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We compute the three-loop nonsinglet corrections to the photon-quark form factors taking into account
the full dependence on the virtuality of the photon and the quark mass. We combine the method of
differential equations in an effective way with expansions around regular and singular points. This allows
us to obtain results for the form factors with an accuracy of about eight to twelve digits in the whole
kinematic range.
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Introduction.—Form factors are fundamental objects in
quantum chromodynamics (QCD) with a variety of appli-
cations. On the one hand, they are the simplest objects
which show a nontrivial infrared structure and thus form
factors are often used to develop and test all-order theorems
about the infrared singularities of scattering amplitudes in
QCD (see, e.g., Refs. [1–3]). On the other hand, form
factors play a crucial role as building blocks in a number of
observables which range from low energies to cross
sections at the Large Hadron Collider (LHC) at CERN.
They describe the universal structure of the ðZ⋆; γ⋆Þ → Q̄Q
vertex function, involving two on-shell quarksQ and vector
or axial-vector couplings of the vector bosons. Massive
form factors enter several processes involving heavy quarks
at hadron and eþe− colliders, such as t̄t production [4–6]
and gauge and Higgs boson decays [7–9], which clearly
require the inclusion of mass effects. Such processes can
probe deviations of the quark couplings from their values in
the standard model. Form factors contribute to the all-
virtual corrections to cross sections.
In quantum electrodynamics lepton masses are often

kept to regulate collinear singularities. Therefore massive
form factors take part also in the differential cross section of
low-energy lepton scatterings as for instance the elastic e-p
scattering [10,11], one of the main avenues for proton
radius measurements [12,13], or the μ-e scattering [11,14],
a process able to determine the leading hadronic contri-
bution to the muon anomalous magnetic moment [15–18].
For massless quarks three-loop corrections to the pho-

ton-quark form factor have been computed more than ten
years ago [19] (see also Refs. [20–23]) and only very

recently the complete four loop results became avail-
able [24,25]. Massive quark form factors are known at
two-loop order from Refs. [26–33]. At three loops only
partial results are available, namely all planar contributions
needed for the large-Nc limit (where Nc is the number of
colors in QCD) [30,34,35] and the fermionic contributions
with closed massless quark loops [33]. For the contribution
involving massive closed fermion loops a deep expansion
with at least 2000 terms around the on-shell photon limit has
been computed in Ref. [36]. Predictions for the high-energy
limit at four-loop order are known from Refs. [31,37].
The available results show an involved analytic structure

containing iterated integrals with the letters x, 1 − x, 1þ x,
and x − eiπ=3, where the relation between x and the photon
virtuality s ¼ q2 is given by

q2

m2
¼ −

ð1 − xÞ2
x

; ð1Þ

withm the mass of the heavy quark. A numerical evaluation
of the analytic expressions is possible using, e.g., ginac
[38,39]. However, depending on the phase space point it
might be time consuming and/or its numerical accuracy is
limited to a few digits only. Thus, in practice, one often
resolves to the construction of approximations which
enable a fast numerical evaluation. Moreover, the three-
loop results for the color structures which are not yet
available in analytic form cannot be expressed in terms of
simple iterated integrals. Rather, so-called elliptic integrals
are present as the fundamental building blocks. Currently
there is no ready-to-use approach for the numerical
evaluation of the corresponding mathematical functions
and thus especially here numerical approximations are
needed.
In this Letter, we present results for the three-loop form

factor with an external vector current. We consider QCD
with one massive and nl massless flavors and compute the
nonsinglet contribution, where the external quarks directly
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couple to the current, see also the sample Feynman
diagrams in Fig. 1. We perform the reduction to master
integrals and establish the differential equations for the
latter. They are used in order to construct expansions
around singular and regular points using analytic results
at s ¼ 0 as initial condition. In our calculation we keep the
symbols for the Casimir operators of SUðNcÞ and thus
obtain results for each individual color factor.
There are other methods which are based on difference or

differential equations accompanied by expansions [40–47].
Some of them have only been applied to individual master
integrals and they are still lacking the proof that they can
handle complicated physical problems with a few hundred
master integrals. A nontrivial application of Ref. [45] can
be found in Ref. [48] where two-loop mixed QCD-
electroweak corrections to the associated production of a
Higgs boson and a gluon have been computed. In this
Letter, we apply the method of Ref. [49] to a nontrivial
physical quantity and show that numerically precise results
can be obtained in the whole parameter space.
Calculation.—We consider the photon-quark vertex and

define the Dirac and Pauli form factors as

Γμðq1; q2Þ ¼ F1ðq2Þγμ −
i
2m

F2ðq2Þσμνqν; ð2Þ

with incoming momentum q1, outgoing momentum q2, and
q ¼ q1 − q2. The external quarks are on-shell and we have
σμν ¼ i½γμ; γν�=2. The color factor is a simple Kronecker
delta in the fundamental color indices of the external quarks
and it is suppressed for convenience. F1 and F2 can easily
be obtained by applying appropriate projectors.
Sample Feynman diagrams are shown in Fig. 1. We

generate the amplitudes with qgraf [50] and use q2e and
exp [51–53] to rewrite the output to FORM [54] notation
and map each diagram to a predefined integral family. In
this way we can express F1 and F2 as a linear combination
of scalar functions with twelve indices where nine corre-
spond to the exponents of propagators and the remaining
three to the exponents of irreducible numerators.

For each integral family we use Kira [55,56] with
Fermat [57] to reduce the scalar functions to master
integrals. In this step we take care to choose a good basis
such that for each entry in our integral tables the depend-
ence on the space-time dimension d ¼ 4 − 2ϵ and the
kinematic variables s andm2 factorizes in the denominators
[58,59]. This is done with the help of an improved version
of the program developed in Ref. [58]. Kira is also used to
minimize the number of master integrals over all 34
families. This allows us to express F1 and F2 in terms
of 422 master integrals.
In a next step we establish differential equations for the

master integrals using LiteRed [60,61] and Kira and
use the results for s → 0 as initial conditions. In fact, the
construction of the solution can be organized such that the
naive limit s ¼ 0 of a subset of the 422 master integrals is
sufficient to fix all unknown constants.
In the limit s ¼ 0 the vertex integrals reduce to two-point

on-shell integrals, which have been studied in Refs. [62,63].
We use the results for the corresponding master integrals
fromRef. [20] which are available up toweight 7. Because of
spurious poles in ϵ some of the on-shell master integrals are
needed to higher weight which can be constructed with the
help of Ref. [64] and PSLQ [65] (see also Ref. [36]). For the
current calculation a subset of integrals was needed up to
weight 9.
After fixing the initial conditions we can use the differ-

ential equations to obtain for each master integral an
expansion in s=m2 up to ðs=m2Þ75. For all other expansions
described below we have computed 50 expansion terms.
The expansions are constructed by inserting a suitable
ansatz into the differential equations and solving the
resulting linear system of equations in terms of a small
set of boundary conditions. In this context the use of finite
fields with a special version of Kira and FireFly
[66,67] was essential for our calculation. Starting from
s ¼ 0we move both to negative and positive values of s. To
do so we choose values s0=m2 ¼ 1 and s0=m2 ¼ −4 and
construct generic expansions with the help of the differ-
ential equations. They are matched to the s ¼ 0 expansion
by evaluating the latter numerically at s=m2 ¼ 1=2 and
s=m2 ¼ −2, respectively. This provides initial conditions
for the s0 expansions. In total we construct expansions
around the following 30 values (note that only one
expansion for large absolute values of s is necessary to
cover the limits s → �∞):

s0
m2

∈ f−∞;−32;−28;−24;−16;−12;−8;−4; 0; 1; 2; 5=2;

3; 7=2; 4; 9=2; 5; 6; 7; 8; 10; 12; 14; 15;

16; 17; 19; 22; 28; 40g ð3Þ

and perform the matching step-by-step starting from s ¼ 0.
In this way we can cover the whole s=m2 plane. For more

(a) (b) (c)

FIG. 1. Sample Feynman diagrams for the vector form factors
at three loops. Solid and curly lines denote quarks and gluons,
respectively. The external photon is represented by a wavy line.
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details on the “expansion and matching” method we refer
to Ref. [49].
There are several elements of the calculation which

require a significant amount of computer resources. Among
them is the reduction to master integrals, where the most
involved families required around one week of run-time on
eight cores, and the solution of the linear systems of
equations to construct series expansions, which took
roughly two days per regular expansion point on 20 to
40 cores.
At first sight it seems that the variable x introduced in

Eq. (1) is the proper variable to perform the expansions,
since the characteristic points s=m2 ¼ 0; 4;∞ correspond
to x ¼ 1;−1; 0. However, in practice it is more advanta-
geous to work in s=m2. This is also connected to the new
threshold at s=m2 ¼ 16 which appears for the first time at
three loops. It is mapped to x ¼ 4

ffiffiffi
3

p
− 7 ≈ −0.072 which

limits the radius of convergence of the variable x.
Let us in the following comment on the choice of s0 in

Eq. (3). Some values correspond to a particular kinematic
situation: s=m2 ¼ 4 and 16 correspond to the two- and
four-particle thresholds and m2=s ¼ 0 to the high energy
limit. Furthermore, as mentioned above, we compute the
initial conditions for s ¼ 0. To guarantee sufficient accu-
racy over the whole s=m2 range we have introduced further
expansions for positive and negative values of s. In the
differential equations we observe further singularities for
s=m2 ∈ f−4;−2;−1;−1=2; 1=2; 1; 2; 3; 16=3g. However,
they are spurious since the form factors are regular for
these values of s. Nevertheless, for some of them we have
constructed an expansion of the master integrals.
For all expansions the convergence around a given value

s0 is only guaranteed up to the next singular point in the
complex s plane. For example, for s0=m2 ¼ 22 we have
convergence for 16 < s=m2 < 28 and for s0=m2 ¼ −4 for
−12 < s=m2 < 4. Note that s=m2 ¼ 4, 16, and ∞ are
singular points of the differential equation which require a
power-log expansion. Furthermore, for s=m2 ¼ 4 and 16
we have an expansion in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − s=m2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − s=m2

p
,

respectively. For all other points simple Taylor expansions
are sufficient.
Often the convergence of a series expansion can be

enhanced by switching to a different expansion parameter.
One powerful method is based on Möbius transformations
as has already been discussed in Ref. [44]. Assumewewant
to expand around the point xk and there are singular points
of the differential equations at xk−1 and xkþ1 with
xk−1 < xk < xkþ1. Naively, the radius of convergence is
limited by the distance to the closer singular point.
However, the variable transformation

yk ¼
ðx − xkÞðxkþ1 − xk−1Þ

ðx − xkþ1Þðxk−1 − xkÞ þ ðx − xk−1Þðxkþ1 − xkÞ
ð4Þ

maps the points xk−1, xk, xkþ1 to −1, 0, 1. The reach of the
series expansion is therefore extended in the direction of the
farthest singularity although the convergence at the boun-
daries can be quite slow. We find this mapping indispen-
sable when constructing regular series expansions close to
singular points.
The form factors F1 and F2 develop both ultraviolet and

infrared divergences. The former are taken care of by
counterterms for the wave functions and mass of the heavy
quarks, which we renormalize on shell. Furthermore, the
strong coupling constant is renormalized in the modified
minimal subtraction (MS) scheme. The remaining infrared
poles are described by a universal function independent of
the external current, the cusp anomalous dimension Γcusp,
which has been computed to three-loop accuracy in
Refs. [68,69]. It is used to construct a MS-like Z factor
(for details see, e.g., Ref. [70]) such that the combination

F1;2 ¼ ZFf
1;2 ð5Þ

leads to the ultraviolet and infrared finite form factors Ff
1;2.

We introduce their perturbative expansion as

Ff
1;2 ¼

X
n≥0

Ff;ðnÞ
1;2

�
αs
π

�
n
; ð6Þ

where Ff;ð0Þ
1 ¼ 1 and Ff;ð0Þ

2 ¼ 0. Since Z is expressed in
terms of the strong coupling in the effective nl-flavor theory

we have αs ≡ αðnlÞs ðμÞ in Eq. (6). In the next section we

discuss results for Ff;ð3Þ
1 and Ff;ð3Þ

2 .
Results.—The results from our calculation are expan-

sions around the values s0 in Eq. (3). Thus, we can define
the form factors F1 and F2 piecewise by these expansions.
We choose for the renormalization scale μ2 ¼ m2.
In the following, we concentrate on F1 and present

results for the renormalized and infrared-subtracted form
factor. In Fig. 2 we illustrate the results for the three
nonfermionic color structures C3

F, C
2
FCA, CFC2

A, where CF
and CA are the Casimir operators of the fundamental and
the adjoint representation, respectively, and present results

(b)(a)

FIG. 2. The color structures C3
F, C2

FCA, CFC2
A of Ff

1 as a
function of s. We show results for s < 0 (a) and s > 4m2 (b).
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for s < 0 and s > 4m2. For s ¼ 0we haveF1 ¼ 0 as can be
seen in plot (a). In plot (b) one observes the influence of the
Coulomb singularity even for s=m2 ≈ 10. The four-particle
threshold is much less pronounced. In the high-energy
region, both for s > 0 and s < 0 the form factor contains
logarithms up to sixth order.
We estimate the accuracy of our result from the numeri-

cal pole cancellations of the renormalized and infrared
subtracted form factor. For s > 4m2 the quadratic and
linear 1=ϵ poles cancel with a relative precision of 10−12

and 10−10, respectively. Assuming a similar progression we
estimate that for the finite term we have at least eight
significant digits for the coefficients of each color factor.
In the regions 0 < s < 4m2 and s < 0 the accuracy is

significantly higher and in general exceeds twelve signifi-
cant digits. Also for the fermionic color structures a notably
higher accuracy is reached.
In a next step we consider the special kinematic points

s ¼ 0; 4m2; 16m2 and �∞ and present (numerical) expan-
sions using the genuine results of our approximation
methods. In this Letter we restrict ourselves to the non-
fermionic color factors. In the Supplemental Material [71]
we present results for the contributions which contain a
closed heavy quark loop. The remaining fermionic con-
tributions are available in the literature [33,70].
In the static limit we construct an analytic expansion up

to s67 from the boundary values at s ¼ 0. The first two
expansion terms are given by

Ff;ð3Þ
1 js→0 ¼

�
CAC2

F

�
19a4
2

−
π2ζ3
9

þ 17725ζ3
3456

−
55ζ5
32

þ 19l42
48

−
97

720
π2l22 þ

29π2l2
240

−
347π4

17280
−
4829π2

10368
þ 707

288

�

þ C2
ACF

�
−a4 þ

7π2ζ3
96

þ 4045ζ3
5184

−
5ζ5
64

−
l42
24

þ 67

360
π2l22 −

5131π2l2
2880

þ 67π4

8640
þ 172285π2

186624
−
7876

2187

�

þ C3
F

�
−15a4 −

17π2ζ3
24

−
18367ζ3
1728

þ 25ζ5
8

−
5l42
8

−
19

40
π2l22 þ

4957π2l2
720

þ 3037π4

25920
−
24463π2

7776
þ 13135

20736

��
s
m2

þO
�
s2

m4

�
þ fermionic contributions; ð7Þ

where l2 ¼ logð2Þ, a4 ¼ Li4ð1=2Þ, and ζn is Riemann’s zeta function evaluated at n.
The first two terms for the high-energy expansion of the nonfermionic color structures read

Ff;ð3Þ
1 js→−∞ ¼ 4.7318C3

F − 20.762C2
FCA þ 8.3501CFC2

A þ ½3.4586C3
F − 4.0082C2

FCA − 6.3561CFC2
A�ls

þ ½1.4025C3
F þ 0.51078C2

FCA − 2.2488CFC2
A�l2s þ ½0.062184C3

F þ 0.90267C2
FCA − 0.42778CFC2

A�l3s
þ ½−0.075860C3

F þ 0.20814C2
FCA − 0.035011CFC2

A�l4s þ ½−0.023438C3
F þ 0.019097C2

FCA�l5s
þ ½−0.0026042C3

F�l6s − f−92.918C3
F þ 123.65C2

FCA − 47.821CFC2
A þ ½−10.381C3

F þ 2.3223C2
FCA

þ 17.305CFC2
A�ls þ ½4.9856C3

F − 19.097C2
FCA þ 8.0183CFC2

A�l2s
þ ½3.0499C3

F − 6.8519C2
FCA þ 1.9149CFC2

A�l3s þ ½0.67172C3
F − 0.91213C2

FCA

þ 0.24069CFC2
A�l4s þ ½0.13229C3

F − 0.051389C2
FCA þ 0.0043403CFC2

A�l5s
þ ½0.0041667C3

F − 0.0010417C2
FCA − 0.00052083CFC2

A�l6sg
m2

s
þO

�
m4

s2

�
þ fermionic contributions; ð8Þ

with ls ¼ log½m2=ð−s − iδÞ�. The leading logarithmic con-
tributions of the order αns log2nðm2=sÞ are given by the
Sudakov exponent [72,73] exp½−CFαs=ð4πÞ × log2ðm2=sÞ�
which is reproduced by our expansions. In fact, in our
calculation we can even reconstruct the analytic results of
the coefficients which are given by

Ff;ð3Þ
1 ¼−

C3
F

384
l6s−m2

s

�
C3
F

240
−
C2
FCA

960
−
CFC2

A

1920

�
l6sþ���: ð9Þ

In Eq. (8) they are shown in numeric form. Note that also
the leading logarithms of the mass corrections m2=s
perfectly agree with Ref. [74] where the results in
Eq. (9) have been obtained using an involved asymptotic
expansion of the three-loop vertex diagrams. Our approach
provides the whole tower of logarithms and also higher
order m2=s contributions. We estimate the accuracy of the
nonlogarithmic term in Eq. (8) to ten digits. For the
subleading terms the accuracy decreases. Note, however,
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that we use the s → ∞ expansion only for js=m2j≳ 45 and
that 1=453 ≈Oð10−5Þ.
Let us next discuss the thresholds at s ¼ 4m2 and

s ¼ 16m2. Close to the two-particle threshold F1 develops
the famous Coulomb singularity with negative powers in
the velocity of the produced quarks, β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p
, up

to third order multiplied by logðβÞ terms. Close to threshold
it is interesting to consider the combination of F1 and F2

3

2
Δ ¼ jF1 þ F2j2 þ

jð1 − β2ÞF1 þ F2j2
2ð1 − β2Þ ; ð10Þ

which is closely related to the cross section of heavy quark
production in electron positron annihilation via σðeþe− →
QQ̄Þ ¼ σ0β3Δ=2 with σ0 ¼ 4πα2Q2

Q=ð3sÞ, where α is the
fine structure constant andQQ is the fractional charge of the
massive quarkQ. For β → 0 real radiation is suppressed by
two powers of β which allows us to provide the first two
terms in the expansion for each color factor. Our result for
the third order correction Δð3Þ reads

Δð3Þ ¼ C3
F

�
−
32.470
β2

þ 1

β
ð14.998 − 32.470l2βÞ

�

þ C2
ACF

1

β
½16.586l22β − 22.572l2β þ 42.936�

þ CAC2
F

�
1

β2
ð−29.764l2β − 7.770339Þ

þ 1

β
ð−12.516l2β − 11.435Þ

�
þOðβ0Þ

þ fermionic contributions; ð11Þ

with l2β ¼ logð2βÞ. Our numerical results reproduce the
analytic expressions from Ref. [75] (see also Refs. [76,77])
with at least 13 digits accuracy.
Four-particle thresholds are present in diagrams which

contain a closed heavy quark loop but also in purely gluonic
diagrams like the one in Fig. 1(b). Interestingly it has a
smooth behavior. In fact, we observe the first nonanalytic
terms at order ðβ4Þ9 with β4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16m2=s

p
. Note that the

massive four-particle phase-space,which is one of ourmaster
integrals, already provides a factor ðβ4Þ7. Furthermore, our
expansions of F1 and F2 up to ðβ4Þ50 do not contain any
log β4 terms although many of the master integrals contain
such terms.
Finally, we want to mention that we have performed the

calculation for general QCD gauge parameter ξ and have
checked that ξ cancels in the renormalized form factors.
Note that both the bare three-loop expressions and the
quark mass counterterm contributions depend on ξ.
Furthermore, we can specify our result to the large-Nc
limit and compare against the exact results from Ref. [30].
In this limit only about 90 planar master integrals contribute

and we observe a significantly increased precision of our
result. In fact, in the whole s=m2 region we can reproduce
the exact result with at least 14 digits.
Conclusions.—In this Letter, we present for the first time

results for the nonsinglet three-loop massive photon-quark
form factors taking into account all color structures. We use
the methods based on “expansion and matching” as
introduced in Ref. [49] and obtain numerical approxima-
tions in the whole s=m2 range. Based on the comparison to
the partially known exact results and on internal cross
checks of the method we estimate the accuracy to at least
eight significant digits above the s ¼ 4m2 threshold and to
about twelve digits below. Note that, if required, a
systematic improvement is possible by adding more inter-
mediate matching points. The application to a physical
quantity with a nontrivial analytic structure shows the
effectiveness of our method.
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of the Mathematica code from Ref. [58]. This research
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