π2Lμ−

1

12
π2L2

μ;

cvFHL ¼−
557

162
þ26

81
π2;

cvFLL ¼−
163

162
−

4

27
π2;

cvFFH ¼−0.8435622912−
1

20
π2Lμ;

cvFAH ¼−0.1024741615;

cvFHH ¼−
427

162
þ 158

2835
π2þ16

9
ζð3Þ: ð13Þ

The coefficient of the logarithmic contributions and the
coefficients cvFHL and cvFLL have been reconstructed using
our numerical expressions. They agree with the results
presented in Ref. [17]. Our numerical precision is not
sufficient to obtain the analytic expressions for cvFHH,
which we take from Ref. [17]. For all coefficients presented
in numerical form we have a precision of at least ten digits,
which is a significant improvement. For example, for the
nonfermionic coefficients the results in Ref. [17] read
cvFFF ¼ 36.55ð0.53Þ, cvFFA ¼ −188.10ð0.83Þ, and cvFAA ¼
−97.81ð0.38Þ.
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For the remaining three currents we have

cð1Þa ¼ −CF;

cð2Þa ¼
�
−
9

8
ζð3Þ þ 35

144
π2 −

101

72
−

7

12
π2l2

�
CACF

þ
�
−
27

16
ζð3Þ − 9

8
π2 þ 23

24
þ 19

24
π2l2

�
C2
F

þ
�
20

9
−
2

9
π2
�
CFTnh þ

7

18
CFTnl

þ π2
�
−

1

12
CA −

5

24
CF

�
CFLμ;

caFFF ¼ −4.764274486þ
�
−
155

288
þ l2

�
π2Lμ;

caFFA ¼ −83.88648515þ
�
−
1289

1728
−
1

6
l2

�
π2Lμ

þ 115

1152
π2L2

μ;

caFAA ¼ −63.00619439þ
�
−

17

108
−

5

12
l2

�
π2Lμ

þ 1

18
π2L2

μ;

caFFL ¼ 28.13543651þ 83

432
π2Lμ −

5

72
π2L2

μ;

caFAL ¼ 23.17119085þ 53

432
π2Lμ −

1

36
π2L2

μ;

caFHL ¼ −
415

162
þ 20

81
π2;

caFLL ¼ −
65

162
−

2

27
π2;

caFFH ¼ 0.8971357511;

caFAH ¼ −0.2169123942;

caFHH ¼ −0.01136428050; ð14Þ

cð1Þs ¼ −
1

2
CF;

cð2Þs ¼
�
−
5

4
ζð3Þ þ 1

48
π2 þ 49

144
−
1

2
π2l2

�
CACF

þ
�
−
11

4
ζð3Þ − 37

48
π2 þ 5

16
þ 1

2
π2l2

�
C2
F

þ
�
121

36
−
1

3
π2
�
CFTnh −

5

36
CFTnl

þ π2
�
−

1

12
CA −

1

3
CF

�
CFLμ;

csFFF ¼ −11.17444530þ
�
−
53

72
þ l2

�
π2Lμ;

csFFA ¼−83.13918787þ
�
−
443

432
−
1

6
l2

�
π2Lμþ

101

576
π2L2

μ;

csFAA¼−67.24288900þ
�
−

17

108
−

5

12
l2

�
π2Lμ

þ 1

18
π2L2

μ;

csFFL ¼ 30.10118322þ 29

108
π2Lμ−

1

9
π2L2

μ;

csFAL¼ 21.41321398þ 53

432
π2Lμ−

1

36
π2L2

μ;

csFHL ¼−
157

81
þ 5

27
π2;

csFLL ¼
73

324
−

1

27
π2;

csFFH ¼ 1.879249909;

csFAH ¼−0.3740808359;

csFHH ¼ 0.007237324266; ð15Þ

cð1Þp ¼ −
3

2
CF;

cð2Þp ¼
�
−3ζð3Þ þ 17

48
π2 −

17

48
− π2l2

�
CACF

þ
�
−
9

2
ζð3Þ − 79

48
π2 þ 29

16
þ π2l2

�
C2
F

þ
�
43

12
−
1

3
π2
�
CFTnh þ

1

12
CFTnl

þ π2
�
−
1

4
CA −

1

2
CF

�
CFLμ;

cpFFF ¼ −16.65729478þ
�
5

48
þ 3

2
l2

�
π2Lμ −

5

32
π2L2

μ;

cpFFA ¼ −181.0487647þ
�
−
145

144
−
3

4
l2

�
π2 þ 1

192
π2L2

μ;

cpFAA ¼ −104.3591595þ
�
−
2

9
−
3

4
l2

�
π2Lμ þ

1

6
π2L2

μ;

cpFFL ¼ 51.93841187þ 11

36
π2Lμ −

1

6
π2L2

μ;

cpFAL ¼ 39.92104383þ 37

144
π2Lμ −

1

12
π2L2

μ;

cpFHL ¼ −
76

27
þ 7

27
π2;

cpFLL ¼ −
41

108
−
1

9
π2;

cpFFH ¼ 3.081762039 −
1

20
π2Lμ;

cpFAH ¼ −0.8953812450;

cpFHH ¼ 0.06984121227: ð16Þ
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For the axial-vector, scalar, and pseudoscalar current
the terms proportional to nl and n2l can be found in
Ref. [32]. There, the nonlogarithmic terms of the coef-
ficients cxFFL and cxFAL only have a precision of two
significant digits, whereas we have a precision of at least
ten digits. Our analytic results for cxFHL and cxFLL agree
with [32].
After specifying the number of colors to three we have

for μ2 ¼ m2 and nh ¼ 1

cv≈1−
αðnlÞs

π
·2.66667þ

�
αðnlÞs

π

�2

½−44.5510þ0.407407nl�

þ
�
αðnlÞs

π

�3

½−2090.33þ120.661nl−0.822779n2l �

þ singlet terms;

ca≈1−
αðnlÞs

π
·1.33333þ

�
αðnlÞs

π

�2

½−29.3816þ0.259259nl�

þ
�
αðnlÞs

π

�3

½−1214.40þ71.3101nl−0.377439n2l �

þ singlet terms;

cs≈1−
αðnlÞs

π
·0.666667

þ
�
αðnlÞs

π

�2

½−30.2266−0.0925926nl�

þ
�
αðnlÞs

π

�3

½−1275.89þ69.5462nl−0.0467441n2l �

þ singlet terms;

cp≈1−
αðnlÞs

π
·2þ

�
αðnlÞs

π

�2

½−52.1381þ0.0555556nl�

þ
�
αðnlÞs

π

�3

½−2256.42þ125.924nl−0.492084n2l �

þ singlet terms: ð17Þ

For all four currents the quantum corrections are quite
sizable. For applications in the top quark sector, i.e., for
nl ¼ 5, the two- and three-loop corrections have the same
order of magnitude as the one-loop term. For nl ¼ 3 and
nl ¼ 4 the higher order corrections are even larger. Since
the matching coefficients on their own are no physical
quantities this is no principle problem. However, it shows
the importance of the three-loop corrections to cx, in
particular for cv, which has important applications in the
bottom [6,7] and top sector [5]. For example, if one
evaluates the decay rate for ϒð1SÞ → lþl− at the scale
μ ¼ 3.5 GeV the contribution of the three-loop corrections
to cv is larger than the leading order term. However, after
adding the remaining third-order contributions one arrives
at a net correction of about 3% [6,7].

IV. CONCLUSIONS

In this work we have computed the three-loop corrections
to the QCD-NRQCD matching coefficients for external
vector, axial-vector, scalar, and pseudoscalar currents. We
consider the corresponding quark form factors and compute
the pure-hard part of each master integral using the method
of Ref. [20] supplemented with the information from
expansions by regions [9]. We obtain precise numerical
results for the three-loop coefficients. For the vector current
we provide the first independent cross check for cv, which
has a significant numerical impact to the next-to-next-to-
next-to-leading order predictions for top-quark-pair produc-
tion in electron-positron annihilation close to threshold and
the leptonic decaywidth of theϒð1SÞmeson.Our new result
is several orders of magnitude more precise. The three-loop
results for ca, cs, and cp are new.
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