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Livestock-derived food products constitute about 35% of 
the agricultural gross domestic product (GDP) in north 
sub-Saharan Africa (NSSA)1,2 and support the food security 

and livelihood of millions of people3. Within the livestock sector, 
dairy farming, which contributes ∼28% to the livestock sector GDP 
(ranging from 12% in West Africa to 45% in East Africa)4, is a prom-
ising livelihood option for poor households in NSSA. Moreover, 
dairy products contribute to food security of many communities 
in the arid and semi-arid lands by supplying essential nutrients5, 
and provide ∼5% of the total energy requirements of households 
in NSSA6. The majority of milk production in SSA occurs in NSSA 
(∼86% of total SSA milk production in 2019–2020), where the 
production has increased substantially over the past four decades 
(by ∼3.3% per year, reaching ∼30 Mt, with ∼65% of the total milk 
production coming from cattle, ∼25% from small ruminants and 
∼10% from camels)6. This production increase is largely driven by 
increased livestock population rather than increased livestock pro-
ductivity. Demand for milk has increased by 4.0% per annum in the 
last decades, pushed by both human population growth (of 2.8% per 
annum) and changes in per-capita consumption (0.8% per annum)7. 
Demand for dairy products is projected to triple by 2050 relative to 
the consumption levels of 20008. Most of the supply (∼90%) comes 
from traditional mixed crop–livestock and extensive pastoral sys-
tems9. However, the ability of these systems to sustainably produce 
sufficient milk to meet these demands is increasingly being chal-
lenged by the impacts of climate-related stressors on feed produc-
tion, water access, heat stress and disease risks10,11.

The climate in NSSA has already changed during the past several 
decades and is expected to continue to change12–22. Such changes are 

expected to affect livestock feed availability23,24, water resource avail-
ability16,25 and thermal comfort26,27 in many of the drylands in NSSA. 
Analysis of historical (1981–2010) and future climate projections 
(2021–2050 and 2071–2100), for example, shows that ∼11–15% of 
current milk production in the East Africa occurs in areas where the 
frequency of detrimental heat stress events are expected to increase 
significantly (P ≤ 0.05) by 2071–210027.

Given the likely impacts of climate change on livestock systems, 
and the fact that pastoralist societies in the region are among the 
most vulnerable groups in the world28,29, a key question regarding 
sustainable milk production is whether current livestock systems 
are appropriate for dealing with future environmental challenges. 
When considering adaptation options, it is necessary also to take 
environmental impacts into account because dairy farming in SSA 
already maintains the highest greenhouse gas (GHG) emissions per 
kg of fat and protein corrected milk (FPCM) in comparison to other 
parts of the world (7.5 CO2 equivalent (CO2e) per kg FPCM versus 
a global average of 2.4)30. There have been multiple reports docu-
menting where pastoralist communities in drylands of NSSA (for 
example, Wodaâbe in Niger, Massaï in Kenya, Borana in Ethiopia, 
Nuer in South Sudan, and Fulani in West Africa) have adjusted their 
livestock composition in response to environmental extremes and 
changing ecological conditions, mostly by shifts from cattle to small 
ruminants (mainly goat) and/or camels31–34. Browsers (that is, cam-
els and goats) in some pastoralist communities are preferred over 
grazers (that is, cattle) due to their greater climate resilience, result-
ing from their higher tolerance to drought and feed scarcity, as well 
as their capacity to produce milk and meat in all seasons33,35–38. The 
shifting preference for browsers (that is, favouring camels and goats 
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over cattle) due to recent climate variability/change, and associated 
feed and water shortage was confirmed by over 71.5% of the inter-
viewed households from a survey of the Borana community from 
Isiolo County, northern Kenya39.

Whereas different livestock species have different climate resil-
ience and tolerances40–46, location-specific data are required to assess 
where shifts in herd composition from currently cattle-dominated 
systems are needed to maintain or even increase dairy production 
in semi-arid and arid systems under climate change. Therefore, the 
aims of this study are (1) to assess where in the drylands of NSSA 
these shifts in herd composition are most likely to occur as an adap-
tive response to changes in climatic and biophysical conditions, and 
(2) to determine the possible impact of shifting dairy production 
from cattle to more climate-resilient goats and camels, in terms of 
aggregate milk production and environmental sustainability.

Results
Spatial and temporal distribution of environmental changes 
driving shifts in herd composition. For the current study, the 
annual dry matter biomass production (DMP; Modelling DMP), 
water accessibility (using the water accessibility index (WAI); 
Modelling WAI in the Methods) and heat stress (HS) frequency 
(Modelling HS frequency) were assessed for the period 2001–2020 
using long-term climate and remotely sensed data for dryland 
NSSA (Datasets used in the Methods). Fig. 1 shows the simulated 
long-term averages of the three components and their regional 
trends over the 2001–2020 period.

The long-term average annual DMP in the study area was 
∼30 t ha−1 yr−1, ranging from almost zero in more arid lands of the 
north to ∼53 t ha−1 yr−1in the southern parts of NSSA. Trend analysis 
(Statistical test) showed that, apart from the greening zone in the 
Sahel47 (∼19% of the study area), there were significant decreasing 
trends (P ≤ 0.05) in DMP observed in ∼9% of the study area.

The annual WAI follows a different pattern and is related to the 
presence of water bodies, with an average of ∼0.04 for the whole 
region. Areas with low (0–0.2) and high (0.8–1) WAI cover ∼80% 
and ∼3% of the study area, respectively (Fig. 1b). The results 
showed a significant decreasing trend (P ≤ 0.05) in WAI in ∼15% of 
the study area. However, it should be noted that our WAI does not 
account for the presence of wells and groundwater resources due 
to lack of data and because surface water represents the dominant 
water source for livestock in NSSA.

The average frequency of detrimental HS events for milk pro-
duction during 2001–2020 was estimated at 77 days per year (∼21% 
of the year), and was more frequent in coastal areas of the Greater 
Horn region, where it exceeds 50% of the days in a given year.  
Figure 1 also shows that over the past two decades, the frequency 
of HS events detrimental to milk production has significantly 
increased (P ≤ 0.05) in ∼38% of the study area.

We used the criteria explained in Data analysis to assess where 
the changes in the aforementioned indicators of DMP, WAI and HS 
have significantly worsened the climatic and biophysical conditions 
for milk production from cattle in the Sahel and Greater Horn study 
area. Our results indicate that conditions have recently worsened in 
17% of the study area (∼1.7 million km2) due to changes in environ-
mental conditions (Fig. 2). The affected area is home to ∼14.2 million  
cattle, ∼18.11 million goats and ∼2.99 million camels.

To provide corroboration and documentation of shifts in herd 
composition in the region, we conducted a comprehensive review of 
case studies for areas where pastoralists have already begun shifting 
from cattle to goats and camels to sustain their livelihood activi-
ties amid changing environmental conditions (case studies areas 
shown by dashed boxes in Fig. 2). We found ten cases in dryland 
NSSA where the transition from cattle to goats and camels is already 
evident (East Pokot and Isiolo County in Kenya; Ngorongoro in 
Tanzania; Afar, Yabelo, Moyale and Jijiga in Ethiopia; Somaliland in 
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Fig. 1 | Averages and regional trends of DMP, WAI and HS. a–c, Long-term average annual DMP (a), WAI (b) and HS (c). d–f, Regional significant trends 
(P ≤ 0.05) in DMP (d), WAI (e) and HS (f) over the past two decades (2001–2020).
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Somalia; Misseriyya pastoralists in Sudan; Kaduna and Kano States 
in Nigeria) and these overlap with our identified areas of deteriorat-
ing conditions. On average, according to the Gridded Livestock of 
the World, v.3 (GLW3), dairy livestock species composition in these 
areas consisted of ∼41% cattle, ∼50% goat and ∼9% camel in 2010 
(for detailed information on dairy livestock species composition in 
each subregion, see Supplementary Table 1).

Consequences of shifting herd composition in areas with 
expected environmental challenges. We modelled the impact of 
shifting livestock species composition on aggregate milk production 
and water/feed consumption of all dairy livestock across dryland 
NSSA. Furthermore, we assessed environmental impacts of shifts 
in herd composition across all species in the region. We prioritized 
milk production, followed by water/feed consumption and finally 
GHG emissions to identify the ‘ideal’ herd composition with the 
following features: (1) maximum productivity in terms of aggregate 
milk production, (2) lowest feed/water consumption and (3) low-
est ruminant GHG emission across all three species in the entire 
study area. We also tested three extreme scenarios of shifting herd 
composition by considering the maximum possible reduction of 
cattle population in favour of camels and/or goats. We assumed that 
for arid regions all cattle may be replaced by camels and/or goats, 
while for semi-arid regions only half of the cattle population may 
be replaced. The latter scenarios were conducted to assess trade-offs 
among different possible herd compositions in the region.

Results shown in Fig. 3 demonstrate that, overall, decreasing cat-
tle population by ∼24% and increasing goat and camel population by 
∼14 and ∼10%, respectively, resulted in an ideal herd composition 
across all metrics assessed. Reducing the current cattle population  

by ∼5.9 million and increasing goat and camel populations by  
∼7.7 million and ∼1.2 million, respectively, not only achieves a slight 
increase in aggregate milk production (+0.14 Mt), but also results in 
an effective reduction in water (−1,683.6 million m3) and feed con-
sumption (−404.3 Mt), and GHG emissions (−1,224.6 MtCO2e). In 
addition to ‘idealized’ scenarios where outcomes were optimized 
for both milk production and environmental benefits, we ran three 
‘extreme’ scenarios that did not optimize based on all metrics. For 
these scenarios, we assumed that the shift from cattle occurred at 
the maximum possible rate (that is, 100% to camel, 100% to goat, 
50% to camel/50% to goat), as shown in Fig. 3. The three ‘extreme’ 
scenarios resulted in reduced benefits compared with the ‘idealized’ 
scenarios where all metrics were considered (for detailed results for 
each subregion, see Supplementary Table 1). For example, in case of 
the 100% to goat scenario, although replacing 100% of cattle with 
goats has advantages in terms of feed usage (−15%), water con-
sumption (−33%) and GHG emission (−9%), milk production in 
this scenario would drop by 26%.

Discussion
Environmental changes have already undermined food security 
in cattle-dominated systems in dryland NSSA48–50. In general, this 
could be dealt with by reducing the number of cattle in areas where 
challenges are expected. Reductions in cattle could be accomplished 
either by shifting towards other, non-meat-based diets, or by shift-
ing toward other livestock species, which could improve both 
food security and reduce emissions at the regional level. However, 
although reducing animal-sourced proteins has been shown to be 
important in improving diet and reducing emissions from intensive 
livestock systems in the Global North51, such reductions in NSSA 
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Fig. 2 | Locations in dryland NSSA where the conditions have become worse for cattle milk production. Quadrats A–J show the location of 10 case studies 
reporting shifts in herd composition from cattle to goats and camels: A, East Pokot, Kenya35,109–111; B, Isiolo County, Kenya39,109–111; C, Afar region, Ethiopia112–114; 
D, Ngorongoro, Tanzania115,116; E, Yabelo, Ethiopia112,113; F, Moyale, Ethiopia112,113,117; G, Jijiga, Ethiopia112,118; H, Guban zone, Somalia (Somaliland)119; I, Misseriyya 
communities, Sudan120–122; J, Kaduna and Kano states, Nigeria123,124. a–c, The shares for quadrats A–C.

Nature Food | VOL 3 | July 2022 | 523–531 | www.nature.com/natfood 525

http://www.nature.com/natfood


Articles Nature Food

and developing countries more generally need to be weighed against 
the critical role that animal proteins play in nutrition, particularly 
in pastoralist and agropastoral communities where undernutrition 
and malnutrition are common52. Therefore, achieving these goals 
through reduced consumption of animal-sourced protein is not 
appropriate in many parts of dryland NSSA53. A more viable option 

in these areas would be to change herd composition in favour of 
species that perform better under harsh environmental conditions 
(that is, camel and goat)54, while devoting more research to these 
issues. To fill the current knowledge gaps associated with simulta-
neous changes in climate and feed and water resource availability, 
this study uses the most reliable datasets available to demonstrate 
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where in the study region shifts in herd composition are likely to be 
more pronounced (based on climatic and biophysical conditions), 
and to what extent switching from grazing- to browsing-dominated 
livestock may be beneficial in terms of milk production, water 
and feed consumption, and GHG emissions. Based on our results, 
milk production from cattle is expected to become more chal-
lenging in approximately one-fifth of the region due to changes in 
DMP, WAI and HS. The results of optimizing the herd composi-
tion in these regions indicate that shifting dairy production toward 
climate-resilient species (that is, goats and camels) may represent a 
‘win–win’ scenario for dryland NSSA that not only increases aggre-
gate milk production, but also decreases the environmental foot-
print of milk production in terms of water use, feed consumption 
and GHG emissions at the regional scale.

Although we tried to comprehensively cover possible drivers, 
there may be other potential drivers such as changes in woody 
cover and groundwater level affecting herd composition for which 
there is limited data and process understanding at present. Based 
on available information about changes in woody cover derived 
from satellite passive microwave observations55, there has been an 
increasing trend in woody cover in ∼46.5% of areas where chal-
lenges are expected (in 38% and 55% of subregions located in arid 
and semi-arid climate zones by 0–5% (on average +0.47%) and 
0–14% (on average +0.51%), respectively) between 1992 and 2011. 
Although we did not consider this as a potential driving factor for 
shifts in herd composition due to the lack of spatially explicit data 
on changes in woody vegetation, the results reported here support 
the hypothesis that shifting dairy production to camels and goats 
may be more compatible with increases in woody vegetation56. With 
regard to groundwater as another source for watering of livestock, 
checking the output of the WaterGAP v.2.2d model for groundwa-
ter level changes during 2001–201657 reveals that, for the majority 
of the areas where challenges are expected (∼90%), no significant 
changes (P ≤ 0.05) were reported, while the trend was significantly 
(P ≤ 0.05) increasing or decreasing in ∼8% and ∼2% of the region, 
respectively. Nevertheless, there is little to no reliable, comprehen-
sive data on how much groundwater is used for the livestock sector, 
and how infrastructure for groundwater supply has changed in the 
last several decades58,59.

In this study, it was assumed that energy values for milk across 
species were similar (262, 270 and 259 kJ per 100 g of milk for cattle, 
goat and camel, respectively5). However, other studies have shown 
that the chemical composition of milk (that is, fat, protein, ash, vita-
mins, etc.) from livestock differs between species60–65 depending on 
feeding practice, breed differences, lactation stage, management, ana-
lytical procedures, etc.66–69. In general, camel milk is known for hav-
ing lower saturated fat and lactose, and higher minerals and vitamins 
(especially vitamin C and B vitamins) compared with cattle milk70.

Although our study focuses on the dairy sector, it is important to 
note that these recommendations may also affect other roles livestock 
plays in rural communities. This is specifically true for the meat sec-
tor, where according to a recent study for the post-2020 period, the 
percentage share of beef supplied by the dairy sector in SSA is required 
to increase by 8% (from 69% to 77%)71 to meet overall demand for 
non-dairy animal proteins. In this way, both camel and goat, known 
as adapted multipurpose animals, could potentially play vital roles as 
meat protein sources. According to the FAO statistics for 2020, cat-
tle, small ruminants and camels contributed ∼36%, ∼12% and ∼3% 
to total meat production in NSSA, respectively. It is notable that the 
growth rate of camel and goat meat production in NSSA was higher 
than for cattle (camel, +4.7% yr−1; goat, +3.8% yr−1; cattle, +2.5% yr−1)6. 
Camel meat is nutritionally comparable to beef, with lower intramus-
cular fat and cholesterol content, and higher iron content72.

A shift from grazers to browsers might also affect other ecosys-
tem services. Some research indicates that long-term browsing by 
livestock (that is, camels and goats) and wildlife species in dryland 

ecosystems may support more diverse vegetation in general and a 
higher proportion of pasture grasses available for grazing livestock 
specifically73. Thus, it may also be profitable for people in areas that 
are currently not projected to be negatively affected by changes in 
environmental conditions to increase their livestock diversity to 
strengthen their resilience against climate extremes.

Additionally, there are economic advantages from multispecies 
pastoralism because income diversification allows herders to better 
cope with economic, political and ecological instabilities. In some 
case studies, for example, it was shown that many households in 
the three most important Ethiopian pastoralist communities (the 
Afar in the northeast, the Borana in the south and the Somali in the 
east and southeast) have already diversified their income sources 
from livestock, to the extent that there are differences in household 
income depending on the extent of their engagement in multispe-
cies herding38,74. Marketing and customer preferences for different 
goat and camel products vary greatly from one region to another, 
between rural and urban communities with different socioeconomic 
standards, and between different ethnic groups, and are changing 
over time. While in some regions milk production is of outstand-
ing economic importance due to growing customer demand, in 
other regions meat production is the main revenue for livestock 
producers. For example, in Samburu County, Kenya, where camel 
rearing was not common historically, it has been reported that cur-
rently households prefer camel milk to other types of milk75. In the 
last decade, the market for goat and camel products has also sub-
stantially expanded in NSSA with increased demand and growing 
awareness of the health benefits of these products (specifically in 
the case of camel milk/meat)76. For instance, rapid growth in the 
demand for camel milk and the camel milk value chain has been 
reported in Somalia77. Nevertheless, there are still economic barriers 
to shifting from dairy cattle to goat or camel, particularly because 
female camels are more expensive than dairy cattle. For example, 
in Kenyan livestock markets in 2021, one camel cost US$421–526, 
which was equivalent to ∼2–3 cattle or ∼10 goats78. Another bar-
rier to adoption of goats and camels is lack of knowledge and skills 
related to animal husbandry and management practices, and the 
start-up costs of purchasing additional equipment and technologies 
needed for goat and camel production. For instance, when shifting 
from cattle to camel, although a mature camel may offer a higher 
rate of economic return than cattle and goats (depending on farm 
type, livestock breed, feeding situation, location, etc.), camels may 
have financial drawbacks due to their lower reproductive rate com-
pared with other species, which is due to their relatively late puberty 
(∼3 yr) and longer calving interval (∼2 yr).

Although adapting milk production systems by changing the 
herd composition holds promise as an effective adaptation strategy 
against climate change while also creating environmental benefits, 
there are multiple challenges that must be overcome to facilitate 
uptake of these adaptation practices among livestock keepers in the 
region. Importantly, there should be a clearer policy framework in 
place to effectively support pastoralists and other livestock keepers 
through the development of the goat and camel dairy sectors at vari-
ous scales (national, regional and international). Since our current 
knowledge of goat and camel production systems at local to regional 
scales remains insufficient compared with dairy cattle production 
in NSSA, livestock value chain actors and research organizations 
should employ a multisectoral approach that prioritizes future 
research on breeding, disease control and nutrition services for 
these species. For instance, future breeding should emphasize both 
heat-tolerant cattle breeds and increasing goat/camel milk yields. 
Finally, improvements in goat and camel dairy supply chains—such 
as processing technologies to improve dairy goat and camel product 
markets, facilities to transport milk to local markets79,80, and distri-
bution and processing infrastructure for output markets—are essen-
tial for harnessing the full potential of shifts in herd composition  
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and realizing the vision of sustainable and food-secure dairy pro-
duction in NSSA by 2030.

Methods
Study area. The study area for the current research comprised arid and semi-arid 
zones81 in the Sudano-Sahel and Greater Horn of African regions of NSSA (defined 
in this study as 5°–20° N, 20° W–55° E) covering an area of ∼10 million km2. 
Supplementary Fig. 1 shows the average climate conditions for the study area. 
According to the GPWv4, the human population in the study area in 2010 was 
estimated to be around 256 million inhabitants82, mostly dependent on crop 
farming and livestock-husbandry activities for their livelihoods83. According to the 
GLW3 database, the total populations of cattle, goats and camels in the region were 
approximately 78, 105 and 14 million, respectively84.

Datasets used. Climate dataset. The climatic data required for this analysis, that 
is, air temperature (°C) and the relative humidity (%) (Modelling HS frequency), 
were obtained from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis v.5—Land (ERA5-Land) database85,86.

Livestock population dataset. The total number of livestock in the study area have 
been extracted from the GLW3 database84. This dataset is a snapshot of the total 
number of cattle and goats per pixel for the year 2010. Furthermore, in this study 
the camel density map includes dromedary and Bactrian camel distribution, and 
is an unpublished model based on the methodology described in Robinson et al.87 
(Supplementary Fig. 2).

Livestock milk supply and demand. To estimate supply and demand for milk, a global 
dataset provided by the FAO Global Perspective Studies Unit88 was used. The dataset 
includes estimates of milk consumption, production, import and export, in 2000 and 
2030, and their absolute and proportional changes (with a resolution of 0.05°).

Length of growing period. A dataset for the start and the end of the growing  
season, based on Normalized Difference Vegetation Index (NDVI) time series89, 
was used for quantifying the DMP from remote sensing data (Modelling DMP).

Remote sensing data. The satellite products used in this study were acquired 
successively from the VEGETATION sensor of the SPOT4 and SPOT5 (Satellite 
Pour l’Observation de la Terre) and PROBA-V (Project for On-Board Autonomy–
Vegetation) satellites via the Copernicus Global Land Service (CGLS) platform. 
The different products are:
•	 DMP (kg ha−1 d−1) represents the overall growth rate or dry biomass increase 

of the vegetation and is directly related to ecosystem net primary productivity. 
This is retrieved using Monteith’s90 model to calculate the instantaneous daily 
DMP (kg ha−1 d−1), as follows: 
DMP = RG × εi × εc × εb × 10,000 
where RG = the incident solar radiation at the Earth’s surface (J m−2 d−1); 
εi = the fraction of absorbed photosynthetically active radiation (fAPAR) or the 
interception efficiency of the vegetation calculated as εi = fAPAR = A + B × NDVI 
(ref. 91), where A and B = sensor heuristic calibration92; εc = the fraction of 
photosynthetically active radiation of the incident solar radiation (here, 0.48); 
εb = the conversion efficiency of PAR to vegetation productivity, as a function 
of temperature93. The version used is DMP 1 km V1, which is specifically 
produced by the Flemish Institute for Technological Research (VITO) using 
an initial DMP algorithm94 that offers better performance over semi-arid areas 
of low vegetation production.

•	 NDVI v.1, 1 km.
•	 Small Water Bodies (SWB) provides Boolean information on the presence of 

surface water95. The version used is 1 km Africa V1.
All datasets were used with temporal extent from April 1998 to January 2021 

and with 10 day frequency.

Modelling climatic and biophysical properties. Herd composition is often 
constrained by a variety of contextual variables ranging from climatic and 
biophysical properties to levels of economic, social and infrastructural development. 
From the climatic and biophysical point of view, previous studies showed that 
feed and water shortage, and the occurrence and severity of climate extremes, are 
among the most important driving forces that could potentially lead to changes 
in herd composition in the study area23,34,39,96–99. In the following the procedure for 
modelling each of these factors during the period 2001–2020 is described.

Modelling DMP. In this study, the annual DMP, expressed as the cumulative 
total dry matter biomass produced over the growing season, was quantified by a 
validated tool, BioGenerator v.5.1100. This tool uses as main input the decadal DMP 
on which it operates cumulatively throughout the growing season.

DMPy =
365.25
36 ×

df∑

d=di

DMPy,d

where y is the considered year, and di and df are respectively the first decade and 
the last decade of cumulation. di and df have to be set to include the total vegetation 
annual peak of production with the constraint that the di needs to be set to be 
before the start of the season but after the end of the season of the previous year, 
and conversely for df. An analysis of study results on the growing period over 
Africa89 permitted a satisfactory compromise that resulted in valid constant values 
over the whole study window: di = second decade of February and df = first decade 
of February of the following year (y + 1).

Before cumulating, the DMP is temporally filtered using NDVI to remove noise 
and residual clouds. Filtering functions, based on best index slope extraction and a 
low-pass filter, are described in detail in the BioGenerator technical document100.

Modelling WAI. Surface water accessibility was characterized using the 
HydroGenerator v.4.3 tool100. HydroGenerator uses the SWB product delivered by 
CGLS as its main input. HydroGenerator applies a 30 km buffer ring around the 
detected cells, which are ranked with a decreasing Gaussian weighting function of 
distance to the point, called the WAI, as follows:

WAI (d) = (1−FBG) × e−
d2

2×σ2 + FBG

where d is the distance to the water point (km); σ is a parameter of the Gaussian 
set to reach 1% beyond 30 km (σ = 30

√

2ln100); and FBG is the background WAI 
depending on aridity zones101 (progressive evolution from hyper-arid = 0% to 
humid = 100%). The WAI ranges from 0 to 1, with 0 representing no access to a 
water point and 1 representing the position of a permanent water point.

Modelling HS frequency. In this research we assessed the thermal HS conditions for 
dairy cattle by using the temperature–humidity index (THI). For this purpose, first, 
the daily THI values were calculated based on formula developed by the National 
Research Council102 and classified using the THI threshold for dairy cattle103:

Daily THI = (1.8 × Tdb + 32) − [(0.55 − 0.0055 × RH) × (1.8 × Tdb − 26.8)]

where Tdb is the dry-bulb temperature (°C) (the daily maximum temperature was 
used instead of Tdb in this case, following previous research27); and RH is the relative 
humidity (%).

Then, the percentage of occurrence of detrimental HS days (that is, events 
which result in substantial changes in milk production; above moderate and 
severe/danger thresholds) over a year was calculated for each grid point and for the 
entire period (2001–2020) and used as a measure for the thermal (dis)comfort27.

Statistical test. The non-parametric Mann–Kendall trend test104,105 (H0, there is 
no trend; H1, there exists a downward or upward trend over time) and Sen’s slope 
estimator106 were used for detection of trends and the slopes of the trend in the 
time series (2001–2020) of DMP, HS and WAI at the 5% and 1% significance levels.

Data analysis. After preparing the DMP, HS and WAI time series for each grid 
point (0.1° × 0.1°), a stepwise procedure was followed to answer the defined listed 
research questions.

Step 1: where in the study area is the cattle production likely to be  
affected most?

Four separate criteria were used to identify where in the study area conditions 
have become significantly worse for cattle production:

	(1)	 If all the three factors significantly changed at the 5% significance level: HS, 
increasing; DMP, decreasing; WAI, decreasing.

	(2)	 If the DMP significantly changed at the 1% significance level and if the quo-
tient (DMP 2011–2020)/(DMP 2001–2010) was <0.5.

	(3)	 If the HS significantly changed at the 1% significance level and the quotient of 
(HS 2011–2020)/(HS 2001–2010) was >10%.

	(4)	 If the WAI significantly changed at the 1% significance level and the quotient 
(WAI 2011–2020)/(WAI 2001–2010) was <0.5.

Step 2: what is the current livestock population composition in regions where 
the criterion explained in step 1 has been satisfied (percentage of cattle, goats and 
camel)? What is the average milk supply and demand in these regions?

Extract total livestock numbers (Livestock population dataset) and milk 
production and demand (Livestock milk supply and demand) in each of the grid 
cells where conditions have become significantly worse for cattle production. These 
data where used to calculate the average herd composition, in terms of percentage 
of cattle, goat and camels, and average milk supply and demand.

Step 3: what is the relationship between milk production and herd composition 
in regions where the criterion explained in step 1 has been satisfied?

To establish how much of the milk production is coming from each species, N 
equations with three unknowns were solved simultaneously; Ax + By + Cz = milk 
production of the grid point; x, y, z = the numbers of cattle, goats and camels, 
respectively; A, B, C = milk production of cattle, goats and camels, respectively.

After fitting the distribution function to the A, B and C values, the average 
values have been used as the ideal herd composition for the remainder of the 
analysis (cattle = 171, goat = 68, camel = 295) (Supplementary Fig. 3).
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Step 4: how much feed and water are needed to produce 1 kg of milk? What are 
the GHG emissions associated with 1 kg of milk from cattle, goats and camels?

We conducted a literature review to determine the water usage, feed 
consumption and GHG emissions associated with the production of 1 kg of 
milk from cattle, goats and camels. The values reported from previous research 
on the water and feed usage for 1 kg of milk from cattle, goats and camels and 
their GHG emissions, mostly for arid and semi-arid regions of SSA, are shown 
in Supplementary Figs. 4–6. In this study, the average values have been used 
for the rest of the analysis, wherein kg feed DM per kg milk from cattle = 1.78, 
goat = 1.43, camel = 1.17; litres of water per kg milk from cattle = 5.73, goat = 2.73, 
camel = 4.90; kgCO2e per kg milk from cattle = 7.25, goat = 6.70, camel = 6.00. 
Estimates of GHGs emitted to produce 1 kg of milk are based on published studies 
on CH4 emissions from enteric fermentation and both CH4 and N2O emissions 
from livestock manure management under extensive and mixed farming systems in 
dryland NSSA (see Supplementary Figs. 4–6 for references to these studies).

Step 5: what happens if we shift from cattle toward goats or camels in regions 
where the criterion explained in step 1 has been satisfied? What is the ideal 
scenario, that is, where the quantity of milk be produced is the same or increased, 
but with less water/feed consumption and GHG emissions (for each subregion and 
as an average)?

Here, we changed the herd composition towards having fewer cattle such that 
the total tropical livestock unit (TLU, 1 TLU = 250 kg bodyweight) was constant. 
In this step, each time after the herd composition was changed, values from 
steps 3 and 4 were used to assess outcomes in terms of milk production, water/
feed usage and GHG emissions. The first priority of the objective function was to 
maximize milk production (herd compositions with milk production more than 
the 75th percentile of all combinations). The second objective was to minimize 
the water/feed usage and finally to have lower GHG emissions (herd compositions 
with water/feed usage and GHG emissions less than the 25th percentile of all 
combinations). Pastoralists in arid areas may have lower general adaptive capacity 
due to lack of alternative livelihood opportunities, but may be more open to shifts 
in herd composition due to existing familiarity with multiple livestock species107. 
On the other hand, mixed farming systems in semi-arid areas will probably have 
less incentive to change their herd composition due to less familiarity with mixed 
herds and possessing greater assets compared with pastoralists108. Therefore, it was 
assumed that mixed systems would be more limited with respect to maximum 
potential reductions in cattle compared with more arid regions, where pastoralist 
systems predominate, and may be able to sustain larger maximum proportional 
reductions in cattle populations. To this end, when shifting from cattle to goats and 
camels in mixed crop–livestock systems, we did not allow the proportional change 
in cattle in these systems for a given grid point to exceed half of current cattle 
population (Supplementary Table 1).

Step 6: what is the expected aggregate milk production for the ideal herd 
composition at the regional scale, and the feed and water requirements and GHG 
emissions associated with this level of milk production? How can shifts in herd 
composition contribute to closing the gap in projected milk demand for 2030?

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The ERA5-Land climate data from the ECMWF are available at https://doi.
org/10.24381/cds.e2161bac. FAO data on livestock population, milk supply and 
demand are available at www.fao.org/ag/againfo/resources/en/glw/home.html. 
Remote-sensing data from the CGLS are available at https://land.copernicus.
eu/global/. The data products from this investigation are available from the 
corresponding author on request.

Code availability
The analysis codes are available from the corresponding author on request.
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